cgroup: prepare migration path for unified hierarchy
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
0e1d768f
TH
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
e25e2cbb 86 *
0e1d768f
TH
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
780cd8b3 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9 138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
3dd06ffa 141 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
a2dd4247 145struct cgroup_root cgrp_dfl_root;
9871bf95 146
a2dd4247
TH
147/*
148 * The default hierarchy always exists but is hidden until mounted for the
149 * first time. This is for backward compatibility.
150 */
151static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
152
153/* The list of hierarchy roots */
154
9871bf95
TH
155static LIST_HEAD(cgroup_roots);
156static int cgroup_root_count;
ddbcc7e8 157
3417ae1f 158/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 159static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 160
794611a1
LZ
161/*
162 * Assign a monotonically increasing serial number to cgroups. It
163 * guarantees cgroups with bigger numbers are newer than those with smaller
164 * numbers. Also, as cgroups are always appended to the parent's
165 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
166 * the ascending serial number order on the list. Protected by
167 * cgroup_mutex.
794611a1 168 */
00356bd5 169static u64 cgroup_serial_nr_next = 1;
794611a1 170
ddbcc7e8 171/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
172 * check for fork/exit handlers to call. This avoids us having to do
173 * extra work in the fork/exit path if none of the subsystems need to
174 * be called.
ddbcc7e8 175 */
8947f9d5 176static int need_forkexit_callback __read_mostly;
ddbcc7e8 177
628f7cd4
TH
178static struct cftype cgroup_base_files[];
179
59f5296b 180static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 181static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 182 unsigned long ss_mask);
f20104de 183static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 184static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
185static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
186 bool is_add);
b1a21367 187static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 188
95109b62
TH
189/**
190 * cgroup_css - obtain a cgroup's css for the specified subsystem
191 * @cgrp: the cgroup of interest
ca8bdcaf 192 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 193 *
ca8bdcaf
TH
194 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
195 * function must be called either under cgroup_mutex or rcu_read_lock() and
196 * the caller is responsible for pinning the returned css if it wants to
197 * keep accessing it outside the said locks. This function may return
198 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
199 */
200static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 201 struct cgroup_subsys *ss)
95109b62 202{
ca8bdcaf 203 if (ss)
aec25020 204 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
205 lockdep_is_held(&cgroup_tree_mutex) ||
206 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
207 else
208 return &cgrp->dummy_css;
95109b62 209}
42809dd4 210
aec3dfcb
TH
211/**
212 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
213 * @cgrp: the cgroup of interest
214 * @ss: the subsystem of interest (%NULL returns the dummy_css)
215 *
216 * Similar to cgroup_css() but returns the effctive css, which is defined
217 * as the matching css of the nearest ancestor including self which has @ss
218 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
219 * function is guaranteed to return non-NULL css.
220 */
221static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
222 struct cgroup_subsys *ss)
223{
224 lockdep_assert_held(&cgroup_mutex);
225
226 if (!ss)
227 return &cgrp->dummy_css;
228
229 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
230 return NULL;
231
232 while (cgrp->parent &&
233 !(cgrp->parent->child_subsys_mask & (1 << ss->id)))
234 cgrp = cgrp->parent;
235
236 return cgroup_css(cgrp, ss);
237}
238
ddbcc7e8 239/* convenient tests for these bits */
54766d4a 240static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 241{
54766d4a 242 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
243}
244
59f5296b
TH
245struct cgroup_subsys_state *seq_css(struct seq_file *seq)
246{
2bd59d48
TH
247 struct kernfs_open_file *of = seq->private;
248 struct cgroup *cgrp = of->kn->parent->priv;
249 struct cftype *cft = seq_cft(seq);
250
251 /*
252 * This is open and unprotected implementation of cgroup_css().
253 * seq_css() is only called from a kernfs file operation which has
254 * an active reference on the file. Because all the subsystem
255 * files are drained before a css is disassociated with a cgroup,
256 * the matching css from the cgroup's subsys table is guaranteed to
257 * be and stay valid until the enclosing operation is complete.
258 */
259 if (cft->ss)
260 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
261 else
262 return &cgrp->dummy_css;
59f5296b
TH
263}
264EXPORT_SYMBOL_GPL(seq_css);
265
78574cf9
LZ
266/**
267 * cgroup_is_descendant - test ancestry
268 * @cgrp: the cgroup to be tested
269 * @ancestor: possible ancestor of @cgrp
270 *
271 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
272 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
273 * and @ancestor are accessible.
274 */
275bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
276{
277 while (cgrp) {
278 if (cgrp == ancestor)
279 return true;
280 cgrp = cgrp->parent;
281 }
282 return false;
283}
ddbcc7e8 284
e9685a03 285static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
286{
287 const int bits =
bd89aabc
PM
288 (1 << CGRP_RELEASABLE) |
289 (1 << CGRP_NOTIFY_ON_RELEASE);
290 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
291}
292
e9685a03 293static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 294{
bd89aabc 295 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
296}
297
1c6727af
TH
298/**
299 * for_each_css - iterate all css's of a cgroup
300 * @css: the iteration cursor
301 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
302 * @cgrp: the target cgroup to iterate css's of
303 *
aec3dfcb 304 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
305 */
306#define for_each_css(css, ssid, cgrp) \
307 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
308 if (!((css) = rcu_dereference_check( \
309 (cgrp)->subsys[(ssid)], \
ace2bee8 310 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
311 lockdep_is_held(&cgroup_mutex)))) { } \
312 else
313
aec3dfcb
TH
314/**
315 * for_each_e_css - iterate all effective css's of a cgroup
316 * @css: the iteration cursor
317 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
318 * @cgrp: the target cgroup to iterate css's of
319 *
320 * Should be called under cgroup_[tree_]mutex.
321 */
322#define for_each_e_css(css, ssid, cgrp) \
323 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
324 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
325 ; \
326 else
327
30159ec7 328/**
3ed80a62 329 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 330 * @ss: the iteration cursor
780cd8b3 331 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 332 */
780cd8b3 333#define for_each_subsys(ss, ssid) \
3ed80a62
TH
334 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
335 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 336
985ed670
TH
337/* iterate across the hierarchies */
338#define for_each_root(root) \
5549c497 339 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 340
7ae1bad9
TH
341/**
342 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
343 * @cgrp: the cgroup to be checked for liveness
344 *
47cfcd09
TH
345 * On success, returns true; the mutex should be later unlocked. On
346 * failure returns false with no lock held.
7ae1bad9 347 */
b9777cf8 348static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
349{
350 mutex_lock(&cgroup_mutex);
54766d4a 351 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
352 mutex_unlock(&cgroup_mutex);
353 return false;
354 }
355 return true;
356}
7ae1bad9 357
81a6a5cd
PM
358/* the list of cgroups eligible for automatic release. Protected by
359 * release_list_lock */
360static LIST_HEAD(release_list);
cdcc136f 361static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
362static void cgroup_release_agent(struct work_struct *work);
363static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 364static void check_for_release(struct cgroup *cgrp);
81a6a5cd 365
69d0206c
TH
366/*
367 * A cgroup can be associated with multiple css_sets as different tasks may
368 * belong to different cgroups on different hierarchies. In the other
369 * direction, a css_set is naturally associated with multiple cgroups.
370 * This M:N relationship is represented by the following link structure
371 * which exists for each association and allows traversing the associations
372 * from both sides.
373 */
374struct cgrp_cset_link {
375 /* the cgroup and css_set this link associates */
376 struct cgroup *cgrp;
377 struct css_set *cset;
378
379 /* list of cgrp_cset_links anchored at cgrp->cset_links */
380 struct list_head cset_link;
381
382 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
383 struct list_head cgrp_link;
817929ec
PM
384};
385
172a2c06
TH
386/*
387 * The default css_set - used by init and its children prior to any
817929ec
PM
388 * hierarchies being mounted. It contains a pointer to the root state
389 * for each subsystem. Also used to anchor the list of css_sets. Not
390 * reference-counted, to improve performance when child cgroups
391 * haven't been created.
392 */
172a2c06
TH
393static struct css_set init_css_set = {
394 .refcount = ATOMIC_INIT(1),
395 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
396 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
397 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
398 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
399 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
400};
817929ec 401
172a2c06 402static int css_set_count = 1; /* 1 for init_css_set */
817929ec 403
7717f7ba
PM
404/*
405 * hash table for cgroup groups. This improves the performance to find
406 * an existing css_set. This hash doesn't (currently) take into
407 * account cgroups in empty hierarchies.
408 */
472b1053 409#define CSS_SET_HASH_BITS 7
0ac801fe 410static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 411
0ac801fe 412static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 413{
0ac801fe 414 unsigned long key = 0UL;
30159ec7
TH
415 struct cgroup_subsys *ss;
416 int i;
472b1053 417
30159ec7 418 for_each_subsys(ss, i)
0ac801fe
LZ
419 key += (unsigned long)css[i];
420 key = (key >> 16) ^ key;
472b1053 421
0ac801fe 422 return key;
472b1053
LZ
423}
424
89c5509b 425static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 426{
69d0206c 427 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
428 struct cgroup_subsys *ss;
429 int ssid;
5abb8855 430
89c5509b
TH
431 lockdep_assert_held(&css_set_rwsem);
432
433 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 434 return;
81a6a5cd 435
2c6ab6d2 436 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
437 for_each_subsys(ss, ssid)
438 list_del(&cset->e_cset_node[ssid]);
5abb8855 439 hash_del(&cset->hlist);
2c6ab6d2
PM
440 css_set_count--;
441
69d0206c 442 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 443 struct cgroup *cgrp = link->cgrp;
5abb8855 444
69d0206c
TH
445 list_del(&link->cset_link);
446 list_del(&link->cgrp_link);
71b5707e 447
96d365e0 448 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 449 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 450 if (taskexit)
bd89aabc
PM
451 set_bit(CGRP_RELEASABLE, &cgrp->flags);
452 check_for_release(cgrp);
81a6a5cd 453 }
2c6ab6d2
PM
454
455 kfree(link);
81a6a5cd 456 }
2c6ab6d2 457
5abb8855 458 kfree_rcu(cset, rcu_head);
b4f48b63
PM
459}
460
89c5509b
TH
461static void put_css_set(struct css_set *cset, bool taskexit)
462{
463 /*
464 * Ensure that the refcount doesn't hit zero while any readers
465 * can see it. Similar to atomic_dec_and_lock(), but for an
466 * rwlock
467 */
468 if (atomic_add_unless(&cset->refcount, -1, 1))
469 return;
470
471 down_write(&css_set_rwsem);
472 put_css_set_locked(cset, taskexit);
473 up_write(&css_set_rwsem);
474}
475
817929ec
PM
476/*
477 * refcounted get/put for css_set objects
478 */
5abb8855 479static inline void get_css_set(struct css_set *cset)
817929ec 480{
5abb8855 481 atomic_inc(&cset->refcount);
817929ec
PM
482}
483
b326f9d0 484/**
7717f7ba 485 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
486 * @cset: candidate css_set being tested
487 * @old_cset: existing css_set for a task
7717f7ba
PM
488 * @new_cgrp: cgroup that's being entered by the task
489 * @template: desired set of css pointers in css_set (pre-calculated)
490 *
6f4b7e63 491 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
492 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
493 */
5abb8855
TH
494static bool compare_css_sets(struct css_set *cset,
495 struct css_set *old_cset,
7717f7ba
PM
496 struct cgroup *new_cgrp,
497 struct cgroup_subsys_state *template[])
498{
499 struct list_head *l1, *l2;
500
aec3dfcb
TH
501 /*
502 * On the default hierarchy, there can be csets which are
503 * associated with the same set of cgroups but different csses.
504 * Let's first ensure that csses match.
505 */
506 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 507 return false;
7717f7ba
PM
508
509 /*
510 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
511 * different cgroups in hierarchies. As different cgroups may
512 * share the same effective css, this comparison is always
513 * necessary.
7717f7ba 514 */
69d0206c
TH
515 l1 = &cset->cgrp_links;
516 l2 = &old_cset->cgrp_links;
7717f7ba 517 while (1) {
69d0206c 518 struct cgrp_cset_link *link1, *link2;
5abb8855 519 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
520
521 l1 = l1->next;
522 l2 = l2->next;
523 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
524 if (l1 == &cset->cgrp_links) {
525 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
526 break;
527 } else {
69d0206c 528 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
529 }
530 /* Locate the cgroups associated with these links. */
69d0206c
TH
531 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
532 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
533 cgrp1 = link1->cgrp;
534 cgrp2 = link2->cgrp;
7717f7ba 535 /* Hierarchies should be linked in the same order. */
5abb8855 536 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
537
538 /*
539 * If this hierarchy is the hierarchy of the cgroup
540 * that's changing, then we need to check that this
541 * css_set points to the new cgroup; if it's any other
542 * hierarchy, then this css_set should point to the
543 * same cgroup as the old css_set.
544 */
5abb8855
TH
545 if (cgrp1->root == new_cgrp->root) {
546 if (cgrp1 != new_cgrp)
7717f7ba
PM
547 return false;
548 } else {
5abb8855 549 if (cgrp1 != cgrp2)
7717f7ba
PM
550 return false;
551 }
552 }
553 return true;
554}
555
b326f9d0
TH
556/**
557 * find_existing_css_set - init css array and find the matching css_set
558 * @old_cset: the css_set that we're using before the cgroup transition
559 * @cgrp: the cgroup that we're moving into
560 * @template: out param for the new set of csses, should be clear on entry
817929ec 561 */
5abb8855
TH
562static struct css_set *find_existing_css_set(struct css_set *old_cset,
563 struct cgroup *cgrp,
564 struct cgroup_subsys_state *template[])
b4f48b63 565{
3dd06ffa 566 struct cgroup_root *root = cgrp->root;
30159ec7 567 struct cgroup_subsys *ss;
5abb8855 568 struct css_set *cset;
0ac801fe 569 unsigned long key;
b326f9d0 570 int i;
817929ec 571
aae8aab4
BB
572 /*
573 * Build the set of subsystem state objects that we want to see in the
574 * new css_set. while subsystems can change globally, the entries here
575 * won't change, so no need for locking.
576 */
30159ec7 577 for_each_subsys(ss, i) {
f392e51c 578 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
579 /*
580 * @ss is in this hierarchy, so we want the
581 * effective css from @cgrp.
582 */
583 template[i] = cgroup_e_css(cgrp, ss);
817929ec 584 } else {
aec3dfcb
TH
585 /*
586 * @ss is not in this hierarchy, so we don't want
587 * to change the css.
588 */
5abb8855 589 template[i] = old_cset->subsys[i];
817929ec
PM
590 }
591 }
592
0ac801fe 593 key = css_set_hash(template);
5abb8855
TH
594 hash_for_each_possible(css_set_table, cset, hlist, key) {
595 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
596 continue;
597
598 /* This css_set matches what we need */
5abb8855 599 return cset;
472b1053 600 }
817929ec
PM
601
602 /* No existing cgroup group matched */
603 return NULL;
604}
605
69d0206c 606static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 607{
69d0206c 608 struct cgrp_cset_link *link, *tmp_link;
36553434 609
69d0206c
TH
610 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
611 list_del(&link->cset_link);
36553434
LZ
612 kfree(link);
613 }
614}
615
69d0206c
TH
616/**
617 * allocate_cgrp_cset_links - allocate cgrp_cset_links
618 * @count: the number of links to allocate
619 * @tmp_links: list_head the allocated links are put on
620 *
621 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
622 * through ->cset_link. Returns 0 on success or -errno.
817929ec 623 */
69d0206c 624static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 625{
69d0206c 626 struct cgrp_cset_link *link;
817929ec 627 int i;
69d0206c
TH
628
629 INIT_LIST_HEAD(tmp_links);
630
817929ec 631 for (i = 0; i < count; i++) {
f4f4be2b 632 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 633 if (!link) {
69d0206c 634 free_cgrp_cset_links(tmp_links);
817929ec
PM
635 return -ENOMEM;
636 }
69d0206c 637 list_add(&link->cset_link, tmp_links);
817929ec
PM
638 }
639 return 0;
640}
641
c12f65d4
LZ
642/**
643 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 644 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 645 * @cset: the css_set to be linked
c12f65d4
LZ
646 * @cgrp: the destination cgroup
647 */
69d0206c
TH
648static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
649 struct cgroup *cgrp)
c12f65d4 650{
69d0206c 651 struct cgrp_cset_link *link;
c12f65d4 652
69d0206c 653 BUG_ON(list_empty(tmp_links));
6803c006
TH
654
655 if (cgroup_on_dfl(cgrp))
656 cset->dfl_cgrp = cgrp;
657
69d0206c
TH
658 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
659 link->cset = cset;
7717f7ba 660 link->cgrp = cgrp;
69d0206c 661 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
662 /*
663 * Always add links to the tail of the list so that the list
664 * is sorted by order of hierarchy creation
665 */
69d0206c 666 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
667}
668
b326f9d0
TH
669/**
670 * find_css_set - return a new css_set with one cgroup updated
671 * @old_cset: the baseline css_set
672 * @cgrp: the cgroup to be updated
673 *
674 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
675 * substituted into the appropriate hierarchy.
817929ec 676 */
5abb8855
TH
677static struct css_set *find_css_set(struct css_set *old_cset,
678 struct cgroup *cgrp)
817929ec 679{
b326f9d0 680 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 681 struct css_set *cset;
69d0206c
TH
682 struct list_head tmp_links;
683 struct cgrp_cset_link *link;
2d8f243a 684 struct cgroup_subsys *ss;
0ac801fe 685 unsigned long key;
2d8f243a 686 int ssid;
472b1053 687
b326f9d0
TH
688 lockdep_assert_held(&cgroup_mutex);
689
817929ec
PM
690 /* First see if we already have a cgroup group that matches
691 * the desired set */
96d365e0 692 down_read(&css_set_rwsem);
5abb8855
TH
693 cset = find_existing_css_set(old_cset, cgrp, template);
694 if (cset)
695 get_css_set(cset);
96d365e0 696 up_read(&css_set_rwsem);
817929ec 697
5abb8855
TH
698 if (cset)
699 return cset;
817929ec 700
f4f4be2b 701 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 702 if (!cset)
817929ec
PM
703 return NULL;
704
69d0206c 705 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 706 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 707 kfree(cset);
817929ec
PM
708 return NULL;
709 }
710
5abb8855 711 atomic_set(&cset->refcount, 1);
69d0206c 712 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 713 INIT_LIST_HEAD(&cset->tasks);
c7561128 714 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 715 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 716 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 717 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
718
719 /* Copy the set of subsystem state objects generated in
720 * find_existing_css_set() */
5abb8855 721 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 722
96d365e0 723 down_write(&css_set_rwsem);
817929ec 724 /* Add reference counts and links from the new css_set. */
69d0206c 725 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 726 struct cgroup *c = link->cgrp;
69d0206c 727
7717f7ba
PM
728 if (c->root == cgrp->root)
729 c = cgrp;
69d0206c 730 link_css_set(&tmp_links, cset, c);
7717f7ba 731 }
817929ec 732
69d0206c 733 BUG_ON(!list_empty(&tmp_links));
817929ec 734
817929ec 735 css_set_count++;
472b1053 736
2d8f243a 737 /* Add @cset to the hash table */
5abb8855
TH
738 key = css_set_hash(cset->subsys);
739 hash_add(css_set_table, &cset->hlist, key);
472b1053 740
2d8f243a
TH
741 for_each_subsys(ss, ssid)
742 list_add_tail(&cset->e_cset_node[ssid],
743 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
744
96d365e0 745 up_write(&css_set_rwsem);
817929ec 746
5abb8855 747 return cset;
b4f48b63
PM
748}
749
3dd06ffa 750static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 751{
3dd06ffa 752 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 753
3dd06ffa 754 return root_cgrp->root;
2bd59d48
TH
755}
756
3dd06ffa 757static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
758{
759 int id;
760
761 lockdep_assert_held(&cgroup_mutex);
762
985ed670 763 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
764 if (id < 0)
765 return id;
766
767 root->hierarchy_id = id;
768 return 0;
769}
770
3dd06ffa 771static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
772{
773 lockdep_assert_held(&cgroup_mutex);
774
775 if (root->hierarchy_id) {
776 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
777 root->hierarchy_id = 0;
778 }
779}
780
3dd06ffa 781static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
782{
783 if (root) {
784 /* hierarhcy ID shoulid already have been released */
785 WARN_ON_ONCE(root->hierarchy_id);
786
787 idr_destroy(&root->cgroup_idr);
788 kfree(root);
789 }
790}
791
3dd06ffa 792static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 793{
3dd06ffa 794 struct cgroup *cgrp = &root->cgrp;
f2e85d57 795 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 796
2bd59d48 797 mutex_lock(&cgroup_tree_mutex);
2bd59d48 798 mutex_lock(&cgroup_mutex);
f2e85d57 799
776f02fa 800 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
801 BUG_ON(!list_empty(&cgrp->children));
802
f2e85d57 803 /* Rebind all subsystems back to the default hierarchy */
f392e51c 804 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 805
7717f7ba 806 /*
f2e85d57
TH
807 * Release all the links from cset_links to this hierarchy's
808 * root cgroup
7717f7ba 809 */
96d365e0 810 down_write(&css_set_rwsem);
f2e85d57
TH
811
812 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
813 list_del(&link->cset_link);
814 list_del(&link->cgrp_link);
815 kfree(link);
816 }
96d365e0 817 up_write(&css_set_rwsem);
f2e85d57
TH
818
819 if (!list_empty(&root->root_list)) {
820 list_del(&root->root_list);
821 cgroup_root_count--;
822 }
823
824 cgroup_exit_root_id(root);
825
826 mutex_unlock(&cgroup_mutex);
827 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 828
2bd59d48 829 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
830 cgroup_free_root(root);
831}
832
ceb6a081
TH
833/* look up cgroup associated with given css_set on the specified hierarchy */
834static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 835 struct cgroup_root *root)
7717f7ba 836{
7717f7ba
PM
837 struct cgroup *res = NULL;
838
96d365e0
TH
839 lockdep_assert_held(&cgroup_mutex);
840 lockdep_assert_held(&css_set_rwsem);
841
5abb8855 842 if (cset == &init_css_set) {
3dd06ffa 843 res = &root->cgrp;
7717f7ba 844 } else {
69d0206c
TH
845 struct cgrp_cset_link *link;
846
847 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 848 struct cgroup *c = link->cgrp;
69d0206c 849
7717f7ba
PM
850 if (c->root == root) {
851 res = c;
852 break;
853 }
854 }
855 }
96d365e0 856
7717f7ba
PM
857 BUG_ON(!res);
858 return res;
859}
860
ddbcc7e8 861/*
ceb6a081
TH
862 * Return the cgroup for "task" from the given hierarchy. Must be
863 * called with cgroup_mutex and css_set_rwsem held.
864 */
865static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 866 struct cgroup_root *root)
ceb6a081
TH
867{
868 /*
869 * No need to lock the task - since we hold cgroup_mutex the
870 * task can't change groups, so the only thing that can happen
871 * is that it exits and its css is set back to init_css_set.
872 */
873 return cset_cgroup_from_root(task_css_set(task), root);
874}
875
ddbcc7e8 876/*
ddbcc7e8
PM
877 * A task must hold cgroup_mutex to modify cgroups.
878 *
879 * Any task can increment and decrement the count field without lock.
880 * So in general, code holding cgroup_mutex can't rely on the count
881 * field not changing. However, if the count goes to zero, then only
956db3ca 882 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
883 * means that no tasks are currently attached, therefore there is no
884 * way a task attached to that cgroup can fork (the other way to
885 * increment the count). So code holding cgroup_mutex can safely
886 * assume that if the count is zero, it will stay zero. Similarly, if
887 * a task holds cgroup_mutex on a cgroup with zero count, it
888 * knows that the cgroup won't be removed, as cgroup_rmdir()
889 * needs that mutex.
890 *
ddbcc7e8
PM
891 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
892 * (usually) take cgroup_mutex. These are the two most performance
893 * critical pieces of code here. The exception occurs on cgroup_exit(),
894 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
895 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
896 * to the release agent with the name of the cgroup (path relative to
897 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
898 *
899 * A cgroup can only be deleted if both its 'count' of using tasks
900 * is zero, and its list of 'children' cgroups is empty. Since all
901 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 902 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 903 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 904 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
905 *
906 * P.S. One more locking exception. RCU is used to guard the
956db3ca 907 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
908 */
909
628f7cd4 910static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 911static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 912static const struct file_operations proc_cgroupstats_operations;
a424316c 913
8d7e6fb0
TH
914static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
915 char *buf)
ddbcc7e8 916{
8d7e6fb0
TH
917 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
918 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
919 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
920 cft->ss->name, cft->name);
921 else
922 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
923 return buf;
ddbcc7e8
PM
924}
925
f2e85d57
TH
926/**
927 * cgroup_file_mode - deduce file mode of a control file
928 * @cft: the control file in question
929 *
930 * returns cft->mode if ->mode is not 0
931 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
932 * returns S_IRUGO if it has only a read handler
933 * returns S_IWUSR if it has only a write hander
934 */
935static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 936{
f2e85d57 937 umode_t mode = 0;
65dff759 938
f2e85d57
TH
939 if (cft->mode)
940 return cft->mode;
941
942 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
943 mode |= S_IRUGO;
944
945 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
946 cft->trigger)
947 mode |= S_IWUSR;
948
949 return mode;
65dff759
LZ
950}
951
be445626
LZ
952static void cgroup_free_fn(struct work_struct *work)
953{
ea15f8cc 954 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 955
3c9c825b 956 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 957 cgroup_pidlist_destroy_all(cgrp);
be445626 958
776f02fa
TH
959 if (cgrp->parent) {
960 /*
961 * We get a ref to the parent, and put the ref when this
962 * cgroup is being freed, so it's guaranteed that the
963 * parent won't be destroyed before its children.
964 */
965 cgroup_put(cgrp->parent);
966 kernfs_put(cgrp->kn);
967 kfree(cgrp);
968 } else {
969 /*
3dd06ffa 970 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
971 * indicates that the root should be released.
972 */
973 cgroup_destroy_root(cgrp->root);
974 }
be445626
LZ
975}
976
977static void cgroup_free_rcu(struct rcu_head *head)
978{
979 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
980
ea15f8cc 981 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 982 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
983}
984
59f5296b 985static void cgroup_get(struct cgroup *cgrp)
ddbcc7e8 986{
2bd59d48
TH
987 WARN_ON_ONCE(cgroup_is_dead(cgrp));
988 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
989 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
990}
991
59f5296b 992static void cgroup_put(struct cgroup *cgrp)
05ef1d7c 993{
2bd59d48
TH
994 if (!atomic_dec_and_test(&cgrp->refcnt))
995 return;
776f02fa 996 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 997 return;
05ef1d7c 998
2739d3cc 999 /*
2bd59d48
TH
1000 * XXX: cgrp->id is only used to look up css's. As cgroup and
1001 * css's lifetimes will be decoupled, it should be made
1002 * per-subsystem and moved to css->id so that lookups are
1003 * successful until the target css is released.
2739d3cc 1004 */
2bd59d48
TH
1005 mutex_lock(&cgroup_mutex);
1006 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
1007 mutex_unlock(&cgroup_mutex);
1008 cgrp->id = -1;
05ef1d7c 1009
2bd59d48 1010 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8 1011}
05ef1d7c 1012
2739d3cc 1013static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1014{
2bd59d48 1015 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1016
ace2bee8 1017 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 1018 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1019}
1020
13af07df 1021/**
628f7cd4 1022 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1023 * @cgrp: target cgroup
13af07df
AR
1024 * @subsys_mask: mask of the subsystem ids whose files should be removed
1025 */
628f7cd4 1026static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1027{
13af07df 1028 struct cgroup_subsys *ss;
b420ba7d 1029 int i;
05ef1d7c 1030
b420ba7d 1031 for_each_subsys(ss, i) {
0adb0704 1032 struct cftype *cfts;
b420ba7d
TH
1033
1034 if (!test_bit(i, &subsys_mask))
13af07df 1035 continue;
0adb0704
TH
1036 list_for_each_entry(cfts, &ss->cfts, node)
1037 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1038 }
ddbcc7e8
PM
1039}
1040
3dd06ffa 1041static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 1042 unsigned long ss_mask)
ddbcc7e8 1043{
30159ec7 1044 struct cgroup_subsys *ss;
2d8f243a 1045 int ssid, i, ret;
ddbcc7e8 1046
ace2bee8
TH
1047 lockdep_assert_held(&cgroup_tree_mutex);
1048 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1049
5df36032
TH
1050 for_each_subsys(ss, ssid) {
1051 if (!(ss_mask & (1 << ssid)))
1052 continue;
aae8aab4 1053
7fd8c565
TH
1054 /* if @ss has non-root csses attached to it, can't move */
1055 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1056 return -EBUSY;
1d5be6b2 1057
5df36032 1058 /* can't move between two non-dummy roots either */
7fd8c565 1059 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1060 return -EBUSY;
ddbcc7e8
PM
1061 }
1062
a2dd4247
TH
1063 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1064 if (ret) {
1065 if (dst_root != &cgrp_dfl_root)
5df36032 1066 return ret;
ddbcc7e8 1067
a2dd4247
TH
1068 /*
1069 * Rebinding back to the default root is not allowed to
1070 * fail. Using both default and non-default roots should
1071 * be rare. Moving subsystems back and forth even more so.
1072 * Just warn about it and continue.
1073 */
1074 if (cgrp_dfl_root_visible) {
1075 pr_warning("cgroup: failed to create files (%d) while rebinding 0x%lx to default root\n",
1076 ret, ss_mask);
1077 pr_warning("cgroup: you may retry by moving them to a different hierarchy and unbinding\n");
1078 }
5df36032 1079 }
3126121f
TH
1080
1081 /*
1082 * Nothing can fail from this point on. Remove files for the
1083 * removed subsystems and rebind each subsystem.
1084 */
4ac06017 1085 mutex_unlock(&cgroup_mutex);
5df36032 1086 for_each_subsys(ss, ssid)
a2dd4247 1087 if (ss_mask & (1 << ssid))
3dd06ffa 1088 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1089 mutex_lock(&cgroup_mutex);
a8a648c4 1090
5df36032 1091 for_each_subsys(ss, ssid) {
3dd06ffa 1092 struct cgroup_root *src_root;
5df36032 1093 struct cgroup_subsys_state *css;
2d8f243a 1094 struct css_set *cset;
a8a648c4 1095
5df36032
TH
1096 if (!(ss_mask & (1 << ssid)))
1097 continue;
a8a648c4 1098
5df36032 1099 src_root = ss->root;
3dd06ffa 1100 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1101
3dd06ffa 1102 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1103
3dd06ffa
TH
1104 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1105 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1106 ss->root = dst_root;
3dd06ffa 1107 css->cgroup = &dst_root->cgrp;
73e80ed8 1108
2d8f243a
TH
1109 down_write(&css_set_rwsem);
1110 hash_for_each(css_set_table, i, cset, hlist)
1111 list_move_tail(&cset->e_cset_node[ss->id],
1112 &dst_root->cgrp.e_csets[ss->id]);
1113 up_write(&css_set_rwsem);
1114
f392e51c
TH
1115 src_root->subsys_mask &= ~(1 << ssid);
1116 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1117
bd53d617 1118 /* default hierarchy doesn't enable controllers by default */
f392e51c 1119 dst_root->subsys_mask |= 1 << ssid;
bd53d617
TH
1120 if (dst_root != &cgrp_dfl_root)
1121 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1122
5df36032
TH
1123 if (ss->bind)
1124 ss->bind(css);
ddbcc7e8 1125 }
ddbcc7e8 1126
a2dd4247 1127 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1128 return 0;
1129}
1130
2bd59d48
TH
1131static int cgroup_show_options(struct seq_file *seq,
1132 struct kernfs_root *kf_root)
ddbcc7e8 1133{
3dd06ffa 1134 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1135 struct cgroup_subsys *ss;
b85d2040 1136 int ssid;
ddbcc7e8 1137
b85d2040 1138 for_each_subsys(ss, ssid)
f392e51c 1139 if (root->subsys_mask & (1 << ssid))
b85d2040 1140 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1141 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1142 seq_puts(seq, ",sane_behavior");
93438629 1143 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1144 seq_puts(seq, ",noprefix");
93438629 1145 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1146 seq_puts(seq, ",xattr");
69e943b7
TH
1147
1148 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1149 if (strlen(root->release_agent_path))
1150 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1151 spin_unlock(&release_agent_path_lock);
1152
3dd06ffa 1153 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1154 seq_puts(seq, ",clone_children");
c6d57f33
PM
1155 if (strlen(root->name))
1156 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1157 return 0;
1158}
1159
1160struct cgroup_sb_opts {
a1a71b45 1161 unsigned long subsys_mask;
ddbcc7e8 1162 unsigned long flags;
81a6a5cd 1163 char *release_agent;
2260e7fc 1164 bool cpuset_clone_children;
c6d57f33 1165 char *name;
2c6ab6d2
PM
1166 /* User explicitly requested empty subsystem */
1167 bool none;
ddbcc7e8
PM
1168};
1169
aae8aab4 1170/*
9871bf95
TH
1171 * Convert a hierarchy specifier into a bitmask of subsystems and
1172 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1173 * array. This function takes refcounts on subsystems to be used, unless it
1174 * returns error, in which case no refcounts are taken.
aae8aab4 1175 */
cf5d5941 1176static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1177{
32a8cf23
DL
1178 char *token, *o = data;
1179 bool all_ss = false, one_ss = false;
f9ab5b5b 1180 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1181 struct cgroup_subsys *ss;
1182 int i;
f9ab5b5b 1183
aae8aab4
BB
1184 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1185
f9ab5b5b 1186#ifdef CONFIG_CPUSETS
073219e9 1187 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1188#endif
ddbcc7e8 1189
c6d57f33 1190 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1191
1192 while ((token = strsep(&o, ",")) != NULL) {
1193 if (!*token)
1194 return -EINVAL;
32a8cf23 1195 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1196 /* Explicitly have no subsystems */
1197 opts->none = true;
32a8cf23
DL
1198 continue;
1199 }
1200 if (!strcmp(token, "all")) {
1201 /* Mutually exclusive option 'all' + subsystem name */
1202 if (one_ss)
1203 return -EINVAL;
1204 all_ss = true;
1205 continue;
1206 }
873fe09e
TH
1207 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1208 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1209 continue;
1210 }
32a8cf23 1211 if (!strcmp(token, "noprefix")) {
93438629 1212 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1213 continue;
1214 }
1215 if (!strcmp(token, "clone_children")) {
2260e7fc 1216 opts->cpuset_clone_children = true;
32a8cf23
DL
1217 continue;
1218 }
03b1cde6 1219 if (!strcmp(token, "xattr")) {
93438629 1220 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1221 continue;
1222 }
32a8cf23 1223 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1224 /* Specifying two release agents is forbidden */
1225 if (opts->release_agent)
1226 return -EINVAL;
c6d57f33 1227 opts->release_agent =
e400c285 1228 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1229 if (!opts->release_agent)
1230 return -ENOMEM;
32a8cf23
DL
1231 continue;
1232 }
1233 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1234 const char *name = token + 5;
1235 /* Can't specify an empty name */
1236 if (!strlen(name))
1237 return -EINVAL;
1238 /* Must match [\w.-]+ */
1239 for (i = 0; i < strlen(name); i++) {
1240 char c = name[i];
1241 if (isalnum(c))
1242 continue;
1243 if ((c == '.') || (c == '-') || (c == '_'))
1244 continue;
1245 return -EINVAL;
1246 }
1247 /* Specifying two names is forbidden */
1248 if (opts->name)
1249 return -EINVAL;
1250 opts->name = kstrndup(name,
e400c285 1251 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1252 GFP_KERNEL);
1253 if (!opts->name)
1254 return -ENOMEM;
32a8cf23
DL
1255
1256 continue;
1257 }
1258
30159ec7 1259 for_each_subsys(ss, i) {
32a8cf23
DL
1260 if (strcmp(token, ss->name))
1261 continue;
1262 if (ss->disabled)
1263 continue;
1264
1265 /* Mutually exclusive option 'all' + subsystem name */
1266 if (all_ss)
1267 return -EINVAL;
a1a71b45 1268 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1269 one_ss = true;
1270
1271 break;
1272 }
1273 if (i == CGROUP_SUBSYS_COUNT)
1274 return -ENOENT;
1275 }
1276
2c6ab6d2
PM
1277 /* Consistency checks */
1278
873fe09e
TH
1279 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1280 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1281
d3ba07c3
TH
1282 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1283 opts->cpuset_clone_children || opts->release_agent ||
1284 opts->name) {
1285 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1286 return -EINVAL;
1287 }
a2dd4247
TH
1288 } else {
1289 /*
1290 * If the 'all' option was specified select all the
1291 * subsystems, otherwise if 'none', 'name=' and a subsystem
1292 * name options were not specified, let's default to 'all'
1293 */
1294 if (all_ss || (!one_ss && !opts->none && !opts->name))
1295 for_each_subsys(ss, i)
1296 if (!ss->disabled)
1297 set_bit(i, &opts->subsys_mask);
873fe09e 1298
a2dd4247
TH
1299 /*
1300 * We either have to specify by name or by subsystems. (So
1301 * all empty hierarchies must have a name).
1302 */
1303 if (!opts->subsys_mask && !opts->name)
873fe09e 1304 return -EINVAL;
873fe09e
TH
1305 }
1306
f9ab5b5b
LZ
1307 /*
1308 * Option noprefix was introduced just for backward compatibility
1309 * with the old cpuset, so we allow noprefix only if mounting just
1310 * the cpuset subsystem.
1311 */
93438629 1312 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1313 return -EINVAL;
1314
2c6ab6d2
PM
1315
1316 /* Can't specify "none" and some subsystems */
a1a71b45 1317 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1318 return -EINVAL;
1319
ddbcc7e8
PM
1320 return 0;
1321}
1322
2bd59d48 1323static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1324{
1325 int ret = 0;
3dd06ffa 1326 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1327 struct cgroup_sb_opts opts;
a1a71b45 1328 unsigned long added_mask, removed_mask;
ddbcc7e8 1329
873fe09e
TH
1330 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1331 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1332 return -EINVAL;
1333 }
1334
ace2bee8 1335 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1336 mutex_lock(&cgroup_mutex);
1337
1338 /* See what subsystems are wanted */
1339 ret = parse_cgroupfs_options(data, &opts);
1340 if (ret)
1341 goto out_unlock;
1342
f392e51c 1343 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1344 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1345 task_tgid_nr(current), current->comm);
1346
f392e51c
TH
1347 added_mask = opts.subsys_mask & ~root->subsys_mask;
1348 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1349
cf5d5941 1350 /* Don't allow flags or name to change at remount */
0ce6cba3 1351 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1352 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1353 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1354 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1355 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1356 ret = -EINVAL;
1357 goto out_unlock;
1358 }
1359
f172e67c 1360 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1361 if (!list_empty(&root->cgrp.children)) {
f172e67c 1362 ret = -EBUSY;
0670e08b 1363 goto out_unlock;
cf5d5941 1364 }
ddbcc7e8 1365
5df36032 1366 ret = rebind_subsystems(root, added_mask);
3126121f 1367 if (ret)
0670e08b 1368 goto out_unlock;
ddbcc7e8 1369
3dd06ffa 1370 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1371
69e943b7
TH
1372 if (opts.release_agent) {
1373 spin_lock(&release_agent_path_lock);
81a6a5cd 1374 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1375 spin_unlock(&release_agent_path_lock);
1376 }
ddbcc7e8 1377 out_unlock:
66bdc9cf 1378 kfree(opts.release_agent);
c6d57f33 1379 kfree(opts.name);
ddbcc7e8 1380 mutex_unlock(&cgroup_mutex);
ace2bee8 1381 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1382 return ret;
1383}
1384
afeb0f9f
TH
1385/*
1386 * To reduce the fork() overhead for systems that are not actually using
1387 * their cgroups capability, we don't maintain the lists running through
1388 * each css_set to its tasks until we see the list actually used - in other
1389 * words after the first mount.
1390 */
1391static bool use_task_css_set_links __read_mostly;
1392
1393static void cgroup_enable_task_cg_lists(void)
1394{
1395 struct task_struct *p, *g;
1396
96d365e0 1397 down_write(&css_set_rwsem);
afeb0f9f
TH
1398
1399 if (use_task_css_set_links)
1400 goto out_unlock;
1401
1402 use_task_css_set_links = true;
1403
1404 /*
1405 * We need tasklist_lock because RCU is not safe against
1406 * while_each_thread(). Besides, a forking task that has passed
1407 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1408 * is not guaranteed to have its child immediately visible in the
1409 * tasklist if we walk through it with RCU.
1410 */
1411 read_lock(&tasklist_lock);
1412 do_each_thread(g, p) {
afeb0f9f
TH
1413 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1414 task_css_set(p) != &init_css_set);
1415
1416 /*
1417 * We should check if the process is exiting, otherwise
1418 * it will race with cgroup_exit() in that the list
1419 * entry won't be deleted though the process has exited.
f153ad11
TH
1420 * Do it while holding siglock so that we don't end up
1421 * racing against cgroup_exit().
afeb0f9f 1422 */
f153ad11 1423 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1424 if (!(p->flags & PF_EXITING)) {
1425 struct css_set *cset = task_css_set(p);
1426
1427 list_add(&p->cg_list, &cset->tasks);
1428 get_css_set(cset);
1429 }
f153ad11 1430 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1431 } while_each_thread(g, p);
1432 read_unlock(&tasklist_lock);
1433out_unlock:
96d365e0 1434 up_write(&css_set_rwsem);
afeb0f9f 1435}
ddbcc7e8 1436
cc31edce
PM
1437static void init_cgroup_housekeeping(struct cgroup *cgrp)
1438{
2d8f243a
TH
1439 struct cgroup_subsys *ss;
1440 int ssid;
1441
2bd59d48 1442 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1443 INIT_LIST_HEAD(&cgrp->sibling);
1444 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1445 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1446 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1447 INIT_LIST_HEAD(&cgrp->pidlists);
1448 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1449 cgrp->dummy_css.cgroup = cgrp;
2d8f243a
TH
1450
1451 for_each_subsys(ss, ssid)
1452 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
cc31edce 1453}
c6d57f33 1454
3dd06ffa 1455static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1456 struct cgroup_sb_opts *opts)
ddbcc7e8 1457{
3dd06ffa 1458 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1459
ddbcc7e8 1460 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1461 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1462 cgrp->root = root;
cc31edce 1463 init_cgroup_housekeeping(cgrp);
4e96ee8e 1464 idr_init(&root->cgroup_idr);
c6d57f33 1465
c6d57f33
PM
1466 root->flags = opts->flags;
1467 if (opts->release_agent)
1468 strcpy(root->release_agent_path, opts->release_agent);
1469 if (opts->name)
1470 strcpy(root->name, opts->name);
2260e7fc 1471 if (opts->cpuset_clone_children)
3dd06ffa 1472 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1473}
1474
3dd06ffa 1475static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1476{
d427dfeb 1477 LIST_HEAD(tmp_links);
3dd06ffa 1478 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1479 struct css_set *cset;
d427dfeb 1480 int i, ret;
2c6ab6d2 1481
d427dfeb
TH
1482 lockdep_assert_held(&cgroup_tree_mutex);
1483 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1484
d427dfeb
TH
1485 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1486 if (ret < 0)
2bd59d48 1487 goto out;
d427dfeb 1488 root_cgrp->id = ret;
c6d57f33 1489
d427dfeb 1490 /*
96d365e0 1491 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1492 * but that's OK - it can only be increased by someone holding
1493 * cgroup_lock, and that's us. The worst that can happen is that we
1494 * have some link structures left over
1495 */
1496 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1497 if (ret)
2bd59d48 1498 goto out;
ddbcc7e8 1499
985ed670 1500 ret = cgroup_init_root_id(root);
ddbcc7e8 1501 if (ret)
2bd59d48 1502 goto out;
ddbcc7e8 1503
2bd59d48
TH
1504 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1505 KERNFS_ROOT_CREATE_DEACTIVATED,
1506 root_cgrp);
1507 if (IS_ERR(root->kf_root)) {
1508 ret = PTR_ERR(root->kf_root);
1509 goto exit_root_id;
1510 }
1511 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1512
d427dfeb
TH
1513 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1514 if (ret)
2bd59d48 1515 goto destroy_root;
ddbcc7e8 1516
5df36032 1517 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1518 if (ret)
2bd59d48 1519 goto destroy_root;
ddbcc7e8 1520
d427dfeb
TH
1521 /*
1522 * There must be no failure case after here, since rebinding takes
1523 * care of subsystems' refcounts, which are explicitly dropped in
1524 * the failure exit path.
1525 */
1526 list_add(&root->root_list, &cgroup_roots);
1527 cgroup_root_count++;
0df6a63f 1528
d427dfeb 1529 /*
3dd06ffa 1530 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1531 * objects.
1532 */
96d365e0 1533 down_write(&css_set_rwsem);
d427dfeb
TH
1534 hash_for_each(css_set_table, i, cset, hlist)
1535 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1536 up_write(&css_set_rwsem);
ddbcc7e8 1537
d427dfeb 1538 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1539 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1540
2bd59d48 1541 kernfs_activate(root_cgrp->kn);
d427dfeb 1542 ret = 0;
2bd59d48 1543 goto out;
d427dfeb 1544
2bd59d48
TH
1545destroy_root:
1546 kernfs_destroy_root(root->kf_root);
1547 root->kf_root = NULL;
1548exit_root_id:
d427dfeb 1549 cgroup_exit_root_id(root);
2bd59d48 1550out:
d427dfeb
TH
1551 free_cgrp_cset_links(&tmp_links);
1552 return ret;
ddbcc7e8
PM
1553}
1554
f7e83571 1555static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1556 int flags, const char *unused_dev_name,
f7e83571 1557 void *data)
ddbcc7e8 1558{
3dd06ffa 1559 struct cgroup_root *root;
ddbcc7e8 1560 struct cgroup_sb_opts opts;
2bd59d48 1561 struct dentry *dentry;
8e30e2b8 1562 int ret;
c6b3d5bc 1563 bool new_sb;
ddbcc7e8 1564
56fde9e0
TH
1565 /*
1566 * The first time anyone tries to mount a cgroup, enable the list
1567 * linking each css_set to its tasks and fix up all existing tasks.
1568 */
1569 if (!use_task_css_set_links)
1570 cgroup_enable_task_cg_lists();
e37a06f1 1571
8e30e2b8 1572 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1573 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1574
1575 /* First find the desired set of subsystems */
ddbcc7e8 1576 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1577 if (ret)
8e30e2b8 1578 goto out_unlock;
e37a06f1 1579retry:
2bd59d48 1580 /* look for a matching existing root */
a2dd4247
TH
1581 if (!opts.subsys_mask && !opts.none && !opts.name) {
1582 cgrp_dfl_root_visible = true;
1583 root = &cgrp_dfl_root;
1584 cgroup_get(&root->cgrp);
1585 ret = 0;
1586 goto out_unlock;
ddbcc7e8
PM
1587 }
1588
985ed670 1589 for_each_root(root) {
2bd59d48 1590 bool name_match = false;
3126121f 1591
3dd06ffa 1592 if (root == &cgrp_dfl_root)
985ed670 1593 continue;
3126121f 1594
cf5d5941 1595 /*
2bd59d48
TH
1596 * If we asked for a name then it must match. Also, if
1597 * name matches but sybsys_mask doesn't, we should fail.
1598 * Remember whether name matched.
cf5d5941 1599 */
2bd59d48
TH
1600 if (opts.name) {
1601 if (strcmp(opts.name, root->name))
1602 continue;
1603 name_match = true;
1604 }
ddbcc7e8 1605
c6d57f33 1606 /*
2bd59d48
TH
1607 * If we asked for subsystems (or explicitly for no
1608 * subsystems) then they must match.
c6d57f33 1609 */
2bd59d48 1610 if ((opts.subsys_mask || opts.none) &&
f392e51c 1611 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1612 if (!name_match)
1613 continue;
1614 ret = -EBUSY;
1615 goto out_unlock;
1616 }
873fe09e 1617
c7ba8287 1618 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1619 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1620 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1621 ret = -EINVAL;
8e30e2b8 1622 goto out_unlock;
2a0ff3fb
JL
1623 } else {
1624 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1625 }
873fe09e 1626 }
ddbcc7e8 1627
776f02fa 1628 /*
3dd06ffa 1629 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1630 * ref indicate that the root is being destroyed. Wait for
1631 * destruction to complete so that the subsystems are free.
1632 * We can use wait_queue for the wait but this path is
1633 * super cold. Let's just sleep for a bit and retry.
1634 */
3dd06ffa 1635 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1636 mutex_unlock(&cgroup_mutex);
1637 mutex_unlock(&cgroup_tree_mutex);
1638 msleep(10);
e37a06f1
LZ
1639 mutex_lock(&cgroup_tree_mutex);
1640 mutex_lock(&cgroup_mutex);
776f02fa
TH
1641 goto retry;
1642 }
ddbcc7e8 1643
776f02fa 1644 ret = 0;
2bd59d48 1645 goto out_unlock;
ddbcc7e8 1646 }
ddbcc7e8 1647
817929ec 1648 /*
172a2c06
TH
1649 * No such thing, create a new one. name= matching without subsys
1650 * specification is allowed for already existing hierarchies but we
1651 * can't create new one without subsys specification.
817929ec 1652 */
172a2c06
TH
1653 if (!opts.subsys_mask && !opts.none) {
1654 ret = -EINVAL;
1655 goto out_unlock;
817929ec 1656 }
817929ec 1657
172a2c06
TH
1658 root = kzalloc(sizeof(*root), GFP_KERNEL);
1659 if (!root) {
1660 ret = -ENOMEM;
2bd59d48 1661 goto out_unlock;
839ec545 1662 }
e5f6a860 1663
172a2c06
TH
1664 init_cgroup_root(root, &opts);
1665
35585573 1666 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1667 if (ret)
1668 cgroup_free_root(root);
fa3ca07e 1669
8e30e2b8 1670out_unlock:
ddbcc7e8 1671 mutex_unlock(&cgroup_mutex);
ace2bee8 1672 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8 1673
c6d57f33
PM
1674 kfree(opts.release_agent);
1675 kfree(opts.name);
03b1cde6 1676
2bd59d48 1677 if (ret)
8e30e2b8 1678 return ERR_PTR(ret);
2bd59d48 1679
c6b3d5bc
LZ
1680 dentry = kernfs_mount(fs_type, flags, root->kf_root, &new_sb);
1681 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1682 cgroup_put(&root->cgrp);
2bd59d48
TH
1683 return dentry;
1684}
1685
1686static void cgroup_kill_sb(struct super_block *sb)
1687{
1688 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1689 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1690
3dd06ffa 1691 cgroup_put(&root->cgrp);
2bd59d48 1692 kernfs_kill_sb(sb);
ddbcc7e8
PM
1693}
1694
1695static struct file_system_type cgroup_fs_type = {
1696 .name = "cgroup",
f7e83571 1697 .mount = cgroup_mount,
ddbcc7e8
PM
1698 .kill_sb = cgroup_kill_sb,
1699};
1700
676db4af
GK
1701static struct kobject *cgroup_kobj;
1702
857a2beb 1703/**
913ffdb5 1704 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1705 * @task: target task
857a2beb
TH
1706 * @buf: the buffer to write the path into
1707 * @buflen: the length of the buffer
1708 *
913ffdb5
TH
1709 * Determine @task's cgroup on the first (the one with the lowest non-zero
1710 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1711 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1712 * cgroup controller callbacks.
1713 *
e61734c5 1714 * Return value is the same as kernfs_path().
857a2beb 1715 */
e61734c5 1716char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1717{
3dd06ffa 1718 struct cgroup_root *root;
913ffdb5 1719 struct cgroup *cgrp;
e61734c5
TH
1720 int hierarchy_id = 1;
1721 char *path = NULL;
857a2beb
TH
1722
1723 mutex_lock(&cgroup_mutex);
96d365e0 1724 down_read(&css_set_rwsem);
857a2beb 1725
913ffdb5
TH
1726 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1727
857a2beb
TH
1728 if (root) {
1729 cgrp = task_cgroup_from_root(task, root);
e61734c5 1730 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1731 } else {
1732 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1733 if (strlcpy(buf, "/", buflen) < buflen)
1734 path = buf;
857a2beb
TH
1735 }
1736
96d365e0 1737 up_read(&css_set_rwsem);
857a2beb 1738 mutex_unlock(&cgroup_mutex);
e61734c5 1739 return path;
857a2beb 1740}
913ffdb5 1741EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1742
b3dc094e 1743/* used to track tasks and other necessary states during migration */
2f7ee569 1744struct cgroup_taskset {
b3dc094e
TH
1745 /* the src and dst cset list running through cset->mg_node */
1746 struct list_head src_csets;
1747 struct list_head dst_csets;
1748
1749 /*
1750 * Fields for cgroup_taskset_*() iteration.
1751 *
1752 * Before migration is committed, the target migration tasks are on
1753 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1754 * the csets on ->dst_csets. ->csets point to either ->src_csets
1755 * or ->dst_csets depending on whether migration is committed.
1756 *
1757 * ->cur_csets and ->cur_task point to the current task position
1758 * during iteration.
1759 */
1760 struct list_head *csets;
1761 struct css_set *cur_cset;
1762 struct task_struct *cur_task;
2f7ee569
TH
1763};
1764
1765/**
1766 * cgroup_taskset_first - reset taskset and return the first task
1767 * @tset: taskset of interest
1768 *
1769 * @tset iteration is initialized and the first task is returned.
1770 */
1771struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1772{
b3dc094e
TH
1773 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1774 tset->cur_task = NULL;
1775
1776 return cgroup_taskset_next(tset);
2f7ee569 1777}
2f7ee569
TH
1778
1779/**
1780 * cgroup_taskset_next - iterate to the next task in taskset
1781 * @tset: taskset of interest
1782 *
1783 * Return the next task in @tset. Iteration must have been initialized
1784 * with cgroup_taskset_first().
1785 */
1786struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1787{
b3dc094e
TH
1788 struct css_set *cset = tset->cur_cset;
1789 struct task_struct *task = tset->cur_task;
2f7ee569 1790
b3dc094e
TH
1791 while (&cset->mg_node != tset->csets) {
1792 if (!task)
1793 task = list_first_entry(&cset->mg_tasks,
1794 struct task_struct, cg_list);
1795 else
1796 task = list_next_entry(task, cg_list);
2f7ee569 1797
b3dc094e
TH
1798 if (&task->cg_list != &cset->mg_tasks) {
1799 tset->cur_cset = cset;
1800 tset->cur_task = task;
1801 return task;
1802 }
2f7ee569 1803
b3dc094e
TH
1804 cset = list_next_entry(cset, mg_node);
1805 task = NULL;
1806 }
2f7ee569 1807
b3dc094e 1808 return NULL;
2f7ee569 1809}
2f7ee569 1810
cb0f1fe9 1811/**
74a1166d 1812 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1813 * @old_cgrp; the cgroup @tsk is being migrated from
1814 * @tsk: the task being migrated
1815 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1816 *
cb0f1fe9 1817 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1818 */
5abb8855
TH
1819static void cgroup_task_migrate(struct cgroup *old_cgrp,
1820 struct task_struct *tsk,
1821 struct css_set *new_cset)
74a1166d 1822{
5abb8855 1823 struct css_set *old_cset;
74a1166d 1824
cb0f1fe9
TH
1825 lockdep_assert_held(&cgroup_mutex);
1826 lockdep_assert_held(&css_set_rwsem);
1827
74a1166d 1828 /*
026085ef
MSB
1829 * We are synchronized through threadgroup_lock() against PF_EXITING
1830 * setting such that we can't race against cgroup_exit() changing the
1831 * css_set to init_css_set and dropping the old one.
74a1166d 1832 */
c84cdf75 1833 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1834 old_cset = task_css_set(tsk);
74a1166d 1835
b3dc094e 1836 get_css_set(new_cset);
5abb8855 1837 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1838
1b9aba49
TH
1839 /*
1840 * Use move_tail so that cgroup_taskset_first() still returns the
1841 * leader after migration. This works because cgroup_migrate()
1842 * ensures that the dst_cset of the leader is the first on the
1843 * tset's dst_csets list.
1844 */
1845 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1846
1847 /*
5abb8855
TH
1848 * We just gained a reference on old_cset by taking it from the
1849 * task. As trading it for new_cset is protected by cgroup_mutex,
1850 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1851 */
5abb8855 1852 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1853 put_css_set_locked(old_cset, false);
74a1166d
BB
1854}
1855
a043e3b2 1856/**
1958d2d5
TH
1857 * cgroup_migrate_finish - cleanup after attach
1858 * @preloaded_csets: list of preloaded css_sets
74a1166d 1859 *
1958d2d5
TH
1860 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1861 * those functions for details.
74a1166d 1862 */
1958d2d5 1863static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1864{
1958d2d5 1865 struct css_set *cset, *tmp_cset;
74a1166d 1866
1958d2d5
TH
1867 lockdep_assert_held(&cgroup_mutex);
1868
1869 down_write(&css_set_rwsem);
1870 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1871 cset->mg_src_cgrp = NULL;
1872 cset->mg_dst_cset = NULL;
1873 list_del_init(&cset->mg_preload_node);
1874 put_css_set_locked(cset, false);
1875 }
1876 up_write(&css_set_rwsem);
1877}
1878
1879/**
1880 * cgroup_migrate_add_src - add a migration source css_set
1881 * @src_cset: the source css_set to add
1882 * @dst_cgrp: the destination cgroup
1883 * @preloaded_csets: list of preloaded css_sets
1884 *
1885 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1886 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1887 * up by cgroup_migrate_finish().
1888 *
1889 * This function may be called without holding threadgroup_lock even if the
1890 * target is a process. Threads may be created and destroyed but as long
1891 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1892 * the preloaded css_sets are guaranteed to cover all migrations.
1893 */
1894static void cgroup_migrate_add_src(struct css_set *src_cset,
1895 struct cgroup *dst_cgrp,
1896 struct list_head *preloaded_csets)
1897{
1898 struct cgroup *src_cgrp;
1899
1900 lockdep_assert_held(&cgroup_mutex);
1901 lockdep_assert_held(&css_set_rwsem);
1902
1903 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1904
1958d2d5
TH
1905 if (!list_empty(&src_cset->mg_preload_node))
1906 return;
1907
1908 WARN_ON(src_cset->mg_src_cgrp);
1909 WARN_ON(!list_empty(&src_cset->mg_tasks));
1910 WARN_ON(!list_empty(&src_cset->mg_node));
1911
1912 src_cset->mg_src_cgrp = src_cgrp;
1913 get_css_set(src_cset);
1914 list_add(&src_cset->mg_preload_node, preloaded_csets);
1915}
1916
1917/**
1918 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 1919 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
1920 * @preloaded_csets: list of preloaded source css_sets
1921 *
1922 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1923 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
1924 * pins all destination css_sets, links each to its source, and append them
1925 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
1926 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
1927 *
1928 * This function must be called after cgroup_migrate_add_src() has been
1929 * called on each migration source css_set. After migration is performed
1930 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1931 * @preloaded_csets.
1932 */
1933static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1934 struct list_head *preloaded_csets)
1935{
1936 LIST_HEAD(csets);
f817de98 1937 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
1938
1939 lockdep_assert_held(&cgroup_mutex);
1940
1941 /* look up the dst cset for each src cset and link it to src */
f817de98 1942 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
1943 struct css_set *dst_cset;
1944
f817de98
TH
1945 dst_cset = find_css_set(src_cset,
1946 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
1947 if (!dst_cset)
1948 goto err;
1949
1950 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
1951
1952 /*
1953 * If src cset equals dst, it's noop. Drop the src.
1954 * cgroup_migrate() will skip the cset too. Note that we
1955 * can't handle src == dst as some nodes are used by both.
1956 */
1957 if (src_cset == dst_cset) {
1958 src_cset->mg_src_cgrp = NULL;
1959 list_del_init(&src_cset->mg_preload_node);
1960 put_css_set(src_cset, false);
1961 put_css_set(dst_cset, false);
1962 continue;
1963 }
1964
1958d2d5
TH
1965 src_cset->mg_dst_cset = dst_cset;
1966
1967 if (list_empty(&dst_cset->mg_preload_node))
1968 list_add(&dst_cset->mg_preload_node, &csets);
1969 else
1970 put_css_set(dst_cset, false);
1971 }
1972
f817de98 1973 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
1974 return 0;
1975err:
1976 cgroup_migrate_finish(&csets);
1977 return -ENOMEM;
1978}
1979
1980/**
1981 * cgroup_migrate - migrate a process or task to a cgroup
1982 * @cgrp: the destination cgroup
1983 * @leader: the leader of the process or the task to migrate
1984 * @threadgroup: whether @leader points to the whole process or a single task
1985 *
1986 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1987 * process, the caller must be holding threadgroup_lock of @leader. The
1988 * caller is also responsible for invoking cgroup_migrate_add_src() and
1989 * cgroup_migrate_prepare_dst() on the targets before invoking this
1990 * function and following up with cgroup_migrate_finish().
1991 *
1992 * As long as a controller's ->can_attach() doesn't fail, this function is
1993 * guaranteed to succeed. This means that, excluding ->can_attach()
1994 * failure, when migrating multiple targets, the success or failure can be
1995 * decided for all targets by invoking group_migrate_prepare_dst() before
1996 * actually starting migrating.
1997 */
1998static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1999 bool threadgroup)
74a1166d 2000{
b3dc094e
TH
2001 struct cgroup_taskset tset = {
2002 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2003 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2004 .csets = &tset.src_csets,
2005 };
1c6727af 2006 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2007 struct css_set *cset, *tmp_cset;
2008 struct task_struct *task, *tmp_task;
2009 int i, ret;
74a1166d 2010
fb5d2b4c
MSB
2011 /*
2012 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2013 * already PF_EXITING could be freed from underneath us unless we
2014 * take an rcu_read_lock.
2015 */
b3dc094e 2016 down_write(&css_set_rwsem);
fb5d2b4c 2017 rcu_read_lock();
9db8de37 2018 task = leader;
74a1166d 2019 do {
9db8de37
TH
2020 /* @task either already exited or can't exit until the end */
2021 if (task->flags & PF_EXITING)
ea84753c 2022 goto next;
134d3373 2023
eaf797ab
TH
2024 /* leave @task alone if post_fork() hasn't linked it yet */
2025 if (list_empty(&task->cg_list))
ea84753c 2026 goto next;
cd3d0952 2027
b3dc094e 2028 cset = task_css_set(task);
1958d2d5 2029 if (!cset->mg_src_cgrp)
ea84753c 2030 goto next;
b3dc094e 2031
61d1d219 2032 /*
1b9aba49
TH
2033 * cgroup_taskset_first() must always return the leader.
2034 * Take care to avoid disturbing the ordering.
61d1d219 2035 */
1b9aba49
TH
2036 list_move_tail(&task->cg_list, &cset->mg_tasks);
2037 if (list_empty(&cset->mg_node))
2038 list_add_tail(&cset->mg_node, &tset.src_csets);
2039 if (list_empty(&cset->mg_dst_cset->mg_node))
2040 list_move_tail(&cset->mg_dst_cset->mg_node,
2041 &tset.dst_csets);
ea84753c 2042 next:
081aa458
LZ
2043 if (!threadgroup)
2044 break;
9db8de37 2045 } while_each_thread(leader, task);
fb5d2b4c 2046 rcu_read_unlock();
b3dc094e 2047 up_write(&css_set_rwsem);
74a1166d 2048
134d3373 2049 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2050 if (list_empty(&tset.src_csets))
2051 return 0;
134d3373 2052
1958d2d5 2053 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2054 for_each_e_css(css, i, cgrp) {
1c6727af 2055 if (css->ss->can_attach) {
9db8de37
TH
2056 ret = css->ss->can_attach(css, &tset);
2057 if (ret) {
1c6727af 2058 failed_css = css;
74a1166d
BB
2059 goto out_cancel_attach;
2060 }
2061 }
74a1166d
BB
2062 }
2063
2064 /*
1958d2d5
TH
2065 * Now that we're guaranteed success, proceed to move all tasks to
2066 * the new cgroup. There are no failure cases after here, so this
2067 * is the commit point.
74a1166d 2068 */
cb0f1fe9 2069 down_write(&css_set_rwsem);
b3dc094e
TH
2070 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2071 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2072 cgroup_task_migrate(cset->mg_src_cgrp, task,
2073 cset->mg_dst_cset);
74a1166d 2074 }
cb0f1fe9 2075 up_write(&css_set_rwsem);
74a1166d
BB
2076
2077 /*
1958d2d5
TH
2078 * Migration is committed, all target tasks are now on dst_csets.
2079 * Nothing is sensitive to fork() after this point. Notify
2080 * controllers that migration is complete.
74a1166d 2081 */
1958d2d5 2082 tset.csets = &tset.dst_csets;
74a1166d 2083
aec3dfcb 2084 for_each_e_css(css, i, cgrp)
1c6727af
TH
2085 if (css->ss->attach)
2086 css->ss->attach(css, &tset);
74a1166d 2087
9db8de37 2088 ret = 0;
b3dc094e
TH
2089 goto out_release_tset;
2090
74a1166d 2091out_cancel_attach:
aec3dfcb 2092 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2093 if (css == failed_css)
2094 break;
2095 if (css->ss->cancel_attach)
2096 css->ss->cancel_attach(css, &tset);
74a1166d 2097 }
b3dc094e
TH
2098out_release_tset:
2099 down_write(&css_set_rwsem);
2100 list_splice_init(&tset.dst_csets, &tset.src_csets);
2101 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2102 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2103 list_del_init(&cset->mg_node);
b3dc094e
TH
2104 }
2105 up_write(&css_set_rwsem);
9db8de37 2106 return ret;
74a1166d
BB
2107}
2108
1958d2d5
TH
2109/**
2110 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2111 * @dst_cgrp: the cgroup to attach to
2112 * @leader: the task or the leader of the threadgroup to be attached
2113 * @threadgroup: attach the whole threadgroup?
2114 *
0e1d768f 2115 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2116 */
2117static int cgroup_attach_task(struct cgroup *dst_cgrp,
2118 struct task_struct *leader, bool threadgroup)
2119{
2120 LIST_HEAD(preloaded_csets);
2121 struct task_struct *task;
2122 int ret;
2123
2124 /* look up all src csets */
2125 down_read(&css_set_rwsem);
2126 rcu_read_lock();
2127 task = leader;
2128 do {
2129 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2130 &preloaded_csets);
2131 if (!threadgroup)
2132 break;
2133 } while_each_thread(leader, task);
2134 rcu_read_unlock();
2135 up_read(&css_set_rwsem);
2136
2137 /* prepare dst csets and commit */
2138 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2139 if (!ret)
2140 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2141
2142 cgroup_migrate_finish(&preloaded_csets);
2143 return ret;
74a1166d
BB
2144}
2145
2146/*
2147 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2148 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2149 * cgroup_mutex and threadgroup.
bbcb81d0 2150 */
74a1166d 2151static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2152{
bbcb81d0 2153 struct task_struct *tsk;
c69e8d9c 2154 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2155 int ret;
2156
74a1166d
BB
2157 if (!cgroup_lock_live_group(cgrp))
2158 return -ENODEV;
2159
b78949eb
MSB
2160retry_find_task:
2161 rcu_read_lock();
bbcb81d0 2162 if (pid) {
73507f33 2163 tsk = find_task_by_vpid(pid);
74a1166d
BB
2164 if (!tsk) {
2165 rcu_read_unlock();
dd4b0a46 2166 ret = -ESRCH;
b78949eb 2167 goto out_unlock_cgroup;
bbcb81d0 2168 }
74a1166d
BB
2169 /*
2170 * even if we're attaching all tasks in the thread group, we
2171 * only need to check permissions on one of them.
2172 */
c69e8d9c 2173 tcred = __task_cred(tsk);
14a590c3
EB
2174 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2175 !uid_eq(cred->euid, tcred->uid) &&
2176 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2177 rcu_read_unlock();
b78949eb
MSB
2178 ret = -EACCES;
2179 goto out_unlock_cgroup;
bbcb81d0 2180 }
b78949eb
MSB
2181 } else
2182 tsk = current;
cd3d0952
TH
2183
2184 if (threadgroup)
b78949eb 2185 tsk = tsk->group_leader;
c4c27fbd
MG
2186
2187 /*
14a40ffc 2188 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2189 * trapped in a cpuset, or RT worker may be born in a cgroup
2190 * with no rt_runtime allocated. Just say no.
2191 */
14a40ffc 2192 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2193 ret = -EINVAL;
2194 rcu_read_unlock();
2195 goto out_unlock_cgroup;
2196 }
2197
b78949eb
MSB
2198 get_task_struct(tsk);
2199 rcu_read_unlock();
2200
2201 threadgroup_lock(tsk);
2202 if (threadgroup) {
2203 if (!thread_group_leader(tsk)) {
2204 /*
2205 * a race with de_thread from another thread's exec()
2206 * may strip us of our leadership, if this happens,
2207 * there is no choice but to throw this task away and
2208 * try again; this is
2209 * "double-double-toil-and-trouble-check locking".
2210 */
2211 threadgroup_unlock(tsk);
2212 put_task_struct(tsk);
2213 goto retry_find_task;
2214 }
081aa458
LZ
2215 }
2216
2217 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2218
cd3d0952
TH
2219 threadgroup_unlock(tsk);
2220
bbcb81d0 2221 put_task_struct(tsk);
b78949eb 2222out_unlock_cgroup:
47cfcd09 2223 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2224 return ret;
2225}
2226
7ae1bad9
TH
2227/**
2228 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2229 * @from: attach to all cgroups of a given task
2230 * @tsk: the task to be attached
2231 */
2232int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2233{
3dd06ffa 2234 struct cgroup_root *root;
7ae1bad9
TH
2235 int retval = 0;
2236
47cfcd09 2237 mutex_lock(&cgroup_mutex);
985ed670 2238 for_each_root(root) {
96d365e0
TH
2239 struct cgroup *from_cgrp;
2240
3dd06ffa 2241 if (root == &cgrp_dfl_root)
985ed670
TH
2242 continue;
2243
96d365e0
TH
2244 down_read(&css_set_rwsem);
2245 from_cgrp = task_cgroup_from_root(from, root);
2246 up_read(&css_set_rwsem);
7ae1bad9 2247
6f4b7e63 2248 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2249 if (retval)
2250 break;
2251 }
47cfcd09 2252 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2253
2254 return retval;
2255}
2256EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2257
182446d0
TH
2258static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2259 struct cftype *cft, u64 pid)
74a1166d 2260{
182446d0 2261 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2262}
2263
182446d0
TH
2264static int cgroup_procs_write(struct cgroup_subsys_state *css,
2265 struct cftype *cft, u64 tgid)
af351026 2266{
182446d0 2267 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2268}
2269
182446d0 2270static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2271 struct cftype *cft, char *buffer)
e788e066 2272{
3dd06ffa 2273 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2274
2275 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2276 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2277 return -ENODEV;
69e943b7 2278 spin_lock(&release_agent_path_lock);
5f469907
TH
2279 strlcpy(root->release_agent_path, buffer,
2280 sizeof(root->release_agent_path));
69e943b7 2281 spin_unlock(&release_agent_path_lock);
47cfcd09 2282 mutex_unlock(&cgroup_mutex);
e788e066
PM
2283 return 0;
2284}
2285
2da8ca82 2286static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2287{
2da8ca82 2288 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2289
e788e066
PM
2290 if (!cgroup_lock_live_group(cgrp))
2291 return -ENODEV;
2292 seq_puts(seq, cgrp->root->release_agent_path);
2293 seq_putc(seq, '\n');
47cfcd09 2294 mutex_unlock(&cgroup_mutex);
e788e066
PM
2295 return 0;
2296}
2297
2da8ca82 2298static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2299{
2da8ca82
TH
2300 struct cgroup *cgrp = seq_css(seq)->cgroup;
2301
2302 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2303 return 0;
2304}
2305
2bd59d48
TH
2306static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2307 size_t nbytes, loff_t off)
355e0c48 2308{
2bd59d48
TH
2309 struct cgroup *cgrp = of->kn->parent->priv;
2310 struct cftype *cft = of->kn->priv;
2311 struct cgroup_subsys_state *css;
a742c59d 2312 int ret;
355e0c48 2313
2bd59d48
TH
2314 /*
2315 * kernfs guarantees that a file isn't deleted with operations in
2316 * flight, which means that the matching css is and stays alive and
2317 * doesn't need to be pinned. The RCU locking is not necessary
2318 * either. It's just for the convenience of using cgroup_css().
2319 */
2320 rcu_read_lock();
2321 css = cgroup_css(cgrp, cft->ss);
2322 rcu_read_unlock();
a742c59d
TH
2323
2324 if (cft->write_string) {
2325 ret = cft->write_string(css, cft, strstrip(buf));
2326 } else if (cft->write_u64) {
2327 unsigned long long v;
2328 ret = kstrtoull(buf, 0, &v);
2329 if (!ret)
2330 ret = cft->write_u64(css, cft, v);
2331 } else if (cft->write_s64) {
2332 long long v;
2333 ret = kstrtoll(buf, 0, &v);
2334 if (!ret)
2335 ret = cft->write_s64(css, cft, v);
2336 } else if (cft->trigger) {
2337 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2338 } else {
a742c59d 2339 ret = -EINVAL;
e73d2c61 2340 }
2bd59d48 2341
a742c59d 2342 return ret ?: nbytes;
355e0c48
PM
2343}
2344
6612f05b 2345static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2346{
2bd59d48 2347 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2348}
2349
6612f05b 2350static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2351{
2bd59d48 2352 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2353}
2354
6612f05b 2355static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2356{
2bd59d48 2357 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2358}
2359
91796569 2360static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2361{
7da11279
TH
2362 struct cftype *cft = seq_cft(m);
2363 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2364
2da8ca82
TH
2365 if (cft->seq_show)
2366 return cft->seq_show(m, arg);
e73d2c61 2367
f4c753b7 2368 if (cft->read_u64)
896f5199
TH
2369 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2370 else if (cft->read_s64)
2371 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2372 else
2373 return -EINVAL;
2374 return 0;
91796569
PM
2375}
2376
2bd59d48
TH
2377static struct kernfs_ops cgroup_kf_single_ops = {
2378 .atomic_write_len = PAGE_SIZE,
2379 .write = cgroup_file_write,
2380 .seq_show = cgroup_seqfile_show,
91796569
PM
2381};
2382
2bd59d48
TH
2383static struct kernfs_ops cgroup_kf_ops = {
2384 .atomic_write_len = PAGE_SIZE,
2385 .write = cgroup_file_write,
2386 .seq_start = cgroup_seqfile_start,
2387 .seq_next = cgroup_seqfile_next,
2388 .seq_stop = cgroup_seqfile_stop,
2389 .seq_show = cgroup_seqfile_show,
2390};
ddbcc7e8
PM
2391
2392/*
2393 * cgroup_rename - Only allow simple rename of directories in place.
2394 */
2bd59d48
TH
2395static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2396 const char *new_name_str)
ddbcc7e8 2397{
2bd59d48 2398 struct cgroup *cgrp = kn->priv;
65dff759 2399 int ret;
65dff759 2400
2bd59d48 2401 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2402 return -ENOTDIR;
2bd59d48 2403 if (kn->parent != new_parent)
ddbcc7e8 2404 return -EIO;
65dff759 2405
6db8e85c
TH
2406 /*
2407 * This isn't a proper migration and its usefulness is very
2408 * limited. Disallow if sane_behavior.
2409 */
2410 if (cgroup_sane_behavior(cgrp))
2411 return -EPERM;
099fca32 2412
e1b2dc17
TH
2413 /*
2414 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2415 * active_ref. kernfs_rename() doesn't require active_ref
2416 * protection. Break them before grabbing cgroup_tree_mutex.
2417 */
2418 kernfs_break_active_protection(new_parent);
2419 kernfs_break_active_protection(kn);
099fca32 2420
2bd59d48
TH
2421 mutex_lock(&cgroup_tree_mutex);
2422 mutex_lock(&cgroup_mutex);
099fca32 2423
2bd59d48 2424 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2425
2bd59d48
TH
2426 mutex_unlock(&cgroup_mutex);
2427 mutex_unlock(&cgroup_tree_mutex);
e1b2dc17
TH
2428
2429 kernfs_unbreak_active_protection(kn);
2430 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2431 return ret;
099fca32
LZ
2432}
2433
49957f8e
TH
2434/* set uid and gid of cgroup dirs and files to that of the creator */
2435static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2436{
2437 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2438 .ia_uid = current_fsuid(),
2439 .ia_gid = current_fsgid(), };
2440
2441 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2442 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2443 return 0;
2444
2445 return kernfs_setattr(kn, &iattr);
2446}
2447
2bb566cb 2448static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2449{
8d7e6fb0 2450 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2451 struct kernfs_node *kn;
2452 struct lock_class_key *key = NULL;
49957f8e 2453 int ret;
05ef1d7c 2454
2bd59d48
TH
2455#ifdef CONFIG_DEBUG_LOCK_ALLOC
2456 key = &cft->lockdep_key;
2457#endif
2458 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2459 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2460 NULL, false, key);
49957f8e
TH
2461 if (IS_ERR(kn))
2462 return PTR_ERR(kn);
2463
2464 ret = cgroup_kn_set_ugid(kn);
2465 if (ret)
2466 kernfs_remove(kn);
2467 return ret;
ddbcc7e8
PM
2468}
2469
b1f28d31
TH
2470/**
2471 * cgroup_addrm_files - add or remove files to a cgroup directory
2472 * @cgrp: the target cgroup
b1f28d31
TH
2473 * @cfts: array of cftypes to be added
2474 * @is_add: whether to add or remove
2475 *
2476 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2477 * For removals, this function never fails. If addition fails, this
2478 * function doesn't remove files already added. The caller is responsible
2479 * for cleaning up.
b1f28d31 2480 */
2bb566cb
TH
2481static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2482 bool is_add)
ddbcc7e8 2483{
03b1cde6 2484 struct cftype *cft;
b1f28d31
TH
2485 int ret;
2486
ace2bee8 2487 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2488
2489 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2490 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2491 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2492 continue;
873fe09e
TH
2493 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2494 continue;
f33fddc2
G
2495 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2496 continue;
2497 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2498 continue;
2499
2739d3cc 2500 if (is_add) {
2bb566cb 2501 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2502 if (ret) {
2739d3cc 2503 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2504 cft->name, ret);
2505 return ret;
2506 }
2739d3cc
LZ
2507 } else {
2508 cgroup_rm_file(cgrp, cft);
db0416b6 2509 }
ddbcc7e8 2510 }
b1f28d31 2511 return 0;
ddbcc7e8
PM
2512}
2513
21a2d343 2514static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2515{
2516 LIST_HEAD(pending);
2bb566cb 2517 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2518 struct cgroup *root = &ss->root->cgrp;
492eb21b 2519 struct cgroup_subsys_state *css;
9ccece80 2520 int ret = 0;
8e3f6541 2521
21a2d343 2522 lockdep_assert_held(&cgroup_tree_mutex);
8e3f6541 2523
e8c82d20 2524 /* add/rm files for all cgroups created before */
ca8bdcaf 2525 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2526 struct cgroup *cgrp = css->cgroup;
2527
e8c82d20
LZ
2528 if (cgroup_is_dead(cgrp))
2529 continue;
2530
21a2d343 2531 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2532 if (ret)
2533 break;
8e3f6541 2534 }
21a2d343
TH
2535
2536 if (is_add && !ret)
2537 kernfs_activate(root->kn);
9ccece80 2538 return ret;
8e3f6541
TH
2539}
2540
2da440a2 2541static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2542{
2bb566cb 2543 struct cftype *cft;
8e3f6541 2544
2bd59d48
TH
2545 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2546 /* free copy for custom atomic_write_len, see init_cftypes() */
2547 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2548 kfree(cft->kf_ops);
2549 cft->kf_ops = NULL;
2da440a2 2550 cft->ss = NULL;
2bd59d48 2551 }
2da440a2
TH
2552}
2553
2bd59d48 2554static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2555{
2556 struct cftype *cft;
2557
2bd59d48
TH
2558 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2559 struct kernfs_ops *kf_ops;
2560
0adb0704
TH
2561 WARN_ON(cft->ss || cft->kf_ops);
2562
2bd59d48
TH
2563 if (cft->seq_start)
2564 kf_ops = &cgroup_kf_ops;
2565 else
2566 kf_ops = &cgroup_kf_single_ops;
2567
2568 /*
2569 * Ugh... if @cft wants a custom max_write_len, we need to
2570 * make a copy of kf_ops to set its atomic_write_len.
2571 */
2572 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2573 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2574 if (!kf_ops) {
2575 cgroup_exit_cftypes(cfts);
2576 return -ENOMEM;
2577 }
2578 kf_ops->atomic_write_len = cft->max_write_len;
2579 }
8e3f6541 2580
2bd59d48 2581 cft->kf_ops = kf_ops;
2bb566cb 2582 cft->ss = ss;
2bd59d48 2583 }
2bb566cb 2584
2bd59d48 2585 return 0;
2da440a2
TH
2586}
2587
21a2d343
TH
2588static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2589{
2590 lockdep_assert_held(&cgroup_tree_mutex);
2591
2592 if (!cfts || !cfts[0].ss)
2593 return -ENOENT;
2594
2595 list_del(&cfts->node);
2596 cgroup_apply_cftypes(cfts, false);
2597 cgroup_exit_cftypes(cfts);
2598 return 0;
8e3f6541 2599}
8e3f6541 2600
79578621
TH
2601/**
2602 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2603 * @cfts: zero-length name terminated array of cftypes
2604 *
2bb566cb
TH
2605 * Unregister @cfts. Files described by @cfts are removed from all
2606 * existing cgroups and all future cgroups won't have them either. This
2607 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2608 *
2609 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2610 * registered.
79578621 2611 */
2bb566cb 2612int cgroup_rm_cftypes(struct cftype *cfts)
79578621 2613{
21a2d343 2614 int ret;
79578621 2615
21a2d343
TH
2616 mutex_lock(&cgroup_tree_mutex);
2617 ret = cgroup_rm_cftypes_locked(cfts);
2618 mutex_unlock(&cgroup_tree_mutex);
2619 return ret;
80b13586
TH
2620}
2621
8e3f6541
TH
2622/**
2623 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2624 * @ss: target cgroup subsystem
2625 * @cfts: zero-length name terminated array of cftypes
2626 *
2627 * Register @cfts to @ss. Files described by @cfts are created for all
2628 * existing cgroups to which @ss is attached and all future cgroups will
2629 * have them too. This function can be called anytime whether @ss is
2630 * attached or not.
2631 *
2632 * Returns 0 on successful registration, -errno on failure. Note that this
2633 * function currently returns 0 as long as @cfts registration is successful
2634 * even if some file creation attempts on existing cgroups fail.
2635 */
03b1cde6 2636int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2637{
9ccece80 2638 int ret;
8e3f6541 2639
dc5736ed
LZ
2640 if (!cfts || cfts[0].name[0] == '\0')
2641 return 0;
2bb566cb 2642
2bd59d48
TH
2643 ret = cgroup_init_cftypes(ss, cfts);
2644 if (ret)
2645 return ret;
79578621 2646
21a2d343
TH
2647 mutex_lock(&cgroup_tree_mutex);
2648
0adb0704 2649 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2650 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2651 if (ret)
21a2d343 2652 cgroup_rm_cftypes_locked(cfts);
79578621 2653
21a2d343 2654 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2655 return ret;
79578621
TH
2656}
2657
a043e3b2
LZ
2658/**
2659 * cgroup_task_count - count the number of tasks in a cgroup.
2660 * @cgrp: the cgroup in question
2661 *
2662 * Return the number of tasks in the cgroup.
2663 */
07bc356e 2664static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2665{
2666 int count = 0;
69d0206c 2667 struct cgrp_cset_link *link;
817929ec 2668
96d365e0 2669 down_read(&css_set_rwsem);
69d0206c
TH
2670 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2671 count += atomic_read(&link->cset->refcount);
96d365e0 2672 up_read(&css_set_rwsem);
bbcb81d0
PM
2673 return count;
2674}
2675
53fa5261 2676/**
492eb21b
TH
2677 * css_next_child - find the next child of a given css
2678 * @pos_css: the current position (%NULL to initiate traversal)
2679 * @parent_css: css whose children to walk
53fa5261 2680 *
492eb21b 2681 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2682 * under either cgroup_mutex or RCU read lock. The only requirement is
2683 * that @parent_css and @pos_css are accessible. The next sibling is
2684 * guaranteed to be returned regardless of their states.
53fa5261 2685 */
492eb21b
TH
2686struct cgroup_subsys_state *
2687css_next_child(struct cgroup_subsys_state *pos_css,
2688 struct cgroup_subsys_state *parent_css)
53fa5261 2689{
492eb21b
TH
2690 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2691 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2692 struct cgroup *next;
2693
ace2bee8 2694 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2695
2696 /*
2697 * @pos could already have been removed. Once a cgroup is removed,
2698 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2699 * changes. As CGRP_DEAD assertion is serialized and happens
2700 * before the cgroup is taken off the ->sibling list, if we see it
2701 * unasserted, it's guaranteed that the next sibling hasn't
2702 * finished its grace period even if it's already removed, and thus
2703 * safe to dereference from this RCU critical section. If
2704 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2705 * to be visible as %true here.
3b287a50
TH
2706 *
2707 * If @pos is dead, its next pointer can't be dereferenced;
2708 * however, as each cgroup is given a monotonically increasing
2709 * unique serial number and always appended to the sibling list,
2710 * the next one can be found by walking the parent's children until
2711 * we see a cgroup with higher serial number than @pos's. While
2712 * this path can be slower, it's taken only when either the current
2713 * cgroup is removed or iteration and removal race.
53fa5261 2714 */
3b287a50
TH
2715 if (!pos) {
2716 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2717 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2718 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2719 } else {
2720 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2721 if (next->serial_nr > pos->serial_nr)
2722 break;
53fa5261
TH
2723 }
2724
3b281afb
TH
2725 /*
2726 * @next, if not pointing to the head, can be dereferenced and is
2727 * the next sibling; however, it might have @ss disabled. If so,
2728 * fast-forward to the next enabled one.
2729 */
2730 while (&next->sibling != &cgrp->children) {
2731 struct cgroup_subsys_state *next_css = cgroup_css(next, parent_css->ss);
492eb21b 2732
3b281afb
TH
2733 if (next_css)
2734 return next_css;
2735 next = list_entry_rcu(next->sibling.next, struct cgroup, sibling);
2736 }
2737 return NULL;
53fa5261 2738}
53fa5261 2739
574bd9f7 2740/**
492eb21b 2741 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2742 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2743 * @root: css whose descendants to walk
574bd9f7 2744 *
492eb21b 2745 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2746 * to visit for pre-order traversal of @root's descendants. @root is
2747 * included in the iteration and the first node to be visited.
75501a6d 2748 *
87fb54f1
TH
2749 * While this function requires cgroup_mutex or RCU read locking, it
2750 * doesn't require the whole traversal to be contained in a single critical
2751 * section. This function will return the correct next descendant as long
2752 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2753 */
492eb21b
TH
2754struct cgroup_subsys_state *
2755css_next_descendant_pre(struct cgroup_subsys_state *pos,
2756 struct cgroup_subsys_state *root)
574bd9f7 2757{
492eb21b 2758 struct cgroup_subsys_state *next;
574bd9f7 2759
ace2bee8 2760 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2761
bd8815a6 2762 /* if first iteration, visit @root */
7805d000 2763 if (!pos)
bd8815a6 2764 return root;
574bd9f7
TH
2765
2766 /* visit the first child if exists */
492eb21b 2767 next = css_next_child(NULL, pos);
574bd9f7
TH
2768 if (next)
2769 return next;
2770
2771 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2772 while (pos != root) {
2773 next = css_next_child(pos, css_parent(pos));
75501a6d 2774 if (next)
574bd9f7 2775 return next;
492eb21b 2776 pos = css_parent(pos);
7805d000 2777 }
574bd9f7
TH
2778
2779 return NULL;
2780}
574bd9f7 2781
12a9d2fe 2782/**
492eb21b
TH
2783 * css_rightmost_descendant - return the rightmost descendant of a css
2784 * @pos: css of interest
12a9d2fe 2785 *
492eb21b
TH
2786 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2787 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2788 * subtree of @pos.
75501a6d 2789 *
87fb54f1
TH
2790 * While this function requires cgroup_mutex or RCU read locking, it
2791 * doesn't require the whole traversal to be contained in a single critical
2792 * section. This function will return the correct rightmost descendant as
2793 * long as @pos is accessible.
12a9d2fe 2794 */
492eb21b
TH
2795struct cgroup_subsys_state *
2796css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2797{
492eb21b 2798 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2799
ace2bee8 2800 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2801
2802 do {
2803 last = pos;
2804 /* ->prev isn't RCU safe, walk ->next till the end */
2805 pos = NULL;
492eb21b 2806 css_for_each_child(tmp, last)
12a9d2fe
TH
2807 pos = tmp;
2808 } while (pos);
2809
2810 return last;
2811}
12a9d2fe 2812
492eb21b
TH
2813static struct cgroup_subsys_state *
2814css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2815{
492eb21b 2816 struct cgroup_subsys_state *last;
574bd9f7
TH
2817
2818 do {
2819 last = pos;
492eb21b 2820 pos = css_next_child(NULL, pos);
574bd9f7
TH
2821 } while (pos);
2822
2823 return last;
2824}
2825
2826/**
492eb21b 2827 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2828 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2829 * @root: css whose descendants to walk
574bd9f7 2830 *
492eb21b 2831 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2832 * to visit for post-order traversal of @root's descendants. @root is
2833 * included in the iteration and the last node to be visited.
75501a6d 2834 *
87fb54f1
TH
2835 * While this function requires cgroup_mutex or RCU read locking, it
2836 * doesn't require the whole traversal to be contained in a single critical
2837 * section. This function will return the correct next descendant as long
2838 * as both @pos and @cgroup are accessible and @pos is a descendant of
2839 * @cgroup.
574bd9f7 2840 */
492eb21b
TH
2841struct cgroup_subsys_state *
2842css_next_descendant_post(struct cgroup_subsys_state *pos,
2843 struct cgroup_subsys_state *root)
574bd9f7 2844{
492eb21b 2845 struct cgroup_subsys_state *next;
574bd9f7 2846
ace2bee8 2847 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2848
58b79a91
TH
2849 /* if first iteration, visit leftmost descendant which may be @root */
2850 if (!pos)
2851 return css_leftmost_descendant(root);
574bd9f7 2852
bd8815a6
TH
2853 /* if we visited @root, we're done */
2854 if (pos == root)
2855 return NULL;
2856
574bd9f7 2857 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2858 next = css_next_child(pos, css_parent(pos));
75501a6d 2859 if (next)
492eb21b 2860 return css_leftmost_descendant(next);
574bd9f7
TH
2861
2862 /* no sibling left, visit parent */
bd8815a6 2863 return css_parent(pos);
574bd9f7 2864}
574bd9f7 2865
0942eeee 2866/**
72ec7029 2867 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2868 * @it: the iterator to advance
2869 *
2870 * Advance @it to the next css_set to walk.
d515876e 2871 */
72ec7029 2872static void css_advance_task_iter(struct css_task_iter *it)
d515876e 2873{
0f0a2b4f 2874 struct list_head *l = it->cset_pos;
d515876e
TH
2875 struct cgrp_cset_link *link;
2876 struct css_set *cset;
2877
2878 /* Advance to the next non-empty css_set */
2879 do {
2880 l = l->next;
0f0a2b4f
TH
2881 if (l == it->cset_head) {
2882 it->cset_pos = NULL;
d515876e
TH
2883 return;
2884 }
3ebb2b6e
TH
2885
2886 if (it->ss) {
2887 cset = container_of(l, struct css_set,
2888 e_cset_node[it->ss->id]);
2889 } else {
2890 link = list_entry(l, struct cgrp_cset_link, cset_link);
2891 cset = link->cset;
2892 }
c7561128
TH
2893 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2894
0f0a2b4f 2895 it->cset_pos = l;
c7561128
TH
2896
2897 if (!list_empty(&cset->tasks))
0f0a2b4f 2898 it->task_pos = cset->tasks.next;
c7561128 2899 else
0f0a2b4f
TH
2900 it->task_pos = cset->mg_tasks.next;
2901
2902 it->tasks_head = &cset->tasks;
2903 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
2904}
2905
0942eeee 2906/**
72ec7029
TH
2907 * css_task_iter_start - initiate task iteration
2908 * @css: the css to walk tasks of
0942eeee
TH
2909 * @it: the task iterator to use
2910 *
72ec7029
TH
2911 * Initiate iteration through the tasks of @css. The caller can call
2912 * css_task_iter_next() to walk through the tasks until the function
2913 * returns NULL. On completion of iteration, css_task_iter_end() must be
2914 * called.
0942eeee
TH
2915 *
2916 * Note that this function acquires a lock which is released when the
2917 * iteration finishes. The caller can't sleep while iteration is in
2918 * progress.
2919 */
72ec7029
TH
2920void css_task_iter_start(struct cgroup_subsys_state *css,
2921 struct css_task_iter *it)
96d365e0 2922 __acquires(css_set_rwsem)
817929ec 2923{
56fde9e0
TH
2924 /* no one should try to iterate before mounting cgroups */
2925 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2926
96d365e0 2927 down_read(&css_set_rwsem);
c59cd3d8 2928
3ebb2b6e
TH
2929 it->ss = css->ss;
2930
2931 if (it->ss)
2932 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
2933 else
2934 it->cset_pos = &css->cgroup->cset_links;
2935
0f0a2b4f 2936 it->cset_head = it->cset_pos;
c59cd3d8 2937
72ec7029 2938 css_advance_task_iter(it);
817929ec
PM
2939}
2940
0942eeee 2941/**
72ec7029 2942 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2943 * @it: the task iterator being iterated
2944 *
2945 * The "next" function for task iteration. @it should have been
72ec7029
TH
2946 * initialized via css_task_iter_start(). Returns NULL when the iteration
2947 * reaches the end.
0942eeee 2948 */
72ec7029 2949struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2950{
2951 struct task_struct *res;
0f0a2b4f 2952 struct list_head *l = it->task_pos;
817929ec
PM
2953
2954 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 2955 if (!it->cset_pos)
817929ec
PM
2956 return NULL;
2957 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2958
2959 /*
2960 * Advance iterator to find next entry. cset->tasks is consumed
2961 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2962 * next cset.
2963 */
817929ec 2964 l = l->next;
c7561128 2965
0f0a2b4f
TH
2966 if (l == it->tasks_head)
2967 l = it->mg_tasks_head->next;
c7561128 2968
0f0a2b4f 2969 if (l == it->mg_tasks_head)
72ec7029 2970 css_advance_task_iter(it);
c7561128 2971 else
0f0a2b4f 2972 it->task_pos = l;
c7561128 2973
817929ec
PM
2974 return res;
2975}
2976
0942eeee 2977/**
72ec7029 2978 * css_task_iter_end - finish task iteration
0942eeee
TH
2979 * @it: the task iterator to finish
2980 *
72ec7029 2981 * Finish task iteration started by css_task_iter_start().
0942eeee 2982 */
72ec7029 2983void css_task_iter_end(struct css_task_iter *it)
96d365e0 2984 __releases(css_set_rwsem)
31a7df01 2985{
96d365e0 2986 up_read(&css_set_rwsem);
31a7df01
CW
2987}
2988
2989/**
8cc99345
TH
2990 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2991 * @to: cgroup to which the tasks will be moved
2992 * @from: cgroup in which the tasks currently reside
31a7df01 2993 *
eaf797ab
TH
2994 * Locking rules between cgroup_post_fork() and the migration path
2995 * guarantee that, if a task is forking while being migrated, the new child
2996 * is guaranteed to be either visible in the source cgroup after the
2997 * parent's migration is complete or put into the target cgroup. No task
2998 * can slip out of migration through forking.
31a7df01 2999 */
8cc99345 3000int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3001{
952aaa12
TH
3002 LIST_HEAD(preloaded_csets);
3003 struct cgrp_cset_link *link;
72ec7029 3004 struct css_task_iter it;
e406d1cf 3005 struct task_struct *task;
952aaa12 3006 int ret;
31a7df01 3007
952aaa12 3008 mutex_lock(&cgroup_mutex);
31a7df01 3009
952aaa12
TH
3010 /* all tasks in @from are being moved, all csets are source */
3011 down_read(&css_set_rwsem);
3012 list_for_each_entry(link, &from->cset_links, cset_link)
3013 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3014 up_read(&css_set_rwsem);
31a7df01 3015
952aaa12
TH
3016 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3017 if (ret)
3018 goto out_err;
8cc99345 3019
952aaa12
TH
3020 /*
3021 * Migrate tasks one-by-one until @form is empty. This fails iff
3022 * ->can_attach() fails.
3023 */
e406d1cf
TH
3024 do {
3025 css_task_iter_start(&from->dummy_css, &it);
3026 task = css_task_iter_next(&it);
3027 if (task)
3028 get_task_struct(task);
3029 css_task_iter_end(&it);
3030
3031 if (task) {
952aaa12 3032 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3033 put_task_struct(task);
3034 }
3035 } while (task && !ret);
952aaa12
TH
3036out_err:
3037 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3038 mutex_unlock(&cgroup_mutex);
e406d1cf 3039 return ret;
8cc99345
TH
3040}
3041
bbcb81d0 3042/*
102a775e 3043 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3044 *
3045 * Reading this file can return large amounts of data if a cgroup has
3046 * *lots* of attached tasks. So it may need several calls to read(),
3047 * but we cannot guarantee that the information we produce is correct
3048 * unless we produce it entirely atomically.
3049 *
bbcb81d0 3050 */
bbcb81d0 3051
24528255
LZ
3052/* which pidlist file are we talking about? */
3053enum cgroup_filetype {
3054 CGROUP_FILE_PROCS,
3055 CGROUP_FILE_TASKS,
3056};
3057
3058/*
3059 * A pidlist is a list of pids that virtually represents the contents of one
3060 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3061 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3062 * to the cgroup.
3063 */
3064struct cgroup_pidlist {
3065 /*
3066 * used to find which pidlist is wanted. doesn't change as long as
3067 * this particular list stays in the list.
3068 */
3069 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3070 /* array of xids */
3071 pid_t *list;
3072 /* how many elements the above list has */
3073 int length;
24528255
LZ
3074 /* each of these stored in a list by its cgroup */
3075 struct list_head links;
3076 /* pointer to the cgroup we belong to, for list removal purposes */
3077 struct cgroup *owner;
b1a21367
TH
3078 /* for delayed destruction */
3079 struct delayed_work destroy_dwork;
24528255
LZ
3080};
3081
d1d9fd33
BB
3082/*
3083 * The following two functions "fix" the issue where there are more pids
3084 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3085 * TODO: replace with a kernel-wide solution to this problem
3086 */
3087#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3088static void *pidlist_allocate(int count)
3089{
3090 if (PIDLIST_TOO_LARGE(count))
3091 return vmalloc(count * sizeof(pid_t));
3092 else
3093 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3094}
b1a21367 3095
d1d9fd33
BB
3096static void pidlist_free(void *p)
3097{
3098 if (is_vmalloc_addr(p))
3099 vfree(p);
3100 else
3101 kfree(p);
3102}
d1d9fd33 3103
b1a21367
TH
3104/*
3105 * Used to destroy all pidlists lingering waiting for destroy timer. None
3106 * should be left afterwards.
3107 */
3108static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3109{
3110 struct cgroup_pidlist *l, *tmp_l;
3111
3112 mutex_lock(&cgrp->pidlist_mutex);
3113 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3114 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3115 mutex_unlock(&cgrp->pidlist_mutex);
3116
3117 flush_workqueue(cgroup_pidlist_destroy_wq);
3118 BUG_ON(!list_empty(&cgrp->pidlists));
3119}
3120
3121static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3122{
3123 struct delayed_work *dwork = to_delayed_work(work);
3124 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3125 destroy_dwork);
3126 struct cgroup_pidlist *tofree = NULL;
3127
3128 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3129
3130 /*
04502365
TH
3131 * Destroy iff we didn't get queued again. The state won't change
3132 * as destroy_dwork can only be queued while locked.
b1a21367 3133 */
04502365 3134 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3135 list_del(&l->links);
3136 pidlist_free(l->list);
3137 put_pid_ns(l->key.ns);
3138 tofree = l;
3139 }
3140
b1a21367
TH
3141 mutex_unlock(&l->owner->pidlist_mutex);
3142 kfree(tofree);
3143}
3144
bbcb81d0 3145/*
102a775e 3146 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3147 * Returns the number of unique elements.
bbcb81d0 3148 */
6ee211ad 3149static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3150{
102a775e 3151 int src, dest = 1;
102a775e
BB
3152
3153 /*
3154 * we presume the 0th element is unique, so i starts at 1. trivial
3155 * edge cases first; no work needs to be done for either
3156 */
3157 if (length == 0 || length == 1)
3158 return length;
3159 /* src and dest walk down the list; dest counts unique elements */
3160 for (src = 1; src < length; src++) {
3161 /* find next unique element */
3162 while (list[src] == list[src-1]) {
3163 src++;
3164 if (src == length)
3165 goto after;
3166 }
3167 /* dest always points to where the next unique element goes */
3168 list[dest] = list[src];
3169 dest++;
3170 }
3171after:
102a775e
BB
3172 return dest;
3173}
3174
afb2bc14
TH
3175/*
3176 * The two pid files - task and cgroup.procs - guaranteed that the result
3177 * is sorted, which forced this whole pidlist fiasco. As pid order is
3178 * different per namespace, each namespace needs differently sorted list,
3179 * making it impossible to use, for example, single rbtree of member tasks
3180 * sorted by task pointer. As pidlists can be fairly large, allocating one
3181 * per open file is dangerous, so cgroup had to implement shared pool of
3182 * pidlists keyed by cgroup and namespace.
3183 *
3184 * All this extra complexity was caused by the original implementation
3185 * committing to an entirely unnecessary property. In the long term, we
3186 * want to do away with it. Explicitly scramble sort order if
3187 * sane_behavior so that no such expectation exists in the new interface.
3188 *
3189 * Scrambling is done by swapping every two consecutive bits, which is
3190 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3191 */
3192static pid_t pid_fry(pid_t pid)
3193{
3194 unsigned a = pid & 0x55555555;
3195 unsigned b = pid & 0xAAAAAAAA;
3196
3197 return (a << 1) | (b >> 1);
3198}
3199
3200static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3201{
3202 if (cgroup_sane_behavior(cgrp))
3203 return pid_fry(pid);
3204 else
3205 return pid;
3206}
3207
102a775e
BB
3208static int cmppid(const void *a, const void *b)
3209{
3210 return *(pid_t *)a - *(pid_t *)b;
3211}
3212
afb2bc14
TH
3213static int fried_cmppid(const void *a, const void *b)
3214{
3215 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3216}
3217
e6b81710
TH
3218static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3219 enum cgroup_filetype type)
3220{
3221 struct cgroup_pidlist *l;
3222 /* don't need task_nsproxy() if we're looking at ourself */
3223 struct pid_namespace *ns = task_active_pid_ns(current);
3224
3225 lockdep_assert_held(&cgrp->pidlist_mutex);
3226
3227 list_for_each_entry(l, &cgrp->pidlists, links)
3228 if (l->key.type == type && l->key.ns == ns)
3229 return l;
3230 return NULL;
3231}
3232
72a8cb30
BB
3233/*
3234 * find the appropriate pidlist for our purpose (given procs vs tasks)
3235 * returns with the lock on that pidlist already held, and takes care
3236 * of the use count, or returns NULL with no locks held if we're out of
3237 * memory.
3238 */
e6b81710
TH
3239static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3240 enum cgroup_filetype type)
72a8cb30
BB
3241{
3242 struct cgroup_pidlist *l;
b70cc5fd 3243
e6b81710
TH
3244 lockdep_assert_held(&cgrp->pidlist_mutex);
3245
3246 l = cgroup_pidlist_find(cgrp, type);
3247 if (l)
3248 return l;
3249
72a8cb30 3250 /* entry not found; create a new one */
f4f4be2b 3251 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3252 if (!l)
72a8cb30 3253 return l;
e6b81710 3254
b1a21367 3255 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3256 l->key.type = type;
e6b81710
TH
3257 /* don't need task_nsproxy() if we're looking at ourself */
3258 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3259 l->owner = cgrp;
3260 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3261 return l;
3262}
3263
102a775e
BB
3264/*
3265 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3266 */
72a8cb30
BB
3267static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3268 struct cgroup_pidlist **lp)
102a775e
BB
3269{
3270 pid_t *array;
3271 int length;
3272 int pid, n = 0; /* used for populating the array */
72ec7029 3273 struct css_task_iter it;
817929ec 3274 struct task_struct *tsk;
102a775e
BB
3275 struct cgroup_pidlist *l;
3276
4bac00d1
TH
3277 lockdep_assert_held(&cgrp->pidlist_mutex);
3278
102a775e
BB
3279 /*
3280 * If cgroup gets more users after we read count, we won't have
3281 * enough space - tough. This race is indistinguishable to the
3282 * caller from the case that the additional cgroup users didn't
3283 * show up until sometime later on.
3284 */
3285 length = cgroup_task_count(cgrp);
d1d9fd33 3286 array = pidlist_allocate(length);
102a775e
BB
3287 if (!array)
3288 return -ENOMEM;
3289 /* now, populate the array */
72ec7029
TH
3290 css_task_iter_start(&cgrp->dummy_css, &it);
3291 while ((tsk = css_task_iter_next(&it))) {
102a775e 3292 if (unlikely(n == length))
817929ec 3293 break;
102a775e 3294 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3295 if (type == CGROUP_FILE_PROCS)
3296 pid = task_tgid_vnr(tsk);
3297 else
3298 pid = task_pid_vnr(tsk);
102a775e
BB
3299 if (pid > 0) /* make sure to only use valid results */
3300 array[n++] = pid;
817929ec 3301 }
72ec7029 3302 css_task_iter_end(&it);
102a775e
BB
3303 length = n;
3304 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3305 if (cgroup_sane_behavior(cgrp))
3306 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3307 else
3308 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3309 if (type == CGROUP_FILE_PROCS)
6ee211ad 3310 length = pidlist_uniq(array, length);
e6b81710 3311
e6b81710 3312 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3313 if (!l) {
e6b81710 3314 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3315 pidlist_free(array);
72a8cb30 3316 return -ENOMEM;
102a775e 3317 }
e6b81710
TH
3318
3319 /* store array, freeing old if necessary */
d1d9fd33 3320 pidlist_free(l->list);
102a775e
BB
3321 l->list = array;
3322 l->length = length;
72a8cb30 3323 *lp = l;
102a775e 3324 return 0;
bbcb81d0
PM
3325}
3326
846c7bb0 3327/**
a043e3b2 3328 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3329 * @stats: cgroupstats to fill information into
3330 * @dentry: A dentry entry belonging to the cgroup for which stats have
3331 * been requested.
a043e3b2
LZ
3332 *
3333 * Build and fill cgroupstats so that taskstats can export it to user
3334 * space.
846c7bb0
BS
3335 */
3336int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3337{
2bd59d48 3338 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3339 struct cgroup *cgrp;
72ec7029 3340 struct css_task_iter it;
846c7bb0 3341 struct task_struct *tsk;
33d283be 3342
2bd59d48
TH
3343 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3344 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3345 kernfs_type(kn) != KERNFS_DIR)
3346 return -EINVAL;
3347
bad34660
LZ
3348 mutex_lock(&cgroup_mutex);
3349
846c7bb0 3350 /*
2bd59d48
TH
3351 * We aren't being called from kernfs and there's no guarantee on
3352 * @kn->priv's validity. For this and css_tryget_from_dir(),
3353 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3354 */
2bd59d48
TH
3355 rcu_read_lock();
3356 cgrp = rcu_dereference(kn->priv);
bad34660 3357 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3358 rcu_read_unlock();
bad34660 3359 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3360 return -ENOENT;
3361 }
bad34660 3362 rcu_read_unlock();
846c7bb0 3363
72ec7029
TH
3364 css_task_iter_start(&cgrp->dummy_css, &it);
3365 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3366 switch (tsk->state) {
3367 case TASK_RUNNING:
3368 stats->nr_running++;
3369 break;
3370 case TASK_INTERRUPTIBLE:
3371 stats->nr_sleeping++;
3372 break;
3373 case TASK_UNINTERRUPTIBLE:
3374 stats->nr_uninterruptible++;
3375 break;
3376 case TASK_STOPPED:
3377 stats->nr_stopped++;
3378 break;
3379 default:
3380 if (delayacct_is_task_waiting_on_io(tsk))
3381 stats->nr_io_wait++;
3382 break;
3383 }
3384 }
72ec7029 3385 css_task_iter_end(&it);
846c7bb0 3386
bad34660 3387 mutex_unlock(&cgroup_mutex);
2bd59d48 3388 return 0;
846c7bb0
BS
3389}
3390
8f3ff208 3391
bbcb81d0 3392/*
102a775e 3393 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3394 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3395 * in the cgroup->l->list array.
bbcb81d0 3396 */
cc31edce 3397
102a775e 3398static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3399{
cc31edce
PM
3400 /*
3401 * Initially we receive a position value that corresponds to
3402 * one more than the last pid shown (or 0 on the first call or
3403 * after a seek to the start). Use a binary-search to find the
3404 * next pid to display, if any
3405 */
2bd59d48 3406 struct kernfs_open_file *of = s->private;
7da11279 3407 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3408 struct cgroup_pidlist *l;
7da11279 3409 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3410 int index = 0, pid = *pos;
4bac00d1
TH
3411 int *iter, ret;
3412
3413 mutex_lock(&cgrp->pidlist_mutex);
3414
3415 /*
5d22444f 3416 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3417 * after open. If the matching pidlist is around, we can use that.
5d22444f 3418 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3419 * could already have been destroyed.
3420 */
5d22444f
TH
3421 if (of->priv)
3422 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3423
3424 /*
3425 * Either this is the first start() after open or the matching
3426 * pidlist has been destroyed inbetween. Create a new one.
3427 */
5d22444f
TH
3428 if (!of->priv) {
3429 ret = pidlist_array_load(cgrp, type,
3430 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3431 if (ret)
3432 return ERR_PTR(ret);
3433 }
5d22444f 3434 l = of->priv;
cc31edce 3435
cc31edce 3436 if (pid) {
102a775e 3437 int end = l->length;
20777766 3438
cc31edce
PM
3439 while (index < end) {
3440 int mid = (index + end) / 2;
afb2bc14 3441 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3442 index = mid;
3443 break;
afb2bc14 3444 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3445 index = mid + 1;
3446 else
3447 end = mid;
3448 }
3449 }
3450 /* If we're off the end of the array, we're done */
102a775e 3451 if (index >= l->length)
cc31edce
PM
3452 return NULL;
3453 /* Update the abstract position to be the actual pid that we found */
102a775e 3454 iter = l->list + index;
afb2bc14 3455 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3456 return iter;
3457}
3458
102a775e 3459static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3460{
2bd59d48 3461 struct kernfs_open_file *of = s->private;
5d22444f 3462 struct cgroup_pidlist *l = of->priv;
62236858 3463
5d22444f
TH
3464 if (l)
3465 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3466 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3467 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3468}
3469
102a775e 3470static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3471{
2bd59d48 3472 struct kernfs_open_file *of = s->private;
5d22444f 3473 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3474 pid_t *p = v;
3475 pid_t *end = l->list + l->length;
cc31edce
PM
3476 /*
3477 * Advance to the next pid in the array. If this goes off the
3478 * end, we're done
3479 */
3480 p++;
3481 if (p >= end) {
3482 return NULL;
3483 } else {
7da11279 3484 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3485 return p;
3486 }
3487}
3488
102a775e 3489static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3490{
3491 return seq_printf(s, "%d\n", *(int *)v);
3492}
bbcb81d0 3493
102a775e
BB
3494/*
3495 * seq_operations functions for iterating on pidlists through seq_file -
3496 * independent of whether it's tasks or procs
3497 */
3498static const struct seq_operations cgroup_pidlist_seq_operations = {
3499 .start = cgroup_pidlist_start,
3500 .stop = cgroup_pidlist_stop,
3501 .next = cgroup_pidlist_next,
3502 .show = cgroup_pidlist_show,
cc31edce
PM
3503};
3504
182446d0
TH
3505static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3506 struct cftype *cft)
81a6a5cd 3507{
182446d0 3508 return notify_on_release(css->cgroup);
81a6a5cd
PM
3509}
3510
182446d0
TH
3511static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3512 struct cftype *cft, u64 val)
6379c106 3513{
182446d0 3514 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3515 if (val)
182446d0 3516 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3517 else
182446d0 3518 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3519 return 0;
3520}
3521
182446d0
TH
3522static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3523 struct cftype *cft)
97978e6d 3524{
182446d0 3525 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3526}
3527
182446d0
TH
3528static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3529 struct cftype *cft, u64 val)
97978e6d
DL
3530{
3531 if (val)
182446d0 3532 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3533 else
182446d0 3534 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3535 return 0;
3536}
3537
d5c56ced 3538static struct cftype cgroup_base_files[] = {
81a6a5cd 3539 {
d5c56ced 3540 .name = "cgroup.procs",
6612f05b
TH
3541 .seq_start = cgroup_pidlist_start,
3542 .seq_next = cgroup_pidlist_next,
3543 .seq_stop = cgroup_pidlist_stop,
3544 .seq_show = cgroup_pidlist_show,
5d22444f 3545 .private = CGROUP_FILE_PROCS,
74a1166d 3546 .write_u64 = cgroup_procs_write,
74a1166d 3547 .mode = S_IRUGO | S_IWUSR,
102a775e 3548 },
97978e6d
DL
3549 {
3550 .name = "cgroup.clone_children",
873fe09e 3551 .flags = CFTYPE_INSANE,
97978e6d
DL
3552 .read_u64 = cgroup_clone_children_read,
3553 .write_u64 = cgroup_clone_children_write,
3554 },
873fe09e
TH
3555 {
3556 .name = "cgroup.sane_behavior",
3557 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3558 .seq_show = cgroup_sane_behavior_show,
873fe09e 3559 },
d5c56ced
TH
3560
3561 /*
3562 * Historical crazy stuff. These don't have "cgroup." prefix and
3563 * don't exist if sane_behavior. If you're depending on these, be
3564 * prepared to be burned.
3565 */
3566 {
3567 .name = "tasks",
3568 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3569 .seq_start = cgroup_pidlist_start,
3570 .seq_next = cgroup_pidlist_next,
3571 .seq_stop = cgroup_pidlist_stop,
3572 .seq_show = cgroup_pidlist_show,
5d22444f 3573 .private = CGROUP_FILE_TASKS,
d5c56ced 3574 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3575 .mode = S_IRUGO | S_IWUSR,
3576 },
3577 {
3578 .name = "notify_on_release",
3579 .flags = CFTYPE_INSANE,
3580 .read_u64 = cgroup_read_notify_on_release,
3581 .write_u64 = cgroup_write_notify_on_release,
3582 },
6e6ff25b
TH
3583 {
3584 .name = "release_agent",
cc5943a7 3585 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3586 .seq_show = cgroup_release_agent_show,
6e6ff25b 3587 .write_string = cgroup_release_agent_write,
5f469907 3588 .max_write_len = PATH_MAX - 1,
6e6ff25b 3589 },
db0416b6 3590 { } /* terminate */
bbcb81d0
PM
3591};
3592
13af07df 3593/**
628f7cd4 3594 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3595 * @cgrp: target cgroup
13af07df 3596 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3597 *
3598 * On failure, no file is added.
13af07df 3599 */
628f7cd4 3600static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3601{
ddbcc7e8 3602 struct cgroup_subsys *ss;
b420ba7d 3603 int i, ret = 0;
bbcb81d0 3604
8e3f6541 3605 /* process cftsets of each subsystem */
b420ba7d 3606 for_each_subsys(ss, i) {
0adb0704 3607 struct cftype *cfts;
b420ba7d
TH
3608
3609 if (!test_bit(i, &subsys_mask))
13af07df 3610 continue;
8e3f6541 3611
0adb0704
TH
3612 list_for_each_entry(cfts, &ss->cfts, node) {
3613 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3614 if (ret < 0)
3615 goto err;
3616 }
ddbcc7e8 3617 }
ddbcc7e8 3618 return 0;
bee55099
TH
3619err:
3620 cgroup_clear_dir(cgrp, subsys_mask);
3621 return ret;
ddbcc7e8
PM
3622}
3623
0c21ead1
TH
3624/*
3625 * css destruction is four-stage process.
3626 *
3627 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3628 * Implemented in kill_css().
3629 *
3630 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3631 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3632 * by invoking offline_css(). After offlining, the base ref is put.
3633 * Implemented in css_killed_work_fn().
3634 *
3635 * 3. When the percpu_ref reaches zero, the only possible remaining
3636 * accessors are inside RCU read sections. css_release() schedules the
3637 * RCU callback.
3638 *
3639 * 4. After the grace period, the css can be freed. Implemented in
3640 * css_free_work_fn().
3641 *
3642 * It is actually hairier because both step 2 and 4 require process context
3643 * and thus involve punting to css->destroy_work adding two additional
3644 * steps to the already complex sequence.
3645 */
35ef10da 3646static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3647{
3648 struct cgroup_subsys_state *css =
35ef10da 3649 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3650 struct cgroup *cgrp = css->cgroup;
48ddbe19 3651
0ae78e0b
TH
3652 if (css->parent)
3653 css_put(css->parent);
3654
0c21ead1 3655 css->ss->css_free(css);
2bd59d48 3656 cgroup_put(cgrp);
48ddbe19
TH
3657}
3658
0c21ead1 3659static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3660{
3661 struct cgroup_subsys_state *css =
0c21ead1 3662 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3663
35ef10da 3664 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3665 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3666}
3667
d3daf28d
TH
3668static void css_release(struct percpu_ref *ref)
3669{
3670 struct cgroup_subsys_state *css =
3671 container_of(ref, struct cgroup_subsys_state, refcnt);
3672
01a97140 3673 RCU_INIT_POINTER(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3674 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3675}
3676
623f926b
TH
3677static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3678 struct cgroup *cgrp)
ddbcc7e8 3679{
bd89aabc 3680 css->cgroup = cgrp;
72c97e54 3681 css->ss = ss;
ddbcc7e8 3682 css->flags = 0;
0ae78e0b
TH
3683
3684 if (cgrp->parent)
ca8bdcaf 3685 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3686 else
38b53aba 3687 css->flags |= CSS_ROOT;
48ddbe19 3688
ca8bdcaf 3689 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3690}
3691
2a4ac633 3692/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3693static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3694{
623f926b 3695 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3696 int ret = 0;
3697
ace2bee8 3698 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3699 lockdep_assert_held(&cgroup_mutex);
3700
92fb9748 3701 if (ss->css_online)
eb95419b 3702 ret = ss->css_online(css);
ae7f164a 3703 if (!ret) {
eb95419b 3704 css->flags |= CSS_ONLINE;
f20104de 3705 css->cgroup->nr_css++;
aec25020 3706 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3707 }
b1929db4 3708 return ret;
a31f2d3f
TH
3709}
3710
2a4ac633 3711/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3712static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3713{
623f926b 3714 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3715
ace2bee8 3716 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3717 lockdep_assert_held(&cgroup_mutex);
3718
3719 if (!(css->flags & CSS_ONLINE))
3720 return;
3721
d7eeac19 3722 if (ss->css_offline)
eb95419b 3723 ss->css_offline(css);
a31f2d3f 3724
eb95419b 3725 css->flags &= ~CSS_ONLINE;
09a503ea 3726 css->cgroup->nr_css--;
e3297803 3727 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
a31f2d3f
TH
3728}
3729
c81c925a
TH
3730/**
3731 * create_css - create a cgroup_subsys_state
3732 * @cgrp: the cgroup new css will be associated with
3733 * @ss: the subsys of new css
3734 *
3735 * Create a new css associated with @cgrp - @ss pair. On success, the new
3736 * css is online and installed in @cgrp with all interface files created.
3737 * Returns 0 on success, -errno on failure.
3738 */
3739static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3740{
3741 struct cgroup *parent = cgrp->parent;
3742 struct cgroup_subsys_state *css;
3743 int err;
3744
c81c925a
TH
3745 lockdep_assert_held(&cgroup_mutex);
3746
3747 css = ss->css_alloc(cgroup_css(parent, ss));
3748 if (IS_ERR(css))
3749 return PTR_ERR(css);
3750
3751 err = percpu_ref_init(&css->refcnt, css_release);
3752 if (err)
3eb59ec6 3753 goto err_free_css;
c81c925a
TH
3754
3755 init_css(css, ss, cgrp);
3756
aec25020 3757 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 3758 if (err)
3eb59ec6 3759 goto err_free_percpu_ref;
c81c925a
TH
3760
3761 err = online_css(css);
3762 if (err)
3eb59ec6 3763 goto err_clear_dir;
c81c925a 3764
59f5296b 3765 cgroup_get(cgrp);
c81c925a
TH
3766 css_get(css->parent);
3767
3768 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3769 parent->parent) {
3770 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3771 current->comm, current->pid, ss->name);
3772 if (!strcmp(ss->name, "memory"))
3773 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3774 ss->warned_broken_hierarchy = true;
3775 }
3776
3777 return 0;
3778
3eb59ec6 3779err_clear_dir:
32d01dc7 3780 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3eb59ec6 3781err_free_percpu_ref:
c81c925a 3782 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 3783err_free_css:
c81c925a
TH
3784 ss->css_free(css);
3785 return err;
3786}
3787
2bd59d48 3788/**
a043e3b2
LZ
3789 * cgroup_create - create a cgroup
3790 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3791 * @name: name of the new cgroup
2bd59d48 3792 * @mode: mode to set on new cgroup
ddbcc7e8 3793 */
e61734c5 3794static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3795 umode_t mode)
ddbcc7e8 3796{
bd89aabc 3797 struct cgroup *cgrp;
3dd06ffa 3798 struct cgroup_root *root = parent->root;
b58c8998 3799 int ssid, err;
ddbcc7e8 3800 struct cgroup_subsys *ss;
2bd59d48 3801 struct kernfs_node *kn;
ddbcc7e8 3802
0a950f65 3803 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3804 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3805 if (!cgrp)
ddbcc7e8
PM
3806 return -ENOMEM;
3807
ace2bee8 3808 mutex_lock(&cgroup_tree_mutex);
65dff759 3809
976c06bc
TH
3810 /*
3811 * Only live parents can have children. Note that the liveliness
3812 * check isn't strictly necessary because cgroup_mkdir() and
3813 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3814 * anyway so that locking is contained inside cgroup proper and we
3815 * don't get nasty surprises if we ever grow another caller.
3816 */
3817 if (!cgroup_lock_live_group(parent)) {
3818 err = -ENODEV;
ace2bee8 3819 goto err_unlock_tree;
0ab02ca8
LZ
3820 }
3821
3822 /*
3823 * Temporarily set the pointer to NULL, so idr_find() won't return
3824 * a half-baked cgroup.
3825 */
3826 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3827 if (cgrp->id < 0) {
3828 err = -ENOMEM;
3829 goto err_unlock;
976c06bc
TH
3830 }
3831
cc31edce 3832 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3833
bd89aabc 3834 cgrp->parent = parent;
0ae78e0b 3835 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3836 cgrp->root = parent->root;
ddbcc7e8 3837
b6abdb0e
LZ
3838 if (notify_on_release(parent))
3839 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3840
2260e7fc
TH
3841 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3842 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3843
2bd59d48 3844 /* create the directory */
e61734c5 3845 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3846 if (IS_ERR(kn)) {
3847 err = PTR_ERR(kn);
0ab02ca8 3848 goto err_free_id;
2bd59d48
TH
3849 }
3850 cgrp->kn = kn;
ddbcc7e8 3851
4e139afc 3852 /*
6f30558f
TH
3853 * This extra ref will be put in cgroup_free_fn() and guarantees
3854 * that @cgrp->kn is always accessible.
4e139afc 3855 */
6f30558f 3856 kernfs_get(kn);
ddbcc7e8 3857
00356bd5 3858 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3859
4e139afc 3860 /* allocation complete, commit to creation */
4e139afc 3861 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3862 atomic_inc(&root->nr_cgrps);
59f5296b 3863 cgroup_get(parent);
415cf07a 3864
0d80255e
TH
3865 /*
3866 * @cgrp is now fully operational. If something fails after this
3867 * point, it'll be released via the normal destruction path.
3868 */
4e96ee8e
LZ
3869 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3870
49957f8e
TH
3871 err = cgroup_kn_set_ugid(kn);
3872 if (err)
3873 goto err_destroy;
3874
2bb566cb 3875 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3876 if (err)
3877 goto err_destroy;
3878
9d403e99 3879 /* let's create and online css's */
b85d2040 3880 for_each_subsys(ss, ssid) {
f392e51c 3881 if (parent->child_subsys_mask & (1 << ssid)) {
b85d2040
TH
3882 err = create_css(cgrp, ss);
3883 if (err)
3884 goto err_destroy;
3885 }
a8638030 3886 }
ddbcc7e8 3887
bd53d617
TH
3888 /*
3889 * On the default hierarchy, a child doesn't automatically inherit
3890 * child_subsys_mask from the parent. Each is configured manually.
3891 */
3892 if (!cgroup_on_dfl(cgrp))
3893 cgrp->child_subsys_mask = parent->child_subsys_mask;
f392e51c 3894
2bd59d48
TH
3895 kernfs_activate(kn);
3896
ddbcc7e8 3897 mutex_unlock(&cgroup_mutex);
ace2bee8 3898 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3899
3900 return 0;
3901
0a950f65 3902err_free_id:
4e96ee8e 3903 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3904err_unlock:
3905 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3906err_unlock_tree:
3907 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3908 kfree(cgrp);
ddbcc7e8 3909 return err;
4b8b47eb
TH
3910
3911err_destroy:
3912 cgroup_destroy_locked(cgrp);
3913 mutex_unlock(&cgroup_mutex);
ace2bee8 3914 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3915 return err;
ddbcc7e8
PM
3916}
3917
2bd59d48
TH
3918static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3919 umode_t mode)
ddbcc7e8 3920{
2bd59d48 3921 struct cgroup *parent = parent_kn->priv;
e1b2dc17 3922 int ret;
ddbcc7e8 3923
e1b2dc17
TH
3924 /*
3925 * cgroup_create() grabs cgroup_tree_mutex which nests outside
3926 * kernfs active_ref and cgroup_create() already synchronizes
3927 * properly against removal through cgroup_lock_live_group().
3928 * Break it before calling cgroup_create().
3929 */
3930 cgroup_get(parent);
3931 kernfs_break_active_protection(parent_kn);
ddbcc7e8 3932
e1b2dc17
TH
3933 ret = cgroup_create(parent, name, mode);
3934
3935 kernfs_unbreak_active_protection(parent_kn);
3936 cgroup_put(parent);
3937 return ret;
ddbcc7e8
PM
3938}
3939
223dbc38
TH
3940/*
3941 * This is called when the refcnt of a css is confirmed to be killed.
3942 * css_tryget() is now guaranteed to fail.
3943 */
3944static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3945{
223dbc38
TH
3946 struct cgroup_subsys_state *css =
3947 container_of(work, struct cgroup_subsys_state, destroy_work);
3948 struct cgroup *cgrp = css->cgroup;
d3daf28d 3949
ace2bee8 3950 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3951 mutex_lock(&cgroup_mutex);
3952
09a503ea
TH
3953 /*
3954 * css_tryget() is guaranteed to fail now. Tell subsystems to
3955 * initate destruction.
3956 */
3957 offline_css(css);
3958
f20104de
TH
3959 /*
3960 * If @cgrp is marked dead, it's waiting for refs of all css's to
3961 * be disabled before proceeding to the second phase of cgroup
3962 * destruction. If we are the last one, kick it off.
3963 */
09a503ea 3964 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3965 cgroup_destroy_css_killed(cgrp);
3966
3967 mutex_unlock(&cgroup_mutex);
ace2bee8 3968 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3969
3970 /*
3971 * Put the css refs from kill_css(). Each css holds an extra
3972 * reference to the cgroup's dentry and cgroup removal proceeds
3973 * regardless of css refs. On the last put of each css, whenever
3974 * that may be, the extra dentry ref is put so that dentry
3975 * destruction happens only after all css's are released.
3976 */
3977 css_put(css);
d3daf28d
TH
3978}
3979
223dbc38
TH
3980/* css kill confirmation processing requires process context, bounce */
3981static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3982{
3983 struct cgroup_subsys_state *css =
3984 container_of(ref, struct cgroup_subsys_state, refcnt);
3985
223dbc38 3986 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3987 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3988}
3989
f392e51c
TH
3990/**
3991 * kill_css - destroy a css
3992 * @css: css to destroy
3993 *
3994 * This function initiates destruction of @css by removing cgroup interface
3995 * files and putting its base reference. ->css_offline() will be invoked
3996 * asynchronously once css_tryget() is guaranteed to fail and when the
3997 * reference count reaches zero, @css will be released.
3998 */
3999static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4000{
94419627
TH
4001 lockdep_assert_held(&cgroup_tree_mutex);
4002
2bd59d48
TH
4003 /*
4004 * This must happen before css is disassociated with its cgroup.
4005 * See seq_css() for details.
4006 */
aec25020 4007 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4008
edae0c33
TH
4009 /*
4010 * Killing would put the base ref, but we need to keep it alive
4011 * until after ->css_offline().
4012 */
4013 css_get(css);
4014
4015 /*
4016 * cgroup core guarantees that, by the time ->css_offline() is
4017 * invoked, no new css reference will be given out via
4018 * css_tryget(). We can't simply call percpu_ref_kill() and
4019 * proceed to offlining css's because percpu_ref_kill() doesn't
4020 * guarantee that the ref is seen as killed on all CPUs on return.
4021 *
4022 * Use percpu_ref_kill_and_confirm() to get notifications as each
4023 * css is confirmed to be seen as killed on all CPUs.
4024 */
4025 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4026}
4027
4028/**
4029 * cgroup_destroy_locked - the first stage of cgroup destruction
4030 * @cgrp: cgroup to be destroyed
4031 *
4032 * css's make use of percpu refcnts whose killing latency shouldn't be
4033 * exposed to userland and are RCU protected. Also, cgroup core needs to
4034 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4035 * invoked. To satisfy all the requirements, destruction is implemented in
4036 * the following two steps.
4037 *
4038 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4039 * userland visible parts and start killing the percpu refcnts of
4040 * css's. Set up so that the next stage will be kicked off once all
4041 * the percpu refcnts are confirmed to be killed.
4042 *
4043 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4044 * rest of destruction. Once all cgroup references are gone, the
4045 * cgroup is RCU-freed.
4046 *
4047 * This function implements s1. After this step, @cgrp is gone as far as
4048 * the userland is concerned and a new cgroup with the same name may be
4049 * created. As cgroup doesn't care about the names internally, this
4050 * doesn't cause any problem.
4051 */
42809dd4
TH
4052static int cgroup_destroy_locked(struct cgroup *cgrp)
4053 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4054{
bb78a92f 4055 struct cgroup *child;
2bd59d48 4056 struct cgroup_subsys_state *css;
ddd69148 4057 bool empty;
1c6727af 4058 int ssid;
ddbcc7e8 4059
ace2bee8 4060 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
4061 lockdep_assert_held(&cgroup_mutex);
4062
ddd69148 4063 /*
96d365e0 4064 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4065 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4066 */
96d365e0 4067 down_read(&css_set_rwsem);
bb78a92f 4068 empty = list_empty(&cgrp->cset_links);
96d365e0 4069 up_read(&css_set_rwsem);
ddd69148 4070 if (!empty)
ddbcc7e8 4071 return -EBUSY;
a043e3b2 4072
bb78a92f
HD
4073 /*
4074 * Make sure there's no live children. We can't test ->children
4075 * emptiness as dead children linger on it while being destroyed;
4076 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4077 */
4078 empty = true;
4079 rcu_read_lock();
4080 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4081 empty = cgroup_is_dead(child);
4082 if (!empty)
4083 break;
4084 }
4085 rcu_read_unlock();
4086 if (!empty)
4087 return -EBUSY;
4088
455050d2
TH
4089 /*
4090 * Mark @cgrp dead. This prevents further task migration and child
4091 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4092 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4093 * resume iteration after dropping RCU read lock. See
492eb21b 4094 * css_next_child() for details.
455050d2 4095 */
54766d4a 4096 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4097
88703267 4098 /*
edae0c33
TH
4099 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4100 * will be invoked to perform the rest of destruction once the
4ac06017
TH
4101 * percpu refs of all css's are confirmed to be killed. This
4102 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4103 */
4ac06017 4104 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4105 for_each_css(css, ssid, cgrp)
4106 kill_css(css);
4ac06017 4107 mutex_lock(&cgroup_mutex);
455050d2 4108
455050d2
TH
4109 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4110 raw_spin_lock(&release_list_lock);
4111 if (!list_empty(&cgrp->release_list))
4112 list_del_init(&cgrp->release_list);
4113 raw_spin_unlock(&release_list_lock);
4114
4115 /*
f20104de
TH
4116 * If @cgrp has css's attached, the second stage of cgroup
4117 * destruction is kicked off from css_killed_work_fn() after the
4118 * refs of all attached css's are killed. If @cgrp doesn't have
4119 * any css, we kick it off here.
4120 */
4121 if (!cgrp->nr_css)
4122 cgroup_destroy_css_killed(cgrp);
4123
2bd59d48
TH
4124 /* remove @cgrp directory along with the base files */
4125 mutex_unlock(&cgroup_mutex);
4126
455050d2 4127 /*
2bd59d48
TH
4128 * There are two control paths which try to determine cgroup from
4129 * dentry without going through kernfs - cgroupstats_build() and
4130 * css_tryget_from_dir(). Those are supported by RCU protecting
4131 * clearing of cgrp->kn->priv backpointer, which should happen
4132 * after all files under it have been removed.
455050d2 4133 */
6f30558f 4134 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 4135 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 4136
4ac06017 4137 mutex_lock(&cgroup_mutex);
455050d2 4138
ea15f8cc
TH
4139 return 0;
4140};
4141
d3daf28d 4142/**
f20104de 4143 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4144 * @work: cgroup->destroy_free_work
4145 *
4146 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4147 * destroyed after all css's are offlined and performs the rest of
4148 * destruction. This is the second step of destruction described in the
4149 * comment above cgroup_destroy_locked().
d3daf28d 4150 */
f20104de 4151static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4152{
ea15f8cc 4153 struct cgroup *parent = cgrp->parent;
ea15f8cc 4154
ace2bee8 4155 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4156 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4157
999cd8a4 4158 /* delete this cgroup from parent->children */
eb6fd504 4159 list_del_rcu(&cgrp->sibling);
ed957793 4160
59f5296b 4161 cgroup_put(cgrp);
ddbcc7e8 4162
bd89aabc 4163 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4164 check_for_release(parent);
ddbcc7e8
PM
4165}
4166
2bd59d48 4167static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4168{
2bd59d48
TH
4169 struct cgroup *cgrp = kn->priv;
4170 int ret = 0;
42809dd4 4171
2bd59d48
TH
4172 /*
4173 * This is self-destruction but @kn can't be removed while this
4174 * callback is in progress. Let's break active protection. Once
4175 * the protection is broken, @cgrp can be destroyed at any point.
4176 * Pin it so that it stays accessible.
4177 */
4178 cgroup_get(cgrp);
4179 kernfs_break_active_protection(kn);
42809dd4 4180
ace2bee8 4181 mutex_lock(&cgroup_tree_mutex);
42809dd4 4182 mutex_lock(&cgroup_mutex);
8e3f6541
TH
4183
4184 /*
2bd59d48
TH
4185 * @cgrp might already have been destroyed while we're trying to
4186 * grab the mutexes.
8e3f6541 4187 */
2bd59d48
TH
4188 if (!cgroup_is_dead(cgrp))
4189 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4190
42809dd4 4191 mutex_unlock(&cgroup_mutex);
ace2bee8 4192 mutex_unlock(&cgroup_tree_mutex);
2bb566cb 4193
2bd59d48
TH
4194 kernfs_unbreak_active_protection(kn);
4195 cgroup_put(cgrp);
42809dd4 4196 return ret;
8e3f6541
TH
4197}
4198
2bd59d48
TH
4199static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4200 .remount_fs = cgroup_remount,
4201 .show_options = cgroup_show_options,
4202 .mkdir = cgroup_mkdir,
4203 .rmdir = cgroup_rmdir,
4204 .rename = cgroup_rename,
4205};
4206
06a11920 4207static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4208{
ddbcc7e8 4209 struct cgroup_subsys_state *css;
cfe36bde
DC
4210
4211 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4212
ace2bee8 4213 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4214 mutex_lock(&cgroup_mutex);
4215
0adb0704 4216 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4217
3dd06ffa
TH
4218 /* Create the root cgroup state for this subsystem */
4219 ss->root = &cgrp_dfl_root;
4220 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4221 /* We don't handle early failures gracefully */
4222 BUG_ON(IS_ERR(css));
3dd06ffa 4223 init_css(css, ss, &cgrp_dfl_root.cgrp);
ddbcc7e8 4224
e8d55fde 4225 /* Update the init_css_set to contain a subsys
817929ec 4226 * pointer to this state - since the subsystem is
e8d55fde 4227 * newly registered, all tasks and hence the
3dd06ffa 4228 * init_css_set is in the subsystem's root cgroup. */
aec25020 4229 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4230
4231 need_forkexit_callback |= ss->fork || ss->exit;
4232
e8d55fde
LZ
4233 /* At system boot, before all subsystems have been
4234 * registered, no tasks have been forked, so we don't
4235 * need to invoke fork callbacks here. */
4236 BUG_ON(!list_empty(&init_task.tasks));
4237
ae7f164a 4238 BUG_ON(online_css(css));
a8638030 4239
f392e51c 4240 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
cf5d5941
BB
4241
4242 mutex_unlock(&cgroup_mutex);
ace2bee8 4243 mutex_unlock(&cgroup_tree_mutex);
cf5d5941 4244}
cf5d5941 4245
ddbcc7e8 4246/**
a043e3b2
LZ
4247 * cgroup_init_early - cgroup initialization at system boot
4248 *
4249 * Initialize cgroups at system boot, and initialize any
4250 * subsystems that request early init.
ddbcc7e8
PM
4251 */
4252int __init cgroup_init_early(void)
4253{
a2dd4247
TH
4254 static struct cgroup_sb_opts __initdata opts =
4255 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4256 struct cgroup_subsys *ss;
ddbcc7e8 4257 int i;
30159ec7 4258
3dd06ffa 4259 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4260 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4261
3ed80a62 4262 for_each_subsys(ss, i) {
aec25020 4263 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4264 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4265 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4266 ss->id, ss->name);
073219e9
TH
4267 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4268 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4269
aec25020 4270 ss->id = i;
073219e9 4271 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4272
4273 if (ss->early_init)
4274 cgroup_init_subsys(ss);
4275 }
4276 return 0;
4277}
4278
4279/**
a043e3b2
LZ
4280 * cgroup_init - cgroup initialization
4281 *
4282 * Register cgroup filesystem and /proc file, and initialize
4283 * any subsystems that didn't request early init.
ddbcc7e8
PM
4284 */
4285int __init cgroup_init(void)
4286{
30159ec7 4287 struct cgroup_subsys *ss;
0ac801fe 4288 unsigned long key;
172a2c06 4289 int ssid, err;
ddbcc7e8 4290
2bd59d48 4291 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4292
985ed670 4293 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4294 mutex_lock(&cgroup_mutex);
54e7b4eb 4295
82fe9b0d
TH
4296 /* Add init_css_set to the hash table */
4297 key = css_set_hash(init_css_set.subsys);
4298 hash_add(css_set_table, &init_css_set.hlist, key);
4299
3dd06ffa 4300 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4301
54e7b4eb 4302 mutex_unlock(&cgroup_mutex);
985ed670 4303 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4304
172a2c06
TH
4305 for_each_subsys(ss, ssid) {
4306 if (!ss->early_init)
4307 cgroup_init_subsys(ss);
4308
2d8f243a
TH
4309 list_add_tail(&init_css_set.e_cset_node[ssid],
4310 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4311
172a2c06
TH
4312 /*
4313 * cftype registration needs kmalloc and can't be done
4314 * during early_init. Register base cftypes separately.
4315 */
4316 if (ss->base_cftypes)
4317 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
676db4af
GK
4318 }
4319
676db4af 4320 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4321 if (!cgroup_kobj)
4322 return -ENOMEM;
676db4af 4323
ddbcc7e8 4324 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4325 if (err < 0) {
4326 kobject_put(cgroup_kobj);
2bd59d48 4327 return err;
676db4af 4328 }
ddbcc7e8 4329
46ae220b 4330 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4331 return 0;
ddbcc7e8 4332}
b4f48b63 4333
e5fca243
TH
4334static int __init cgroup_wq_init(void)
4335{
4336 /*
4337 * There isn't much point in executing destruction path in
4338 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4339 * Use 1 for @max_active.
e5fca243
TH
4340 *
4341 * We would prefer to do this in cgroup_init() above, but that
4342 * is called before init_workqueues(): so leave this until after.
4343 */
1a11533f 4344 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4345 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4346
4347 /*
4348 * Used to destroy pidlists and separate to serve as flush domain.
4349 * Cap @max_active to 1 too.
4350 */
4351 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4352 0, 1);
4353 BUG_ON(!cgroup_pidlist_destroy_wq);
4354
e5fca243
TH
4355 return 0;
4356}
4357core_initcall(cgroup_wq_init);
4358
a424316c
PM
4359/*
4360 * proc_cgroup_show()
4361 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4362 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4363 */
4364
4365/* TODO: Use a proper seq_file iterator */
8d8b97ba 4366int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4367{
4368 struct pid *pid;
4369 struct task_struct *tsk;
e61734c5 4370 char *buf, *path;
a424316c 4371 int retval;
3dd06ffa 4372 struct cgroup_root *root;
a424316c
PM
4373
4374 retval = -ENOMEM;
e61734c5 4375 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4376 if (!buf)
4377 goto out;
4378
4379 retval = -ESRCH;
4380 pid = m->private;
4381 tsk = get_pid_task(pid, PIDTYPE_PID);
4382 if (!tsk)
4383 goto out_free;
4384
4385 retval = 0;
4386
4387 mutex_lock(&cgroup_mutex);
96d365e0 4388 down_read(&css_set_rwsem);
a424316c 4389
985ed670 4390 for_each_root(root) {
a424316c 4391 struct cgroup_subsys *ss;
bd89aabc 4392 struct cgroup *cgrp;
b85d2040 4393 int ssid, count = 0;
a424316c 4394
a2dd4247 4395 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4396 continue;
4397
2c6ab6d2 4398 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4399 for_each_subsys(ss, ssid)
f392e51c 4400 if (root->subsys_mask & (1 << ssid))
b85d2040 4401 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4402 if (strlen(root->name))
4403 seq_printf(m, "%sname=%s", count ? "," : "",
4404 root->name);
a424316c 4405 seq_putc(m, ':');
7717f7ba 4406 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4407 path = cgroup_path(cgrp, buf, PATH_MAX);
4408 if (!path) {
4409 retval = -ENAMETOOLONG;
a424316c 4410 goto out_unlock;
e61734c5
TH
4411 }
4412 seq_puts(m, path);
a424316c
PM
4413 seq_putc(m, '\n');
4414 }
4415
4416out_unlock:
96d365e0 4417 up_read(&css_set_rwsem);
a424316c
PM
4418 mutex_unlock(&cgroup_mutex);
4419 put_task_struct(tsk);
4420out_free:
4421 kfree(buf);
4422out:
4423 return retval;
4424}
4425
a424316c
PM
4426/* Display information about each subsystem and each hierarchy */
4427static int proc_cgroupstats_show(struct seq_file *m, void *v)
4428{
30159ec7 4429 struct cgroup_subsys *ss;
a424316c 4430 int i;
a424316c 4431
8bab8dde 4432 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4433 /*
4434 * ideally we don't want subsystems moving around while we do this.
4435 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4436 * subsys/hierarchy state.
4437 */
a424316c 4438 mutex_lock(&cgroup_mutex);
30159ec7
TH
4439
4440 for_each_subsys(ss, i)
2c6ab6d2
PM
4441 seq_printf(m, "%s\t%d\t%d\t%d\n",
4442 ss->name, ss->root->hierarchy_id,
3c9c825b 4443 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4444
a424316c
PM
4445 mutex_unlock(&cgroup_mutex);
4446 return 0;
4447}
4448
4449static int cgroupstats_open(struct inode *inode, struct file *file)
4450{
9dce07f1 4451 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4452}
4453
828c0950 4454static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4455 .open = cgroupstats_open,
4456 .read = seq_read,
4457 .llseek = seq_lseek,
4458 .release = single_release,
4459};
4460
b4f48b63 4461/**
eaf797ab 4462 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4463 * @child: pointer to task_struct of forking parent process.
b4f48b63 4464 *
eaf797ab
TH
4465 * A task is associated with the init_css_set until cgroup_post_fork()
4466 * attaches it to the parent's css_set. Empty cg_list indicates that
4467 * @child isn't holding reference to its css_set.
b4f48b63
PM
4468 */
4469void cgroup_fork(struct task_struct *child)
4470{
eaf797ab 4471 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4472 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4473}
4474
817929ec 4475/**
a043e3b2
LZ
4476 * cgroup_post_fork - called on a new task after adding it to the task list
4477 * @child: the task in question
4478 *
5edee61e
TH
4479 * Adds the task to the list running through its css_set if necessary and
4480 * call the subsystem fork() callbacks. Has to be after the task is
4481 * visible on the task list in case we race with the first call to
0942eeee 4482 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4483 * list.
a043e3b2 4484 */
817929ec
PM
4485void cgroup_post_fork(struct task_struct *child)
4486{
30159ec7 4487 struct cgroup_subsys *ss;
5edee61e
TH
4488 int i;
4489
3ce3230a 4490 /*
eaf797ab
TH
4491 * This may race against cgroup_enable_task_cg_links(). As that
4492 * function sets use_task_css_set_links before grabbing
4493 * tasklist_lock and we just went through tasklist_lock to add
4494 * @child, it's guaranteed that either we see the set
4495 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4496 * @child during its iteration.
4497 *
4498 * If we won the race, @child is associated with %current's
4499 * css_set. Grabbing css_set_rwsem guarantees both that the
4500 * association is stable, and, on completion of the parent's
4501 * migration, @child is visible in the source of migration or
4502 * already in the destination cgroup. This guarantee is necessary
4503 * when implementing operations which need to migrate all tasks of
4504 * a cgroup to another.
4505 *
4506 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4507 * will remain in init_css_set. This is safe because all tasks are
4508 * in the init_css_set before cg_links is enabled and there's no
4509 * operation which transfers all tasks out of init_css_set.
3ce3230a 4510 */
817929ec 4511 if (use_task_css_set_links) {
eaf797ab
TH
4512 struct css_set *cset;
4513
96d365e0 4514 down_write(&css_set_rwsem);
0e1d768f 4515 cset = task_css_set(current);
eaf797ab
TH
4516 if (list_empty(&child->cg_list)) {
4517 rcu_assign_pointer(child->cgroups, cset);
4518 list_add(&child->cg_list, &cset->tasks);
4519 get_css_set(cset);
4520 }
96d365e0 4521 up_write(&css_set_rwsem);
817929ec 4522 }
5edee61e
TH
4523
4524 /*
4525 * Call ss->fork(). This must happen after @child is linked on
4526 * css_set; otherwise, @child might change state between ->fork()
4527 * and addition to css_set.
4528 */
4529 if (need_forkexit_callback) {
3ed80a62 4530 for_each_subsys(ss, i)
5edee61e
TH
4531 if (ss->fork)
4532 ss->fork(child);
5edee61e 4533 }
817929ec 4534}
5edee61e 4535
b4f48b63
PM
4536/**
4537 * cgroup_exit - detach cgroup from exiting task
4538 * @tsk: pointer to task_struct of exiting process
4539 *
4540 * Description: Detach cgroup from @tsk and release it.
4541 *
4542 * Note that cgroups marked notify_on_release force every task in
4543 * them to take the global cgroup_mutex mutex when exiting.
4544 * This could impact scaling on very large systems. Be reluctant to
4545 * use notify_on_release cgroups where very high task exit scaling
4546 * is required on large systems.
4547 *
0e1d768f
TH
4548 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4549 * call cgroup_exit() while the task is still competent to handle
4550 * notify_on_release(), then leave the task attached to the root cgroup in
4551 * each hierarchy for the remainder of its exit. No need to bother with
4552 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 4553 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 4554 */
1ec41830 4555void cgroup_exit(struct task_struct *tsk)
b4f48b63 4556{
30159ec7 4557 struct cgroup_subsys *ss;
5abb8855 4558 struct css_set *cset;
eaf797ab 4559 bool put_cset = false;
d41d5a01 4560 int i;
817929ec
PM
4561
4562 /*
0e1d768f
TH
4563 * Unlink from @tsk from its css_set. As migration path can't race
4564 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4565 */
4566 if (!list_empty(&tsk->cg_list)) {
96d365e0 4567 down_write(&css_set_rwsem);
0e1d768f 4568 list_del_init(&tsk->cg_list);
96d365e0 4569 up_write(&css_set_rwsem);
0e1d768f 4570 put_cset = true;
817929ec
PM
4571 }
4572
b4f48b63 4573 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4574 cset = task_css_set(tsk);
4575 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 4576
1ec41830 4577 if (need_forkexit_callback) {
3ed80a62
TH
4578 /* see cgroup_post_fork() for details */
4579 for_each_subsys(ss, i) {
d41d5a01 4580 if (ss->exit) {
eb95419b
TH
4581 struct cgroup_subsys_state *old_css = cset->subsys[i];
4582 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4583
eb95419b 4584 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4585 }
4586 }
4587 }
d41d5a01 4588
eaf797ab
TH
4589 if (put_cset)
4590 put_css_set(cset, true);
b4f48b63 4591}
697f4161 4592
bd89aabc 4593static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4594{
f50daa70 4595 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4596 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4597 /*
4598 * Control Group is currently removeable. If it's not
81a6a5cd 4599 * already queued for a userspace notification, queue
f50daa70
LZ
4600 * it now
4601 */
81a6a5cd 4602 int need_schedule_work = 0;
f50daa70 4603
cdcc136f 4604 raw_spin_lock(&release_list_lock);
54766d4a 4605 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4606 list_empty(&cgrp->release_list)) {
4607 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4608 need_schedule_work = 1;
4609 }
cdcc136f 4610 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4611 if (need_schedule_work)
4612 schedule_work(&release_agent_work);
4613 }
4614}
4615
81a6a5cd
PM
4616/*
4617 * Notify userspace when a cgroup is released, by running the
4618 * configured release agent with the name of the cgroup (path
4619 * relative to the root of cgroup file system) as the argument.
4620 *
4621 * Most likely, this user command will try to rmdir this cgroup.
4622 *
4623 * This races with the possibility that some other task will be
4624 * attached to this cgroup before it is removed, or that some other
4625 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4626 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4627 * unused, and this cgroup will be reprieved from its death sentence,
4628 * to continue to serve a useful existence. Next time it's released,
4629 * we will get notified again, if it still has 'notify_on_release' set.
4630 *
4631 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4632 * means only wait until the task is successfully execve()'d. The
4633 * separate release agent task is forked by call_usermodehelper(),
4634 * then control in this thread returns here, without waiting for the
4635 * release agent task. We don't bother to wait because the caller of
4636 * this routine has no use for the exit status of the release agent
4637 * task, so no sense holding our caller up for that.
81a6a5cd 4638 */
81a6a5cd
PM
4639static void cgroup_release_agent(struct work_struct *work)
4640{
4641 BUG_ON(work != &release_agent_work);
4642 mutex_lock(&cgroup_mutex);
cdcc136f 4643 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4644 while (!list_empty(&release_list)) {
4645 char *argv[3], *envp[3];
4646 int i;
e61734c5 4647 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4648 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4649 struct cgroup,
4650 release_list);
bd89aabc 4651 list_del_init(&cgrp->release_list);
cdcc136f 4652 raw_spin_unlock(&release_list_lock);
e61734c5 4653 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4654 if (!pathbuf)
4655 goto continue_free;
e61734c5
TH
4656 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4657 if (!path)
e788e066
PM
4658 goto continue_free;
4659 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4660 if (!agentbuf)
4661 goto continue_free;
81a6a5cd
PM
4662
4663 i = 0;
e788e066 4664 argv[i++] = agentbuf;
e61734c5 4665 argv[i++] = path;
81a6a5cd
PM
4666 argv[i] = NULL;
4667
4668 i = 0;
4669 /* minimal command environment */
4670 envp[i++] = "HOME=/";
4671 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4672 envp[i] = NULL;
4673
4674 /* Drop the lock while we invoke the usermode helper,
4675 * since the exec could involve hitting disk and hence
4676 * be a slow process */
4677 mutex_unlock(&cgroup_mutex);
4678 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4679 mutex_lock(&cgroup_mutex);
e788e066
PM
4680 continue_free:
4681 kfree(pathbuf);
4682 kfree(agentbuf);
cdcc136f 4683 raw_spin_lock(&release_list_lock);
81a6a5cd 4684 }
cdcc136f 4685 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4686 mutex_unlock(&cgroup_mutex);
4687}
8bab8dde
PM
4688
4689static int __init cgroup_disable(char *str)
4690{
30159ec7 4691 struct cgroup_subsys *ss;
8bab8dde 4692 char *token;
30159ec7 4693 int i;
8bab8dde
PM
4694
4695 while ((token = strsep(&str, ",")) != NULL) {
4696 if (!*token)
4697 continue;
be45c900 4698
3ed80a62 4699 for_each_subsys(ss, i) {
8bab8dde
PM
4700 if (!strcmp(token, ss->name)) {
4701 ss->disabled = 1;
4702 printk(KERN_INFO "Disabling %s control group"
4703 " subsystem\n", ss->name);
4704 break;
4705 }
4706 }
4707 }
4708 return 1;
4709}
4710__setup("cgroup_disable=", cgroup_disable);
38460b48 4711
b77d7b60 4712/**
5a17f543 4713 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4714 * @dentry: directory dentry of interest
4715 * @ss: subsystem of interest
b77d7b60 4716 *
5a17f543
TH
4717 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4718 * to get the corresponding css and return it. If such css doesn't exist
4719 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4720 */
5a17f543
TH
4721struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4722 struct cgroup_subsys *ss)
e5d1367f 4723{
2bd59d48
TH
4724 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4725 struct cgroup_subsys_state *css = NULL;
e5d1367f 4726 struct cgroup *cgrp;
e5d1367f 4727
35cf0836 4728 /* is @dentry a cgroup dir? */
2bd59d48
TH
4729 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4730 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4731 return ERR_PTR(-EBADF);
4732
5a17f543
TH
4733 rcu_read_lock();
4734
2bd59d48
TH
4735 /*
4736 * This path doesn't originate from kernfs and @kn could already
4737 * have been or be removed at any point. @kn->priv is RCU
4738 * protected for this access. See destroy_locked() for details.
4739 */
4740 cgrp = rcu_dereference(kn->priv);
4741 if (cgrp)
4742 css = cgroup_css(cgrp, ss);
5a17f543
TH
4743
4744 if (!css || !css_tryget(css))
4745 css = ERR_PTR(-ENOENT);
4746
4747 rcu_read_unlock();
4748 return css;
e5d1367f 4749}
e5d1367f 4750
1cb650b9
LZ
4751/**
4752 * css_from_id - lookup css by id
4753 * @id: the cgroup id
4754 * @ss: cgroup subsys to be looked into
4755 *
4756 * Returns the css if there's valid one with @id, otherwise returns NULL.
4757 * Should be called under rcu_read_lock().
4758 */
4759struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4760{
4761 struct cgroup *cgrp;
4762
ace2bee8 4763 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4764
4765 cgrp = idr_find(&ss->root->cgroup_idr, id);
4766 if (cgrp)
d1625964 4767 return cgroup_css(cgrp, ss);
1cb650b9 4768 return NULL;
e5d1367f
SE
4769}
4770
fe693435 4771#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4772static struct cgroup_subsys_state *
4773debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4774{
4775 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4776
4777 if (!css)
4778 return ERR_PTR(-ENOMEM);
4779
4780 return css;
4781}
4782
eb95419b 4783static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4784{
eb95419b 4785 kfree(css);
fe693435
PM
4786}
4787
182446d0
TH
4788static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4789 struct cftype *cft)
fe693435 4790{
182446d0 4791 return cgroup_task_count(css->cgroup);
fe693435
PM
4792}
4793
182446d0
TH
4794static u64 current_css_set_read(struct cgroup_subsys_state *css,
4795 struct cftype *cft)
fe693435
PM
4796{
4797 return (u64)(unsigned long)current->cgroups;
4798}
4799
182446d0 4800static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4801 struct cftype *cft)
fe693435
PM
4802{
4803 u64 count;
4804
4805 rcu_read_lock();
a8ad805c 4806 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4807 rcu_read_unlock();
4808 return count;
4809}
4810
2da8ca82 4811static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4812{
69d0206c 4813 struct cgrp_cset_link *link;
5abb8855 4814 struct css_set *cset;
e61734c5
TH
4815 char *name_buf;
4816
4817 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4818 if (!name_buf)
4819 return -ENOMEM;
7717f7ba 4820
96d365e0 4821 down_read(&css_set_rwsem);
7717f7ba 4822 rcu_read_lock();
5abb8855 4823 cset = rcu_dereference(current->cgroups);
69d0206c 4824 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4825 struct cgroup *c = link->cgrp;
7717f7ba 4826
a2dd4247 4827 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 4828 seq_printf(seq, "Root %d group %s\n",
a2dd4247 4829 c->root->hierarchy_id, name_buf);
7717f7ba
PM
4830 }
4831 rcu_read_unlock();
96d365e0 4832 up_read(&css_set_rwsem);
e61734c5 4833 kfree(name_buf);
7717f7ba
PM
4834 return 0;
4835}
4836
4837#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4838static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4839{
2da8ca82 4840 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4841 struct cgrp_cset_link *link;
7717f7ba 4842
96d365e0 4843 down_read(&css_set_rwsem);
182446d0 4844 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4845 struct css_set *cset = link->cset;
7717f7ba
PM
4846 struct task_struct *task;
4847 int count = 0;
c7561128 4848
5abb8855 4849 seq_printf(seq, "css_set %p\n", cset);
c7561128 4850
5abb8855 4851 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4852 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4853 goto overflow;
4854 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4855 }
4856
4857 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4858 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4859 goto overflow;
4860 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4861 }
c7561128
TH
4862 continue;
4863 overflow:
4864 seq_puts(seq, " ...\n");
7717f7ba 4865 }
96d365e0 4866 up_read(&css_set_rwsem);
7717f7ba
PM
4867 return 0;
4868}
4869
182446d0 4870static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4871{
182446d0 4872 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4873}
4874
4875static struct cftype debug_files[] = {
fe693435
PM
4876 {
4877 .name = "taskcount",
4878 .read_u64 = debug_taskcount_read,
4879 },
4880
4881 {
4882 .name = "current_css_set",
4883 .read_u64 = current_css_set_read,
4884 },
4885
4886 {
4887 .name = "current_css_set_refcount",
4888 .read_u64 = current_css_set_refcount_read,
4889 },
4890
7717f7ba
PM
4891 {
4892 .name = "current_css_set_cg_links",
2da8ca82 4893 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4894 },
4895
4896 {
4897 .name = "cgroup_css_links",
2da8ca82 4898 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4899 },
4900
fe693435
PM
4901 {
4902 .name = "releasable",
4903 .read_u64 = releasable_read,
4904 },
fe693435 4905
4baf6e33
TH
4906 { } /* terminate */
4907};
fe693435 4908
073219e9 4909struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4910 .css_alloc = debug_css_alloc,
4911 .css_free = debug_css_free,
4baf6e33 4912 .base_cftypes = debug_files,
fe693435
PM
4913};
4914#endif /* CONFIG_CGROUP_DEBUG */