cgroup: remove NULL checks from [pr_cont_]cgroup_{name|path}()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
0e1d768f
TH
83 *
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
136#include <linux/cgroup_subsys.h>
137};
138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
9871bf95
TH
141 * The dummy hierarchy, reserved for the subsystems that are otherwise
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
9871bf95
TH
145static struct cgroupfs_root cgroup_dummy_root;
146
147/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
148static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
149
150/* The list of hierarchy roots */
151
9871bf95
TH
152static LIST_HEAD(cgroup_roots);
153static int cgroup_root_count;
ddbcc7e8 154
3417ae1f 155/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 156static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 157
794611a1
LZ
158/*
159 * Assign a monotonically increasing serial number to cgroups. It
160 * guarantees cgroups with bigger numbers are newer than those with smaller
161 * numbers. Also, as cgroups are always appended to the parent's
162 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
163 * the ascending serial number order on the list. Protected by
164 * cgroup_mutex.
794611a1 165 */
00356bd5 166static u64 cgroup_serial_nr_next = 1;
794611a1 167
ddbcc7e8 168/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
169 * check for fork/exit handlers to call. This avoids us having to do
170 * extra work in the fork/exit path if none of the subsystems need to
171 * be called.
ddbcc7e8 172 */
8947f9d5 173static int need_forkexit_callback __read_mostly;
ddbcc7e8 174
628f7cd4
TH
175static struct cftype cgroup_base_files[];
176
59f5296b 177static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
178static int rebind_subsystems(struct cgroupfs_root *root,
179 unsigned long added_mask, unsigned removed_mask);
f20104de 180static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 181static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
182static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
183 bool is_add);
b1a21367 184static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 185
95109b62
TH
186/**
187 * cgroup_css - obtain a cgroup's css for the specified subsystem
188 * @cgrp: the cgroup of interest
ca8bdcaf 189 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 190 *
ca8bdcaf
TH
191 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
192 * function must be called either under cgroup_mutex or rcu_read_lock() and
193 * the caller is responsible for pinning the returned css if it wants to
194 * keep accessing it outside the said locks. This function may return
195 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
196 */
197static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 198 struct cgroup_subsys *ss)
95109b62 199{
ca8bdcaf 200 if (ss)
aec25020 201 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
202 lockdep_is_held(&cgroup_tree_mutex) ||
203 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
204 else
205 return &cgrp->dummy_css;
95109b62 206}
42809dd4 207
ddbcc7e8 208/* convenient tests for these bits */
54766d4a 209static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 210{
54766d4a 211 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
212}
213
59f5296b
TH
214struct cgroup_subsys_state *seq_css(struct seq_file *seq)
215{
2bd59d48
TH
216 struct kernfs_open_file *of = seq->private;
217 struct cgroup *cgrp = of->kn->parent->priv;
218 struct cftype *cft = seq_cft(seq);
219
220 /*
221 * This is open and unprotected implementation of cgroup_css().
222 * seq_css() is only called from a kernfs file operation which has
223 * an active reference on the file. Because all the subsystem
224 * files are drained before a css is disassociated with a cgroup,
225 * the matching css from the cgroup's subsys table is guaranteed to
226 * be and stay valid until the enclosing operation is complete.
227 */
228 if (cft->ss)
229 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
230 else
231 return &cgrp->dummy_css;
59f5296b
TH
232}
233EXPORT_SYMBOL_GPL(seq_css);
234
78574cf9
LZ
235/**
236 * cgroup_is_descendant - test ancestry
237 * @cgrp: the cgroup to be tested
238 * @ancestor: possible ancestor of @cgrp
239 *
240 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
241 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
242 * and @ancestor are accessible.
243 */
244bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
245{
246 while (cgrp) {
247 if (cgrp == ancestor)
248 return true;
249 cgrp = cgrp->parent;
250 }
251 return false;
252}
ddbcc7e8 253
e9685a03 254static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
255{
256 const int bits =
bd89aabc
PM
257 (1 << CGRP_RELEASABLE) |
258 (1 << CGRP_NOTIFY_ON_RELEASE);
259 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
260}
261
e9685a03 262static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 263{
bd89aabc 264 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
265}
266
1c6727af
TH
267/**
268 * for_each_css - iterate all css's of a cgroup
269 * @css: the iteration cursor
270 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
271 * @cgrp: the target cgroup to iterate css's of
272 *
273 * Should be called under cgroup_mutex.
274 */
275#define for_each_css(css, ssid, cgrp) \
276 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
277 if (!((css) = rcu_dereference_check( \
278 (cgrp)->subsys[(ssid)], \
ace2bee8 279 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
280 lockdep_is_held(&cgroup_mutex)))) { } \
281 else
282
30159ec7 283/**
3ed80a62 284 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 285 * @ss: the iteration cursor
780cd8b3 286 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 287 */
780cd8b3 288#define for_each_subsys(ss, ssid) \
3ed80a62
TH
289 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
290 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 291
985ed670
TH
292/* iterate across the hierarchies */
293#define for_each_root(root) \
5549c497 294 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 295
7ae1bad9
TH
296/**
297 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
298 * @cgrp: the cgroup to be checked for liveness
299 *
47cfcd09
TH
300 * On success, returns true; the mutex should be later unlocked. On
301 * failure returns false with no lock held.
7ae1bad9 302 */
b9777cf8 303static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
304{
305 mutex_lock(&cgroup_mutex);
54766d4a 306 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
307 mutex_unlock(&cgroup_mutex);
308 return false;
309 }
310 return true;
311}
7ae1bad9 312
81a6a5cd
PM
313/* the list of cgroups eligible for automatic release. Protected by
314 * release_list_lock */
315static LIST_HEAD(release_list);
cdcc136f 316static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
317static void cgroup_release_agent(struct work_struct *work);
318static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 319static void check_for_release(struct cgroup *cgrp);
81a6a5cd 320
69d0206c
TH
321/*
322 * A cgroup can be associated with multiple css_sets as different tasks may
323 * belong to different cgroups on different hierarchies. In the other
324 * direction, a css_set is naturally associated with multiple cgroups.
325 * This M:N relationship is represented by the following link structure
326 * which exists for each association and allows traversing the associations
327 * from both sides.
328 */
329struct cgrp_cset_link {
330 /* the cgroup and css_set this link associates */
331 struct cgroup *cgrp;
332 struct css_set *cset;
333
334 /* list of cgrp_cset_links anchored at cgrp->cset_links */
335 struct list_head cset_link;
336
337 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
338 struct list_head cgrp_link;
817929ec
PM
339};
340
172a2c06
TH
341/*
342 * The default css_set - used by init and its children prior to any
817929ec
PM
343 * hierarchies being mounted. It contains a pointer to the root state
344 * for each subsystem. Also used to anchor the list of css_sets. Not
345 * reference-counted, to improve performance when child cgroups
346 * haven't been created.
347 */
172a2c06
TH
348static struct css_set init_css_set = {
349 .refcount = ATOMIC_INIT(1),
350 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
351 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
352 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
353 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
354 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
355};
817929ec 356
172a2c06 357static int css_set_count = 1; /* 1 for init_css_set */
817929ec 358
7717f7ba
PM
359/*
360 * hash table for cgroup groups. This improves the performance to find
361 * an existing css_set. This hash doesn't (currently) take into
362 * account cgroups in empty hierarchies.
363 */
472b1053 364#define CSS_SET_HASH_BITS 7
0ac801fe 365static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 366
0ac801fe 367static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 368{
0ac801fe 369 unsigned long key = 0UL;
30159ec7
TH
370 struct cgroup_subsys *ss;
371 int i;
472b1053 372
30159ec7 373 for_each_subsys(ss, i)
0ac801fe
LZ
374 key += (unsigned long)css[i];
375 key = (key >> 16) ^ key;
472b1053 376
0ac801fe 377 return key;
472b1053
LZ
378}
379
89c5509b 380static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 381{
69d0206c 382 struct cgrp_cset_link *link, *tmp_link;
5abb8855 383
89c5509b
TH
384 lockdep_assert_held(&css_set_rwsem);
385
386 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 387 return;
81a6a5cd 388
2c6ab6d2 389 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 390 hash_del(&cset->hlist);
2c6ab6d2
PM
391 css_set_count--;
392
69d0206c 393 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 394 struct cgroup *cgrp = link->cgrp;
5abb8855 395
69d0206c
TH
396 list_del(&link->cset_link);
397 list_del(&link->cgrp_link);
71b5707e 398
96d365e0 399 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 400 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 401 if (taskexit)
bd89aabc
PM
402 set_bit(CGRP_RELEASABLE, &cgrp->flags);
403 check_for_release(cgrp);
81a6a5cd 404 }
2c6ab6d2
PM
405
406 kfree(link);
81a6a5cd 407 }
2c6ab6d2 408
5abb8855 409 kfree_rcu(cset, rcu_head);
b4f48b63
PM
410}
411
89c5509b
TH
412static void put_css_set(struct css_set *cset, bool taskexit)
413{
414 /*
415 * Ensure that the refcount doesn't hit zero while any readers
416 * can see it. Similar to atomic_dec_and_lock(), but for an
417 * rwlock
418 */
419 if (atomic_add_unless(&cset->refcount, -1, 1))
420 return;
421
422 down_write(&css_set_rwsem);
423 put_css_set_locked(cset, taskexit);
424 up_write(&css_set_rwsem);
425}
426
817929ec
PM
427/*
428 * refcounted get/put for css_set objects
429 */
5abb8855 430static inline void get_css_set(struct css_set *cset)
817929ec 431{
5abb8855 432 atomic_inc(&cset->refcount);
817929ec
PM
433}
434
b326f9d0 435/**
7717f7ba 436 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
437 * @cset: candidate css_set being tested
438 * @old_cset: existing css_set for a task
7717f7ba
PM
439 * @new_cgrp: cgroup that's being entered by the task
440 * @template: desired set of css pointers in css_set (pre-calculated)
441 *
6f4b7e63 442 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
443 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
444 */
5abb8855
TH
445static bool compare_css_sets(struct css_set *cset,
446 struct css_set *old_cset,
7717f7ba
PM
447 struct cgroup *new_cgrp,
448 struct cgroup_subsys_state *template[])
449{
450 struct list_head *l1, *l2;
451
5abb8855 452 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
453 /* Not all subsystems matched */
454 return false;
455 }
456
457 /*
458 * Compare cgroup pointers in order to distinguish between
459 * different cgroups in heirarchies with no subsystems. We
460 * could get by with just this check alone (and skip the
461 * memcmp above) but on most setups the memcmp check will
462 * avoid the need for this more expensive check on almost all
463 * candidates.
464 */
465
69d0206c
TH
466 l1 = &cset->cgrp_links;
467 l2 = &old_cset->cgrp_links;
7717f7ba 468 while (1) {
69d0206c 469 struct cgrp_cset_link *link1, *link2;
5abb8855 470 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
471
472 l1 = l1->next;
473 l2 = l2->next;
474 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
475 if (l1 == &cset->cgrp_links) {
476 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
477 break;
478 } else {
69d0206c 479 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
480 }
481 /* Locate the cgroups associated with these links. */
69d0206c
TH
482 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
483 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
484 cgrp1 = link1->cgrp;
485 cgrp2 = link2->cgrp;
7717f7ba 486 /* Hierarchies should be linked in the same order. */
5abb8855 487 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
488
489 /*
490 * If this hierarchy is the hierarchy of the cgroup
491 * that's changing, then we need to check that this
492 * css_set points to the new cgroup; if it's any other
493 * hierarchy, then this css_set should point to the
494 * same cgroup as the old css_set.
495 */
5abb8855
TH
496 if (cgrp1->root == new_cgrp->root) {
497 if (cgrp1 != new_cgrp)
7717f7ba
PM
498 return false;
499 } else {
5abb8855 500 if (cgrp1 != cgrp2)
7717f7ba
PM
501 return false;
502 }
503 }
504 return true;
505}
506
b326f9d0
TH
507/**
508 * find_existing_css_set - init css array and find the matching css_set
509 * @old_cset: the css_set that we're using before the cgroup transition
510 * @cgrp: the cgroup that we're moving into
511 * @template: out param for the new set of csses, should be clear on entry
817929ec 512 */
5abb8855
TH
513static struct css_set *find_existing_css_set(struct css_set *old_cset,
514 struct cgroup *cgrp,
515 struct cgroup_subsys_state *template[])
b4f48b63 516{
bd89aabc 517 struct cgroupfs_root *root = cgrp->root;
30159ec7 518 struct cgroup_subsys *ss;
5abb8855 519 struct css_set *cset;
0ac801fe 520 unsigned long key;
b326f9d0 521 int i;
817929ec 522
aae8aab4
BB
523 /*
524 * Build the set of subsystem state objects that we want to see in the
525 * new css_set. while subsystems can change globally, the entries here
526 * won't change, so no need for locking.
527 */
30159ec7 528 for_each_subsys(ss, i) {
a1a71b45 529 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
530 /* Subsystem is in this hierarchy. So we want
531 * the subsystem state from the new
532 * cgroup */
ca8bdcaf 533 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
534 } else {
535 /* Subsystem is not in this hierarchy, so we
536 * don't want to change the subsystem state */
5abb8855 537 template[i] = old_cset->subsys[i];
817929ec
PM
538 }
539 }
540
0ac801fe 541 key = css_set_hash(template);
5abb8855
TH
542 hash_for_each_possible(css_set_table, cset, hlist, key) {
543 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
544 continue;
545
546 /* This css_set matches what we need */
5abb8855 547 return cset;
472b1053 548 }
817929ec
PM
549
550 /* No existing cgroup group matched */
551 return NULL;
552}
553
69d0206c 554static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 555{
69d0206c 556 struct cgrp_cset_link *link, *tmp_link;
36553434 557
69d0206c
TH
558 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
559 list_del(&link->cset_link);
36553434
LZ
560 kfree(link);
561 }
562}
563
69d0206c
TH
564/**
565 * allocate_cgrp_cset_links - allocate cgrp_cset_links
566 * @count: the number of links to allocate
567 * @tmp_links: list_head the allocated links are put on
568 *
569 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
570 * through ->cset_link. Returns 0 on success or -errno.
817929ec 571 */
69d0206c 572static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 573{
69d0206c 574 struct cgrp_cset_link *link;
817929ec 575 int i;
69d0206c
TH
576
577 INIT_LIST_HEAD(tmp_links);
578
817929ec 579 for (i = 0; i < count; i++) {
f4f4be2b 580 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 581 if (!link) {
69d0206c 582 free_cgrp_cset_links(tmp_links);
817929ec
PM
583 return -ENOMEM;
584 }
69d0206c 585 list_add(&link->cset_link, tmp_links);
817929ec
PM
586 }
587 return 0;
588}
589
c12f65d4
LZ
590/**
591 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 592 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 593 * @cset: the css_set to be linked
c12f65d4
LZ
594 * @cgrp: the destination cgroup
595 */
69d0206c
TH
596static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
597 struct cgroup *cgrp)
c12f65d4 598{
69d0206c 599 struct cgrp_cset_link *link;
c12f65d4 600
69d0206c
TH
601 BUG_ON(list_empty(tmp_links));
602 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
603 link->cset = cset;
7717f7ba 604 link->cgrp = cgrp;
69d0206c 605 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
606 /*
607 * Always add links to the tail of the list so that the list
608 * is sorted by order of hierarchy creation
609 */
69d0206c 610 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
611}
612
b326f9d0
TH
613/**
614 * find_css_set - return a new css_set with one cgroup updated
615 * @old_cset: the baseline css_set
616 * @cgrp: the cgroup to be updated
617 *
618 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
619 * substituted into the appropriate hierarchy.
817929ec 620 */
5abb8855
TH
621static struct css_set *find_css_set(struct css_set *old_cset,
622 struct cgroup *cgrp)
817929ec 623{
b326f9d0 624 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 625 struct css_set *cset;
69d0206c
TH
626 struct list_head tmp_links;
627 struct cgrp_cset_link *link;
0ac801fe 628 unsigned long key;
472b1053 629
b326f9d0
TH
630 lockdep_assert_held(&cgroup_mutex);
631
817929ec
PM
632 /* First see if we already have a cgroup group that matches
633 * the desired set */
96d365e0 634 down_read(&css_set_rwsem);
5abb8855
TH
635 cset = find_existing_css_set(old_cset, cgrp, template);
636 if (cset)
637 get_css_set(cset);
96d365e0 638 up_read(&css_set_rwsem);
817929ec 639
5abb8855
TH
640 if (cset)
641 return cset;
817929ec 642
f4f4be2b 643 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 644 if (!cset)
817929ec
PM
645 return NULL;
646
69d0206c 647 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 648 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 649 kfree(cset);
817929ec
PM
650 return NULL;
651 }
652
5abb8855 653 atomic_set(&cset->refcount, 1);
69d0206c 654 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 655 INIT_LIST_HEAD(&cset->tasks);
c7561128 656 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 657 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 658 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 659 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
660
661 /* Copy the set of subsystem state objects generated in
662 * find_existing_css_set() */
5abb8855 663 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 664
96d365e0 665 down_write(&css_set_rwsem);
817929ec 666 /* Add reference counts and links from the new css_set. */
69d0206c 667 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 668 struct cgroup *c = link->cgrp;
69d0206c 669
7717f7ba
PM
670 if (c->root == cgrp->root)
671 c = cgrp;
69d0206c 672 link_css_set(&tmp_links, cset, c);
7717f7ba 673 }
817929ec 674
69d0206c 675 BUG_ON(!list_empty(&tmp_links));
817929ec 676
817929ec 677 css_set_count++;
472b1053
LZ
678
679 /* Add this cgroup group to the hash table */
5abb8855
TH
680 key = css_set_hash(cset->subsys);
681 hash_add(css_set_table, &cset->hlist, key);
472b1053 682
96d365e0 683 up_write(&css_set_rwsem);
817929ec 684
5abb8855 685 return cset;
b4f48b63
PM
686}
687
2bd59d48
TH
688static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
689{
690 struct cgroup *top_cgrp = kf_root->kn->priv;
691
692 return top_cgrp->root;
693}
694
985ed670 695static int cgroup_init_root_id(struct cgroupfs_root *root)
f2e85d57
TH
696{
697 int id;
698
699 lockdep_assert_held(&cgroup_mutex);
700
985ed670 701 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
702 if (id < 0)
703 return id;
704
705 root->hierarchy_id = id;
706 return 0;
707}
708
709static void cgroup_exit_root_id(struct cgroupfs_root *root)
710{
711 lockdep_assert_held(&cgroup_mutex);
712
713 if (root->hierarchy_id) {
714 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
715 root->hierarchy_id = 0;
716 }
717}
718
719static void cgroup_free_root(struct cgroupfs_root *root)
720{
721 if (root) {
722 /* hierarhcy ID shoulid already have been released */
723 WARN_ON_ONCE(root->hierarchy_id);
724
725 idr_destroy(&root->cgroup_idr);
726 kfree(root);
727 }
728}
729
776f02fa 730static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 731{
f2e85d57
TH
732 struct cgroup *cgrp = &root->top_cgroup;
733 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 734
2bd59d48 735 mutex_lock(&cgroup_tree_mutex);
2bd59d48 736 mutex_lock(&cgroup_mutex);
f2e85d57 737
776f02fa 738 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
739 BUG_ON(!list_empty(&cgrp->children));
740
f2e85d57 741 /* Rebind all subsystems back to the default hierarchy */
35585573 742 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
743
744 /*
745 * Release all the links from cset_links to this hierarchy's
746 * root cgroup
747 */
96d365e0 748 down_write(&css_set_rwsem);
f2e85d57
TH
749
750 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
751 list_del(&link->cset_link);
752 list_del(&link->cgrp_link);
753 kfree(link);
754 }
96d365e0 755 up_write(&css_set_rwsem);
f2e85d57
TH
756
757 if (!list_empty(&root->root_list)) {
758 list_del(&root->root_list);
759 cgroup_root_count--;
760 }
761
762 cgroup_exit_root_id(root);
763
764 mutex_unlock(&cgroup_mutex);
765 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 766
2bd59d48 767 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
768 cgroup_free_root(root);
769}
770
ceb6a081
TH
771/* look up cgroup associated with given css_set on the specified hierarchy */
772static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
7717f7ba
PM
773 struct cgroupfs_root *root)
774{
7717f7ba
PM
775 struct cgroup *res = NULL;
776
96d365e0
TH
777 lockdep_assert_held(&cgroup_mutex);
778 lockdep_assert_held(&css_set_rwsem);
779
5abb8855 780 if (cset == &init_css_set) {
7717f7ba
PM
781 res = &root->top_cgroup;
782 } else {
69d0206c
TH
783 struct cgrp_cset_link *link;
784
785 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 786 struct cgroup *c = link->cgrp;
69d0206c 787
7717f7ba
PM
788 if (c->root == root) {
789 res = c;
790 break;
791 }
792 }
793 }
96d365e0 794
7717f7ba
PM
795 BUG_ON(!res);
796 return res;
797}
798
ceb6a081
TH
799/*
800 * Return the cgroup for "task" from the given hierarchy. Must be
801 * called with cgroup_mutex and css_set_rwsem held.
802 */
803static struct cgroup *task_cgroup_from_root(struct task_struct *task,
804 struct cgroupfs_root *root)
805{
806 /*
807 * No need to lock the task - since we hold cgroup_mutex the
808 * task can't change groups, so the only thing that can happen
809 * is that it exits and its css is set back to init_css_set.
810 */
811 return cset_cgroup_from_root(task_css_set(task), root);
812}
813
ddbcc7e8 814/*
ddbcc7e8
PM
815 * A task must hold cgroup_mutex to modify cgroups.
816 *
817 * Any task can increment and decrement the count field without lock.
818 * So in general, code holding cgroup_mutex can't rely on the count
819 * field not changing. However, if the count goes to zero, then only
956db3ca 820 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
821 * means that no tasks are currently attached, therefore there is no
822 * way a task attached to that cgroup can fork (the other way to
823 * increment the count). So code holding cgroup_mutex can safely
824 * assume that if the count is zero, it will stay zero. Similarly, if
825 * a task holds cgroup_mutex on a cgroup with zero count, it
826 * knows that the cgroup won't be removed, as cgroup_rmdir()
827 * needs that mutex.
828 *
ddbcc7e8
PM
829 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
830 * (usually) take cgroup_mutex. These are the two most performance
831 * critical pieces of code here. The exception occurs on cgroup_exit(),
832 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
833 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
834 * to the release agent with the name of the cgroup (path relative to
835 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
836 *
837 * A cgroup can only be deleted if both its 'count' of using tasks
838 * is zero, and its list of 'children' cgroups is empty. Since all
839 * tasks in the system use _some_ cgroup, and since there is always at
840 * least one task in the system (init, pid == 1), therefore, top_cgroup
841 * always has either children cgroups and/or using tasks. So we don't
842 * need a special hack to ensure that top_cgroup cannot be deleted.
843 *
ddbcc7e8 844 * P.S. One more locking exception. RCU is used to guard the
956db3ca 845 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
846 */
847
628f7cd4 848static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 849static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 850static const struct file_operations proc_cgroupstats_operations;
a424316c 851
8d7e6fb0
TH
852static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
853 char *buf)
854{
855 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
856 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
857 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
858 cft->ss->name, cft->name);
859 else
860 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
861 return buf;
862}
863
f2e85d57
TH
864/**
865 * cgroup_file_mode - deduce file mode of a control file
866 * @cft: the control file in question
867 *
868 * returns cft->mode if ->mode is not 0
869 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
870 * returns S_IRUGO if it has only a read handler
871 * returns S_IWUSR if it has only a write hander
872 */
873static umode_t cgroup_file_mode(const struct cftype *cft)
874{
875 umode_t mode = 0;
876
877 if (cft->mode)
878 return cft->mode;
879
880 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
881 mode |= S_IRUGO;
882
883 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
884 cft->trigger)
885 mode |= S_IWUSR;
886
887 return mode;
888}
889
be445626
LZ
890static void cgroup_free_fn(struct work_struct *work)
891{
ea15f8cc 892 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 893
3c9c825b 894 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 895 cgroup_pidlist_destroy_all(cgrp);
be445626 896
776f02fa
TH
897 if (cgrp->parent) {
898 /*
899 * We get a ref to the parent, and put the ref when this
900 * cgroup is being freed, so it's guaranteed that the
901 * parent won't be destroyed before its children.
902 */
903 cgroup_put(cgrp->parent);
904 kernfs_put(cgrp->kn);
905 kfree(cgrp);
906 } else {
907 /*
908 * This is top cgroup's refcnt reaching zero, which
909 * indicates that the root should be released.
910 */
911 cgroup_destroy_root(cgrp->root);
912 }
be445626
LZ
913}
914
915static void cgroup_free_rcu(struct rcu_head *head)
916{
917 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
918
ea15f8cc 919 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 920 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
921}
922
59f5296b
TH
923static void cgroup_get(struct cgroup *cgrp)
924{
2bd59d48
TH
925 WARN_ON_ONCE(cgroup_is_dead(cgrp));
926 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
927 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
928}
929
59f5296b
TH
930static void cgroup_put(struct cgroup *cgrp)
931{
2bd59d48
TH
932 if (!atomic_dec_and_test(&cgrp->refcnt))
933 return;
776f02fa 934 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 935 return;
59f5296b 936
2bd59d48
TH
937 /*
938 * XXX: cgrp->id is only used to look up css's. As cgroup and
939 * css's lifetimes will be decoupled, it should be made
940 * per-subsystem and moved to css->id so that lookups are
941 * successful until the target css is released.
942 */
943 mutex_lock(&cgroup_mutex);
944 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
945 mutex_unlock(&cgroup_mutex);
946 cgrp->id = -1;
ddbcc7e8 947
2bd59d48 948 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
949}
950
2739d3cc 951static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 952{
2bd59d48 953 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 954
ace2bee8 955 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 956 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
957}
958
13af07df 959/**
628f7cd4 960 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 961 * @cgrp: target cgroup
13af07df
AR
962 * @subsys_mask: mask of the subsystem ids whose files should be removed
963 */
628f7cd4 964static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 965{
13af07df 966 struct cgroup_subsys *ss;
b420ba7d 967 int i;
05ef1d7c 968
b420ba7d 969 for_each_subsys(ss, i) {
0adb0704 970 struct cftype *cfts;
b420ba7d
TH
971
972 if (!test_bit(i, &subsys_mask))
13af07df 973 continue;
0adb0704
TH
974 list_for_each_entry(cfts, &ss->cfts, node)
975 cgroup_addrm_files(cgrp, cfts, false);
13af07df 976 }
ddbcc7e8
PM
977}
978
ddbcc7e8 979static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 980 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 981{
bd89aabc 982 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 983 struct cgroup_subsys *ss;
3126121f 984 int i, ret;
ddbcc7e8 985
ace2bee8
TH
986 lockdep_assert_held(&cgroup_tree_mutex);
987 lockdep_assert_held(&cgroup_mutex);
aae8aab4 988
ddbcc7e8 989 /* Check that any added subsystems are currently free */
3ed80a62
TH
990 for_each_subsys(ss, i)
991 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
992 return -EBUSY;
ddbcc7e8 993
3126121f
TH
994 ret = cgroup_populate_dir(cgrp, added_mask);
995 if (ret)
3ed80a62 996 return ret;
3126121f
TH
997
998 /*
999 * Nothing can fail from this point on. Remove files for the
1000 * removed subsystems and rebind each subsystem.
1001 */
4ac06017 1002 mutex_unlock(&cgroup_mutex);
3126121f 1003 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1004 mutex_lock(&cgroup_mutex);
ddbcc7e8 1005
30159ec7 1006 for_each_subsys(ss, i) {
ddbcc7e8 1007 unsigned long bit = 1UL << i;
30159ec7 1008
a1a71b45 1009 if (bit & added_mask) {
ddbcc7e8 1010 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1011 BUG_ON(cgroup_css(cgrp, ss));
1012 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1013 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1014
73e80ed8 1015 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1016 cgroup_css(cgroup_dummy_top, ss));
1017 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1018
b2aa30f7 1019 ss->root = root;
ddbcc7e8 1020 if (ss->bind)
ca8bdcaf 1021 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1022
cf5d5941 1023 /* refcount was already taken, and we're keeping it */
a8a648c4 1024 root->subsys_mask |= bit;
a1a71b45 1025 } else if (bit & removed_mask) {
ddbcc7e8 1026 /* We're removing this subsystem */
ca8bdcaf
TH
1027 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1028 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1029
ddbcc7e8 1030 if (ss->bind)
ca8bdcaf 1031 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1032
ca8bdcaf 1033 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1034 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1035
9871bf95 1036 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1037 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1038 }
1039 }
ddbcc7e8 1040
2bd59d48 1041 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1042 return 0;
1043}
1044
2bd59d48
TH
1045static int cgroup_show_options(struct seq_file *seq,
1046 struct kernfs_root *kf_root)
ddbcc7e8 1047{
2bd59d48 1048 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1049 struct cgroup_subsys *ss;
b85d2040 1050 int ssid;
ddbcc7e8 1051
b85d2040
TH
1052 for_each_subsys(ss, ssid)
1053 if (root->subsys_mask & (1 << ssid))
1054 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1055 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1056 seq_puts(seq, ",sane_behavior");
93438629 1057 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1058 seq_puts(seq, ",noprefix");
93438629 1059 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1060 seq_puts(seq, ",xattr");
69e943b7
TH
1061
1062 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1063 if (strlen(root->release_agent_path))
1064 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1065 spin_unlock(&release_agent_path_lock);
1066
2260e7fc 1067 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1068 seq_puts(seq, ",clone_children");
c6d57f33
PM
1069 if (strlen(root->name))
1070 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1071 return 0;
1072}
1073
1074struct cgroup_sb_opts {
a1a71b45 1075 unsigned long subsys_mask;
ddbcc7e8 1076 unsigned long flags;
81a6a5cd 1077 char *release_agent;
2260e7fc 1078 bool cpuset_clone_children;
c6d57f33 1079 char *name;
2c6ab6d2
PM
1080 /* User explicitly requested empty subsystem */
1081 bool none;
ddbcc7e8
PM
1082};
1083
aae8aab4 1084/*
9871bf95
TH
1085 * Convert a hierarchy specifier into a bitmask of subsystems and
1086 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1087 * array. This function takes refcounts on subsystems to be used, unless it
1088 * returns error, in which case no refcounts are taken.
aae8aab4 1089 */
cf5d5941 1090static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1091{
32a8cf23
DL
1092 char *token, *o = data;
1093 bool all_ss = false, one_ss = false;
f9ab5b5b 1094 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1095 struct cgroup_subsys *ss;
1096 int i;
f9ab5b5b 1097
aae8aab4
BB
1098 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1099
f9ab5b5b 1100#ifdef CONFIG_CPUSETS
073219e9 1101 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1102#endif
ddbcc7e8 1103
c6d57f33 1104 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1105
1106 while ((token = strsep(&o, ",")) != NULL) {
1107 if (!*token)
1108 return -EINVAL;
32a8cf23 1109 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1110 /* Explicitly have no subsystems */
1111 opts->none = true;
32a8cf23
DL
1112 continue;
1113 }
1114 if (!strcmp(token, "all")) {
1115 /* Mutually exclusive option 'all' + subsystem name */
1116 if (one_ss)
1117 return -EINVAL;
1118 all_ss = true;
1119 continue;
1120 }
873fe09e
TH
1121 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1122 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1123 continue;
1124 }
32a8cf23 1125 if (!strcmp(token, "noprefix")) {
93438629 1126 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1127 continue;
1128 }
1129 if (!strcmp(token, "clone_children")) {
2260e7fc 1130 opts->cpuset_clone_children = true;
32a8cf23
DL
1131 continue;
1132 }
03b1cde6 1133 if (!strcmp(token, "xattr")) {
93438629 1134 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1135 continue;
1136 }
32a8cf23 1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
30159ec7 1173 for_each_subsys(ss, i) {
32a8cf23
DL
1174 if (strcmp(token, ss->name))
1175 continue;
1176 if (ss->disabled)
1177 continue;
1178
1179 /* Mutually exclusive option 'all' + subsystem name */
1180 if (all_ss)
1181 return -EINVAL;
a1a71b45 1182 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1183 one_ss = true;
1184
1185 break;
1186 }
1187 if (i == CGROUP_SUBSYS_COUNT)
1188 return -ENOENT;
1189 }
1190
1191 /*
1192 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1193 * otherwise if 'none', 'name=' and a subsystem name options
1194 * were not specified, let's default to 'all'
32a8cf23 1195 */
30159ec7
TH
1196 if (all_ss || (!one_ss && !opts->none && !opts->name))
1197 for_each_subsys(ss, i)
1198 if (!ss->disabled)
1199 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1200
2c6ab6d2
PM
1201 /* Consistency checks */
1202
873fe09e
TH
1203 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1204 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1205
d3ba07c3
TH
1206 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1207 opts->cpuset_clone_children || opts->release_agent ||
1208 opts->name) {
1209 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1210 return -EINVAL;
1211 }
873fe09e
TH
1212 }
1213
f9ab5b5b
LZ
1214 /*
1215 * Option noprefix was introduced just for backward compatibility
1216 * with the old cpuset, so we allow noprefix only if mounting just
1217 * the cpuset subsystem.
1218 */
93438629 1219 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1220 return -EINVAL;
1221
2c6ab6d2
PM
1222
1223 /* Can't specify "none" and some subsystems */
a1a71b45 1224 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1225 return -EINVAL;
1226
1227 /*
1228 * We either have to specify by name or by subsystems. (So all
1229 * empty hierarchies must have a name).
1230 */
a1a71b45 1231 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1232 return -EINVAL;
1233
1234 return 0;
1235}
1236
2bd59d48 1237static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1238{
1239 int ret = 0;
2bd59d48 1240 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1241 struct cgroup_sb_opts opts;
a1a71b45 1242 unsigned long added_mask, removed_mask;
ddbcc7e8 1243
873fe09e
TH
1244 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1245 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1246 return -EINVAL;
1247 }
1248
ace2bee8 1249 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1250 mutex_lock(&cgroup_mutex);
1251
1252 /* See what subsystems are wanted */
1253 ret = parse_cgroupfs_options(data, &opts);
1254 if (ret)
1255 goto out_unlock;
1256
a8a648c4 1257 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1258 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1259 task_tgid_nr(current), current->comm);
1260
a1a71b45
AR
1261 added_mask = opts.subsys_mask & ~root->subsys_mask;
1262 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1263
cf5d5941 1264 /* Don't allow flags or name to change at remount */
0ce6cba3 1265 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1266 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1267 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1268 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1269 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1270 ret = -EINVAL;
1271 goto out_unlock;
1272 }
1273
f172e67c 1274 /* remounting is not allowed for populated hierarchies */
3c9c825b 1275 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1276 ret = -EBUSY;
0670e08b 1277 goto out_unlock;
cf5d5941 1278 }
ddbcc7e8 1279
a8a648c4 1280 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1281 if (ret)
0670e08b 1282 goto out_unlock;
ddbcc7e8 1283
69e943b7
TH
1284 if (opts.release_agent) {
1285 spin_lock(&release_agent_path_lock);
81a6a5cd 1286 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1287 spin_unlock(&release_agent_path_lock);
1288 }
ddbcc7e8 1289 out_unlock:
66bdc9cf 1290 kfree(opts.release_agent);
c6d57f33 1291 kfree(opts.name);
ddbcc7e8 1292 mutex_unlock(&cgroup_mutex);
ace2bee8 1293 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1294 return ret;
1295}
1296
afeb0f9f
TH
1297/*
1298 * To reduce the fork() overhead for systems that are not actually using
1299 * their cgroups capability, we don't maintain the lists running through
1300 * each css_set to its tasks until we see the list actually used - in other
1301 * words after the first mount.
1302 */
1303static bool use_task_css_set_links __read_mostly;
1304
1305static void cgroup_enable_task_cg_lists(void)
1306{
1307 struct task_struct *p, *g;
1308
96d365e0 1309 down_write(&css_set_rwsem);
afeb0f9f
TH
1310
1311 if (use_task_css_set_links)
1312 goto out_unlock;
1313
1314 use_task_css_set_links = true;
1315
1316 /*
1317 * We need tasklist_lock because RCU is not safe against
1318 * while_each_thread(). Besides, a forking task that has passed
1319 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1320 * is not guaranteed to have its child immediately visible in the
1321 * tasklist if we walk through it with RCU.
1322 */
1323 read_lock(&tasklist_lock);
1324 do_each_thread(g, p) {
afeb0f9f
TH
1325 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1326 task_css_set(p) != &init_css_set);
1327
1328 /*
1329 * We should check if the process is exiting, otherwise
1330 * it will race with cgroup_exit() in that the list
1331 * entry won't be deleted though the process has exited.
f153ad11
TH
1332 * Do it while holding siglock so that we don't end up
1333 * racing against cgroup_exit().
afeb0f9f 1334 */
f153ad11 1335 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1336 if (!(p->flags & PF_EXITING)) {
1337 struct css_set *cset = task_css_set(p);
1338
1339 list_add(&p->cg_list, &cset->tasks);
1340 get_css_set(cset);
1341 }
f153ad11 1342 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1343 } while_each_thread(g, p);
1344 read_unlock(&tasklist_lock);
1345out_unlock:
96d365e0 1346 up_write(&css_set_rwsem);
afeb0f9f
TH
1347}
1348
cc31edce
PM
1349static void init_cgroup_housekeeping(struct cgroup *cgrp)
1350{
2bd59d48 1351 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1352 INIT_LIST_HEAD(&cgrp->sibling);
1353 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1354 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1355 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1356 INIT_LIST_HEAD(&cgrp->pidlists);
1357 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1358 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1359}
c6d57f33 1360
172a2c06
TH
1361static void init_cgroup_root(struct cgroupfs_root *root,
1362 struct cgroup_sb_opts *opts)
ddbcc7e8 1363{
bd89aabc 1364 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1365
ddbcc7e8 1366 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1367 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1368 cgrp->root = root;
cc31edce 1369 init_cgroup_housekeeping(cgrp);
4e96ee8e 1370 idr_init(&root->cgroup_idr);
2c6ab6d2 1371
c6d57f33
PM
1372 root->flags = opts->flags;
1373 if (opts->release_agent)
1374 strcpy(root->release_agent_path, opts->release_agent);
1375 if (opts->name)
1376 strcpy(root->name, opts->name);
2260e7fc
TH
1377 if (opts->cpuset_clone_children)
1378 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1379}
1380
35585573 1381static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1382{
1383 LIST_HEAD(tmp_links);
d427dfeb 1384 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1385 struct css_set *cset;
d427dfeb
TH
1386 int i, ret;
1387
1388 lockdep_assert_held(&cgroup_tree_mutex);
1389 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1390
1391 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1392 if (ret < 0)
2bd59d48 1393 goto out;
d427dfeb
TH
1394 root_cgrp->id = ret;
1395
d427dfeb 1396 /*
96d365e0 1397 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1398 * but that's OK - it can only be increased by someone holding
1399 * cgroup_lock, and that's us. The worst that can happen is that we
1400 * have some link structures left over
1401 */
1402 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1403 if (ret)
2bd59d48 1404 goto out;
d427dfeb 1405
985ed670 1406 ret = cgroup_init_root_id(root);
d427dfeb 1407 if (ret)
2bd59d48 1408 goto out;
d427dfeb 1409
2bd59d48
TH
1410 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1411 KERNFS_ROOT_CREATE_DEACTIVATED,
1412 root_cgrp);
1413 if (IS_ERR(root->kf_root)) {
1414 ret = PTR_ERR(root->kf_root);
1415 goto exit_root_id;
1416 }
1417 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1418
1419 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1420 if (ret)
2bd59d48 1421 goto destroy_root;
d427dfeb 1422
35585573 1423 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1424 if (ret)
2bd59d48 1425 goto destroy_root;
d427dfeb
TH
1426
1427 /*
1428 * There must be no failure case after here, since rebinding takes
1429 * care of subsystems' refcounts, which are explicitly dropped in
1430 * the failure exit path.
1431 */
1432 list_add(&root->root_list, &cgroup_roots);
1433 cgroup_root_count++;
1434
1435 /*
1436 * Link the top cgroup in this hierarchy into all the css_set
1437 * objects.
1438 */
96d365e0 1439 down_write(&css_set_rwsem);
d427dfeb
TH
1440 hash_for_each(css_set_table, i, cset, hlist)
1441 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1442 up_write(&css_set_rwsem);
d427dfeb
TH
1443
1444 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1445 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1446
2bd59d48 1447 kernfs_activate(root_cgrp->kn);
d427dfeb 1448 ret = 0;
2bd59d48 1449 goto out;
d427dfeb 1450
2bd59d48
TH
1451destroy_root:
1452 kernfs_destroy_root(root->kf_root);
1453 root->kf_root = NULL;
1454exit_root_id:
d427dfeb 1455 cgroup_exit_root_id(root);
2bd59d48 1456out:
d427dfeb
TH
1457 free_cgrp_cset_links(&tmp_links);
1458 return ret;
1459}
1460
f7e83571 1461static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1462 int flags, const char *unused_dev_name,
f7e83571 1463 void *data)
ddbcc7e8 1464{
2bd59d48 1465 struct cgroupfs_root *root;
ddbcc7e8 1466 struct cgroup_sb_opts opts;
2bd59d48 1467 struct dentry *dentry;
8e30e2b8 1468 int ret;
56fde9e0
TH
1469
1470 /*
1471 * The first time anyone tries to mount a cgroup, enable the list
1472 * linking each css_set to its tasks and fix up all existing tasks.
1473 */
1474 if (!use_task_css_set_links)
1475 cgroup_enable_task_cg_lists();
776f02fa 1476retry:
8e30e2b8 1477 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1478 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1479
1480 /* First find the desired set of subsystems */
ddbcc7e8 1481 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1482 if (ret)
8e30e2b8 1483 goto out_unlock;
ddbcc7e8 1484
2bd59d48 1485 /* look for a matching existing root */
985ed670 1486 for_each_root(root) {
2bd59d48 1487 bool name_match = false;
ddbcc7e8 1488
985ed670
TH
1489 if (root == &cgroup_dummy_root)
1490 continue;
1491
2bd59d48
TH
1492 /*
1493 * If we asked for a name then it must match. Also, if
1494 * name matches but sybsys_mask doesn't, we should fail.
1495 * Remember whether name matched.
1496 */
1497 if (opts.name) {
1498 if (strcmp(opts.name, root->name))
1499 continue;
1500 name_match = true;
1501 }
ddbcc7e8 1502
c6d57f33 1503 /*
2bd59d48
TH
1504 * If we asked for subsystems (or explicitly for no
1505 * subsystems) then they must match.
c6d57f33 1506 */
2bd59d48
TH
1507 if ((opts.subsys_mask || opts.none) &&
1508 (opts.subsys_mask != root->subsys_mask)) {
1509 if (!name_match)
1510 continue;
1511 ret = -EBUSY;
1512 goto out_unlock;
1513 }
873fe09e 1514
c7ba8287 1515 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1516 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1517 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1518 ret = -EINVAL;
8e30e2b8 1519 goto out_unlock;
2a0ff3fb
JL
1520 } else {
1521 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1522 }
873fe09e 1523 }
2bd59d48 1524
776f02fa
TH
1525 /*
1526 * A root's lifetime is governed by its top cgroup. Zero
1527 * ref indicate that the root is being destroyed. Wait for
1528 * destruction to complete so that the subsystems are free.
1529 * We can use wait_queue for the wait but this path is
1530 * super cold. Let's just sleep for a bit and retry.
1531 */
1532 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1533 mutex_unlock(&cgroup_mutex);
1534 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1535 kfree(opts.release_agent);
1536 kfree(opts.name);
776f02fa
TH
1537 msleep(10);
1538 goto retry;
1539 }
1540
1541 ret = 0;
2bd59d48 1542 goto out_unlock;
ddbcc7e8
PM
1543 }
1544
172a2c06
TH
1545 /*
1546 * No such thing, create a new one. name= matching without subsys
1547 * specification is allowed for already existing hierarchies but we
1548 * can't create new one without subsys specification.
1549 */
1550 if (!opts.subsys_mask && !opts.none) {
1551 ret = -EINVAL;
1552 goto out_unlock;
1553 }
1554
1555 root = kzalloc(sizeof(*root), GFP_KERNEL);
1556 if (!root) {
1557 ret = -ENOMEM;
2bd59d48
TH
1558 goto out_unlock;
1559 }
1560
172a2c06
TH
1561 init_cgroup_root(root, &opts);
1562
35585573 1563 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1564 if (ret)
1565 cgroup_free_root(root);
1566
8e30e2b8 1567out_unlock:
e25e2cbb 1568 mutex_unlock(&cgroup_mutex);
ace2bee8 1569 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1570
c6d57f33
PM
1571 kfree(opts.release_agent);
1572 kfree(opts.name);
8e30e2b8 1573
2bd59d48 1574 if (ret)
8e30e2b8 1575 return ERR_PTR(ret);
2bd59d48
TH
1576
1577 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1578 if (IS_ERR(dentry))
776f02fa 1579 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1580 return dentry;
1581}
1582
1583static void cgroup_kill_sb(struct super_block *sb)
1584{
1585 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1586 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1587
776f02fa 1588 cgroup_put(&root->top_cgroup);
2bd59d48 1589 kernfs_kill_sb(sb);
ddbcc7e8
PM
1590}
1591
ddbcc7e8
PM
1592static struct file_system_type cgroup_fs_type = {
1593 .name = "cgroup",
f7e83571 1594 .mount = cgroup_mount,
ddbcc7e8
PM
1595 .kill_sb = cgroup_kill_sb,
1596};
1597
676db4af
GK
1598static struct kobject *cgroup_kobj;
1599
857a2beb 1600/**
913ffdb5 1601 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1602 * @task: target task
857a2beb
TH
1603 * @buf: the buffer to write the path into
1604 * @buflen: the length of the buffer
1605 *
913ffdb5
TH
1606 * Determine @task's cgroup on the first (the one with the lowest non-zero
1607 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1608 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1609 * cgroup controller callbacks.
1610 *
e61734c5 1611 * Return value is the same as kernfs_path().
857a2beb 1612 */
e61734c5 1613char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1614{
1615 struct cgroupfs_root *root;
913ffdb5 1616 struct cgroup *cgrp;
e61734c5
TH
1617 int hierarchy_id = 1;
1618 char *path = NULL;
857a2beb
TH
1619
1620 mutex_lock(&cgroup_mutex);
96d365e0 1621 down_read(&css_set_rwsem);
857a2beb 1622
913ffdb5
TH
1623 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1624
857a2beb
TH
1625 if (root) {
1626 cgrp = task_cgroup_from_root(task, root);
e61734c5 1627 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1628 } else {
1629 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1630 if (strlcpy(buf, "/", buflen) < buflen)
1631 path = buf;
857a2beb
TH
1632 }
1633
96d365e0 1634 up_read(&css_set_rwsem);
857a2beb 1635 mutex_unlock(&cgroup_mutex);
e61734c5 1636 return path;
857a2beb 1637}
913ffdb5 1638EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1639
b3dc094e 1640/* used to track tasks and other necessary states during migration */
2f7ee569 1641struct cgroup_taskset {
b3dc094e
TH
1642 /* the src and dst cset list running through cset->mg_node */
1643 struct list_head src_csets;
1644 struct list_head dst_csets;
1645
1646 /*
1647 * Fields for cgroup_taskset_*() iteration.
1648 *
1649 * Before migration is committed, the target migration tasks are on
1650 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1651 * the csets on ->dst_csets. ->csets point to either ->src_csets
1652 * or ->dst_csets depending on whether migration is committed.
1653 *
1654 * ->cur_csets and ->cur_task point to the current task position
1655 * during iteration.
1656 */
1657 struct list_head *csets;
1658 struct css_set *cur_cset;
1659 struct task_struct *cur_task;
2f7ee569
TH
1660};
1661
1662/**
1663 * cgroup_taskset_first - reset taskset and return the first task
1664 * @tset: taskset of interest
1665 *
1666 * @tset iteration is initialized and the first task is returned.
1667 */
1668struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1669{
b3dc094e
TH
1670 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1671 tset->cur_task = NULL;
1672
1673 return cgroup_taskset_next(tset);
2f7ee569 1674}
2f7ee569
TH
1675
1676/**
1677 * cgroup_taskset_next - iterate to the next task in taskset
1678 * @tset: taskset of interest
1679 *
1680 * Return the next task in @tset. Iteration must have been initialized
1681 * with cgroup_taskset_first().
1682 */
1683struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1684{
b3dc094e
TH
1685 struct css_set *cset = tset->cur_cset;
1686 struct task_struct *task = tset->cur_task;
2f7ee569 1687
b3dc094e
TH
1688 while (&cset->mg_node != tset->csets) {
1689 if (!task)
1690 task = list_first_entry(&cset->mg_tasks,
1691 struct task_struct, cg_list);
1692 else
1693 task = list_next_entry(task, cg_list);
2f7ee569 1694
b3dc094e
TH
1695 if (&task->cg_list != &cset->mg_tasks) {
1696 tset->cur_cset = cset;
1697 tset->cur_task = task;
1698 return task;
1699 }
1700
1701 cset = list_next_entry(cset, mg_node);
1702 task = NULL;
1703 }
1704
1705 return NULL;
2f7ee569 1706}
2f7ee569 1707
cb0f1fe9 1708/**
74a1166d 1709 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1710 * @old_cgrp; the cgroup @tsk is being migrated from
1711 * @tsk: the task being migrated
1712 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1713 *
cb0f1fe9 1714 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1715 */
5abb8855
TH
1716static void cgroup_task_migrate(struct cgroup *old_cgrp,
1717 struct task_struct *tsk,
1718 struct css_set *new_cset)
74a1166d 1719{
5abb8855 1720 struct css_set *old_cset;
74a1166d 1721
cb0f1fe9
TH
1722 lockdep_assert_held(&cgroup_mutex);
1723 lockdep_assert_held(&css_set_rwsem);
1724
74a1166d 1725 /*
026085ef
MSB
1726 * We are synchronized through threadgroup_lock() against PF_EXITING
1727 * setting such that we can't race against cgroup_exit() changing the
1728 * css_set to init_css_set and dropping the old one.
74a1166d 1729 */
c84cdf75 1730 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1731 old_cset = task_css_set(tsk);
74a1166d 1732
b3dc094e 1733 get_css_set(new_cset);
5abb8855 1734 rcu_assign_pointer(tsk->cgroups, new_cset);
b3dc094e 1735 list_move(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1736
1737 /*
5abb8855
TH
1738 * We just gained a reference on old_cset by taking it from the
1739 * task. As trading it for new_cset is protected by cgroup_mutex,
1740 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1741 */
5abb8855 1742 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1743 put_css_set_locked(old_cset, false);
74a1166d
BB
1744}
1745
a043e3b2 1746/**
1958d2d5
TH
1747 * cgroup_migrate_finish - cleanup after attach
1748 * @preloaded_csets: list of preloaded css_sets
74a1166d 1749 *
1958d2d5
TH
1750 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1751 * those functions for details.
74a1166d 1752 */
1958d2d5
TH
1753static void cgroup_migrate_finish(struct list_head *preloaded_csets)
1754{
1755 struct css_set *cset, *tmp_cset;
1756
1757 lockdep_assert_held(&cgroup_mutex);
1758
1759 down_write(&css_set_rwsem);
1760 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1761 cset->mg_src_cgrp = NULL;
1762 cset->mg_dst_cset = NULL;
1763 list_del_init(&cset->mg_preload_node);
1764 put_css_set_locked(cset, false);
1765 }
1766 up_write(&css_set_rwsem);
1767}
1768
1769/**
1770 * cgroup_migrate_add_src - add a migration source css_set
1771 * @src_cset: the source css_set to add
1772 * @dst_cgrp: the destination cgroup
1773 * @preloaded_csets: list of preloaded css_sets
1774 *
1775 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1776 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1777 * up by cgroup_migrate_finish().
1778 *
1779 * This function may be called without holding threadgroup_lock even if the
1780 * target is a process. Threads may be created and destroyed but as long
1781 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1782 * the preloaded css_sets are guaranteed to cover all migrations.
1783 */
1784static void cgroup_migrate_add_src(struct css_set *src_cset,
1785 struct cgroup *dst_cgrp,
1786 struct list_head *preloaded_csets)
1787{
1788 struct cgroup *src_cgrp;
1789
1790 lockdep_assert_held(&cgroup_mutex);
1791 lockdep_assert_held(&css_set_rwsem);
1792
1793 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1794
1795 /* nothing to do if this cset already belongs to the cgroup */
1796 if (src_cgrp == dst_cgrp)
1797 return;
1798
1799 if (!list_empty(&src_cset->mg_preload_node))
1800 return;
1801
1802 WARN_ON(src_cset->mg_src_cgrp);
1803 WARN_ON(!list_empty(&src_cset->mg_tasks));
1804 WARN_ON(!list_empty(&src_cset->mg_node));
1805
1806 src_cset->mg_src_cgrp = src_cgrp;
1807 get_css_set(src_cset);
1808 list_add(&src_cset->mg_preload_node, preloaded_csets);
1809}
1810
1811/**
1812 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1813 * @dst_cgrp: the destination cgroup
1814 * @preloaded_csets: list of preloaded source css_sets
1815 *
1816 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1817 * have been preloaded to @preloaded_csets. This function looks up and
1818 * pins all destination css_sets, links each to its source, and put them on
1819 * @preloaded_csets.
1820 *
1821 * This function must be called after cgroup_migrate_add_src() has been
1822 * called on each migration source css_set. After migration is performed
1823 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1824 * @preloaded_csets.
1825 */
1826static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1827 struct list_head *preloaded_csets)
1828{
1829 LIST_HEAD(csets);
1830 struct css_set *src_cset;
1831
1832 lockdep_assert_held(&cgroup_mutex);
1833
1834 /* look up the dst cset for each src cset and link it to src */
1835 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1836 struct css_set *dst_cset;
1837
1838 dst_cset = find_css_set(src_cset, dst_cgrp);
1839 if (!dst_cset)
1840 goto err;
1841
1842 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1843 src_cset->mg_dst_cset = dst_cset;
1844
1845 if (list_empty(&dst_cset->mg_preload_node))
1846 list_add(&dst_cset->mg_preload_node, &csets);
1847 else
1848 put_css_set(dst_cset, false);
1849 }
1850
1851 list_splice(&csets, preloaded_csets);
1852 return 0;
1853err:
1854 cgroup_migrate_finish(&csets);
1855 return -ENOMEM;
1856}
1857
1858/**
1859 * cgroup_migrate - migrate a process or task to a cgroup
1860 * @cgrp: the destination cgroup
1861 * @leader: the leader of the process or the task to migrate
1862 * @threadgroup: whether @leader points to the whole process or a single task
1863 *
1864 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1865 * process, the caller must be holding threadgroup_lock of @leader. The
1866 * caller is also responsible for invoking cgroup_migrate_add_src() and
1867 * cgroup_migrate_prepare_dst() on the targets before invoking this
1868 * function and following up with cgroup_migrate_finish().
1869 *
1870 * As long as a controller's ->can_attach() doesn't fail, this function is
1871 * guaranteed to succeed. This means that, excluding ->can_attach()
1872 * failure, when migrating multiple targets, the success or failure can be
1873 * decided for all targets by invoking group_migrate_prepare_dst() before
1874 * actually starting migrating.
1875 */
1876static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1877 bool threadgroup)
74a1166d 1878{
b3dc094e
TH
1879 struct cgroup_taskset tset = {
1880 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1881 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1882 .csets = &tset.src_csets,
1883 };
1c6727af 1884 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1885 struct css_set *cset, *tmp_cset;
1886 struct task_struct *task, *tmp_task;
1887 int i, ret;
74a1166d 1888
fb5d2b4c
MSB
1889 /*
1890 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1891 * already PF_EXITING could be freed from underneath us unless we
1892 * take an rcu_read_lock.
1893 */
b3dc094e 1894 down_write(&css_set_rwsem);
fb5d2b4c 1895 rcu_read_lock();
9db8de37 1896 task = leader;
74a1166d 1897 do {
9db8de37
TH
1898 /* @task either already exited or can't exit until the end */
1899 if (task->flags & PF_EXITING)
ea84753c 1900 goto next;
cd3d0952 1901
eaf797ab
TH
1902 /* leave @task alone if post_fork() hasn't linked it yet */
1903 if (list_empty(&task->cg_list))
1904 goto next;
1905
b3dc094e 1906 cset = task_css_set(task);
1958d2d5 1907 if (!cset->mg_src_cgrp)
ea84753c 1908 goto next;
b3dc094e 1909
b3dc094e 1910 list_move(&task->cg_list, &cset->mg_tasks);
1958d2d5
TH
1911 list_move(&cset->mg_node, &tset.src_csets);
1912 list_move(&cset->mg_dst_cset->mg_node, &tset.dst_csets);
ea84753c 1913 next:
081aa458
LZ
1914 if (!threadgroup)
1915 break;
9db8de37 1916 } while_each_thread(leader, task);
fb5d2b4c 1917 rcu_read_unlock();
b3dc094e 1918 up_write(&css_set_rwsem);
74a1166d 1919
134d3373 1920 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
1921 if (list_empty(&tset.src_csets))
1922 return 0;
134d3373 1923
1958d2d5 1924 /* check that we can legitimately attach to the cgroup */
1c6727af
TH
1925 for_each_css(css, i, cgrp) {
1926 if (css->ss->can_attach) {
9db8de37
TH
1927 ret = css->ss->can_attach(css, &tset);
1928 if (ret) {
1c6727af 1929 failed_css = css;
74a1166d
BB
1930 goto out_cancel_attach;
1931 }
1932 }
74a1166d
BB
1933 }
1934
1935 /*
1958d2d5
TH
1936 * Now that we're guaranteed success, proceed to move all tasks to
1937 * the new cgroup. There are no failure cases after here, so this
1938 * is the commit point.
74a1166d 1939 */
cb0f1fe9 1940 down_write(&css_set_rwsem);
b3dc094e
TH
1941 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1942 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1943 cgroup_task_migrate(cset->mg_src_cgrp, task,
1944 cset->mg_dst_cset);
74a1166d 1945 }
cb0f1fe9 1946 up_write(&css_set_rwsem);
b3dc094e 1947
74a1166d 1948 /*
1958d2d5
TH
1949 * Migration is committed, all target tasks are now on dst_csets.
1950 * Nothing is sensitive to fork() after this point. Notify
1951 * controllers that migration is complete.
74a1166d 1952 */
1958d2d5
TH
1953 tset.csets = &tset.dst_csets;
1954
1c6727af
TH
1955 for_each_css(css, i, cgrp)
1956 if (css->ss->attach)
1957 css->ss->attach(css, &tset);
74a1166d 1958
9db8de37 1959 ret = 0;
b3dc094e
TH
1960 goto out_release_tset;
1961
74a1166d 1962out_cancel_attach:
b3dc094e
TH
1963 for_each_css(css, i, cgrp) {
1964 if (css == failed_css)
1965 break;
1966 if (css->ss->cancel_attach)
1967 css->ss->cancel_attach(css, &tset);
74a1166d 1968 }
b3dc094e
TH
1969out_release_tset:
1970 down_write(&css_set_rwsem);
1971 list_splice_init(&tset.dst_csets, &tset.src_csets);
1972 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1973 list_splice_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 1974 list_del_init(&cset->mg_node);
b3dc094e
TH
1975 }
1976 up_write(&css_set_rwsem);
9db8de37 1977 return ret;
74a1166d
BB
1978}
1979
1958d2d5
TH
1980/**
1981 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1982 * @dst_cgrp: the cgroup to attach to
1983 * @leader: the task or the leader of the threadgroup to be attached
1984 * @threadgroup: attach the whole threadgroup?
1985 *
0e1d768f 1986 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
1987 */
1988static int cgroup_attach_task(struct cgroup *dst_cgrp,
1989 struct task_struct *leader, bool threadgroup)
1990{
1991 LIST_HEAD(preloaded_csets);
1992 struct task_struct *task;
1993 int ret;
1994
1995 /* look up all src csets */
1996 down_read(&css_set_rwsem);
1997 rcu_read_lock();
1998 task = leader;
1999 do {
2000 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2001 &preloaded_csets);
2002 if (!threadgroup)
2003 break;
2004 } while_each_thread(leader, task);
2005 rcu_read_unlock();
2006 up_read(&css_set_rwsem);
2007
2008 /* prepare dst csets and commit */
2009 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2010 if (!ret)
2011 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2012
2013 cgroup_migrate_finish(&preloaded_csets);
2014 return ret;
2015}
2016
74a1166d
BB
2017/*
2018 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2019 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2020 * cgroup_mutex and threadgroup.
bbcb81d0 2021 */
74a1166d 2022static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2023{
bbcb81d0 2024 struct task_struct *tsk;
c69e8d9c 2025 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2026 int ret;
2027
74a1166d
BB
2028 if (!cgroup_lock_live_group(cgrp))
2029 return -ENODEV;
2030
b78949eb
MSB
2031retry_find_task:
2032 rcu_read_lock();
bbcb81d0 2033 if (pid) {
73507f33 2034 tsk = find_task_by_vpid(pid);
74a1166d
BB
2035 if (!tsk) {
2036 rcu_read_unlock();
dd4b0a46 2037 ret = -ESRCH;
b78949eb 2038 goto out_unlock_cgroup;
bbcb81d0 2039 }
74a1166d
BB
2040 /*
2041 * even if we're attaching all tasks in the thread group, we
2042 * only need to check permissions on one of them.
2043 */
c69e8d9c 2044 tcred = __task_cred(tsk);
14a590c3
EB
2045 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2046 !uid_eq(cred->euid, tcred->uid) &&
2047 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2048 rcu_read_unlock();
b78949eb
MSB
2049 ret = -EACCES;
2050 goto out_unlock_cgroup;
bbcb81d0 2051 }
b78949eb
MSB
2052 } else
2053 tsk = current;
cd3d0952
TH
2054
2055 if (threadgroup)
b78949eb 2056 tsk = tsk->group_leader;
c4c27fbd
MG
2057
2058 /*
14a40ffc 2059 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2060 * trapped in a cpuset, or RT worker may be born in a cgroup
2061 * with no rt_runtime allocated. Just say no.
2062 */
14a40ffc 2063 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2064 ret = -EINVAL;
2065 rcu_read_unlock();
2066 goto out_unlock_cgroup;
2067 }
2068
b78949eb
MSB
2069 get_task_struct(tsk);
2070 rcu_read_unlock();
2071
2072 threadgroup_lock(tsk);
2073 if (threadgroup) {
2074 if (!thread_group_leader(tsk)) {
2075 /*
2076 * a race with de_thread from another thread's exec()
2077 * may strip us of our leadership, if this happens,
2078 * there is no choice but to throw this task away and
2079 * try again; this is
2080 * "double-double-toil-and-trouble-check locking".
2081 */
2082 threadgroup_unlock(tsk);
2083 put_task_struct(tsk);
2084 goto retry_find_task;
2085 }
081aa458
LZ
2086 }
2087
2088 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2089
cd3d0952
TH
2090 threadgroup_unlock(tsk);
2091
bbcb81d0 2092 put_task_struct(tsk);
b78949eb 2093out_unlock_cgroup:
47cfcd09 2094 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2095 return ret;
2096}
2097
7ae1bad9
TH
2098/**
2099 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2100 * @from: attach to all cgroups of a given task
2101 * @tsk: the task to be attached
2102 */
2103int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2104{
2105 struct cgroupfs_root *root;
2106 int retval = 0;
2107
47cfcd09 2108 mutex_lock(&cgroup_mutex);
985ed670 2109 for_each_root(root) {
96d365e0
TH
2110 struct cgroup *from_cgrp;
2111
985ed670
TH
2112 if (root == &cgroup_dummy_root)
2113 continue;
2114
96d365e0
TH
2115 down_read(&css_set_rwsem);
2116 from_cgrp = task_cgroup_from_root(from, root);
2117 up_read(&css_set_rwsem);
7ae1bad9 2118
6f4b7e63 2119 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2120 if (retval)
2121 break;
2122 }
47cfcd09 2123 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2124
2125 return retval;
2126}
2127EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2128
182446d0
TH
2129static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2130 struct cftype *cft, u64 pid)
74a1166d 2131{
182446d0 2132 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2133}
2134
182446d0
TH
2135static int cgroup_procs_write(struct cgroup_subsys_state *css,
2136 struct cftype *cft, u64 tgid)
af351026 2137{
182446d0 2138 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2139}
2140
182446d0
TH
2141static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2142 struct cftype *cft, const char *buffer)
e788e066 2143{
5f469907
TH
2144 struct cgroupfs_root *root = css->cgroup->root;
2145
2146 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2147 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2148 return -ENODEV;
69e943b7 2149 spin_lock(&release_agent_path_lock);
5f469907
TH
2150 strlcpy(root->release_agent_path, buffer,
2151 sizeof(root->release_agent_path));
69e943b7 2152 spin_unlock(&release_agent_path_lock);
47cfcd09 2153 mutex_unlock(&cgroup_mutex);
e788e066
PM
2154 return 0;
2155}
2156
2da8ca82 2157static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2158{
2da8ca82 2159 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2160
e788e066
PM
2161 if (!cgroup_lock_live_group(cgrp))
2162 return -ENODEV;
2163 seq_puts(seq, cgrp->root->release_agent_path);
2164 seq_putc(seq, '\n');
47cfcd09 2165 mutex_unlock(&cgroup_mutex);
e788e066
PM
2166 return 0;
2167}
2168
2da8ca82 2169static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2170{
2da8ca82
TH
2171 struct cgroup *cgrp = seq_css(seq)->cgroup;
2172
2173 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2174 return 0;
2175}
2176
2bd59d48
TH
2177static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2178 size_t nbytes, loff_t off)
355e0c48 2179{
2bd59d48
TH
2180 struct cgroup *cgrp = of->kn->parent->priv;
2181 struct cftype *cft = of->kn->priv;
2182 struct cgroup_subsys_state *css;
a742c59d 2183 int ret;
355e0c48 2184
2bd59d48
TH
2185 /*
2186 * kernfs guarantees that a file isn't deleted with operations in
2187 * flight, which means that the matching css is and stays alive and
2188 * doesn't need to be pinned. The RCU locking is not necessary
2189 * either. It's just for the convenience of using cgroup_css().
2190 */
2191 rcu_read_lock();
2192 css = cgroup_css(cgrp, cft->ss);
2193 rcu_read_unlock();
a742c59d
TH
2194
2195 if (cft->write_string) {
2196 ret = cft->write_string(css, cft, strstrip(buf));
2197 } else if (cft->write_u64) {
2198 unsigned long long v;
2199 ret = kstrtoull(buf, 0, &v);
2200 if (!ret)
2201 ret = cft->write_u64(css, cft, v);
2202 } else if (cft->write_s64) {
2203 long long v;
2204 ret = kstrtoll(buf, 0, &v);
2205 if (!ret)
2206 ret = cft->write_s64(css, cft, v);
2207 } else if (cft->trigger) {
2208 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2209 } else {
a742c59d 2210 ret = -EINVAL;
e73d2c61 2211 }
2bd59d48 2212
a742c59d 2213 return ret ?: nbytes;
355e0c48
PM
2214}
2215
6612f05b 2216static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2217{
2bd59d48 2218 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2219}
2220
6612f05b 2221static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2222{
2bd59d48 2223 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2224}
2225
6612f05b 2226static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2227{
2bd59d48 2228 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2229}
2230
91796569 2231static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2232{
7da11279
TH
2233 struct cftype *cft = seq_cft(m);
2234 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2235
2da8ca82
TH
2236 if (cft->seq_show)
2237 return cft->seq_show(m, arg);
e73d2c61 2238
f4c753b7 2239 if (cft->read_u64)
896f5199
TH
2240 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2241 else if (cft->read_s64)
2242 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2243 else
2244 return -EINVAL;
2245 return 0;
91796569
PM
2246}
2247
2bd59d48
TH
2248static struct kernfs_ops cgroup_kf_single_ops = {
2249 .atomic_write_len = PAGE_SIZE,
2250 .write = cgroup_file_write,
2251 .seq_show = cgroup_seqfile_show,
91796569
PM
2252};
2253
2bd59d48
TH
2254static struct kernfs_ops cgroup_kf_ops = {
2255 .atomic_write_len = PAGE_SIZE,
2256 .write = cgroup_file_write,
2257 .seq_start = cgroup_seqfile_start,
2258 .seq_next = cgroup_seqfile_next,
2259 .seq_stop = cgroup_seqfile_stop,
2260 .seq_show = cgroup_seqfile_show,
2261};
ddbcc7e8
PM
2262
2263/*
2264 * cgroup_rename - Only allow simple rename of directories in place.
2265 */
2bd59d48
TH
2266static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2267 const char *new_name_str)
ddbcc7e8 2268{
2bd59d48 2269 struct cgroup *cgrp = kn->priv;
2bd59d48 2270 int ret;
65dff759 2271
2bd59d48 2272 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2273 return -ENOTDIR;
2bd59d48 2274 if (kn->parent != new_parent)
ddbcc7e8 2275 return -EIO;
65dff759 2276
6db8e85c
TH
2277 /*
2278 * This isn't a proper migration and its usefulness is very
2279 * limited. Disallow if sane_behavior.
2280 */
2281 if (cgroup_sane_behavior(cgrp))
2282 return -EPERM;
2283
2bd59d48
TH
2284 mutex_lock(&cgroup_tree_mutex);
2285 mutex_lock(&cgroup_mutex);
2286
2287 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2288
2bd59d48
TH
2289 mutex_unlock(&cgroup_mutex);
2290 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2291 return ret;
ddbcc7e8
PM
2292}
2293
2bb566cb 2294static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2295{
8d7e6fb0 2296 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2297 struct kernfs_node *kn;
2298 struct lock_class_key *key = NULL;
05ef1d7c 2299
2bd59d48
TH
2300#ifdef CONFIG_DEBUG_LOCK_ALLOC
2301 key = &cft->lockdep_key;
2302#endif
2303 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2304 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2305 NULL, false, key);
430af8ad 2306 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2307}
2308
b1f28d31
TH
2309/**
2310 * cgroup_addrm_files - add or remove files to a cgroup directory
2311 * @cgrp: the target cgroup
b1f28d31
TH
2312 * @cfts: array of cftypes to be added
2313 * @is_add: whether to add or remove
2314 *
2315 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2316 * For removals, this function never fails. If addition fails, this
2317 * function doesn't remove files already added. The caller is responsible
2318 * for cleaning up.
b1f28d31 2319 */
2bb566cb
TH
2320static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2321 bool is_add)
ddbcc7e8 2322{
03b1cde6 2323 struct cftype *cft;
b1f28d31
TH
2324 int ret;
2325
ace2bee8 2326 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2327
2328 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2329 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2330 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2331 continue;
f33fddc2
G
2332 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2333 continue;
2334 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2335 continue;
2336
2739d3cc 2337 if (is_add) {
2bb566cb 2338 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2339 if (ret) {
2739d3cc 2340 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2341 cft->name, ret);
2342 return ret;
2343 }
2739d3cc
LZ
2344 } else {
2345 cgroup_rm_file(cgrp, cft);
db0416b6 2346 }
ddbcc7e8 2347 }
b1f28d31 2348 return 0;
ddbcc7e8
PM
2349}
2350
21a2d343 2351static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2352{
2353 LIST_HEAD(pending);
2bb566cb 2354 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2355 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2356 struct cgroup_subsys_state *css;
9ccece80 2357 int ret = 0;
8e3f6541 2358
21a2d343 2359 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2360
21a2d343
TH
2361 /* don't bother if @ss isn't attached */
2362 if (ss->root == &cgroup_dummy_root)
9ccece80 2363 return 0;
e8c82d20 2364
e8c82d20 2365 /* add/rm files for all cgroups created before */
ca8bdcaf 2366 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2367 struct cgroup *cgrp = css->cgroup;
2368
e8c82d20
LZ
2369 if (cgroup_is_dead(cgrp))
2370 continue;
2371
21a2d343 2372 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2373 if (ret)
2374 break;
8e3f6541 2375 }
21a2d343
TH
2376
2377 if (is_add && !ret)
2378 kernfs_activate(root->kn);
9ccece80 2379 return ret;
8e3f6541
TH
2380}
2381
2da440a2
TH
2382static void cgroup_exit_cftypes(struct cftype *cfts)
2383{
2384 struct cftype *cft;
2385
2bd59d48
TH
2386 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2387 /* free copy for custom atomic_write_len, see init_cftypes() */
2388 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2389 kfree(cft->kf_ops);
2390 cft->kf_ops = NULL;
2da440a2 2391 cft->ss = NULL;
2bd59d48 2392 }
2da440a2
TH
2393}
2394
2bd59d48 2395static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2396{
2397 struct cftype *cft;
2398
2bd59d48
TH
2399 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2400 struct kernfs_ops *kf_ops;
2401
0adb0704
TH
2402 WARN_ON(cft->ss || cft->kf_ops);
2403
2bd59d48
TH
2404 if (cft->seq_start)
2405 kf_ops = &cgroup_kf_ops;
2406 else
2407 kf_ops = &cgroup_kf_single_ops;
2408
2409 /*
2410 * Ugh... if @cft wants a custom max_write_len, we need to
2411 * make a copy of kf_ops to set its atomic_write_len.
2412 */
2413 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2414 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2415 if (!kf_ops) {
2416 cgroup_exit_cftypes(cfts);
2417 return -ENOMEM;
2418 }
2419 kf_ops->atomic_write_len = cft->max_write_len;
2420 }
2421
2422 cft->kf_ops = kf_ops;
2da440a2 2423 cft->ss = ss;
2bd59d48
TH
2424 }
2425
2426 return 0;
2da440a2
TH
2427}
2428
21a2d343
TH
2429static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2430{
2431 lockdep_assert_held(&cgroup_tree_mutex);
2432
2433 if (!cfts || !cfts[0].ss)
2434 return -ENOENT;
2435
2436 list_del(&cfts->node);
2437 cgroup_apply_cftypes(cfts, false);
2438 cgroup_exit_cftypes(cfts);
2439 return 0;
2440}
2441
80b13586
TH
2442/**
2443 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2444 * @cfts: zero-length name terminated array of cftypes
2445 *
2446 * Unregister @cfts. Files described by @cfts are removed from all
2447 * existing cgroups and all future cgroups won't have them either. This
2448 * function can be called anytime whether @cfts' subsys is attached or not.
2449 *
2450 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2451 * registered.
2452 */
2453int cgroup_rm_cftypes(struct cftype *cfts)
2454{
21a2d343 2455 int ret;
80b13586 2456
21a2d343
TH
2457 mutex_lock(&cgroup_tree_mutex);
2458 ret = cgroup_rm_cftypes_locked(cfts);
2459 mutex_unlock(&cgroup_tree_mutex);
2460 return ret;
80b13586
TH
2461}
2462
8e3f6541
TH
2463/**
2464 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2465 * @ss: target cgroup subsystem
2466 * @cfts: zero-length name terminated array of cftypes
2467 *
2468 * Register @cfts to @ss. Files described by @cfts are created for all
2469 * existing cgroups to which @ss is attached and all future cgroups will
2470 * have them too. This function can be called anytime whether @ss is
2471 * attached or not.
2472 *
2473 * Returns 0 on successful registration, -errno on failure. Note that this
2474 * function currently returns 0 as long as @cfts registration is successful
2475 * even if some file creation attempts on existing cgroups fail.
2476 */
03b1cde6 2477int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2478{
9ccece80 2479 int ret;
8e3f6541 2480
dc5736ed
LZ
2481 if (!cfts || cfts[0].name[0] == '\0')
2482 return 0;
2483
2bd59d48
TH
2484 ret = cgroup_init_cftypes(ss, cfts);
2485 if (ret)
2486 return ret;
2bb566cb 2487
21a2d343
TH
2488 mutex_lock(&cgroup_tree_mutex);
2489
0adb0704 2490 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2491 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2492 if (ret)
21a2d343
TH
2493 cgroup_rm_cftypes_locked(cfts);
2494
2495 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2496 return ret;
8e3f6541 2497}
8e3f6541 2498
a043e3b2
LZ
2499/**
2500 * cgroup_task_count - count the number of tasks in a cgroup.
2501 * @cgrp: the cgroup in question
2502 *
2503 * Return the number of tasks in the cgroup.
2504 */
07bc356e 2505static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2506{
2507 int count = 0;
69d0206c 2508 struct cgrp_cset_link *link;
817929ec 2509
96d365e0 2510 down_read(&css_set_rwsem);
69d0206c
TH
2511 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2512 count += atomic_read(&link->cset->refcount);
96d365e0 2513 up_read(&css_set_rwsem);
bbcb81d0
PM
2514 return count;
2515}
2516
53fa5261 2517/**
492eb21b
TH
2518 * css_next_child - find the next child of a given css
2519 * @pos_css: the current position (%NULL to initiate traversal)
2520 * @parent_css: css whose children to walk
53fa5261 2521 *
492eb21b 2522 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2523 * under either cgroup_mutex or RCU read lock. The only requirement is
2524 * that @parent_css and @pos_css are accessible. The next sibling is
2525 * guaranteed to be returned regardless of their states.
53fa5261 2526 */
492eb21b
TH
2527struct cgroup_subsys_state *
2528css_next_child(struct cgroup_subsys_state *pos_css,
2529 struct cgroup_subsys_state *parent_css)
53fa5261 2530{
492eb21b
TH
2531 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2532 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2533 struct cgroup *next;
2534
ace2bee8 2535 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2536
2537 /*
2538 * @pos could already have been removed. Once a cgroup is removed,
2539 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2540 * changes. As CGRP_DEAD assertion is serialized and happens
2541 * before the cgroup is taken off the ->sibling list, if we see it
2542 * unasserted, it's guaranteed that the next sibling hasn't
2543 * finished its grace period even if it's already removed, and thus
2544 * safe to dereference from this RCU critical section. If
2545 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2546 * to be visible as %true here.
3b287a50
TH
2547 *
2548 * If @pos is dead, its next pointer can't be dereferenced;
2549 * however, as each cgroup is given a monotonically increasing
2550 * unique serial number and always appended to the sibling list,
2551 * the next one can be found by walking the parent's children until
2552 * we see a cgroup with higher serial number than @pos's. While
2553 * this path can be slower, it's taken only when either the current
2554 * cgroup is removed or iteration and removal race.
53fa5261 2555 */
3b287a50
TH
2556 if (!pos) {
2557 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2558 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2559 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2560 } else {
2561 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2562 if (next->serial_nr > pos->serial_nr)
2563 break;
53fa5261
TH
2564 }
2565
492eb21b
TH
2566 if (&next->sibling == &cgrp->children)
2567 return NULL;
2568
ca8bdcaf 2569 return cgroup_css(next, parent_css->ss);
53fa5261 2570}
53fa5261 2571
574bd9f7 2572/**
492eb21b 2573 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2574 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2575 * @root: css whose descendants to walk
574bd9f7 2576 *
492eb21b 2577 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2578 * to visit for pre-order traversal of @root's descendants. @root is
2579 * included in the iteration and the first node to be visited.
75501a6d 2580 *
87fb54f1
TH
2581 * While this function requires cgroup_mutex or RCU read locking, it
2582 * doesn't require the whole traversal to be contained in a single critical
2583 * section. This function will return the correct next descendant as long
2584 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2585 */
492eb21b
TH
2586struct cgroup_subsys_state *
2587css_next_descendant_pre(struct cgroup_subsys_state *pos,
2588 struct cgroup_subsys_state *root)
574bd9f7 2589{
492eb21b 2590 struct cgroup_subsys_state *next;
574bd9f7 2591
ace2bee8 2592 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2593
bd8815a6 2594 /* if first iteration, visit @root */
7805d000 2595 if (!pos)
bd8815a6 2596 return root;
574bd9f7
TH
2597
2598 /* visit the first child if exists */
492eb21b 2599 next = css_next_child(NULL, pos);
574bd9f7
TH
2600 if (next)
2601 return next;
2602
2603 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2604 while (pos != root) {
2605 next = css_next_child(pos, css_parent(pos));
75501a6d 2606 if (next)
574bd9f7 2607 return next;
492eb21b 2608 pos = css_parent(pos);
7805d000 2609 }
574bd9f7
TH
2610
2611 return NULL;
2612}
574bd9f7 2613
12a9d2fe 2614/**
492eb21b
TH
2615 * css_rightmost_descendant - return the rightmost descendant of a css
2616 * @pos: css of interest
12a9d2fe 2617 *
492eb21b
TH
2618 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2619 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2620 * subtree of @pos.
75501a6d 2621 *
87fb54f1
TH
2622 * While this function requires cgroup_mutex or RCU read locking, it
2623 * doesn't require the whole traversal to be contained in a single critical
2624 * section. This function will return the correct rightmost descendant as
2625 * long as @pos is accessible.
12a9d2fe 2626 */
492eb21b
TH
2627struct cgroup_subsys_state *
2628css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2629{
492eb21b 2630 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2631
ace2bee8 2632 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2633
2634 do {
2635 last = pos;
2636 /* ->prev isn't RCU safe, walk ->next till the end */
2637 pos = NULL;
492eb21b 2638 css_for_each_child(tmp, last)
12a9d2fe
TH
2639 pos = tmp;
2640 } while (pos);
2641
2642 return last;
2643}
12a9d2fe 2644
492eb21b
TH
2645static struct cgroup_subsys_state *
2646css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2647{
492eb21b 2648 struct cgroup_subsys_state *last;
574bd9f7
TH
2649
2650 do {
2651 last = pos;
492eb21b 2652 pos = css_next_child(NULL, pos);
574bd9f7
TH
2653 } while (pos);
2654
2655 return last;
2656}
2657
2658/**
492eb21b 2659 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2660 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2661 * @root: css whose descendants to walk
574bd9f7 2662 *
492eb21b 2663 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2664 * to visit for post-order traversal of @root's descendants. @root is
2665 * included in the iteration and the last node to be visited.
75501a6d 2666 *
87fb54f1
TH
2667 * While this function requires cgroup_mutex or RCU read locking, it
2668 * doesn't require the whole traversal to be contained in a single critical
2669 * section. This function will return the correct next descendant as long
2670 * as both @pos and @cgroup are accessible and @pos is a descendant of
2671 * @cgroup.
574bd9f7 2672 */
492eb21b
TH
2673struct cgroup_subsys_state *
2674css_next_descendant_post(struct cgroup_subsys_state *pos,
2675 struct cgroup_subsys_state *root)
574bd9f7 2676{
492eb21b 2677 struct cgroup_subsys_state *next;
574bd9f7 2678
ace2bee8 2679 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2680
58b79a91
TH
2681 /* if first iteration, visit leftmost descendant which may be @root */
2682 if (!pos)
2683 return css_leftmost_descendant(root);
574bd9f7 2684
bd8815a6
TH
2685 /* if we visited @root, we're done */
2686 if (pos == root)
2687 return NULL;
2688
574bd9f7 2689 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2690 next = css_next_child(pos, css_parent(pos));
75501a6d 2691 if (next)
492eb21b 2692 return css_leftmost_descendant(next);
574bd9f7
TH
2693
2694 /* no sibling left, visit parent */
bd8815a6 2695 return css_parent(pos);
574bd9f7 2696}
574bd9f7 2697
0942eeee 2698/**
72ec7029 2699 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2700 * @it: the iterator to advance
2701 *
2702 * Advance @it to the next css_set to walk.
d515876e 2703 */
72ec7029 2704static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2705{
2706 struct list_head *l = it->cset_link;
2707 struct cgrp_cset_link *link;
2708 struct css_set *cset;
2709
2710 /* Advance to the next non-empty css_set */
2711 do {
2712 l = l->next;
72ec7029 2713 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2714 it->cset_link = NULL;
2715 return;
2716 }
2717 link = list_entry(l, struct cgrp_cset_link, cset_link);
2718 cset = link->cset;
c7561128
TH
2719 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2720
d515876e 2721 it->cset_link = l;
c7561128
TH
2722
2723 if (!list_empty(&cset->tasks))
2724 it->task = cset->tasks.next;
2725 else
2726 it->task = cset->mg_tasks.next;
d515876e
TH
2727}
2728
0942eeee 2729/**
72ec7029
TH
2730 * css_task_iter_start - initiate task iteration
2731 * @css: the css to walk tasks of
0942eeee
TH
2732 * @it: the task iterator to use
2733 *
72ec7029
TH
2734 * Initiate iteration through the tasks of @css. The caller can call
2735 * css_task_iter_next() to walk through the tasks until the function
2736 * returns NULL. On completion of iteration, css_task_iter_end() must be
2737 * called.
0942eeee
TH
2738 *
2739 * Note that this function acquires a lock which is released when the
2740 * iteration finishes. The caller can't sleep while iteration is in
2741 * progress.
2742 */
72ec7029
TH
2743void css_task_iter_start(struct cgroup_subsys_state *css,
2744 struct css_task_iter *it)
96d365e0 2745 __acquires(css_set_rwsem)
817929ec 2746{
56fde9e0
TH
2747 /* no one should try to iterate before mounting cgroups */
2748 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2749
96d365e0 2750 down_read(&css_set_rwsem);
c59cd3d8 2751
72ec7029
TH
2752 it->origin_css = css;
2753 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2754
72ec7029 2755 css_advance_task_iter(it);
817929ec
PM
2756}
2757
0942eeee 2758/**
72ec7029 2759 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2760 * @it: the task iterator being iterated
2761 *
2762 * The "next" function for task iteration. @it should have been
72ec7029
TH
2763 * initialized via css_task_iter_start(). Returns NULL when the iteration
2764 * reaches the end.
0942eeee 2765 */
72ec7029 2766struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2767{
2768 struct task_struct *res;
2769 struct list_head *l = it->task;
c7561128
TH
2770 struct cgrp_cset_link *link = list_entry(it->cset_link,
2771 struct cgrp_cset_link, cset_link);
817929ec
PM
2772
2773 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2774 if (!it->cset_link)
817929ec
PM
2775 return NULL;
2776 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2777
2778 /*
2779 * Advance iterator to find next entry. cset->tasks is consumed
2780 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2781 * next cset.
2782 */
817929ec 2783 l = l->next;
c7561128
TH
2784
2785 if (l == &link->cset->tasks)
2786 l = link->cset->mg_tasks.next;
2787
2788 if (l == &link->cset->mg_tasks)
72ec7029 2789 css_advance_task_iter(it);
c7561128 2790 else
817929ec 2791 it->task = l;
c7561128 2792
817929ec
PM
2793 return res;
2794}
2795
0942eeee 2796/**
72ec7029 2797 * css_task_iter_end - finish task iteration
0942eeee
TH
2798 * @it: the task iterator to finish
2799 *
72ec7029 2800 * Finish task iteration started by css_task_iter_start().
0942eeee 2801 */
72ec7029 2802void css_task_iter_end(struct css_task_iter *it)
96d365e0 2803 __releases(css_set_rwsem)
817929ec 2804{
96d365e0 2805 up_read(&css_set_rwsem);
817929ec
PM
2806}
2807
8cc99345
TH
2808/**
2809 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2810 * @to: cgroup to which the tasks will be moved
2811 * @from: cgroup in which the tasks currently reside
eaf797ab
TH
2812 *
2813 * Locking rules between cgroup_post_fork() and the migration path
2814 * guarantee that, if a task is forking while being migrated, the new child
2815 * is guaranteed to be either visible in the source cgroup after the
2816 * parent's migration is complete or put into the target cgroup. No task
2817 * can slip out of migration through forking.
8cc99345
TH
2818 */
2819int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2820{
952aaa12
TH
2821 LIST_HEAD(preloaded_csets);
2822 struct cgrp_cset_link *link;
e406d1cf
TH
2823 struct css_task_iter it;
2824 struct task_struct *task;
952aaa12
TH
2825 int ret;
2826
2827 mutex_lock(&cgroup_mutex);
2828
2829 /* all tasks in @from are being moved, all csets are source */
2830 down_read(&css_set_rwsem);
2831 list_for_each_entry(link, &from->cset_links, cset_link)
2832 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2833 up_read(&css_set_rwsem);
e406d1cf 2834
952aaa12
TH
2835 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2836 if (ret)
2837 goto out_err;
2838
2839 /*
2840 * Migrate tasks one-by-one until @form is empty. This fails iff
2841 * ->can_attach() fails.
2842 */
e406d1cf
TH
2843 do {
2844 css_task_iter_start(&from->dummy_css, &it);
2845 task = css_task_iter_next(&it);
2846 if (task)
2847 get_task_struct(task);
2848 css_task_iter_end(&it);
2849
2850 if (task) {
952aaa12 2851 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
2852 put_task_struct(task);
2853 }
2854 } while (task && !ret);
952aaa12
TH
2855out_err:
2856 cgroup_migrate_finish(&preloaded_csets);
2857 mutex_unlock(&cgroup_mutex);
e406d1cf 2858 return ret;
8cc99345
TH
2859}
2860
bbcb81d0 2861/*
102a775e 2862 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2863 *
2864 * Reading this file can return large amounts of data if a cgroup has
2865 * *lots* of attached tasks. So it may need several calls to read(),
2866 * but we cannot guarantee that the information we produce is correct
2867 * unless we produce it entirely atomically.
2868 *
bbcb81d0 2869 */
bbcb81d0 2870
24528255
LZ
2871/* which pidlist file are we talking about? */
2872enum cgroup_filetype {
2873 CGROUP_FILE_PROCS,
2874 CGROUP_FILE_TASKS,
2875};
2876
2877/*
2878 * A pidlist is a list of pids that virtually represents the contents of one
2879 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2880 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2881 * to the cgroup.
2882 */
2883struct cgroup_pidlist {
2884 /*
2885 * used to find which pidlist is wanted. doesn't change as long as
2886 * this particular list stays in the list.
2887 */
2888 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2889 /* array of xids */
2890 pid_t *list;
2891 /* how many elements the above list has */
2892 int length;
24528255
LZ
2893 /* each of these stored in a list by its cgroup */
2894 struct list_head links;
2895 /* pointer to the cgroup we belong to, for list removal purposes */
2896 struct cgroup *owner;
b1a21367
TH
2897 /* for delayed destruction */
2898 struct delayed_work destroy_dwork;
24528255
LZ
2899};
2900
d1d9fd33
BB
2901/*
2902 * The following two functions "fix" the issue where there are more pids
2903 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2904 * TODO: replace with a kernel-wide solution to this problem
2905 */
2906#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2907static void *pidlist_allocate(int count)
2908{
2909 if (PIDLIST_TOO_LARGE(count))
2910 return vmalloc(count * sizeof(pid_t));
2911 else
2912 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2913}
b1a21367 2914
d1d9fd33
BB
2915static void pidlist_free(void *p)
2916{
2917 if (is_vmalloc_addr(p))
2918 vfree(p);
2919 else
2920 kfree(p);
2921}
d1d9fd33 2922
b1a21367
TH
2923/*
2924 * Used to destroy all pidlists lingering waiting for destroy timer. None
2925 * should be left afterwards.
2926 */
2927static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2928{
2929 struct cgroup_pidlist *l, *tmp_l;
2930
2931 mutex_lock(&cgrp->pidlist_mutex);
2932 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2933 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2934 mutex_unlock(&cgrp->pidlist_mutex);
2935
2936 flush_workqueue(cgroup_pidlist_destroy_wq);
2937 BUG_ON(!list_empty(&cgrp->pidlists));
2938}
2939
2940static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2941{
2942 struct delayed_work *dwork = to_delayed_work(work);
2943 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2944 destroy_dwork);
2945 struct cgroup_pidlist *tofree = NULL;
2946
2947 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2948
2949 /*
04502365
TH
2950 * Destroy iff we didn't get queued again. The state won't change
2951 * as destroy_dwork can only be queued while locked.
b1a21367 2952 */
04502365 2953 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2954 list_del(&l->links);
2955 pidlist_free(l->list);
2956 put_pid_ns(l->key.ns);
2957 tofree = l;
2958 }
2959
b1a21367
TH
2960 mutex_unlock(&l->owner->pidlist_mutex);
2961 kfree(tofree);
2962}
2963
bbcb81d0 2964/*
102a775e 2965 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2966 * Returns the number of unique elements.
bbcb81d0 2967 */
6ee211ad 2968static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2969{
102a775e 2970 int src, dest = 1;
102a775e
BB
2971
2972 /*
2973 * we presume the 0th element is unique, so i starts at 1. trivial
2974 * edge cases first; no work needs to be done for either
2975 */
2976 if (length == 0 || length == 1)
2977 return length;
2978 /* src and dest walk down the list; dest counts unique elements */
2979 for (src = 1; src < length; src++) {
2980 /* find next unique element */
2981 while (list[src] == list[src-1]) {
2982 src++;
2983 if (src == length)
2984 goto after;
2985 }
2986 /* dest always points to where the next unique element goes */
2987 list[dest] = list[src];
2988 dest++;
2989 }
2990after:
102a775e
BB
2991 return dest;
2992}
2993
afb2bc14
TH
2994/*
2995 * The two pid files - task and cgroup.procs - guaranteed that the result
2996 * is sorted, which forced this whole pidlist fiasco. As pid order is
2997 * different per namespace, each namespace needs differently sorted list,
2998 * making it impossible to use, for example, single rbtree of member tasks
2999 * sorted by task pointer. As pidlists can be fairly large, allocating one
3000 * per open file is dangerous, so cgroup had to implement shared pool of
3001 * pidlists keyed by cgroup and namespace.
3002 *
3003 * All this extra complexity was caused by the original implementation
3004 * committing to an entirely unnecessary property. In the long term, we
3005 * want to do away with it. Explicitly scramble sort order if
3006 * sane_behavior so that no such expectation exists in the new interface.
3007 *
3008 * Scrambling is done by swapping every two consecutive bits, which is
3009 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3010 */
3011static pid_t pid_fry(pid_t pid)
3012{
3013 unsigned a = pid & 0x55555555;
3014 unsigned b = pid & 0xAAAAAAAA;
3015
3016 return (a << 1) | (b >> 1);
3017}
3018
3019static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3020{
3021 if (cgroup_sane_behavior(cgrp))
3022 return pid_fry(pid);
3023 else
3024 return pid;
3025}
3026
102a775e
BB
3027static int cmppid(const void *a, const void *b)
3028{
3029 return *(pid_t *)a - *(pid_t *)b;
3030}
3031
afb2bc14
TH
3032static int fried_cmppid(const void *a, const void *b)
3033{
3034 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3035}
3036
e6b81710
TH
3037static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3038 enum cgroup_filetype type)
3039{
3040 struct cgroup_pidlist *l;
3041 /* don't need task_nsproxy() if we're looking at ourself */
3042 struct pid_namespace *ns = task_active_pid_ns(current);
3043
3044 lockdep_assert_held(&cgrp->pidlist_mutex);
3045
3046 list_for_each_entry(l, &cgrp->pidlists, links)
3047 if (l->key.type == type && l->key.ns == ns)
3048 return l;
3049 return NULL;
3050}
3051
72a8cb30
BB
3052/*
3053 * find the appropriate pidlist for our purpose (given procs vs tasks)
3054 * returns with the lock on that pidlist already held, and takes care
3055 * of the use count, or returns NULL with no locks held if we're out of
3056 * memory.
3057 */
e6b81710
TH
3058static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3059 enum cgroup_filetype type)
72a8cb30
BB
3060{
3061 struct cgroup_pidlist *l;
b70cc5fd 3062
e6b81710
TH
3063 lockdep_assert_held(&cgrp->pidlist_mutex);
3064
3065 l = cgroup_pidlist_find(cgrp, type);
3066 if (l)
3067 return l;
3068
72a8cb30 3069 /* entry not found; create a new one */
f4f4be2b 3070 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3071 if (!l)
72a8cb30 3072 return l;
e6b81710 3073
b1a21367 3074 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3075 l->key.type = type;
e6b81710
TH
3076 /* don't need task_nsproxy() if we're looking at ourself */
3077 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3078 l->owner = cgrp;
3079 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3080 return l;
3081}
3082
102a775e
BB
3083/*
3084 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3085 */
72a8cb30
BB
3086static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3087 struct cgroup_pidlist **lp)
102a775e
BB
3088{
3089 pid_t *array;
3090 int length;
3091 int pid, n = 0; /* used for populating the array */
72ec7029 3092 struct css_task_iter it;
817929ec 3093 struct task_struct *tsk;
102a775e
BB
3094 struct cgroup_pidlist *l;
3095
4bac00d1
TH
3096 lockdep_assert_held(&cgrp->pidlist_mutex);
3097
102a775e
BB
3098 /*
3099 * If cgroup gets more users after we read count, we won't have
3100 * enough space - tough. This race is indistinguishable to the
3101 * caller from the case that the additional cgroup users didn't
3102 * show up until sometime later on.
3103 */
3104 length = cgroup_task_count(cgrp);
d1d9fd33 3105 array = pidlist_allocate(length);
102a775e
BB
3106 if (!array)
3107 return -ENOMEM;
3108 /* now, populate the array */
72ec7029
TH
3109 css_task_iter_start(&cgrp->dummy_css, &it);
3110 while ((tsk = css_task_iter_next(&it))) {
102a775e 3111 if (unlikely(n == length))
817929ec 3112 break;
102a775e 3113 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3114 if (type == CGROUP_FILE_PROCS)
3115 pid = task_tgid_vnr(tsk);
3116 else
3117 pid = task_pid_vnr(tsk);
102a775e
BB
3118 if (pid > 0) /* make sure to only use valid results */
3119 array[n++] = pid;
817929ec 3120 }
72ec7029 3121 css_task_iter_end(&it);
102a775e
BB
3122 length = n;
3123 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3124 if (cgroup_sane_behavior(cgrp))
3125 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3126 else
3127 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3128 if (type == CGROUP_FILE_PROCS)
6ee211ad 3129 length = pidlist_uniq(array, length);
e6b81710 3130
e6b81710 3131 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3132 if (!l) {
e6b81710 3133 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3134 pidlist_free(array);
72a8cb30 3135 return -ENOMEM;
102a775e 3136 }
e6b81710
TH
3137
3138 /* store array, freeing old if necessary */
d1d9fd33 3139 pidlist_free(l->list);
102a775e
BB
3140 l->list = array;
3141 l->length = length;
72a8cb30 3142 *lp = l;
102a775e 3143 return 0;
bbcb81d0
PM
3144}
3145
846c7bb0 3146/**
a043e3b2 3147 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3148 * @stats: cgroupstats to fill information into
3149 * @dentry: A dentry entry belonging to the cgroup for which stats have
3150 * been requested.
a043e3b2
LZ
3151 *
3152 * Build and fill cgroupstats so that taskstats can export it to user
3153 * space.
846c7bb0
BS
3154 */
3155int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3156{
2bd59d48 3157 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3158 struct cgroup *cgrp;
72ec7029 3159 struct css_task_iter it;
846c7bb0 3160 struct task_struct *tsk;
33d283be 3161
2bd59d48
TH
3162 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3163 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3164 kernfs_type(kn) != KERNFS_DIR)
3165 return -EINVAL;
3166
bad34660
LZ
3167 mutex_lock(&cgroup_mutex);
3168
846c7bb0 3169 /*
2bd59d48
TH
3170 * We aren't being called from kernfs and there's no guarantee on
3171 * @kn->priv's validity. For this and css_tryget_from_dir(),
3172 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3173 */
2bd59d48
TH
3174 rcu_read_lock();
3175 cgrp = rcu_dereference(kn->priv);
bad34660 3176 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3177 rcu_read_unlock();
bad34660 3178 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3179 return -ENOENT;
3180 }
bad34660 3181 rcu_read_unlock();
846c7bb0 3182
72ec7029
TH
3183 css_task_iter_start(&cgrp->dummy_css, &it);
3184 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3185 switch (tsk->state) {
3186 case TASK_RUNNING:
3187 stats->nr_running++;
3188 break;
3189 case TASK_INTERRUPTIBLE:
3190 stats->nr_sleeping++;
3191 break;
3192 case TASK_UNINTERRUPTIBLE:
3193 stats->nr_uninterruptible++;
3194 break;
3195 case TASK_STOPPED:
3196 stats->nr_stopped++;
3197 break;
3198 default:
3199 if (delayacct_is_task_waiting_on_io(tsk))
3200 stats->nr_io_wait++;
3201 break;
3202 }
3203 }
72ec7029 3204 css_task_iter_end(&it);
846c7bb0 3205
bad34660 3206 mutex_unlock(&cgroup_mutex);
2bd59d48 3207 return 0;
846c7bb0
BS
3208}
3209
8f3ff208 3210
bbcb81d0 3211/*
102a775e 3212 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3213 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3214 * in the cgroup->l->list array.
bbcb81d0 3215 */
cc31edce 3216
102a775e 3217static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3218{
cc31edce
PM
3219 /*
3220 * Initially we receive a position value that corresponds to
3221 * one more than the last pid shown (or 0 on the first call or
3222 * after a seek to the start). Use a binary-search to find the
3223 * next pid to display, if any
3224 */
2bd59d48 3225 struct kernfs_open_file *of = s->private;
7da11279 3226 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3227 struct cgroup_pidlist *l;
7da11279 3228 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3229 int index = 0, pid = *pos;
4bac00d1
TH
3230 int *iter, ret;
3231
3232 mutex_lock(&cgrp->pidlist_mutex);
3233
3234 /*
5d22444f 3235 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3236 * after open. If the matching pidlist is around, we can use that.
5d22444f 3237 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3238 * could already have been destroyed.
3239 */
5d22444f
TH
3240 if (of->priv)
3241 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3242
3243 /*
3244 * Either this is the first start() after open or the matching
3245 * pidlist has been destroyed inbetween. Create a new one.
3246 */
5d22444f
TH
3247 if (!of->priv) {
3248 ret = pidlist_array_load(cgrp, type,
3249 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3250 if (ret)
3251 return ERR_PTR(ret);
3252 }
5d22444f 3253 l = of->priv;
cc31edce 3254
cc31edce 3255 if (pid) {
102a775e 3256 int end = l->length;
20777766 3257
cc31edce
PM
3258 while (index < end) {
3259 int mid = (index + end) / 2;
afb2bc14 3260 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3261 index = mid;
3262 break;
afb2bc14 3263 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3264 index = mid + 1;
3265 else
3266 end = mid;
3267 }
3268 }
3269 /* If we're off the end of the array, we're done */
102a775e 3270 if (index >= l->length)
cc31edce
PM
3271 return NULL;
3272 /* Update the abstract position to be the actual pid that we found */
102a775e 3273 iter = l->list + index;
afb2bc14 3274 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3275 return iter;
3276}
3277
102a775e 3278static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3279{
2bd59d48 3280 struct kernfs_open_file *of = s->private;
5d22444f 3281 struct cgroup_pidlist *l = of->priv;
62236858 3282
5d22444f
TH
3283 if (l)
3284 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3285 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3286 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3287}
3288
102a775e 3289static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3290{
2bd59d48 3291 struct kernfs_open_file *of = s->private;
5d22444f 3292 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3293 pid_t *p = v;
3294 pid_t *end = l->list + l->length;
cc31edce
PM
3295 /*
3296 * Advance to the next pid in the array. If this goes off the
3297 * end, we're done
3298 */
3299 p++;
3300 if (p >= end) {
3301 return NULL;
3302 } else {
7da11279 3303 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3304 return p;
3305 }
3306}
3307
102a775e 3308static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3309{
3310 return seq_printf(s, "%d\n", *(int *)v);
3311}
bbcb81d0 3312
102a775e
BB
3313/*
3314 * seq_operations functions for iterating on pidlists through seq_file -
3315 * independent of whether it's tasks or procs
3316 */
3317static const struct seq_operations cgroup_pidlist_seq_operations = {
3318 .start = cgroup_pidlist_start,
3319 .stop = cgroup_pidlist_stop,
3320 .next = cgroup_pidlist_next,
3321 .show = cgroup_pidlist_show,
cc31edce
PM
3322};
3323
182446d0
TH
3324static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3325 struct cftype *cft)
81a6a5cd 3326{
182446d0 3327 return notify_on_release(css->cgroup);
81a6a5cd
PM
3328}
3329
182446d0
TH
3330static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3331 struct cftype *cft, u64 val)
6379c106 3332{
182446d0 3333 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3334 if (val)
182446d0 3335 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3336 else
182446d0 3337 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3338 return 0;
3339}
3340
182446d0
TH
3341static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3342 struct cftype *cft)
97978e6d 3343{
182446d0 3344 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3345}
3346
182446d0
TH
3347static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3348 struct cftype *cft, u64 val)
97978e6d
DL
3349{
3350 if (val)
182446d0 3351 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3352 else
182446d0 3353 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3354 return 0;
3355}
3356
d5c56ced 3357static struct cftype cgroup_base_files[] = {
81a6a5cd 3358 {
d5c56ced 3359 .name = "cgroup.procs",
6612f05b
TH
3360 .seq_start = cgroup_pidlist_start,
3361 .seq_next = cgroup_pidlist_next,
3362 .seq_stop = cgroup_pidlist_stop,
3363 .seq_show = cgroup_pidlist_show,
5d22444f 3364 .private = CGROUP_FILE_PROCS,
74a1166d 3365 .write_u64 = cgroup_procs_write,
74a1166d 3366 .mode = S_IRUGO | S_IWUSR,
102a775e 3367 },
97978e6d
DL
3368 {
3369 .name = "cgroup.clone_children",
873fe09e 3370 .flags = CFTYPE_INSANE,
97978e6d
DL
3371 .read_u64 = cgroup_clone_children_read,
3372 .write_u64 = cgroup_clone_children_write,
3373 },
873fe09e
TH
3374 {
3375 .name = "cgroup.sane_behavior",
3376 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3377 .seq_show = cgroup_sane_behavior_show,
873fe09e 3378 },
d5c56ced
TH
3379
3380 /*
3381 * Historical crazy stuff. These don't have "cgroup." prefix and
3382 * don't exist if sane_behavior. If you're depending on these, be
3383 * prepared to be burned.
3384 */
3385 {
3386 .name = "tasks",
3387 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3388 .seq_start = cgroup_pidlist_start,
3389 .seq_next = cgroup_pidlist_next,
3390 .seq_stop = cgroup_pidlist_stop,
3391 .seq_show = cgroup_pidlist_show,
5d22444f 3392 .private = CGROUP_FILE_TASKS,
d5c56ced 3393 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3394 .mode = S_IRUGO | S_IWUSR,
3395 },
3396 {
3397 .name = "notify_on_release",
3398 .flags = CFTYPE_INSANE,
3399 .read_u64 = cgroup_read_notify_on_release,
3400 .write_u64 = cgroup_write_notify_on_release,
3401 },
6e6ff25b
TH
3402 {
3403 .name = "release_agent",
cc5943a7 3404 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3405 .seq_show = cgroup_release_agent_show,
6e6ff25b 3406 .write_string = cgroup_release_agent_write,
5f469907 3407 .max_write_len = PATH_MAX - 1,
6e6ff25b 3408 },
db0416b6 3409 { } /* terminate */
bbcb81d0
PM
3410};
3411
13af07df 3412/**
628f7cd4 3413 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3414 * @cgrp: target cgroup
13af07df 3415 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3416 *
3417 * On failure, no file is added.
13af07df 3418 */
628f7cd4 3419static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3420{
ddbcc7e8 3421 struct cgroup_subsys *ss;
b420ba7d 3422 int i, ret = 0;
bbcb81d0 3423
8e3f6541 3424 /* process cftsets of each subsystem */
b420ba7d 3425 for_each_subsys(ss, i) {
0adb0704 3426 struct cftype *cfts;
b420ba7d
TH
3427
3428 if (!test_bit(i, &subsys_mask))
13af07df 3429 continue;
8e3f6541 3430
0adb0704
TH
3431 list_for_each_entry(cfts, &ss->cfts, node) {
3432 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3433 if (ret < 0)
3434 goto err;
3435 }
ddbcc7e8 3436 }
ddbcc7e8 3437 return 0;
bee55099
TH
3438err:
3439 cgroup_clear_dir(cgrp, subsys_mask);
3440 return ret;
ddbcc7e8
PM
3441}
3442
0c21ead1
TH
3443/*
3444 * css destruction is four-stage process.
3445 *
3446 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3447 * Implemented in kill_css().
3448 *
3449 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3450 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3451 * by invoking offline_css(). After offlining, the base ref is put.
3452 * Implemented in css_killed_work_fn().
3453 *
3454 * 3. When the percpu_ref reaches zero, the only possible remaining
3455 * accessors are inside RCU read sections. css_release() schedules the
3456 * RCU callback.
3457 *
3458 * 4. After the grace period, the css can be freed. Implemented in
3459 * css_free_work_fn().
3460 *
3461 * It is actually hairier because both step 2 and 4 require process context
3462 * and thus involve punting to css->destroy_work adding two additional
3463 * steps to the already complex sequence.
3464 */
35ef10da 3465static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3466{
3467 struct cgroup_subsys_state *css =
35ef10da 3468 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3469 struct cgroup *cgrp = css->cgroup;
48ddbe19 3470
0ae78e0b
TH
3471 if (css->parent)
3472 css_put(css->parent);
3473
0c21ead1 3474 css->ss->css_free(css);
2bd59d48 3475 cgroup_put(cgrp);
48ddbe19
TH
3476}
3477
0c21ead1 3478static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3479{
3480 struct cgroup_subsys_state *css =
0c21ead1 3481 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3482
35ef10da 3483 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3484 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3485}
3486
d3daf28d
TH
3487static void css_release(struct percpu_ref *ref)
3488{
3489 struct cgroup_subsys_state *css =
3490 container_of(ref, struct cgroup_subsys_state, refcnt);
3491
aec25020 3492 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3493 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3494}
3495
623f926b
TH
3496static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3497 struct cgroup *cgrp)
ddbcc7e8 3498{
bd89aabc 3499 css->cgroup = cgrp;
72c97e54 3500 css->ss = ss;
ddbcc7e8 3501 css->flags = 0;
0ae78e0b
TH
3502
3503 if (cgrp->parent)
ca8bdcaf 3504 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3505 else
38b53aba 3506 css->flags |= CSS_ROOT;
48ddbe19 3507
ca8bdcaf 3508 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3509}
3510
2a4ac633 3511/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3512static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3513{
623f926b 3514 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3515 int ret = 0;
3516
ace2bee8 3517 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3518 lockdep_assert_held(&cgroup_mutex);
3519
92fb9748 3520 if (ss->css_online)
eb95419b 3521 ret = ss->css_online(css);
ae7f164a 3522 if (!ret) {
eb95419b 3523 css->flags |= CSS_ONLINE;
f20104de 3524 css->cgroup->nr_css++;
aec25020 3525 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3526 }
b1929db4 3527 return ret;
a31f2d3f
TH
3528}
3529
2a4ac633 3530/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3531static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3532{
623f926b 3533 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3534
ace2bee8 3535 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3536 lockdep_assert_held(&cgroup_mutex);
3537
3538 if (!(css->flags & CSS_ONLINE))
3539 return;
3540
d7eeac19 3541 if (ss->css_offline)
eb95419b 3542 ss->css_offline(css);
a31f2d3f 3543
eb95419b 3544 css->flags &= ~CSS_ONLINE;
09a503ea 3545 css->cgroup->nr_css--;
aec25020 3546 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3547}
3548
c81c925a
TH
3549/**
3550 * create_css - create a cgroup_subsys_state
3551 * @cgrp: the cgroup new css will be associated with
3552 * @ss: the subsys of new css
3553 *
3554 * Create a new css associated with @cgrp - @ss pair. On success, the new
3555 * css is online and installed in @cgrp with all interface files created.
3556 * Returns 0 on success, -errno on failure.
3557 */
3558static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3559{
3560 struct cgroup *parent = cgrp->parent;
3561 struct cgroup_subsys_state *css;
3562 int err;
3563
c81c925a
TH
3564 lockdep_assert_held(&cgroup_mutex);
3565
3566 css = ss->css_alloc(cgroup_css(parent, ss));
3567 if (IS_ERR(css))
3568 return PTR_ERR(css);
3569
3570 err = percpu_ref_init(&css->refcnt, css_release);
3571 if (err)
3572 goto err_free;
3573
3574 init_css(css, ss, cgrp);
3575
aec25020 3576 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3577 if (err)
3578 goto err_free;
3579
3580 err = online_css(css);
3581 if (err)
3582 goto err_free;
3583
59f5296b 3584 cgroup_get(cgrp);
c81c925a
TH
3585 css_get(css->parent);
3586
3587 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3588 parent->parent) {
3589 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3590 current->comm, current->pid, ss->name);
3591 if (!strcmp(ss->name, "memory"))
3592 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3593 ss->warned_broken_hierarchy = true;
3594 }
3595
3596 return 0;
3597
3598err_free:
3599 percpu_ref_cancel_init(&css->refcnt);
3600 ss->css_free(css);
3601 return err;
3602}
3603
2bd59d48 3604/**
a043e3b2
LZ
3605 * cgroup_create - create a cgroup
3606 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3607 * @name: name of the new cgroup
2bd59d48 3608 * @mode: mode to set on new cgroup
ddbcc7e8 3609 */
e61734c5 3610static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3611 umode_t mode)
ddbcc7e8 3612{
bd89aabc 3613 struct cgroup *cgrp;
ddbcc7e8 3614 struct cgroupfs_root *root = parent->root;
b58c8998 3615 int ssid, err;
ddbcc7e8 3616 struct cgroup_subsys *ss;
2bd59d48 3617 struct kernfs_node *kn;
ddbcc7e8 3618
0a950f65 3619 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3620 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3621 if (!cgrp)
ddbcc7e8
PM
3622 return -ENOMEM;
3623
ace2bee8
TH
3624 mutex_lock(&cgroup_tree_mutex);
3625
976c06bc
TH
3626 /*
3627 * Only live parents can have children. Note that the liveliness
3628 * check isn't strictly necessary because cgroup_mkdir() and
3629 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3630 * anyway so that locking is contained inside cgroup proper and we
3631 * don't get nasty surprises if we ever grow another caller.
3632 */
3633 if (!cgroup_lock_live_group(parent)) {
3634 err = -ENODEV;
ace2bee8 3635 goto err_unlock_tree;
0ab02ca8
LZ
3636 }
3637
3638 /*
3639 * Temporarily set the pointer to NULL, so idr_find() won't return
3640 * a half-baked cgroup.
3641 */
3642 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3643 if (cgrp->id < 0) {
3644 err = -ENOMEM;
3645 goto err_unlock;
976c06bc
TH
3646 }
3647
cc31edce 3648 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3649
bd89aabc 3650 cgrp->parent = parent;
0ae78e0b 3651 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3652 cgrp->root = parent->root;
ddbcc7e8 3653
b6abdb0e
LZ
3654 if (notify_on_release(parent))
3655 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3656
2260e7fc
TH
3657 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3658 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3659
2bd59d48 3660 /* create the directory */
e61734c5 3661 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3662 if (IS_ERR(kn)) {
3663 err = PTR_ERR(kn);
0ab02ca8 3664 goto err_free_id;
2bd59d48
TH
3665 }
3666 cgrp->kn = kn;
ddbcc7e8 3667
6f30558f
TH
3668 /*
3669 * This extra ref will be put in cgroup_free_fn() and guarantees
3670 * that @cgrp->kn is always accessible.
3671 */
3672 kernfs_get(kn);
3673
00356bd5 3674 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3675
4e139afc 3676 /* allocation complete, commit to creation */
4e139afc 3677 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3678 atomic_inc(&root->nr_cgrps);
59f5296b 3679 cgroup_get(parent);
415cf07a 3680
0d80255e
TH
3681 /*
3682 * @cgrp is now fully operational. If something fails after this
3683 * point, it'll be released via the normal destruction path.
3684 */
4e96ee8e
LZ
3685 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3686
2bb566cb 3687 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3688 if (err)
3689 goto err_destroy;
3690
9d403e99 3691 /* let's create and online css's */
b85d2040
TH
3692 for_each_subsys(ss, ssid) {
3693 if (root->subsys_mask & (1 << ssid)) {
3694 err = create_css(cgrp, ss);
3695 if (err)
3696 goto err_destroy;
3697 }
a8638030 3698 }
ddbcc7e8 3699
2bd59d48
TH
3700 kernfs_activate(kn);
3701
ddbcc7e8 3702 mutex_unlock(&cgroup_mutex);
ace2bee8 3703 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3704
3705 return 0;
3706
0a950f65 3707err_free_id:
4e96ee8e 3708 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3709err_unlock:
3710 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3711err_unlock_tree:
3712 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3713 kfree(cgrp);
ddbcc7e8 3714 return err;
4b8b47eb
TH
3715
3716err_destroy:
3717 cgroup_destroy_locked(cgrp);
3718 mutex_unlock(&cgroup_mutex);
ace2bee8 3719 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3720 return err;
ddbcc7e8
PM
3721}
3722
2bd59d48
TH
3723static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3724 umode_t mode)
ddbcc7e8 3725{
2bd59d48 3726 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3727
2bd59d48 3728 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3729}
3730
223dbc38
TH
3731/*
3732 * This is called when the refcnt of a css is confirmed to be killed.
3733 * css_tryget() is now guaranteed to fail.
3734 */
3735static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3736{
223dbc38
TH
3737 struct cgroup_subsys_state *css =
3738 container_of(work, struct cgroup_subsys_state, destroy_work);
3739 struct cgroup *cgrp = css->cgroup;
d3daf28d 3740
ace2bee8 3741 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3742 mutex_lock(&cgroup_mutex);
3743
09a503ea
TH
3744 /*
3745 * css_tryget() is guaranteed to fail now. Tell subsystems to
3746 * initate destruction.
3747 */
3748 offline_css(css);
3749
f20104de
TH
3750 /*
3751 * If @cgrp is marked dead, it's waiting for refs of all css's to
3752 * be disabled before proceeding to the second phase of cgroup
3753 * destruction. If we are the last one, kick it off.
3754 */
09a503ea 3755 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3756 cgroup_destroy_css_killed(cgrp);
3757
3758 mutex_unlock(&cgroup_mutex);
ace2bee8 3759 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3760
3761 /*
3762 * Put the css refs from kill_css(). Each css holds an extra
3763 * reference to the cgroup's dentry and cgroup removal proceeds
3764 * regardless of css refs. On the last put of each css, whenever
3765 * that may be, the extra dentry ref is put so that dentry
3766 * destruction happens only after all css's are released.
3767 */
3768 css_put(css);
d3daf28d
TH
3769}
3770
223dbc38
TH
3771/* css kill confirmation processing requires process context, bounce */
3772static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3773{
3774 struct cgroup_subsys_state *css =
3775 container_of(ref, struct cgroup_subsys_state, refcnt);
3776
223dbc38 3777 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3778 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3779}
3780
edae0c33
TH
3781/**
3782 * kill_css - destroy a css
3783 * @css: css to destroy
3784 *
3c14f8b4
TH
3785 * This function initiates destruction of @css by removing cgroup interface
3786 * files and putting its base reference. ->css_offline() will be invoked
3787 * asynchronously once css_tryget() is guaranteed to fail and when the
3788 * reference count reaches zero, @css will be released.
edae0c33
TH
3789 */
3790static void kill_css(struct cgroup_subsys_state *css)
3791{
2bd59d48
TH
3792 /*
3793 * This must happen before css is disassociated with its cgroup.
3794 * See seq_css() for details.
3795 */
aec25020 3796 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3797
edae0c33
TH
3798 /*
3799 * Killing would put the base ref, but we need to keep it alive
3800 * until after ->css_offline().
3801 */
3802 css_get(css);
3803
3804 /*
3805 * cgroup core guarantees that, by the time ->css_offline() is
3806 * invoked, no new css reference will be given out via
3807 * css_tryget(). We can't simply call percpu_ref_kill() and
3808 * proceed to offlining css's because percpu_ref_kill() doesn't
3809 * guarantee that the ref is seen as killed on all CPUs on return.
3810 *
3811 * Use percpu_ref_kill_and_confirm() to get notifications as each
3812 * css is confirmed to be seen as killed on all CPUs.
3813 */
3814 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3815}
3816
3817/**
3818 * cgroup_destroy_locked - the first stage of cgroup destruction
3819 * @cgrp: cgroup to be destroyed
3820 *
3821 * css's make use of percpu refcnts whose killing latency shouldn't be
3822 * exposed to userland and are RCU protected. Also, cgroup core needs to
3823 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3824 * invoked. To satisfy all the requirements, destruction is implemented in
3825 * the following two steps.
3826 *
3827 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3828 * userland visible parts and start killing the percpu refcnts of
3829 * css's. Set up so that the next stage will be kicked off once all
3830 * the percpu refcnts are confirmed to be killed.
3831 *
3832 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3833 * rest of destruction. Once all cgroup references are gone, the
3834 * cgroup is RCU-freed.
3835 *
3836 * This function implements s1. After this step, @cgrp is gone as far as
3837 * the userland is concerned and a new cgroup with the same name may be
3838 * created. As cgroup doesn't care about the names internally, this
3839 * doesn't cause any problem.
3840 */
42809dd4
TH
3841static int cgroup_destroy_locked(struct cgroup *cgrp)
3842 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3843{
bb78a92f 3844 struct cgroup *child;
2bd59d48 3845 struct cgroup_subsys_state *css;
ddd69148 3846 bool empty;
1c6727af 3847 int ssid;
ddbcc7e8 3848
ace2bee8 3849 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3850 lockdep_assert_held(&cgroup_mutex);
3851
ddd69148 3852 /*
96d365e0 3853 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3854 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3855 */
96d365e0 3856 down_read(&css_set_rwsem);
bb78a92f 3857 empty = list_empty(&cgrp->cset_links);
96d365e0 3858 up_read(&css_set_rwsem);
ddd69148 3859 if (!empty)
ddbcc7e8 3860 return -EBUSY;
a043e3b2 3861
bb78a92f
HD
3862 /*
3863 * Make sure there's no live children. We can't test ->children
3864 * emptiness as dead children linger on it while being destroyed;
3865 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3866 */
3867 empty = true;
3868 rcu_read_lock();
3869 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3870 empty = cgroup_is_dead(child);
3871 if (!empty)
3872 break;
3873 }
3874 rcu_read_unlock();
3875 if (!empty)
3876 return -EBUSY;
3877
5d77381f
TH
3878 /*
3879 * Mark @cgrp dead. This prevents further task migration and child
3880 * creation by disabling cgroup_lock_live_group(). Note that
3881 * CGRP_DEAD assertion is depended upon by css_next_child() to
3882 * resume iteration after dropping RCU read lock. See
3883 * css_next_child() for details.
3884 */
3885 set_bit(CGRP_DEAD, &cgrp->flags);
3886
88703267 3887 /*
edae0c33
TH
3888 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3889 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3890 * percpu refs of all css's are confirmed to be killed. This
3891 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3892 */
4ac06017 3893 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3894 for_each_css(css, ssid, cgrp)
3895 kill_css(css);
4ac06017 3896 mutex_lock(&cgroup_mutex);
455050d2 3897
455050d2
TH
3898 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3899 raw_spin_lock(&release_list_lock);
3900 if (!list_empty(&cgrp->release_list))
3901 list_del_init(&cgrp->release_list);
3902 raw_spin_unlock(&release_list_lock);
3903
3904 /*
f20104de
TH
3905 * If @cgrp has css's attached, the second stage of cgroup
3906 * destruction is kicked off from css_killed_work_fn() after the
3907 * refs of all attached css's are killed. If @cgrp doesn't have
3908 * any css, we kick it off here.
3909 */
3910 if (!cgrp->nr_css)
3911 cgroup_destroy_css_killed(cgrp);
3912
2bd59d48
TH
3913 /* remove @cgrp directory along with the base files */
3914 mutex_unlock(&cgroup_mutex);
3915
455050d2 3916 /*
2bd59d48
TH
3917 * There are two control paths which try to determine cgroup from
3918 * dentry without going through kernfs - cgroupstats_build() and
3919 * css_tryget_from_dir(). Those are supported by RCU protecting
3920 * clearing of cgrp->kn->priv backpointer, which should happen
3921 * after all files under it have been removed.
455050d2 3922 */
6f30558f 3923 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3924 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3925
4ac06017 3926 mutex_lock(&cgroup_mutex);
455050d2 3927
ea15f8cc
TH
3928 return 0;
3929};
3930
d3daf28d 3931/**
f20104de 3932 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3933 * @work: cgroup->destroy_free_work
3934 *
3935 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3936 * destroyed after all css's are offlined and performs the rest of
3937 * destruction. This is the second step of destruction described in the
3938 * comment above cgroup_destroy_locked().
d3daf28d 3939 */
f20104de 3940static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3941{
ea15f8cc 3942 struct cgroup *parent = cgrp->parent;
ea15f8cc 3943
ace2bee8 3944 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3945 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3946
999cd8a4 3947 /* delete this cgroup from parent->children */
eb6fd504 3948 list_del_rcu(&cgrp->sibling);
ed957793 3949
59f5296b 3950 cgroup_put(cgrp);
ddbcc7e8 3951
bd89aabc 3952 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3953 check_for_release(parent);
ddbcc7e8
PM
3954}
3955
2bd59d48 3956static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3957{
2bd59d48
TH
3958 struct cgroup *cgrp = kn->priv;
3959 int ret = 0;
3960
3961 /*
3962 * This is self-destruction but @kn can't be removed while this
3963 * callback is in progress. Let's break active protection. Once
3964 * the protection is broken, @cgrp can be destroyed at any point.
3965 * Pin it so that it stays accessible.
3966 */
3967 cgroup_get(cgrp);
3968 kernfs_break_active_protection(kn);
42809dd4 3969
ace2bee8 3970 mutex_lock(&cgroup_tree_mutex);
42809dd4 3971 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3972
3973 /*
3974 * @cgrp might already have been destroyed while we're trying to
3975 * grab the mutexes.
3976 */
3977 if (!cgroup_is_dead(cgrp))
3978 ret = cgroup_destroy_locked(cgrp);
3979
42809dd4 3980 mutex_unlock(&cgroup_mutex);
ace2bee8 3981 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3982
2bd59d48
TH
3983 kernfs_unbreak_active_protection(kn);
3984 cgroup_put(cgrp);
42809dd4
TH
3985 return ret;
3986}
3987
2bd59d48
TH
3988static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3989 .remount_fs = cgroup_remount,
3990 .show_options = cgroup_show_options,
3991 .mkdir = cgroup_mkdir,
3992 .rmdir = cgroup_rmdir,
3993 .rename = cgroup_rename,
3994};
3995
06a11920 3996static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3997{
ddbcc7e8 3998 struct cgroup_subsys_state *css;
cfe36bde
DC
3999
4000 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4001
ace2bee8 4002 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4003 mutex_lock(&cgroup_mutex);
4004
0adb0704 4005 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4006
ddbcc7e8 4007 /* Create the top cgroup state for this subsystem */
9871bf95 4008 ss->root = &cgroup_dummy_root;
ca8bdcaf 4009 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4010 /* We don't handle early failures gracefully */
4011 BUG_ON(IS_ERR(css));
623f926b 4012 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4013
e8d55fde 4014 /* Update the init_css_set to contain a subsys
817929ec 4015 * pointer to this state - since the subsystem is
e8d55fde
LZ
4016 * newly registered, all tasks and hence the
4017 * init_css_set is in the subsystem's top cgroup. */
aec25020 4018 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4019
4020 need_forkexit_callback |= ss->fork || ss->exit;
4021
e8d55fde
LZ
4022 /* At system boot, before all subsystems have been
4023 * registered, no tasks have been forked, so we don't
4024 * need to invoke fork callbacks here. */
4025 BUG_ON(!list_empty(&init_task.tasks));
4026
ae7f164a 4027 BUG_ON(online_css(css));
a8638030 4028
648bb56d 4029 mutex_unlock(&cgroup_mutex);
ace2bee8 4030 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4031}
4032
ddbcc7e8 4033/**
a043e3b2
LZ
4034 * cgroup_init_early - cgroup initialization at system boot
4035 *
4036 * Initialize cgroups at system boot, and initialize any
4037 * subsystems that request early init.
ddbcc7e8
PM
4038 */
4039int __init cgroup_init_early(void)
4040{
172a2c06 4041 static struct cgroup_sb_opts __initdata opts = { };
30159ec7 4042 struct cgroup_subsys *ss;
ddbcc7e8 4043 int i;
30159ec7 4044
172a2c06 4045 init_cgroup_root(&cgroup_dummy_root, &opts);
a4ea1cc9 4046 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4047
3ed80a62 4048 for_each_subsys(ss, i) {
aec25020 4049 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4050 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4051 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4052 ss->id, ss->name);
073219e9
TH
4053 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4054 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4055
aec25020 4056 ss->id = i;
073219e9 4057 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4058
4059 if (ss->early_init)
4060 cgroup_init_subsys(ss);
4061 }
4062 return 0;
4063}
4064
4065/**
a043e3b2
LZ
4066 * cgroup_init - cgroup initialization
4067 *
4068 * Register cgroup filesystem and /proc file, and initialize
4069 * any subsystems that didn't request early init.
ddbcc7e8
PM
4070 */
4071int __init cgroup_init(void)
4072{
30159ec7 4073 struct cgroup_subsys *ss;
0ac801fe 4074 unsigned long key;
172a2c06 4075 int ssid, err;
a424316c 4076
2bd59d48 4077 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4078
985ed670 4079 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4080 mutex_lock(&cgroup_mutex);
54e7b4eb 4081
82fe9b0d
TH
4082 /* Add init_css_set to the hash table */
4083 key = css_set_hash(init_css_set.subsys);
4084 hash_add(css_set_table, &init_css_set.hlist, key);
4085
985ed670 4086 BUG_ON(cgroup_setup_root(&cgroup_dummy_root, 0));
172a2c06 4087
54e7b4eb 4088 mutex_unlock(&cgroup_mutex);
985ed670 4089 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4090
172a2c06
TH
4091 for_each_subsys(ss, ssid) {
4092 if (!ss->early_init)
4093 cgroup_init_subsys(ss);
4094
4095 /*
4096 * cftype registration needs kmalloc and can't be done
4097 * during early_init. Register base cftypes separately.
4098 */
4099 if (ss->base_cftypes)
4100 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4101 }
4102
676db4af 4103 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4104 if (!cgroup_kobj)
4105 return -ENOMEM;
676db4af 4106
ddbcc7e8 4107 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4108 if (err < 0) {
4109 kobject_put(cgroup_kobj);
2bd59d48 4110 return err;
676db4af 4111 }
ddbcc7e8 4112
46ae220b 4113 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4114 return 0;
ddbcc7e8 4115}
b4f48b63 4116
e5fca243
TH
4117static int __init cgroup_wq_init(void)
4118{
4119 /*
4120 * There isn't much point in executing destruction path in
4121 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4122 * Use 1 for @max_active.
e5fca243
TH
4123 *
4124 * We would prefer to do this in cgroup_init() above, but that
4125 * is called before init_workqueues(): so leave this until after.
4126 */
1a11533f 4127 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4128 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4129
4130 /*
4131 * Used to destroy pidlists and separate to serve as flush domain.
4132 * Cap @max_active to 1 too.
4133 */
4134 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4135 0, 1);
4136 BUG_ON(!cgroup_pidlist_destroy_wq);
4137
e5fca243
TH
4138 return 0;
4139}
4140core_initcall(cgroup_wq_init);
4141
a424316c
PM
4142/*
4143 * proc_cgroup_show()
4144 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4145 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4146 */
4147
4148/* TODO: Use a proper seq_file iterator */
8d8b97ba 4149int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4150{
4151 struct pid *pid;
4152 struct task_struct *tsk;
e61734c5 4153 char *buf, *path;
a424316c
PM
4154 int retval;
4155 struct cgroupfs_root *root;
4156
4157 retval = -ENOMEM;
e61734c5 4158 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4159 if (!buf)
4160 goto out;
4161
4162 retval = -ESRCH;
4163 pid = m->private;
4164 tsk = get_pid_task(pid, PIDTYPE_PID);
4165 if (!tsk)
4166 goto out_free;
4167
4168 retval = 0;
4169
4170 mutex_lock(&cgroup_mutex);
96d365e0 4171 down_read(&css_set_rwsem);
a424316c 4172
985ed670 4173 for_each_root(root) {
a424316c 4174 struct cgroup_subsys *ss;
bd89aabc 4175 struct cgroup *cgrp;
b85d2040 4176 int ssid, count = 0;
a424316c 4177
985ed670
TH
4178 if (root == &cgroup_dummy_root)
4179 continue;
4180
2c6ab6d2 4181 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4182 for_each_subsys(ss, ssid)
4183 if (root->subsys_mask & (1 << ssid))
4184 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4185 if (strlen(root->name))
4186 seq_printf(m, "%sname=%s", count ? "," : "",
4187 root->name);
a424316c 4188 seq_putc(m, ':');
7717f7ba 4189 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4190 path = cgroup_path(cgrp, buf, PATH_MAX);
4191 if (!path) {
4192 retval = -ENAMETOOLONG;
a424316c 4193 goto out_unlock;
e61734c5
TH
4194 }
4195 seq_puts(m, path);
a424316c
PM
4196 seq_putc(m, '\n');
4197 }
4198
4199out_unlock:
96d365e0 4200 up_read(&css_set_rwsem);
a424316c
PM
4201 mutex_unlock(&cgroup_mutex);
4202 put_task_struct(tsk);
4203out_free:
4204 kfree(buf);
4205out:
4206 return retval;
4207}
4208
a424316c
PM
4209/* Display information about each subsystem and each hierarchy */
4210static int proc_cgroupstats_show(struct seq_file *m, void *v)
4211{
30159ec7 4212 struct cgroup_subsys *ss;
a424316c 4213 int i;
a424316c 4214
8bab8dde 4215 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4216 /*
4217 * ideally we don't want subsystems moving around while we do this.
4218 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4219 * subsys/hierarchy state.
4220 */
a424316c 4221 mutex_lock(&cgroup_mutex);
30159ec7
TH
4222
4223 for_each_subsys(ss, i)
2c6ab6d2
PM
4224 seq_printf(m, "%s\t%d\t%d\t%d\n",
4225 ss->name, ss->root->hierarchy_id,
3c9c825b 4226 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4227
a424316c
PM
4228 mutex_unlock(&cgroup_mutex);
4229 return 0;
4230}
4231
4232static int cgroupstats_open(struct inode *inode, struct file *file)
4233{
9dce07f1 4234 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4235}
4236
828c0950 4237static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4238 .open = cgroupstats_open,
4239 .read = seq_read,
4240 .llseek = seq_lseek,
4241 .release = single_release,
4242};
4243
b4f48b63 4244/**
eaf797ab 4245 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4246 * @child: pointer to task_struct of forking parent process.
b4f48b63 4247 *
eaf797ab
TH
4248 * A task is associated with the init_css_set until cgroup_post_fork()
4249 * attaches it to the parent's css_set. Empty cg_list indicates that
4250 * @child isn't holding reference to its css_set.
b4f48b63
PM
4251 */
4252void cgroup_fork(struct task_struct *child)
4253{
eaf797ab 4254 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4255 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4256}
4257
817929ec 4258/**
a043e3b2
LZ
4259 * cgroup_post_fork - called on a new task after adding it to the task list
4260 * @child: the task in question
4261 *
5edee61e
TH
4262 * Adds the task to the list running through its css_set if necessary and
4263 * call the subsystem fork() callbacks. Has to be after the task is
4264 * visible on the task list in case we race with the first call to
0942eeee 4265 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4266 * list.
a043e3b2 4267 */
817929ec
PM
4268void cgroup_post_fork(struct task_struct *child)
4269{
30159ec7 4270 struct cgroup_subsys *ss;
5edee61e
TH
4271 int i;
4272
3ce3230a 4273 /*
eaf797ab
TH
4274 * This may race against cgroup_enable_task_cg_links(). As that
4275 * function sets use_task_css_set_links before grabbing
4276 * tasklist_lock and we just went through tasklist_lock to add
4277 * @child, it's guaranteed that either we see the set
4278 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4279 * @child during its iteration.
4280 *
4281 * If we won the race, @child is associated with %current's
4282 * css_set. Grabbing css_set_rwsem guarantees both that the
4283 * association is stable, and, on completion of the parent's
4284 * migration, @child is visible in the source of migration or
4285 * already in the destination cgroup. This guarantee is necessary
4286 * when implementing operations which need to migrate all tasks of
4287 * a cgroup to another.
4288 *
4289 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4290 * will remain in init_css_set. This is safe because all tasks are
4291 * in the init_css_set before cg_links is enabled and there's no
4292 * operation which transfers all tasks out of init_css_set.
3ce3230a 4293 */
817929ec 4294 if (use_task_css_set_links) {
eaf797ab
TH
4295 struct css_set *cset;
4296
96d365e0 4297 down_write(&css_set_rwsem);
0e1d768f 4298 cset = task_css_set(current);
eaf797ab
TH
4299 if (list_empty(&child->cg_list)) {
4300 rcu_assign_pointer(child->cgroups, cset);
4301 list_add(&child->cg_list, &cset->tasks);
4302 get_css_set(cset);
4303 }
96d365e0 4304 up_write(&css_set_rwsem);
817929ec 4305 }
5edee61e
TH
4306
4307 /*
4308 * Call ss->fork(). This must happen after @child is linked on
4309 * css_set; otherwise, @child might change state between ->fork()
4310 * and addition to css_set.
4311 */
4312 if (need_forkexit_callback) {
3ed80a62 4313 for_each_subsys(ss, i)
5edee61e
TH
4314 if (ss->fork)
4315 ss->fork(child);
5edee61e 4316 }
817929ec 4317}
5edee61e 4318
b4f48b63
PM
4319/**
4320 * cgroup_exit - detach cgroup from exiting task
4321 * @tsk: pointer to task_struct of exiting process
a043e3b2 4322 * @run_callback: run exit callbacks?
b4f48b63
PM
4323 *
4324 * Description: Detach cgroup from @tsk and release it.
4325 *
4326 * Note that cgroups marked notify_on_release force every task in
4327 * them to take the global cgroup_mutex mutex when exiting.
4328 * This could impact scaling on very large systems. Be reluctant to
4329 * use notify_on_release cgroups where very high task exit scaling
4330 * is required on large systems.
4331 *
0e1d768f
TH
4332 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4333 * call cgroup_exit() while the task is still competent to handle
4334 * notify_on_release(), then leave the task attached to the root cgroup in
4335 * each hierarchy for the remainder of its exit. No need to bother with
4336 * init_css_set refcnting. init_css_set never goes away and we can't race
4337 * with migration path - either PF_EXITING is visible to migration path or
4338 * @tsk never got on the tasklist.
b4f48b63
PM
4339 */
4340void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4341{
30159ec7 4342 struct cgroup_subsys *ss;
5abb8855 4343 struct css_set *cset;
eaf797ab 4344 bool put_cset = false;
d41d5a01 4345 int i;
817929ec
PM
4346
4347 /*
0e1d768f
TH
4348 * Unlink from @tsk from its css_set. As migration path can't race
4349 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4350 */
4351 if (!list_empty(&tsk->cg_list)) {
96d365e0 4352 down_write(&css_set_rwsem);
0e1d768f 4353 list_del_init(&tsk->cg_list);
96d365e0 4354 up_write(&css_set_rwsem);
0e1d768f 4355 put_cset = true;
817929ec
PM
4356 }
4357
b4f48b63 4358 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4359 cset = task_css_set(tsk);
4360 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4361
4362 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4363 /* see cgroup_post_fork() for details */
4364 for_each_subsys(ss, i) {
d41d5a01 4365 if (ss->exit) {
eb95419b
TH
4366 struct cgroup_subsys_state *old_css = cset->subsys[i];
4367 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4368
eb95419b 4369 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4370 }
4371 }
4372 }
d41d5a01 4373
eaf797ab
TH
4374 if (put_cset)
4375 put_css_set(cset, true);
b4f48b63 4376}
697f4161 4377
bd89aabc 4378static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4379{
f50daa70 4380 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4381 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4382 /*
4383 * Control Group is currently removeable. If it's not
81a6a5cd 4384 * already queued for a userspace notification, queue
f50daa70
LZ
4385 * it now
4386 */
81a6a5cd 4387 int need_schedule_work = 0;
f50daa70 4388
cdcc136f 4389 raw_spin_lock(&release_list_lock);
54766d4a 4390 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4391 list_empty(&cgrp->release_list)) {
4392 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4393 need_schedule_work = 1;
4394 }
cdcc136f 4395 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4396 if (need_schedule_work)
4397 schedule_work(&release_agent_work);
4398 }
4399}
4400
81a6a5cd
PM
4401/*
4402 * Notify userspace when a cgroup is released, by running the
4403 * configured release agent with the name of the cgroup (path
4404 * relative to the root of cgroup file system) as the argument.
4405 *
4406 * Most likely, this user command will try to rmdir this cgroup.
4407 *
4408 * This races with the possibility that some other task will be
4409 * attached to this cgroup before it is removed, or that some other
4410 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4411 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4412 * unused, and this cgroup will be reprieved from its death sentence,
4413 * to continue to serve a useful existence. Next time it's released,
4414 * we will get notified again, if it still has 'notify_on_release' set.
4415 *
4416 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4417 * means only wait until the task is successfully execve()'d. The
4418 * separate release agent task is forked by call_usermodehelper(),
4419 * then control in this thread returns here, without waiting for the
4420 * release agent task. We don't bother to wait because the caller of
4421 * this routine has no use for the exit status of the release agent
4422 * task, so no sense holding our caller up for that.
81a6a5cd 4423 */
81a6a5cd
PM
4424static void cgroup_release_agent(struct work_struct *work)
4425{
4426 BUG_ON(work != &release_agent_work);
4427 mutex_lock(&cgroup_mutex);
cdcc136f 4428 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4429 while (!list_empty(&release_list)) {
4430 char *argv[3], *envp[3];
4431 int i;
e61734c5 4432 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4433 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4434 struct cgroup,
4435 release_list);
bd89aabc 4436 list_del_init(&cgrp->release_list);
cdcc136f 4437 raw_spin_unlock(&release_list_lock);
e61734c5 4438 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4439 if (!pathbuf)
4440 goto continue_free;
e61734c5
TH
4441 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4442 if (!path)
e788e066
PM
4443 goto continue_free;
4444 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4445 if (!agentbuf)
4446 goto continue_free;
81a6a5cd
PM
4447
4448 i = 0;
e788e066 4449 argv[i++] = agentbuf;
e61734c5 4450 argv[i++] = path;
81a6a5cd
PM
4451 argv[i] = NULL;
4452
4453 i = 0;
4454 /* minimal command environment */
4455 envp[i++] = "HOME=/";
4456 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4457 envp[i] = NULL;
4458
4459 /* Drop the lock while we invoke the usermode helper,
4460 * since the exec could involve hitting disk and hence
4461 * be a slow process */
4462 mutex_unlock(&cgroup_mutex);
4463 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4464 mutex_lock(&cgroup_mutex);
e788e066
PM
4465 continue_free:
4466 kfree(pathbuf);
4467 kfree(agentbuf);
cdcc136f 4468 raw_spin_lock(&release_list_lock);
81a6a5cd 4469 }
cdcc136f 4470 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4471 mutex_unlock(&cgroup_mutex);
4472}
8bab8dde
PM
4473
4474static int __init cgroup_disable(char *str)
4475{
30159ec7 4476 struct cgroup_subsys *ss;
8bab8dde 4477 char *token;
30159ec7 4478 int i;
8bab8dde
PM
4479
4480 while ((token = strsep(&str, ",")) != NULL) {
4481 if (!*token)
4482 continue;
be45c900 4483
3ed80a62 4484 for_each_subsys(ss, i) {
8bab8dde
PM
4485 if (!strcmp(token, ss->name)) {
4486 ss->disabled = 1;
4487 printk(KERN_INFO "Disabling %s control group"
4488 " subsystem\n", ss->name);
4489 break;
4490 }
4491 }
4492 }
4493 return 1;
4494}
4495__setup("cgroup_disable=", cgroup_disable);
38460b48 4496
b77d7b60 4497/**
5a17f543 4498 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4499 * @dentry: directory dentry of interest
4500 * @ss: subsystem of interest
b77d7b60 4501 *
5a17f543
TH
4502 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4503 * to get the corresponding css and return it. If such css doesn't exist
4504 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4505 */
5a17f543
TH
4506struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4507 struct cgroup_subsys *ss)
e5d1367f 4508{
2bd59d48
TH
4509 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4510 struct cgroup_subsys_state *css = NULL;
e5d1367f 4511 struct cgroup *cgrp;
b77d7b60 4512
35cf0836 4513 /* is @dentry a cgroup dir? */
2bd59d48
TH
4514 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4515 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4516 return ERR_PTR(-EBADF);
4517
5a17f543
TH
4518 rcu_read_lock();
4519
2bd59d48
TH
4520 /*
4521 * This path doesn't originate from kernfs and @kn could already
4522 * have been or be removed at any point. @kn->priv is RCU
4523 * protected for this access. See destroy_locked() for details.
4524 */
4525 cgrp = rcu_dereference(kn->priv);
4526 if (cgrp)
4527 css = cgroup_css(cgrp, ss);
5a17f543
TH
4528
4529 if (!css || !css_tryget(css))
4530 css = ERR_PTR(-ENOENT);
4531
4532 rcu_read_unlock();
4533 return css;
e5d1367f 4534}
e5d1367f 4535
1cb650b9
LZ
4536/**
4537 * css_from_id - lookup css by id
4538 * @id: the cgroup id
4539 * @ss: cgroup subsys to be looked into
4540 *
4541 * Returns the css if there's valid one with @id, otherwise returns NULL.
4542 * Should be called under rcu_read_lock().
4543 */
4544struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4545{
4546 struct cgroup *cgrp;
4547
ace2bee8 4548 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4549
4550 cgrp = idr_find(&ss->root->cgroup_idr, id);
4551 if (cgrp)
d1625964 4552 return cgroup_css(cgrp, ss);
1cb650b9 4553 return NULL;
e5d1367f
SE
4554}
4555
fe693435 4556#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4557static struct cgroup_subsys_state *
4558debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4559{
4560 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4561
4562 if (!css)
4563 return ERR_PTR(-ENOMEM);
4564
4565 return css;
4566}
4567
eb95419b 4568static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4569{
eb95419b 4570 kfree(css);
fe693435
PM
4571}
4572
182446d0
TH
4573static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4574 struct cftype *cft)
fe693435 4575{
182446d0 4576 return cgroup_task_count(css->cgroup);
fe693435
PM
4577}
4578
182446d0
TH
4579static u64 current_css_set_read(struct cgroup_subsys_state *css,
4580 struct cftype *cft)
fe693435
PM
4581{
4582 return (u64)(unsigned long)current->cgroups;
4583}
4584
182446d0 4585static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4586 struct cftype *cft)
fe693435
PM
4587{
4588 u64 count;
4589
4590 rcu_read_lock();
a8ad805c 4591 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4592 rcu_read_unlock();
4593 return count;
4594}
4595
2da8ca82 4596static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4597{
69d0206c 4598 struct cgrp_cset_link *link;
5abb8855 4599 struct css_set *cset;
e61734c5
TH
4600 char *name_buf;
4601
4602 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4603 if (!name_buf)
4604 return -ENOMEM;
7717f7ba 4605
96d365e0 4606 down_read(&css_set_rwsem);
7717f7ba 4607 rcu_read_lock();
5abb8855 4608 cset = rcu_dereference(current->cgroups);
69d0206c 4609 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4610 struct cgroup *c = link->cgrp;
59f5296b
TH
4611 const char *name = "?";
4612
e61734c5
TH
4613 if (c != cgroup_dummy_top) {
4614 cgroup_name(c, name_buf, NAME_MAX + 1);
4615 name = name_buf;
4616 }
7717f7ba 4617
2c6ab6d2
PM
4618 seq_printf(seq, "Root %d group %s\n",
4619 c->root->hierarchy_id, name);
7717f7ba
PM
4620 }
4621 rcu_read_unlock();
96d365e0 4622 up_read(&css_set_rwsem);
e61734c5 4623 kfree(name_buf);
7717f7ba
PM
4624 return 0;
4625}
4626
4627#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4628static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4629{
2da8ca82 4630 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4631 struct cgrp_cset_link *link;
7717f7ba 4632
96d365e0 4633 down_read(&css_set_rwsem);
182446d0 4634 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4635 struct css_set *cset = link->cset;
7717f7ba
PM
4636 struct task_struct *task;
4637 int count = 0;
c7561128 4638
5abb8855 4639 seq_printf(seq, "css_set %p\n", cset);
c7561128 4640
5abb8855 4641 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4642 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4643 goto overflow;
4644 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4645 }
4646
4647 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4648 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4649 goto overflow;
4650 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4651 }
c7561128
TH
4652 continue;
4653 overflow:
4654 seq_puts(seq, " ...\n");
7717f7ba 4655 }
96d365e0 4656 up_read(&css_set_rwsem);
7717f7ba
PM
4657 return 0;
4658}
4659
182446d0 4660static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4661{
182446d0 4662 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4663}
4664
4665static struct cftype debug_files[] = {
fe693435
PM
4666 {
4667 .name = "taskcount",
4668 .read_u64 = debug_taskcount_read,
4669 },
4670
4671 {
4672 .name = "current_css_set",
4673 .read_u64 = current_css_set_read,
4674 },
4675
4676 {
4677 .name = "current_css_set_refcount",
4678 .read_u64 = current_css_set_refcount_read,
4679 },
4680
7717f7ba
PM
4681 {
4682 .name = "current_css_set_cg_links",
2da8ca82 4683 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4684 },
4685
4686 {
4687 .name = "cgroup_css_links",
2da8ca82 4688 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4689 },
4690
fe693435
PM
4691 {
4692 .name = "releasable",
4693 .read_u64 = releasable_read,
4694 },
fe693435 4695
4baf6e33
TH
4696 { } /* terminate */
4697};
fe693435 4698
073219e9 4699struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4700 .css_alloc = debug_css_alloc,
4701 .css_free = debug_css_free,
4baf6e33 4702 .base_cftypes = debug_files,
fe693435
PM
4703};
4704#endif /* CONFIG_CGROUP_DEBUG */