cgroup: fix memory leak in cgroup_rm_cftypes()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 99static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8
PM
103/*
104 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
105 * subsystems that are otherwise unattached - it never has more than a
106 * single cgroup, and all tasks are part of that cgroup.
107 */
108static struct cgroupfs_root rootnode;
109
05ef1d7c
TH
110/*
111 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
112 */
113struct cfent {
114 struct list_head node;
115 struct dentry *dentry;
116 struct cftype *type;
712317ad
LZ
117
118 /* file xattrs */
119 struct simple_xattrs xattrs;
05ef1d7c
TH
120};
121
38460b48
KH
122/*
123 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
124 * cgroup_subsys->use_id != 0.
125 */
126#define CSS_ID_MAX (65535)
127struct css_id {
128 /*
129 * The css to which this ID points. This pointer is set to valid value
130 * after cgroup is populated. If cgroup is removed, this will be NULL.
131 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
132 * is called after synchronize_rcu(). But for safe use, css_tryget()
133 * should be used for avoiding race.
38460b48 134 */
2c392b8c 135 struct cgroup_subsys_state __rcu *css;
38460b48
KH
136 /*
137 * ID of this css.
138 */
139 unsigned short id;
140 /*
141 * Depth in hierarchy which this ID belongs to.
142 */
143 unsigned short depth;
144 /*
145 * ID is freed by RCU. (and lookup routine is RCU safe.)
146 */
147 struct rcu_head rcu_head;
148 /*
149 * Hierarchy of CSS ID belongs to.
150 */
151 unsigned short stack[0]; /* Array of Length (depth+1) */
152};
153
0dea1168 154/*
25985edc 155 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
156 */
157struct cgroup_event {
158 /*
159 * Cgroup which the event belongs to.
160 */
161 struct cgroup *cgrp;
162 /*
163 * Control file which the event associated.
164 */
165 struct cftype *cft;
166 /*
167 * eventfd to signal userspace about the event.
168 */
169 struct eventfd_ctx *eventfd;
170 /*
171 * Each of these stored in a list by the cgroup.
172 */
173 struct list_head list;
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182};
38460b48 183
ddbcc7e8
PM
184/* The list of hierarchy roots */
185
186static LIST_HEAD(roots);
817929ec 187static int root_count;
ddbcc7e8 188
54e7b4eb
TH
189/*
190 * Hierarchy ID allocation and mapping. It follows the same exclusion
191 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
192 * writes, either for reads.
193 */
1a574231 194static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 195
ddbcc7e8
PM
196/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
197#define dummytop (&rootnode.top_cgroup)
198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
ddbcc7e8 201/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
ddbcc7e8 205 */
8947f9d5 206static int need_forkexit_callback __read_mostly;
ddbcc7e8 207
ea15f8cc 208static void cgroup_offline_fn(struct work_struct *work);
42809dd4 209static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
210static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
211 struct cftype cfts[], bool is_add);
42809dd4 212
ddbcc7e8 213/* convenient tests for these bits */
54766d4a 214static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 215{
54766d4a 216 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
217}
218
78574cf9
LZ
219/**
220 * cgroup_is_descendant - test ancestry
221 * @cgrp: the cgroup to be tested
222 * @ancestor: possible ancestor of @cgrp
223 *
224 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
225 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
226 * and @ancestor are accessible.
227 */
228bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
229{
230 while (cgrp) {
231 if (cgrp == ancestor)
232 return true;
233 cgrp = cgrp->parent;
234 }
235 return false;
236}
237EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 238
e9685a03 239static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
240{
241 const int bits =
bd89aabc
PM
242 (1 << CGRP_RELEASABLE) |
243 (1 << CGRP_NOTIFY_ON_RELEASE);
244 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
245}
246
e9685a03 247static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 248{
bd89aabc 249 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
250}
251
ddbcc7e8
PM
252/*
253 * for_each_subsys() allows you to iterate on each subsystem attached to
254 * an active hierarchy
255 */
256#define for_each_subsys(_root, _ss) \
257list_for_each_entry(_ss, &_root->subsys_list, sibling)
258
e5f6a860
LZ
259/* for_each_active_root() allows you to iterate across the active hierarchies */
260#define for_each_active_root(_root) \
ddbcc7e8
PM
261list_for_each_entry(_root, &roots, root_list)
262
f6ea9372
TH
263static inline struct cgroup *__d_cgrp(struct dentry *dentry)
264{
265 return dentry->d_fsdata;
266}
267
05ef1d7c 268static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
269{
270 return dentry->d_fsdata;
271}
272
05ef1d7c
TH
273static inline struct cftype *__d_cft(struct dentry *dentry)
274{
275 return __d_cfe(dentry)->type;
276}
277
7ae1bad9
TH
278/**
279 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
280 * @cgrp: the cgroup to be checked for liveness
281 *
47cfcd09
TH
282 * On success, returns true; the mutex should be later unlocked. On
283 * failure returns false with no lock held.
7ae1bad9 284 */
b9777cf8 285static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
286{
287 mutex_lock(&cgroup_mutex);
54766d4a 288 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
289 mutex_unlock(&cgroup_mutex);
290 return false;
291 }
292 return true;
293}
7ae1bad9 294
81a6a5cd
PM
295/* the list of cgroups eligible for automatic release. Protected by
296 * release_list_lock */
297static LIST_HEAD(release_list);
cdcc136f 298static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
299static void cgroup_release_agent(struct work_struct *work);
300static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 301static void check_for_release(struct cgroup *cgrp);
81a6a5cd 302
69d0206c
TH
303/*
304 * A cgroup can be associated with multiple css_sets as different tasks may
305 * belong to different cgroups on different hierarchies. In the other
306 * direction, a css_set is naturally associated with multiple cgroups.
307 * This M:N relationship is represented by the following link structure
308 * which exists for each association and allows traversing the associations
309 * from both sides.
310 */
311struct cgrp_cset_link {
312 /* the cgroup and css_set this link associates */
313 struct cgroup *cgrp;
314 struct css_set *cset;
315
316 /* list of cgrp_cset_links anchored at cgrp->cset_links */
317 struct list_head cset_link;
318
319 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
320 struct list_head cgrp_link;
817929ec
PM
321};
322
323/* The default css_set - used by init and its children prior to any
324 * hierarchies being mounted. It contains a pointer to the root state
325 * for each subsystem. Also used to anchor the list of css_sets. Not
326 * reference-counted, to improve performance when child cgroups
327 * haven't been created.
328 */
329
330static struct css_set init_css_set;
69d0206c 331static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 332
e6a1105b
BB
333static int cgroup_init_idr(struct cgroup_subsys *ss,
334 struct cgroup_subsys_state *css);
38460b48 335
817929ec
PM
336/* css_set_lock protects the list of css_set objects, and the
337 * chain of tasks off each css_set. Nests outside task->alloc_lock
338 * due to cgroup_iter_start() */
339static DEFINE_RWLOCK(css_set_lock);
340static int css_set_count;
341
7717f7ba
PM
342/*
343 * hash table for cgroup groups. This improves the performance to find
344 * an existing css_set. This hash doesn't (currently) take into
345 * account cgroups in empty hierarchies.
346 */
472b1053 347#define CSS_SET_HASH_BITS 7
0ac801fe 348static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 349
0ac801fe 350static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
351{
352 int i;
0ac801fe 353 unsigned long key = 0UL;
472b1053
LZ
354
355 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
356 key += (unsigned long)css[i];
357 key = (key >> 16) ^ key;
472b1053 358
0ac801fe 359 return key;
472b1053
LZ
360}
361
817929ec
PM
362/* We don't maintain the lists running through each css_set to its
363 * task until after the first call to cgroup_iter_start(). This
364 * reduces the fork()/exit() overhead for people who have cgroups
365 * compiled into their kernel but not actually in use */
8947f9d5 366static int use_task_css_set_links __read_mostly;
817929ec 367
5abb8855 368static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 369{
69d0206c 370 struct cgrp_cset_link *link, *tmp_link;
5abb8855 371
146aa1bd
LJ
372 /*
373 * Ensure that the refcount doesn't hit zero while any readers
374 * can see it. Similar to atomic_dec_and_lock(), but for an
375 * rwlock
376 */
5abb8855 377 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
378 return;
379 write_lock(&css_set_lock);
5abb8855 380 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
381 write_unlock(&css_set_lock);
382 return;
383 }
81a6a5cd 384
2c6ab6d2 385 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 386 hash_del(&cset->hlist);
2c6ab6d2
PM
387 css_set_count--;
388
69d0206c 389 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 390 struct cgroup *cgrp = link->cgrp;
5abb8855 391
69d0206c
TH
392 list_del(&link->cset_link);
393 list_del(&link->cgrp_link);
71b5707e 394
ddd69148 395 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 396 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 397 if (taskexit)
bd89aabc
PM
398 set_bit(CGRP_RELEASABLE, &cgrp->flags);
399 check_for_release(cgrp);
81a6a5cd 400 }
2c6ab6d2
PM
401
402 kfree(link);
81a6a5cd 403 }
2c6ab6d2
PM
404
405 write_unlock(&css_set_lock);
5abb8855 406 kfree_rcu(cset, rcu_head);
b4f48b63
PM
407}
408
817929ec
PM
409/*
410 * refcounted get/put for css_set objects
411 */
5abb8855 412static inline void get_css_set(struct css_set *cset)
817929ec 413{
5abb8855 414 atomic_inc(&cset->refcount);
817929ec
PM
415}
416
5abb8855 417static inline void put_css_set(struct css_set *cset)
817929ec 418{
5abb8855 419 __put_css_set(cset, 0);
817929ec
PM
420}
421
5abb8855 422static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 423{
5abb8855 424 __put_css_set(cset, 1);
81a6a5cd
PM
425}
426
7717f7ba
PM
427/*
428 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
429 * @cset: candidate css_set being tested
430 * @old_cset: existing css_set for a task
7717f7ba
PM
431 * @new_cgrp: cgroup that's being entered by the task
432 * @template: desired set of css pointers in css_set (pre-calculated)
433 *
434 * Returns true if "cg" matches "old_cg" except for the hierarchy
435 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
436 */
5abb8855
TH
437static bool compare_css_sets(struct css_set *cset,
438 struct css_set *old_cset,
7717f7ba
PM
439 struct cgroup *new_cgrp,
440 struct cgroup_subsys_state *template[])
441{
442 struct list_head *l1, *l2;
443
5abb8855 444 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
445 /* Not all subsystems matched */
446 return false;
447 }
448
449 /*
450 * Compare cgroup pointers in order to distinguish between
451 * different cgroups in heirarchies with no subsystems. We
452 * could get by with just this check alone (and skip the
453 * memcmp above) but on most setups the memcmp check will
454 * avoid the need for this more expensive check on almost all
455 * candidates.
456 */
457
69d0206c
TH
458 l1 = &cset->cgrp_links;
459 l2 = &old_cset->cgrp_links;
7717f7ba 460 while (1) {
69d0206c 461 struct cgrp_cset_link *link1, *link2;
5abb8855 462 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
463
464 l1 = l1->next;
465 l2 = l2->next;
466 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
467 if (l1 == &cset->cgrp_links) {
468 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
469 break;
470 } else {
69d0206c 471 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
472 }
473 /* Locate the cgroups associated with these links. */
69d0206c
TH
474 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
475 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
476 cgrp1 = link1->cgrp;
477 cgrp2 = link2->cgrp;
7717f7ba 478 /* Hierarchies should be linked in the same order. */
5abb8855 479 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
480
481 /*
482 * If this hierarchy is the hierarchy of the cgroup
483 * that's changing, then we need to check that this
484 * css_set points to the new cgroup; if it's any other
485 * hierarchy, then this css_set should point to the
486 * same cgroup as the old css_set.
487 */
5abb8855
TH
488 if (cgrp1->root == new_cgrp->root) {
489 if (cgrp1 != new_cgrp)
7717f7ba
PM
490 return false;
491 } else {
5abb8855 492 if (cgrp1 != cgrp2)
7717f7ba
PM
493 return false;
494 }
495 }
496 return true;
497}
498
817929ec
PM
499/*
500 * find_existing_css_set() is a helper for
501 * find_css_set(), and checks to see whether an existing
472b1053 502 * css_set is suitable.
817929ec
PM
503 *
504 * oldcg: the cgroup group that we're using before the cgroup
505 * transition
506 *
bd89aabc 507 * cgrp: the cgroup that we're moving into
817929ec
PM
508 *
509 * template: location in which to build the desired set of subsystem
510 * state objects for the new cgroup group
511 */
5abb8855
TH
512static struct css_set *find_existing_css_set(struct css_set *old_cset,
513 struct cgroup *cgrp,
514 struct cgroup_subsys_state *template[])
b4f48b63
PM
515{
516 int i;
bd89aabc 517 struct cgroupfs_root *root = cgrp->root;
5abb8855 518 struct css_set *cset;
0ac801fe 519 unsigned long key;
817929ec 520
aae8aab4
BB
521 /*
522 * Build the set of subsystem state objects that we want to see in the
523 * new css_set. while subsystems can change globally, the entries here
524 * won't change, so no need for locking.
525 */
817929ec 526 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 527 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
528 /* Subsystem is in this hierarchy. So we want
529 * the subsystem state from the new
530 * cgroup */
bd89aabc 531 template[i] = cgrp->subsys[i];
817929ec
PM
532 } else {
533 /* Subsystem is not in this hierarchy, so we
534 * don't want to change the subsystem state */
5abb8855 535 template[i] = old_cset->subsys[i];
817929ec
PM
536 }
537 }
538
0ac801fe 539 key = css_set_hash(template);
5abb8855
TH
540 hash_for_each_possible(css_set_table, cset, hlist, key) {
541 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
542 continue;
543
544 /* This css_set matches what we need */
5abb8855 545 return cset;
472b1053 546 }
817929ec
PM
547
548 /* No existing cgroup group matched */
549 return NULL;
550}
551
69d0206c 552static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 553{
69d0206c 554 struct cgrp_cset_link *link, *tmp_link;
36553434 555
69d0206c
TH
556 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
557 list_del(&link->cset_link);
36553434
LZ
558 kfree(link);
559 }
560}
561
69d0206c
TH
562/**
563 * allocate_cgrp_cset_links - allocate cgrp_cset_links
564 * @count: the number of links to allocate
565 * @tmp_links: list_head the allocated links are put on
566 *
567 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
568 * through ->cset_link. Returns 0 on success or -errno.
817929ec 569 */
69d0206c 570static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 571{
69d0206c 572 struct cgrp_cset_link *link;
817929ec 573 int i;
69d0206c
TH
574
575 INIT_LIST_HEAD(tmp_links);
576
817929ec 577 for (i = 0; i < count; i++) {
f4f4be2b 578 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 579 if (!link) {
69d0206c 580 free_cgrp_cset_links(tmp_links);
817929ec
PM
581 return -ENOMEM;
582 }
69d0206c 583 list_add(&link->cset_link, tmp_links);
817929ec
PM
584 }
585 return 0;
586}
587
c12f65d4
LZ
588/**
589 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 590 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 591 * @cset: the css_set to be linked
c12f65d4
LZ
592 * @cgrp: the destination cgroup
593 */
69d0206c
TH
594static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
595 struct cgroup *cgrp)
c12f65d4 596{
69d0206c 597 struct cgrp_cset_link *link;
c12f65d4 598
69d0206c
TH
599 BUG_ON(list_empty(tmp_links));
600 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
601 link->cset = cset;
7717f7ba 602 link->cgrp = cgrp;
69d0206c 603 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
604 /*
605 * Always add links to the tail of the list so that the list
606 * is sorted by order of hierarchy creation
607 */
69d0206c 608 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
609}
610
817929ec
PM
611/*
612 * find_css_set() takes an existing cgroup group and a
613 * cgroup object, and returns a css_set object that's
614 * equivalent to the old group, but with the given cgroup
615 * substituted into the appropriate hierarchy. Must be called with
616 * cgroup_mutex held
617 */
5abb8855
TH
618static struct css_set *find_css_set(struct css_set *old_cset,
619 struct cgroup *cgrp)
817929ec 620{
5abb8855 621 struct css_set *cset;
817929ec 622 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
69d0206c
TH
623 struct list_head tmp_links;
624 struct cgrp_cset_link *link;
0ac801fe 625 unsigned long key;
472b1053 626
817929ec
PM
627 /* First see if we already have a cgroup group that matches
628 * the desired set */
7e9abd89 629 read_lock(&css_set_lock);
5abb8855
TH
630 cset = find_existing_css_set(old_cset, cgrp, template);
631 if (cset)
632 get_css_set(cset);
7e9abd89 633 read_unlock(&css_set_lock);
817929ec 634
5abb8855
TH
635 if (cset)
636 return cset;
817929ec 637
f4f4be2b 638 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 639 if (!cset)
817929ec
PM
640 return NULL;
641
69d0206c
TH
642 /* Allocate all the cgrp_cset_link objects that we'll need */
643 if (allocate_cgrp_cset_links(root_count, &tmp_links) < 0) {
5abb8855 644 kfree(cset);
817929ec
PM
645 return NULL;
646 }
647
5abb8855 648 atomic_set(&cset->refcount, 1);
69d0206c 649 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
650 INIT_LIST_HEAD(&cset->tasks);
651 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
652
653 /* Copy the set of subsystem state objects generated in
654 * find_existing_css_set() */
5abb8855 655 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
656
657 write_lock(&css_set_lock);
658 /* Add reference counts and links from the new css_set. */
69d0206c 659 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 660 struct cgroup *c = link->cgrp;
69d0206c 661
7717f7ba
PM
662 if (c->root == cgrp->root)
663 c = cgrp;
69d0206c 664 link_css_set(&tmp_links, cset, c);
7717f7ba 665 }
817929ec 666
69d0206c 667 BUG_ON(!list_empty(&tmp_links));
817929ec 668
817929ec 669 css_set_count++;
472b1053
LZ
670
671 /* Add this cgroup group to the hash table */
5abb8855
TH
672 key = css_set_hash(cset->subsys);
673 hash_add(css_set_table, &cset->hlist, key);
472b1053 674
817929ec
PM
675 write_unlock(&css_set_lock);
676
5abb8855 677 return cset;
b4f48b63
PM
678}
679
7717f7ba
PM
680/*
681 * Return the cgroup for "task" from the given hierarchy. Must be
682 * called with cgroup_mutex held.
683 */
684static struct cgroup *task_cgroup_from_root(struct task_struct *task,
685 struct cgroupfs_root *root)
686{
5abb8855 687 struct css_set *cset;
7717f7ba
PM
688 struct cgroup *res = NULL;
689
690 BUG_ON(!mutex_is_locked(&cgroup_mutex));
691 read_lock(&css_set_lock);
692 /*
693 * No need to lock the task - since we hold cgroup_mutex the
694 * task can't change groups, so the only thing that can happen
695 * is that it exits and its css is set back to init_css_set.
696 */
5abb8855
TH
697 cset = task->cgroups;
698 if (cset == &init_css_set) {
7717f7ba
PM
699 res = &root->top_cgroup;
700 } else {
69d0206c
TH
701 struct cgrp_cset_link *link;
702
703 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 704 struct cgroup *c = link->cgrp;
69d0206c 705
7717f7ba
PM
706 if (c->root == root) {
707 res = c;
708 break;
709 }
710 }
711 }
712 read_unlock(&css_set_lock);
713 BUG_ON(!res);
714 return res;
715}
716
ddbcc7e8
PM
717/*
718 * There is one global cgroup mutex. We also require taking
719 * task_lock() when dereferencing a task's cgroup subsys pointers.
720 * See "The task_lock() exception", at the end of this comment.
721 *
722 * A task must hold cgroup_mutex to modify cgroups.
723 *
724 * Any task can increment and decrement the count field without lock.
725 * So in general, code holding cgroup_mutex can't rely on the count
726 * field not changing. However, if the count goes to zero, then only
956db3ca 727 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
728 * means that no tasks are currently attached, therefore there is no
729 * way a task attached to that cgroup can fork (the other way to
730 * increment the count). So code holding cgroup_mutex can safely
731 * assume that if the count is zero, it will stay zero. Similarly, if
732 * a task holds cgroup_mutex on a cgroup with zero count, it
733 * knows that the cgroup won't be removed, as cgroup_rmdir()
734 * needs that mutex.
735 *
ddbcc7e8
PM
736 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
737 * (usually) take cgroup_mutex. These are the two most performance
738 * critical pieces of code here. The exception occurs on cgroup_exit(),
739 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
740 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
741 * to the release agent with the name of the cgroup (path relative to
742 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
743 *
744 * A cgroup can only be deleted if both its 'count' of using tasks
745 * is zero, and its list of 'children' cgroups is empty. Since all
746 * tasks in the system use _some_ cgroup, and since there is always at
747 * least one task in the system (init, pid == 1), therefore, top_cgroup
748 * always has either children cgroups and/or using tasks. So we don't
749 * need a special hack to ensure that top_cgroup cannot be deleted.
750 *
751 * The task_lock() exception
752 *
753 * The need for this exception arises from the action of
d0b2fdd2 754 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 755 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
756 * several performance critical places that need to reference
757 * task->cgroup without the expense of grabbing a system global
758 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 759 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
760 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
761 * the task_struct routinely used for such matters.
762 *
763 * P.S. One more locking exception. RCU is used to guard the
956db3ca 764 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
765 */
766
ddbcc7e8
PM
767/*
768 * A couple of forward declarations required, due to cyclic reference loop:
769 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
770 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
771 * -> cgroup_mkdir.
772 */
773
18bb1db3 774static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 775static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 776static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
777static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
778 unsigned long subsys_mask);
6e1d5dcc 779static const struct inode_operations cgroup_dir_inode_operations;
828c0950 780static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
781
782static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 783 .name = "cgroup",
e4ad08fe 784 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 785};
ddbcc7e8 786
38460b48
KH
787static int alloc_css_id(struct cgroup_subsys *ss,
788 struct cgroup *parent, struct cgroup *child);
789
a5e7ed32 790static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
791{
792 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
793
794 if (inode) {
85fe4025 795 inode->i_ino = get_next_ino();
ddbcc7e8 796 inode->i_mode = mode;
76aac0e9
DH
797 inode->i_uid = current_fsuid();
798 inode->i_gid = current_fsgid();
ddbcc7e8
PM
799 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
800 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
801 }
802 return inode;
803}
804
65dff759
LZ
805static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
806{
807 struct cgroup_name *name;
808
809 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
810 if (!name)
811 return NULL;
812 strcpy(name->name, dentry->d_name.name);
813 return name;
814}
815
be445626
LZ
816static void cgroup_free_fn(struct work_struct *work)
817{
ea15f8cc 818 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
819 struct cgroup_subsys *ss;
820
821 mutex_lock(&cgroup_mutex);
822 /*
823 * Release the subsystem state objects.
824 */
825 for_each_subsys(cgrp->root, ss)
826 ss->css_free(cgrp);
827
828 cgrp->root->number_of_cgroups--;
829 mutex_unlock(&cgroup_mutex);
830
415cf07a
LZ
831 /*
832 * We get a ref to the parent's dentry, and put the ref when
833 * this cgroup is being freed, so it's guaranteed that the
834 * parent won't be destroyed before its children.
835 */
836 dput(cgrp->parent->dentry);
837
cc20e01c
LZ
838 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
839
be445626
LZ
840 /*
841 * Drop the active superblock reference that we took when we
cc20e01c
LZ
842 * created the cgroup. This will free cgrp->root, if we are
843 * holding the last reference to @sb.
be445626
LZ
844 */
845 deactivate_super(cgrp->root->sb);
846
847 /*
848 * if we're getting rid of the cgroup, refcount should ensure
849 * that there are no pidlists left.
850 */
851 BUG_ON(!list_empty(&cgrp->pidlists));
852
853 simple_xattrs_free(&cgrp->xattrs);
854
65dff759 855 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
856 kfree(cgrp);
857}
858
859static void cgroup_free_rcu(struct rcu_head *head)
860{
861 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
862
ea15f8cc
TH
863 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
864 schedule_work(&cgrp->destroy_work);
be445626
LZ
865}
866
ddbcc7e8
PM
867static void cgroup_diput(struct dentry *dentry, struct inode *inode)
868{
869 /* is dentry a directory ? if so, kfree() associated cgroup */
870 if (S_ISDIR(inode->i_mode)) {
bd89aabc 871 struct cgroup *cgrp = dentry->d_fsdata;
be445626 872
54766d4a 873 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 874 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
875 } else {
876 struct cfent *cfe = __d_cfe(dentry);
877 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
878
879 WARN_ONCE(!list_empty(&cfe->node) &&
880 cgrp != &cgrp->root->top_cgroup,
881 "cfe still linked for %s\n", cfe->type->name);
712317ad 882 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 883 kfree(cfe);
ddbcc7e8
PM
884 }
885 iput(inode);
886}
887
c72a04e3
AV
888static int cgroup_delete(const struct dentry *d)
889{
890 return 1;
891}
892
ddbcc7e8
PM
893static void remove_dir(struct dentry *d)
894{
895 struct dentry *parent = dget(d->d_parent);
896
897 d_delete(d);
898 simple_rmdir(parent->d_inode, d);
899 dput(parent);
900}
901
2739d3cc 902static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
903{
904 struct cfent *cfe;
905
906 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
907 lockdep_assert_held(&cgroup_mutex);
908
2739d3cc
LZ
909 /*
910 * If we're doing cleanup due to failure of cgroup_create(),
911 * the corresponding @cfe may not exist.
912 */
05ef1d7c
TH
913 list_for_each_entry(cfe, &cgrp->files, node) {
914 struct dentry *d = cfe->dentry;
915
916 if (cft && cfe->type != cft)
917 continue;
918
919 dget(d);
920 d_delete(d);
ce27e317 921 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
922 list_del_init(&cfe->node);
923 dput(d);
924
2739d3cc 925 break;
ddbcc7e8 926 }
05ef1d7c
TH
927}
928
13af07df
AR
929/**
930 * cgroup_clear_directory - selective removal of base and subsystem files
931 * @dir: directory containing the files
932 * @base_files: true if the base files should be removed
933 * @subsys_mask: mask of the subsystem ids whose files should be removed
934 */
935static void cgroup_clear_directory(struct dentry *dir, bool base_files,
936 unsigned long subsys_mask)
05ef1d7c
TH
937{
938 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 939 struct cgroup_subsys *ss;
05ef1d7c 940
13af07df
AR
941 for_each_subsys(cgrp->root, ss) {
942 struct cftype_set *set;
943 if (!test_bit(ss->subsys_id, &subsys_mask))
944 continue;
945 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 946 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
947 }
948 if (base_files) {
949 while (!list_empty(&cgrp->files))
950 cgroup_rm_file(cgrp, NULL);
951 }
ddbcc7e8
PM
952}
953
954/*
955 * NOTE : the dentry must have been dget()'ed
956 */
957static void cgroup_d_remove_dir(struct dentry *dentry)
958{
2fd6b7f5 959 struct dentry *parent;
13af07df 960 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 961
a1a71b45 962 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 963
2fd6b7f5
NP
964 parent = dentry->d_parent;
965 spin_lock(&parent->d_lock);
3ec762ad 966 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 967 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
968 spin_unlock(&dentry->d_lock);
969 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
970 remove_dir(dentry);
971}
972
aae8aab4 973/*
cf5d5941
BB
974 * Call with cgroup_mutex held. Drops reference counts on modules, including
975 * any duplicate ones that parse_cgroupfs_options took. If this function
976 * returns an error, no reference counts are touched.
aae8aab4 977 */
ddbcc7e8 978static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 979 unsigned long final_subsys_mask)
ddbcc7e8 980{
a1a71b45 981 unsigned long added_mask, removed_mask;
bd89aabc 982 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
983 int i;
984
aae8aab4 985 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 986 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 987
a1a71b45
AR
988 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
989 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
990 /* Check that any added subsystems are currently free */
991 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 992 unsigned long bit = 1UL << i;
ddbcc7e8 993 struct cgroup_subsys *ss = subsys[i];
a1a71b45 994 if (!(bit & added_mask))
ddbcc7e8 995 continue;
aae8aab4
BB
996 /*
997 * Nobody should tell us to do a subsys that doesn't exist:
998 * parse_cgroupfs_options should catch that case and refcounts
999 * ensure that subsystems won't disappear once selected.
1000 */
1001 BUG_ON(ss == NULL);
ddbcc7e8
PM
1002 if (ss->root != &rootnode) {
1003 /* Subsystem isn't free */
1004 return -EBUSY;
1005 }
1006 }
1007
1008 /* Currently we don't handle adding/removing subsystems when
1009 * any child cgroups exist. This is theoretically supportable
1010 * but involves complex error handling, so it's being left until
1011 * later */
307257cf 1012 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1013 return -EBUSY;
1014
1015 /* Process each subsystem */
1016 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1017 struct cgroup_subsys *ss = subsys[i];
1018 unsigned long bit = 1UL << i;
a1a71b45 1019 if (bit & added_mask) {
ddbcc7e8 1020 /* We're binding this subsystem to this hierarchy */
aae8aab4 1021 BUG_ON(ss == NULL);
bd89aabc 1022 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1023 BUG_ON(!dummytop->subsys[i]);
1024 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1025 cgrp->subsys[i] = dummytop->subsys[i];
1026 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1027 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1028 ss->root = root;
ddbcc7e8 1029 if (ss->bind)
761b3ef5 1030 ss->bind(cgrp);
cf5d5941 1031 /* refcount was already taken, and we're keeping it */
a1a71b45 1032 } else if (bit & removed_mask) {
ddbcc7e8 1033 /* We're removing this subsystem */
aae8aab4 1034 BUG_ON(ss == NULL);
bd89aabc
PM
1035 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1036 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1037 if (ss->bind)
761b3ef5 1038 ss->bind(dummytop);
ddbcc7e8 1039 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1040 cgrp->subsys[i] = NULL;
b2aa30f7 1041 subsys[i]->root = &rootnode;
33a68ac1 1042 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1043 /* subsystem is now free - drop reference on module */
1044 module_put(ss->module);
a1a71b45 1045 } else if (bit & final_subsys_mask) {
ddbcc7e8 1046 /* Subsystem state should already exist */
aae8aab4 1047 BUG_ON(ss == NULL);
bd89aabc 1048 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1049 /*
1050 * a refcount was taken, but we already had one, so
1051 * drop the extra reference.
1052 */
1053 module_put(ss->module);
1054#ifdef CONFIG_MODULE_UNLOAD
1055 BUG_ON(ss->module && !module_refcount(ss->module));
1056#endif
ddbcc7e8
PM
1057 } else {
1058 /* Subsystem state shouldn't exist */
bd89aabc 1059 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1060 }
1061 }
a1a71b45 1062 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1063
1064 return 0;
1065}
1066
34c80b1d 1067static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1068{
34c80b1d 1069 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1070 struct cgroup_subsys *ss;
1071
e25e2cbb 1072 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1073 for_each_subsys(root, ss)
1074 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1075 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1076 seq_puts(seq, ",sane_behavior");
93438629 1077 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1078 seq_puts(seq, ",noprefix");
93438629 1079 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1080 seq_puts(seq, ",xattr");
81a6a5cd
PM
1081 if (strlen(root->release_agent_path))
1082 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1083 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1084 seq_puts(seq, ",clone_children");
c6d57f33
PM
1085 if (strlen(root->name))
1086 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1087 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1088 return 0;
1089}
1090
1091struct cgroup_sb_opts {
a1a71b45 1092 unsigned long subsys_mask;
ddbcc7e8 1093 unsigned long flags;
81a6a5cd 1094 char *release_agent;
2260e7fc 1095 bool cpuset_clone_children;
c6d57f33 1096 char *name;
2c6ab6d2
PM
1097 /* User explicitly requested empty subsystem */
1098 bool none;
c6d57f33
PM
1099
1100 struct cgroupfs_root *new_root;
2c6ab6d2 1101
ddbcc7e8
PM
1102};
1103
aae8aab4
BB
1104/*
1105 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1106 * with cgroup_mutex held to protect the subsys[] array. This function takes
1107 * refcounts on subsystems to be used, unless it returns error, in which case
1108 * no refcounts are taken.
aae8aab4 1109 */
cf5d5941 1110static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1111{
32a8cf23
DL
1112 char *token, *o = data;
1113 bool all_ss = false, one_ss = false;
f9ab5b5b 1114 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1115 int i;
1116 bool module_pin_failed = false;
f9ab5b5b 1117
aae8aab4
BB
1118 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1119
f9ab5b5b
LZ
1120#ifdef CONFIG_CPUSETS
1121 mask = ~(1UL << cpuset_subsys_id);
1122#endif
ddbcc7e8 1123
c6d57f33 1124 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1125
1126 while ((token = strsep(&o, ",")) != NULL) {
1127 if (!*token)
1128 return -EINVAL;
32a8cf23 1129 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1130 /* Explicitly have no subsystems */
1131 opts->none = true;
32a8cf23
DL
1132 continue;
1133 }
1134 if (!strcmp(token, "all")) {
1135 /* Mutually exclusive option 'all' + subsystem name */
1136 if (one_ss)
1137 return -EINVAL;
1138 all_ss = true;
1139 continue;
1140 }
873fe09e
TH
1141 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1142 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1143 continue;
1144 }
32a8cf23 1145 if (!strcmp(token, "noprefix")) {
93438629 1146 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1147 continue;
1148 }
1149 if (!strcmp(token, "clone_children")) {
2260e7fc 1150 opts->cpuset_clone_children = true;
32a8cf23
DL
1151 continue;
1152 }
03b1cde6 1153 if (!strcmp(token, "xattr")) {
93438629 1154 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1155 continue;
1156 }
32a8cf23 1157 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1158 /* Specifying two release agents is forbidden */
1159 if (opts->release_agent)
1160 return -EINVAL;
c6d57f33 1161 opts->release_agent =
e400c285 1162 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1163 if (!opts->release_agent)
1164 return -ENOMEM;
32a8cf23
DL
1165 continue;
1166 }
1167 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1168 const char *name = token + 5;
1169 /* Can't specify an empty name */
1170 if (!strlen(name))
1171 return -EINVAL;
1172 /* Must match [\w.-]+ */
1173 for (i = 0; i < strlen(name); i++) {
1174 char c = name[i];
1175 if (isalnum(c))
1176 continue;
1177 if ((c == '.') || (c == '-') || (c == '_'))
1178 continue;
1179 return -EINVAL;
1180 }
1181 /* Specifying two names is forbidden */
1182 if (opts->name)
1183 return -EINVAL;
1184 opts->name = kstrndup(name,
e400c285 1185 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1186 GFP_KERNEL);
1187 if (!opts->name)
1188 return -ENOMEM;
32a8cf23
DL
1189
1190 continue;
1191 }
1192
1193 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1194 struct cgroup_subsys *ss = subsys[i];
1195 if (ss == NULL)
1196 continue;
1197 if (strcmp(token, ss->name))
1198 continue;
1199 if (ss->disabled)
1200 continue;
1201
1202 /* Mutually exclusive option 'all' + subsystem name */
1203 if (all_ss)
1204 return -EINVAL;
a1a71b45 1205 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1206 one_ss = true;
1207
1208 break;
1209 }
1210 if (i == CGROUP_SUBSYS_COUNT)
1211 return -ENOENT;
1212 }
1213
1214 /*
1215 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1216 * otherwise if 'none', 'name=' and a subsystem name options
1217 * were not specified, let's default to 'all'
32a8cf23 1218 */
0d19ea86 1219 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1220 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1221 struct cgroup_subsys *ss = subsys[i];
1222 if (ss == NULL)
1223 continue;
1224 if (ss->disabled)
1225 continue;
a1a71b45 1226 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1227 }
1228 }
1229
2c6ab6d2
PM
1230 /* Consistency checks */
1231
873fe09e
TH
1232 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1233 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1234
1235 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1236 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1237 return -EINVAL;
1238 }
1239
1240 if (opts->cpuset_clone_children) {
1241 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1242 return -EINVAL;
1243 }
1244 }
1245
f9ab5b5b
LZ
1246 /*
1247 * Option noprefix was introduced just for backward compatibility
1248 * with the old cpuset, so we allow noprefix only if mounting just
1249 * the cpuset subsystem.
1250 */
93438629 1251 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1252 return -EINVAL;
1253
2c6ab6d2
PM
1254
1255 /* Can't specify "none" and some subsystems */
a1a71b45 1256 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1257 return -EINVAL;
1258
1259 /*
1260 * We either have to specify by name or by subsystems. (So all
1261 * empty hierarchies must have a name).
1262 */
a1a71b45 1263 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1264 return -EINVAL;
1265
cf5d5941
BB
1266 /*
1267 * Grab references on all the modules we'll need, so the subsystems
1268 * don't dance around before rebind_subsystems attaches them. This may
1269 * take duplicate reference counts on a subsystem that's already used,
1270 * but rebind_subsystems handles this case.
1271 */
be45c900 1272 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1273 unsigned long bit = 1UL << i;
1274
a1a71b45 1275 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1276 continue;
1277 if (!try_module_get(subsys[i]->module)) {
1278 module_pin_failed = true;
1279 break;
1280 }
1281 }
1282 if (module_pin_failed) {
1283 /*
1284 * oops, one of the modules was going away. this means that we
1285 * raced with a module_delete call, and to the user this is
1286 * essentially a "subsystem doesn't exist" case.
1287 */
be45c900 1288 for (i--; i >= 0; i--) {
cf5d5941
BB
1289 /* drop refcounts only on the ones we took */
1290 unsigned long bit = 1UL << i;
1291
a1a71b45 1292 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1293 continue;
1294 module_put(subsys[i]->module);
1295 }
1296 return -ENOENT;
1297 }
1298
ddbcc7e8
PM
1299 return 0;
1300}
1301
a1a71b45 1302static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1303{
1304 int i;
be45c900 1305 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1306 unsigned long bit = 1UL << i;
1307
a1a71b45 1308 if (!(bit & subsys_mask))
cf5d5941
BB
1309 continue;
1310 module_put(subsys[i]->module);
1311 }
1312}
1313
ddbcc7e8
PM
1314static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1315{
1316 int ret = 0;
1317 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1318 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1319 struct cgroup_sb_opts opts;
a1a71b45 1320 unsigned long added_mask, removed_mask;
ddbcc7e8 1321
873fe09e
TH
1322 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1323 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1324 return -EINVAL;
1325 }
1326
bd89aabc 1327 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1328 mutex_lock(&cgroup_mutex);
e25e2cbb 1329 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1330
1331 /* See what subsystems are wanted */
1332 ret = parse_cgroupfs_options(data, &opts);
1333 if (ret)
1334 goto out_unlock;
1335
a1a71b45 1336 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1337 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1338 task_tgid_nr(current), current->comm);
1339
a1a71b45
AR
1340 added_mask = opts.subsys_mask & ~root->subsys_mask;
1341 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1342
cf5d5941
BB
1343 /* Don't allow flags or name to change at remount */
1344 if (opts.flags != root->flags ||
1345 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1346 ret = -EINVAL;
a1a71b45 1347 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1348 goto out_unlock;
1349 }
1350
7083d037
G
1351 /*
1352 * Clear out the files of subsystems that should be removed, do
1353 * this before rebind_subsystems, since rebind_subsystems may
1354 * change this hierarchy's subsys_list.
1355 */
1356 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1357
a1a71b45 1358 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1359 if (ret) {
7083d037
G
1360 /* rebind_subsystems failed, re-populate the removed files */
1361 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1362 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1363 goto out_unlock;
cf5d5941 1364 }
ddbcc7e8 1365
13af07df 1366 /* re-populate subsystem files */
a1a71b45 1367 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1368
81a6a5cd
PM
1369 if (opts.release_agent)
1370 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1371 out_unlock:
66bdc9cf 1372 kfree(opts.release_agent);
c6d57f33 1373 kfree(opts.name);
e25e2cbb 1374 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1375 mutex_unlock(&cgroup_mutex);
bd89aabc 1376 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1377 return ret;
1378}
1379
b87221de 1380static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1381 .statfs = simple_statfs,
1382 .drop_inode = generic_delete_inode,
1383 .show_options = cgroup_show_options,
1384 .remount_fs = cgroup_remount,
1385};
1386
cc31edce
PM
1387static void init_cgroup_housekeeping(struct cgroup *cgrp)
1388{
1389 INIT_LIST_HEAD(&cgrp->sibling);
1390 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1391 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1392 INIT_LIST_HEAD(&cgrp->cset_links);
2243076a 1393 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1394 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1395 INIT_LIST_HEAD(&cgrp->pidlists);
1396 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1397 INIT_LIST_HEAD(&cgrp->event_list);
1398 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1399 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1400}
c6d57f33 1401
ddbcc7e8
PM
1402static void init_cgroup_root(struct cgroupfs_root *root)
1403{
bd89aabc 1404 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1405
ddbcc7e8
PM
1406 INIT_LIST_HEAD(&root->subsys_list);
1407 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1408 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1409 root->number_of_cgroups = 1;
bd89aabc 1410 cgrp->root = root;
65dff759 1411 cgrp->name = &root_cgroup_name;
cc31edce 1412 init_cgroup_housekeeping(cgrp);
fddfb02a 1413 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1414}
1415
fa3ca07e 1416static int cgroup_init_root_id(struct cgroupfs_root *root)
2c6ab6d2 1417{
1a574231 1418 int id;
2c6ab6d2 1419
54e7b4eb
TH
1420 lockdep_assert_held(&cgroup_mutex);
1421 lockdep_assert_held(&cgroup_root_mutex);
1422
1a574231
TH
1423 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
1424 if (id < 0)
1425 return id;
1426
1427 root->hierarchy_id = id;
fa3ca07e
TH
1428 return 0;
1429}
1430
1431static void cgroup_exit_root_id(struct cgroupfs_root *root)
1432{
54e7b4eb
TH
1433 lockdep_assert_held(&cgroup_mutex);
1434 lockdep_assert_held(&cgroup_root_mutex);
1435
fa3ca07e 1436 if (root->hierarchy_id) {
1a574231 1437 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1438 root->hierarchy_id = 0;
1439 }
2c6ab6d2
PM
1440}
1441
ddbcc7e8
PM
1442static int cgroup_test_super(struct super_block *sb, void *data)
1443{
c6d57f33 1444 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1445 struct cgroupfs_root *root = sb->s_fs_info;
1446
c6d57f33
PM
1447 /* If we asked for a name then it must match */
1448 if (opts->name && strcmp(opts->name, root->name))
1449 return 0;
ddbcc7e8 1450
2c6ab6d2
PM
1451 /*
1452 * If we asked for subsystems (or explicitly for no
1453 * subsystems) then they must match
1454 */
a1a71b45
AR
1455 if ((opts->subsys_mask || opts->none)
1456 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1457 return 0;
1458
1459 return 1;
1460}
1461
c6d57f33
PM
1462static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1463{
1464 struct cgroupfs_root *root;
1465
a1a71b45 1466 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1467 return NULL;
1468
1469 root = kzalloc(sizeof(*root), GFP_KERNEL);
1470 if (!root)
1471 return ERR_PTR(-ENOMEM);
1472
1473 init_cgroup_root(root);
2c6ab6d2 1474
a1a71b45 1475 root->subsys_mask = opts->subsys_mask;
c6d57f33 1476 root->flags = opts->flags;
0a950f65 1477 ida_init(&root->cgroup_ida);
c6d57f33
PM
1478 if (opts->release_agent)
1479 strcpy(root->release_agent_path, opts->release_agent);
1480 if (opts->name)
1481 strcpy(root->name, opts->name);
2260e7fc
TH
1482 if (opts->cpuset_clone_children)
1483 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1484 return root;
1485}
1486
fa3ca07e 1487static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1488{
fa3ca07e
TH
1489 if (root) {
1490 /* hierarhcy ID shoulid already have been released */
1491 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1492
fa3ca07e
TH
1493 ida_destroy(&root->cgroup_ida);
1494 kfree(root);
1495 }
2c6ab6d2
PM
1496}
1497
ddbcc7e8
PM
1498static int cgroup_set_super(struct super_block *sb, void *data)
1499{
1500 int ret;
c6d57f33
PM
1501 struct cgroup_sb_opts *opts = data;
1502
1503 /* If we don't have a new root, we can't set up a new sb */
1504 if (!opts->new_root)
1505 return -EINVAL;
1506
a1a71b45 1507 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1508
1509 ret = set_anon_super(sb, NULL);
1510 if (ret)
1511 return ret;
1512
c6d57f33
PM
1513 sb->s_fs_info = opts->new_root;
1514 opts->new_root->sb = sb;
ddbcc7e8
PM
1515
1516 sb->s_blocksize = PAGE_CACHE_SIZE;
1517 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1518 sb->s_magic = CGROUP_SUPER_MAGIC;
1519 sb->s_op = &cgroup_ops;
1520
1521 return 0;
1522}
1523
1524static int cgroup_get_rootdir(struct super_block *sb)
1525{
0df6a63f
AV
1526 static const struct dentry_operations cgroup_dops = {
1527 .d_iput = cgroup_diput,
c72a04e3 1528 .d_delete = cgroup_delete,
0df6a63f
AV
1529 };
1530
ddbcc7e8
PM
1531 struct inode *inode =
1532 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1533
1534 if (!inode)
1535 return -ENOMEM;
1536
ddbcc7e8
PM
1537 inode->i_fop = &simple_dir_operations;
1538 inode->i_op = &cgroup_dir_inode_operations;
1539 /* directories start off with i_nlink == 2 (for "." entry) */
1540 inc_nlink(inode);
48fde701
AV
1541 sb->s_root = d_make_root(inode);
1542 if (!sb->s_root)
ddbcc7e8 1543 return -ENOMEM;
0df6a63f
AV
1544 /* for everything else we want ->d_op set */
1545 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1546 return 0;
1547}
1548
f7e83571 1549static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1550 int flags, const char *unused_dev_name,
f7e83571 1551 void *data)
ddbcc7e8
PM
1552{
1553 struct cgroup_sb_opts opts;
c6d57f33 1554 struct cgroupfs_root *root;
ddbcc7e8
PM
1555 int ret = 0;
1556 struct super_block *sb;
c6d57f33 1557 struct cgroupfs_root *new_root;
e25e2cbb 1558 struct inode *inode;
ddbcc7e8
PM
1559
1560 /* First find the desired set of subsystems */
aae8aab4 1561 mutex_lock(&cgroup_mutex);
ddbcc7e8 1562 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1563 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1564 if (ret)
1565 goto out_err;
ddbcc7e8 1566
c6d57f33
PM
1567 /*
1568 * Allocate a new cgroup root. We may not need it if we're
1569 * reusing an existing hierarchy.
1570 */
1571 new_root = cgroup_root_from_opts(&opts);
1572 if (IS_ERR(new_root)) {
1573 ret = PTR_ERR(new_root);
cf5d5941 1574 goto drop_modules;
81a6a5cd 1575 }
c6d57f33 1576 opts.new_root = new_root;
ddbcc7e8 1577
c6d57f33 1578 /* Locate an existing or new sb for this hierarchy */
9249e17f 1579 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1580 if (IS_ERR(sb)) {
c6d57f33 1581 ret = PTR_ERR(sb);
fa3ca07e 1582 cgroup_free_root(opts.new_root);
cf5d5941 1583 goto drop_modules;
ddbcc7e8
PM
1584 }
1585
c6d57f33
PM
1586 root = sb->s_fs_info;
1587 BUG_ON(!root);
1588 if (root == opts.new_root) {
1589 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1590 struct list_head tmp_links;
c12f65d4 1591 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1592 struct cgroupfs_root *existing_root;
2ce9738b 1593 const struct cred *cred;
28fd5dfc 1594 int i;
5abb8855 1595 struct css_set *cset;
ddbcc7e8
PM
1596
1597 BUG_ON(sb->s_root != NULL);
1598
1599 ret = cgroup_get_rootdir(sb);
1600 if (ret)
1601 goto drop_new_super;
817929ec 1602 inode = sb->s_root->d_inode;
ddbcc7e8 1603
817929ec 1604 mutex_lock(&inode->i_mutex);
ddbcc7e8 1605 mutex_lock(&cgroup_mutex);
e25e2cbb 1606 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1607
e25e2cbb
TH
1608 /* Check for name clashes with existing mounts */
1609 ret = -EBUSY;
1610 if (strlen(root->name))
1611 for_each_active_root(existing_root)
1612 if (!strcmp(existing_root->name, root->name))
1613 goto unlock_drop;
c6d57f33 1614
817929ec
PM
1615 /*
1616 * We're accessing css_set_count without locking
1617 * css_set_lock here, but that's OK - it can only be
1618 * increased by someone holding cgroup_lock, and
1619 * that's us. The worst that can happen is that we
1620 * have some link structures left over
1621 */
69d0206c 1622 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1623 if (ret)
1624 goto unlock_drop;
817929ec 1625
fa3ca07e
TH
1626 ret = cgroup_init_root_id(root);
1627 if (ret)
1628 goto unlock_drop;
1629
a1a71b45 1630 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1631 if (ret == -EBUSY) {
69d0206c 1632 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1633 goto unlock_drop;
ddbcc7e8 1634 }
cf5d5941
BB
1635 /*
1636 * There must be no failure case after here, since rebinding
1637 * takes care of subsystems' refcounts, which are explicitly
1638 * dropped in the failure exit path.
1639 */
ddbcc7e8
PM
1640
1641 /* EBUSY should be the only error here */
1642 BUG_ON(ret);
1643
1644 list_add(&root->root_list, &roots);
817929ec 1645 root_count++;
ddbcc7e8 1646
c12f65d4 1647 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1648 root->top_cgroup.dentry = sb->s_root;
1649
817929ec
PM
1650 /* Link the top cgroup in this hierarchy into all
1651 * the css_set objects */
1652 write_lock(&css_set_lock);
5abb8855 1653 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1654 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1655 write_unlock(&css_set_lock);
1656
69d0206c 1657 free_cgrp_cset_links(&tmp_links);
817929ec 1658
c12f65d4 1659 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1660 BUG_ON(root->number_of_cgroups != 1);
1661
2ce9738b 1662 cred = override_creds(&init_cred);
a1a71b45 1663 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1664 revert_creds(cred);
e25e2cbb 1665 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1666 mutex_unlock(&cgroup_mutex);
34f77a90 1667 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1668 } else {
1669 /*
1670 * We re-used an existing hierarchy - the new root (if
1671 * any) is not needed
1672 */
fa3ca07e 1673 cgroup_free_root(opts.new_root);
873fe09e 1674
2a0ff3fb
JL
1675 if (root->flags != opts.flags) {
1676 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1677 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1678 ret = -EINVAL;
1679 goto drop_new_super;
1680 } else {
1681 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1682 }
873fe09e
TH
1683 }
1684
cf5d5941 1685 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1686 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1687 }
1688
c6d57f33
PM
1689 kfree(opts.release_agent);
1690 kfree(opts.name);
f7e83571 1691 return dget(sb->s_root);
ddbcc7e8 1692
e25e2cbb 1693 unlock_drop:
fa3ca07e 1694 cgroup_exit_root_id(root);
e25e2cbb
TH
1695 mutex_unlock(&cgroup_root_mutex);
1696 mutex_unlock(&cgroup_mutex);
1697 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1698 drop_new_super:
6f5bbff9 1699 deactivate_locked_super(sb);
cf5d5941 1700 drop_modules:
a1a71b45 1701 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1702 out_err:
1703 kfree(opts.release_agent);
1704 kfree(opts.name);
f7e83571 1705 return ERR_PTR(ret);
ddbcc7e8
PM
1706}
1707
1708static void cgroup_kill_sb(struct super_block *sb) {
1709 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1710 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1711 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1712 int ret;
1713
1714 BUG_ON(!root);
1715
1716 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1717 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1718
1719 mutex_lock(&cgroup_mutex);
e25e2cbb 1720 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1721
1722 /* Rebind all subsystems back to the default hierarchy */
1723 ret = rebind_subsystems(root, 0);
1724 /* Shouldn't be able to fail ... */
1725 BUG_ON(ret);
1726
817929ec 1727 /*
69d0206c 1728 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1729 * root cgroup
1730 */
1731 write_lock(&css_set_lock);
71cbb949 1732
69d0206c
TH
1733 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1734 list_del(&link->cset_link);
1735 list_del(&link->cgrp_link);
817929ec
PM
1736 kfree(link);
1737 }
1738 write_unlock(&css_set_lock);
1739
839ec545
PM
1740 if (!list_empty(&root->root_list)) {
1741 list_del(&root->root_list);
1742 root_count--;
1743 }
e5f6a860 1744
fa3ca07e
TH
1745 cgroup_exit_root_id(root);
1746
e25e2cbb 1747 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1748 mutex_unlock(&cgroup_mutex);
1749
03b1cde6
AR
1750 simple_xattrs_free(&cgrp->xattrs);
1751
ddbcc7e8 1752 kill_litter_super(sb);
fa3ca07e 1753 cgroup_free_root(root);
ddbcc7e8
PM
1754}
1755
1756static struct file_system_type cgroup_fs_type = {
1757 .name = "cgroup",
f7e83571 1758 .mount = cgroup_mount,
ddbcc7e8
PM
1759 .kill_sb = cgroup_kill_sb,
1760};
1761
676db4af
GK
1762static struct kobject *cgroup_kobj;
1763
a043e3b2
LZ
1764/**
1765 * cgroup_path - generate the path of a cgroup
1766 * @cgrp: the cgroup in question
1767 * @buf: the buffer to write the path into
1768 * @buflen: the length of the buffer
1769 *
65dff759
LZ
1770 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1771 *
1772 * We can't generate cgroup path using dentry->d_name, as accessing
1773 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1774 * inode's i_mutex, while on the other hand cgroup_path() can be called
1775 * with some irq-safe spinlocks held.
ddbcc7e8 1776 */
bd89aabc 1777int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1778{
65dff759 1779 int ret = -ENAMETOOLONG;
ddbcc7e8 1780 char *start;
febfcef6 1781
da1f296f
TH
1782 if (!cgrp->parent) {
1783 if (strlcpy(buf, "/", buflen) >= buflen)
1784 return -ENAMETOOLONG;
ddbcc7e8
PM
1785 return 0;
1786 }
1787
316eb661 1788 start = buf + buflen - 1;
316eb661 1789 *start = '\0';
9a9686b6 1790
65dff759 1791 rcu_read_lock();
da1f296f 1792 do {
65dff759
LZ
1793 const char *name = cgroup_name(cgrp);
1794 int len;
1795
1796 len = strlen(name);
ddbcc7e8 1797 if ((start -= len) < buf)
65dff759
LZ
1798 goto out;
1799 memcpy(start, name, len);
9a9686b6 1800
ddbcc7e8 1801 if (--start < buf)
65dff759 1802 goto out;
ddbcc7e8 1803 *start = '/';
65dff759
LZ
1804
1805 cgrp = cgrp->parent;
da1f296f 1806 } while (cgrp->parent);
65dff759 1807 ret = 0;
ddbcc7e8 1808 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1809out:
1810 rcu_read_unlock();
1811 return ret;
ddbcc7e8 1812}
67523c48 1813EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1814
857a2beb
TH
1815/**
1816 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1817 * @task: target task
1818 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1819 * @buf: the buffer to write the path into
1820 * @buflen: the length of the buffer
1821 *
1822 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1823 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1824 * be used inside locks used by cgroup controller callbacks.
1825 */
1826int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1827 char *buf, size_t buflen)
1828{
1829 struct cgroupfs_root *root;
1830 struct cgroup *cgrp = NULL;
1831 int ret = -ENOENT;
1832
1833 mutex_lock(&cgroup_mutex);
1834
1835 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1836 if (root) {
1837 cgrp = task_cgroup_from_root(task, root);
1838 ret = cgroup_path(cgrp, buf, buflen);
1839 }
1840
1841 mutex_unlock(&cgroup_mutex);
1842
1843 return ret;
1844}
1845EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1846
2f7ee569
TH
1847/*
1848 * Control Group taskset
1849 */
134d3373
TH
1850struct task_and_cgroup {
1851 struct task_struct *task;
1852 struct cgroup *cgrp;
61d1d219 1853 struct css_set *cg;
134d3373
TH
1854};
1855
2f7ee569
TH
1856struct cgroup_taskset {
1857 struct task_and_cgroup single;
1858 struct flex_array *tc_array;
1859 int tc_array_len;
1860 int idx;
1861 struct cgroup *cur_cgrp;
1862};
1863
1864/**
1865 * cgroup_taskset_first - reset taskset and return the first task
1866 * @tset: taskset of interest
1867 *
1868 * @tset iteration is initialized and the first task is returned.
1869 */
1870struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1871{
1872 if (tset->tc_array) {
1873 tset->idx = 0;
1874 return cgroup_taskset_next(tset);
1875 } else {
1876 tset->cur_cgrp = tset->single.cgrp;
1877 return tset->single.task;
1878 }
1879}
1880EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1881
1882/**
1883 * cgroup_taskset_next - iterate to the next task in taskset
1884 * @tset: taskset of interest
1885 *
1886 * Return the next task in @tset. Iteration must have been initialized
1887 * with cgroup_taskset_first().
1888 */
1889struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1890{
1891 struct task_and_cgroup *tc;
1892
1893 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1894 return NULL;
1895
1896 tc = flex_array_get(tset->tc_array, tset->idx++);
1897 tset->cur_cgrp = tc->cgrp;
1898 return tc->task;
1899}
1900EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1901
1902/**
1903 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1904 * @tset: taskset of interest
1905 *
1906 * Return the cgroup for the current (last returned) task of @tset. This
1907 * function must be preceded by either cgroup_taskset_first() or
1908 * cgroup_taskset_next().
1909 */
1910struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1911{
1912 return tset->cur_cgrp;
1913}
1914EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1915
1916/**
1917 * cgroup_taskset_size - return the number of tasks in taskset
1918 * @tset: taskset of interest
1919 */
1920int cgroup_taskset_size(struct cgroup_taskset *tset)
1921{
1922 return tset->tc_array ? tset->tc_array_len : 1;
1923}
1924EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1925
1926
74a1166d
BB
1927/*
1928 * cgroup_task_migrate - move a task from one cgroup to another.
1929 *
d0b2fdd2 1930 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1931 */
5abb8855
TH
1932static void cgroup_task_migrate(struct cgroup *old_cgrp,
1933 struct task_struct *tsk,
1934 struct css_set *new_cset)
74a1166d 1935{
5abb8855 1936 struct css_set *old_cset;
74a1166d
BB
1937
1938 /*
026085ef
MSB
1939 * We are synchronized through threadgroup_lock() against PF_EXITING
1940 * setting such that we can't race against cgroup_exit() changing the
1941 * css_set to init_css_set and dropping the old one.
74a1166d 1942 */
c84cdf75 1943 WARN_ON_ONCE(tsk->flags & PF_EXITING);
5abb8855 1944 old_cset = tsk->cgroups;
74a1166d 1945
74a1166d 1946 task_lock(tsk);
5abb8855 1947 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1948 task_unlock(tsk);
1949
1950 /* Update the css_set linked lists if we're using them */
1951 write_lock(&css_set_lock);
1952 if (!list_empty(&tsk->cg_list))
5abb8855 1953 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1954 write_unlock(&css_set_lock);
1955
1956 /*
5abb8855
TH
1957 * We just gained a reference on old_cset by taking it from the
1958 * task. As trading it for new_cset is protected by cgroup_mutex,
1959 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1960 */
5abb8855
TH
1961 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1962 put_css_set(old_cset);
74a1166d
BB
1963}
1964
a043e3b2 1965/**
081aa458 1966 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1967 * @cgrp: the cgroup to attach to
081aa458
LZ
1968 * @tsk: the task or the leader of the threadgroup to be attached
1969 * @threadgroup: attach the whole threadgroup?
74a1166d 1970 *
257058ae 1971 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1972 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1973 */
47cfcd09
TH
1974static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1975 bool threadgroup)
74a1166d
BB
1976{
1977 int retval, i, group_size;
1978 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1979 struct cgroupfs_root *root = cgrp->root;
1980 /* threadgroup list cursor and array */
081aa458 1981 struct task_struct *leader = tsk;
134d3373 1982 struct task_and_cgroup *tc;
d846687d 1983 struct flex_array *group;
2f7ee569 1984 struct cgroup_taskset tset = { };
74a1166d
BB
1985
1986 /*
1987 * step 0: in order to do expensive, possibly blocking operations for
1988 * every thread, we cannot iterate the thread group list, since it needs
1989 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1990 * group - group_rwsem prevents new threads from appearing, and if
1991 * threads exit, this will just be an over-estimate.
74a1166d 1992 */
081aa458
LZ
1993 if (threadgroup)
1994 group_size = get_nr_threads(tsk);
1995 else
1996 group_size = 1;
d846687d 1997 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1998 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1999 if (!group)
2000 return -ENOMEM;
d846687d 2001 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2002 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2003 if (retval)
2004 goto out_free_group_list;
74a1166d 2005
74a1166d 2006 i = 0;
fb5d2b4c
MSB
2007 /*
2008 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2009 * already PF_EXITING could be freed from underneath us unless we
2010 * take an rcu_read_lock.
2011 */
2012 rcu_read_lock();
74a1166d 2013 do {
134d3373
TH
2014 struct task_and_cgroup ent;
2015
cd3d0952
TH
2016 /* @tsk either already exited or can't exit until the end */
2017 if (tsk->flags & PF_EXITING)
2018 continue;
2019
74a1166d
BB
2020 /* as per above, nr_threads may decrease, but not increase. */
2021 BUG_ON(i >= group_size);
134d3373
TH
2022 ent.task = tsk;
2023 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2024 /* nothing to do if this task is already in the cgroup */
2025 if (ent.cgrp == cgrp)
2026 continue;
61d1d219
MSB
2027 /*
2028 * saying GFP_ATOMIC has no effect here because we did prealloc
2029 * earlier, but it's good form to communicate our expectations.
2030 */
134d3373 2031 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2032 BUG_ON(retval != 0);
74a1166d 2033 i++;
081aa458
LZ
2034
2035 if (!threadgroup)
2036 break;
74a1166d 2037 } while_each_thread(leader, tsk);
fb5d2b4c 2038 rcu_read_unlock();
74a1166d
BB
2039 /* remember the number of threads in the array for later. */
2040 group_size = i;
2f7ee569
TH
2041 tset.tc_array = group;
2042 tset.tc_array_len = group_size;
74a1166d 2043
134d3373
TH
2044 /* methods shouldn't be called if no task is actually migrating */
2045 retval = 0;
892a2b90 2046 if (!group_size)
b07ef774 2047 goto out_free_group_list;
134d3373 2048
74a1166d
BB
2049 /*
2050 * step 1: check that we can legitimately attach to the cgroup.
2051 */
2052 for_each_subsys(root, ss) {
2053 if (ss->can_attach) {
761b3ef5 2054 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2055 if (retval) {
2056 failed_ss = ss;
2057 goto out_cancel_attach;
2058 }
2059 }
74a1166d
BB
2060 }
2061
2062 /*
2063 * step 2: make sure css_sets exist for all threads to be migrated.
2064 * we use find_css_set, which allocates a new one if necessary.
2065 */
74a1166d 2066 for (i = 0; i < group_size; i++) {
134d3373 2067 tc = flex_array_get(group, i);
61d1d219
MSB
2068 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2069 if (!tc->cg) {
2070 retval = -ENOMEM;
2071 goto out_put_css_set_refs;
74a1166d
BB
2072 }
2073 }
2074
2075 /*
494c167c
TH
2076 * step 3: now that we're guaranteed success wrt the css_sets,
2077 * proceed to move all tasks to the new cgroup. There are no
2078 * failure cases after here, so this is the commit point.
74a1166d 2079 */
74a1166d 2080 for (i = 0; i < group_size; i++) {
134d3373 2081 tc = flex_array_get(group, i);
1e2ccd1c 2082 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2083 }
2084 /* nothing is sensitive to fork() after this point. */
2085
2086 /*
494c167c 2087 * step 4: do subsystem attach callbacks.
74a1166d
BB
2088 */
2089 for_each_subsys(root, ss) {
2090 if (ss->attach)
761b3ef5 2091 ss->attach(cgrp, &tset);
74a1166d
BB
2092 }
2093
2094 /*
2095 * step 5: success! and cleanup
2096 */
74a1166d 2097 retval = 0;
61d1d219
MSB
2098out_put_css_set_refs:
2099 if (retval) {
2100 for (i = 0; i < group_size; i++) {
2101 tc = flex_array_get(group, i);
2102 if (!tc->cg)
2103 break;
2104 put_css_set(tc->cg);
2105 }
74a1166d
BB
2106 }
2107out_cancel_attach:
74a1166d
BB
2108 if (retval) {
2109 for_each_subsys(root, ss) {
494c167c 2110 if (ss == failed_ss)
74a1166d 2111 break;
74a1166d 2112 if (ss->cancel_attach)
761b3ef5 2113 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2114 }
2115 }
74a1166d 2116out_free_group_list:
d846687d 2117 flex_array_free(group);
74a1166d
BB
2118 return retval;
2119}
2120
2121/*
2122 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2123 * function to attach either it or all tasks in its threadgroup. Will lock
2124 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2125 */
74a1166d 2126static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2127{
bbcb81d0 2128 struct task_struct *tsk;
c69e8d9c 2129 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2130 int ret;
2131
74a1166d
BB
2132 if (!cgroup_lock_live_group(cgrp))
2133 return -ENODEV;
2134
b78949eb
MSB
2135retry_find_task:
2136 rcu_read_lock();
bbcb81d0 2137 if (pid) {
73507f33 2138 tsk = find_task_by_vpid(pid);
74a1166d
BB
2139 if (!tsk) {
2140 rcu_read_unlock();
b78949eb
MSB
2141 ret= -ESRCH;
2142 goto out_unlock_cgroup;
bbcb81d0 2143 }
74a1166d
BB
2144 /*
2145 * even if we're attaching all tasks in the thread group, we
2146 * only need to check permissions on one of them.
2147 */
c69e8d9c 2148 tcred = __task_cred(tsk);
14a590c3
EB
2149 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2150 !uid_eq(cred->euid, tcred->uid) &&
2151 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2152 rcu_read_unlock();
b78949eb
MSB
2153 ret = -EACCES;
2154 goto out_unlock_cgroup;
bbcb81d0 2155 }
b78949eb
MSB
2156 } else
2157 tsk = current;
cd3d0952
TH
2158
2159 if (threadgroup)
b78949eb 2160 tsk = tsk->group_leader;
c4c27fbd
MG
2161
2162 /*
14a40ffc 2163 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2164 * trapped in a cpuset, or RT worker may be born in a cgroup
2165 * with no rt_runtime allocated. Just say no.
2166 */
14a40ffc 2167 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2168 ret = -EINVAL;
2169 rcu_read_unlock();
2170 goto out_unlock_cgroup;
2171 }
2172
b78949eb
MSB
2173 get_task_struct(tsk);
2174 rcu_read_unlock();
2175
2176 threadgroup_lock(tsk);
2177 if (threadgroup) {
2178 if (!thread_group_leader(tsk)) {
2179 /*
2180 * a race with de_thread from another thread's exec()
2181 * may strip us of our leadership, if this happens,
2182 * there is no choice but to throw this task away and
2183 * try again; this is
2184 * "double-double-toil-and-trouble-check locking".
2185 */
2186 threadgroup_unlock(tsk);
2187 put_task_struct(tsk);
2188 goto retry_find_task;
2189 }
081aa458
LZ
2190 }
2191
2192 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2193
cd3d0952
TH
2194 threadgroup_unlock(tsk);
2195
bbcb81d0 2196 put_task_struct(tsk);
b78949eb 2197out_unlock_cgroup:
47cfcd09 2198 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2199 return ret;
2200}
2201
7ae1bad9
TH
2202/**
2203 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2204 * @from: attach to all cgroups of a given task
2205 * @tsk: the task to be attached
2206 */
2207int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2208{
2209 struct cgroupfs_root *root;
2210 int retval = 0;
2211
47cfcd09 2212 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2213 for_each_active_root(root) {
2214 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2215
2216 retval = cgroup_attach_task(from_cg, tsk, false);
2217 if (retval)
2218 break;
2219 }
47cfcd09 2220 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2221
2222 return retval;
2223}
2224EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2225
af351026 2226static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2227{
2228 return attach_task_by_pid(cgrp, pid, false);
2229}
2230
2231static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2232{
b78949eb 2233 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2234}
2235
e788e066
PM
2236static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2237 const char *buffer)
2238{
2239 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2240 if (strlen(buffer) >= PATH_MAX)
2241 return -EINVAL;
e788e066
PM
2242 if (!cgroup_lock_live_group(cgrp))
2243 return -ENODEV;
e25e2cbb 2244 mutex_lock(&cgroup_root_mutex);
e788e066 2245 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2246 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2247 mutex_unlock(&cgroup_mutex);
e788e066
PM
2248 return 0;
2249}
2250
2251static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2252 struct seq_file *seq)
2253{
2254 if (!cgroup_lock_live_group(cgrp))
2255 return -ENODEV;
2256 seq_puts(seq, cgrp->root->release_agent_path);
2257 seq_putc(seq, '\n');
47cfcd09 2258 mutex_unlock(&cgroup_mutex);
e788e066
PM
2259 return 0;
2260}
2261
873fe09e
TH
2262static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2263 struct seq_file *seq)
2264{
2265 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2266 return 0;
2267}
2268
84eea842
PM
2269/* A buffer size big enough for numbers or short strings */
2270#define CGROUP_LOCAL_BUFFER_SIZE 64
2271
e73d2c61 2272static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2273 struct file *file,
2274 const char __user *userbuf,
2275 size_t nbytes, loff_t *unused_ppos)
355e0c48 2276{
84eea842 2277 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2278 int retval = 0;
355e0c48
PM
2279 char *end;
2280
2281 if (!nbytes)
2282 return -EINVAL;
2283 if (nbytes >= sizeof(buffer))
2284 return -E2BIG;
2285 if (copy_from_user(buffer, userbuf, nbytes))
2286 return -EFAULT;
2287
2288 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2289 if (cft->write_u64) {
478988d3 2290 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2291 if (*end)
2292 return -EINVAL;
2293 retval = cft->write_u64(cgrp, cft, val);
2294 } else {
478988d3 2295 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2296 if (*end)
2297 return -EINVAL;
2298 retval = cft->write_s64(cgrp, cft, val);
2299 }
355e0c48
PM
2300 if (!retval)
2301 retval = nbytes;
2302 return retval;
2303}
2304
db3b1497
PM
2305static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2306 struct file *file,
2307 const char __user *userbuf,
2308 size_t nbytes, loff_t *unused_ppos)
2309{
84eea842 2310 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2311 int retval = 0;
2312 size_t max_bytes = cft->max_write_len;
2313 char *buffer = local_buffer;
2314
2315 if (!max_bytes)
2316 max_bytes = sizeof(local_buffer) - 1;
2317 if (nbytes >= max_bytes)
2318 return -E2BIG;
2319 /* Allocate a dynamic buffer if we need one */
2320 if (nbytes >= sizeof(local_buffer)) {
2321 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2322 if (buffer == NULL)
2323 return -ENOMEM;
2324 }
5a3eb9f6
LZ
2325 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2326 retval = -EFAULT;
2327 goto out;
2328 }
db3b1497
PM
2329
2330 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2331 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2332 if (!retval)
2333 retval = nbytes;
5a3eb9f6 2334out:
db3b1497
PM
2335 if (buffer != local_buffer)
2336 kfree(buffer);
2337 return retval;
2338}
2339
ddbcc7e8
PM
2340static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2341 size_t nbytes, loff_t *ppos)
2342{
2343 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2344 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2345
54766d4a 2346 if (cgroup_is_dead(cgrp))
ddbcc7e8 2347 return -ENODEV;
355e0c48 2348 if (cft->write)
bd89aabc 2349 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2350 if (cft->write_u64 || cft->write_s64)
2351 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2352 if (cft->write_string)
2353 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2354 if (cft->trigger) {
2355 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2356 return ret ? ret : nbytes;
2357 }
355e0c48 2358 return -EINVAL;
ddbcc7e8
PM
2359}
2360
f4c753b7
PM
2361static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2362 struct file *file,
2363 char __user *buf, size_t nbytes,
2364 loff_t *ppos)
ddbcc7e8 2365{
84eea842 2366 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2367 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2368 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2369
2370 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2371}
2372
e73d2c61
PM
2373static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2374 struct file *file,
2375 char __user *buf, size_t nbytes,
2376 loff_t *ppos)
2377{
84eea842 2378 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2379 s64 val = cft->read_s64(cgrp, cft);
2380 int len = sprintf(tmp, "%lld\n", (long long) val);
2381
2382 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2383}
2384
ddbcc7e8
PM
2385static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2386 size_t nbytes, loff_t *ppos)
2387{
2388 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2389 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2390
54766d4a 2391 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2392 return -ENODEV;
2393
2394 if (cft->read)
bd89aabc 2395 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2396 if (cft->read_u64)
2397 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2398 if (cft->read_s64)
2399 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2400 return -EINVAL;
2401}
2402
91796569
PM
2403/*
2404 * seqfile ops/methods for returning structured data. Currently just
2405 * supports string->u64 maps, but can be extended in future.
2406 */
2407
2408struct cgroup_seqfile_state {
2409 struct cftype *cft;
2410 struct cgroup *cgroup;
2411};
2412
2413static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2414{
2415 struct seq_file *sf = cb->state;
2416 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2417}
2418
2419static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2420{
2421 struct cgroup_seqfile_state *state = m->private;
2422 struct cftype *cft = state->cft;
29486df3
SH
2423 if (cft->read_map) {
2424 struct cgroup_map_cb cb = {
2425 .fill = cgroup_map_add,
2426 .state = m,
2427 };
2428 return cft->read_map(state->cgroup, cft, &cb);
2429 }
2430 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2431}
2432
96930a63 2433static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2434{
2435 struct seq_file *seq = file->private_data;
2436 kfree(seq->private);
2437 return single_release(inode, file);
2438}
2439
828c0950 2440static const struct file_operations cgroup_seqfile_operations = {
91796569 2441 .read = seq_read,
e788e066 2442 .write = cgroup_file_write,
91796569
PM
2443 .llseek = seq_lseek,
2444 .release = cgroup_seqfile_release,
2445};
2446
ddbcc7e8
PM
2447static int cgroup_file_open(struct inode *inode, struct file *file)
2448{
2449 int err;
2450 struct cftype *cft;
2451
2452 err = generic_file_open(inode, file);
2453 if (err)
2454 return err;
ddbcc7e8 2455 cft = __d_cft(file->f_dentry);
75139b82 2456
29486df3 2457 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2458 struct cgroup_seqfile_state *state;
2459
2460 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2461 if (!state)
2462 return -ENOMEM;
f4f4be2b 2463
91796569
PM
2464 state->cft = cft;
2465 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2466 file->f_op = &cgroup_seqfile_operations;
2467 err = single_open(file, cgroup_seqfile_show, state);
2468 if (err < 0)
2469 kfree(state);
2470 } else if (cft->open)
ddbcc7e8
PM
2471 err = cft->open(inode, file);
2472 else
2473 err = 0;
2474
2475 return err;
2476}
2477
2478static int cgroup_file_release(struct inode *inode, struct file *file)
2479{
2480 struct cftype *cft = __d_cft(file->f_dentry);
2481 if (cft->release)
2482 return cft->release(inode, file);
2483 return 0;
2484}
2485
2486/*
2487 * cgroup_rename - Only allow simple rename of directories in place.
2488 */
2489static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2490 struct inode *new_dir, struct dentry *new_dentry)
2491{
65dff759
LZ
2492 int ret;
2493 struct cgroup_name *name, *old_name;
2494 struct cgroup *cgrp;
2495
2496 /*
2497 * It's convinient to use parent dir's i_mutex to protected
2498 * cgrp->name.
2499 */
2500 lockdep_assert_held(&old_dir->i_mutex);
2501
ddbcc7e8
PM
2502 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2503 return -ENOTDIR;
2504 if (new_dentry->d_inode)
2505 return -EEXIST;
2506 if (old_dir != new_dir)
2507 return -EIO;
65dff759
LZ
2508
2509 cgrp = __d_cgrp(old_dentry);
2510
6db8e85c
TH
2511 /*
2512 * This isn't a proper migration and its usefulness is very
2513 * limited. Disallow if sane_behavior.
2514 */
2515 if (cgroup_sane_behavior(cgrp))
2516 return -EPERM;
2517
65dff759
LZ
2518 name = cgroup_alloc_name(new_dentry);
2519 if (!name)
2520 return -ENOMEM;
2521
2522 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2523 if (ret) {
2524 kfree(name);
2525 return ret;
2526 }
2527
2528 old_name = cgrp->name;
2529 rcu_assign_pointer(cgrp->name, name);
2530
2531 kfree_rcu(old_name, rcu_head);
2532 return 0;
ddbcc7e8
PM
2533}
2534
03b1cde6
AR
2535static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2536{
2537 if (S_ISDIR(dentry->d_inode->i_mode))
2538 return &__d_cgrp(dentry)->xattrs;
2539 else
712317ad 2540 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2541}
2542
2543static inline int xattr_enabled(struct dentry *dentry)
2544{
2545 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2546 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2547}
2548
2549static bool is_valid_xattr(const char *name)
2550{
2551 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2552 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2553 return true;
2554 return false;
2555}
2556
2557static int cgroup_setxattr(struct dentry *dentry, const char *name,
2558 const void *val, size_t size, int flags)
2559{
2560 if (!xattr_enabled(dentry))
2561 return -EOPNOTSUPP;
2562 if (!is_valid_xattr(name))
2563 return -EINVAL;
2564 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2565}
2566
2567static int cgroup_removexattr(struct dentry *dentry, const char *name)
2568{
2569 if (!xattr_enabled(dentry))
2570 return -EOPNOTSUPP;
2571 if (!is_valid_xattr(name))
2572 return -EINVAL;
2573 return simple_xattr_remove(__d_xattrs(dentry), name);
2574}
2575
2576static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2577 void *buf, size_t size)
2578{
2579 if (!xattr_enabled(dentry))
2580 return -EOPNOTSUPP;
2581 if (!is_valid_xattr(name))
2582 return -EINVAL;
2583 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2584}
2585
2586static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2587{
2588 if (!xattr_enabled(dentry))
2589 return -EOPNOTSUPP;
2590 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2591}
2592
828c0950 2593static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2594 .read = cgroup_file_read,
2595 .write = cgroup_file_write,
2596 .llseek = generic_file_llseek,
2597 .open = cgroup_file_open,
2598 .release = cgroup_file_release,
2599};
2600
03b1cde6
AR
2601static const struct inode_operations cgroup_file_inode_operations = {
2602 .setxattr = cgroup_setxattr,
2603 .getxattr = cgroup_getxattr,
2604 .listxattr = cgroup_listxattr,
2605 .removexattr = cgroup_removexattr,
2606};
2607
6e1d5dcc 2608static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2609 .lookup = cgroup_lookup,
ddbcc7e8
PM
2610 .mkdir = cgroup_mkdir,
2611 .rmdir = cgroup_rmdir,
2612 .rename = cgroup_rename,
03b1cde6
AR
2613 .setxattr = cgroup_setxattr,
2614 .getxattr = cgroup_getxattr,
2615 .listxattr = cgroup_listxattr,
2616 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2617};
2618
00cd8dd3 2619static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2620{
2621 if (dentry->d_name.len > NAME_MAX)
2622 return ERR_PTR(-ENAMETOOLONG);
2623 d_add(dentry, NULL);
2624 return NULL;
2625}
2626
0dea1168
KS
2627/*
2628 * Check if a file is a control file
2629 */
2630static inline struct cftype *__file_cft(struct file *file)
2631{
496ad9aa 2632 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2633 return ERR_PTR(-EINVAL);
2634 return __d_cft(file->f_dentry);
2635}
2636
a5e7ed32 2637static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2638 struct super_block *sb)
2639{
ddbcc7e8
PM
2640 struct inode *inode;
2641
2642 if (!dentry)
2643 return -ENOENT;
2644 if (dentry->d_inode)
2645 return -EEXIST;
2646
2647 inode = cgroup_new_inode(mode, sb);
2648 if (!inode)
2649 return -ENOMEM;
2650
2651 if (S_ISDIR(mode)) {
2652 inode->i_op = &cgroup_dir_inode_operations;
2653 inode->i_fop = &simple_dir_operations;
2654
2655 /* start off with i_nlink == 2 (for "." entry) */
2656 inc_nlink(inode);
28fd6f30 2657 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2658
b8a2df6a
TH
2659 /*
2660 * Control reaches here with cgroup_mutex held.
2661 * @inode->i_mutex should nest outside cgroup_mutex but we
2662 * want to populate it immediately without releasing
2663 * cgroup_mutex. As @inode isn't visible to anyone else
2664 * yet, trylock will always succeed without affecting
2665 * lockdep checks.
2666 */
2667 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2668 } else if (S_ISREG(mode)) {
2669 inode->i_size = 0;
2670 inode->i_fop = &cgroup_file_operations;
03b1cde6 2671 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2672 }
ddbcc7e8
PM
2673 d_instantiate(dentry, inode);
2674 dget(dentry); /* Extra count - pin the dentry in core */
2675 return 0;
2676}
2677
099fca32
LZ
2678/**
2679 * cgroup_file_mode - deduce file mode of a control file
2680 * @cft: the control file in question
2681 *
2682 * returns cft->mode if ->mode is not 0
2683 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2684 * returns S_IRUGO if it has only a read handler
2685 * returns S_IWUSR if it has only a write hander
2686 */
a5e7ed32 2687static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2688{
a5e7ed32 2689 umode_t mode = 0;
099fca32
LZ
2690
2691 if (cft->mode)
2692 return cft->mode;
2693
2694 if (cft->read || cft->read_u64 || cft->read_s64 ||
2695 cft->read_map || cft->read_seq_string)
2696 mode |= S_IRUGO;
2697
2698 if (cft->write || cft->write_u64 || cft->write_s64 ||
2699 cft->write_string || cft->trigger)
2700 mode |= S_IWUSR;
2701
2702 return mode;
2703}
2704
db0416b6 2705static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2706 struct cftype *cft)
ddbcc7e8 2707{
bd89aabc 2708 struct dentry *dir = cgrp->dentry;
05ef1d7c 2709 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2710 struct dentry *dentry;
05ef1d7c 2711 struct cfent *cfe;
ddbcc7e8 2712 int error;
a5e7ed32 2713 umode_t mode;
ddbcc7e8 2714 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2715
93438629 2716 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2717 strcpy(name, subsys->name);
2718 strcat(name, ".");
2719 }
2720 strcat(name, cft->name);
05ef1d7c 2721
ddbcc7e8 2722 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2723
2724 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2725 if (!cfe)
2726 return -ENOMEM;
2727
ddbcc7e8 2728 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2729 if (IS_ERR(dentry)) {
ddbcc7e8 2730 error = PTR_ERR(dentry);
05ef1d7c
TH
2731 goto out;
2732 }
2733
d6cbf35d
LZ
2734 cfe->type = (void *)cft;
2735 cfe->dentry = dentry;
2736 dentry->d_fsdata = cfe;
2737 simple_xattrs_init(&cfe->xattrs);
2738
05ef1d7c
TH
2739 mode = cgroup_file_mode(cft);
2740 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2741 if (!error) {
05ef1d7c
TH
2742 list_add_tail(&cfe->node, &parent->files);
2743 cfe = NULL;
2744 }
2745 dput(dentry);
2746out:
2747 kfree(cfe);
ddbcc7e8
PM
2748 return error;
2749}
2750
79578621 2751static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2752 struct cftype cfts[], bool is_add)
ddbcc7e8 2753{
03b1cde6 2754 struct cftype *cft;
db0416b6
TH
2755 int err, ret = 0;
2756
2757 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2758 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2759 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2760 continue;
f33fddc2
G
2761 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2762 continue;
2763 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2764 continue;
2765
2739d3cc 2766 if (is_add) {
79578621 2767 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2768 if (err)
2769 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2770 cft->name, err);
db0416b6 2771 ret = err;
2739d3cc
LZ
2772 } else {
2773 cgroup_rm_file(cgrp, cft);
db0416b6 2774 }
ddbcc7e8 2775 }
db0416b6 2776 return ret;
ddbcc7e8
PM
2777}
2778
8e3f6541
TH
2779static DEFINE_MUTEX(cgroup_cft_mutex);
2780
2781static void cgroup_cfts_prepare(void)
2782 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2783{
2784 /*
2785 * Thanks to the entanglement with vfs inode locking, we can't walk
2786 * the existing cgroups under cgroup_mutex and create files.
2787 * Instead, we increment reference on all cgroups and build list of
2788 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2789 * exclusive access to the field.
2790 */
2791 mutex_lock(&cgroup_cft_mutex);
2792 mutex_lock(&cgroup_mutex);
2793}
2794
2795static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2796 struct cftype *cfts, bool is_add)
8e3f6541
TH
2797 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2798{
2799 LIST_HEAD(pending);
2800 struct cgroup *cgrp, *n;
084457f2 2801 struct super_block *sb = ss->root->sb;
8e3f6541
TH
2802
2803 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
084457f2
LZ
2804 if (cfts && ss->root != &rootnode &&
2805 atomic_inc_not_zero(sb->s_active)) {
8e3f6541
TH
2806 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2807 dget(cgrp->dentry);
2808 list_add_tail(&cgrp->cft_q_node, &pending);
2809 }
084457f2
LZ
2810 } else {
2811 sb = NULL;
8e3f6541
TH
2812 }
2813
2814 mutex_unlock(&cgroup_mutex);
2815
2816 /*
2817 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2818 * files for all cgroups which were created before.
2819 */
2820 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2821 struct inode *inode = cgrp->dentry->d_inode;
2822
2823 mutex_lock(&inode->i_mutex);
2824 mutex_lock(&cgroup_mutex);
54766d4a 2825 if (!cgroup_is_dead(cgrp))
79578621 2826 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2827 mutex_unlock(&cgroup_mutex);
2828 mutex_unlock(&inode->i_mutex);
2829
2830 list_del_init(&cgrp->cft_q_node);
2831 dput(cgrp->dentry);
2832 }
2833
084457f2
LZ
2834 if (sb)
2835 deactivate_super(sb);
2836
8e3f6541
TH
2837 mutex_unlock(&cgroup_cft_mutex);
2838}
2839
2840/**
2841 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2842 * @ss: target cgroup subsystem
2843 * @cfts: zero-length name terminated array of cftypes
2844 *
2845 * Register @cfts to @ss. Files described by @cfts are created for all
2846 * existing cgroups to which @ss is attached and all future cgroups will
2847 * have them too. This function can be called anytime whether @ss is
2848 * attached or not.
2849 *
2850 * Returns 0 on successful registration, -errno on failure. Note that this
2851 * function currently returns 0 as long as @cfts registration is successful
2852 * even if some file creation attempts on existing cgroups fail.
2853 */
03b1cde6 2854int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2855{
2856 struct cftype_set *set;
2857
2858 set = kzalloc(sizeof(*set), GFP_KERNEL);
2859 if (!set)
2860 return -ENOMEM;
2861
2862 cgroup_cfts_prepare();
2863 set->cfts = cfts;
2864 list_add_tail(&set->node, &ss->cftsets);
79578621 2865 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2866
2867 return 0;
2868}
2869EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2870
79578621
TH
2871/**
2872 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2873 * @ss: target cgroup subsystem
2874 * @cfts: zero-length name terminated array of cftypes
2875 *
2876 * Unregister @cfts from @ss. Files described by @cfts are removed from
2877 * all existing cgroups to which @ss is attached and all future cgroups
2878 * won't have them either. This function can be called anytime whether @ss
2879 * is attached or not.
2880 *
2881 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2882 * registered with @ss.
2883 */
03b1cde6 2884int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2885{
2886 struct cftype_set *set;
2887
2888 cgroup_cfts_prepare();
2889
2890 list_for_each_entry(set, &ss->cftsets, node) {
2891 if (set->cfts == cfts) {
f57947d2
LZ
2892 list_del(&set->node);
2893 kfree(set);
79578621
TH
2894 cgroup_cfts_commit(ss, cfts, false);
2895 return 0;
2896 }
2897 }
2898
2899 cgroup_cfts_commit(ss, NULL, false);
2900 return -ENOENT;
2901}
2902
a043e3b2
LZ
2903/**
2904 * cgroup_task_count - count the number of tasks in a cgroup.
2905 * @cgrp: the cgroup in question
2906 *
2907 * Return the number of tasks in the cgroup.
2908 */
bd89aabc 2909int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2910{
2911 int count = 0;
69d0206c 2912 struct cgrp_cset_link *link;
817929ec
PM
2913
2914 read_lock(&css_set_lock);
69d0206c
TH
2915 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2916 count += atomic_read(&link->cset->refcount);
817929ec 2917 read_unlock(&css_set_lock);
bbcb81d0
PM
2918 return count;
2919}
2920
817929ec
PM
2921/*
2922 * Advance a list_head iterator. The iterator should be positioned at
2923 * the start of a css_set
2924 */
69d0206c 2925static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2926{
69d0206c
TH
2927 struct list_head *l = it->cset_link;
2928 struct cgrp_cset_link *link;
5abb8855 2929 struct css_set *cset;
817929ec
PM
2930
2931 /* Advance to the next non-empty css_set */
2932 do {
2933 l = l->next;
69d0206c
TH
2934 if (l == &cgrp->cset_links) {
2935 it->cset_link = NULL;
817929ec
PM
2936 return;
2937 }
69d0206c
TH
2938 link = list_entry(l, struct cgrp_cset_link, cset_link);
2939 cset = link->cset;
5abb8855 2940 } while (list_empty(&cset->tasks));
69d0206c 2941 it->cset_link = l;
5abb8855 2942 it->task = cset->tasks.next;
817929ec
PM
2943}
2944
31a7df01
CW
2945/*
2946 * To reduce the fork() overhead for systems that are not actually
2947 * using their cgroups capability, we don't maintain the lists running
2948 * through each css_set to its tasks until we see the list actually
2949 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2950 */
3df91fe3 2951static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2952{
2953 struct task_struct *p, *g;
2954 write_lock(&css_set_lock);
2955 use_task_css_set_links = 1;
3ce3230a
FW
2956 /*
2957 * We need tasklist_lock because RCU is not safe against
2958 * while_each_thread(). Besides, a forking task that has passed
2959 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2960 * is not guaranteed to have its child immediately visible in the
2961 * tasklist if we walk through it with RCU.
2962 */
2963 read_lock(&tasklist_lock);
31a7df01
CW
2964 do_each_thread(g, p) {
2965 task_lock(p);
0e04388f
LZ
2966 /*
2967 * We should check if the process is exiting, otherwise
2968 * it will race with cgroup_exit() in that the list
2969 * entry won't be deleted though the process has exited.
2970 */
2971 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2972 list_add(&p->cg_list, &p->cgroups->tasks);
2973 task_unlock(p);
2974 } while_each_thread(g, p);
3ce3230a 2975 read_unlock(&tasklist_lock);
31a7df01
CW
2976 write_unlock(&css_set_lock);
2977}
2978
53fa5261
TH
2979/**
2980 * cgroup_next_sibling - find the next sibling of a given cgroup
2981 * @pos: the current cgroup
2982 *
2983 * This function returns the next sibling of @pos and should be called
2984 * under RCU read lock. The only requirement is that @pos is accessible.
2985 * The next sibling is guaranteed to be returned regardless of @pos's
2986 * state.
2987 */
2988struct cgroup *cgroup_next_sibling(struct cgroup *pos)
2989{
2990 struct cgroup *next;
2991
2992 WARN_ON_ONCE(!rcu_read_lock_held());
2993
2994 /*
2995 * @pos could already have been removed. Once a cgroup is removed,
2996 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2997 * changes. As CGRP_DEAD assertion is serialized and happens
2998 * before the cgroup is taken off the ->sibling list, if we see it
2999 * unasserted, it's guaranteed that the next sibling hasn't
3000 * finished its grace period even if it's already removed, and thus
3001 * safe to dereference from this RCU critical section. If
3002 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3003 * to be visible as %true here.
53fa5261 3004 */
54766d4a 3005 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3006 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3007 if (&next->sibling != &pos->parent->children)
3008 return next;
3009 return NULL;
3010 }
3011
3012 /*
3013 * Can't dereference the next pointer. Each cgroup is given a
3014 * monotonically increasing unique serial number and always
3015 * appended to the sibling list, so the next one can be found by
3016 * walking the parent's children until we see a cgroup with higher
3017 * serial number than @pos's.
3018 *
3019 * While this path can be slow, it's taken only when either the
3020 * current cgroup is removed or iteration and removal race.
3021 */
3022 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3023 if (next->serial_nr > pos->serial_nr)
3024 return next;
3025 return NULL;
3026}
3027EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3028
574bd9f7
TH
3029/**
3030 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3031 * @pos: the current position (%NULL to initiate traversal)
3032 * @cgroup: cgroup whose descendants to walk
3033 *
3034 * To be used by cgroup_for_each_descendant_pre(). Find the next
3035 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3036 *
3037 * While this function requires RCU read locking, it doesn't require the
3038 * whole traversal to be contained in a single RCU critical section. This
3039 * function will return the correct next descendant as long as both @pos
3040 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3041 */
3042struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3043 struct cgroup *cgroup)
3044{
3045 struct cgroup *next;
3046
3047 WARN_ON_ONCE(!rcu_read_lock_held());
3048
3049 /* if first iteration, pretend we just visited @cgroup */
7805d000 3050 if (!pos)
574bd9f7 3051 pos = cgroup;
574bd9f7
TH
3052
3053 /* visit the first child if exists */
3054 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3055 if (next)
3056 return next;
3057
3058 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3059 while (pos != cgroup) {
75501a6d
TH
3060 next = cgroup_next_sibling(pos);
3061 if (next)
574bd9f7 3062 return next;
574bd9f7 3063 pos = pos->parent;
7805d000 3064 }
574bd9f7
TH
3065
3066 return NULL;
3067}
3068EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3069
12a9d2fe
TH
3070/**
3071 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3072 * @pos: cgroup of interest
3073 *
3074 * Return the rightmost descendant of @pos. If there's no descendant,
3075 * @pos is returned. This can be used during pre-order traversal to skip
3076 * subtree of @pos.
75501a6d
TH
3077 *
3078 * While this function requires RCU read locking, it doesn't require the
3079 * whole traversal to be contained in a single RCU critical section. This
3080 * function will return the correct rightmost descendant as long as @pos is
3081 * accessible.
12a9d2fe
TH
3082 */
3083struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3084{
3085 struct cgroup *last, *tmp;
3086
3087 WARN_ON_ONCE(!rcu_read_lock_held());
3088
3089 do {
3090 last = pos;
3091 /* ->prev isn't RCU safe, walk ->next till the end */
3092 pos = NULL;
3093 list_for_each_entry_rcu(tmp, &last->children, sibling)
3094 pos = tmp;
3095 } while (pos);
3096
3097 return last;
3098}
3099EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3100
574bd9f7
TH
3101static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3102{
3103 struct cgroup *last;
3104
3105 do {
3106 last = pos;
3107 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3108 sibling);
3109 } while (pos);
3110
3111 return last;
3112}
3113
3114/**
3115 * cgroup_next_descendant_post - find the next descendant for post-order walk
3116 * @pos: the current position (%NULL to initiate traversal)
3117 * @cgroup: cgroup whose descendants to walk
3118 *
3119 * To be used by cgroup_for_each_descendant_post(). Find the next
3120 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3121 *
3122 * While this function requires RCU read locking, it doesn't require the
3123 * whole traversal to be contained in a single RCU critical section. This
3124 * function will return the correct next descendant as long as both @pos
3125 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3126 */
3127struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3128 struct cgroup *cgroup)
3129{
3130 struct cgroup *next;
3131
3132 WARN_ON_ONCE(!rcu_read_lock_held());
3133
3134 /* if first iteration, visit the leftmost descendant */
3135 if (!pos) {
3136 next = cgroup_leftmost_descendant(cgroup);
3137 return next != cgroup ? next : NULL;
3138 }
3139
3140 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3141 next = cgroup_next_sibling(pos);
3142 if (next)
574bd9f7
TH
3143 return cgroup_leftmost_descendant(next);
3144
3145 /* no sibling left, visit parent */
3146 next = pos->parent;
3147 return next != cgroup ? next : NULL;
3148}
3149EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3150
bd89aabc 3151void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3152 __acquires(css_set_lock)
817929ec
PM
3153{
3154 /*
3155 * The first time anyone tries to iterate across a cgroup,
3156 * we need to enable the list linking each css_set to its
3157 * tasks, and fix up all existing tasks.
3158 */
31a7df01
CW
3159 if (!use_task_css_set_links)
3160 cgroup_enable_task_cg_lists();
3161
817929ec 3162 read_lock(&css_set_lock);
69d0206c 3163 it->cset_link = &cgrp->cset_links;
bd89aabc 3164 cgroup_advance_iter(cgrp, it);
817929ec
PM
3165}
3166
bd89aabc 3167struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3168 struct cgroup_iter *it)
3169{
3170 struct task_struct *res;
3171 struct list_head *l = it->task;
69d0206c 3172 struct cgrp_cset_link *link;
817929ec
PM
3173
3174 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3175 if (!it->cset_link)
817929ec
PM
3176 return NULL;
3177 res = list_entry(l, struct task_struct, cg_list);
3178 /* Advance iterator to find next entry */
3179 l = l->next;
69d0206c
TH
3180 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3181 if (l == &link->cset->tasks) {
817929ec
PM
3182 /* We reached the end of this task list - move on to
3183 * the next cg_cgroup_link */
bd89aabc 3184 cgroup_advance_iter(cgrp, it);
817929ec
PM
3185 } else {
3186 it->task = l;
3187 }
3188 return res;
3189}
3190
bd89aabc 3191void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3192 __releases(css_set_lock)
817929ec
PM
3193{
3194 read_unlock(&css_set_lock);
3195}
3196
31a7df01
CW
3197static inline int started_after_time(struct task_struct *t1,
3198 struct timespec *time,
3199 struct task_struct *t2)
3200{
3201 int start_diff = timespec_compare(&t1->start_time, time);
3202 if (start_diff > 0) {
3203 return 1;
3204 } else if (start_diff < 0) {
3205 return 0;
3206 } else {
3207 /*
3208 * Arbitrarily, if two processes started at the same
3209 * time, we'll say that the lower pointer value
3210 * started first. Note that t2 may have exited by now
3211 * so this may not be a valid pointer any longer, but
3212 * that's fine - it still serves to distinguish
3213 * between two tasks started (effectively) simultaneously.
3214 */
3215 return t1 > t2;
3216 }
3217}
3218
3219/*
3220 * This function is a callback from heap_insert() and is used to order
3221 * the heap.
3222 * In this case we order the heap in descending task start time.
3223 */
3224static inline int started_after(void *p1, void *p2)
3225{
3226 struct task_struct *t1 = p1;
3227 struct task_struct *t2 = p2;
3228 return started_after_time(t1, &t2->start_time, t2);
3229}
3230
3231/**
3232 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3233 * @scan: struct cgroup_scanner containing arguments for the scan
3234 *
3235 * Arguments include pointers to callback functions test_task() and
3236 * process_task().
3237 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3238 * and if it returns true, call process_task() for it also.
3239 * The test_task pointer may be NULL, meaning always true (select all tasks).
3240 * Effectively duplicates cgroup_iter_{start,next,end}()
3241 * but does not lock css_set_lock for the call to process_task().
3242 * The struct cgroup_scanner may be embedded in any structure of the caller's
3243 * creation.
3244 * It is guaranteed that process_task() will act on every task that
3245 * is a member of the cgroup for the duration of this call. This
3246 * function may or may not call process_task() for tasks that exit
3247 * or move to a different cgroup during the call, or are forked or
3248 * move into the cgroup during the call.
3249 *
3250 * Note that test_task() may be called with locks held, and may in some
3251 * situations be called multiple times for the same task, so it should
3252 * be cheap.
3253 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3254 * pre-allocated and will be used for heap operations (and its "gt" member will
3255 * be overwritten), else a temporary heap will be used (allocation of which
3256 * may cause this function to fail).
3257 */
3258int cgroup_scan_tasks(struct cgroup_scanner *scan)
3259{
3260 int retval, i;
3261 struct cgroup_iter it;
3262 struct task_struct *p, *dropped;
3263 /* Never dereference latest_task, since it's not refcounted */
3264 struct task_struct *latest_task = NULL;
3265 struct ptr_heap tmp_heap;
3266 struct ptr_heap *heap;
3267 struct timespec latest_time = { 0, 0 };
3268
3269 if (scan->heap) {
3270 /* The caller supplied our heap and pre-allocated its memory */
3271 heap = scan->heap;
3272 heap->gt = &started_after;
3273 } else {
3274 /* We need to allocate our own heap memory */
3275 heap = &tmp_heap;
3276 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3277 if (retval)
3278 /* cannot allocate the heap */
3279 return retval;
3280 }
3281
3282 again:
3283 /*
3284 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3285 * to determine which are of interest, and using the scanner's
3286 * "process_task" callback to process any of them that need an update.
3287 * Since we don't want to hold any locks during the task updates,
3288 * gather tasks to be processed in a heap structure.
3289 * The heap is sorted by descending task start time.
3290 * If the statically-sized heap fills up, we overflow tasks that
3291 * started later, and in future iterations only consider tasks that
3292 * started after the latest task in the previous pass. This
3293 * guarantees forward progress and that we don't miss any tasks.
3294 */
3295 heap->size = 0;
3296 cgroup_iter_start(scan->cg, &it);
3297 while ((p = cgroup_iter_next(scan->cg, &it))) {
3298 /*
3299 * Only affect tasks that qualify per the caller's callback,
3300 * if he provided one
3301 */
3302 if (scan->test_task && !scan->test_task(p, scan))
3303 continue;
3304 /*
3305 * Only process tasks that started after the last task
3306 * we processed
3307 */
3308 if (!started_after_time(p, &latest_time, latest_task))
3309 continue;
3310 dropped = heap_insert(heap, p);
3311 if (dropped == NULL) {
3312 /*
3313 * The new task was inserted; the heap wasn't
3314 * previously full
3315 */
3316 get_task_struct(p);
3317 } else if (dropped != p) {
3318 /*
3319 * The new task was inserted, and pushed out a
3320 * different task
3321 */
3322 get_task_struct(p);
3323 put_task_struct(dropped);
3324 }
3325 /*
3326 * Else the new task was newer than anything already in
3327 * the heap and wasn't inserted
3328 */
3329 }
3330 cgroup_iter_end(scan->cg, &it);
3331
3332 if (heap->size) {
3333 for (i = 0; i < heap->size; i++) {
4fe91d51 3334 struct task_struct *q = heap->ptrs[i];
31a7df01 3335 if (i == 0) {
4fe91d51
PJ
3336 latest_time = q->start_time;
3337 latest_task = q;
31a7df01
CW
3338 }
3339 /* Process the task per the caller's callback */
4fe91d51
PJ
3340 scan->process_task(q, scan);
3341 put_task_struct(q);
31a7df01
CW
3342 }
3343 /*
3344 * If we had to process any tasks at all, scan again
3345 * in case some of them were in the middle of forking
3346 * children that didn't get processed.
3347 * Not the most efficient way to do it, but it avoids
3348 * having to take callback_mutex in the fork path
3349 */
3350 goto again;
3351 }
3352 if (heap == &tmp_heap)
3353 heap_free(&tmp_heap);
3354 return 0;
3355}
3356
8cc99345
TH
3357static void cgroup_transfer_one_task(struct task_struct *task,
3358 struct cgroup_scanner *scan)
3359{
3360 struct cgroup *new_cgroup = scan->data;
3361
47cfcd09 3362 mutex_lock(&cgroup_mutex);
8cc99345 3363 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3364 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3365}
3366
3367/**
3368 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3369 * @to: cgroup to which the tasks will be moved
3370 * @from: cgroup in which the tasks currently reside
3371 */
3372int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3373{
3374 struct cgroup_scanner scan;
3375
3376 scan.cg = from;
3377 scan.test_task = NULL; /* select all tasks in cgroup */
3378 scan.process_task = cgroup_transfer_one_task;
3379 scan.heap = NULL;
3380 scan.data = to;
3381
3382 return cgroup_scan_tasks(&scan);
3383}
3384
bbcb81d0 3385/*
102a775e 3386 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3387 *
3388 * Reading this file can return large amounts of data if a cgroup has
3389 * *lots* of attached tasks. So it may need several calls to read(),
3390 * but we cannot guarantee that the information we produce is correct
3391 * unless we produce it entirely atomically.
3392 *
bbcb81d0 3393 */
bbcb81d0 3394
24528255
LZ
3395/* which pidlist file are we talking about? */
3396enum cgroup_filetype {
3397 CGROUP_FILE_PROCS,
3398 CGROUP_FILE_TASKS,
3399};
3400
3401/*
3402 * A pidlist is a list of pids that virtually represents the contents of one
3403 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3404 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3405 * to the cgroup.
3406 */
3407struct cgroup_pidlist {
3408 /*
3409 * used to find which pidlist is wanted. doesn't change as long as
3410 * this particular list stays in the list.
3411 */
3412 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3413 /* array of xids */
3414 pid_t *list;
3415 /* how many elements the above list has */
3416 int length;
3417 /* how many files are using the current array */
3418 int use_count;
3419 /* each of these stored in a list by its cgroup */
3420 struct list_head links;
3421 /* pointer to the cgroup we belong to, for list removal purposes */
3422 struct cgroup *owner;
3423 /* protects the other fields */
3424 struct rw_semaphore mutex;
3425};
3426
d1d9fd33
BB
3427/*
3428 * The following two functions "fix" the issue where there are more pids
3429 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3430 * TODO: replace with a kernel-wide solution to this problem
3431 */
3432#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3433static void *pidlist_allocate(int count)
3434{
3435 if (PIDLIST_TOO_LARGE(count))
3436 return vmalloc(count * sizeof(pid_t));
3437 else
3438 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3439}
3440static void pidlist_free(void *p)
3441{
3442 if (is_vmalloc_addr(p))
3443 vfree(p);
3444 else
3445 kfree(p);
3446}
d1d9fd33 3447
bbcb81d0 3448/*
102a775e 3449 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3450 * Returns the number of unique elements.
bbcb81d0 3451 */
6ee211ad 3452static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3453{
102a775e 3454 int src, dest = 1;
102a775e
BB
3455
3456 /*
3457 * we presume the 0th element is unique, so i starts at 1. trivial
3458 * edge cases first; no work needs to be done for either
3459 */
3460 if (length == 0 || length == 1)
3461 return length;
3462 /* src and dest walk down the list; dest counts unique elements */
3463 for (src = 1; src < length; src++) {
3464 /* find next unique element */
3465 while (list[src] == list[src-1]) {
3466 src++;
3467 if (src == length)
3468 goto after;
3469 }
3470 /* dest always points to where the next unique element goes */
3471 list[dest] = list[src];
3472 dest++;
3473 }
3474after:
102a775e
BB
3475 return dest;
3476}
3477
3478static int cmppid(const void *a, const void *b)
3479{
3480 return *(pid_t *)a - *(pid_t *)b;
3481}
3482
72a8cb30
BB
3483/*
3484 * find the appropriate pidlist for our purpose (given procs vs tasks)
3485 * returns with the lock on that pidlist already held, and takes care
3486 * of the use count, or returns NULL with no locks held if we're out of
3487 * memory.
3488 */
3489static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3490 enum cgroup_filetype type)
3491{
3492 struct cgroup_pidlist *l;
3493 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3494 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3495
72a8cb30
BB
3496 /*
3497 * We can't drop the pidlist_mutex before taking the l->mutex in case
3498 * the last ref-holder is trying to remove l from the list at the same
3499 * time. Holding the pidlist_mutex precludes somebody taking whichever
3500 * list we find out from under us - compare release_pid_array().
3501 */
3502 mutex_lock(&cgrp->pidlist_mutex);
3503 list_for_each_entry(l, &cgrp->pidlists, links) {
3504 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3505 /* make sure l doesn't vanish out from under us */
3506 down_write(&l->mutex);
3507 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3508 return l;
3509 }
3510 }
3511 /* entry not found; create a new one */
f4f4be2b 3512 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3513 if (!l) {
3514 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3515 return l;
3516 }
3517 init_rwsem(&l->mutex);
3518 down_write(&l->mutex);
3519 l->key.type = type;
b70cc5fd 3520 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3521 l->owner = cgrp;
3522 list_add(&l->links, &cgrp->pidlists);
3523 mutex_unlock(&cgrp->pidlist_mutex);
3524 return l;
3525}
3526
102a775e
BB
3527/*
3528 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3529 */
72a8cb30
BB
3530static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3531 struct cgroup_pidlist **lp)
102a775e
BB
3532{
3533 pid_t *array;
3534 int length;
3535 int pid, n = 0; /* used for populating the array */
817929ec
PM
3536 struct cgroup_iter it;
3537 struct task_struct *tsk;
102a775e
BB
3538 struct cgroup_pidlist *l;
3539
3540 /*
3541 * If cgroup gets more users after we read count, we won't have
3542 * enough space - tough. This race is indistinguishable to the
3543 * caller from the case that the additional cgroup users didn't
3544 * show up until sometime later on.
3545 */
3546 length = cgroup_task_count(cgrp);
d1d9fd33 3547 array = pidlist_allocate(length);
102a775e
BB
3548 if (!array)
3549 return -ENOMEM;
3550 /* now, populate the array */
bd89aabc
PM
3551 cgroup_iter_start(cgrp, &it);
3552 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3553 if (unlikely(n == length))
817929ec 3554 break;
102a775e 3555 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3556 if (type == CGROUP_FILE_PROCS)
3557 pid = task_tgid_vnr(tsk);
3558 else
3559 pid = task_pid_vnr(tsk);
102a775e
BB
3560 if (pid > 0) /* make sure to only use valid results */
3561 array[n++] = pid;
817929ec 3562 }
bd89aabc 3563 cgroup_iter_end(cgrp, &it);
102a775e
BB
3564 length = n;
3565 /* now sort & (if procs) strip out duplicates */
3566 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3567 if (type == CGROUP_FILE_PROCS)
6ee211ad 3568 length = pidlist_uniq(array, length);
72a8cb30
BB
3569 l = cgroup_pidlist_find(cgrp, type);
3570 if (!l) {
d1d9fd33 3571 pidlist_free(array);
72a8cb30 3572 return -ENOMEM;
102a775e 3573 }
72a8cb30 3574 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3575 pidlist_free(l->list);
102a775e
BB
3576 l->list = array;
3577 l->length = length;
3578 l->use_count++;
3579 up_write(&l->mutex);
72a8cb30 3580 *lp = l;
102a775e 3581 return 0;
bbcb81d0
PM
3582}
3583
846c7bb0 3584/**
a043e3b2 3585 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3586 * @stats: cgroupstats to fill information into
3587 * @dentry: A dentry entry belonging to the cgroup for which stats have
3588 * been requested.
a043e3b2
LZ
3589 *
3590 * Build and fill cgroupstats so that taskstats can export it to user
3591 * space.
846c7bb0
BS
3592 */
3593int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3594{
3595 int ret = -EINVAL;
bd89aabc 3596 struct cgroup *cgrp;
846c7bb0
BS
3597 struct cgroup_iter it;
3598 struct task_struct *tsk;
33d283be 3599
846c7bb0 3600 /*
33d283be
LZ
3601 * Validate dentry by checking the superblock operations,
3602 * and make sure it's a directory.
846c7bb0 3603 */
33d283be
LZ
3604 if (dentry->d_sb->s_op != &cgroup_ops ||
3605 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3606 goto err;
3607
3608 ret = 0;
bd89aabc 3609 cgrp = dentry->d_fsdata;
846c7bb0 3610
bd89aabc
PM
3611 cgroup_iter_start(cgrp, &it);
3612 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3613 switch (tsk->state) {
3614 case TASK_RUNNING:
3615 stats->nr_running++;
3616 break;
3617 case TASK_INTERRUPTIBLE:
3618 stats->nr_sleeping++;
3619 break;
3620 case TASK_UNINTERRUPTIBLE:
3621 stats->nr_uninterruptible++;
3622 break;
3623 case TASK_STOPPED:
3624 stats->nr_stopped++;
3625 break;
3626 default:
3627 if (delayacct_is_task_waiting_on_io(tsk))
3628 stats->nr_io_wait++;
3629 break;
3630 }
3631 }
bd89aabc 3632 cgroup_iter_end(cgrp, &it);
846c7bb0 3633
846c7bb0
BS
3634err:
3635 return ret;
3636}
3637
8f3ff208 3638
bbcb81d0 3639/*
102a775e 3640 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3641 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3642 * in the cgroup->l->list array.
bbcb81d0 3643 */
cc31edce 3644
102a775e 3645static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3646{
cc31edce
PM
3647 /*
3648 * Initially we receive a position value that corresponds to
3649 * one more than the last pid shown (or 0 on the first call or
3650 * after a seek to the start). Use a binary-search to find the
3651 * next pid to display, if any
3652 */
102a775e 3653 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3654 int index = 0, pid = *pos;
3655 int *iter;
3656
102a775e 3657 down_read(&l->mutex);
cc31edce 3658 if (pid) {
102a775e 3659 int end = l->length;
20777766 3660
cc31edce
PM
3661 while (index < end) {
3662 int mid = (index + end) / 2;
102a775e 3663 if (l->list[mid] == pid) {
cc31edce
PM
3664 index = mid;
3665 break;
102a775e 3666 } else if (l->list[mid] <= pid)
cc31edce
PM
3667 index = mid + 1;
3668 else
3669 end = mid;
3670 }
3671 }
3672 /* If we're off the end of the array, we're done */
102a775e 3673 if (index >= l->length)
cc31edce
PM
3674 return NULL;
3675 /* Update the abstract position to be the actual pid that we found */
102a775e 3676 iter = l->list + index;
cc31edce
PM
3677 *pos = *iter;
3678 return iter;
3679}
3680
102a775e 3681static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3682{
102a775e
BB
3683 struct cgroup_pidlist *l = s->private;
3684 up_read(&l->mutex);
cc31edce
PM
3685}
3686
102a775e 3687static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3688{
102a775e
BB
3689 struct cgroup_pidlist *l = s->private;
3690 pid_t *p = v;
3691 pid_t *end = l->list + l->length;
cc31edce
PM
3692 /*
3693 * Advance to the next pid in the array. If this goes off the
3694 * end, we're done
3695 */
3696 p++;
3697 if (p >= end) {
3698 return NULL;
3699 } else {
3700 *pos = *p;
3701 return p;
3702 }
3703}
3704
102a775e 3705static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3706{
3707 return seq_printf(s, "%d\n", *(int *)v);
3708}
bbcb81d0 3709
102a775e
BB
3710/*
3711 * seq_operations functions for iterating on pidlists through seq_file -
3712 * independent of whether it's tasks or procs
3713 */
3714static const struct seq_operations cgroup_pidlist_seq_operations = {
3715 .start = cgroup_pidlist_start,
3716 .stop = cgroup_pidlist_stop,
3717 .next = cgroup_pidlist_next,
3718 .show = cgroup_pidlist_show,
cc31edce
PM
3719};
3720
102a775e 3721static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3722{
72a8cb30
BB
3723 /*
3724 * the case where we're the last user of this particular pidlist will
3725 * have us remove it from the cgroup's list, which entails taking the
3726 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3727 * pidlist_mutex, we have to take pidlist_mutex first.
3728 */
3729 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3730 down_write(&l->mutex);
3731 BUG_ON(!l->use_count);
3732 if (!--l->use_count) {
72a8cb30
BB
3733 /* we're the last user if refcount is 0; remove and free */
3734 list_del(&l->links);
3735 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3736 pidlist_free(l->list);
72a8cb30
BB
3737 put_pid_ns(l->key.ns);
3738 up_write(&l->mutex);
3739 kfree(l);
3740 return;
cc31edce 3741 }
72a8cb30 3742 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3743 up_write(&l->mutex);
bbcb81d0
PM
3744}
3745
102a775e 3746static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3747{
102a775e 3748 struct cgroup_pidlist *l;
cc31edce
PM
3749 if (!(file->f_mode & FMODE_READ))
3750 return 0;
102a775e
BB
3751 /*
3752 * the seq_file will only be initialized if the file was opened for
3753 * reading; hence we check if it's not null only in that case.
3754 */
3755 l = ((struct seq_file *)file->private_data)->private;
3756 cgroup_release_pid_array(l);
cc31edce
PM
3757 return seq_release(inode, file);
3758}
3759
102a775e 3760static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3761 .read = seq_read,
3762 .llseek = seq_lseek,
3763 .write = cgroup_file_write,
102a775e 3764 .release = cgroup_pidlist_release,
cc31edce
PM
3765};
3766
bbcb81d0 3767/*
102a775e
BB
3768 * The following functions handle opens on a file that displays a pidlist
3769 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3770 * in the cgroup.
bbcb81d0 3771 */
102a775e 3772/* helper function for the two below it */
72a8cb30 3773static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3774{
bd89aabc 3775 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3776 struct cgroup_pidlist *l;
cc31edce 3777 int retval;
bbcb81d0 3778
cc31edce 3779 /* Nothing to do for write-only files */
bbcb81d0
PM
3780 if (!(file->f_mode & FMODE_READ))
3781 return 0;
3782
102a775e 3783 /* have the array populated */
72a8cb30 3784 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3785 if (retval)
3786 return retval;
3787 /* configure file information */
3788 file->f_op = &cgroup_pidlist_operations;
cc31edce 3789
102a775e 3790 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3791 if (retval) {
102a775e 3792 cgroup_release_pid_array(l);
cc31edce 3793 return retval;
bbcb81d0 3794 }
102a775e 3795 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3796 return 0;
3797}
102a775e
BB
3798static int cgroup_tasks_open(struct inode *unused, struct file *file)
3799{
72a8cb30 3800 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3801}
3802static int cgroup_procs_open(struct inode *unused, struct file *file)
3803{
72a8cb30 3804 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3805}
bbcb81d0 3806
bd89aabc 3807static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3808 struct cftype *cft)
3809{
bd89aabc 3810 return notify_on_release(cgrp);
81a6a5cd
PM
3811}
3812
6379c106
PM
3813static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3814 struct cftype *cft,
3815 u64 val)
3816{
3817 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3818 if (val)
3819 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3820 else
3821 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3822 return 0;
3823}
3824
1c8158ee
LZ
3825/*
3826 * When dput() is called asynchronously, if umount has been done and
3827 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3828 * there's a small window that vfs will see the root dentry with non-zero
3829 * refcnt and trigger BUG().
3830 *
3831 * That's why we hold a reference before dput() and drop it right after.
3832 */
3833static void cgroup_dput(struct cgroup *cgrp)
3834{
3835 struct super_block *sb = cgrp->root->sb;
3836
3837 atomic_inc(&sb->s_active);
3838 dput(cgrp->dentry);
3839 deactivate_super(sb);
3840}
3841
0dea1168
KS
3842/*
3843 * Unregister event and free resources.
3844 *
3845 * Gets called from workqueue.
3846 */
3847static void cgroup_event_remove(struct work_struct *work)
3848{
3849 struct cgroup_event *event = container_of(work, struct cgroup_event,
3850 remove);
3851 struct cgroup *cgrp = event->cgrp;
3852
810cbee4
LZ
3853 remove_wait_queue(event->wqh, &event->wait);
3854
0dea1168
KS
3855 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3856
810cbee4
LZ
3857 /* Notify userspace the event is going away. */
3858 eventfd_signal(event->eventfd, 1);
3859
0dea1168 3860 eventfd_ctx_put(event->eventfd);
0dea1168 3861 kfree(event);
1c8158ee 3862 cgroup_dput(cgrp);
0dea1168
KS
3863}
3864
3865/*
3866 * Gets called on POLLHUP on eventfd when user closes it.
3867 *
3868 * Called with wqh->lock held and interrupts disabled.
3869 */
3870static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3871 int sync, void *key)
3872{
3873 struct cgroup_event *event = container_of(wait,
3874 struct cgroup_event, wait);
3875 struct cgroup *cgrp = event->cgrp;
3876 unsigned long flags = (unsigned long)key;
3877
3878 if (flags & POLLHUP) {
0dea1168 3879 /*
810cbee4
LZ
3880 * If the event has been detached at cgroup removal, we
3881 * can simply return knowing the other side will cleanup
3882 * for us.
3883 *
3884 * We can't race against event freeing since the other
3885 * side will require wqh->lock via remove_wait_queue(),
3886 * which we hold.
0dea1168 3887 */
810cbee4
LZ
3888 spin_lock(&cgrp->event_list_lock);
3889 if (!list_empty(&event->list)) {
3890 list_del_init(&event->list);
3891 /*
3892 * We are in atomic context, but cgroup_event_remove()
3893 * may sleep, so we have to call it in workqueue.
3894 */
3895 schedule_work(&event->remove);
3896 }
3897 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3898 }
3899
3900 return 0;
3901}
3902
3903static void cgroup_event_ptable_queue_proc(struct file *file,
3904 wait_queue_head_t *wqh, poll_table *pt)
3905{
3906 struct cgroup_event *event = container_of(pt,
3907 struct cgroup_event, pt);
3908
3909 event->wqh = wqh;
3910 add_wait_queue(wqh, &event->wait);
3911}
3912
3913/*
3914 * Parse input and register new cgroup event handler.
3915 *
3916 * Input must be in format '<event_fd> <control_fd> <args>'.
3917 * Interpretation of args is defined by control file implementation.
3918 */
3919static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3920 const char *buffer)
3921{
3922 struct cgroup_event *event = NULL;
f169007b 3923 struct cgroup *cgrp_cfile;
0dea1168
KS
3924 unsigned int efd, cfd;
3925 struct file *efile = NULL;
3926 struct file *cfile = NULL;
3927 char *endp;
3928 int ret;
3929
3930 efd = simple_strtoul(buffer, &endp, 10);
3931 if (*endp != ' ')
3932 return -EINVAL;
3933 buffer = endp + 1;
3934
3935 cfd = simple_strtoul(buffer, &endp, 10);
3936 if ((*endp != ' ') && (*endp != '\0'))
3937 return -EINVAL;
3938 buffer = endp + 1;
3939
3940 event = kzalloc(sizeof(*event), GFP_KERNEL);
3941 if (!event)
3942 return -ENOMEM;
3943 event->cgrp = cgrp;
3944 INIT_LIST_HEAD(&event->list);
3945 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3946 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3947 INIT_WORK(&event->remove, cgroup_event_remove);
3948
3949 efile = eventfd_fget(efd);
3950 if (IS_ERR(efile)) {
3951 ret = PTR_ERR(efile);
3952 goto fail;
3953 }
3954
3955 event->eventfd = eventfd_ctx_fileget(efile);
3956 if (IS_ERR(event->eventfd)) {
3957 ret = PTR_ERR(event->eventfd);
3958 goto fail;
3959 }
3960
3961 cfile = fget(cfd);
3962 if (!cfile) {
3963 ret = -EBADF;
3964 goto fail;
3965 }
3966
3967 /* the process need read permission on control file */
3bfa784a 3968 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3969 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3970 if (ret < 0)
3971 goto fail;
3972
3973 event->cft = __file_cft(cfile);
3974 if (IS_ERR(event->cft)) {
3975 ret = PTR_ERR(event->cft);
3976 goto fail;
3977 }
3978
f169007b
LZ
3979 /*
3980 * The file to be monitored must be in the same cgroup as
3981 * cgroup.event_control is.
3982 */
3983 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3984 if (cgrp_cfile != cgrp) {
3985 ret = -EINVAL;
3986 goto fail;
3987 }
3988
0dea1168
KS
3989 if (!event->cft->register_event || !event->cft->unregister_event) {
3990 ret = -EINVAL;
3991 goto fail;
3992 }
3993
3994 ret = event->cft->register_event(cgrp, event->cft,
3995 event->eventfd, buffer);
3996 if (ret)
3997 goto fail;
3998
7ef70e48 3999 efile->f_op->poll(efile, &event->pt);
0dea1168 4000
a0a4db54
KS
4001 /*
4002 * Events should be removed after rmdir of cgroup directory, but before
4003 * destroying subsystem state objects. Let's take reference to cgroup
4004 * directory dentry to do that.
4005 */
4006 dget(cgrp->dentry);
4007
0dea1168
KS
4008 spin_lock(&cgrp->event_list_lock);
4009 list_add(&event->list, &cgrp->event_list);
4010 spin_unlock(&cgrp->event_list_lock);
4011
4012 fput(cfile);
4013 fput(efile);
4014
4015 return 0;
4016
4017fail:
4018 if (cfile)
4019 fput(cfile);
4020
4021 if (event && event->eventfd && !IS_ERR(event->eventfd))
4022 eventfd_ctx_put(event->eventfd);
4023
4024 if (!IS_ERR_OR_NULL(efile))
4025 fput(efile);
4026
4027 kfree(event);
4028
4029 return ret;
4030}
4031
97978e6d
DL
4032static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4033 struct cftype *cft)
4034{
2260e7fc 4035 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4036}
4037
4038static int cgroup_clone_children_write(struct cgroup *cgrp,
4039 struct cftype *cft,
4040 u64 val)
4041{
4042 if (val)
2260e7fc 4043 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4044 else
2260e7fc 4045 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4046 return 0;
4047}
4048
d5c56ced 4049static struct cftype cgroup_base_files[] = {
81a6a5cd 4050 {
d5c56ced 4051 .name = "cgroup.procs",
102a775e 4052 .open = cgroup_procs_open,
74a1166d 4053 .write_u64 = cgroup_procs_write,
102a775e 4054 .release = cgroup_pidlist_release,
74a1166d 4055 .mode = S_IRUGO | S_IWUSR,
102a775e 4056 },
81a6a5cd 4057 {
d5c56ced 4058 .name = "cgroup.event_control",
0dea1168
KS
4059 .write_string = cgroup_write_event_control,
4060 .mode = S_IWUGO,
4061 },
97978e6d
DL
4062 {
4063 .name = "cgroup.clone_children",
873fe09e 4064 .flags = CFTYPE_INSANE,
97978e6d
DL
4065 .read_u64 = cgroup_clone_children_read,
4066 .write_u64 = cgroup_clone_children_write,
4067 },
873fe09e
TH
4068 {
4069 .name = "cgroup.sane_behavior",
4070 .flags = CFTYPE_ONLY_ON_ROOT,
4071 .read_seq_string = cgroup_sane_behavior_show,
4072 },
d5c56ced
TH
4073
4074 /*
4075 * Historical crazy stuff. These don't have "cgroup." prefix and
4076 * don't exist if sane_behavior. If you're depending on these, be
4077 * prepared to be burned.
4078 */
4079 {
4080 .name = "tasks",
4081 .flags = CFTYPE_INSANE, /* use "procs" instead */
4082 .open = cgroup_tasks_open,
4083 .write_u64 = cgroup_tasks_write,
4084 .release = cgroup_pidlist_release,
4085 .mode = S_IRUGO | S_IWUSR,
4086 },
4087 {
4088 .name = "notify_on_release",
4089 .flags = CFTYPE_INSANE,
4090 .read_u64 = cgroup_read_notify_on_release,
4091 .write_u64 = cgroup_write_notify_on_release,
4092 },
6e6ff25b
TH
4093 {
4094 .name = "release_agent",
cc5943a7 4095 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4096 .read_seq_string = cgroup_release_agent_show,
4097 .write_string = cgroup_release_agent_write,
4098 .max_write_len = PATH_MAX,
4099 },
db0416b6 4100 { } /* terminate */
bbcb81d0
PM
4101};
4102
13af07df
AR
4103/**
4104 * cgroup_populate_dir - selectively creation of files in a directory
4105 * @cgrp: target cgroup
4106 * @base_files: true if the base files should be added
4107 * @subsys_mask: mask of the subsystem ids whose files should be added
4108 */
4109static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4110 unsigned long subsys_mask)
ddbcc7e8
PM
4111{
4112 int err;
4113 struct cgroup_subsys *ss;
4114
13af07df 4115 if (base_files) {
d5c56ced 4116 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4117 if (err < 0)
4118 return err;
4119 }
bbcb81d0 4120
8e3f6541 4121 /* process cftsets of each subsystem */
bd89aabc 4122 for_each_subsys(cgrp->root, ss) {
8e3f6541 4123 struct cftype_set *set;
13af07df
AR
4124 if (!test_bit(ss->subsys_id, &subsys_mask))
4125 continue;
8e3f6541 4126
db0416b6 4127 list_for_each_entry(set, &ss->cftsets, node)
79578621 4128 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4129 }
8e3f6541 4130
38460b48
KH
4131 /* This cgroup is ready now */
4132 for_each_subsys(cgrp->root, ss) {
4133 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4134 /*
4135 * Update id->css pointer and make this css visible from
4136 * CSS ID functions. This pointer will be dereferened
4137 * from RCU-read-side without locks.
4138 */
4139 if (css->id)
4140 rcu_assign_pointer(css->id->css, css);
4141 }
ddbcc7e8
PM
4142
4143 return 0;
4144}
4145
48ddbe19
TH
4146static void css_dput_fn(struct work_struct *work)
4147{
4148 struct cgroup_subsys_state *css =
4149 container_of(work, struct cgroup_subsys_state, dput_work);
4150
1c8158ee 4151 cgroup_dput(css->cgroup);
48ddbe19
TH
4152}
4153
d3daf28d
TH
4154static void css_release(struct percpu_ref *ref)
4155{
4156 struct cgroup_subsys_state *css =
4157 container_of(ref, struct cgroup_subsys_state, refcnt);
4158
4159 schedule_work(&css->dput_work);
4160}
4161
ddbcc7e8
PM
4162static void init_cgroup_css(struct cgroup_subsys_state *css,
4163 struct cgroup_subsys *ss,
bd89aabc 4164 struct cgroup *cgrp)
ddbcc7e8 4165{
bd89aabc 4166 css->cgroup = cgrp;
ddbcc7e8 4167 css->flags = 0;
38460b48 4168 css->id = NULL;
bd89aabc 4169 if (cgrp == dummytop)
38b53aba 4170 css->flags |= CSS_ROOT;
bd89aabc
PM
4171 BUG_ON(cgrp->subsys[ss->subsys_id]);
4172 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4173
4174 /*
ed957793
TH
4175 * css holds an extra ref to @cgrp->dentry which is put on the last
4176 * css_put(). dput() requires process context, which css_put() may
4177 * be called without. @css->dput_work will be used to invoke
4178 * dput() asynchronously from css_put().
48ddbe19
TH
4179 */
4180 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4181}
4182
b1929db4
TH
4183/* invoke ->post_create() on a new CSS and mark it online if successful */
4184static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4185{
b1929db4
TH
4186 int ret = 0;
4187
a31f2d3f
TH
4188 lockdep_assert_held(&cgroup_mutex);
4189
92fb9748
TH
4190 if (ss->css_online)
4191 ret = ss->css_online(cgrp);
b1929db4
TH
4192 if (!ret)
4193 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4194 return ret;
a31f2d3f
TH
4195}
4196
4197/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4198static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4199 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4200{
4201 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4202
4203 lockdep_assert_held(&cgroup_mutex);
4204
4205 if (!(css->flags & CSS_ONLINE))
4206 return;
4207
d7eeac19 4208 if (ss->css_offline)
92fb9748 4209 ss->css_offline(cgrp);
a31f2d3f
TH
4210
4211 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4212}
4213
ddbcc7e8 4214/*
a043e3b2
LZ
4215 * cgroup_create - create a cgroup
4216 * @parent: cgroup that will be parent of the new cgroup
4217 * @dentry: dentry of the new cgroup
4218 * @mode: mode to set on new inode
ddbcc7e8 4219 *
a043e3b2 4220 * Must be called with the mutex on the parent inode held
ddbcc7e8 4221 */
ddbcc7e8 4222static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4223 umode_t mode)
ddbcc7e8 4224{
53fa5261 4225 static atomic64_t serial_nr_cursor = ATOMIC64_INIT(0);
bd89aabc 4226 struct cgroup *cgrp;
65dff759 4227 struct cgroup_name *name;
ddbcc7e8
PM
4228 struct cgroupfs_root *root = parent->root;
4229 int err = 0;
4230 struct cgroup_subsys *ss;
4231 struct super_block *sb = root->sb;
4232
0a950f65 4233 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4234 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4235 if (!cgrp)
ddbcc7e8
PM
4236 return -ENOMEM;
4237
65dff759
LZ
4238 name = cgroup_alloc_name(dentry);
4239 if (!name)
4240 goto err_free_cgrp;
4241 rcu_assign_pointer(cgrp->name, name);
4242
0a950f65
TH
4243 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4244 if (cgrp->id < 0)
65dff759 4245 goto err_free_name;
0a950f65 4246
976c06bc
TH
4247 /*
4248 * Only live parents can have children. Note that the liveliness
4249 * check isn't strictly necessary because cgroup_mkdir() and
4250 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4251 * anyway so that locking is contained inside cgroup proper and we
4252 * don't get nasty surprises if we ever grow another caller.
4253 */
4254 if (!cgroup_lock_live_group(parent)) {
4255 err = -ENODEV;
0a950f65 4256 goto err_free_id;
976c06bc
TH
4257 }
4258
ddbcc7e8
PM
4259 /* Grab a reference on the superblock so the hierarchy doesn't
4260 * get deleted on unmount if there are child cgroups. This
4261 * can be done outside cgroup_mutex, since the sb can't
4262 * disappear while someone has an open control file on the
4263 * fs */
4264 atomic_inc(&sb->s_active);
4265
cc31edce 4266 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4267
fe1c06ca
LZ
4268 dentry->d_fsdata = cgrp;
4269 cgrp->dentry = dentry;
4270
bd89aabc
PM
4271 cgrp->parent = parent;
4272 cgrp->root = parent->root;
ddbcc7e8 4273
b6abdb0e
LZ
4274 if (notify_on_release(parent))
4275 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4276
2260e7fc
TH
4277 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4278 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4279
ddbcc7e8 4280 for_each_subsys(root, ss) {
8c7f6edb 4281 struct cgroup_subsys_state *css;
4528fd05 4282
92fb9748 4283 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4284 if (IS_ERR(css)) {
4285 err = PTR_ERR(css);
4b8b47eb 4286 goto err_free_all;
ddbcc7e8 4287 }
d3daf28d
TH
4288
4289 err = percpu_ref_init(&css->refcnt, css_release);
4290 if (err)
4291 goto err_free_all;
4292
bd89aabc 4293 init_cgroup_css(css, ss, cgrp);
d3daf28d 4294
4528fd05
LZ
4295 if (ss->use_id) {
4296 err = alloc_css_id(ss, parent, cgrp);
4297 if (err)
4b8b47eb 4298 goto err_free_all;
4528fd05 4299 }
ddbcc7e8
PM
4300 }
4301
4e139afc
TH
4302 /*
4303 * Create directory. cgroup_create_file() returns with the new
4304 * directory locked on success so that it can be populated without
4305 * dropping cgroup_mutex.
4306 */
28fd6f30 4307 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4308 if (err < 0)
4b8b47eb 4309 goto err_free_all;
4e139afc 4310 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4311
53fa5261
TH
4312 /*
4313 * Assign a monotonically increasing serial number. With the list
4314 * appending below, it guarantees that sibling cgroups are always
4315 * sorted in the ascending serial number order on the parent's
4316 * ->children.
4317 */
4318 cgrp->serial_nr = atomic64_inc_return(&serial_nr_cursor);
4319
4e139afc 4320 /* allocation complete, commit to creation */
4e139afc
TH
4321 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4322 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4323 root->number_of_cgroups++;
28fd6f30 4324
b1929db4
TH
4325 /* each css holds a ref to the cgroup's dentry */
4326 for_each_subsys(root, ss)
ed957793 4327 dget(dentry);
48ddbe19 4328
415cf07a
LZ
4329 /* hold a ref to the parent's dentry */
4330 dget(parent->dentry);
4331
b1929db4
TH
4332 /* creation succeeded, notify subsystems */
4333 for_each_subsys(root, ss) {
4334 err = online_css(ss, cgrp);
4335 if (err)
4336 goto err_destroy;
1f869e87
GC
4337
4338 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4339 parent->parent) {
4340 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4341 current->comm, current->pid, ss->name);
4342 if (!strcmp(ss->name, "memory"))
4343 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4344 ss->warned_broken_hierarchy = true;
4345 }
a8638030
TH
4346 }
4347
a1a71b45 4348 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4349 if (err)
4350 goto err_destroy;
ddbcc7e8
PM
4351
4352 mutex_unlock(&cgroup_mutex);
bd89aabc 4353 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4354
4355 return 0;
4356
4b8b47eb 4357err_free_all:
ddbcc7e8 4358 for_each_subsys(root, ss) {
d3daf28d
TH
4359 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4360
4361 if (css) {
4362 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4363 ss->css_free(cgrp);
d3daf28d 4364 }
ddbcc7e8 4365 }
ddbcc7e8 4366 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4367 /* Release the reference count that we took on the superblock */
4368 deactivate_super(sb);
0a950f65
TH
4369err_free_id:
4370 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4371err_free_name:
4372 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4373err_free_cgrp:
bd89aabc 4374 kfree(cgrp);
ddbcc7e8 4375 return err;
4b8b47eb
TH
4376
4377err_destroy:
4378 cgroup_destroy_locked(cgrp);
4379 mutex_unlock(&cgroup_mutex);
4380 mutex_unlock(&dentry->d_inode->i_mutex);
4381 return err;
ddbcc7e8
PM
4382}
4383
18bb1db3 4384static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4385{
4386 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4387
4388 /* the vfs holds inode->i_mutex already */
4389 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4390}
4391
d3daf28d
TH
4392static void cgroup_css_killed(struct cgroup *cgrp)
4393{
4394 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4395 return;
4396
4397 /* percpu ref's of all css's are killed, kick off the next step */
4398 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4399 schedule_work(&cgrp->destroy_work);
4400}
4401
4402static void css_ref_killed_fn(struct percpu_ref *ref)
4403{
4404 struct cgroup_subsys_state *css =
4405 container_of(ref, struct cgroup_subsys_state, refcnt);
4406
4407 cgroup_css_killed(css->cgroup);
4408}
4409
4410/**
4411 * cgroup_destroy_locked - the first stage of cgroup destruction
4412 * @cgrp: cgroup to be destroyed
4413 *
4414 * css's make use of percpu refcnts whose killing latency shouldn't be
4415 * exposed to userland and are RCU protected. Also, cgroup core needs to
4416 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4417 * invoked. To satisfy all the requirements, destruction is implemented in
4418 * the following two steps.
4419 *
4420 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4421 * userland visible parts and start killing the percpu refcnts of
4422 * css's. Set up so that the next stage will be kicked off once all
4423 * the percpu refcnts are confirmed to be killed.
4424 *
4425 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4426 * rest of destruction. Once all cgroup references are gone, the
4427 * cgroup is RCU-freed.
4428 *
4429 * This function implements s1. After this step, @cgrp is gone as far as
4430 * the userland is concerned and a new cgroup with the same name may be
4431 * created. As cgroup doesn't care about the names internally, this
4432 * doesn't cause any problem.
4433 */
42809dd4
TH
4434static int cgroup_destroy_locked(struct cgroup *cgrp)
4435 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4436{
42809dd4 4437 struct dentry *d = cgrp->dentry;
4ab78683 4438 struct cgroup_event *event, *tmp;
ed957793 4439 struct cgroup_subsys *ss;
ddd69148 4440 bool empty;
ddbcc7e8 4441
42809dd4
TH
4442 lockdep_assert_held(&d->d_inode->i_mutex);
4443 lockdep_assert_held(&cgroup_mutex);
4444
ddd69148 4445 /*
6f3d828f
TH
4446 * css_set_lock synchronizes access to ->cset_links and prevents
4447 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4448 */
4449 read_lock(&css_set_lock);
6f3d828f 4450 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4451 read_unlock(&css_set_lock);
4452 if (!empty)
ddbcc7e8 4453 return -EBUSY;
a043e3b2 4454
88703267 4455 /*
d3daf28d
TH
4456 * Block new css_tryget() by killing css refcnts. cgroup core
4457 * guarantees that, by the time ->css_offline() is invoked, no new
4458 * css reference will be given out via css_tryget(). We can't
4459 * simply call percpu_ref_kill() and proceed to offlining css's
4460 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4461 * as killed on all CPUs on return.
4462 *
4463 * Use percpu_ref_kill_and_confirm() to get notifications as each
4464 * css is confirmed to be seen as killed on all CPUs. The
4465 * notification callback keeps track of the number of css's to be
4466 * killed and schedules cgroup_offline_fn() to perform the rest of
4467 * destruction once the percpu refs of all css's are confirmed to
4468 * be killed.
88703267 4469 */
d3daf28d 4470 atomic_set(&cgrp->css_kill_cnt, 1);
ed957793
TH
4471 for_each_subsys(cgrp->root, ss) {
4472 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4473
d3daf28d
TH
4474 /*
4475 * Killing would put the base ref, but we need to keep it
4476 * alive until after ->css_offline.
4477 */
4478 percpu_ref_get(&css->refcnt);
4479
4480 atomic_inc(&cgrp->css_kill_cnt);
4481 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4482 }
d3daf28d 4483 cgroup_css_killed(cgrp);
455050d2
TH
4484
4485 /*
4486 * Mark @cgrp dead. This prevents further task migration and child
4487 * creation by disabling cgroup_lock_live_group(). Note that
4488 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4489 * resume iteration after dropping RCU read lock. See
4490 * cgroup_next_sibling() for details.
4491 */
54766d4a 4492 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4493
455050d2
TH
4494 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4495 raw_spin_lock(&release_list_lock);
4496 if (!list_empty(&cgrp->release_list))
4497 list_del_init(&cgrp->release_list);
4498 raw_spin_unlock(&release_list_lock);
4499
4500 /*
4501 * Remove @cgrp directory. The removal puts the base ref but we
4502 * aren't quite done with @cgrp yet, so hold onto it.
4503 */
4504 dget(d);
4505 cgroup_d_remove_dir(d);
4506
4507 /*
4508 * Unregister events and notify userspace.
4509 * Notify userspace about cgroup removing only after rmdir of cgroup
4510 * directory to avoid race between userspace and kernelspace.
4511 */
4512 spin_lock(&cgrp->event_list_lock);
4513 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4514 list_del_init(&event->list);
4515 schedule_work(&event->remove);
4516 }
4517 spin_unlock(&cgrp->event_list_lock);
4518
ea15f8cc
TH
4519 return 0;
4520};
4521
d3daf28d
TH
4522/**
4523 * cgroup_offline_fn - the second step of cgroup destruction
4524 * @work: cgroup->destroy_free_work
4525 *
4526 * This function is invoked from a work item for a cgroup which is being
4527 * destroyed after the percpu refcnts of all css's are guaranteed to be
4528 * seen as killed on all CPUs, and performs the rest of destruction. This
4529 * is the second step of destruction described in the comment above
4530 * cgroup_destroy_locked().
4531 */
ea15f8cc
TH
4532static void cgroup_offline_fn(struct work_struct *work)
4533{
4534 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4535 struct cgroup *parent = cgrp->parent;
4536 struct dentry *d = cgrp->dentry;
4537 struct cgroup_subsys *ss;
4538
4539 mutex_lock(&cgroup_mutex);
4540
d3daf28d
TH
4541 /*
4542 * css_tryget() is guaranteed to fail now. Tell subsystems to
4543 * initate destruction.
4544 */
1a90dd50 4545 for_each_subsys(cgrp->root, ss)
a31f2d3f 4546 offline_css(ss, cgrp);
ed957793
TH
4547
4548 /*
d3daf28d
TH
4549 * Put the css refs from cgroup_destroy_locked(). Each css holds
4550 * an extra reference to the cgroup's dentry and cgroup removal
4551 * proceeds regardless of css refs. On the last put of each css,
4552 * whenever that may be, the extra dentry ref is put so that dentry
4553 * destruction happens only after all css's are released.
ed957793 4554 */
e9316080
TH
4555 for_each_subsys(cgrp->root, ss)
4556 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4557
999cd8a4 4558 /* delete this cgroup from parent->children */
eb6fd504 4559 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4560 list_del_init(&cgrp->allcg_node);
4561
ddbcc7e8 4562 dput(d);
ddbcc7e8 4563
bd89aabc 4564 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4565 check_for_release(parent);
4566
ea15f8cc 4567 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4568}
4569
42809dd4
TH
4570static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4571{
4572 int ret;
4573
4574 mutex_lock(&cgroup_mutex);
4575 ret = cgroup_destroy_locked(dentry->d_fsdata);
4576 mutex_unlock(&cgroup_mutex);
4577
4578 return ret;
4579}
4580
8e3f6541
TH
4581static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4582{
4583 INIT_LIST_HEAD(&ss->cftsets);
4584
4585 /*
4586 * base_cftset is embedded in subsys itself, no need to worry about
4587 * deregistration.
4588 */
4589 if (ss->base_cftypes) {
4590 ss->base_cftset.cfts = ss->base_cftypes;
4591 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4592 }
4593}
4594
06a11920 4595static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4596{
ddbcc7e8 4597 struct cgroup_subsys_state *css;
cfe36bde
DC
4598
4599 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4600
648bb56d
TH
4601 mutex_lock(&cgroup_mutex);
4602
8e3f6541
TH
4603 /* init base cftset */
4604 cgroup_init_cftsets(ss);
4605
ddbcc7e8 4606 /* Create the top cgroup state for this subsystem */
33a68ac1 4607 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4608 ss->root = &rootnode;
92fb9748 4609 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4610 /* We don't handle early failures gracefully */
4611 BUG_ON(IS_ERR(css));
4612 init_cgroup_css(css, ss, dummytop);
4613
e8d55fde 4614 /* Update the init_css_set to contain a subsys
817929ec 4615 * pointer to this state - since the subsystem is
e8d55fde
LZ
4616 * newly registered, all tasks and hence the
4617 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4618 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4619
4620 need_forkexit_callback |= ss->fork || ss->exit;
4621
e8d55fde
LZ
4622 /* At system boot, before all subsystems have been
4623 * registered, no tasks have been forked, so we don't
4624 * need to invoke fork callbacks here. */
4625 BUG_ON(!list_empty(&init_task.tasks));
4626
b1929db4 4627 BUG_ON(online_css(ss, dummytop));
a8638030 4628
648bb56d
TH
4629 mutex_unlock(&cgroup_mutex);
4630
e6a1105b
BB
4631 /* this function shouldn't be used with modular subsystems, since they
4632 * need to register a subsys_id, among other things */
4633 BUG_ON(ss->module);
4634}
4635
4636/**
4637 * cgroup_load_subsys: load and register a modular subsystem at runtime
4638 * @ss: the subsystem to load
4639 *
4640 * This function should be called in a modular subsystem's initcall. If the
88393161 4641 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4642 * up for use. If the subsystem is built-in anyway, work is delegated to the
4643 * simpler cgroup_init_subsys.
4644 */
4645int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4646{
e6a1105b 4647 struct cgroup_subsys_state *css;
d19e19de 4648 int i, ret;
b67bfe0d 4649 struct hlist_node *tmp;
5abb8855 4650 struct css_set *cset;
0ac801fe 4651 unsigned long key;
e6a1105b
BB
4652
4653 /* check name and function validity */
4654 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4655 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4656 return -EINVAL;
4657
4658 /*
4659 * we don't support callbacks in modular subsystems. this check is
4660 * before the ss->module check for consistency; a subsystem that could
4661 * be a module should still have no callbacks even if the user isn't
4662 * compiling it as one.
4663 */
4664 if (ss->fork || ss->exit)
4665 return -EINVAL;
4666
4667 /*
4668 * an optionally modular subsystem is built-in: we want to do nothing,
4669 * since cgroup_init_subsys will have already taken care of it.
4670 */
4671 if (ss->module == NULL) {
be45c900 4672 /* a sanity check */
e6a1105b
BB
4673 BUG_ON(subsys[ss->subsys_id] != ss);
4674 return 0;
4675 }
4676
8e3f6541
TH
4677 /* init base cftset */
4678 cgroup_init_cftsets(ss);
4679
e6a1105b 4680 mutex_lock(&cgroup_mutex);
8a8e04df 4681 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4682
4683 /*
92fb9748
TH
4684 * no ss->css_alloc seems to need anything important in the ss
4685 * struct, so this can happen first (i.e. before the rootnode
4686 * attachment).
e6a1105b 4687 */
92fb9748 4688 css = ss->css_alloc(dummytop);
e6a1105b
BB
4689 if (IS_ERR(css)) {
4690 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4691 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4692 mutex_unlock(&cgroup_mutex);
4693 return PTR_ERR(css);
4694 }
4695
4696 list_add(&ss->sibling, &rootnode.subsys_list);
4697 ss->root = &rootnode;
4698
4699 /* our new subsystem will be attached to the dummy hierarchy. */
4700 init_cgroup_css(css, ss, dummytop);
4701 /* init_idr must be after init_cgroup_css because it sets css->id. */
4702 if (ss->use_id) {
d19e19de
TH
4703 ret = cgroup_init_idr(ss, css);
4704 if (ret)
4705 goto err_unload;
e6a1105b
BB
4706 }
4707
4708 /*
4709 * Now we need to entangle the css into the existing css_sets. unlike
4710 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4711 * will need a new pointer to it; done by iterating the css_set_table.
4712 * furthermore, modifying the existing css_sets will corrupt the hash
4713 * table state, so each changed css_set will need its hash recomputed.
4714 * this is all done under the css_set_lock.
4715 */
4716 write_lock(&css_set_lock);
5abb8855 4717 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4718 /* skip entries that we already rehashed */
5abb8855 4719 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4720 continue;
4721 /* remove existing entry */
5abb8855 4722 hash_del(&cset->hlist);
0ac801fe 4723 /* set new value */
5abb8855 4724 cset->subsys[ss->subsys_id] = css;
0ac801fe 4725 /* recompute hash and restore entry */
5abb8855
TH
4726 key = css_set_hash(cset->subsys);
4727 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4728 }
4729 write_unlock(&css_set_lock);
4730
b1929db4
TH
4731 ret = online_css(ss, dummytop);
4732 if (ret)
4733 goto err_unload;
a8638030 4734
e6a1105b
BB
4735 /* success! */
4736 mutex_unlock(&cgroup_mutex);
4737 return 0;
d19e19de
TH
4738
4739err_unload:
4740 mutex_unlock(&cgroup_mutex);
4741 /* @ss can't be mounted here as try_module_get() would fail */
4742 cgroup_unload_subsys(ss);
4743 return ret;
ddbcc7e8 4744}
e6a1105b 4745EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4746
cf5d5941
BB
4747/**
4748 * cgroup_unload_subsys: unload a modular subsystem
4749 * @ss: the subsystem to unload
4750 *
4751 * This function should be called in a modular subsystem's exitcall. When this
4752 * function is invoked, the refcount on the subsystem's module will be 0, so
4753 * the subsystem will not be attached to any hierarchy.
4754 */
4755void cgroup_unload_subsys(struct cgroup_subsys *ss)
4756{
69d0206c 4757 struct cgrp_cset_link *link;
cf5d5941
BB
4758
4759 BUG_ON(ss->module == NULL);
4760
4761 /*
4762 * we shouldn't be called if the subsystem is in use, and the use of
4763 * try_module_get in parse_cgroupfs_options should ensure that it
4764 * doesn't start being used while we're killing it off.
4765 */
4766 BUG_ON(ss->root != &rootnode);
4767
4768 mutex_lock(&cgroup_mutex);
02ae7486 4769
a31f2d3f 4770 offline_css(ss, dummytop);
02ae7486 4771
c897ff68 4772 if (ss->use_id)
02ae7486 4773 idr_destroy(&ss->idr);
02ae7486 4774
cf5d5941 4775 /* deassign the subsys_id */
cf5d5941
BB
4776 subsys[ss->subsys_id] = NULL;
4777
4778 /* remove subsystem from rootnode's list of subsystems */
8d258797 4779 list_del_init(&ss->sibling);
cf5d5941
BB
4780
4781 /*
4782 * disentangle the css from all css_sets attached to the dummytop. as
4783 * in loading, we need to pay our respects to the hashtable gods.
4784 */
4785 write_lock(&css_set_lock);
69d0206c
TH
4786 list_for_each_entry(link, &dummytop->cset_links, cset_link) {
4787 struct css_set *cset = link->cset;
0ac801fe 4788 unsigned long key;
cf5d5941 4789
5abb8855
TH
4790 hash_del(&cset->hlist);
4791 cset->subsys[ss->subsys_id] = NULL;
4792 key = css_set_hash(cset->subsys);
4793 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4794 }
4795 write_unlock(&css_set_lock);
4796
4797 /*
92fb9748
TH
4798 * remove subsystem's css from the dummytop and free it - need to
4799 * free before marking as null because ss->css_free needs the
4800 * cgrp->subsys pointer to find their state. note that this also
4801 * takes care of freeing the css_id.
cf5d5941 4802 */
92fb9748 4803 ss->css_free(dummytop);
cf5d5941
BB
4804 dummytop->subsys[ss->subsys_id] = NULL;
4805
4806 mutex_unlock(&cgroup_mutex);
4807}
4808EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4809
ddbcc7e8 4810/**
a043e3b2
LZ
4811 * cgroup_init_early - cgroup initialization at system boot
4812 *
4813 * Initialize cgroups at system boot, and initialize any
4814 * subsystems that request early init.
ddbcc7e8
PM
4815 */
4816int __init cgroup_init_early(void)
4817{
4818 int i;
146aa1bd 4819 atomic_set(&init_css_set.refcount, 1);
69d0206c 4820 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4821 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4822 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4823 css_set_count = 1;
ddbcc7e8 4824 init_cgroup_root(&rootnode);
817929ec
PM
4825 root_count = 1;
4826 init_task.cgroups = &init_css_set;
4827
69d0206c
TH
4828 init_cgrp_cset_link.cset = &init_css_set;
4829 init_cgrp_cset_link.cgrp = dummytop;
4830 list_add(&init_cgrp_cset_link.cset_link, &rootnode.top_cgroup.cset_links);
4831 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4832
be45c900 4833 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4834 struct cgroup_subsys *ss = subsys[i];
4835
be45c900
DW
4836 /* at bootup time, we don't worry about modular subsystems */
4837 if (!ss || ss->module)
4838 continue;
4839
ddbcc7e8
PM
4840 BUG_ON(!ss->name);
4841 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4842 BUG_ON(!ss->css_alloc);
4843 BUG_ON(!ss->css_free);
ddbcc7e8 4844 if (ss->subsys_id != i) {
cfe36bde 4845 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4846 ss->name, ss->subsys_id);
4847 BUG();
4848 }
4849
4850 if (ss->early_init)
4851 cgroup_init_subsys(ss);
4852 }
4853 return 0;
4854}
4855
4856/**
a043e3b2
LZ
4857 * cgroup_init - cgroup initialization
4858 *
4859 * Register cgroup filesystem and /proc file, and initialize
4860 * any subsystems that didn't request early init.
ddbcc7e8
PM
4861 */
4862int __init cgroup_init(void)
4863{
4864 int err;
4865 int i;
0ac801fe 4866 unsigned long key;
a424316c
PM
4867
4868 err = bdi_init(&cgroup_backing_dev_info);
4869 if (err)
4870 return err;
ddbcc7e8 4871
be45c900 4872 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4873 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4874
4875 /* at bootup time, we don't worry about modular subsystems */
4876 if (!ss || ss->module)
4877 continue;
ddbcc7e8
PM
4878 if (!ss->early_init)
4879 cgroup_init_subsys(ss);
38460b48 4880 if (ss->use_id)
e6a1105b 4881 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4882 }
4883
472b1053 4884 /* Add init_css_set to the hash table */
0ac801fe
LZ
4885 key = css_set_hash(init_css_set.subsys);
4886 hash_add(css_set_table, &init_css_set.hlist, key);
fa3ca07e
TH
4887
4888 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4889 mutex_lock(&cgroup_mutex);
4890 mutex_lock(&cgroup_root_mutex);
4891
fa3ca07e 4892 BUG_ON(cgroup_init_root_id(&rootnode));
676db4af 4893
54e7b4eb
TH
4894 mutex_unlock(&cgroup_root_mutex);
4895 mutex_unlock(&cgroup_mutex);
4896
676db4af
GK
4897 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4898 if (!cgroup_kobj) {
4899 err = -ENOMEM;
4900 goto out;
4901 }
4902
ddbcc7e8 4903 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4904 if (err < 0) {
4905 kobject_put(cgroup_kobj);
ddbcc7e8 4906 goto out;
676db4af 4907 }
ddbcc7e8 4908
46ae220b 4909 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4910
ddbcc7e8 4911out:
a424316c
PM
4912 if (err)
4913 bdi_destroy(&cgroup_backing_dev_info);
4914
ddbcc7e8
PM
4915 return err;
4916}
b4f48b63 4917
a424316c
PM
4918/*
4919 * proc_cgroup_show()
4920 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4921 * - Used for /proc/<pid>/cgroup.
4922 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4923 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4924 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4925 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4926 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4927 * cgroup to top_cgroup.
4928 */
4929
4930/* TODO: Use a proper seq_file iterator */
8d8b97ba 4931int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4932{
4933 struct pid *pid;
4934 struct task_struct *tsk;
4935 char *buf;
4936 int retval;
4937 struct cgroupfs_root *root;
4938
4939 retval = -ENOMEM;
4940 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4941 if (!buf)
4942 goto out;
4943
4944 retval = -ESRCH;
4945 pid = m->private;
4946 tsk = get_pid_task(pid, PIDTYPE_PID);
4947 if (!tsk)
4948 goto out_free;
4949
4950 retval = 0;
4951
4952 mutex_lock(&cgroup_mutex);
4953
e5f6a860 4954 for_each_active_root(root) {
a424316c 4955 struct cgroup_subsys *ss;
bd89aabc 4956 struct cgroup *cgrp;
a424316c
PM
4957 int count = 0;
4958
2c6ab6d2 4959 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4960 for_each_subsys(root, ss)
4961 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4962 if (strlen(root->name))
4963 seq_printf(m, "%sname=%s", count ? "," : "",
4964 root->name);
a424316c 4965 seq_putc(m, ':');
7717f7ba 4966 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4967 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4968 if (retval < 0)
4969 goto out_unlock;
4970 seq_puts(m, buf);
4971 seq_putc(m, '\n');
4972 }
4973
4974out_unlock:
4975 mutex_unlock(&cgroup_mutex);
4976 put_task_struct(tsk);
4977out_free:
4978 kfree(buf);
4979out:
4980 return retval;
4981}
4982
a424316c
PM
4983/* Display information about each subsystem and each hierarchy */
4984static int proc_cgroupstats_show(struct seq_file *m, void *v)
4985{
4986 int i;
a424316c 4987
8bab8dde 4988 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4989 /*
4990 * ideally we don't want subsystems moving around while we do this.
4991 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4992 * subsys/hierarchy state.
4993 */
a424316c 4994 mutex_lock(&cgroup_mutex);
a424316c
PM
4995 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4996 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4997 if (ss == NULL)
4998 continue;
2c6ab6d2
PM
4999 seq_printf(m, "%s\t%d\t%d\t%d\n",
5000 ss->name, ss->root->hierarchy_id,
8bab8dde 5001 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
5002 }
5003 mutex_unlock(&cgroup_mutex);
5004 return 0;
5005}
5006
5007static int cgroupstats_open(struct inode *inode, struct file *file)
5008{
9dce07f1 5009 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5010}
5011
828c0950 5012static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5013 .open = cgroupstats_open,
5014 .read = seq_read,
5015 .llseek = seq_lseek,
5016 .release = single_release,
5017};
5018
b4f48b63
PM
5019/**
5020 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5021 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5022 *
5023 * Description: A task inherits its parent's cgroup at fork().
5024 *
5025 * A pointer to the shared css_set was automatically copied in
5026 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5027 * it was not made under the protection of RCU or cgroup_mutex, so
5028 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5029 * have already changed current->cgroups, allowing the previously
5030 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5031 *
5032 * At the point that cgroup_fork() is called, 'current' is the parent
5033 * task, and the passed argument 'child' points to the child task.
5034 */
5035void cgroup_fork(struct task_struct *child)
5036{
9bb71308 5037 task_lock(current);
817929ec
PM
5038 child->cgroups = current->cgroups;
5039 get_css_set(child->cgroups);
9bb71308 5040 task_unlock(current);
817929ec 5041 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5042}
5043
817929ec 5044/**
a043e3b2
LZ
5045 * cgroup_post_fork - called on a new task after adding it to the task list
5046 * @child: the task in question
5047 *
5edee61e
TH
5048 * Adds the task to the list running through its css_set if necessary and
5049 * call the subsystem fork() callbacks. Has to be after the task is
5050 * visible on the task list in case we race with the first call to
5051 * cgroup_iter_start() - to guarantee that the new task ends up on its
5052 * list.
a043e3b2 5053 */
817929ec
PM
5054void cgroup_post_fork(struct task_struct *child)
5055{
5edee61e
TH
5056 int i;
5057
3ce3230a
FW
5058 /*
5059 * use_task_css_set_links is set to 1 before we walk the tasklist
5060 * under the tasklist_lock and we read it here after we added the child
5061 * to the tasklist under the tasklist_lock as well. If the child wasn't
5062 * yet in the tasklist when we walked through it from
5063 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5064 * should be visible now due to the paired locking and barriers implied
5065 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5066 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5067 * lock on fork.
5068 */
817929ec
PM
5069 if (use_task_css_set_links) {
5070 write_lock(&css_set_lock);
d8783832
TH
5071 task_lock(child);
5072 if (list_empty(&child->cg_list))
817929ec 5073 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 5074 task_unlock(child);
817929ec
PM
5075 write_unlock(&css_set_lock);
5076 }
5edee61e
TH
5077
5078 /*
5079 * Call ss->fork(). This must happen after @child is linked on
5080 * css_set; otherwise, @child might change state between ->fork()
5081 * and addition to css_set.
5082 */
5083 if (need_forkexit_callback) {
7d8e0bf5
LZ
5084 /*
5085 * fork/exit callbacks are supported only for builtin
5086 * subsystems, and the builtin section of the subsys
5087 * array is immutable, so we don't need to lock the
5088 * subsys array here. On the other hand, modular section
5089 * of the array can be freed at module unload, so we
5090 * can't touch that.
5091 */
5092 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
5093 struct cgroup_subsys *ss = subsys[i];
5094
5edee61e
TH
5095 if (ss->fork)
5096 ss->fork(child);
5097 }
5098 }
817929ec 5099}
5edee61e 5100
b4f48b63
PM
5101/**
5102 * cgroup_exit - detach cgroup from exiting task
5103 * @tsk: pointer to task_struct of exiting process
a043e3b2 5104 * @run_callback: run exit callbacks?
b4f48b63
PM
5105 *
5106 * Description: Detach cgroup from @tsk and release it.
5107 *
5108 * Note that cgroups marked notify_on_release force every task in
5109 * them to take the global cgroup_mutex mutex when exiting.
5110 * This could impact scaling on very large systems. Be reluctant to
5111 * use notify_on_release cgroups where very high task exit scaling
5112 * is required on large systems.
5113 *
5114 * the_top_cgroup_hack:
5115 *
5116 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5117 *
5118 * We call cgroup_exit() while the task is still competent to
5119 * handle notify_on_release(), then leave the task attached to the
5120 * root cgroup in each hierarchy for the remainder of its exit.
5121 *
5122 * To do this properly, we would increment the reference count on
5123 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5124 * code we would add a second cgroup function call, to drop that
5125 * reference. This would just create an unnecessary hot spot on
5126 * the top_cgroup reference count, to no avail.
5127 *
5128 * Normally, holding a reference to a cgroup without bumping its
5129 * count is unsafe. The cgroup could go away, or someone could
5130 * attach us to a different cgroup, decrementing the count on
5131 * the first cgroup that we never incremented. But in this case,
5132 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5133 * which wards off any cgroup_attach_task() attempts, or task is a failed
5134 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5135 */
5136void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5137{
5abb8855 5138 struct css_set *cset;
d41d5a01 5139 int i;
817929ec
PM
5140
5141 /*
5142 * Unlink from the css_set task list if necessary.
5143 * Optimistically check cg_list before taking
5144 * css_set_lock
5145 */
5146 if (!list_empty(&tsk->cg_list)) {
5147 write_lock(&css_set_lock);
5148 if (!list_empty(&tsk->cg_list))
8d258797 5149 list_del_init(&tsk->cg_list);
817929ec
PM
5150 write_unlock(&css_set_lock);
5151 }
5152
b4f48b63
PM
5153 /* Reassign the task to the init_css_set. */
5154 task_lock(tsk);
5abb8855 5155 cset = tsk->cgroups;
817929ec 5156 tsk->cgroups = &init_css_set;
d41d5a01
PZ
5157
5158 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5159 /*
5160 * fork/exit callbacks are supported only for builtin
5161 * subsystems, see cgroup_post_fork() for details.
5162 */
5163 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 5164 struct cgroup_subsys *ss = subsys[i];
be45c900 5165
d41d5a01
PZ
5166 if (ss->exit) {
5167 struct cgroup *old_cgrp =
5abb8855 5168 rcu_dereference_raw(cset->subsys[i])->cgroup;
d41d5a01 5169 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 5170 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5171 }
5172 }
5173 }
b4f48b63 5174 task_unlock(tsk);
d41d5a01 5175
5abb8855 5176 put_css_set_taskexit(cset);
b4f48b63 5177}
697f4161 5178
bd89aabc 5179static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5180{
f50daa70 5181 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5182 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5183 /*
5184 * Control Group is currently removeable. If it's not
81a6a5cd 5185 * already queued for a userspace notification, queue
f50daa70
LZ
5186 * it now
5187 */
81a6a5cd 5188 int need_schedule_work = 0;
f50daa70 5189
cdcc136f 5190 raw_spin_lock(&release_list_lock);
54766d4a 5191 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5192 list_empty(&cgrp->release_list)) {
5193 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5194 need_schedule_work = 1;
5195 }
cdcc136f 5196 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5197 if (need_schedule_work)
5198 schedule_work(&release_agent_work);
5199 }
5200}
5201
81a6a5cd
PM
5202/*
5203 * Notify userspace when a cgroup is released, by running the
5204 * configured release agent with the name of the cgroup (path
5205 * relative to the root of cgroup file system) as the argument.
5206 *
5207 * Most likely, this user command will try to rmdir this cgroup.
5208 *
5209 * This races with the possibility that some other task will be
5210 * attached to this cgroup before it is removed, or that some other
5211 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5212 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5213 * unused, and this cgroup will be reprieved from its death sentence,
5214 * to continue to serve a useful existence. Next time it's released,
5215 * we will get notified again, if it still has 'notify_on_release' set.
5216 *
5217 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5218 * means only wait until the task is successfully execve()'d. The
5219 * separate release agent task is forked by call_usermodehelper(),
5220 * then control in this thread returns here, without waiting for the
5221 * release agent task. We don't bother to wait because the caller of
5222 * this routine has no use for the exit status of the release agent
5223 * task, so no sense holding our caller up for that.
81a6a5cd 5224 */
81a6a5cd
PM
5225static void cgroup_release_agent(struct work_struct *work)
5226{
5227 BUG_ON(work != &release_agent_work);
5228 mutex_lock(&cgroup_mutex);
cdcc136f 5229 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5230 while (!list_empty(&release_list)) {
5231 char *argv[3], *envp[3];
5232 int i;
e788e066 5233 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5234 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5235 struct cgroup,
5236 release_list);
bd89aabc 5237 list_del_init(&cgrp->release_list);
cdcc136f 5238 raw_spin_unlock(&release_list_lock);
81a6a5cd 5239 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5240 if (!pathbuf)
5241 goto continue_free;
5242 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5243 goto continue_free;
5244 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5245 if (!agentbuf)
5246 goto continue_free;
81a6a5cd
PM
5247
5248 i = 0;
e788e066
PM
5249 argv[i++] = agentbuf;
5250 argv[i++] = pathbuf;
81a6a5cd
PM
5251 argv[i] = NULL;
5252
5253 i = 0;
5254 /* minimal command environment */
5255 envp[i++] = "HOME=/";
5256 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5257 envp[i] = NULL;
5258
5259 /* Drop the lock while we invoke the usermode helper,
5260 * since the exec could involve hitting disk and hence
5261 * be a slow process */
5262 mutex_unlock(&cgroup_mutex);
5263 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5264 mutex_lock(&cgroup_mutex);
e788e066
PM
5265 continue_free:
5266 kfree(pathbuf);
5267 kfree(agentbuf);
cdcc136f 5268 raw_spin_lock(&release_list_lock);
81a6a5cd 5269 }
cdcc136f 5270 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5271 mutex_unlock(&cgroup_mutex);
5272}
8bab8dde
PM
5273
5274static int __init cgroup_disable(char *str)
5275{
5276 int i;
5277 char *token;
5278
5279 while ((token = strsep(&str, ",")) != NULL) {
5280 if (!*token)
5281 continue;
be45c900 5282 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5283 struct cgroup_subsys *ss = subsys[i];
5284
be45c900
DW
5285 /*
5286 * cgroup_disable, being at boot time, can't
5287 * know about module subsystems, so we don't
5288 * worry about them.
5289 */
5290 if (!ss || ss->module)
5291 continue;
5292
8bab8dde
PM
5293 if (!strcmp(token, ss->name)) {
5294 ss->disabled = 1;
5295 printk(KERN_INFO "Disabling %s control group"
5296 " subsystem\n", ss->name);
5297 break;
5298 }
5299 }
5300 }
5301 return 1;
5302}
5303__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5304
5305/*
5306 * Functons for CSS ID.
5307 */
5308
54766d4a 5309/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5310unsigned short css_id(struct cgroup_subsys_state *css)
5311{
7f0f1546
KH
5312 struct css_id *cssid;
5313
5314 /*
5315 * This css_id() can return correct value when somone has refcnt
5316 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5317 * it's unchanged until freed.
5318 */
d3daf28d 5319 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5320
5321 if (cssid)
5322 return cssid->id;
5323 return 0;
5324}
67523c48 5325EXPORT_SYMBOL_GPL(css_id);
38460b48 5326
747388d7
KH
5327/**
5328 * css_is_ancestor - test "root" css is an ancestor of "child"
5329 * @child: the css to be tested.
5330 * @root: the css supporsed to be an ancestor of the child.
5331 *
5332 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5333 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5334 * But, considering usual usage, the csses should be valid objects after test.
5335 * Assuming that the caller will do some action to the child if this returns
5336 * returns true, the caller must take "child";s reference count.
5337 * If "child" is valid object and this returns true, "root" is valid, too.
5338 */
5339
38460b48 5340bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5341 const struct cgroup_subsys_state *root)
38460b48 5342{
747388d7
KH
5343 struct css_id *child_id;
5344 struct css_id *root_id;
38460b48 5345
747388d7 5346 child_id = rcu_dereference(child->id);
91c63734
JW
5347 if (!child_id)
5348 return false;
747388d7 5349 root_id = rcu_dereference(root->id);
91c63734
JW
5350 if (!root_id)
5351 return false;
5352 if (child_id->depth < root_id->depth)
5353 return false;
5354 if (child_id->stack[root_id->depth] != root_id->id)
5355 return false;
5356 return true;
38460b48
KH
5357}
5358
38460b48
KH
5359void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5360{
5361 struct css_id *id = css->id;
5362 /* When this is called before css_id initialization, id can be NULL */
5363 if (!id)
5364 return;
5365
5366 BUG_ON(!ss->use_id);
5367
5368 rcu_assign_pointer(id->css, NULL);
5369 rcu_assign_pointer(css->id, NULL);
42aee6c4 5370 spin_lock(&ss->id_lock);
38460b48 5371 idr_remove(&ss->idr, id->id);
42aee6c4 5372 spin_unlock(&ss->id_lock);
025cea99 5373 kfree_rcu(id, rcu_head);
38460b48 5374}
67523c48 5375EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5376
5377/*
5378 * This is called by init or create(). Then, calls to this function are
5379 * always serialized (By cgroup_mutex() at create()).
5380 */
5381
5382static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5383{
5384 struct css_id *newid;
d228d9ec 5385 int ret, size;
38460b48
KH
5386
5387 BUG_ON(!ss->use_id);
5388
5389 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5390 newid = kzalloc(size, GFP_KERNEL);
5391 if (!newid)
5392 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5393
5394 idr_preload(GFP_KERNEL);
42aee6c4 5395 spin_lock(&ss->id_lock);
38460b48 5396 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5397 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5398 spin_unlock(&ss->id_lock);
d228d9ec 5399 idr_preload_end();
38460b48
KH
5400
5401 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5402 if (ret < 0)
38460b48 5403 goto err_out;
38460b48 5404
d228d9ec 5405 newid->id = ret;
38460b48
KH
5406 newid->depth = depth;
5407 return newid;
38460b48
KH
5408err_out:
5409 kfree(newid);
d228d9ec 5410 return ERR_PTR(ret);
38460b48
KH
5411
5412}
5413
e6a1105b
BB
5414static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5415 struct cgroup_subsys_state *rootcss)
38460b48
KH
5416{
5417 struct css_id *newid;
38460b48 5418
42aee6c4 5419 spin_lock_init(&ss->id_lock);
38460b48
KH
5420 idr_init(&ss->idr);
5421
38460b48
KH
5422 newid = get_new_cssid(ss, 0);
5423 if (IS_ERR(newid))
5424 return PTR_ERR(newid);
5425
5426 newid->stack[0] = newid->id;
5427 newid->css = rootcss;
5428 rootcss->id = newid;
5429 return 0;
5430}
5431
5432static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5433 struct cgroup *child)
5434{
5435 int subsys_id, i, depth = 0;
5436 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5437 struct css_id *child_id, *parent_id;
38460b48
KH
5438
5439 subsys_id = ss->subsys_id;
5440 parent_css = parent->subsys[subsys_id];
5441 child_css = child->subsys[subsys_id];
38460b48 5442 parent_id = parent_css->id;
94b3dd0f 5443 depth = parent_id->depth + 1;
38460b48
KH
5444
5445 child_id = get_new_cssid(ss, depth);
5446 if (IS_ERR(child_id))
5447 return PTR_ERR(child_id);
5448
5449 for (i = 0; i < depth; i++)
5450 child_id->stack[i] = parent_id->stack[i];
5451 child_id->stack[depth] = child_id->id;
5452 /*
5453 * child_id->css pointer will be set after this cgroup is available
5454 * see cgroup_populate_dir()
5455 */
5456 rcu_assign_pointer(child_css->id, child_id);
5457
5458 return 0;
5459}
5460
5461/**
5462 * css_lookup - lookup css by id
5463 * @ss: cgroup subsys to be looked into.
5464 * @id: the id
5465 *
5466 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5467 * NULL if not. Should be called under rcu_read_lock()
5468 */
5469struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5470{
5471 struct css_id *cssid = NULL;
5472
5473 BUG_ON(!ss->use_id);
5474 cssid = idr_find(&ss->idr, id);
5475
5476 if (unlikely(!cssid))
5477 return NULL;
5478
5479 return rcu_dereference(cssid->css);
5480}
67523c48 5481EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5482
e5d1367f
SE
5483/*
5484 * get corresponding css from file open on cgroupfs directory
5485 */
5486struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5487{
5488 struct cgroup *cgrp;
5489 struct inode *inode;
5490 struct cgroup_subsys_state *css;
5491
496ad9aa 5492 inode = file_inode(f);
e5d1367f
SE
5493 /* check in cgroup filesystem dir */
5494 if (inode->i_op != &cgroup_dir_inode_operations)
5495 return ERR_PTR(-EBADF);
5496
5497 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5498 return ERR_PTR(-EINVAL);
5499
5500 /* get cgroup */
5501 cgrp = __d_cgrp(f->f_dentry);
5502 css = cgrp->subsys[id];
5503 return css ? css : ERR_PTR(-ENOENT);
5504}
5505
fe693435 5506#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5507static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5508{
5509 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5510
5511 if (!css)
5512 return ERR_PTR(-ENOMEM);
5513
5514 return css;
5515}
5516
92fb9748 5517static void debug_css_free(struct cgroup *cont)
fe693435
PM
5518{
5519 kfree(cont->subsys[debug_subsys_id]);
5520}
5521
fe693435
PM
5522static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5523{
5524 return cgroup_task_count(cont);
5525}
5526
5527static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5528{
5529 return (u64)(unsigned long)current->cgroups;
5530}
5531
5532static u64 current_css_set_refcount_read(struct cgroup *cont,
5533 struct cftype *cft)
5534{
5535 u64 count;
5536
5537 rcu_read_lock();
5538 count = atomic_read(&current->cgroups->refcount);
5539 rcu_read_unlock();
5540 return count;
5541}
5542
7717f7ba
PM
5543static int current_css_set_cg_links_read(struct cgroup *cont,
5544 struct cftype *cft,
5545 struct seq_file *seq)
5546{
69d0206c 5547 struct cgrp_cset_link *link;
5abb8855 5548 struct css_set *cset;
7717f7ba
PM
5549
5550 read_lock(&css_set_lock);
5551 rcu_read_lock();
5abb8855 5552 cset = rcu_dereference(current->cgroups);
69d0206c 5553 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5554 struct cgroup *c = link->cgrp;
5555 const char *name;
5556
5557 if (c->dentry)
5558 name = c->dentry->d_name.name;
5559 else
5560 name = "?";
2c6ab6d2
PM
5561 seq_printf(seq, "Root %d group %s\n",
5562 c->root->hierarchy_id, name);
7717f7ba
PM
5563 }
5564 rcu_read_unlock();
5565 read_unlock(&css_set_lock);
5566 return 0;
5567}
5568
5569#define MAX_TASKS_SHOWN_PER_CSS 25
5570static int cgroup_css_links_read(struct cgroup *cont,
5571 struct cftype *cft,
5572 struct seq_file *seq)
5573{
69d0206c 5574 struct cgrp_cset_link *link;
7717f7ba
PM
5575
5576 read_lock(&css_set_lock);
69d0206c
TH
5577 list_for_each_entry(link, &cont->cset_links, cset_link) {
5578 struct css_set *cset = link->cset;
7717f7ba
PM
5579 struct task_struct *task;
5580 int count = 0;
5abb8855
TH
5581 seq_printf(seq, "css_set %p\n", cset);
5582 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5583 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5584 seq_puts(seq, " ...\n");
5585 break;
5586 } else {
5587 seq_printf(seq, " task %d\n",
5588 task_pid_vnr(task));
5589 }
5590 }
5591 }
5592 read_unlock(&css_set_lock);
5593 return 0;
5594}
5595
fe693435
PM
5596static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5597{
5598 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5599}
5600
5601static struct cftype debug_files[] = {
fe693435
PM
5602 {
5603 .name = "taskcount",
5604 .read_u64 = debug_taskcount_read,
5605 },
5606
5607 {
5608 .name = "current_css_set",
5609 .read_u64 = current_css_set_read,
5610 },
5611
5612 {
5613 .name = "current_css_set_refcount",
5614 .read_u64 = current_css_set_refcount_read,
5615 },
5616
7717f7ba
PM
5617 {
5618 .name = "current_css_set_cg_links",
5619 .read_seq_string = current_css_set_cg_links_read,
5620 },
5621
5622 {
5623 .name = "cgroup_css_links",
5624 .read_seq_string = cgroup_css_links_read,
5625 },
5626
fe693435
PM
5627 {
5628 .name = "releasable",
5629 .read_u64 = releasable_read,
5630 },
fe693435 5631
4baf6e33
TH
5632 { } /* terminate */
5633};
fe693435
PM
5634
5635struct cgroup_subsys debug_subsys = {
5636 .name = "debug",
92fb9748
TH
5637 .css_alloc = debug_css_alloc,
5638 .css_free = debug_css_free,
fe693435 5639 .subsys_id = debug_subsys_id,
4baf6e33 5640 .base_cftypes = debug_files,
fe693435
PM
5641};
5642#endif /* CONFIG_CGROUP_DEBUG */