cpuset: avoid changing cpuset's mems when errno returned
[linux-block.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
1da177e4
LT
40#include <linux/module.h>
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
58#include <asm/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
f90d4118
MX
63/*
64 * Workqueue for cpuset related tasks.
65 *
66 * Using kevent workqueue may cause deadlock when memory_migrate
67 * is set. So we create a separate workqueue thread for cpuset.
68 */
69static struct workqueue_struct *cpuset_wq;
70
202f72d5
PJ
71/*
72 * Tracks how many cpusets are currently defined in system.
73 * When there is only one cpuset (the root cpuset) we can
74 * short circuit some hooks.
75 */
7edc5962 76int number_of_cpusets __read_mostly;
202f72d5 77
2df167a3 78/* Forward declare cgroup structures */
8793d854
PM
79struct cgroup_subsys cpuset_subsys;
80struct cpuset;
81
3e0d98b9
PJ
82/* See "Frequency meter" comments, below. */
83
84struct fmeter {
85 int cnt; /* unprocessed events count */
86 int val; /* most recent output value */
87 time_t time; /* clock (secs) when val computed */
88 spinlock_t lock; /* guards read or write of above */
89};
90
1da177e4 91struct cpuset {
8793d854
PM
92 struct cgroup_subsys_state css;
93
1da177e4 94 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 95 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
96 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
97
1da177e4 98 struct cpuset *parent; /* my parent */
1da177e4
LT
99
100 /*
101 * Copy of global cpuset_mems_generation as of the most
102 * recent time this cpuset changed its mems_allowed.
103 */
3e0d98b9
PJ
104 int mems_generation;
105
106 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
107
108 /* partition number for rebuild_sched_domains() */
109 int pn;
956db3ca 110
1d3504fc
HS
111 /* for custom sched domain */
112 int relax_domain_level;
113
956db3ca
CW
114 /* used for walking a cpuset heirarchy */
115 struct list_head stack_list;
1da177e4
LT
116};
117
8793d854
PM
118/* Retrieve the cpuset for a cgroup */
119static inline struct cpuset *cgroup_cs(struct cgroup *cont)
120{
121 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
122 struct cpuset, css);
123}
124
125/* Retrieve the cpuset for a task */
126static inline struct cpuset *task_cs(struct task_struct *task)
127{
128 return container_of(task_subsys_state(task, cpuset_subsys_id),
129 struct cpuset, css);
130}
956db3ca
CW
131struct cpuset_hotplug_scanner {
132 struct cgroup_scanner scan;
133 struct cgroup *to;
134};
8793d854 135
1da177e4
LT
136/* bits in struct cpuset flags field */
137typedef enum {
138 CS_CPU_EXCLUSIVE,
139 CS_MEM_EXCLUSIVE,
78608366 140 CS_MEM_HARDWALL,
45b07ef3 141 CS_MEMORY_MIGRATE,
029190c5 142 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
143 CS_SPREAD_PAGE,
144 CS_SPREAD_SLAB,
1da177e4
LT
145} cpuset_flagbits_t;
146
147/* convenient tests for these bits */
148static inline int is_cpu_exclusive(const struct cpuset *cs)
149{
7b5b9ef0 150 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
151}
152
153static inline int is_mem_exclusive(const struct cpuset *cs)
154{
7b5b9ef0 155 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
156}
157
78608366
PM
158static inline int is_mem_hardwall(const struct cpuset *cs)
159{
160 return test_bit(CS_MEM_HARDWALL, &cs->flags);
161}
162
029190c5
PJ
163static inline int is_sched_load_balance(const struct cpuset *cs)
164{
165 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
166}
167
45b07ef3
PJ
168static inline int is_memory_migrate(const struct cpuset *cs)
169{
7b5b9ef0 170 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
171}
172
825a46af
PJ
173static inline int is_spread_page(const struct cpuset *cs)
174{
175 return test_bit(CS_SPREAD_PAGE, &cs->flags);
176}
177
178static inline int is_spread_slab(const struct cpuset *cs)
179{
180 return test_bit(CS_SPREAD_SLAB, &cs->flags);
181}
182
1da177e4 183/*
151a4420 184 * Increment this integer everytime any cpuset changes its
1da177e4
LT
185 * mems_allowed value. Users of cpusets can track this generation
186 * number, and avoid having to lock and reload mems_allowed unless
187 * the cpuset they're using changes generation.
188 *
2df167a3 189 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
190 * reattach a task to a different cpuset, which must not have its
191 * generation numbers aliased with those of that tasks previous cpuset.
192 *
193 * Generations are needed for mems_allowed because one task cannot
2df167a3 194 * modify another's memory placement. So we must enable every task,
1da177e4
LT
195 * on every visit to __alloc_pages(), to efficiently check whether
196 * its current->cpuset->mems_allowed has changed, requiring an update
197 * of its current->mems_allowed.
151a4420 198 *
2df167a3 199 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 200 * there is no need to mark it atomic.
1da177e4 201 */
151a4420 202static int cpuset_mems_generation;
1da177e4
LT
203
204static struct cpuset top_cpuset = {
205 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
206};
207
1da177e4 208/*
2df167a3
PM
209 * There are two global mutexes guarding cpuset structures. The first
210 * is the main control groups cgroup_mutex, accessed via
211 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
212 * callback_mutex, below. They can nest. It is ok to first take
213 * cgroup_mutex, then nest callback_mutex. We also require taking
214 * task_lock() when dereferencing a task's cpuset pointer. See "The
215 * task_lock() exception", at the end of this comment.
053199ed 216 *
3d3f26a7 217 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 218 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 219 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
220 * and be able to modify cpusets. It can perform various checks on
221 * the cpuset structure first, knowing nothing will change. It can
2df167a3 222 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 223 * performing these checks, various callback routines can briefly
3d3f26a7
IM
224 * acquire callback_mutex to query cpusets. Once it is ready to make
225 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
226 *
227 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 228 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
229 * from one of the callbacks into the cpuset code from within
230 * __alloc_pages().
231 *
3d3f26a7 232 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
233 * access to cpusets.
234 *
235 * The task_struct fields mems_allowed and mems_generation may only
236 * be accessed in the context of that task, so require no locks.
237 *
3d3f26a7 238 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
239 * small pieces of code, such as when reading out possibly multi-word
240 * cpumasks and nodemasks.
241 *
2df167a3
PM
242 * Accessing a task's cpuset should be done in accordance with the
243 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
244 */
245
3d3f26a7 246static DEFINE_MUTEX(callback_mutex);
4247bdc6 247
75aa1994
DR
248/*
249 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
250 * buffers. They are statically allocated to prevent using excess stack
251 * when calling cpuset_print_task_mems_allowed().
252 */
253#define CPUSET_NAME_LEN (128)
254#define CPUSET_NODELIST_LEN (256)
255static char cpuset_name[CPUSET_NAME_LEN];
256static char cpuset_nodelist[CPUSET_NODELIST_LEN];
257static DEFINE_SPINLOCK(cpuset_buffer_lock);
258
cf417141
MK
259/*
260 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 261 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
262 * silently switch it to mount "cgroup" instead
263 */
454e2398
DH
264static int cpuset_get_sb(struct file_system_type *fs_type,
265 int flags, const char *unused_dev_name,
266 void *data, struct vfsmount *mnt)
1da177e4 267{
8793d854
PM
268 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
269 int ret = -ENODEV;
270 if (cgroup_fs) {
271 char mountopts[] =
272 "cpuset,noprefix,"
273 "release_agent=/sbin/cpuset_release_agent";
274 ret = cgroup_fs->get_sb(cgroup_fs, flags,
275 unused_dev_name, mountopts, mnt);
276 put_filesystem(cgroup_fs);
277 }
278 return ret;
1da177e4
LT
279}
280
281static struct file_system_type cpuset_fs_type = {
282 .name = "cpuset",
283 .get_sb = cpuset_get_sb,
1da177e4
LT
284};
285
1da177e4 286/*
300ed6cb 287 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
288 * are online. If none are online, walk up the cpuset hierarchy
289 * until we find one that does have some online cpus. If we get
290 * all the way to the top and still haven't found any online cpus,
291 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
292 * task, return cpu_online_map.
293 *
294 * One way or another, we guarantee to return some non-empty subset
295 * of cpu_online_map.
296 *
3d3f26a7 297 * Call with callback_mutex held.
1da177e4
LT
298 */
299
6af866af
LZ
300static void guarantee_online_cpus(const struct cpuset *cs,
301 struct cpumask *pmask)
1da177e4 302{
300ed6cb 303 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
304 cs = cs->parent;
305 if (cs)
300ed6cb 306 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 307 else
300ed6cb
LZ
308 cpumask_copy(pmask, cpu_online_mask);
309 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
310}
311
312/*
313 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
314 * are online, with memory. If none are online with memory, walk
315 * up the cpuset hierarchy until we find one that does have some
316 * online mems. If we get all the way to the top and still haven't
317 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
318 *
319 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 320 * of node_states[N_HIGH_MEMORY].
1da177e4 321 *
3d3f26a7 322 * Call with callback_mutex held.
1da177e4
LT
323 */
324
325static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
326{
0e1e7c7a
CL
327 while (cs && !nodes_intersects(cs->mems_allowed,
328 node_states[N_HIGH_MEMORY]))
1da177e4
LT
329 cs = cs->parent;
330 if (cs)
0e1e7c7a
CL
331 nodes_and(*pmask, cs->mems_allowed,
332 node_states[N_HIGH_MEMORY]);
1da177e4 333 else
0e1e7c7a
CL
334 *pmask = node_states[N_HIGH_MEMORY];
335 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
336}
337
cf2a473c
PJ
338/**
339 * cpuset_update_task_memory_state - update task memory placement
340 *
341 * If the current tasks cpusets mems_allowed changed behind our
342 * backs, update current->mems_allowed, mems_generation and task NUMA
343 * mempolicy to the new value.
053199ed 344 *
cf2a473c
PJ
345 * Task mempolicy is updated by rebinding it relative to the
346 * current->cpuset if a task has its memory placement changed.
347 * Do not call this routine if in_interrupt().
348 *
4a01c8d5 349 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
350 * called with or without cgroup_mutex held. Thanks in part to
351 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
352 * be NULL. This routine also might acquire callback_mutex during
353 * call.
053199ed 354 *
6b9c2603
PJ
355 * Reading current->cpuset->mems_generation doesn't need task_lock
356 * to guard the current->cpuset derefence, because it is guarded
2df167a3 357 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
358 *
359 * The rcu_dereference() is technically probably not needed,
360 * as I don't actually mind if I see a new cpuset pointer but
361 * an old value of mems_generation. However this really only
362 * matters on alpha systems using cpusets heavily. If I dropped
363 * that rcu_dereference(), it would save them a memory barrier.
364 * For all other arch's, rcu_dereference is a no-op anyway, and for
365 * alpha systems not using cpusets, another planned optimization,
366 * avoiding the rcu critical section for tasks in the root cpuset
367 * which is statically allocated, so can't vanish, will make this
368 * irrelevant. Better to use RCU as intended, than to engage in
369 * some cute trick to save a memory barrier that is impossible to
370 * test, for alpha systems using cpusets heavily, which might not
371 * even exist.
053199ed
PJ
372 *
373 * This routine is needed to update the per-task mems_allowed data,
374 * within the tasks context, when it is trying to allocate memory
375 * (in various mm/mempolicy.c routines) and notices that some other
376 * task has been modifying its cpuset.
1da177e4
LT
377 */
378
fe85a998 379void cpuset_update_task_memory_state(void)
1da177e4 380{
053199ed 381 int my_cpusets_mem_gen;
cf2a473c 382 struct task_struct *tsk = current;
6b9c2603 383 struct cpuset *cs;
053199ed 384
13337714
LJ
385 rcu_read_lock();
386 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
387 rcu_read_unlock();
1da177e4 388
cf2a473c 389 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 390 mutex_lock(&callback_mutex);
cf2a473c 391 task_lock(tsk);
8793d854 392 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
393 guarantee_online_mems(cs, &tsk->mems_allowed);
394 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
395 if (is_spread_page(cs))
396 tsk->flags |= PF_SPREAD_PAGE;
397 else
398 tsk->flags &= ~PF_SPREAD_PAGE;
399 if (is_spread_slab(cs))
400 tsk->flags |= PF_SPREAD_SLAB;
401 else
402 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 403 task_unlock(tsk);
3d3f26a7 404 mutex_unlock(&callback_mutex);
74cb2155 405 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
406 }
407}
408
409/*
410 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
411 *
412 * One cpuset is a subset of another if all its allowed CPUs and
413 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 414 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
415 */
416
417static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
418{
300ed6cb 419 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
420 nodes_subset(p->mems_allowed, q->mems_allowed) &&
421 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
422 is_mem_exclusive(p) <= is_mem_exclusive(q);
423}
424
645fcc9d
LZ
425/**
426 * alloc_trial_cpuset - allocate a trial cpuset
427 * @cs: the cpuset that the trial cpuset duplicates
428 */
429static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
430{
300ed6cb
LZ
431 struct cpuset *trial;
432
433 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
434 if (!trial)
435 return NULL;
436
437 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
438 kfree(trial);
439 return NULL;
440 }
441 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
442
443 return trial;
645fcc9d
LZ
444}
445
446/**
447 * free_trial_cpuset - free the trial cpuset
448 * @trial: the trial cpuset to be freed
449 */
450static void free_trial_cpuset(struct cpuset *trial)
451{
300ed6cb 452 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
453 kfree(trial);
454}
455
1da177e4
LT
456/*
457 * validate_change() - Used to validate that any proposed cpuset change
458 * follows the structural rules for cpusets.
459 *
460 * If we replaced the flag and mask values of the current cpuset
461 * (cur) with those values in the trial cpuset (trial), would
462 * our various subset and exclusive rules still be valid? Presumes
2df167a3 463 * cgroup_mutex held.
1da177e4
LT
464 *
465 * 'cur' is the address of an actual, in-use cpuset. Operations
466 * such as list traversal that depend on the actual address of the
467 * cpuset in the list must use cur below, not trial.
468 *
469 * 'trial' is the address of bulk structure copy of cur, with
470 * perhaps one or more of the fields cpus_allowed, mems_allowed,
471 * or flags changed to new, trial values.
472 *
473 * Return 0 if valid, -errno if not.
474 */
475
476static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
477{
8793d854 478 struct cgroup *cont;
1da177e4
LT
479 struct cpuset *c, *par;
480
481 /* Each of our child cpusets must be a subset of us */
8793d854
PM
482 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
483 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
484 return -EBUSY;
485 }
486
487 /* Remaining checks don't apply to root cpuset */
69604067 488 if (cur == &top_cpuset)
1da177e4
LT
489 return 0;
490
69604067
PJ
491 par = cur->parent;
492
1da177e4
LT
493 /* We must be a subset of our parent cpuset */
494 if (!is_cpuset_subset(trial, par))
495 return -EACCES;
496
2df167a3
PM
497 /*
498 * If either I or some sibling (!= me) is exclusive, we can't
499 * overlap
500 */
8793d854
PM
501 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
502 c = cgroup_cs(cont);
1da177e4
LT
503 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
504 c != cur &&
300ed6cb 505 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
1da177e4
LT
506 return -EINVAL;
507 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
508 c != cur &&
509 nodes_intersects(trial->mems_allowed, c->mems_allowed))
510 return -EINVAL;
511 }
512
020958b6
PJ
513 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
514 if (cgroup_task_count(cur->css.cgroup)) {
300ed6cb 515 if (cpumask_empty(trial->cpus_allowed) ||
020958b6
PJ
516 nodes_empty(trial->mems_allowed)) {
517 return -ENOSPC;
518 }
519 }
520
1da177e4
LT
521 return 0;
522}
523
029190c5 524/*
cf417141 525 * Helper routine for generate_sched_domains().
029190c5
PJ
526 * Do cpusets a, b have overlapping cpus_allowed masks?
527 */
029190c5
PJ
528static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
529{
300ed6cb 530 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
531}
532
1d3504fc
HS
533static void
534update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
535{
1d3504fc
HS
536 if (dattr->relax_domain_level < c->relax_domain_level)
537 dattr->relax_domain_level = c->relax_domain_level;
538 return;
539}
540
f5393693
LJ
541static void
542update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
543{
544 LIST_HEAD(q);
545
546 list_add(&c->stack_list, &q);
547 while (!list_empty(&q)) {
548 struct cpuset *cp;
549 struct cgroup *cont;
550 struct cpuset *child;
551
552 cp = list_first_entry(&q, struct cpuset, stack_list);
553 list_del(q.next);
554
300ed6cb 555 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
556 continue;
557
558 if (is_sched_load_balance(cp))
559 update_domain_attr(dattr, cp);
560
561 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
562 child = cgroup_cs(cont);
563 list_add_tail(&child->stack_list, &q);
564 }
565 }
566}
567
029190c5 568/*
cf417141
MK
569 * generate_sched_domains()
570 *
571 * This function builds a partial partition of the systems CPUs
572 * A 'partial partition' is a set of non-overlapping subsets whose
573 * union is a subset of that set.
574 * The output of this function needs to be passed to kernel/sched.c
575 * partition_sched_domains() routine, which will rebuild the scheduler's
576 * load balancing domains (sched domains) as specified by that partial
577 * partition.
029190c5 578 *
45ce80fb 579 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
580 * for a background explanation of this.
581 *
582 * Does not return errors, on the theory that the callers of this
583 * routine would rather not worry about failures to rebuild sched
584 * domains when operating in the severe memory shortage situations
585 * that could cause allocation failures below.
586 *
cf417141 587 * Must be called with cgroup_lock held.
029190c5
PJ
588 *
589 * The three key local variables below are:
aeed6824 590 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
591 * top-down scan of all cpusets. This scan loads a pointer
592 * to each cpuset marked is_sched_load_balance into the
593 * array 'csa'. For our purposes, rebuilding the schedulers
594 * sched domains, we can ignore !is_sched_load_balance cpusets.
595 * csa - (for CpuSet Array) Array of pointers to all the cpusets
596 * that need to be load balanced, for convenient iterative
597 * access by the subsequent code that finds the best partition,
598 * i.e the set of domains (subsets) of CPUs such that the
599 * cpus_allowed of every cpuset marked is_sched_load_balance
600 * is a subset of one of these domains, while there are as
601 * many such domains as possible, each as small as possible.
602 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
603 * the kernel/sched.c routine partition_sched_domains() in a
604 * convenient format, that can be easily compared to the prior
605 * value to determine what partition elements (sched domains)
606 * were changed (added or removed.)
607 *
608 * Finding the best partition (set of domains):
609 * The triple nested loops below over i, j, k scan over the
610 * load balanced cpusets (using the array of cpuset pointers in
611 * csa[]) looking for pairs of cpusets that have overlapping
612 * cpus_allowed, but which don't have the same 'pn' partition
613 * number and gives them in the same partition number. It keeps
614 * looping on the 'restart' label until it can no longer find
615 * any such pairs.
616 *
617 * The union of the cpus_allowed masks from the set of
618 * all cpusets having the same 'pn' value then form the one
619 * element of the partition (one sched domain) to be passed to
620 * partition_sched_domains().
621 */
6af866af
LZ
622/* FIXME: see the FIXME in partition_sched_domains() */
623static int generate_sched_domains(struct cpumask **domains,
cf417141 624 struct sched_domain_attr **attributes)
029190c5 625{
cf417141 626 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
627 struct cpuset *cp; /* scans q */
628 struct cpuset **csa; /* array of all cpuset ptrs */
629 int csn; /* how many cpuset ptrs in csa so far */
630 int i, j, k; /* indices for partition finding loops */
6af866af 631 struct cpumask *doms; /* resulting partition; i.e. sched domains */
1d3504fc 632 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 633 int ndoms = 0; /* number of sched domains in result */
6af866af 634 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 635
029190c5 636 doms = NULL;
1d3504fc 637 dattr = NULL;
cf417141 638 csa = NULL;
029190c5
PJ
639
640 /* Special case for the 99% of systems with one, full, sched domain */
641 if (is_sched_load_balance(&top_cpuset)) {
6af866af 642 doms = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 643 if (!doms)
cf417141
MK
644 goto done;
645
1d3504fc
HS
646 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
647 if (dattr) {
648 *dattr = SD_ATTR_INIT;
93a65575 649 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 650 }
300ed6cb 651 cpumask_copy(doms, top_cpuset.cpus_allowed);
cf417141
MK
652
653 ndoms = 1;
654 goto done;
029190c5
PJ
655 }
656
029190c5
PJ
657 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
658 if (!csa)
659 goto done;
660 csn = 0;
661
aeed6824
LZ
662 list_add(&top_cpuset.stack_list, &q);
663 while (!list_empty(&q)) {
029190c5
PJ
664 struct cgroup *cont;
665 struct cpuset *child; /* scans child cpusets of cp */
489a5393 666
aeed6824
LZ
667 cp = list_first_entry(&q, struct cpuset, stack_list);
668 list_del(q.next);
669
300ed6cb 670 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
671 continue;
672
f5393693
LJ
673 /*
674 * All child cpusets contain a subset of the parent's cpus, so
675 * just skip them, and then we call update_domain_attr_tree()
676 * to calc relax_domain_level of the corresponding sched
677 * domain.
678 */
679 if (is_sched_load_balance(cp)) {
029190c5 680 csa[csn++] = cp;
f5393693
LJ
681 continue;
682 }
489a5393 683
029190c5
PJ
684 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
685 child = cgroup_cs(cont);
aeed6824 686 list_add_tail(&child->stack_list, &q);
029190c5
PJ
687 }
688 }
689
690 for (i = 0; i < csn; i++)
691 csa[i]->pn = i;
692 ndoms = csn;
693
694restart:
695 /* Find the best partition (set of sched domains) */
696 for (i = 0; i < csn; i++) {
697 struct cpuset *a = csa[i];
698 int apn = a->pn;
699
700 for (j = 0; j < csn; j++) {
701 struct cpuset *b = csa[j];
702 int bpn = b->pn;
703
704 if (apn != bpn && cpusets_overlap(a, b)) {
705 for (k = 0; k < csn; k++) {
706 struct cpuset *c = csa[k];
707
708 if (c->pn == bpn)
709 c->pn = apn;
710 }
711 ndoms--; /* one less element */
712 goto restart;
713 }
714 }
715 }
716
cf417141
MK
717 /*
718 * Now we know how many domains to create.
719 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
720 */
6af866af 721 doms = kmalloc(ndoms * cpumask_size(), GFP_KERNEL);
700018e0 722 if (!doms)
cf417141 723 goto done;
cf417141
MK
724
725 /*
726 * The rest of the code, including the scheduler, can deal with
727 * dattr==NULL case. No need to abort if alloc fails.
728 */
1d3504fc 729 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
730
731 for (nslot = 0, i = 0; i < csn; i++) {
732 struct cpuset *a = csa[i];
6af866af 733 struct cpumask *dp;
029190c5
PJ
734 int apn = a->pn;
735
cf417141
MK
736 if (apn < 0) {
737 /* Skip completed partitions */
738 continue;
739 }
740
741 dp = doms + nslot;
742
743 if (nslot == ndoms) {
744 static int warnings = 10;
745 if (warnings) {
746 printk(KERN_WARNING
747 "rebuild_sched_domains confused:"
748 " nslot %d, ndoms %d, csn %d, i %d,"
749 " apn %d\n",
750 nslot, ndoms, csn, i, apn);
751 warnings--;
029190c5 752 }
cf417141
MK
753 continue;
754 }
029190c5 755
6af866af 756 cpumask_clear(dp);
cf417141
MK
757 if (dattr)
758 *(dattr + nslot) = SD_ATTR_INIT;
759 for (j = i; j < csn; j++) {
760 struct cpuset *b = csa[j];
761
762 if (apn == b->pn) {
300ed6cb 763 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
764 if (dattr)
765 update_domain_attr_tree(dattr + nslot, b);
766
767 /* Done with this partition */
768 b->pn = -1;
029190c5 769 }
029190c5 770 }
cf417141 771 nslot++;
029190c5
PJ
772 }
773 BUG_ON(nslot != ndoms);
774
cf417141
MK
775done:
776 kfree(csa);
777
700018e0
LZ
778 /*
779 * Fallback to the default domain if kmalloc() failed.
780 * See comments in partition_sched_domains().
781 */
782 if (doms == NULL)
783 ndoms = 1;
784
cf417141
MK
785 *domains = doms;
786 *attributes = dattr;
787 return ndoms;
788}
789
790/*
791 * Rebuild scheduler domains.
792 *
793 * Call with neither cgroup_mutex held nor within get_online_cpus().
794 * Takes both cgroup_mutex and get_online_cpus().
795 *
796 * Cannot be directly called from cpuset code handling changes
797 * to the cpuset pseudo-filesystem, because it cannot be called
798 * from code that already holds cgroup_mutex.
799 */
800static void do_rebuild_sched_domains(struct work_struct *unused)
801{
802 struct sched_domain_attr *attr;
6af866af 803 struct cpumask *doms;
cf417141
MK
804 int ndoms;
805
86ef5c9a 806 get_online_cpus();
cf417141
MK
807
808 /* Generate domain masks and attrs */
809 cgroup_lock();
810 ndoms = generate_sched_domains(&doms, &attr);
811 cgroup_unlock();
812
813 /* Have scheduler rebuild the domains */
814 partition_sched_domains(ndoms, doms, attr);
815
86ef5c9a 816 put_online_cpus();
cf417141 817}
029190c5 818
cf417141
MK
819static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
820
821/*
822 * Rebuild scheduler domains, asynchronously via workqueue.
823 *
824 * If the flag 'sched_load_balance' of any cpuset with non-empty
825 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
826 * which has that flag enabled, or if any cpuset with a non-empty
827 * 'cpus' is removed, then call this routine to rebuild the
828 * scheduler's dynamic sched domains.
829 *
830 * The rebuild_sched_domains() and partition_sched_domains()
831 * routines must nest cgroup_lock() inside get_online_cpus(),
832 * but such cpuset changes as these must nest that locking the
833 * other way, holding cgroup_lock() for much of the code.
834 *
835 * So in order to avoid an ABBA deadlock, the cpuset code handling
836 * these user changes delegates the actual sched domain rebuilding
837 * to a separate workqueue thread, which ends up processing the
838 * above do_rebuild_sched_domains() function.
839 */
840static void async_rebuild_sched_domains(void)
841{
f90d4118 842 queue_work(cpuset_wq, &rebuild_sched_domains_work);
cf417141
MK
843}
844
845/*
846 * Accomplishes the same scheduler domain rebuild as the above
847 * async_rebuild_sched_domains(), however it directly calls the
848 * rebuild routine synchronously rather than calling it via an
849 * asynchronous work thread.
850 *
851 * This can only be called from code that is not holding
852 * cgroup_mutex (not nested in a cgroup_lock() call.)
853 */
854void rebuild_sched_domains(void)
855{
856 do_rebuild_sched_domains(NULL);
029190c5
PJ
857}
858
58f4790b
CW
859/**
860 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
861 * @tsk: task to test
862 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
863 *
2df167a3 864 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
865 * Called for each task in a cgroup by cgroup_scan_tasks().
866 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
867 * words, if its mask is not equal to its cpuset's mask).
053199ed 868 */
9e0c914c
AB
869static int cpuset_test_cpumask(struct task_struct *tsk,
870 struct cgroup_scanner *scan)
58f4790b 871{
300ed6cb 872 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
873 (cgroup_cs(scan->cg))->cpus_allowed);
874}
053199ed 875
58f4790b
CW
876/**
877 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
878 * @tsk: task to test
879 * @scan: struct cgroup_scanner containing the cgroup of the task
880 *
881 * Called by cgroup_scan_tasks() for each task in a cgroup whose
882 * cpus_allowed mask needs to be changed.
883 *
884 * We don't need to re-check for the cgroup/cpuset membership, since we're
885 * holding cgroup_lock() at this point.
886 */
9e0c914c
AB
887static void cpuset_change_cpumask(struct task_struct *tsk,
888 struct cgroup_scanner *scan)
58f4790b 889{
300ed6cb 890 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
891}
892
0b2f630a
MX
893/**
894 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
895 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 896 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
897 *
898 * Called with cgroup_mutex held
899 *
900 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
901 * calling callback functions for each.
902 *
4e74339a
LZ
903 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
904 * if @heap != NULL.
0b2f630a 905 */
4e74339a 906static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
907{
908 struct cgroup_scanner scan;
0b2f630a
MX
909
910 scan.cg = cs->css.cgroup;
911 scan.test_task = cpuset_test_cpumask;
912 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
913 scan.heap = heap;
914 cgroup_scan_tasks(&scan);
0b2f630a
MX
915}
916
58f4790b
CW
917/**
918 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
919 * @cs: the cpuset to consider
920 * @buf: buffer of cpu numbers written to this cpuset
921 */
645fcc9d
LZ
922static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
923 const char *buf)
1da177e4 924{
4e74339a 925 struct ptr_heap heap;
58f4790b
CW
926 int retval;
927 int is_load_balanced;
1da177e4 928
4c4d50f7
PJ
929 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
930 if (cs == &top_cpuset)
931 return -EACCES;
932
6f7f02e7 933 /*
c8d9c90c 934 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
935 * Since cpulist_parse() fails on an empty mask, we special case
936 * that parsing. The validate_change() call ensures that cpusets
937 * with tasks have cpus.
6f7f02e7 938 */
020958b6 939 if (!*buf) {
300ed6cb 940 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 941 } else {
300ed6cb 942 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
943 if (retval < 0)
944 return retval;
37340746 945
300ed6cb 946 if (!cpumask_subset(trialcs->cpus_allowed, cpu_online_mask))
37340746 947 return -EINVAL;
6f7f02e7 948 }
645fcc9d 949 retval = validate_change(cs, trialcs);
85d7b949
DG
950 if (retval < 0)
951 return retval;
029190c5 952
8707d8b8 953 /* Nothing to do if the cpus didn't change */
300ed6cb 954 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 955 return 0;
58f4790b 956
4e74339a
LZ
957 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
958 if (retval)
959 return retval;
960
645fcc9d 961 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 962
3d3f26a7 963 mutex_lock(&callback_mutex);
300ed6cb 964 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 965 mutex_unlock(&callback_mutex);
029190c5 966
8707d8b8
PM
967 /*
968 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 969 * that need an update.
8707d8b8 970 */
4e74339a
LZ
971 update_tasks_cpumask(cs, &heap);
972
973 heap_free(&heap);
58f4790b 974
8707d8b8 975 if (is_load_balanced)
cf417141 976 async_rebuild_sched_domains();
85d7b949 977 return 0;
1da177e4
LT
978}
979
e4e364e8
PJ
980/*
981 * cpuset_migrate_mm
982 *
983 * Migrate memory region from one set of nodes to another.
984 *
985 * Temporarilly set tasks mems_allowed to target nodes of migration,
986 * so that the migration code can allocate pages on these nodes.
987 *
2df167a3 988 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 989 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
990 * calls. Therefore we don't need to take task_lock around the
991 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 992 * our task's cpuset.
e4e364e8
PJ
993 *
994 * Hold callback_mutex around the two modifications of our tasks
995 * mems_allowed to synchronize with cpuset_mems_allowed().
996 *
997 * While the mm_struct we are migrating is typically from some
998 * other task, the task_struct mems_allowed that we are hacking
999 * is for our current task, which must allocate new pages for that
1000 * migrating memory region.
1001 *
1002 * We call cpuset_update_task_memory_state() before hacking
1003 * our tasks mems_allowed, so that we are assured of being in
1004 * sync with our tasks cpuset, and in particular, callbacks to
1005 * cpuset_update_task_memory_state() from nested page allocations
1006 * won't see any mismatch of our cpuset and task mems_generation
1007 * values, so won't overwrite our hacked tasks mems_allowed
1008 * nodemask.
1009 */
1010
1011static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1012 const nodemask_t *to)
1013{
1014 struct task_struct *tsk = current;
1015
1016 cpuset_update_task_memory_state();
1017
1018 mutex_lock(&callback_mutex);
1019 tsk->mems_allowed = *to;
1020 mutex_unlock(&callback_mutex);
1021
1022 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
1023
1024 mutex_lock(&callback_mutex);
8793d854 1025 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
1026 mutex_unlock(&callback_mutex);
1027}
1028
3b6766fe
LZ
1029/*
1030 * Rebind task's vmas to cpuset's new mems_allowed, and migrate pages to new
1031 * nodes if memory_migrate flag is set. Called with cgroup_mutex held.
1032 */
1033static void cpuset_change_nodemask(struct task_struct *p,
1034 struct cgroup_scanner *scan)
1035{
1036 struct mm_struct *mm;
1037 struct cpuset *cs;
1038 int migrate;
1039 const nodemask_t *oldmem = scan->data;
1040
1041 mm = get_task_mm(p);
1042 if (!mm)
1043 return;
1044
1045 cs = cgroup_cs(scan->cg);
1046 migrate = is_memory_migrate(cs);
1047
1048 mpol_rebind_mm(mm, &cs->mems_allowed);
1049 if (migrate)
1050 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1051 mmput(mm);
1052}
1053
8793d854
PM
1054static void *cpuset_being_rebound;
1055
0b2f630a
MX
1056/**
1057 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1058 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1059 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1060 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1061 *
1062 * Called with cgroup_mutex held
010cfac4
LZ
1063 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1064 * if @heap != NULL.
0b2f630a 1065 */
010cfac4
LZ
1066static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1067 struct ptr_heap *heap)
1da177e4 1068{
3b6766fe 1069 struct cgroup_scanner scan;
59dac16f 1070
846a16bf 1071 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1072
3b6766fe
LZ
1073 scan.cg = cs->css.cgroup;
1074 scan.test_task = NULL;
1075 scan.process_task = cpuset_change_nodemask;
010cfac4 1076 scan.heap = heap;
3b6766fe 1077 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1078
1079 /*
3b6766fe
LZ
1080 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1081 * take while holding tasklist_lock. Forks can happen - the
1082 * mpol_dup() cpuset_being_rebound check will catch such forks,
1083 * and rebind their vma mempolicies too. Because we still hold
1084 * the global cgroup_mutex, we know that no other rebind effort
1085 * will be contending for the global variable cpuset_being_rebound.
4225399a 1086 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1087 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1088 */
010cfac4 1089 cgroup_scan_tasks(&scan);
4225399a 1090
2df167a3 1091 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1092 cpuset_being_rebound = NULL;
1da177e4
LT
1093}
1094
0b2f630a
MX
1095/*
1096 * Handle user request to change the 'mems' memory placement
1097 * of a cpuset. Needs to validate the request, update the
1098 * cpusets mems_allowed and mems_generation, and for each
1099 * task in the cpuset, rebind any vma mempolicies and if
1100 * the cpuset is marked 'memory_migrate', migrate the tasks
1101 * pages to the new memory.
1102 *
1103 * Call with cgroup_mutex held. May take callback_mutex during call.
1104 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1105 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1106 * their mempolicies to the cpusets new mems_allowed.
1107 */
645fcc9d
LZ
1108static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1109 const char *buf)
0b2f630a 1110{
0b2f630a
MX
1111 nodemask_t oldmem;
1112 int retval;
010cfac4 1113 struct ptr_heap heap;
0b2f630a
MX
1114
1115 /*
1116 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1117 * it's read-only
1118 */
1119 if (cs == &top_cpuset)
1120 return -EACCES;
1121
0b2f630a
MX
1122 /*
1123 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1124 * Since nodelist_parse() fails on an empty mask, we special case
1125 * that parsing. The validate_change() call ensures that cpusets
1126 * with tasks have memory.
1127 */
1128 if (!*buf) {
645fcc9d 1129 nodes_clear(trialcs->mems_allowed);
0b2f630a 1130 } else {
645fcc9d 1131 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1132 if (retval < 0)
1133 goto done;
1134
645fcc9d 1135 if (!nodes_subset(trialcs->mems_allowed,
0b2f630a
MX
1136 node_states[N_HIGH_MEMORY]))
1137 return -EINVAL;
1138 }
1139 oldmem = cs->mems_allowed;
645fcc9d 1140 if (nodes_equal(oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1141 retval = 0; /* Too easy - nothing to do */
1142 goto done;
1143 }
645fcc9d 1144 retval = validate_change(cs, trialcs);
0b2f630a
MX
1145 if (retval < 0)
1146 goto done;
1147
010cfac4
LZ
1148 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1149 if (retval < 0)
1150 goto done;
1151
0b2f630a 1152 mutex_lock(&callback_mutex);
645fcc9d 1153 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1154 cs->mems_generation = cpuset_mems_generation++;
1155 mutex_unlock(&callback_mutex);
1156
010cfac4
LZ
1157 update_tasks_nodemask(cs, &oldmem, &heap);
1158
1159 heap_free(&heap);
0b2f630a
MX
1160done:
1161 return retval;
1162}
1163
8793d854
PM
1164int current_cpuset_is_being_rebound(void)
1165{
1166 return task_cs(current) == cpuset_being_rebound;
1167}
1168
5be7a479 1169static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1170{
30e0e178
LZ
1171 if (val < -1 || val >= SD_LV_MAX)
1172 return -EINVAL;
1d3504fc
HS
1173
1174 if (val != cs->relax_domain_level) {
1175 cs->relax_domain_level = val;
300ed6cb
LZ
1176 if (!cpumask_empty(cs->cpus_allowed) &&
1177 is_sched_load_balance(cs))
cf417141 1178 async_rebuild_sched_domains();
1d3504fc
HS
1179 }
1180
1181 return 0;
1182}
1183
1da177e4
LT
1184/*
1185 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1186 * bit: the bit to update (see cpuset_flagbits_t)
1187 * cs: the cpuset to update
1188 * turning_on: whether the flag is being set or cleared
053199ed 1189 *
2df167a3 1190 * Call with cgroup_mutex held.
1da177e4
LT
1191 */
1192
700fe1ab
PM
1193static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1194 int turning_on)
1da177e4 1195{
645fcc9d 1196 struct cpuset *trialcs;
607717a6 1197 int err;
40b6a762 1198 int balance_flag_changed;
1da177e4 1199
645fcc9d
LZ
1200 trialcs = alloc_trial_cpuset(cs);
1201 if (!trialcs)
1202 return -ENOMEM;
1203
1da177e4 1204 if (turning_on)
645fcc9d 1205 set_bit(bit, &trialcs->flags);
1da177e4 1206 else
645fcc9d 1207 clear_bit(bit, &trialcs->flags);
1da177e4 1208
645fcc9d 1209 err = validate_change(cs, trialcs);
85d7b949 1210 if (err < 0)
645fcc9d 1211 goto out;
029190c5 1212
029190c5 1213 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1214 is_sched_load_balance(trialcs));
029190c5 1215
3d3f26a7 1216 mutex_lock(&callback_mutex);
645fcc9d 1217 cs->flags = trialcs->flags;
3d3f26a7 1218 mutex_unlock(&callback_mutex);
85d7b949 1219
300ed6cb 1220 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
cf417141 1221 async_rebuild_sched_domains();
029190c5 1222
645fcc9d
LZ
1223out:
1224 free_trial_cpuset(trialcs);
1225 return err;
1da177e4
LT
1226}
1227
3e0d98b9 1228/*
80f7228b 1229 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1230 *
1231 * These routines manage a digitally filtered, constant time based,
1232 * event frequency meter. There are four routines:
1233 * fmeter_init() - initialize a frequency meter.
1234 * fmeter_markevent() - called each time the event happens.
1235 * fmeter_getrate() - returns the recent rate of such events.
1236 * fmeter_update() - internal routine used to update fmeter.
1237 *
1238 * A common data structure is passed to each of these routines,
1239 * which is used to keep track of the state required to manage the
1240 * frequency meter and its digital filter.
1241 *
1242 * The filter works on the number of events marked per unit time.
1243 * The filter is single-pole low-pass recursive (IIR). The time unit
1244 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1245 * simulate 3 decimal digits of precision (multiplied by 1000).
1246 *
1247 * With an FM_COEF of 933, and a time base of 1 second, the filter
1248 * has a half-life of 10 seconds, meaning that if the events quit
1249 * happening, then the rate returned from the fmeter_getrate()
1250 * will be cut in half each 10 seconds, until it converges to zero.
1251 *
1252 * It is not worth doing a real infinitely recursive filter. If more
1253 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1254 * just compute FM_MAXTICKS ticks worth, by which point the level
1255 * will be stable.
1256 *
1257 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1258 * arithmetic overflow in the fmeter_update() routine.
1259 *
1260 * Given the simple 32 bit integer arithmetic used, this meter works
1261 * best for reporting rates between one per millisecond (msec) and
1262 * one per 32 (approx) seconds. At constant rates faster than one
1263 * per msec it maxes out at values just under 1,000,000. At constant
1264 * rates between one per msec, and one per second it will stabilize
1265 * to a value N*1000, where N is the rate of events per second.
1266 * At constant rates between one per second and one per 32 seconds,
1267 * it will be choppy, moving up on the seconds that have an event,
1268 * and then decaying until the next event. At rates slower than
1269 * about one in 32 seconds, it decays all the way back to zero between
1270 * each event.
1271 */
1272
1273#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1274#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1275#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1276#define FM_SCALE 1000 /* faux fixed point scale */
1277
1278/* Initialize a frequency meter */
1279static void fmeter_init(struct fmeter *fmp)
1280{
1281 fmp->cnt = 0;
1282 fmp->val = 0;
1283 fmp->time = 0;
1284 spin_lock_init(&fmp->lock);
1285}
1286
1287/* Internal meter update - process cnt events and update value */
1288static void fmeter_update(struct fmeter *fmp)
1289{
1290 time_t now = get_seconds();
1291 time_t ticks = now - fmp->time;
1292
1293 if (ticks == 0)
1294 return;
1295
1296 ticks = min(FM_MAXTICKS, ticks);
1297 while (ticks-- > 0)
1298 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1299 fmp->time = now;
1300
1301 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1302 fmp->cnt = 0;
1303}
1304
1305/* Process any previous ticks, then bump cnt by one (times scale). */
1306static void fmeter_markevent(struct fmeter *fmp)
1307{
1308 spin_lock(&fmp->lock);
1309 fmeter_update(fmp);
1310 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1311 spin_unlock(&fmp->lock);
1312}
1313
1314/* Process any previous ticks, then return current value. */
1315static int fmeter_getrate(struct fmeter *fmp)
1316{
1317 int val;
1318
1319 spin_lock(&fmp->lock);
1320 fmeter_update(fmp);
1321 val = fmp->val;
1322 spin_unlock(&fmp->lock);
1323 return val;
1324}
1325
2341d1b6
LZ
1326/* Protected by cgroup_lock */
1327static cpumask_var_t cpus_attach;
1328
2df167a3 1329/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1330static int cpuset_can_attach(struct cgroup_subsys *ss,
1331 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1332{
8793d854 1333 struct cpuset *cs = cgroup_cs(cont);
5771f0a2 1334 int ret = 0;
1da177e4 1335
300ed6cb 1336 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1337 return -ENOSPC;
9985b0ba 1338
5771f0a2 1339 if (tsk->flags & PF_THREAD_BOUND) {
9985b0ba 1340 mutex_lock(&callback_mutex);
300ed6cb 1341 if (!cpumask_equal(&tsk->cpus_allowed, cs->cpus_allowed))
5771f0a2 1342 ret = -EINVAL;
9985b0ba 1343 mutex_unlock(&callback_mutex);
9985b0ba 1344 }
1da177e4 1345
5771f0a2 1346 return ret < 0 ? ret : security_task_setscheduler(tsk, 0, NULL);
8793d854 1347}
1da177e4 1348
8793d854
PM
1349static void cpuset_attach(struct cgroup_subsys *ss,
1350 struct cgroup *cont, struct cgroup *oldcont,
1351 struct task_struct *tsk)
1352{
8793d854
PM
1353 nodemask_t from, to;
1354 struct mm_struct *mm;
1355 struct cpuset *cs = cgroup_cs(cont);
1356 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1357 int err;
22fb52dd 1358
f5813d94 1359 if (cs == &top_cpuset) {
2341d1b6 1360 cpumask_copy(cpus_attach, cpu_possible_mask);
f5813d94
MX
1361 } else {
1362 mutex_lock(&callback_mutex);
2341d1b6 1363 guarantee_online_cpus(cs, cpus_attach);
f5813d94
MX
1364 mutex_unlock(&callback_mutex);
1365 }
2341d1b6 1366 err = set_cpus_allowed_ptr(tsk, cpus_attach);
9985b0ba
DR
1367 if (err)
1368 return;
1da177e4 1369
45b07ef3
PJ
1370 from = oldcs->mems_allowed;
1371 to = cs->mems_allowed;
4225399a
PJ
1372 mm = get_task_mm(tsk);
1373 if (mm) {
1374 mpol_rebind_mm(mm, &to);
2741a559 1375 if (is_memory_migrate(cs))
e4e364e8 1376 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1377 mmput(mm);
1378 }
1da177e4
LT
1379}
1380
1381/* The various types of files and directories in a cpuset file system */
1382
1383typedef enum {
45b07ef3 1384 FILE_MEMORY_MIGRATE,
1da177e4
LT
1385 FILE_CPULIST,
1386 FILE_MEMLIST,
1387 FILE_CPU_EXCLUSIVE,
1388 FILE_MEM_EXCLUSIVE,
78608366 1389 FILE_MEM_HARDWALL,
029190c5 1390 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1391 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1392 FILE_MEMORY_PRESSURE_ENABLED,
1393 FILE_MEMORY_PRESSURE,
825a46af
PJ
1394 FILE_SPREAD_PAGE,
1395 FILE_SPREAD_SLAB,
1da177e4
LT
1396} cpuset_filetype_t;
1397
700fe1ab
PM
1398static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1399{
1400 int retval = 0;
1401 struct cpuset *cs = cgroup_cs(cgrp);
1402 cpuset_filetype_t type = cft->private;
1403
e3712395 1404 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1405 return -ENODEV;
700fe1ab
PM
1406
1407 switch (type) {
1da177e4 1408 case FILE_CPU_EXCLUSIVE:
700fe1ab 1409 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1410 break;
1411 case FILE_MEM_EXCLUSIVE:
700fe1ab 1412 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1413 break;
78608366
PM
1414 case FILE_MEM_HARDWALL:
1415 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1416 break;
029190c5 1417 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1418 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1419 break;
45b07ef3 1420 case FILE_MEMORY_MIGRATE:
700fe1ab 1421 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1422 break;
3e0d98b9 1423 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1424 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1425 break;
1426 case FILE_MEMORY_PRESSURE:
1427 retval = -EACCES;
1428 break;
825a46af 1429 case FILE_SPREAD_PAGE:
700fe1ab 1430 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1431 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1432 break;
1433 case FILE_SPREAD_SLAB:
700fe1ab 1434 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1435 cs->mems_generation = cpuset_mems_generation++;
825a46af 1436 break;
1da177e4
LT
1437 default:
1438 retval = -EINVAL;
700fe1ab 1439 break;
1da177e4 1440 }
8793d854 1441 cgroup_unlock();
1da177e4
LT
1442 return retval;
1443}
1444
5be7a479
PM
1445static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1446{
1447 int retval = 0;
1448 struct cpuset *cs = cgroup_cs(cgrp);
1449 cpuset_filetype_t type = cft->private;
1450
e3712395 1451 if (!cgroup_lock_live_group(cgrp))
5be7a479 1452 return -ENODEV;
e3712395 1453
5be7a479
PM
1454 switch (type) {
1455 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1456 retval = update_relax_domain_level(cs, val);
1457 break;
1458 default:
1459 retval = -EINVAL;
1460 break;
1461 }
1462 cgroup_unlock();
1463 return retval;
1464}
1465
e3712395
PM
1466/*
1467 * Common handling for a write to a "cpus" or "mems" file.
1468 */
1469static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1470 const char *buf)
1471{
1472 int retval = 0;
645fcc9d
LZ
1473 struct cpuset *cs = cgroup_cs(cgrp);
1474 struct cpuset *trialcs;
e3712395
PM
1475
1476 if (!cgroup_lock_live_group(cgrp))
1477 return -ENODEV;
1478
645fcc9d
LZ
1479 trialcs = alloc_trial_cpuset(cs);
1480 if (!trialcs)
1481 return -ENOMEM;
1482
e3712395
PM
1483 switch (cft->private) {
1484 case FILE_CPULIST:
645fcc9d 1485 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1486 break;
1487 case FILE_MEMLIST:
645fcc9d 1488 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1489 break;
1490 default:
1491 retval = -EINVAL;
1492 break;
1493 }
645fcc9d
LZ
1494
1495 free_trial_cpuset(trialcs);
e3712395
PM
1496 cgroup_unlock();
1497 return retval;
1498}
1499
1da177e4
LT
1500/*
1501 * These ascii lists should be read in a single call, by using a user
1502 * buffer large enough to hold the entire map. If read in smaller
1503 * chunks, there is no guarantee of atomicity. Since the display format
1504 * used, list of ranges of sequential numbers, is variable length,
1505 * and since these maps can change value dynamically, one could read
1506 * gibberish by doing partial reads while a list was changing.
1507 * A single large read to a buffer that crosses a page boundary is
1508 * ok, because the result being copied to user land is not recomputed
1509 * across a page fault.
1510 */
1511
1512static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1513{
5a7625df 1514 int ret;
1da177e4 1515
3d3f26a7 1516 mutex_lock(&callback_mutex);
300ed6cb 1517 ret = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1518 mutex_unlock(&callback_mutex);
1da177e4 1519
5a7625df 1520 return ret;
1da177e4
LT
1521}
1522
1523static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1524{
1525 nodemask_t mask;
1526
3d3f26a7 1527 mutex_lock(&callback_mutex);
1da177e4 1528 mask = cs->mems_allowed;
3d3f26a7 1529 mutex_unlock(&callback_mutex);
1da177e4
LT
1530
1531 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1532}
1533
8793d854
PM
1534static ssize_t cpuset_common_file_read(struct cgroup *cont,
1535 struct cftype *cft,
1536 struct file *file,
1537 char __user *buf,
1538 size_t nbytes, loff_t *ppos)
1da177e4 1539{
8793d854 1540 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1541 cpuset_filetype_t type = cft->private;
1542 char *page;
1543 ssize_t retval = 0;
1544 char *s;
1da177e4 1545
e12ba74d 1546 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1547 return -ENOMEM;
1548
1549 s = page;
1550
1551 switch (type) {
1552 case FILE_CPULIST:
1553 s += cpuset_sprintf_cpulist(s, cs);
1554 break;
1555 case FILE_MEMLIST:
1556 s += cpuset_sprintf_memlist(s, cs);
1557 break;
1da177e4
LT
1558 default:
1559 retval = -EINVAL;
1560 goto out;
1561 }
1562 *s++ = '\n';
1da177e4 1563
eacaa1f5 1564 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1565out:
1566 free_page((unsigned long)page);
1567 return retval;
1568}
1569
700fe1ab
PM
1570static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1571{
1572 struct cpuset *cs = cgroup_cs(cont);
1573 cpuset_filetype_t type = cft->private;
1574 switch (type) {
1575 case FILE_CPU_EXCLUSIVE:
1576 return is_cpu_exclusive(cs);
1577 case FILE_MEM_EXCLUSIVE:
1578 return is_mem_exclusive(cs);
78608366
PM
1579 case FILE_MEM_HARDWALL:
1580 return is_mem_hardwall(cs);
700fe1ab
PM
1581 case FILE_SCHED_LOAD_BALANCE:
1582 return is_sched_load_balance(cs);
1583 case FILE_MEMORY_MIGRATE:
1584 return is_memory_migrate(cs);
1585 case FILE_MEMORY_PRESSURE_ENABLED:
1586 return cpuset_memory_pressure_enabled;
1587 case FILE_MEMORY_PRESSURE:
1588 return fmeter_getrate(&cs->fmeter);
1589 case FILE_SPREAD_PAGE:
1590 return is_spread_page(cs);
1591 case FILE_SPREAD_SLAB:
1592 return is_spread_slab(cs);
1593 default:
1594 BUG();
1595 }
cf417141
MK
1596
1597 /* Unreachable but makes gcc happy */
1598 return 0;
700fe1ab 1599}
1da177e4 1600
5be7a479
PM
1601static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1602{
1603 struct cpuset *cs = cgroup_cs(cont);
1604 cpuset_filetype_t type = cft->private;
1605 switch (type) {
1606 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1607 return cs->relax_domain_level;
1608 default:
1609 BUG();
1610 }
cf417141
MK
1611
1612 /* Unrechable but makes gcc happy */
1613 return 0;
5be7a479
PM
1614}
1615
1da177e4
LT
1616
1617/*
1618 * for the common functions, 'private' gives the type of file
1619 */
1620
addf2c73
PM
1621static struct cftype files[] = {
1622 {
1623 .name = "cpus",
1624 .read = cpuset_common_file_read,
e3712395
PM
1625 .write_string = cpuset_write_resmask,
1626 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1627 .private = FILE_CPULIST,
1628 },
1629
1630 {
1631 .name = "mems",
1632 .read = cpuset_common_file_read,
e3712395
PM
1633 .write_string = cpuset_write_resmask,
1634 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1635 .private = FILE_MEMLIST,
1636 },
1637
1638 {
1639 .name = "cpu_exclusive",
1640 .read_u64 = cpuset_read_u64,
1641 .write_u64 = cpuset_write_u64,
1642 .private = FILE_CPU_EXCLUSIVE,
1643 },
1644
1645 {
1646 .name = "mem_exclusive",
1647 .read_u64 = cpuset_read_u64,
1648 .write_u64 = cpuset_write_u64,
1649 .private = FILE_MEM_EXCLUSIVE,
1650 },
1651
78608366
PM
1652 {
1653 .name = "mem_hardwall",
1654 .read_u64 = cpuset_read_u64,
1655 .write_u64 = cpuset_write_u64,
1656 .private = FILE_MEM_HARDWALL,
1657 },
1658
addf2c73
PM
1659 {
1660 .name = "sched_load_balance",
1661 .read_u64 = cpuset_read_u64,
1662 .write_u64 = cpuset_write_u64,
1663 .private = FILE_SCHED_LOAD_BALANCE,
1664 },
1665
1666 {
1667 .name = "sched_relax_domain_level",
5be7a479
PM
1668 .read_s64 = cpuset_read_s64,
1669 .write_s64 = cpuset_write_s64,
addf2c73
PM
1670 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1671 },
1672
1673 {
1674 .name = "memory_migrate",
1675 .read_u64 = cpuset_read_u64,
1676 .write_u64 = cpuset_write_u64,
1677 .private = FILE_MEMORY_MIGRATE,
1678 },
1679
1680 {
1681 .name = "memory_pressure",
1682 .read_u64 = cpuset_read_u64,
1683 .write_u64 = cpuset_write_u64,
1684 .private = FILE_MEMORY_PRESSURE,
099fca32 1685 .mode = S_IRUGO,
addf2c73
PM
1686 },
1687
1688 {
1689 .name = "memory_spread_page",
1690 .read_u64 = cpuset_read_u64,
1691 .write_u64 = cpuset_write_u64,
1692 .private = FILE_SPREAD_PAGE,
1693 },
1694
1695 {
1696 .name = "memory_spread_slab",
1697 .read_u64 = cpuset_read_u64,
1698 .write_u64 = cpuset_write_u64,
1699 .private = FILE_SPREAD_SLAB,
1700 },
45b07ef3
PJ
1701};
1702
3e0d98b9
PJ
1703static struct cftype cft_memory_pressure_enabled = {
1704 .name = "memory_pressure_enabled",
700fe1ab
PM
1705 .read_u64 = cpuset_read_u64,
1706 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1707 .private = FILE_MEMORY_PRESSURE_ENABLED,
1708};
1709
8793d854 1710static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1711{
1712 int err;
1713
addf2c73
PM
1714 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1715 if (err)
1da177e4 1716 return err;
8793d854 1717 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1718 if (!cont->parent)
8793d854 1719 err = cgroup_add_file(cont, ss,
addf2c73
PM
1720 &cft_memory_pressure_enabled);
1721 return err;
1da177e4
LT
1722}
1723
8793d854
PM
1724/*
1725 * post_clone() is called at the end of cgroup_clone().
1726 * 'cgroup' was just created automatically as a result of
1727 * a cgroup_clone(), and the current task is about to
1728 * be moved into 'cgroup'.
1729 *
1730 * Currently we refuse to set up the cgroup - thereby
1731 * refusing the task to be entered, and as a result refusing
1732 * the sys_unshare() or clone() which initiated it - if any
1733 * sibling cpusets have exclusive cpus or mem.
1734 *
1735 * If this becomes a problem for some users who wish to
1736 * allow that scenario, then cpuset_post_clone() could be
1737 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1738 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1739 * held.
8793d854
PM
1740 */
1741static void cpuset_post_clone(struct cgroup_subsys *ss,
1742 struct cgroup *cgroup)
1743{
1744 struct cgroup *parent, *child;
1745 struct cpuset *cs, *parent_cs;
1746
1747 parent = cgroup->parent;
1748 list_for_each_entry(child, &parent->children, sibling) {
1749 cs = cgroup_cs(child);
1750 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1751 return;
1752 }
1753 cs = cgroup_cs(cgroup);
1754 parent_cs = cgroup_cs(parent);
1755
1756 cs->mems_allowed = parent_cs->mems_allowed;
300ed6cb 1757 cpumask_copy(cs->cpus_allowed, parent_cs->cpus_allowed);
8793d854
PM
1758 return;
1759}
1760
1da177e4
LT
1761/*
1762 * cpuset_create - create a cpuset
2df167a3
PM
1763 * ss: cpuset cgroup subsystem
1764 * cont: control group that the new cpuset will be part of
1da177e4
LT
1765 */
1766
8793d854
PM
1767static struct cgroup_subsys_state *cpuset_create(
1768 struct cgroup_subsys *ss,
1769 struct cgroup *cont)
1da177e4
LT
1770{
1771 struct cpuset *cs;
8793d854 1772 struct cpuset *parent;
1da177e4 1773
8793d854
PM
1774 if (!cont->parent) {
1775 /* This is early initialization for the top cgroup */
1776 top_cpuset.mems_generation = cpuset_mems_generation++;
1777 return &top_cpuset.css;
1778 }
1779 parent = cgroup_cs(cont->parent);
1da177e4
LT
1780 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1781 if (!cs)
8793d854 1782 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1783 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1784 kfree(cs);
1785 return ERR_PTR(-ENOMEM);
1786 }
1da177e4 1787
cf2a473c 1788 cpuset_update_task_memory_state();
1da177e4 1789 cs->flags = 0;
825a46af
PJ
1790 if (is_spread_page(parent))
1791 set_bit(CS_SPREAD_PAGE, &cs->flags);
1792 if (is_spread_slab(parent))
1793 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1794 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1795 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1796 nodes_clear(cs->mems_allowed);
151a4420 1797 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1798 fmeter_init(&cs->fmeter);
1d3504fc 1799 cs->relax_domain_level = -1;
1da177e4
LT
1800
1801 cs->parent = parent;
202f72d5 1802 number_of_cpusets++;
8793d854 1803 return &cs->css ;
1da177e4
LT
1804}
1805
029190c5 1806/*
029190c5
PJ
1807 * If the cpuset being removed has its flag 'sched_load_balance'
1808 * enabled, then simulate turning sched_load_balance off, which
cf417141 1809 * will call async_rebuild_sched_domains().
029190c5
PJ
1810 */
1811
8793d854 1812static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1813{
8793d854 1814 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1815
cf2a473c 1816 cpuset_update_task_memory_state();
029190c5
PJ
1817
1818 if (is_sched_load_balance(cs))
700fe1ab 1819 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1820
202f72d5 1821 number_of_cpusets--;
300ed6cb 1822 free_cpumask_var(cs->cpus_allowed);
8793d854 1823 kfree(cs);
1da177e4
LT
1824}
1825
8793d854
PM
1826struct cgroup_subsys cpuset_subsys = {
1827 .name = "cpuset",
1828 .create = cpuset_create,
cf417141 1829 .destroy = cpuset_destroy,
8793d854
PM
1830 .can_attach = cpuset_can_attach,
1831 .attach = cpuset_attach,
1832 .populate = cpuset_populate,
1833 .post_clone = cpuset_post_clone,
1834 .subsys_id = cpuset_subsys_id,
1835 .early_init = 1,
1836};
1837
c417f024
PJ
1838/*
1839 * cpuset_init_early - just enough so that the calls to
1840 * cpuset_update_task_memory_state() in early init code
1841 * are harmless.
1842 */
1843
1844int __init cpuset_init_early(void)
1845{
300ed6cb
LZ
1846 alloc_bootmem_cpumask_var(&top_cpuset.cpus_allowed);
1847
8793d854 1848 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1849 return 0;
1850}
1851
8793d854 1852
1da177e4
LT
1853/**
1854 * cpuset_init - initialize cpusets at system boot
1855 *
1856 * Description: Initialize top_cpuset and the cpuset internal file system,
1857 **/
1858
1859int __init cpuset_init(void)
1860{
8793d854 1861 int err = 0;
1da177e4 1862
300ed6cb 1863 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1864 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1865
3e0d98b9 1866 fmeter_init(&top_cpuset.fmeter);
151a4420 1867 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1868 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1869 top_cpuset.relax_domain_level = -1;
1da177e4 1870
1da177e4
LT
1871 err = register_filesystem(&cpuset_fs_type);
1872 if (err < 0)
8793d854
PM
1873 return err;
1874
2341d1b6
LZ
1875 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1876 BUG();
1877
202f72d5 1878 number_of_cpusets = 1;
8793d854 1879 return 0;
1da177e4
LT
1880}
1881
956db3ca
CW
1882/**
1883 * cpuset_do_move_task - move a given task to another cpuset
1884 * @tsk: pointer to task_struct the task to move
1885 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1886 *
1887 * Called by cgroup_scan_tasks() for each task in a cgroup.
1888 * Return nonzero to stop the walk through the tasks.
1889 */
9e0c914c
AB
1890static void cpuset_do_move_task(struct task_struct *tsk,
1891 struct cgroup_scanner *scan)
956db3ca
CW
1892{
1893 struct cpuset_hotplug_scanner *chsp;
1894
1895 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1896 cgroup_attach_task(chsp->to, tsk);
1897}
1898
1899/**
1900 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1901 * @from: cpuset in which the tasks currently reside
1902 * @to: cpuset to which the tasks will be moved
1903 *
c8d9c90c
PJ
1904 * Called with cgroup_mutex held
1905 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1906 *
1907 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1908 * calling callback functions for each.
1909 */
1910static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1911{
1912 struct cpuset_hotplug_scanner scan;
1913
1914 scan.scan.cg = from->css.cgroup;
1915 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1916 scan.scan.process_task = cpuset_do_move_task;
1917 scan.scan.heap = NULL;
1918 scan.to = to->css.cgroup;
1919
da5ef6bb 1920 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1921 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1922 "cgroup_scan_tasks failed\n");
1923}
1924
b1aac8bb 1925/*
cf417141 1926 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1927 * or memory nodes, we need to walk over the cpuset hierarchy,
1928 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1929 * last CPU or node from a cpuset, then move the tasks in the empty
1930 * cpuset to its next-highest non-empty parent.
b1aac8bb 1931 *
c8d9c90c
PJ
1932 * Called with cgroup_mutex held
1933 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1934 */
956db3ca
CW
1935static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1936{
1937 struct cpuset *parent;
1938
c8d9c90c
PJ
1939 /*
1940 * The cgroup's css_sets list is in use if there are tasks
1941 * in the cpuset; the list is empty if there are none;
1942 * the cs->css.refcnt seems always 0.
1943 */
956db3ca
CW
1944 if (list_empty(&cs->css.cgroup->css_sets))
1945 return;
b1aac8bb 1946
956db3ca
CW
1947 /*
1948 * Find its next-highest non-empty parent, (top cpuset
1949 * has online cpus, so can't be empty).
1950 */
1951 parent = cs->parent;
300ed6cb 1952 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 1953 nodes_empty(parent->mems_allowed))
956db3ca 1954 parent = parent->parent;
956db3ca
CW
1955
1956 move_member_tasks_to_cpuset(cs, parent);
1957}
1958
1959/*
1960 * Walk the specified cpuset subtree and look for empty cpusets.
1961 * The tasks of such cpuset must be moved to a parent cpuset.
1962 *
2df167a3 1963 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1964 * cpus_allowed and mems_allowed.
1965 *
1966 * This walk processes the tree from top to bottom, completing one layer
1967 * before dropping down to the next. It always processes a node before
1968 * any of its children.
1969 *
1970 * For now, since we lack memory hot unplug, we'll never see a cpuset
1971 * that has tasks along with an empty 'mems'. But if we did see such
1972 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1973 */
d294eb83 1974static void scan_for_empty_cpusets(struct cpuset *root)
b1aac8bb 1975{
8d1e6266 1976 LIST_HEAD(queue);
956db3ca
CW
1977 struct cpuset *cp; /* scans cpusets being updated */
1978 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1979 struct cgroup *cont;
f9b4fb8d 1980 nodemask_t oldmems;
b1aac8bb 1981
956db3ca
CW
1982 list_add_tail((struct list_head *)&root->stack_list, &queue);
1983
956db3ca 1984 while (!list_empty(&queue)) {
8d1e6266 1985 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1986 list_del(queue.next);
1987 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1988 child = cgroup_cs(cont);
1989 list_add_tail(&child->stack_list, &queue);
1990 }
b4501295
PJ
1991
1992 /* Continue past cpusets with all cpus, mems online */
300ed6cb 1993 if (cpumask_subset(cp->cpus_allowed, cpu_online_mask) &&
b4501295
PJ
1994 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1995 continue;
1996
f9b4fb8d
MX
1997 oldmems = cp->mems_allowed;
1998
956db3ca 1999 /* Remove offline cpus and mems from this cpuset. */
b4501295 2000 mutex_lock(&callback_mutex);
300ed6cb
LZ
2001 cpumask_and(cp->cpus_allowed, cp->cpus_allowed,
2002 cpu_online_mask);
956db3ca
CW
2003 nodes_and(cp->mems_allowed, cp->mems_allowed,
2004 node_states[N_HIGH_MEMORY]);
b4501295
PJ
2005 mutex_unlock(&callback_mutex);
2006
2007 /* Move tasks from the empty cpuset to a parent */
300ed6cb 2008 if (cpumask_empty(cp->cpus_allowed) ||
b4501295 2009 nodes_empty(cp->mems_allowed))
956db3ca 2010 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d 2011 else {
4e74339a 2012 update_tasks_cpumask(cp, NULL);
010cfac4 2013 update_tasks_nodemask(cp, &oldmems, NULL);
f9b4fb8d 2014 }
b1aac8bb
PJ
2015 }
2016}
2017
4c4d50f7
PJ
2018/*
2019 * The top_cpuset tracks what CPUs and Memory Nodes are online,
2020 * period. This is necessary in order to make cpusets transparent
2021 * (of no affect) on systems that are actively using CPU hotplug
2022 * but making no active use of cpusets.
2023 *
38837fc7
PJ
2024 * This routine ensures that top_cpuset.cpus_allowed tracks
2025 * cpu_online_map on each CPU hotplug (cpuhp) event.
cf417141
MK
2026 *
2027 * Called within get_online_cpus(). Needs to call cgroup_lock()
2028 * before calling generate_sched_domains().
4c4d50f7 2029 */
cf417141 2030static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
029190c5 2031 unsigned long phase, void *unused_cpu)
4c4d50f7 2032{
cf417141 2033 struct sched_domain_attr *attr;
6af866af 2034 struct cpumask *doms;
cf417141
MK
2035 int ndoms;
2036
3e84050c 2037 switch (phase) {
3e84050c
DA
2038 case CPU_ONLINE:
2039 case CPU_ONLINE_FROZEN:
2040 case CPU_DEAD:
2041 case CPU_DEAD_FROZEN:
3e84050c 2042 break;
cf417141 2043
3e84050c 2044 default:
ac076758 2045 return NOTIFY_DONE;
3e84050c 2046 }
ac076758 2047
cf417141 2048 cgroup_lock();
0b4217b3 2049 mutex_lock(&callback_mutex);
300ed6cb 2050 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0b4217b3 2051 mutex_unlock(&callback_mutex);
cf417141
MK
2052 scan_for_empty_cpusets(&top_cpuset);
2053 ndoms = generate_sched_domains(&doms, &attr);
2054 cgroup_unlock();
2055
2056 /* Have scheduler rebuild the domains */
2057 partition_sched_domains(ndoms, doms, attr);
2058
3e84050c 2059 return NOTIFY_OK;
4c4d50f7 2060}
4c4d50f7 2061
b1aac8bb 2062#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2063/*
0e1e7c7a 2064 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
cf417141
MK
2065 * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
2066 * See also the previous routine cpuset_track_online_cpus().
38837fc7 2067 */
f481891f
MX
2068static int cpuset_track_online_nodes(struct notifier_block *self,
2069 unsigned long action, void *arg)
38837fc7 2070{
cf417141 2071 cgroup_lock();
f481891f
MX
2072 switch (action) {
2073 case MEM_ONLINE:
f481891f 2074 case MEM_OFFLINE:
0b4217b3 2075 mutex_lock(&callback_mutex);
f481891f 2076 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
0b4217b3
LZ
2077 mutex_unlock(&callback_mutex);
2078 if (action == MEM_OFFLINE)
2079 scan_for_empty_cpusets(&top_cpuset);
f481891f
MX
2080 break;
2081 default:
2082 break;
2083 }
cf417141 2084 cgroup_unlock();
f481891f 2085 return NOTIFY_OK;
38837fc7
PJ
2086}
2087#endif
2088
1da177e4
LT
2089/**
2090 * cpuset_init_smp - initialize cpus_allowed
2091 *
2092 * Description: Finish top cpuset after cpu, node maps are initialized
2093 **/
2094
2095void __init cpuset_init_smp(void)
2096{
300ed6cb 2097 cpumask_copy(top_cpuset.cpus_allowed, cpu_online_mask);
0e1e7c7a 2098 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7 2099
cf417141 2100 hotcpu_notifier(cpuset_track_online_cpus, 0);
f481891f 2101 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118
MX
2102
2103 cpuset_wq = create_singlethread_workqueue("cpuset");
2104 BUG_ON(!cpuset_wq);
1da177e4
LT
2105}
2106
2107/**
1da177e4
LT
2108 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2109 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2110 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2111 *
300ed6cb 2112 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4
LT
2113 * attached to the specified @tsk. Guaranteed to return some non-empty
2114 * subset of cpu_online_map, even if this means going outside the
2115 * tasks cpuset.
2116 **/
2117
6af866af 2118void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2119{
3d3f26a7 2120 mutex_lock(&callback_mutex);
f9a86fcb 2121 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 2122 mutex_unlock(&callback_mutex);
470fd646
CW
2123}
2124
2125/**
2126 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 2127 * Must be called with callback_mutex held.
470fd646 2128 **/
6af866af 2129void cpuset_cpus_allowed_locked(struct task_struct *tsk, struct cpumask *pmask)
470fd646 2130{
909d75a3 2131 task_lock(tsk);
f9a86fcb 2132 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2133 task_unlock(tsk);
1da177e4
LT
2134}
2135
2136void cpuset_init_current_mems_allowed(void)
2137{
f9a86fcb 2138 nodes_setall(current->mems_allowed);
1da177e4
LT
2139}
2140
909d75a3
PJ
2141/**
2142 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2143 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2144 *
2145 * Description: Returns the nodemask_t mems_allowed of the cpuset
2146 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2147 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2148 * tasks cpuset.
2149 **/
2150
2151nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2152{
2153 nodemask_t mask;
2154
3d3f26a7 2155 mutex_lock(&callback_mutex);
909d75a3 2156 task_lock(tsk);
8793d854 2157 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2158 task_unlock(tsk);
3d3f26a7 2159 mutex_unlock(&callback_mutex);
909d75a3
PJ
2160
2161 return mask;
2162}
2163
d9fd8a6d 2164/**
19770b32
MG
2165 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2166 * @nodemask: the nodemask to be checked
d9fd8a6d 2167 *
19770b32 2168 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2169 */
19770b32 2170int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2171{
19770b32 2172 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2173}
2174
9bf2229f 2175/*
78608366
PM
2176 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2177 * mem_hardwall ancestor to the specified cpuset. Call holding
2178 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2179 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2180 */
78608366 2181static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2182{
78608366 2183 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2184 cs = cs->parent;
2185 return cs;
2186}
2187
d9fd8a6d 2188/**
02a0e53d 2189 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2190 * @z: is this zone on an allowed node?
02a0e53d 2191 * @gfp_mask: memory allocation flags
d9fd8a6d 2192 *
02a0e53d
PJ
2193 * If we're in interrupt, yes, we can always allocate. If
2194 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2195 * z's node is in our tasks mems_allowed, yes. If it's not a
2196 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2197 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2198 * If the task has been OOM killed and has access to memory reserves
2199 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2200 * Otherwise, no.
2201 *
02a0e53d
PJ
2202 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2203 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2204 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2205 * from an enclosing cpuset.
2206 *
2207 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2208 * hardwall cpusets, and never sleeps.
2209 *
2210 * The __GFP_THISNODE placement logic is really handled elsewhere,
2211 * by forcibly using a zonelist starting at a specified node, and by
2212 * (in get_page_from_freelist()) refusing to consider the zones for
2213 * any node on the zonelist except the first. By the time any such
2214 * calls get to this routine, we should just shut up and say 'yes'.
2215 *
9bf2229f 2216 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2217 * and do not allow allocations outside the current tasks cpuset
2218 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2219 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2220 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2221 *
02a0e53d
PJ
2222 * Scanning up parent cpusets requires callback_mutex. The
2223 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2224 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2225 * current tasks mems_allowed came up empty on the first pass over
2226 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2227 * cpuset are short of memory, might require taking the callback_mutex
2228 * mutex.
9bf2229f 2229 *
36be57ff 2230 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2231 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2232 * so no allocation on a node outside the cpuset is allowed (unless
2233 * in interrupt, of course).
36be57ff
PJ
2234 *
2235 * The second pass through get_page_from_freelist() doesn't even call
2236 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2237 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2238 * in alloc_flags. That logic and the checks below have the combined
2239 * affect that:
9bf2229f
PJ
2240 * in_interrupt - any node ok (current task context irrelevant)
2241 * GFP_ATOMIC - any node ok
c596d9f3 2242 * TIF_MEMDIE - any node ok
78608366 2243 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2244 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2245 *
2246 * Rule:
02a0e53d 2247 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2248 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2249 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2250 */
9bf2229f 2251
02a0e53d 2252int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2253{
9bf2229f
PJ
2254 int node; /* node that zone z is on */
2255 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2256 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2257
9b819d20 2258 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2259 return 1;
89fa3024 2260 node = zone_to_nid(z);
92d1dbd2 2261 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2262 if (node_isset(node, current->mems_allowed))
2263 return 1;
c596d9f3
DR
2264 /*
2265 * Allow tasks that have access to memory reserves because they have
2266 * been OOM killed to get memory anywhere.
2267 */
2268 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2269 return 1;
9bf2229f
PJ
2270 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2271 return 0;
2272
5563e770
BP
2273 if (current->flags & PF_EXITING) /* Let dying task have memory */
2274 return 1;
2275
9bf2229f 2276 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2277 mutex_lock(&callback_mutex);
053199ed 2278
053199ed 2279 task_lock(current);
78608366 2280 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2281 task_unlock(current);
2282
9bf2229f 2283 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2284 mutex_unlock(&callback_mutex);
9bf2229f 2285 return allowed;
1da177e4
LT
2286}
2287
02a0e53d
PJ
2288/*
2289 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2290 * @z: is this zone on an allowed node?
2291 * @gfp_mask: memory allocation flags
2292 *
2293 * If we're in interrupt, yes, we can always allocate.
2294 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2295 * z's node is in our tasks mems_allowed, yes. If the task has been
2296 * OOM killed and has access to memory reserves as specified by the
2297 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2298 *
2299 * The __GFP_THISNODE placement logic is really handled elsewhere,
2300 * by forcibly using a zonelist starting at a specified node, and by
2301 * (in get_page_from_freelist()) refusing to consider the zones for
2302 * any node on the zonelist except the first. By the time any such
2303 * calls get to this routine, we should just shut up and say 'yes'.
2304 *
2305 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2306 * this variant requires that the zone be in the current tasks
2307 * mems_allowed or that we're in interrupt. It does not scan up the
2308 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2309 * It never sleeps.
2310 */
2311
2312int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2313{
2314 int node; /* node that zone z is on */
2315
2316 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2317 return 1;
2318 node = zone_to_nid(z);
2319 if (node_isset(node, current->mems_allowed))
2320 return 1;
dedf8b79
DW
2321 /*
2322 * Allow tasks that have access to memory reserves because they have
2323 * been OOM killed to get memory anywhere.
2324 */
2325 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2326 return 1;
02a0e53d
PJ
2327 return 0;
2328}
2329
505970b9
PJ
2330/**
2331 * cpuset_lock - lock out any changes to cpuset structures
2332 *
3d3f26a7 2333 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2334 * from being changed while it scans the tasklist looking for a
3d3f26a7 2335 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2336 * cpuset_lock() routine, so the oom code can lock it, before
2337 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2338 * must be taken inside callback_mutex.
505970b9
PJ
2339 */
2340
2341void cpuset_lock(void)
2342{
3d3f26a7 2343 mutex_lock(&callback_mutex);
505970b9
PJ
2344}
2345
2346/**
2347 * cpuset_unlock - release lock on cpuset changes
2348 *
2349 * Undo the lock taken in a previous cpuset_lock() call.
2350 */
2351
2352void cpuset_unlock(void)
2353{
3d3f26a7 2354 mutex_unlock(&callback_mutex);
505970b9
PJ
2355}
2356
825a46af
PJ
2357/**
2358 * cpuset_mem_spread_node() - On which node to begin search for a page
2359 *
2360 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2361 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2362 * and if the memory allocation used cpuset_mem_spread_node()
2363 * to determine on which node to start looking, as it will for
2364 * certain page cache or slab cache pages such as used for file
2365 * system buffers and inode caches, then instead of starting on the
2366 * local node to look for a free page, rather spread the starting
2367 * node around the tasks mems_allowed nodes.
2368 *
2369 * We don't have to worry about the returned node being offline
2370 * because "it can't happen", and even if it did, it would be ok.
2371 *
2372 * The routines calling guarantee_online_mems() are careful to
2373 * only set nodes in task->mems_allowed that are online. So it
2374 * should not be possible for the following code to return an
2375 * offline node. But if it did, that would be ok, as this routine
2376 * is not returning the node where the allocation must be, only
2377 * the node where the search should start. The zonelist passed to
2378 * __alloc_pages() will include all nodes. If the slab allocator
2379 * is passed an offline node, it will fall back to the local node.
2380 * See kmem_cache_alloc_node().
2381 */
2382
2383int cpuset_mem_spread_node(void)
2384{
2385 int node;
2386
2387 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2388 if (node == MAX_NUMNODES)
2389 node = first_node(current->mems_allowed);
2390 current->cpuset_mem_spread_rotor = node;
2391 return node;
2392}
2393EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2394
ef08e3b4 2395/**
bbe373f2
DR
2396 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2397 * @tsk1: pointer to task_struct of some task.
2398 * @tsk2: pointer to task_struct of some other task.
2399 *
2400 * Description: Return true if @tsk1's mems_allowed intersects the
2401 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2402 * one of the task's memory usage might impact the memory available
2403 * to the other.
ef08e3b4
PJ
2404 **/
2405
bbe373f2
DR
2406int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2407 const struct task_struct *tsk2)
ef08e3b4 2408{
bbe373f2 2409 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2410}
2411
75aa1994
DR
2412/**
2413 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2414 * @task: pointer to task_struct of some task.
2415 *
2416 * Description: Prints @task's name, cpuset name, and cached copy of its
2417 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2418 * dereferencing task_cs(task).
2419 */
2420void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2421{
2422 struct dentry *dentry;
2423
2424 dentry = task_cs(tsk)->css.cgroup->dentry;
2425 spin_lock(&cpuset_buffer_lock);
2426 snprintf(cpuset_name, CPUSET_NAME_LEN,
2427 dentry ? (const char *)dentry->d_name.name : "/");
2428 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2429 tsk->mems_allowed);
2430 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2431 tsk->comm, cpuset_name, cpuset_nodelist);
2432 spin_unlock(&cpuset_buffer_lock);
2433}
2434
3e0d98b9
PJ
2435/*
2436 * Collection of memory_pressure is suppressed unless
2437 * this flag is enabled by writing "1" to the special
2438 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2439 */
2440
c5b2aff8 2441int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2442
2443/**
2444 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2445 *
2446 * Keep a running average of the rate of synchronous (direct)
2447 * page reclaim efforts initiated by tasks in each cpuset.
2448 *
2449 * This represents the rate at which some task in the cpuset
2450 * ran low on memory on all nodes it was allowed to use, and
2451 * had to enter the kernels page reclaim code in an effort to
2452 * create more free memory by tossing clean pages or swapping
2453 * or writing dirty pages.
2454 *
2455 * Display to user space in the per-cpuset read-only file
2456 * "memory_pressure". Value displayed is an integer
2457 * representing the recent rate of entry into the synchronous
2458 * (direct) page reclaim by any task attached to the cpuset.
2459 **/
2460
2461void __cpuset_memory_pressure_bump(void)
2462{
3e0d98b9 2463 task_lock(current);
8793d854 2464 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2465 task_unlock(current);
2466}
2467
8793d854 2468#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2469/*
2470 * proc_cpuset_show()
2471 * - Print tasks cpuset path into seq_file.
2472 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2473 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2474 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2475 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2476 * anyway.
1da177e4 2477 */
029190c5 2478static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2479{
13b41b09 2480 struct pid *pid;
1da177e4
LT
2481 struct task_struct *tsk;
2482 char *buf;
8793d854 2483 struct cgroup_subsys_state *css;
99f89551 2484 int retval;
1da177e4 2485
99f89551 2486 retval = -ENOMEM;
1da177e4
LT
2487 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2488 if (!buf)
99f89551
EB
2489 goto out;
2490
2491 retval = -ESRCH;
13b41b09
EB
2492 pid = m->private;
2493 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2494 if (!tsk)
2495 goto out_free;
1da177e4 2496
99f89551 2497 retval = -EINVAL;
8793d854
PM
2498 cgroup_lock();
2499 css = task_subsys_state(tsk, cpuset_subsys_id);
2500 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2501 if (retval < 0)
99f89551 2502 goto out_unlock;
1da177e4
LT
2503 seq_puts(m, buf);
2504 seq_putc(m, '\n');
99f89551 2505out_unlock:
8793d854 2506 cgroup_unlock();
99f89551
EB
2507 put_task_struct(tsk);
2508out_free:
1da177e4 2509 kfree(buf);
99f89551 2510out:
1da177e4
LT
2511 return retval;
2512}
2513
2514static int cpuset_open(struct inode *inode, struct file *file)
2515{
13b41b09
EB
2516 struct pid *pid = PROC_I(inode)->pid;
2517 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2518}
2519
9a32144e 2520const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2521 .open = cpuset_open,
2522 .read = seq_read,
2523 .llseek = seq_lseek,
2524 .release = single_release,
2525};
8793d854 2526#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2527
2528/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2529void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2530{
2531 seq_printf(m, "Cpus_allowed:\t");
30e8e136 2532 seq_cpumask(m, &task->cpus_allowed);
df5f8314 2533 seq_printf(m, "\n");
39106dcf 2534 seq_printf(m, "Cpus_allowed_list:\t");
30e8e136 2535 seq_cpumask_list(m, &task->cpus_allowed);
39106dcf 2536 seq_printf(m, "\n");
df5f8314 2537 seq_printf(m, "Mems_allowed:\t");
30e8e136 2538 seq_nodemask(m, &task->mems_allowed);
df5f8314 2539 seq_printf(m, "\n");
39106dcf 2540 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2541 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2542 seq_printf(m, "\n");
1da177e4 2543}