cgroup: kill CSS_REMOVED
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
c4c27fbd 63#include <linux/kthread.h>
846c7bb0 64
60063497 65#include <linux/atomic.h>
ddbcc7e8 66
28b4c27b
TH
67/* css deactivation bias, makes css->refcnt negative to deny new trygets */
68#define CSS_DEACT_BIAS INT_MIN
69
e25e2cbb
TH
70/*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 87static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 88
aae8aab4
BB
89/*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
ddbcc7e8 95#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 96static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
97#include <linux/cgroup_subsys.h>
98};
99
c6d57f33
PM
100#define MAX_CGROUP_ROOT_NAMELEN 64
101
ddbcc7e8
PM
102/*
103 * A cgroupfs_root represents the root of a cgroup hierarchy,
104 * and may be associated with a superblock to form an active
105 * hierarchy
106 */
107struct cgroupfs_root {
108 struct super_block *sb;
109
110 /*
111 * The bitmask of subsystems intended to be attached to this
112 * hierarchy
113 */
114 unsigned long subsys_bits;
115
2c6ab6d2
PM
116 /* Unique id for this hierarchy. */
117 int hierarchy_id;
118
ddbcc7e8
PM
119 /* The bitmask of subsystems currently attached to this hierarchy */
120 unsigned long actual_subsys_bits;
121
122 /* A list running through the attached subsystems */
123 struct list_head subsys_list;
124
125 /* The root cgroup for this hierarchy */
126 struct cgroup top_cgroup;
127
128 /* Tracks how many cgroups are currently defined in hierarchy.*/
129 int number_of_cgroups;
130
e5f6a860 131 /* A list running through the active hierarchies */
ddbcc7e8
PM
132 struct list_head root_list;
133
b0ca5a84
TH
134 /* All cgroups on this root, cgroup_mutex protected */
135 struct list_head allcg_list;
136
ddbcc7e8
PM
137 /* Hierarchy-specific flags */
138 unsigned long flags;
81a6a5cd 139
e788e066 140 /* The path to use for release notifications. */
81a6a5cd 141 char release_agent_path[PATH_MAX];
c6d57f33
PM
142
143 /* The name for this hierarchy - may be empty */
144 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
145};
146
ddbcc7e8
PM
147/*
148 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
149 * subsystems that are otherwise unattached - it never has more than a
150 * single cgroup, and all tasks are part of that cgroup.
151 */
152static struct cgroupfs_root rootnode;
153
05ef1d7c
TH
154/*
155 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
156 */
157struct cfent {
158 struct list_head node;
159 struct dentry *dentry;
160 struct cftype *type;
161};
162
38460b48
KH
163/*
164 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
165 * cgroup_subsys->use_id != 0.
166 */
167#define CSS_ID_MAX (65535)
168struct css_id {
169 /*
170 * The css to which this ID points. This pointer is set to valid value
171 * after cgroup is populated. If cgroup is removed, this will be NULL.
172 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
173 * is called after synchronize_rcu(). But for safe use, css_tryget()
174 * should be used for avoiding race.
38460b48 175 */
2c392b8c 176 struct cgroup_subsys_state __rcu *css;
38460b48
KH
177 /*
178 * ID of this css.
179 */
180 unsigned short id;
181 /*
182 * Depth in hierarchy which this ID belongs to.
183 */
184 unsigned short depth;
185 /*
186 * ID is freed by RCU. (and lookup routine is RCU safe.)
187 */
188 struct rcu_head rcu_head;
189 /*
190 * Hierarchy of CSS ID belongs to.
191 */
192 unsigned short stack[0]; /* Array of Length (depth+1) */
193};
194
0dea1168 195/*
25985edc 196 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
197 */
198struct cgroup_event {
199 /*
200 * Cgroup which the event belongs to.
201 */
202 struct cgroup *cgrp;
203 /*
204 * Control file which the event associated.
205 */
206 struct cftype *cft;
207 /*
208 * eventfd to signal userspace about the event.
209 */
210 struct eventfd_ctx *eventfd;
211 /*
212 * Each of these stored in a list by the cgroup.
213 */
214 struct list_head list;
215 /*
216 * All fields below needed to unregister event when
217 * userspace closes eventfd.
218 */
219 poll_table pt;
220 wait_queue_head_t *wqh;
221 wait_queue_t wait;
222 struct work_struct remove;
223};
38460b48 224
ddbcc7e8
PM
225/* The list of hierarchy roots */
226
227static LIST_HEAD(roots);
817929ec 228static int root_count;
ddbcc7e8 229
2c6ab6d2
PM
230static DEFINE_IDA(hierarchy_ida);
231static int next_hierarchy_id;
232static DEFINE_SPINLOCK(hierarchy_id_lock);
233
ddbcc7e8
PM
234/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
235#define dummytop (&rootnode.top_cgroup)
236
237/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
238 * check for fork/exit handlers to call. This avoids us having to do
239 * extra work in the fork/exit path if none of the subsystems need to
240 * be called.
ddbcc7e8 241 */
8947f9d5 242static int need_forkexit_callback __read_mostly;
ddbcc7e8 243
d11c563d
PM
244#ifdef CONFIG_PROVE_LOCKING
245int cgroup_lock_is_held(void)
246{
247 return lockdep_is_held(&cgroup_mutex);
248}
249#else /* #ifdef CONFIG_PROVE_LOCKING */
250int cgroup_lock_is_held(void)
251{
252 return mutex_is_locked(&cgroup_mutex);
253}
254#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
255
256EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
257
8e3bbf42
SQ
258static int css_unbias_refcnt(int refcnt)
259{
260 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
261}
262
28b4c27b
TH
263/* the current nr of refs, always >= 0 whether @css is deactivated or not */
264static int css_refcnt(struct cgroup_subsys_state *css)
265{
266 int v = atomic_read(&css->refcnt);
267
8e3bbf42 268 return css_unbias_refcnt(v);
28b4c27b
TH
269}
270
ddbcc7e8 271/* convenient tests for these bits */
bd89aabc 272inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 273{
bd89aabc 274 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
275}
276
277/* bits in struct cgroupfs_root flags field */
278enum {
279 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
280};
281
e9685a03 282static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
283{
284 const int bits =
bd89aabc
PM
285 (1 << CGRP_RELEASABLE) |
286 (1 << CGRP_NOTIFY_ON_RELEASE);
287 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
288}
289
e9685a03 290static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 291{
bd89aabc 292 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
293}
294
97978e6d
DL
295static int clone_children(const struct cgroup *cgrp)
296{
297 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
298}
299
ddbcc7e8
PM
300/*
301 * for_each_subsys() allows you to iterate on each subsystem attached to
302 * an active hierarchy
303 */
304#define for_each_subsys(_root, _ss) \
305list_for_each_entry(_ss, &_root->subsys_list, sibling)
306
e5f6a860
LZ
307/* for_each_active_root() allows you to iterate across the active hierarchies */
308#define for_each_active_root(_root) \
ddbcc7e8
PM
309list_for_each_entry(_root, &roots, root_list)
310
f6ea9372
TH
311static inline struct cgroup *__d_cgrp(struct dentry *dentry)
312{
313 return dentry->d_fsdata;
314}
315
05ef1d7c 316static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
317{
318 return dentry->d_fsdata;
319}
320
05ef1d7c
TH
321static inline struct cftype *__d_cft(struct dentry *dentry)
322{
323 return __d_cfe(dentry)->type;
324}
325
81a6a5cd
PM
326/* the list of cgroups eligible for automatic release. Protected by
327 * release_list_lock */
328static LIST_HEAD(release_list);
cdcc136f 329static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
330static void cgroup_release_agent(struct work_struct *work);
331static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 332static void check_for_release(struct cgroup *cgrp);
81a6a5cd 333
817929ec
PM
334/* Link structure for associating css_set objects with cgroups */
335struct cg_cgroup_link {
336 /*
337 * List running through cg_cgroup_links associated with a
338 * cgroup, anchored on cgroup->css_sets
339 */
bd89aabc 340 struct list_head cgrp_link_list;
7717f7ba 341 struct cgroup *cgrp;
817929ec
PM
342 /*
343 * List running through cg_cgroup_links pointing at a
344 * single css_set object, anchored on css_set->cg_links
345 */
346 struct list_head cg_link_list;
347 struct css_set *cg;
348};
349
350/* The default css_set - used by init and its children prior to any
351 * hierarchies being mounted. It contains a pointer to the root state
352 * for each subsystem. Also used to anchor the list of css_sets. Not
353 * reference-counted, to improve performance when child cgroups
354 * haven't been created.
355 */
356
357static struct css_set init_css_set;
358static struct cg_cgroup_link init_css_set_link;
359
e6a1105b
BB
360static int cgroup_init_idr(struct cgroup_subsys *ss,
361 struct cgroup_subsys_state *css);
38460b48 362
817929ec
PM
363/* css_set_lock protects the list of css_set objects, and the
364 * chain of tasks off each css_set. Nests outside task->alloc_lock
365 * due to cgroup_iter_start() */
366static DEFINE_RWLOCK(css_set_lock);
367static int css_set_count;
368
7717f7ba
PM
369/*
370 * hash table for cgroup groups. This improves the performance to find
371 * an existing css_set. This hash doesn't (currently) take into
372 * account cgroups in empty hierarchies.
373 */
472b1053
LZ
374#define CSS_SET_HASH_BITS 7
375#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
376static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
377
378static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
379{
380 int i;
381 int index;
382 unsigned long tmp = 0UL;
383
384 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
385 tmp += (unsigned long)css[i];
386 tmp = (tmp >> 16) ^ tmp;
387
388 index = hash_long(tmp, CSS_SET_HASH_BITS);
389
390 return &css_set_table[index];
391}
392
817929ec
PM
393/* We don't maintain the lists running through each css_set to its
394 * task until after the first call to cgroup_iter_start(). This
395 * reduces the fork()/exit() overhead for people who have cgroups
396 * compiled into their kernel but not actually in use */
8947f9d5 397static int use_task_css_set_links __read_mostly;
817929ec 398
2c6ab6d2 399static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 400{
71cbb949
KM
401 struct cg_cgroup_link *link;
402 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
403 /*
404 * Ensure that the refcount doesn't hit zero while any readers
405 * can see it. Similar to atomic_dec_and_lock(), but for an
406 * rwlock
407 */
408 if (atomic_add_unless(&cg->refcount, -1, 1))
409 return;
410 write_lock(&css_set_lock);
411 if (!atomic_dec_and_test(&cg->refcount)) {
412 write_unlock(&css_set_lock);
413 return;
414 }
81a6a5cd 415
2c6ab6d2
PM
416 /* This css_set is dead. unlink it and release cgroup refcounts */
417 hlist_del(&cg->hlist);
418 css_set_count--;
419
420 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
421 cg_link_list) {
422 struct cgroup *cgrp = link->cgrp;
423 list_del(&link->cg_link_list);
424 list_del(&link->cgrp_link_list);
bd89aabc
PM
425 if (atomic_dec_and_test(&cgrp->count) &&
426 notify_on_release(cgrp)) {
81a6a5cd 427 if (taskexit)
bd89aabc
PM
428 set_bit(CGRP_RELEASABLE, &cgrp->flags);
429 check_for_release(cgrp);
81a6a5cd 430 }
2c6ab6d2
PM
431
432 kfree(link);
81a6a5cd 433 }
2c6ab6d2
PM
434
435 write_unlock(&css_set_lock);
30088ad8 436 kfree_rcu(cg, rcu_head);
b4f48b63
PM
437}
438
817929ec
PM
439/*
440 * refcounted get/put for css_set objects
441 */
442static inline void get_css_set(struct css_set *cg)
443{
146aa1bd 444 atomic_inc(&cg->refcount);
817929ec
PM
445}
446
447static inline void put_css_set(struct css_set *cg)
448{
146aa1bd 449 __put_css_set(cg, 0);
817929ec
PM
450}
451
81a6a5cd
PM
452static inline void put_css_set_taskexit(struct css_set *cg)
453{
146aa1bd 454 __put_css_set(cg, 1);
81a6a5cd
PM
455}
456
7717f7ba
PM
457/*
458 * compare_css_sets - helper function for find_existing_css_set().
459 * @cg: candidate css_set being tested
460 * @old_cg: existing css_set for a task
461 * @new_cgrp: cgroup that's being entered by the task
462 * @template: desired set of css pointers in css_set (pre-calculated)
463 *
464 * Returns true if "cg" matches "old_cg" except for the hierarchy
465 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
466 */
467static bool compare_css_sets(struct css_set *cg,
468 struct css_set *old_cg,
469 struct cgroup *new_cgrp,
470 struct cgroup_subsys_state *template[])
471{
472 struct list_head *l1, *l2;
473
474 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
475 /* Not all subsystems matched */
476 return false;
477 }
478
479 /*
480 * Compare cgroup pointers in order to distinguish between
481 * different cgroups in heirarchies with no subsystems. We
482 * could get by with just this check alone (and skip the
483 * memcmp above) but on most setups the memcmp check will
484 * avoid the need for this more expensive check on almost all
485 * candidates.
486 */
487
488 l1 = &cg->cg_links;
489 l2 = &old_cg->cg_links;
490 while (1) {
491 struct cg_cgroup_link *cgl1, *cgl2;
492 struct cgroup *cg1, *cg2;
493
494 l1 = l1->next;
495 l2 = l2->next;
496 /* See if we reached the end - both lists are equal length. */
497 if (l1 == &cg->cg_links) {
498 BUG_ON(l2 != &old_cg->cg_links);
499 break;
500 } else {
501 BUG_ON(l2 == &old_cg->cg_links);
502 }
503 /* Locate the cgroups associated with these links. */
504 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
505 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
506 cg1 = cgl1->cgrp;
507 cg2 = cgl2->cgrp;
508 /* Hierarchies should be linked in the same order. */
509 BUG_ON(cg1->root != cg2->root);
510
511 /*
512 * If this hierarchy is the hierarchy of the cgroup
513 * that's changing, then we need to check that this
514 * css_set points to the new cgroup; if it's any other
515 * hierarchy, then this css_set should point to the
516 * same cgroup as the old css_set.
517 */
518 if (cg1->root == new_cgrp->root) {
519 if (cg1 != new_cgrp)
520 return false;
521 } else {
522 if (cg1 != cg2)
523 return false;
524 }
525 }
526 return true;
527}
528
817929ec
PM
529/*
530 * find_existing_css_set() is a helper for
531 * find_css_set(), and checks to see whether an existing
472b1053 532 * css_set is suitable.
817929ec
PM
533 *
534 * oldcg: the cgroup group that we're using before the cgroup
535 * transition
536 *
bd89aabc 537 * cgrp: the cgroup that we're moving into
817929ec
PM
538 *
539 * template: location in which to build the desired set of subsystem
540 * state objects for the new cgroup group
541 */
817929ec
PM
542static struct css_set *find_existing_css_set(
543 struct css_set *oldcg,
bd89aabc 544 struct cgroup *cgrp,
817929ec 545 struct cgroup_subsys_state *template[])
b4f48b63
PM
546{
547 int i;
bd89aabc 548 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
549 struct hlist_head *hhead;
550 struct hlist_node *node;
551 struct css_set *cg;
817929ec 552
aae8aab4
BB
553 /*
554 * Build the set of subsystem state objects that we want to see in the
555 * new css_set. while subsystems can change globally, the entries here
556 * won't change, so no need for locking.
557 */
817929ec 558 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 559 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
560 /* Subsystem is in this hierarchy. So we want
561 * the subsystem state from the new
562 * cgroup */
bd89aabc 563 template[i] = cgrp->subsys[i];
817929ec
PM
564 } else {
565 /* Subsystem is not in this hierarchy, so we
566 * don't want to change the subsystem state */
567 template[i] = oldcg->subsys[i];
568 }
569 }
570
472b1053
LZ
571 hhead = css_set_hash(template);
572 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
573 if (!compare_css_sets(cg, oldcg, cgrp, template))
574 continue;
575
576 /* This css_set matches what we need */
577 return cg;
472b1053 578 }
817929ec
PM
579
580 /* No existing cgroup group matched */
581 return NULL;
582}
583
36553434
LZ
584static void free_cg_links(struct list_head *tmp)
585{
586 struct cg_cgroup_link *link;
587 struct cg_cgroup_link *saved_link;
588
589 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
590 list_del(&link->cgrp_link_list);
591 kfree(link);
592 }
593}
594
817929ec
PM
595/*
596 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 597 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
598 * success or a negative error
599 */
817929ec
PM
600static int allocate_cg_links(int count, struct list_head *tmp)
601{
602 struct cg_cgroup_link *link;
603 int i;
604 INIT_LIST_HEAD(tmp);
605 for (i = 0; i < count; i++) {
606 link = kmalloc(sizeof(*link), GFP_KERNEL);
607 if (!link) {
36553434 608 free_cg_links(tmp);
817929ec
PM
609 return -ENOMEM;
610 }
bd89aabc 611 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
612 }
613 return 0;
614}
615
c12f65d4
LZ
616/**
617 * link_css_set - a helper function to link a css_set to a cgroup
618 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
619 * @cg: the css_set to be linked
620 * @cgrp: the destination cgroup
621 */
622static void link_css_set(struct list_head *tmp_cg_links,
623 struct css_set *cg, struct cgroup *cgrp)
624{
625 struct cg_cgroup_link *link;
626
627 BUG_ON(list_empty(tmp_cg_links));
628 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
629 cgrp_link_list);
630 link->cg = cg;
7717f7ba 631 link->cgrp = cgrp;
2c6ab6d2 632 atomic_inc(&cgrp->count);
c12f65d4 633 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
634 /*
635 * Always add links to the tail of the list so that the list
636 * is sorted by order of hierarchy creation
637 */
638 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
639}
640
817929ec
PM
641/*
642 * find_css_set() takes an existing cgroup group and a
643 * cgroup object, and returns a css_set object that's
644 * equivalent to the old group, but with the given cgroup
645 * substituted into the appropriate hierarchy. Must be called with
646 * cgroup_mutex held
647 */
817929ec 648static struct css_set *find_css_set(
bd89aabc 649 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
650{
651 struct css_set *res;
652 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
653
654 struct list_head tmp_cg_links;
817929ec 655
472b1053 656 struct hlist_head *hhead;
7717f7ba 657 struct cg_cgroup_link *link;
472b1053 658
817929ec
PM
659 /* First see if we already have a cgroup group that matches
660 * the desired set */
7e9abd89 661 read_lock(&css_set_lock);
bd89aabc 662 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
663 if (res)
664 get_css_set(res);
7e9abd89 665 read_unlock(&css_set_lock);
817929ec
PM
666
667 if (res)
668 return res;
669
670 res = kmalloc(sizeof(*res), GFP_KERNEL);
671 if (!res)
672 return NULL;
673
674 /* Allocate all the cg_cgroup_link objects that we'll need */
675 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
676 kfree(res);
677 return NULL;
678 }
679
146aa1bd 680 atomic_set(&res->refcount, 1);
817929ec
PM
681 INIT_LIST_HEAD(&res->cg_links);
682 INIT_LIST_HEAD(&res->tasks);
472b1053 683 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
684
685 /* Copy the set of subsystem state objects generated in
686 * find_existing_css_set() */
687 memcpy(res->subsys, template, sizeof(res->subsys));
688
689 write_lock(&css_set_lock);
690 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
691 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
692 struct cgroup *c = link->cgrp;
693 if (c->root == cgrp->root)
694 c = cgrp;
695 link_css_set(&tmp_cg_links, res, c);
696 }
817929ec
PM
697
698 BUG_ON(!list_empty(&tmp_cg_links));
699
817929ec 700 css_set_count++;
472b1053
LZ
701
702 /* Add this cgroup group to the hash table */
703 hhead = css_set_hash(res->subsys);
704 hlist_add_head(&res->hlist, hhead);
705
817929ec
PM
706 write_unlock(&css_set_lock);
707
708 return res;
b4f48b63
PM
709}
710
7717f7ba
PM
711/*
712 * Return the cgroup for "task" from the given hierarchy. Must be
713 * called with cgroup_mutex held.
714 */
715static struct cgroup *task_cgroup_from_root(struct task_struct *task,
716 struct cgroupfs_root *root)
717{
718 struct css_set *css;
719 struct cgroup *res = NULL;
720
721 BUG_ON(!mutex_is_locked(&cgroup_mutex));
722 read_lock(&css_set_lock);
723 /*
724 * No need to lock the task - since we hold cgroup_mutex the
725 * task can't change groups, so the only thing that can happen
726 * is that it exits and its css is set back to init_css_set.
727 */
728 css = task->cgroups;
729 if (css == &init_css_set) {
730 res = &root->top_cgroup;
731 } else {
732 struct cg_cgroup_link *link;
733 list_for_each_entry(link, &css->cg_links, cg_link_list) {
734 struct cgroup *c = link->cgrp;
735 if (c->root == root) {
736 res = c;
737 break;
738 }
739 }
740 }
741 read_unlock(&css_set_lock);
742 BUG_ON(!res);
743 return res;
744}
745
ddbcc7e8
PM
746/*
747 * There is one global cgroup mutex. We also require taking
748 * task_lock() when dereferencing a task's cgroup subsys pointers.
749 * See "The task_lock() exception", at the end of this comment.
750 *
751 * A task must hold cgroup_mutex to modify cgroups.
752 *
753 * Any task can increment and decrement the count field without lock.
754 * So in general, code holding cgroup_mutex can't rely on the count
755 * field not changing. However, if the count goes to zero, then only
956db3ca 756 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
757 * means that no tasks are currently attached, therefore there is no
758 * way a task attached to that cgroup can fork (the other way to
759 * increment the count). So code holding cgroup_mutex can safely
760 * assume that if the count is zero, it will stay zero. Similarly, if
761 * a task holds cgroup_mutex on a cgroup with zero count, it
762 * knows that the cgroup won't be removed, as cgroup_rmdir()
763 * needs that mutex.
764 *
ddbcc7e8
PM
765 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
766 * (usually) take cgroup_mutex. These are the two most performance
767 * critical pieces of code here. The exception occurs on cgroup_exit(),
768 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
769 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
770 * to the release agent with the name of the cgroup (path relative to
771 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
772 *
773 * A cgroup can only be deleted if both its 'count' of using tasks
774 * is zero, and its list of 'children' cgroups is empty. Since all
775 * tasks in the system use _some_ cgroup, and since there is always at
776 * least one task in the system (init, pid == 1), therefore, top_cgroup
777 * always has either children cgroups and/or using tasks. So we don't
778 * need a special hack to ensure that top_cgroup cannot be deleted.
779 *
780 * The task_lock() exception
781 *
782 * The need for this exception arises from the action of
956db3ca 783 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 784 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
785 * several performance critical places that need to reference
786 * task->cgroup without the expense of grabbing a system global
787 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 788 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
789 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
790 * the task_struct routinely used for such matters.
791 *
792 * P.S. One more locking exception. RCU is used to guard the
956db3ca 793 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
794 */
795
ddbcc7e8
PM
796/**
797 * cgroup_lock - lock out any changes to cgroup structures
798 *
799 */
ddbcc7e8
PM
800void cgroup_lock(void)
801{
802 mutex_lock(&cgroup_mutex);
803}
67523c48 804EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
805
806/**
807 * cgroup_unlock - release lock on cgroup changes
808 *
809 * Undo the lock taken in a previous cgroup_lock() call.
810 */
ddbcc7e8
PM
811void cgroup_unlock(void)
812{
813 mutex_unlock(&cgroup_mutex);
814}
67523c48 815EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
816
817/*
818 * A couple of forward declarations required, due to cyclic reference loop:
819 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
820 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
821 * -> cgroup_mkdir.
822 */
823
18bb1db3 824static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 825static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 826static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 827static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 828static const struct inode_operations cgroup_dir_inode_operations;
828c0950 829static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
830
831static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 832 .name = "cgroup",
e4ad08fe 833 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 834};
ddbcc7e8 835
38460b48
KH
836static int alloc_css_id(struct cgroup_subsys *ss,
837 struct cgroup *parent, struct cgroup *child);
838
a5e7ed32 839static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
840{
841 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
842
843 if (inode) {
85fe4025 844 inode->i_ino = get_next_ino();
ddbcc7e8 845 inode->i_mode = mode;
76aac0e9
DH
846 inode->i_uid = current_fsuid();
847 inode->i_gid = current_fsgid();
ddbcc7e8
PM
848 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
849 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
850 }
851 return inode;
852}
853
4fca88c8
KH
854/*
855 * Call subsys's pre_destroy handler.
856 * This is called before css refcnt check.
857 */
ec64f515 858static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
859{
860 struct cgroup_subsys *ss;
ec64f515
KH
861 int ret = 0;
862
48ddbe19
TH
863 for_each_subsys(cgrp->root, ss) {
864 if (!ss->pre_destroy)
865 continue;
866
867 ret = ss->pre_destroy(cgrp);
ed957793 868 if (WARN_ON_ONCE(ret))
48ddbe19 869 break;
48ddbe19 870 }
0dea1168 871
ec64f515 872 return ret;
4fca88c8
KH
873}
874
ddbcc7e8
PM
875static void cgroup_diput(struct dentry *dentry, struct inode *inode)
876{
877 /* is dentry a directory ? if so, kfree() associated cgroup */
878 if (S_ISDIR(inode->i_mode)) {
bd89aabc 879 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 880 struct cgroup_subsys *ss;
bd89aabc 881 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
882 /* It's possible for external users to be holding css
883 * reference counts on a cgroup; css_put() needs to
884 * be able to access the cgroup after decrementing
885 * the reference count in order to know if it needs to
886 * queue the cgroup to be handled by the release
887 * agent */
888 synchronize_rcu();
8dc4f3e1
PM
889
890 mutex_lock(&cgroup_mutex);
891 /*
892 * Release the subsystem state objects.
893 */
75139b82 894 for_each_subsys(cgrp->root, ss)
761b3ef5 895 ss->destroy(cgrp);
8dc4f3e1
PM
896
897 cgrp->root->number_of_cgroups--;
898 mutex_unlock(&cgroup_mutex);
899
a47295e6 900 /*
7db5b3ca
TH
901 * Drop the active superblock reference that we took when we
902 * created the cgroup
a47295e6 903 */
7db5b3ca 904 deactivate_super(cgrp->root->sb);
8dc4f3e1 905
72a8cb30
BB
906 /*
907 * if we're getting rid of the cgroup, refcount should ensure
908 * that there are no pidlists left.
909 */
910 BUG_ON(!list_empty(&cgrp->pidlists));
911
f2da1c40 912 kfree_rcu(cgrp, rcu_head);
05ef1d7c
TH
913 } else {
914 struct cfent *cfe = __d_cfe(dentry);
915 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
916
917 WARN_ONCE(!list_empty(&cfe->node) &&
918 cgrp != &cgrp->root->top_cgroup,
919 "cfe still linked for %s\n", cfe->type->name);
920 kfree(cfe);
ddbcc7e8
PM
921 }
922 iput(inode);
923}
924
c72a04e3
AV
925static int cgroup_delete(const struct dentry *d)
926{
927 return 1;
928}
929
ddbcc7e8
PM
930static void remove_dir(struct dentry *d)
931{
932 struct dentry *parent = dget(d->d_parent);
933
934 d_delete(d);
935 simple_rmdir(parent->d_inode, d);
936 dput(parent);
937}
938
05ef1d7c
TH
939static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
940{
941 struct cfent *cfe;
942
943 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
944 lockdep_assert_held(&cgroup_mutex);
945
946 list_for_each_entry(cfe, &cgrp->files, node) {
947 struct dentry *d = cfe->dentry;
948
949 if (cft && cfe->type != cft)
950 continue;
951
952 dget(d);
953 d_delete(d);
ce27e317 954 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
955 list_del_init(&cfe->node);
956 dput(d);
957
958 return 0;
ddbcc7e8 959 }
05ef1d7c
TH
960 return -ENOENT;
961}
962
963static void cgroup_clear_directory(struct dentry *dir)
964{
965 struct cgroup *cgrp = __d_cgrp(dir);
966
967 while (!list_empty(&cgrp->files))
968 cgroup_rm_file(cgrp, NULL);
ddbcc7e8
PM
969}
970
971/*
972 * NOTE : the dentry must have been dget()'ed
973 */
974static void cgroup_d_remove_dir(struct dentry *dentry)
975{
2fd6b7f5
NP
976 struct dentry *parent;
977
ddbcc7e8
PM
978 cgroup_clear_directory(dentry);
979
2fd6b7f5
NP
980 parent = dentry->d_parent;
981 spin_lock(&parent->d_lock);
3ec762ad 982 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 983 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
984 spin_unlock(&dentry->d_lock);
985 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
986 remove_dir(dentry);
987}
988
ec64f515
KH
989/*
990 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
991 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
992 * reference to css->refcnt. In general, this refcnt is expected to goes down
993 * to zero, soon.
994 *
88703267 995 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515 996 */
1c6c3fad 997static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
ec64f515 998
88703267 999static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 1000{
88703267 1001 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
1002 wake_up_all(&cgroup_rmdir_waitq);
1003}
1004
88703267
KH
1005void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1006{
1007 css_get(css);
1008}
1009
1010void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1011{
1012 cgroup_wakeup_rmdir_waiter(css->cgroup);
1013 css_put(css);
1014}
1015
aae8aab4 1016/*
cf5d5941
BB
1017 * Call with cgroup_mutex held. Drops reference counts on modules, including
1018 * any duplicate ones that parse_cgroupfs_options took. If this function
1019 * returns an error, no reference counts are touched.
aae8aab4 1020 */
ddbcc7e8
PM
1021static int rebind_subsystems(struct cgroupfs_root *root,
1022 unsigned long final_bits)
1023{
1024 unsigned long added_bits, removed_bits;
bd89aabc 1025 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1026 int i;
1027
aae8aab4 1028 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1029 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1030
ddbcc7e8
PM
1031 removed_bits = root->actual_subsys_bits & ~final_bits;
1032 added_bits = final_bits & ~root->actual_subsys_bits;
1033 /* Check that any added subsystems are currently free */
1034 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1035 unsigned long bit = 1UL << i;
ddbcc7e8
PM
1036 struct cgroup_subsys *ss = subsys[i];
1037 if (!(bit & added_bits))
1038 continue;
aae8aab4
BB
1039 /*
1040 * Nobody should tell us to do a subsys that doesn't exist:
1041 * parse_cgroupfs_options should catch that case and refcounts
1042 * ensure that subsystems won't disappear once selected.
1043 */
1044 BUG_ON(ss == NULL);
ddbcc7e8
PM
1045 if (ss->root != &rootnode) {
1046 /* Subsystem isn't free */
1047 return -EBUSY;
1048 }
1049 }
1050
1051 /* Currently we don't handle adding/removing subsystems when
1052 * any child cgroups exist. This is theoretically supportable
1053 * but involves complex error handling, so it's being left until
1054 * later */
307257cf 1055 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1056 return -EBUSY;
1057
1058 /* Process each subsystem */
1059 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1060 struct cgroup_subsys *ss = subsys[i];
1061 unsigned long bit = 1UL << i;
1062 if (bit & added_bits) {
1063 /* We're binding this subsystem to this hierarchy */
aae8aab4 1064 BUG_ON(ss == NULL);
bd89aabc 1065 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1066 BUG_ON(!dummytop->subsys[i]);
1067 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1068 cgrp->subsys[i] = dummytop->subsys[i];
1069 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1070 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1071 ss->root = root;
ddbcc7e8 1072 if (ss->bind)
761b3ef5 1073 ss->bind(cgrp);
cf5d5941 1074 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1075 } else if (bit & removed_bits) {
1076 /* We're removing this subsystem */
aae8aab4 1077 BUG_ON(ss == NULL);
bd89aabc
PM
1078 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1079 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1080 if (ss->bind)
761b3ef5 1081 ss->bind(dummytop);
ddbcc7e8 1082 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1083 cgrp->subsys[i] = NULL;
b2aa30f7 1084 subsys[i]->root = &rootnode;
33a68ac1 1085 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1086 /* subsystem is now free - drop reference on module */
1087 module_put(ss->module);
ddbcc7e8
PM
1088 } else if (bit & final_bits) {
1089 /* Subsystem state should already exist */
aae8aab4 1090 BUG_ON(ss == NULL);
bd89aabc 1091 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1092 /*
1093 * a refcount was taken, but we already had one, so
1094 * drop the extra reference.
1095 */
1096 module_put(ss->module);
1097#ifdef CONFIG_MODULE_UNLOAD
1098 BUG_ON(ss->module && !module_refcount(ss->module));
1099#endif
ddbcc7e8
PM
1100 } else {
1101 /* Subsystem state shouldn't exist */
bd89aabc 1102 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1103 }
1104 }
1105 root->subsys_bits = root->actual_subsys_bits = final_bits;
1106 synchronize_rcu();
1107
1108 return 0;
1109}
1110
34c80b1d 1111static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1112{
34c80b1d 1113 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1114 struct cgroup_subsys *ss;
1115
e25e2cbb 1116 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1117 for_each_subsys(root, ss)
1118 seq_printf(seq, ",%s", ss->name);
1119 if (test_bit(ROOT_NOPREFIX, &root->flags))
1120 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1121 if (strlen(root->release_agent_path))
1122 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1123 if (clone_children(&root->top_cgroup))
1124 seq_puts(seq, ",clone_children");
c6d57f33
PM
1125 if (strlen(root->name))
1126 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1127 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1128 return 0;
1129}
1130
1131struct cgroup_sb_opts {
1132 unsigned long subsys_bits;
1133 unsigned long flags;
81a6a5cd 1134 char *release_agent;
97978e6d 1135 bool clone_children;
c6d57f33 1136 char *name;
2c6ab6d2
PM
1137 /* User explicitly requested empty subsystem */
1138 bool none;
c6d57f33
PM
1139
1140 struct cgroupfs_root *new_root;
2c6ab6d2 1141
ddbcc7e8
PM
1142};
1143
aae8aab4
BB
1144/*
1145 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1146 * with cgroup_mutex held to protect the subsys[] array. This function takes
1147 * refcounts on subsystems to be used, unless it returns error, in which case
1148 * no refcounts are taken.
aae8aab4 1149 */
cf5d5941 1150static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1151{
32a8cf23
DL
1152 char *token, *o = data;
1153 bool all_ss = false, one_ss = false;
f9ab5b5b 1154 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1155 int i;
1156 bool module_pin_failed = false;
f9ab5b5b 1157
aae8aab4
BB
1158 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1159
f9ab5b5b
LZ
1160#ifdef CONFIG_CPUSETS
1161 mask = ~(1UL << cpuset_subsys_id);
1162#endif
ddbcc7e8 1163
c6d57f33 1164 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1165
1166 while ((token = strsep(&o, ",")) != NULL) {
1167 if (!*token)
1168 return -EINVAL;
32a8cf23 1169 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1170 /* Explicitly have no subsystems */
1171 opts->none = true;
32a8cf23
DL
1172 continue;
1173 }
1174 if (!strcmp(token, "all")) {
1175 /* Mutually exclusive option 'all' + subsystem name */
1176 if (one_ss)
1177 return -EINVAL;
1178 all_ss = true;
1179 continue;
1180 }
1181 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1182 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1183 continue;
1184 }
1185 if (!strcmp(token, "clone_children")) {
97978e6d 1186 opts->clone_children = true;
32a8cf23
DL
1187 continue;
1188 }
1189 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1190 /* Specifying two release agents is forbidden */
1191 if (opts->release_agent)
1192 return -EINVAL;
c6d57f33 1193 opts->release_agent =
e400c285 1194 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1195 if (!opts->release_agent)
1196 return -ENOMEM;
32a8cf23
DL
1197 continue;
1198 }
1199 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1200 const char *name = token + 5;
1201 /* Can't specify an empty name */
1202 if (!strlen(name))
1203 return -EINVAL;
1204 /* Must match [\w.-]+ */
1205 for (i = 0; i < strlen(name); i++) {
1206 char c = name[i];
1207 if (isalnum(c))
1208 continue;
1209 if ((c == '.') || (c == '-') || (c == '_'))
1210 continue;
1211 return -EINVAL;
1212 }
1213 /* Specifying two names is forbidden */
1214 if (opts->name)
1215 return -EINVAL;
1216 opts->name = kstrndup(name,
e400c285 1217 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1218 GFP_KERNEL);
1219 if (!opts->name)
1220 return -ENOMEM;
32a8cf23
DL
1221
1222 continue;
1223 }
1224
1225 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1226 struct cgroup_subsys *ss = subsys[i];
1227 if (ss == NULL)
1228 continue;
1229 if (strcmp(token, ss->name))
1230 continue;
1231 if (ss->disabled)
1232 continue;
1233
1234 /* Mutually exclusive option 'all' + subsystem name */
1235 if (all_ss)
1236 return -EINVAL;
1237 set_bit(i, &opts->subsys_bits);
1238 one_ss = true;
1239
1240 break;
1241 }
1242 if (i == CGROUP_SUBSYS_COUNT)
1243 return -ENOENT;
1244 }
1245
1246 /*
1247 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1248 * otherwise if 'none', 'name=' and a subsystem name options
1249 * were not specified, let's default to 'all'
32a8cf23 1250 */
0d19ea86 1251 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1252 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1253 struct cgroup_subsys *ss = subsys[i];
1254 if (ss == NULL)
1255 continue;
1256 if (ss->disabled)
1257 continue;
1258 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1259 }
1260 }
1261
2c6ab6d2
PM
1262 /* Consistency checks */
1263
f9ab5b5b
LZ
1264 /*
1265 * Option noprefix was introduced just for backward compatibility
1266 * with the old cpuset, so we allow noprefix only if mounting just
1267 * the cpuset subsystem.
1268 */
1269 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1270 (opts->subsys_bits & mask))
1271 return -EINVAL;
1272
2c6ab6d2
PM
1273
1274 /* Can't specify "none" and some subsystems */
1275 if (opts->subsys_bits && opts->none)
1276 return -EINVAL;
1277
1278 /*
1279 * We either have to specify by name or by subsystems. (So all
1280 * empty hierarchies must have a name).
1281 */
c6d57f33 1282 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1283 return -EINVAL;
1284
cf5d5941
BB
1285 /*
1286 * Grab references on all the modules we'll need, so the subsystems
1287 * don't dance around before rebind_subsystems attaches them. This may
1288 * take duplicate reference counts on a subsystem that's already used,
1289 * but rebind_subsystems handles this case.
1290 */
1291 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1292 unsigned long bit = 1UL << i;
1293
1294 if (!(bit & opts->subsys_bits))
1295 continue;
1296 if (!try_module_get(subsys[i]->module)) {
1297 module_pin_failed = true;
1298 break;
1299 }
1300 }
1301 if (module_pin_failed) {
1302 /*
1303 * oops, one of the modules was going away. this means that we
1304 * raced with a module_delete call, and to the user this is
1305 * essentially a "subsystem doesn't exist" case.
1306 */
1307 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1308 /* drop refcounts only on the ones we took */
1309 unsigned long bit = 1UL << i;
1310
1311 if (!(bit & opts->subsys_bits))
1312 continue;
1313 module_put(subsys[i]->module);
1314 }
1315 return -ENOENT;
1316 }
1317
ddbcc7e8
PM
1318 return 0;
1319}
1320
cf5d5941
BB
1321static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1322{
1323 int i;
1324 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1325 unsigned long bit = 1UL << i;
1326
1327 if (!(bit & subsys_bits))
1328 continue;
1329 module_put(subsys[i]->module);
1330 }
1331}
1332
ddbcc7e8
PM
1333static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1334{
1335 int ret = 0;
1336 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1337 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1338 struct cgroup_sb_opts opts;
1339
bd89aabc 1340 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1341 mutex_lock(&cgroup_mutex);
e25e2cbb 1342 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1343
1344 /* See what subsystems are wanted */
1345 ret = parse_cgroupfs_options(data, &opts);
1346 if (ret)
1347 goto out_unlock;
1348
8b5a5a9d
TH
1349 /* See feature-removal-schedule.txt */
1350 if (opts.subsys_bits != root->actual_subsys_bits || opts.release_agent)
1351 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1352 task_tgid_nr(current), current->comm);
1353
cf5d5941
BB
1354 /* Don't allow flags or name to change at remount */
1355 if (opts.flags != root->flags ||
1356 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1357 ret = -EINVAL;
cf5d5941 1358 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1359 goto out_unlock;
1360 }
1361
ddbcc7e8 1362 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1363 if (ret) {
1364 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1365 goto out_unlock;
cf5d5941 1366 }
ddbcc7e8 1367
ff4c8d50
TH
1368 /* clear out any existing files and repopulate subsystem files */
1369 cgroup_clear_directory(cgrp->dentry);
0670e08b 1370 cgroup_populate_dir(cgrp);
ddbcc7e8 1371
81a6a5cd
PM
1372 if (opts.release_agent)
1373 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1374 out_unlock:
66bdc9cf 1375 kfree(opts.release_agent);
c6d57f33 1376 kfree(opts.name);
e25e2cbb 1377 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1378 mutex_unlock(&cgroup_mutex);
bd89aabc 1379 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1380 return ret;
1381}
1382
b87221de 1383static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1384 .statfs = simple_statfs,
1385 .drop_inode = generic_delete_inode,
1386 .show_options = cgroup_show_options,
1387 .remount_fs = cgroup_remount,
1388};
1389
cc31edce
PM
1390static void init_cgroup_housekeeping(struct cgroup *cgrp)
1391{
1392 INIT_LIST_HEAD(&cgrp->sibling);
1393 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1394 INIT_LIST_HEAD(&cgrp->files);
cc31edce
PM
1395 INIT_LIST_HEAD(&cgrp->css_sets);
1396 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1397 INIT_LIST_HEAD(&cgrp->pidlists);
1398 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1399 INIT_LIST_HEAD(&cgrp->event_list);
1400 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1401}
c6d57f33 1402
ddbcc7e8
PM
1403static void init_cgroup_root(struct cgroupfs_root *root)
1404{
bd89aabc 1405 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1406
ddbcc7e8
PM
1407 INIT_LIST_HEAD(&root->subsys_list);
1408 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1409 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1410 root->number_of_cgroups = 1;
bd89aabc
PM
1411 cgrp->root = root;
1412 cgrp->top_cgroup = cgrp;
b0ca5a84 1413 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
cc31edce 1414 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1415}
1416
2c6ab6d2
PM
1417static bool init_root_id(struct cgroupfs_root *root)
1418{
1419 int ret = 0;
1420
1421 do {
1422 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1423 return false;
1424 spin_lock(&hierarchy_id_lock);
1425 /* Try to allocate the next unused ID */
1426 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1427 &root->hierarchy_id);
1428 if (ret == -ENOSPC)
1429 /* Try again starting from 0 */
1430 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1431 if (!ret) {
1432 next_hierarchy_id = root->hierarchy_id + 1;
1433 } else if (ret != -EAGAIN) {
1434 /* Can only get here if the 31-bit IDR is full ... */
1435 BUG_ON(ret);
1436 }
1437 spin_unlock(&hierarchy_id_lock);
1438 } while (ret);
1439 return true;
1440}
1441
ddbcc7e8
PM
1442static int cgroup_test_super(struct super_block *sb, void *data)
1443{
c6d57f33 1444 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1445 struct cgroupfs_root *root = sb->s_fs_info;
1446
c6d57f33
PM
1447 /* If we asked for a name then it must match */
1448 if (opts->name && strcmp(opts->name, root->name))
1449 return 0;
ddbcc7e8 1450
2c6ab6d2
PM
1451 /*
1452 * If we asked for subsystems (or explicitly for no
1453 * subsystems) then they must match
1454 */
1455 if ((opts->subsys_bits || opts->none)
1456 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1457 return 0;
1458
1459 return 1;
1460}
1461
c6d57f33
PM
1462static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1463{
1464 struct cgroupfs_root *root;
1465
2c6ab6d2 1466 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1467 return NULL;
1468
1469 root = kzalloc(sizeof(*root), GFP_KERNEL);
1470 if (!root)
1471 return ERR_PTR(-ENOMEM);
1472
2c6ab6d2
PM
1473 if (!init_root_id(root)) {
1474 kfree(root);
1475 return ERR_PTR(-ENOMEM);
1476 }
c6d57f33 1477 init_cgroup_root(root);
2c6ab6d2 1478
c6d57f33
PM
1479 root->subsys_bits = opts->subsys_bits;
1480 root->flags = opts->flags;
1481 if (opts->release_agent)
1482 strcpy(root->release_agent_path, opts->release_agent);
1483 if (opts->name)
1484 strcpy(root->name, opts->name);
97978e6d
DL
1485 if (opts->clone_children)
1486 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1487 return root;
1488}
1489
2c6ab6d2
PM
1490static void cgroup_drop_root(struct cgroupfs_root *root)
1491{
1492 if (!root)
1493 return;
1494
1495 BUG_ON(!root->hierarchy_id);
1496 spin_lock(&hierarchy_id_lock);
1497 ida_remove(&hierarchy_ida, root->hierarchy_id);
1498 spin_unlock(&hierarchy_id_lock);
1499 kfree(root);
1500}
1501
ddbcc7e8
PM
1502static int cgroup_set_super(struct super_block *sb, void *data)
1503{
1504 int ret;
c6d57f33
PM
1505 struct cgroup_sb_opts *opts = data;
1506
1507 /* If we don't have a new root, we can't set up a new sb */
1508 if (!opts->new_root)
1509 return -EINVAL;
1510
2c6ab6d2 1511 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1512
1513 ret = set_anon_super(sb, NULL);
1514 if (ret)
1515 return ret;
1516
c6d57f33
PM
1517 sb->s_fs_info = opts->new_root;
1518 opts->new_root->sb = sb;
ddbcc7e8
PM
1519
1520 sb->s_blocksize = PAGE_CACHE_SIZE;
1521 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1522 sb->s_magic = CGROUP_SUPER_MAGIC;
1523 sb->s_op = &cgroup_ops;
1524
1525 return 0;
1526}
1527
1528static int cgroup_get_rootdir(struct super_block *sb)
1529{
0df6a63f
AV
1530 static const struct dentry_operations cgroup_dops = {
1531 .d_iput = cgroup_diput,
c72a04e3 1532 .d_delete = cgroup_delete,
0df6a63f
AV
1533 };
1534
ddbcc7e8
PM
1535 struct inode *inode =
1536 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1537
1538 if (!inode)
1539 return -ENOMEM;
1540
ddbcc7e8
PM
1541 inode->i_fop = &simple_dir_operations;
1542 inode->i_op = &cgroup_dir_inode_operations;
1543 /* directories start off with i_nlink == 2 (for "." entry) */
1544 inc_nlink(inode);
48fde701
AV
1545 sb->s_root = d_make_root(inode);
1546 if (!sb->s_root)
ddbcc7e8 1547 return -ENOMEM;
0df6a63f
AV
1548 /* for everything else we want ->d_op set */
1549 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1550 return 0;
1551}
1552
f7e83571 1553static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1554 int flags, const char *unused_dev_name,
f7e83571 1555 void *data)
ddbcc7e8
PM
1556{
1557 struct cgroup_sb_opts opts;
c6d57f33 1558 struct cgroupfs_root *root;
ddbcc7e8
PM
1559 int ret = 0;
1560 struct super_block *sb;
c6d57f33 1561 struct cgroupfs_root *new_root;
e25e2cbb 1562 struct inode *inode;
ddbcc7e8
PM
1563
1564 /* First find the desired set of subsystems */
aae8aab4 1565 mutex_lock(&cgroup_mutex);
ddbcc7e8 1566 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1567 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1568 if (ret)
1569 goto out_err;
ddbcc7e8 1570
c6d57f33
PM
1571 /*
1572 * Allocate a new cgroup root. We may not need it if we're
1573 * reusing an existing hierarchy.
1574 */
1575 new_root = cgroup_root_from_opts(&opts);
1576 if (IS_ERR(new_root)) {
1577 ret = PTR_ERR(new_root);
cf5d5941 1578 goto drop_modules;
81a6a5cd 1579 }
c6d57f33 1580 opts.new_root = new_root;
ddbcc7e8 1581
c6d57f33 1582 /* Locate an existing or new sb for this hierarchy */
9249e17f 1583 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1584 if (IS_ERR(sb)) {
c6d57f33 1585 ret = PTR_ERR(sb);
2c6ab6d2 1586 cgroup_drop_root(opts.new_root);
cf5d5941 1587 goto drop_modules;
ddbcc7e8
PM
1588 }
1589
c6d57f33
PM
1590 root = sb->s_fs_info;
1591 BUG_ON(!root);
1592 if (root == opts.new_root) {
1593 /* We used the new root structure, so this is a new hierarchy */
1594 struct list_head tmp_cg_links;
c12f65d4 1595 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1596 struct cgroupfs_root *existing_root;
2ce9738b 1597 const struct cred *cred;
28fd5dfc 1598 int i;
ddbcc7e8
PM
1599
1600 BUG_ON(sb->s_root != NULL);
1601
1602 ret = cgroup_get_rootdir(sb);
1603 if (ret)
1604 goto drop_new_super;
817929ec 1605 inode = sb->s_root->d_inode;
ddbcc7e8 1606
817929ec 1607 mutex_lock(&inode->i_mutex);
ddbcc7e8 1608 mutex_lock(&cgroup_mutex);
e25e2cbb 1609 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1610
e25e2cbb
TH
1611 /* Check for name clashes with existing mounts */
1612 ret = -EBUSY;
1613 if (strlen(root->name))
1614 for_each_active_root(existing_root)
1615 if (!strcmp(existing_root->name, root->name))
1616 goto unlock_drop;
c6d57f33 1617
817929ec
PM
1618 /*
1619 * We're accessing css_set_count without locking
1620 * css_set_lock here, but that's OK - it can only be
1621 * increased by someone holding cgroup_lock, and
1622 * that's us. The worst that can happen is that we
1623 * have some link structures left over
1624 */
1625 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1626 if (ret)
1627 goto unlock_drop;
817929ec 1628
ddbcc7e8
PM
1629 ret = rebind_subsystems(root, root->subsys_bits);
1630 if (ret == -EBUSY) {
c6d57f33 1631 free_cg_links(&tmp_cg_links);
e25e2cbb 1632 goto unlock_drop;
ddbcc7e8 1633 }
cf5d5941
BB
1634 /*
1635 * There must be no failure case after here, since rebinding
1636 * takes care of subsystems' refcounts, which are explicitly
1637 * dropped in the failure exit path.
1638 */
ddbcc7e8
PM
1639
1640 /* EBUSY should be the only error here */
1641 BUG_ON(ret);
1642
1643 list_add(&root->root_list, &roots);
817929ec 1644 root_count++;
ddbcc7e8 1645
c12f65d4 1646 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1647 root->top_cgroup.dentry = sb->s_root;
1648
817929ec
PM
1649 /* Link the top cgroup in this hierarchy into all
1650 * the css_set objects */
1651 write_lock(&css_set_lock);
28fd5dfc
LZ
1652 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1653 struct hlist_head *hhead = &css_set_table[i];
1654 struct hlist_node *node;
817929ec 1655 struct css_set *cg;
28fd5dfc 1656
c12f65d4
LZ
1657 hlist_for_each_entry(cg, node, hhead, hlist)
1658 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1659 }
817929ec
PM
1660 write_unlock(&css_set_lock);
1661
1662 free_cg_links(&tmp_cg_links);
1663
c12f65d4
LZ
1664 BUG_ON(!list_empty(&root_cgrp->sibling));
1665 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1666 BUG_ON(root->number_of_cgroups != 1);
1667
2ce9738b 1668 cred = override_creds(&init_cred);
c12f65d4 1669 cgroup_populate_dir(root_cgrp);
2ce9738b 1670 revert_creds(cred);
e25e2cbb 1671 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1672 mutex_unlock(&cgroup_mutex);
34f77a90 1673 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1674 } else {
1675 /*
1676 * We re-used an existing hierarchy - the new root (if
1677 * any) is not needed
1678 */
2c6ab6d2 1679 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1680 /* no subsys rebinding, so refcounts don't change */
1681 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1682 }
1683
c6d57f33
PM
1684 kfree(opts.release_agent);
1685 kfree(opts.name);
f7e83571 1686 return dget(sb->s_root);
ddbcc7e8 1687
e25e2cbb
TH
1688 unlock_drop:
1689 mutex_unlock(&cgroup_root_mutex);
1690 mutex_unlock(&cgroup_mutex);
1691 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1692 drop_new_super:
6f5bbff9 1693 deactivate_locked_super(sb);
cf5d5941
BB
1694 drop_modules:
1695 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1696 out_err:
1697 kfree(opts.release_agent);
1698 kfree(opts.name);
f7e83571 1699 return ERR_PTR(ret);
ddbcc7e8
PM
1700}
1701
1702static void cgroup_kill_sb(struct super_block *sb) {
1703 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1704 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1705 int ret;
71cbb949
KM
1706 struct cg_cgroup_link *link;
1707 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1708
1709 BUG_ON(!root);
1710
1711 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1712 BUG_ON(!list_empty(&cgrp->children));
1713 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1714
1715 mutex_lock(&cgroup_mutex);
e25e2cbb 1716 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1717
1718 /* Rebind all subsystems back to the default hierarchy */
1719 ret = rebind_subsystems(root, 0);
1720 /* Shouldn't be able to fail ... */
1721 BUG_ON(ret);
1722
817929ec
PM
1723 /*
1724 * Release all the links from css_sets to this hierarchy's
1725 * root cgroup
1726 */
1727 write_lock(&css_set_lock);
71cbb949
KM
1728
1729 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1730 cgrp_link_list) {
817929ec 1731 list_del(&link->cg_link_list);
bd89aabc 1732 list_del(&link->cgrp_link_list);
817929ec
PM
1733 kfree(link);
1734 }
1735 write_unlock(&css_set_lock);
1736
839ec545
PM
1737 if (!list_empty(&root->root_list)) {
1738 list_del(&root->root_list);
1739 root_count--;
1740 }
e5f6a860 1741
e25e2cbb 1742 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1743 mutex_unlock(&cgroup_mutex);
1744
ddbcc7e8 1745 kill_litter_super(sb);
2c6ab6d2 1746 cgroup_drop_root(root);
ddbcc7e8
PM
1747}
1748
1749static struct file_system_type cgroup_fs_type = {
1750 .name = "cgroup",
f7e83571 1751 .mount = cgroup_mount,
ddbcc7e8
PM
1752 .kill_sb = cgroup_kill_sb,
1753};
1754
676db4af
GK
1755static struct kobject *cgroup_kobj;
1756
a043e3b2
LZ
1757/**
1758 * cgroup_path - generate the path of a cgroup
1759 * @cgrp: the cgroup in question
1760 * @buf: the buffer to write the path into
1761 * @buflen: the length of the buffer
1762 *
a47295e6
PM
1763 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1764 * reference. Writes path of cgroup into buf. Returns 0 on success,
1765 * -errno on error.
ddbcc7e8 1766 */
bd89aabc 1767int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1768{
1769 char *start;
9a9686b6 1770 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1771 cgroup_lock_is_held());
ddbcc7e8 1772
a47295e6 1773 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1774 /*
1775 * Inactive subsystems have no dentry for their root
1776 * cgroup
1777 */
1778 strcpy(buf, "/");
1779 return 0;
1780 }
1781
1782 start = buf + buflen;
1783
1784 *--start = '\0';
1785 for (;;) {
a47295e6 1786 int len = dentry->d_name.len;
9a9686b6 1787
ddbcc7e8
PM
1788 if ((start -= len) < buf)
1789 return -ENAMETOOLONG;
9a9686b6 1790 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1791 cgrp = cgrp->parent;
1792 if (!cgrp)
ddbcc7e8 1793 break;
9a9686b6
LZ
1794
1795 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1796 cgroup_lock_is_held());
bd89aabc 1797 if (!cgrp->parent)
ddbcc7e8
PM
1798 continue;
1799 if (--start < buf)
1800 return -ENAMETOOLONG;
1801 *start = '/';
1802 }
1803 memmove(buf, start, buf + buflen - start);
1804 return 0;
1805}
67523c48 1806EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1807
2f7ee569
TH
1808/*
1809 * Control Group taskset
1810 */
134d3373
TH
1811struct task_and_cgroup {
1812 struct task_struct *task;
1813 struct cgroup *cgrp;
61d1d219 1814 struct css_set *cg;
134d3373
TH
1815};
1816
2f7ee569
TH
1817struct cgroup_taskset {
1818 struct task_and_cgroup single;
1819 struct flex_array *tc_array;
1820 int tc_array_len;
1821 int idx;
1822 struct cgroup *cur_cgrp;
1823};
1824
1825/**
1826 * cgroup_taskset_first - reset taskset and return the first task
1827 * @tset: taskset of interest
1828 *
1829 * @tset iteration is initialized and the first task is returned.
1830 */
1831struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1832{
1833 if (tset->tc_array) {
1834 tset->idx = 0;
1835 return cgroup_taskset_next(tset);
1836 } else {
1837 tset->cur_cgrp = tset->single.cgrp;
1838 return tset->single.task;
1839 }
1840}
1841EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1842
1843/**
1844 * cgroup_taskset_next - iterate to the next task in taskset
1845 * @tset: taskset of interest
1846 *
1847 * Return the next task in @tset. Iteration must have been initialized
1848 * with cgroup_taskset_first().
1849 */
1850struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1851{
1852 struct task_and_cgroup *tc;
1853
1854 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1855 return NULL;
1856
1857 tc = flex_array_get(tset->tc_array, tset->idx++);
1858 tset->cur_cgrp = tc->cgrp;
1859 return tc->task;
1860}
1861EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1862
1863/**
1864 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1865 * @tset: taskset of interest
1866 *
1867 * Return the cgroup for the current (last returned) task of @tset. This
1868 * function must be preceded by either cgroup_taskset_first() or
1869 * cgroup_taskset_next().
1870 */
1871struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1872{
1873 return tset->cur_cgrp;
1874}
1875EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1876
1877/**
1878 * cgroup_taskset_size - return the number of tasks in taskset
1879 * @tset: taskset of interest
1880 */
1881int cgroup_taskset_size(struct cgroup_taskset *tset)
1882{
1883 return tset->tc_array ? tset->tc_array_len : 1;
1884}
1885EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1886
1887
74a1166d
BB
1888/*
1889 * cgroup_task_migrate - move a task from one cgroup to another.
1890 *
1891 * 'guarantee' is set if the caller promises that a new css_set for the task
1892 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1893 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1894 */
61d1d219
MSB
1895static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1896 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1897{
1898 struct css_set *oldcg;
74a1166d
BB
1899
1900 /*
026085ef
MSB
1901 * We are synchronized through threadgroup_lock() against PF_EXITING
1902 * setting such that we can't race against cgroup_exit() changing the
1903 * css_set to init_css_set and dropping the old one.
74a1166d 1904 */
c84cdf75 1905 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1906 oldcg = tsk->cgroups;
74a1166d 1907
74a1166d 1908 task_lock(tsk);
74a1166d
BB
1909 rcu_assign_pointer(tsk->cgroups, newcg);
1910 task_unlock(tsk);
1911
1912 /* Update the css_set linked lists if we're using them */
1913 write_lock(&css_set_lock);
1914 if (!list_empty(&tsk->cg_list))
1915 list_move(&tsk->cg_list, &newcg->tasks);
1916 write_unlock(&css_set_lock);
1917
1918 /*
1919 * We just gained a reference on oldcg by taking it from the task. As
1920 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1921 * it here; it will be freed under RCU.
1922 */
1923 put_css_set(oldcg);
1924
1925 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
74a1166d
BB
1926}
1927
a043e3b2
LZ
1928/**
1929 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1930 * @cgrp: the cgroup the task is attaching to
1931 * @tsk: the task to be attached
bbcb81d0 1932 *
cd3d0952
TH
1933 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1934 * @tsk during call.
bbcb81d0 1935 */
956db3ca 1936int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1937{
8f121918 1938 int retval = 0;
2468c723 1939 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1940 struct cgroup *oldcgrp;
bd89aabc 1941 struct cgroupfs_root *root = cgrp->root;
2f7ee569 1942 struct cgroup_taskset tset = { };
61d1d219 1943 struct css_set *newcg;
bbcb81d0 1944
cd3d0952
TH
1945 /* @tsk either already exited or can't exit until the end */
1946 if (tsk->flags & PF_EXITING)
1947 return -ESRCH;
bbcb81d0
PM
1948
1949 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1950 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1951 if (cgrp == oldcgrp)
bbcb81d0
PM
1952 return 0;
1953
2f7ee569
TH
1954 tset.single.task = tsk;
1955 tset.single.cgrp = oldcgrp;
1956
bbcb81d0
PM
1957 for_each_subsys(root, ss) {
1958 if (ss->can_attach) {
761b3ef5 1959 retval = ss->can_attach(cgrp, &tset);
2468c723
DN
1960 if (retval) {
1961 /*
1962 * Remember on which subsystem the can_attach()
1963 * failed, so that we only call cancel_attach()
1964 * against the subsystems whose can_attach()
1965 * succeeded. (See below)
1966 */
1967 failed_ss = ss;
1968 goto out;
1969 }
bbcb81d0
PM
1970 }
1971 }
1972
61d1d219
MSB
1973 newcg = find_css_set(tsk->cgroups, cgrp);
1974 if (!newcg) {
1975 retval = -ENOMEM;
2468c723 1976 goto out;
61d1d219
MSB
1977 }
1978
1979 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
817929ec 1980
bbcb81d0 1981 for_each_subsys(root, ss) {
e18f6318 1982 if (ss->attach)
761b3ef5 1983 ss->attach(cgrp, &tset);
bbcb81d0 1984 }
74a1166d 1985
bbcb81d0 1986 synchronize_rcu();
ec64f515
KH
1987
1988 /*
1989 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1990 * is no longer empty.
1991 */
88703267 1992 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1993out:
1994 if (retval) {
1995 for_each_subsys(root, ss) {
1996 if (ss == failed_ss)
1997 /*
1998 * This subsystem was the one that failed the
1999 * can_attach() check earlier, so we don't need
2000 * to call cancel_attach() against it or any
2001 * remaining subsystems.
2002 */
2003 break;
2004 if (ss->cancel_attach)
761b3ef5 2005 ss->cancel_attach(cgrp, &tset);
2468c723
DN
2006 }
2007 }
2008 return retval;
bbcb81d0
PM
2009}
2010
d7926ee3 2011/**
31583bb0
MT
2012 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2013 * @from: attach to all cgroups of a given task
d7926ee3
SS
2014 * @tsk: the task to be attached
2015 */
31583bb0 2016int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
2017{
2018 struct cgroupfs_root *root;
d7926ee3
SS
2019 int retval = 0;
2020
2021 cgroup_lock();
2022 for_each_active_root(root) {
31583bb0
MT
2023 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2024
2025 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
2026 if (retval)
2027 break;
2028 }
2029 cgroup_unlock();
2030
2031 return retval;
2032}
31583bb0 2033EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 2034
74a1166d
BB
2035/**
2036 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2037 * @cgrp: the cgroup to attach to
2038 * @leader: the threadgroup leader task_struct of the group to be attached
2039 *
257058ae
TH
2040 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2041 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d 2042 */
1c6c3fad 2043static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
74a1166d
BB
2044{
2045 int retval, i, group_size;
2046 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d 2047 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2048 struct cgroupfs_root *root = cgrp->root;
2049 /* threadgroup list cursor and array */
2050 struct task_struct *tsk;
134d3373 2051 struct task_and_cgroup *tc;
d846687d 2052 struct flex_array *group;
2f7ee569 2053 struct cgroup_taskset tset = { };
74a1166d
BB
2054
2055 /*
2056 * step 0: in order to do expensive, possibly blocking operations for
2057 * every thread, we cannot iterate the thread group list, since it needs
2058 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2059 * group - group_rwsem prevents new threads from appearing, and if
2060 * threads exit, this will just be an over-estimate.
74a1166d
BB
2061 */
2062 group_size = get_nr_threads(leader);
d846687d 2063 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2064 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2065 if (!group)
2066 return -ENOMEM;
d846687d
BB
2067 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2068 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2069 if (retval)
2070 goto out_free_group_list;
74a1166d 2071
74a1166d
BB
2072 tsk = leader;
2073 i = 0;
fb5d2b4c
MSB
2074 /*
2075 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2076 * already PF_EXITING could be freed from underneath us unless we
2077 * take an rcu_read_lock.
2078 */
2079 rcu_read_lock();
74a1166d 2080 do {
134d3373
TH
2081 struct task_and_cgroup ent;
2082
cd3d0952
TH
2083 /* @tsk either already exited or can't exit until the end */
2084 if (tsk->flags & PF_EXITING)
2085 continue;
2086
74a1166d
BB
2087 /* as per above, nr_threads may decrease, but not increase. */
2088 BUG_ON(i >= group_size);
134d3373
TH
2089 ent.task = tsk;
2090 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2091 /* nothing to do if this task is already in the cgroup */
2092 if (ent.cgrp == cgrp)
2093 continue;
61d1d219
MSB
2094 /*
2095 * saying GFP_ATOMIC has no effect here because we did prealloc
2096 * earlier, but it's good form to communicate our expectations.
2097 */
134d3373 2098 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2099 BUG_ON(retval != 0);
74a1166d
BB
2100 i++;
2101 } while_each_thread(leader, tsk);
fb5d2b4c 2102 rcu_read_unlock();
74a1166d
BB
2103 /* remember the number of threads in the array for later. */
2104 group_size = i;
2f7ee569
TH
2105 tset.tc_array = group;
2106 tset.tc_array_len = group_size;
74a1166d 2107
134d3373
TH
2108 /* methods shouldn't be called if no task is actually migrating */
2109 retval = 0;
892a2b90 2110 if (!group_size)
b07ef774 2111 goto out_free_group_list;
134d3373 2112
74a1166d
BB
2113 /*
2114 * step 1: check that we can legitimately attach to the cgroup.
2115 */
2116 for_each_subsys(root, ss) {
2117 if (ss->can_attach) {
761b3ef5 2118 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2119 if (retval) {
2120 failed_ss = ss;
2121 goto out_cancel_attach;
2122 }
2123 }
74a1166d
BB
2124 }
2125
2126 /*
2127 * step 2: make sure css_sets exist for all threads to be migrated.
2128 * we use find_css_set, which allocates a new one if necessary.
2129 */
74a1166d 2130 for (i = 0; i < group_size; i++) {
134d3373 2131 tc = flex_array_get(group, i);
61d1d219
MSB
2132 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2133 if (!tc->cg) {
2134 retval = -ENOMEM;
2135 goto out_put_css_set_refs;
74a1166d
BB
2136 }
2137 }
2138
2139 /*
494c167c
TH
2140 * step 3: now that we're guaranteed success wrt the css_sets,
2141 * proceed to move all tasks to the new cgroup. There are no
2142 * failure cases after here, so this is the commit point.
74a1166d 2143 */
74a1166d 2144 for (i = 0; i < group_size; i++) {
134d3373 2145 tc = flex_array_get(group, i);
61d1d219 2146 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2147 }
2148 /* nothing is sensitive to fork() after this point. */
2149
2150 /*
494c167c 2151 * step 4: do subsystem attach callbacks.
74a1166d
BB
2152 */
2153 for_each_subsys(root, ss) {
2154 if (ss->attach)
761b3ef5 2155 ss->attach(cgrp, &tset);
74a1166d
BB
2156 }
2157
2158 /*
2159 * step 5: success! and cleanup
2160 */
2161 synchronize_rcu();
2162 cgroup_wakeup_rmdir_waiter(cgrp);
2163 retval = 0;
61d1d219
MSB
2164out_put_css_set_refs:
2165 if (retval) {
2166 for (i = 0; i < group_size; i++) {
2167 tc = flex_array_get(group, i);
2168 if (!tc->cg)
2169 break;
2170 put_css_set(tc->cg);
2171 }
74a1166d
BB
2172 }
2173out_cancel_attach:
74a1166d
BB
2174 if (retval) {
2175 for_each_subsys(root, ss) {
494c167c 2176 if (ss == failed_ss)
74a1166d 2177 break;
74a1166d 2178 if (ss->cancel_attach)
761b3ef5 2179 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2180 }
2181 }
74a1166d 2182out_free_group_list:
d846687d 2183 flex_array_free(group);
74a1166d
BB
2184 return retval;
2185}
2186
2187/*
2188 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2189 * function to attach either it or all tasks in its threadgroup. Will lock
2190 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2191 */
74a1166d 2192static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2193{
bbcb81d0 2194 struct task_struct *tsk;
c69e8d9c 2195 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2196 int ret;
2197
74a1166d
BB
2198 if (!cgroup_lock_live_group(cgrp))
2199 return -ENODEV;
2200
b78949eb
MSB
2201retry_find_task:
2202 rcu_read_lock();
bbcb81d0 2203 if (pid) {
73507f33 2204 tsk = find_task_by_vpid(pid);
74a1166d
BB
2205 if (!tsk) {
2206 rcu_read_unlock();
b78949eb
MSB
2207 ret= -ESRCH;
2208 goto out_unlock_cgroup;
bbcb81d0 2209 }
74a1166d
BB
2210 /*
2211 * even if we're attaching all tasks in the thread group, we
2212 * only need to check permissions on one of them.
2213 */
c69e8d9c 2214 tcred = __task_cred(tsk);
14a590c3
EB
2215 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2216 !uid_eq(cred->euid, tcred->uid) &&
2217 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2218 rcu_read_unlock();
b78949eb
MSB
2219 ret = -EACCES;
2220 goto out_unlock_cgroup;
bbcb81d0 2221 }
b78949eb
MSB
2222 } else
2223 tsk = current;
cd3d0952
TH
2224
2225 if (threadgroup)
b78949eb 2226 tsk = tsk->group_leader;
c4c27fbd
MG
2227
2228 /*
2229 * Workqueue threads may acquire PF_THREAD_BOUND and become
2230 * trapped in a cpuset, or RT worker may be born in a cgroup
2231 * with no rt_runtime allocated. Just say no.
2232 */
2233 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2234 ret = -EINVAL;
2235 rcu_read_unlock();
2236 goto out_unlock_cgroup;
2237 }
2238
b78949eb
MSB
2239 get_task_struct(tsk);
2240 rcu_read_unlock();
2241
2242 threadgroup_lock(tsk);
2243 if (threadgroup) {
2244 if (!thread_group_leader(tsk)) {
2245 /*
2246 * a race with de_thread from another thread's exec()
2247 * may strip us of our leadership, if this happens,
2248 * there is no choice but to throw this task away and
2249 * try again; this is
2250 * "double-double-toil-and-trouble-check locking".
2251 */
2252 threadgroup_unlock(tsk);
2253 put_task_struct(tsk);
2254 goto retry_find_task;
2255 }
74a1166d 2256 ret = cgroup_attach_proc(cgrp, tsk);
b78949eb 2257 } else
74a1166d 2258 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2259 threadgroup_unlock(tsk);
2260
bbcb81d0 2261 put_task_struct(tsk);
b78949eb 2262out_unlock_cgroup:
74a1166d 2263 cgroup_unlock();
bbcb81d0
PM
2264 return ret;
2265}
2266
af351026 2267static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2268{
2269 return attach_task_by_pid(cgrp, pid, false);
2270}
2271
2272static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2273{
b78949eb 2274 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2275}
2276
e788e066
PM
2277/**
2278 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2279 * @cgrp: the cgroup to be checked for liveness
2280 *
84eea842
PM
2281 * On success, returns true; the lock should be later released with
2282 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2283 */
84eea842 2284bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2285{
2286 mutex_lock(&cgroup_mutex);
2287 if (cgroup_is_removed(cgrp)) {
2288 mutex_unlock(&cgroup_mutex);
2289 return false;
2290 }
2291 return true;
2292}
67523c48 2293EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2294
2295static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2296 const char *buffer)
2297{
2298 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2299 if (strlen(buffer) >= PATH_MAX)
2300 return -EINVAL;
e788e066
PM
2301 if (!cgroup_lock_live_group(cgrp))
2302 return -ENODEV;
e25e2cbb 2303 mutex_lock(&cgroup_root_mutex);
e788e066 2304 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2305 mutex_unlock(&cgroup_root_mutex);
84eea842 2306 cgroup_unlock();
e788e066
PM
2307 return 0;
2308}
2309
2310static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2311 struct seq_file *seq)
2312{
2313 if (!cgroup_lock_live_group(cgrp))
2314 return -ENODEV;
2315 seq_puts(seq, cgrp->root->release_agent_path);
2316 seq_putc(seq, '\n');
84eea842 2317 cgroup_unlock();
e788e066
PM
2318 return 0;
2319}
2320
84eea842
PM
2321/* A buffer size big enough for numbers or short strings */
2322#define CGROUP_LOCAL_BUFFER_SIZE 64
2323
e73d2c61 2324static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2325 struct file *file,
2326 const char __user *userbuf,
2327 size_t nbytes, loff_t *unused_ppos)
355e0c48 2328{
84eea842 2329 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2330 int retval = 0;
355e0c48
PM
2331 char *end;
2332
2333 if (!nbytes)
2334 return -EINVAL;
2335 if (nbytes >= sizeof(buffer))
2336 return -E2BIG;
2337 if (copy_from_user(buffer, userbuf, nbytes))
2338 return -EFAULT;
2339
2340 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2341 if (cft->write_u64) {
478988d3 2342 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2343 if (*end)
2344 return -EINVAL;
2345 retval = cft->write_u64(cgrp, cft, val);
2346 } else {
478988d3 2347 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2348 if (*end)
2349 return -EINVAL;
2350 retval = cft->write_s64(cgrp, cft, val);
2351 }
355e0c48
PM
2352 if (!retval)
2353 retval = nbytes;
2354 return retval;
2355}
2356
db3b1497
PM
2357static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2358 struct file *file,
2359 const char __user *userbuf,
2360 size_t nbytes, loff_t *unused_ppos)
2361{
84eea842 2362 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2363 int retval = 0;
2364 size_t max_bytes = cft->max_write_len;
2365 char *buffer = local_buffer;
2366
2367 if (!max_bytes)
2368 max_bytes = sizeof(local_buffer) - 1;
2369 if (nbytes >= max_bytes)
2370 return -E2BIG;
2371 /* Allocate a dynamic buffer if we need one */
2372 if (nbytes >= sizeof(local_buffer)) {
2373 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2374 if (buffer == NULL)
2375 return -ENOMEM;
2376 }
5a3eb9f6
LZ
2377 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2378 retval = -EFAULT;
2379 goto out;
2380 }
db3b1497
PM
2381
2382 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2383 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2384 if (!retval)
2385 retval = nbytes;
5a3eb9f6 2386out:
db3b1497
PM
2387 if (buffer != local_buffer)
2388 kfree(buffer);
2389 return retval;
2390}
2391
ddbcc7e8
PM
2392static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2393 size_t nbytes, loff_t *ppos)
2394{
2395 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2396 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2397
75139b82 2398 if (cgroup_is_removed(cgrp))
ddbcc7e8 2399 return -ENODEV;
355e0c48 2400 if (cft->write)
bd89aabc 2401 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2402 if (cft->write_u64 || cft->write_s64)
2403 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2404 if (cft->write_string)
2405 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2406 if (cft->trigger) {
2407 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2408 return ret ? ret : nbytes;
2409 }
355e0c48 2410 return -EINVAL;
ddbcc7e8
PM
2411}
2412
f4c753b7
PM
2413static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2414 struct file *file,
2415 char __user *buf, size_t nbytes,
2416 loff_t *ppos)
ddbcc7e8 2417{
84eea842 2418 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2419 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2420 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2421
2422 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2423}
2424
e73d2c61
PM
2425static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2426 struct file *file,
2427 char __user *buf, size_t nbytes,
2428 loff_t *ppos)
2429{
84eea842 2430 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2431 s64 val = cft->read_s64(cgrp, cft);
2432 int len = sprintf(tmp, "%lld\n", (long long) val);
2433
2434 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2435}
2436
ddbcc7e8
PM
2437static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2438 size_t nbytes, loff_t *ppos)
2439{
2440 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2441 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2442
75139b82 2443 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2444 return -ENODEV;
2445
2446 if (cft->read)
bd89aabc 2447 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2448 if (cft->read_u64)
2449 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2450 if (cft->read_s64)
2451 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2452 return -EINVAL;
2453}
2454
91796569
PM
2455/*
2456 * seqfile ops/methods for returning structured data. Currently just
2457 * supports string->u64 maps, but can be extended in future.
2458 */
2459
2460struct cgroup_seqfile_state {
2461 struct cftype *cft;
2462 struct cgroup *cgroup;
2463};
2464
2465static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2466{
2467 struct seq_file *sf = cb->state;
2468 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2469}
2470
2471static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2472{
2473 struct cgroup_seqfile_state *state = m->private;
2474 struct cftype *cft = state->cft;
29486df3
SH
2475 if (cft->read_map) {
2476 struct cgroup_map_cb cb = {
2477 .fill = cgroup_map_add,
2478 .state = m,
2479 };
2480 return cft->read_map(state->cgroup, cft, &cb);
2481 }
2482 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2483}
2484
96930a63 2485static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2486{
2487 struct seq_file *seq = file->private_data;
2488 kfree(seq->private);
2489 return single_release(inode, file);
2490}
2491
828c0950 2492static const struct file_operations cgroup_seqfile_operations = {
91796569 2493 .read = seq_read,
e788e066 2494 .write = cgroup_file_write,
91796569
PM
2495 .llseek = seq_lseek,
2496 .release = cgroup_seqfile_release,
2497};
2498
ddbcc7e8
PM
2499static int cgroup_file_open(struct inode *inode, struct file *file)
2500{
2501 int err;
2502 struct cftype *cft;
2503
2504 err = generic_file_open(inode, file);
2505 if (err)
2506 return err;
ddbcc7e8 2507 cft = __d_cft(file->f_dentry);
75139b82 2508
29486df3 2509 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2510 struct cgroup_seqfile_state *state =
2511 kzalloc(sizeof(*state), GFP_USER);
2512 if (!state)
2513 return -ENOMEM;
2514 state->cft = cft;
2515 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2516 file->f_op = &cgroup_seqfile_operations;
2517 err = single_open(file, cgroup_seqfile_show, state);
2518 if (err < 0)
2519 kfree(state);
2520 } else if (cft->open)
ddbcc7e8
PM
2521 err = cft->open(inode, file);
2522 else
2523 err = 0;
2524
2525 return err;
2526}
2527
2528static int cgroup_file_release(struct inode *inode, struct file *file)
2529{
2530 struct cftype *cft = __d_cft(file->f_dentry);
2531 if (cft->release)
2532 return cft->release(inode, file);
2533 return 0;
2534}
2535
2536/*
2537 * cgroup_rename - Only allow simple rename of directories in place.
2538 */
2539static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2540 struct inode *new_dir, struct dentry *new_dentry)
2541{
2542 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2543 return -ENOTDIR;
2544 if (new_dentry->d_inode)
2545 return -EEXIST;
2546 if (old_dir != new_dir)
2547 return -EIO;
2548 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2549}
2550
828c0950 2551static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2552 .read = cgroup_file_read,
2553 .write = cgroup_file_write,
2554 .llseek = generic_file_llseek,
2555 .open = cgroup_file_open,
2556 .release = cgroup_file_release,
2557};
2558
6e1d5dcc 2559static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2560 .lookup = cgroup_lookup,
ddbcc7e8
PM
2561 .mkdir = cgroup_mkdir,
2562 .rmdir = cgroup_rmdir,
2563 .rename = cgroup_rename,
2564};
2565
00cd8dd3 2566static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2567{
2568 if (dentry->d_name.len > NAME_MAX)
2569 return ERR_PTR(-ENAMETOOLONG);
2570 d_add(dentry, NULL);
2571 return NULL;
2572}
2573
0dea1168
KS
2574/*
2575 * Check if a file is a control file
2576 */
2577static inline struct cftype *__file_cft(struct file *file)
2578{
2579 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2580 return ERR_PTR(-EINVAL);
2581 return __d_cft(file->f_dentry);
2582}
2583
a5e7ed32 2584static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2585 struct super_block *sb)
2586{
ddbcc7e8
PM
2587 struct inode *inode;
2588
2589 if (!dentry)
2590 return -ENOENT;
2591 if (dentry->d_inode)
2592 return -EEXIST;
2593
2594 inode = cgroup_new_inode(mode, sb);
2595 if (!inode)
2596 return -ENOMEM;
2597
2598 if (S_ISDIR(mode)) {
2599 inode->i_op = &cgroup_dir_inode_operations;
2600 inode->i_fop = &simple_dir_operations;
2601
2602 /* start off with i_nlink == 2 (for "." entry) */
2603 inc_nlink(inode);
2604
2605 /* start with the directory inode held, so that we can
2606 * populate it without racing with another mkdir */
817929ec 2607 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2608 } else if (S_ISREG(mode)) {
2609 inode->i_size = 0;
2610 inode->i_fop = &cgroup_file_operations;
2611 }
ddbcc7e8
PM
2612 d_instantiate(dentry, inode);
2613 dget(dentry); /* Extra count - pin the dentry in core */
2614 return 0;
2615}
2616
2617/*
a043e3b2
LZ
2618 * cgroup_create_dir - create a directory for an object.
2619 * @cgrp: the cgroup we create the directory for. It must have a valid
2620 * ->parent field. And we are going to fill its ->dentry field.
2621 * @dentry: dentry of the new cgroup
2622 * @mode: mode to set on new directory.
ddbcc7e8 2623 */
bd89aabc 2624static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
a5e7ed32 2625 umode_t mode)
ddbcc7e8
PM
2626{
2627 struct dentry *parent;
2628 int error = 0;
2629
bd89aabc
PM
2630 parent = cgrp->parent->dentry;
2631 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2632 if (!error) {
bd89aabc 2633 dentry->d_fsdata = cgrp;
ddbcc7e8 2634 inc_nlink(parent->d_inode);
a47295e6 2635 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2636 dget(dentry);
2637 }
2638 dput(dentry);
2639
2640 return error;
2641}
2642
099fca32
LZ
2643/**
2644 * cgroup_file_mode - deduce file mode of a control file
2645 * @cft: the control file in question
2646 *
2647 * returns cft->mode if ->mode is not 0
2648 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2649 * returns S_IRUGO if it has only a read handler
2650 * returns S_IWUSR if it has only a write hander
2651 */
a5e7ed32 2652static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2653{
a5e7ed32 2654 umode_t mode = 0;
099fca32
LZ
2655
2656 if (cft->mode)
2657 return cft->mode;
2658
2659 if (cft->read || cft->read_u64 || cft->read_s64 ||
2660 cft->read_map || cft->read_seq_string)
2661 mode |= S_IRUGO;
2662
2663 if (cft->write || cft->write_u64 || cft->write_s64 ||
2664 cft->write_string || cft->trigger)
2665 mode |= S_IWUSR;
2666
2667 return mode;
2668}
2669
db0416b6
TH
2670static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2671 const struct cftype *cft)
ddbcc7e8 2672{
bd89aabc 2673 struct dentry *dir = cgrp->dentry;
05ef1d7c 2674 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2675 struct dentry *dentry;
05ef1d7c 2676 struct cfent *cfe;
ddbcc7e8 2677 int error;
a5e7ed32 2678 umode_t mode;
ddbcc7e8 2679 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541
TH
2680
2681 /* does @cft->flags tell us to skip creation on @cgrp? */
2682 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2683 return 0;
2684 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2685 return 0;
2686
bd89aabc 2687 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2688 strcpy(name, subsys->name);
2689 strcat(name, ".");
2690 }
2691 strcat(name, cft->name);
05ef1d7c 2692
ddbcc7e8 2693 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2694
2695 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2696 if (!cfe)
2697 return -ENOMEM;
2698
ddbcc7e8 2699 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2700 if (IS_ERR(dentry)) {
ddbcc7e8 2701 error = PTR_ERR(dentry);
05ef1d7c
TH
2702 goto out;
2703 }
2704
2705 mode = cgroup_file_mode(cft);
2706 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2707 if (!error) {
2708 cfe->type = (void *)cft;
2709 cfe->dentry = dentry;
2710 dentry->d_fsdata = cfe;
2711 list_add_tail(&cfe->node, &parent->files);
2712 cfe = NULL;
2713 }
2714 dput(dentry);
2715out:
2716 kfree(cfe);
ddbcc7e8
PM
2717 return error;
2718}
2719
79578621
TH
2720static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2721 const struct cftype cfts[], bool is_add)
ddbcc7e8 2722{
db0416b6
TH
2723 const struct cftype *cft;
2724 int err, ret = 0;
2725
2726 for (cft = cfts; cft->name[0] != '\0'; cft++) {
79578621
TH
2727 if (is_add)
2728 err = cgroup_add_file(cgrp, subsys, cft);
2729 else
2730 err = cgroup_rm_file(cgrp, cft);
db0416b6 2731 if (err) {
79578621
TH
2732 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2733 is_add ? "add" : "remove", cft->name, err);
db0416b6
TH
2734 ret = err;
2735 }
ddbcc7e8 2736 }
db0416b6 2737 return ret;
ddbcc7e8
PM
2738}
2739
8e3f6541
TH
2740static DEFINE_MUTEX(cgroup_cft_mutex);
2741
2742static void cgroup_cfts_prepare(void)
2743 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2744{
2745 /*
2746 * Thanks to the entanglement with vfs inode locking, we can't walk
2747 * the existing cgroups under cgroup_mutex and create files.
2748 * Instead, we increment reference on all cgroups and build list of
2749 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2750 * exclusive access to the field.
2751 */
2752 mutex_lock(&cgroup_cft_mutex);
2753 mutex_lock(&cgroup_mutex);
2754}
2755
2756static void cgroup_cfts_commit(struct cgroup_subsys *ss,
79578621 2757 const struct cftype *cfts, bool is_add)
8e3f6541
TH
2758 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2759{
2760 LIST_HEAD(pending);
2761 struct cgroup *cgrp, *n;
8e3f6541
TH
2762
2763 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2764 if (cfts && ss->root != &rootnode) {
2765 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2766 dget(cgrp->dentry);
2767 list_add_tail(&cgrp->cft_q_node, &pending);
2768 }
2769 }
2770
2771 mutex_unlock(&cgroup_mutex);
2772
2773 /*
2774 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2775 * files for all cgroups which were created before.
2776 */
2777 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2778 struct inode *inode = cgrp->dentry->d_inode;
2779
2780 mutex_lock(&inode->i_mutex);
2781 mutex_lock(&cgroup_mutex);
2782 if (!cgroup_is_removed(cgrp))
79578621 2783 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2784 mutex_unlock(&cgroup_mutex);
2785 mutex_unlock(&inode->i_mutex);
2786
2787 list_del_init(&cgrp->cft_q_node);
2788 dput(cgrp->dentry);
2789 }
2790
2791 mutex_unlock(&cgroup_cft_mutex);
2792}
2793
2794/**
2795 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2796 * @ss: target cgroup subsystem
2797 * @cfts: zero-length name terminated array of cftypes
2798 *
2799 * Register @cfts to @ss. Files described by @cfts are created for all
2800 * existing cgroups to which @ss is attached and all future cgroups will
2801 * have them too. This function can be called anytime whether @ss is
2802 * attached or not.
2803 *
2804 * Returns 0 on successful registration, -errno on failure. Note that this
2805 * function currently returns 0 as long as @cfts registration is successful
2806 * even if some file creation attempts on existing cgroups fail.
2807 */
2808int cgroup_add_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2809{
2810 struct cftype_set *set;
2811
2812 set = kzalloc(sizeof(*set), GFP_KERNEL);
2813 if (!set)
2814 return -ENOMEM;
2815
2816 cgroup_cfts_prepare();
2817 set->cfts = cfts;
2818 list_add_tail(&set->node, &ss->cftsets);
79578621 2819 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2820
2821 return 0;
2822}
2823EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2824
79578621
TH
2825/**
2826 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2827 * @ss: target cgroup subsystem
2828 * @cfts: zero-length name terminated array of cftypes
2829 *
2830 * Unregister @cfts from @ss. Files described by @cfts are removed from
2831 * all existing cgroups to which @ss is attached and all future cgroups
2832 * won't have them either. This function can be called anytime whether @ss
2833 * is attached or not.
2834 *
2835 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2836 * registered with @ss.
2837 */
2838int cgroup_rm_cftypes(struct cgroup_subsys *ss, const struct cftype *cfts)
2839{
2840 struct cftype_set *set;
2841
2842 cgroup_cfts_prepare();
2843
2844 list_for_each_entry(set, &ss->cftsets, node) {
2845 if (set->cfts == cfts) {
2846 list_del_init(&set->node);
2847 cgroup_cfts_commit(ss, cfts, false);
2848 return 0;
2849 }
2850 }
2851
2852 cgroup_cfts_commit(ss, NULL, false);
2853 return -ENOENT;
2854}
2855
a043e3b2
LZ
2856/**
2857 * cgroup_task_count - count the number of tasks in a cgroup.
2858 * @cgrp: the cgroup in question
2859 *
2860 * Return the number of tasks in the cgroup.
2861 */
bd89aabc 2862int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2863{
2864 int count = 0;
71cbb949 2865 struct cg_cgroup_link *link;
817929ec
PM
2866
2867 read_lock(&css_set_lock);
71cbb949 2868 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2869 count += atomic_read(&link->cg->refcount);
817929ec
PM
2870 }
2871 read_unlock(&css_set_lock);
bbcb81d0
PM
2872 return count;
2873}
2874
817929ec
PM
2875/*
2876 * Advance a list_head iterator. The iterator should be positioned at
2877 * the start of a css_set
2878 */
bd89aabc 2879static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2880 struct cgroup_iter *it)
817929ec
PM
2881{
2882 struct list_head *l = it->cg_link;
2883 struct cg_cgroup_link *link;
2884 struct css_set *cg;
2885
2886 /* Advance to the next non-empty css_set */
2887 do {
2888 l = l->next;
bd89aabc 2889 if (l == &cgrp->css_sets) {
817929ec
PM
2890 it->cg_link = NULL;
2891 return;
2892 }
bd89aabc 2893 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2894 cg = link->cg;
2895 } while (list_empty(&cg->tasks));
2896 it->cg_link = l;
2897 it->task = cg->tasks.next;
2898}
2899
31a7df01
CW
2900/*
2901 * To reduce the fork() overhead for systems that are not actually
2902 * using their cgroups capability, we don't maintain the lists running
2903 * through each css_set to its tasks until we see the list actually
2904 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2905 */
3df91fe3 2906static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2907{
2908 struct task_struct *p, *g;
2909 write_lock(&css_set_lock);
2910 use_task_css_set_links = 1;
3ce3230a
FW
2911 /*
2912 * We need tasklist_lock because RCU is not safe against
2913 * while_each_thread(). Besides, a forking task that has passed
2914 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2915 * is not guaranteed to have its child immediately visible in the
2916 * tasklist if we walk through it with RCU.
2917 */
2918 read_lock(&tasklist_lock);
31a7df01
CW
2919 do_each_thread(g, p) {
2920 task_lock(p);
0e04388f
LZ
2921 /*
2922 * We should check if the process is exiting, otherwise
2923 * it will race with cgroup_exit() in that the list
2924 * entry won't be deleted though the process has exited.
2925 */
2926 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2927 list_add(&p->cg_list, &p->cgroups->tasks);
2928 task_unlock(p);
2929 } while_each_thread(g, p);
3ce3230a 2930 read_unlock(&tasklist_lock);
31a7df01
CW
2931 write_unlock(&css_set_lock);
2932}
2933
bd89aabc 2934void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2935 __acquires(css_set_lock)
817929ec
PM
2936{
2937 /*
2938 * The first time anyone tries to iterate across a cgroup,
2939 * we need to enable the list linking each css_set to its
2940 * tasks, and fix up all existing tasks.
2941 */
31a7df01
CW
2942 if (!use_task_css_set_links)
2943 cgroup_enable_task_cg_lists();
2944
817929ec 2945 read_lock(&css_set_lock);
bd89aabc
PM
2946 it->cg_link = &cgrp->css_sets;
2947 cgroup_advance_iter(cgrp, it);
817929ec
PM
2948}
2949
bd89aabc 2950struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2951 struct cgroup_iter *it)
2952{
2953 struct task_struct *res;
2954 struct list_head *l = it->task;
2019f634 2955 struct cg_cgroup_link *link;
817929ec
PM
2956
2957 /* If the iterator cg is NULL, we have no tasks */
2958 if (!it->cg_link)
2959 return NULL;
2960 res = list_entry(l, struct task_struct, cg_list);
2961 /* Advance iterator to find next entry */
2962 l = l->next;
2019f634
LJ
2963 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2964 if (l == &link->cg->tasks) {
817929ec
PM
2965 /* We reached the end of this task list - move on to
2966 * the next cg_cgroup_link */
bd89aabc 2967 cgroup_advance_iter(cgrp, it);
817929ec
PM
2968 } else {
2969 it->task = l;
2970 }
2971 return res;
2972}
2973
bd89aabc 2974void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 2975 __releases(css_set_lock)
817929ec
PM
2976{
2977 read_unlock(&css_set_lock);
2978}
2979
31a7df01
CW
2980static inline int started_after_time(struct task_struct *t1,
2981 struct timespec *time,
2982 struct task_struct *t2)
2983{
2984 int start_diff = timespec_compare(&t1->start_time, time);
2985 if (start_diff > 0) {
2986 return 1;
2987 } else if (start_diff < 0) {
2988 return 0;
2989 } else {
2990 /*
2991 * Arbitrarily, if two processes started at the same
2992 * time, we'll say that the lower pointer value
2993 * started first. Note that t2 may have exited by now
2994 * so this may not be a valid pointer any longer, but
2995 * that's fine - it still serves to distinguish
2996 * between two tasks started (effectively) simultaneously.
2997 */
2998 return t1 > t2;
2999 }
3000}
3001
3002/*
3003 * This function is a callback from heap_insert() and is used to order
3004 * the heap.
3005 * In this case we order the heap in descending task start time.
3006 */
3007static inline int started_after(void *p1, void *p2)
3008{
3009 struct task_struct *t1 = p1;
3010 struct task_struct *t2 = p2;
3011 return started_after_time(t1, &t2->start_time, t2);
3012}
3013
3014/**
3015 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3016 * @scan: struct cgroup_scanner containing arguments for the scan
3017 *
3018 * Arguments include pointers to callback functions test_task() and
3019 * process_task().
3020 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3021 * and if it returns true, call process_task() for it also.
3022 * The test_task pointer may be NULL, meaning always true (select all tasks).
3023 * Effectively duplicates cgroup_iter_{start,next,end}()
3024 * but does not lock css_set_lock for the call to process_task().
3025 * The struct cgroup_scanner may be embedded in any structure of the caller's
3026 * creation.
3027 * It is guaranteed that process_task() will act on every task that
3028 * is a member of the cgroup for the duration of this call. This
3029 * function may or may not call process_task() for tasks that exit
3030 * or move to a different cgroup during the call, or are forked or
3031 * move into the cgroup during the call.
3032 *
3033 * Note that test_task() may be called with locks held, and may in some
3034 * situations be called multiple times for the same task, so it should
3035 * be cheap.
3036 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3037 * pre-allocated and will be used for heap operations (and its "gt" member will
3038 * be overwritten), else a temporary heap will be used (allocation of which
3039 * may cause this function to fail).
3040 */
3041int cgroup_scan_tasks(struct cgroup_scanner *scan)
3042{
3043 int retval, i;
3044 struct cgroup_iter it;
3045 struct task_struct *p, *dropped;
3046 /* Never dereference latest_task, since it's not refcounted */
3047 struct task_struct *latest_task = NULL;
3048 struct ptr_heap tmp_heap;
3049 struct ptr_heap *heap;
3050 struct timespec latest_time = { 0, 0 };
3051
3052 if (scan->heap) {
3053 /* The caller supplied our heap and pre-allocated its memory */
3054 heap = scan->heap;
3055 heap->gt = &started_after;
3056 } else {
3057 /* We need to allocate our own heap memory */
3058 heap = &tmp_heap;
3059 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3060 if (retval)
3061 /* cannot allocate the heap */
3062 return retval;
3063 }
3064
3065 again:
3066 /*
3067 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3068 * to determine which are of interest, and using the scanner's
3069 * "process_task" callback to process any of them that need an update.
3070 * Since we don't want to hold any locks during the task updates,
3071 * gather tasks to be processed in a heap structure.
3072 * The heap is sorted by descending task start time.
3073 * If the statically-sized heap fills up, we overflow tasks that
3074 * started later, and in future iterations only consider tasks that
3075 * started after the latest task in the previous pass. This
3076 * guarantees forward progress and that we don't miss any tasks.
3077 */
3078 heap->size = 0;
3079 cgroup_iter_start(scan->cg, &it);
3080 while ((p = cgroup_iter_next(scan->cg, &it))) {
3081 /*
3082 * Only affect tasks that qualify per the caller's callback,
3083 * if he provided one
3084 */
3085 if (scan->test_task && !scan->test_task(p, scan))
3086 continue;
3087 /*
3088 * Only process tasks that started after the last task
3089 * we processed
3090 */
3091 if (!started_after_time(p, &latest_time, latest_task))
3092 continue;
3093 dropped = heap_insert(heap, p);
3094 if (dropped == NULL) {
3095 /*
3096 * The new task was inserted; the heap wasn't
3097 * previously full
3098 */
3099 get_task_struct(p);
3100 } else if (dropped != p) {
3101 /*
3102 * The new task was inserted, and pushed out a
3103 * different task
3104 */
3105 get_task_struct(p);
3106 put_task_struct(dropped);
3107 }
3108 /*
3109 * Else the new task was newer than anything already in
3110 * the heap and wasn't inserted
3111 */
3112 }
3113 cgroup_iter_end(scan->cg, &it);
3114
3115 if (heap->size) {
3116 for (i = 0; i < heap->size; i++) {
4fe91d51 3117 struct task_struct *q = heap->ptrs[i];
31a7df01 3118 if (i == 0) {
4fe91d51
PJ
3119 latest_time = q->start_time;
3120 latest_task = q;
31a7df01
CW
3121 }
3122 /* Process the task per the caller's callback */
4fe91d51
PJ
3123 scan->process_task(q, scan);
3124 put_task_struct(q);
31a7df01
CW
3125 }
3126 /*
3127 * If we had to process any tasks at all, scan again
3128 * in case some of them were in the middle of forking
3129 * children that didn't get processed.
3130 * Not the most efficient way to do it, but it avoids
3131 * having to take callback_mutex in the fork path
3132 */
3133 goto again;
3134 }
3135 if (heap == &tmp_heap)
3136 heap_free(&tmp_heap);
3137 return 0;
3138}
3139
bbcb81d0 3140/*
102a775e 3141 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3142 *
3143 * Reading this file can return large amounts of data if a cgroup has
3144 * *lots* of attached tasks. So it may need several calls to read(),
3145 * but we cannot guarantee that the information we produce is correct
3146 * unless we produce it entirely atomically.
3147 *
bbcb81d0 3148 */
bbcb81d0 3149
24528255
LZ
3150/* which pidlist file are we talking about? */
3151enum cgroup_filetype {
3152 CGROUP_FILE_PROCS,
3153 CGROUP_FILE_TASKS,
3154};
3155
3156/*
3157 * A pidlist is a list of pids that virtually represents the contents of one
3158 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3159 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3160 * to the cgroup.
3161 */
3162struct cgroup_pidlist {
3163 /*
3164 * used to find which pidlist is wanted. doesn't change as long as
3165 * this particular list stays in the list.
3166 */
3167 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3168 /* array of xids */
3169 pid_t *list;
3170 /* how many elements the above list has */
3171 int length;
3172 /* how many files are using the current array */
3173 int use_count;
3174 /* each of these stored in a list by its cgroup */
3175 struct list_head links;
3176 /* pointer to the cgroup we belong to, for list removal purposes */
3177 struct cgroup *owner;
3178 /* protects the other fields */
3179 struct rw_semaphore mutex;
3180};
3181
d1d9fd33
BB
3182/*
3183 * The following two functions "fix" the issue where there are more pids
3184 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3185 * TODO: replace with a kernel-wide solution to this problem
3186 */
3187#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3188static void *pidlist_allocate(int count)
3189{
3190 if (PIDLIST_TOO_LARGE(count))
3191 return vmalloc(count * sizeof(pid_t));
3192 else
3193 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3194}
3195static void pidlist_free(void *p)
3196{
3197 if (is_vmalloc_addr(p))
3198 vfree(p);
3199 else
3200 kfree(p);
3201}
3202static void *pidlist_resize(void *p, int newcount)
3203{
3204 void *newlist;
3205 /* note: if new alloc fails, old p will still be valid either way */
3206 if (is_vmalloc_addr(p)) {
3207 newlist = vmalloc(newcount * sizeof(pid_t));
3208 if (!newlist)
3209 return NULL;
3210 memcpy(newlist, p, newcount * sizeof(pid_t));
3211 vfree(p);
3212 } else {
3213 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3214 }
3215 return newlist;
3216}
3217
bbcb81d0 3218/*
102a775e
BB
3219 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3220 * If the new stripped list is sufficiently smaller and there's enough memory
3221 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3222 * number of unique elements.
bbcb81d0 3223 */
102a775e
BB
3224/* is the size difference enough that we should re-allocate the array? */
3225#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3226static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3227{
102a775e
BB
3228 int src, dest = 1;
3229 pid_t *list = *p;
3230 pid_t *newlist;
3231
3232 /*
3233 * we presume the 0th element is unique, so i starts at 1. trivial
3234 * edge cases first; no work needs to be done for either
3235 */
3236 if (length == 0 || length == 1)
3237 return length;
3238 /* src and dest walk down the list; dest counts unique elements */
3239 for (src = 1; src < length; src++) {
3240 /* find next unique element */
3241 while (list[src] == list[src-1]) {
3242 src++;
3243 if (src == length)
3244 goto after;
3245 }
3246 /* dest always points to where the next unique element goes */
3247 list[dest] = list[src];
3248 dest++;
3249 }
3250after:
3251 /*
3252 * if the length difference is large enough, we want to allocate a
3253 * smaller buffer to save memory. if this fails due to out of memory,
3254 * we'll just stay with what we've got.
3255 */
3256 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3257 newlist = pidlist_resize(list, dest);
102a775e
BB
3258 if (newlist)
3259 *p = newlist;
3260 }
3261 return dest;
3262}
3263
3264static int cmppid(const void *a, const void *b)
3265{
3266 return *(pid_t *)a - *(pid_t *)b;
3267}
3268
72a8cb30
BB
3269/*
3270 * find the appropriate pidlist for our purpose (given procs vs tasks)
3271 * returns with the lock on that pidlist already held, and takes care
3272 * of the use count, or returns NULL with no locks held if we're out of
3273 * memory.
3274 */
3275static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3276 enum cgroup_filetype type)
3277{
3278 struct cgroup_pidlist *l;
3279 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3280 struct pid_namespace *ns = current->nsproxy->pid_ns;
3281
72a8cb30
BB
3282 /*
3283 * We can't drop the pidlist_mutex before taking the l->mutex in case
3284 * the last ref-holder is trying to remove l from the list at the same
3285 * time. Holding the pidlist_mutex precludes somebody taking whichever
3286 * list we find out from under us - compare release_pid_array().
3287 */
3288 mutex_lock(&cgrp->pidlist_mutex);
3289 list_for_each_entry(l, &cgrp->pidlists, links) {
3290 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3291 /* make sure l doesn't vanish out from under us */
3292 down_write(&l->mutex);
3293 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3294 return l;
3295 }
3296 }
3297 /* entry not found; create a new one */
3298 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3299 if (!l) {
3300 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3301 return l;
3302 }
3303 init_rwsem(&l->mutex);
3304 down_write(&l->mutex);
3305 l->key.type = type;
b70cc5fd 3306 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3307 l->use_count = 0; /* don't increment here */
3308 l->list = NULL;
3309 l->owner = cgrp;
3310 list_add(&l->links, &cgrp->pidlists);
3311 mutex_unlock(&cgrp->pidlist_mutex);
3312 return l;
3313}
3314
102a775e
BB
3315/*
3316 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3317 */
72a8cb30
BB
3318static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3319 struct cgroup_pidlist **lp)
102a775e
BB
3320{
3321 pid_t *array;
3322 int length;
3323 int pid, n = 0; /* used for populating the array */
817929ec
PM
3324 struct cgroup_iter it;
3325 struct task_struct *tsk;
102a775e
BB
3326 struct cgroup_pidlist *l;
3327
3328 /*
3329 * If cgroup gets more users after we read count, we won't have
3330 * enough space - tough. This race is indistinguishable to the
3331 * caller from the case that the additional cgroup users didn't
3332 * show up until sometime later on.
3333 */
3334 length = cgroup_task_count(cgrp);
d1d9fd33 3335 array = pidlist_allocate(length);
102a775e
BB
3336 if (!array)
3337 return -ENOMEM;
3338 /* now, populate the array */
bd89aabc
PM
3339 cgroup_iter_start(cgrp, &it);
3340 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3341 if (unlikely(n == length))
817929ec 3342 break;
102a775e 3343 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3344 if (type == CGROUP_FILE_PROCS)
3345 pid = task_tgid_vnr(tsk);
3346 else
3347 pid = task_pid_vnr(tsk);
102a775e
BB
3348 if (pid > 0) /* make sure to only use valid results */
3349 array[n++] = pid;
817929ec 3350 }
bd89aabc 3351 cgroup_iter_end(cgrp, &it);
102a775e
BB
3352 length = n;
3353 /* now sort & (if procs) strip out duplicates */
3354 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3355 if (type == CGROUP_FILE_PROCS)
102a775e 3356 length = pidlist_uniq(&array, length);
72a8cb30
BB
3357 l = cgroup_pidlist_find(cgrp, type);
3358 if (!l) {
d1d9fd33 3359 pidlist_free(array);
72a8cb30 3360 return -ENOMEM;
102a775e 3361 }
72a8cb30 3362 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3363 pidlist_free(l->list);
102a775e
BB
3364 l->list = array;
3365 l->length = length;
3366 l->use_count++;
3367 up_write(&l->mutex);
72a8cb30 3368 *lp = l;
102a775e 3369 return 0;
bbcb81d0
PM
3370}
3371
846c7bb0 3372/**
a043e3b2 3373 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3374 * @stats: cgroupstats to fill information into
3375 * @dentry: A dentry entry belonging to the cgroup for which stats have
3376 * been requested.
a043e3b2
LZ
3377 *
3378 * Build and fill cgroupstats so that taskstats can export it to user
3379 * space.
846c7bb0
BS
3380 */
3381int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3382{
3383 int ret = -EINVAL;
bd89aabc 3384 struct cgroup *cgrp;
846c7bb0
BS
3385 struct cgroup_iter it;
3386 struct task_struct *tsk;
33d283be 3387
846c7bb0 3388 /*
33d283be
LZ
3389 * Validate dentry by checking the superblock operations,
3390 * and make sure it's a directory.
846c7bb0 3391 */
33d283be
LZ
3392 if (dentry->d_sb->s_op != &cgroup_ops ||
3393 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3394 goto err;
3395
3396 ret = 0;
bd89aabc 3397 cgrp = dentry->d_fsdata;
846c7bb0 3398
bd89aabc
PM
3399 cgroup_iter_start(cgrp, &it);
3400 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3401 switch (tsk->state) {
3402 case TASK_RUNNING:
3403 stats->nr_running++;
3404 break;
3405 case TASK_INTERRUPTIBLE:
3406 stats->nr_sleeping++;
3407 break;
3408 case TASK_UNINTERRUPTIBLE:
3409 stats->nr_uninterruptible++;
3410 break;
3411 case TASK_STOPPED:
3412 stats->nr_stopped++;
3413 break;
3414 default:
3415 if (delayacct_is_task_waiting_on_io(tsk))
3416 stats->nr_io_wait++;
3417 break;
3418 }
3419 }
bd89aabc 3420 cgroup_iter_end(cgrp, &it);
846c7bb0 3421
846c7bb0
BS
3422err:
3423 return ret;
3424}
3425
8f3ff208 3426
bbcb81d0 3427/*
102a775e 3428 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3429 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3430 * in the cgroup->l->list array.
bbcb81d0 3431 */
cc31edce 3432
102a775e 3433static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3434{
cc31edce
PM
3435 /*
3436 * Initially we receive a position value that corresponds to
3437 * one more than the last pid shown (or 0 on the first call or
3438 * after a seek to the start). Use a binary-search to find the
3439 * next pid to display, if any
3440 */
102a775e 3441 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3442 int index = 0, pid = *pos;
3443 int *iter;
3444
102a775e 3445 down_read(&l->mutex);
cc31edce 3446 if (pid) {
102a775e 3447 int end = l->length;
20777766 3448
cc31edce
PM
3449 while (index < end) {
3450 int mid = (index + end) / 2;
102a775e 3451 if (l->list[mid] == pid) {
cc31edce
PM
3452 index = mid;
3453 break;
102a775e 3454 } else if (l->list[mid] <= pid)
cc31edce
PM
3455 index = mid + 1;
3456 else
3457 end = mid;
3458 }
3459 }
3460 /* If we're off the end of the array, we're done */
102a775e 3461 if (index >= l->length)
cc31edce
PM
3462 return NULL;
3463 /* Update the abstract position to be the actual pid that we found */
102a775e 3464 iter = l->list + index;
cc31edce
PM
3465 *pos = *iter;
3466 return iter;
3467}
3468
102a775e 3469static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3470{
102a775e
BB
3471 struct cgroup_pidlist *l = s->private;
3472 up_read(&l->mutex);
cc31edce
PM
3473}
3474
102a775e 3475static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3476{
102a775e
BB
3477 struct cgroup_pidlist *l = s->private;
3478 pid_t *p = v;
3479 pid_t *end = l->list + l->length;
cc31edce
PM
3480 /*
3481 * Advance to the next pid in the array. If this goes off the
3482 * end, we're done
3483 */
3484 p++;
3485 if (p >= end) {
3486 return NULL;
3487 } else {
3488 *pos = *p;
3489 return p;
3490 }
3491}
3492
102a775e 3493static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3494{
3495 return seq_printf(s, "%d\n", *(int *)v);
3496}
bbcb81d0 3497
102a775e
BB
3498/*
3499 * seq_operations functions for iterating on pidlists through seq_file -
3500 * independent of whether it's tasks or procs
3501 */
3502static const struct seq_operations cgroup_pidlist_seq_operations = {
3503 .start = cgroup_pidlist_start,
3504 .stop = cgroup_pidlist_stop,
3505 .next = cgroup_pidlist_next,
3506 .show = cgroup_pidlist_show,
cc31edce
PM
3507};
3508
102a775e 3509static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3510{
72a8cb30
BB
3511 /*
3512 * the case where we're the last user of this particular pidlist will
3513 * have us remove it from the cgroup's list, which entails taking the
3514 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3515 * pidlist_mutex, we have to take pidlist_mutex first.
3516 */
3517 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3518 down_write(&l->mutex);
3519 BUG_ON(!l->use_count);
3520 if (!--l->use_count) {
72a8cb30
BB
3521 /* we're the last user if refcount is 0; remove and free */
3522 list_del(&l->links);
3523 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3524 pidlist_free(l->list);
72a8cb30
BB
3525 put_pid_ns(l->key.ns);
3526 up_write(&l->mutex);
3527 kfree(l);
3528 return;
cc31edce 3529 }
72a8cb30 3530 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3531 up_write(&l->mutex);
bbcb81d0
PM
3532}
3533
102a775e 3534static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3535{
102a775e 3536 struct cgroup_pidlist *l;
cc31edce
PM
3537 if (!(file->f_mode & FMODE_READ))
3538 return 0;
102a775e
BB
3539 /*
3540 * the seq_file will only be initialized if the file was opened for
3541 * reading; hence we check if it's not null only in that case.
3542 */
3543 l = ((struct seq_file *)file->private_data)->private;
3544 cgroup_release_pid_array(l);
cc31edce
PM
3545 return seq_release(inode, file);
3546}
3547
102a775e 3548static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3549 .read = seq_read,
3550 .llseek = seq_lseek,
3551 .write = cgroup_file_write,
102a775e 3552 .release = cgroup_pidlist_release,
cc31edce
PM
3553};
3554
bbcb81d0 3555/*
102a775e
BB
3556 * The following functions handle opens on a file that displays a pidlist
3557 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3558 * in the cgroup.
bbcb81d0 3559 */
102a775e 3560/* helper function for the two below it */
72a8cb30 3561static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3562{
bd89aabc 3563 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3564 struct cgroup_pidlist *l;
cc31edce 3565 int retval;
bbcb81d0 3566
cc31edce 3567 /* Nothing to do for write-only files */
bbcb81d0
PM
3568 if (!(file->f_mode & FMODE_READ))
3569 return 0;
3570
102a775e 3571 /* have the array populated */
72a8cb30 3572 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3573 if (retval)
3574 return retval;
3575 /* configure file information */
3576 file->f_op = &cgroup_pidlist_operations;
cc31edce 3577
102a775e 3578 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3579 if (retval) {
102a775e 3580 cgroup_release_pid_array(l);
cc31edce 3581 return retval;
bbcb81d0 3582 }
102a775e 3583 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3584 return 0;
3585}
102a775e
BB
3586static int cgroup_tasks_open(struct inode *unused, struct file *file)
3587{
72a8cb30 3588 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3589}
3590static int cgroup_procs_open(struct inode *unused, struct file *file)
3591{
72a8cb30 3592 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3593}
bbcb81d0 3594
bd89aabc 3595static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3596 struct cftype *cft)
3597{
bd89aabc 3598 return notify_on_release(cgrp);
81a6a5cd
PM
3599}
3600
6379c106
PM
3601static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3602 struct cftype *cft,
3603 u64 val)
3604{
3605 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3606 if (val)
3607 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3608 else
3609 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3610 return 0;
3611}
3612
0dea1168
KS
3613/*
3614 * Unregister event and free resources.
3615 *
3616 * Gets called from workqueue.
3617 */
3618static void cgroup_event_remove(struct work_struct *work)
3619{
3620 struct cgroup_event *event = container_of(work, struct cgroup_event,
3621 remove);
3622 struct cgroup *cgrp = event->cgrp;
3623
0dea1168
KS
3624 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3625
3626 eventfd_ctx_put(event->eventfd);
0dea1168 3627 kfree(event);
a0a4db54 3628 dput(cgrp->dentry);
0dea1168
KS
3629}
3630
3631/*
3632 * Gets called on POLLHUP on eventfd when user closes it.
3633 *
3634 * Called with wqh->lock held and interrupts disabled.
3635 */
3636static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3637 int sync, void *key)
3638{
3639 struct cgroup_event *event = container_of(wait,
3640 struct cgroup_event, wait);
3641 struct cgroup *cgrp = event->cgrp;
3642 unsigned long flags = (unsigned long)key;
3643
3644 if (flags & POLLHUP) {
a93d2f17 3645 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3646 spin_lock(&cgrp->event_list_lock);
3647 list_del(&event->list);
3648 spin_unlock(&cgrp->event_list_lock);
3649 /*
3650 * We are in atomic context, but cgroup_event_remove() may
3651 * sleep, so we have to call it in workqueue.
3652 */
3653 schedule_work(&event->remove);
3654 }
3655
3656 return 0;
3657}
3658
3659static void cgroup_event_ptable_queue_proc(struct file *file,
3660 wait_queue_head_t *wqh, poll_table *pt)
3661{
3662 struct cgroup_event *event = container_of(pt,
3663 struct cgroup_event, pt);
3664
3665 event->wqh = wqh;
3666 add_wait_queue(wqh, &event->wait);
3667}
3668
3669/*
3670 * Parse input and register new cgroup event handler.
3671 *
3672 * Input must be in format '<event_fd> <control_fd> <args>'.
3673 * Interpretation of args is defined by control file implementation.
3674 */
3675static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3676 const char *buffer)
3677{
3678 struct cgroup_event *event = NULL;
3679 unsigned int efd, cfd;
3680 struct file *efile = NULL;
3681 struct file *cfile = NULL;
3682 char *endp;
3683 int ret;
3684
3685 efd = simple_strtoul(buffer, &endp, 10);
3686 if (*endp != ' ')
3687 return -EINVAL;
3688 buffer = endp + 1;
3689
3690 cfd = simple_strtoul(buffer, &endp, 10);
3691 if ((*endp != ' ') && (*endp != '\0'))
3692 return -EINVAL;
3693 buffer = endp + 1;
3694
3695 event = kzalloc(sizeof(*event), GFP_KERNEL);
3696 if (!event)
3697 return -ENOMEM;
3698 event->cgrp = cgrp;
3699 INIT_LIST_HEAD(&event->list);
3700 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3701 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3702 INIT_WORK(&event->remove, cgroup_event_remove);
3703
3704 efile = eventfd_fget(efd);
3705 if (IS_ERR(efile)) {
3706 ret = PTR_ERR(efile);
3707 goto fail;
3708 }
3709
3710 event->eventfd = eventfd_ctx_fileget(efile);
3711 if (IS_ERR(event->eventfd)) {
3712 ret = PTR_ERR(event->eventfd);
3713 goto fail;
3714 }
3715
3716 cfile = fget(cfd);
3717 if (!cfile) {
3718 ret = -EBADF;
3719 goto fail;
3720 }
3721
3722 /* the process need read permission on control file */
3bfa784a
AV
3723 /* AV: shouldn't we check that it's been opened for read instead? */
3724 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3725 if (ret < 0)
3726 goto fail;
3727
3728 event->cft = __file_cft(cfile);
3729 if (IS_ERR(event->cft)) {
3730 ret = PTR_ERR(event->cft);
3731 goto fail;
3732 }
3733
3734 if (!event->cft->register_event || !event->cft->unregister_event) {
3735 ret = -EINVAL;
3736 goto fail;
3737 }
3738
3739 ret = event->cft->register_event(cgrp, event->cft,
3740 event->eventfd, buffer);
3741 if (ret)
3742 goto fail;
3743
3744 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3745 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3746 ret = 0;
3747 goto fail;
3748 }
3749
a0a4db54
KS
3750 /*
3751 * Events should be removed after rmdir of cgroup directory, but before
3752 * destroying subsystem state objects. Let's take reference to cgroup
3753 * directory dentry to do that.
3754 */
3755 dget(cgrp->dentry);
3756
0dea1168
KS
3757 spin_lock(&cgrp->event_list_lock);
3758 list_add(&event->list, &cgrp->event_list);
3759 spin_unlock(&cgrp->event_list_lock);
3760
3761 fput(cfile);
3762 fput(efile);
3763
3764 return 0;
3765
3766fail:
3767 if (cfile)
3768 fput(cfile);
3769
3770 if (event && event->eventfd && !IS_ERR(event->eventfd))
3771 eventfd_ctx_put(event->eventfd);
3772
3773 if (!IS_ERR_OR_NULL(efile))
3774 fput(efile);
3775
3776 kfree(event);
3777
3778 return ret;
3779}
3780
97978e6d
DL
3781static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3782 struct cftype *cft)
3783{
3784 return clone_children(cgrp);
3785}
3786
3787static int cgroup_clone_children_write(struct cgroup *cgrp,
3788 struct cftype *cft,
3789 u64 val)
3790{
3791 if (val)
3792 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3793 else
3794 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3795 return 0;
3796}
3797
bbcb81d0
PM
3798/*
3799 * for the common functions, 'private' gives the type of file
3800 */
102a775e
BB
3801/* for hysterical raisins, we can't put this on the older files */
3802#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3803static struct cftype files[] = {
3804 {
3805 .name = "tasks",
3806 .open = cgroup_tasks_open,
af351026 3807 .write_u64 = cgroup_tasks_write,
102a775e 3808 .release = cgroup_pidlist_release,
099fca32 3809 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3810 },
102a775e
BB
3811 {
3812 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3813 .open = cgroup_procs_open,
74a1166d 3814 .write_u64 = cgroup_procs_write,
102a775e 3815 .release = cgroup_pidlist_release,
74a1166d 3816 .mode = S_IRUGO | S_IWUSR,
102a775e 3817 },
81a6a5cd
PM
3818 {
3819 .name = "notify_on_release",
f4c753b7 3820 .read_u64 = cgroup_read_notify_on_release,
6379c106 3821 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3822 },
0dea1168
KS
3823 {
3824 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3825 .write_string = cgroup_write_event_control,
3826 .mode = S_IWUGO,
3827 },
97978e6d
DL
3828 {
3829 .name = "cgroup.clone_children",
3830 .read_u64 = cgroup_clone_children_read,
3831 .write_u64 = cgroup_clone_children_write,
3832 },
6e6ff25b
TH
3833 {
3834 .name = "release_agent",
3835 .flags = CFTYPE_ONLY_ON_ROOT,
3836 .read_seq_string = cgroup_release_agent_show,
3837 .write_string = cgroup_release_agent_write,
3838 .max_write_len = PATH_MAX,
3839 },
db0416b6 3840 { } /* terminate */
bbcb81d0
PM
3841};
3842
bd89aabc 3843static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3844{
3845 int err;
3846 struct cgroup_subsys *ss;
3847
79578621 3848 err = cgroup_addrm_files(cgrp, NULL, files, true);
bbcb81d0
PM
3849 if (err < 0)
3850 return err;
3851
8e3f6541 3852 /* process cftsets of each subsystem */
bd89aabc 3853 for_each_subsys(cgrp->root, ss) {
8e3f6541
TH
3854 struct cftype_set *set;
3855
db0416b6 3856 list_for_each_entry(set, &ss->cftsets, node)
79578621 3857 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 3858 }
8e3f6541 3859
38460b48
KH
3860 /* This cgroup is ready now */
3861 for_each_subsys(cgrp->root, ss) {
3862 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3863 /*
3864 * Update id->css pointer and make this css visible from
3865 * CSS ID functions. This pointer will be dereferened
3866 * from RCU-read-side without locks.
3867 */
3868 if (css->id)
3869 rcu_assign_pointer(css->id->css, css);
3870 }
ddbcc7e8
PM
3871
3872 return 0;
3873}
3874
48ddbe19
TH
3875static void css_dput_fn(struct work_struct *work)
3876{
3877 struct cgroup_subsys_state *css =
3878 container_of(work, struct cgroup_subsys_state, dput_work);
5db9a4d9
TH
3879 struct dentry *dentry = css->cgroup->dentry;
3880 struct super_block *sb = dentry->d_sb;
48ddbe19 3881
5db9a4d9
TH
3882 atomic_inc(&sb->s_active);
3883 dput(dentry);
3884 deactivate_super(sb);
48ddbe19
TH
3885}
3886
ddbcc7e8
PM
3887static void init_cgroup_css(struct cgroup_subsys_state *css,
3888 struct cgroup_subsys *ss,
bd89aabc 3889 struct cgroup *cgrp)
ddbcc7e8 3890{
bd89aabc 3891 css->cgroup = cgrp;
e7c5ec91 3892 atomic_set(&css->refcnt, 1);
ddbcc7e8 3893 css->flags = 0;
38460b48 3894 css->id = NULL;
bd89aabc 3895 if (cgrp == dummytop)
ddbcc7e8 3896 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3897 BUG_ON(cgrp->subsys[ss->subsys_id]);
3898 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
3899
3900 /*
ed957793
TH
3901 * css holds an extra ref to @cgrp->dentry which is put on the last
3902 * css_put(). dput() requires process context, which css_put() may
3903 * be called without. @css->dput_work will be used to invoke
3904 * dput() asynchronously from css_put().
48ddbe19
TH
3905 */
3906 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
3907}
3908
3909/*
a043e3b2
LZ
3910 * cgroup_create - create a cgroup
3911 * @parent: cgroup that will be parent of the new cgroup
3912 * @dentry: dentry of the new cgroup
3913 * @mode: mode to set on new inode
ddbcc7e8 3914 *
a043e3b2 3915 * Must be called with the mutex on the parent inode held
ddbcc7e8 3916 */
ddbcc7e8 3917static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 3918 umode_t mode)
ddbcc7e8 3919{
bd89aabc 3920 struct cgroup *cgrp;
ddbcc7e8
PM
3921 struct cgroupfs_root *root = parent->root;
3922 int err = 0;
3923 struct cgroup_subsys *ss;
3924 struct super_block *sb = root->sb;
3925
bd89aabc
PM
3926 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3927 if (!cgrp)
ddbcc7e8
PM
3928 return -ENOMEM;
3929
3930 /* Grab a reference on the superblock so the hierarchy doesn't
3931 * get deleted on unmount if there are child cgroups. This
3932 * can be done outside cgroup_mutex, since the sb can't
3933 * disappear while someone has an open control file on the
3934 * fs */
3935 atomic_inc(&sb->s_active);
3936
3937 mutex_lock(&cgroup_mutex);
3938
cc31edce 3939 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3940
bd89aabc
PM
3941 cgrp->parent = parent;
3942 cgrp->root = parent->root;
3943 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3944
b6abdb0e
LZ
3945 if (notify_on_release(parent))
3946 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3947
97978e6d
DL
3948 if (clone_children(parent))
3949 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3950
ddbcc7e8 3951 for_each_subsys(root, ss) {
761b3ef5 3952 struct cgroup_subsys_state *css = ss->create(cgrp);
4528fd05 3953
ddbcc7e8
PM
3954 if (IS_ERR(css)) {
3955 err = PTR_ERR(css);
3956 goto err_destroy;
3957 }
bd89aabc 3958 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3959 if (ss->use_id) {
3960 err = alloc_css_id(ss, parent, cgrp);
3961 if (err)
38460b48 3962 goto err_destroy;
4528fd05 3963 }
38460b48 3964 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d 3965 if (clone_children(parent) && ss->post_clone)
761b3ef5 3966 ss->post_clone(cgrp);
ddbcc7e8
PM
3967 }
3968
bd89aabc 3969 list_add(&cgrp->sibling, &cgrp->parent->children);
ddbcc7e8
PM
3970 root->number_of_cgroups++;
3971
bd89aabc 3972 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3973 if (err < 0)
3974 goto err_remove;
3975
ed957793 3976 /* each css holds a ref to the cgroup's dentry */
48ddbe19 3977 for_each_subsys(root, ss)
ed957793 3978 dget(dentry);
48ddbe19 3979
ddbcc7e8 3980 /* The cgroup directory was pre-locked for us */
bd89aabc 3981 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3982
b0ca5a84
TH
3983 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
3984
bd89aabc 3985 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3986 /* If err < 0, we have a half-filled directory - oh well ;) */
3987
3988 mutex_unlock(&cgroup_mutex);
bd89aabc 3989 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3990
3991 return 0;
3992
3993 err_remove:
3994
bd89aabc 3995 list_del(&cgrp->sibling);
ddbcc7e8
PM
3996 root->number_of_cgroups--;
3997
3998 err_destroy:
3999
4000 for_each_subsys(root, ss) {
bd89aabc 4001 if (cgrp->subsys[ss->subsys_id])
761b3ef5 4002 ss->destroy(cgrp);
ddbcc7e8
PM
4003 }
4004
4005 mutex_unlock(&cgroup_mutex);
4006
4007 /* Release the reference count that we took on the superblock */
4008 deactivate_super(sb);
4009
bd89aabc 4010 kfree(cgrp);
ddbcc7e8
PM
4011 return err;
4012}
4013
18bb1db3 4014static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4015{
4016 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4017
4018 /* the vfs holds inode->i_mutex already */
4019 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4020}
4021
28b4c27b
TH
4022/*
4023 * Check the reference count on each subsystem. Since we already
4024 * established that there are no tasks in the cgroup, if the css refcount
4025 * is also 1, then there should be no outstanding references, so the
4026 * subsystem is safe to destroy. We scan across all subsystems rather than
4027 * using the per-hierarchy linked list of mounted subsystems since we can
4028 * be called via check_for_release() with no synchronization other than
4029 * RCU, and the subsystem linked list isn't RCU-safe.
4030 */
55b6fd01 4031static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd 4032{
81a6a5cd 4033 int i;
28b4c27b 4034
aae8aab4
BB
4035 /*
4036 * We won't need to lock the subsys array, because the subsystems
4037 * we're concerned about aren't going anywhere since our cgroup root
4038 * has a reference on them.
4039 */
81a6a5cd
PM
4040 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4041 struct cgroup_subsys *ss = subsys[i];
4042 struct cgroup_subsys_state *css;
28b4c27b 4043
aae8aab4
BB
4044 /* Skip subsystems not present or not in this hierarchy */
4045 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 4046 continue;
28b4c27b 4047
bd89aabc 4048 css = cgrp->subsys[ss->subsys_id];
28b4c27b
TH
4049 /*
4050 * When called from check_for_release() it's possible
81a6a5cd
PM
4051 * that by this point the cgroup has been removed
4052 * and the css deleted. But a false-positive doesn't
4053 * matter, since it can only happen if the cgroup
4054 * has been deleted and hence no longer needs the
28b4c27b
TH
4055 * release agent to be called anyway.
4056 */
4057 if (css && css_refcnt(css) > 1)
81a6a5cd 4058 return 1;
81a6a5cd
PM
4059 }
4060 return 0;
4061}
4062
ddbcc7e8
PM
4063static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4064{
bd89aabc 4065 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
4066 struct dentry *d;
4067 struct cgroup *parent;
ec64f515 4068 DEFINE_WAIT(wait);
4ab78683 4069 struct cgroup_event *event, *tmp;
ed957793 4070 struct cgroup_subsys *ss;
ec64f515 4071 int ret;
ddbcc7e8
PM
4072
4073 /* the vfs holds both inode->i_mutex already */
ddbcc7e8 4074 mutex_lock(&cgroup_mutex);
bd89aabc 4075 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
4076 mutex_unlock(&cgroup_mutex);
4077 return -EBUSY;
4078 }
bd89aabc 4079 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
4080 mutex_unlock(&cgroup_mutex);
4081 return -EBUSY;
4082 }
3fa59dfb 4083 mutex_unlock(&cgroup_mutex);
a043e3b2 4084
88703267
KH
4085 /*
4086 * In general, subsystem has no css->refcnt after pre_destroy(). But
4087 * in racy cases, subsystem may have to get css->refcnt after
4088 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4089 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4090 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4091 * and subsystem's reference count handling. Please see css_get/put
4092 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4093 */
4094 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4095
4fca88c8 4096 /*
a043e3b2
LZ
4097 * Call pre_destroy handlers of subsys. Notify subsystems
4098 * that rmdir() request comes.
4fca88c8 4099 */
ec64f515 4100 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
4101 if (ret) {
4102 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 4103 return ret;
88703267 4104 }
ddbcc7e8 4105
3fa59dfb
KH
4106 mutex_lock(&cgroup_mutex);
4107 parent = cgrp->parent;
ec64f515 4108 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 4109 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
4110 mutex_unlock(&cgroup_mutex);
4111 return -EBUSY;
4112 }
ec64f515 4113 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ed957793 4114
ed957793
TH
4115 /* block new css_tryget() by deactivating refcnt */
4116 for_each_subsys(cgrp->root, ss) {
4117 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4118
4119 WARN_ON(atomic_read(&css->refcnt) < 0);
4120 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4121 }
4122
4123 /*
ed957793
TH
4124 * Put all the base refs. Each css holds an extra reference to the
4125 * cgroup's dentry and cgroup removal proceeds regardless of css
4126 * refs. On the last put of each css, whenever that may be, the
4127 * extra dentry ref is put so that dentry destruction happens only
4128 * after all css's are released.
4129 */
e9316080
TH
4130 for_each_subsys(cgrp->root, ss)
4131 css_put(cgrp->subsys[ss->subsys_id]);
ed957793 4132
ec64f515
KH
4133 finish_wait(&cgroup_rmdir_waitq, &wait);
4134 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 4135
cdcc136f 4136 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4137 set_bit(CGRP_REMOVED, &cgrp->flags);
4138 if (!list_empty(&cgrp->release_list))
8d258797 4139 list_del_init(&cgrp->release_list);
cdcc136f 4140 raw_spin_unlock(&release_list_lock);
999cd8a4 4141
999cd8a4 4142 /* delete this cgroup from parent->children */
8d258797 4143 list_del_init(&cgrp->sibling);
999cd8a4 4144
b0ca5a84
TH
4145 list_del_init(&cgrp->allcg_node);
4146
bd89aabc 4147 d = dget(cgrp->dentry);
ddbcc7e8
PM
4148
4149 cgroup_d_remove_dir(d);
4150 dput(d);
ddbcc7e8 4151
bd89aabc 4152 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4153 check_for_release(parent);
4154
4ab78683
KS
4155 /*
4156 * Unregister events and notify userspace.
4157 * Notify userspace about cgroup removing only after rmdir of cgroup
4158 * directory to avoid race between userspace and kernelspace
4159 */
4160 spin_lock(&cgrp->event_list_lock);
4161 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4162 list_del(&event->list);
4163 remove_wait_queue(event->wqh, &event->wait);
4164 eventfd_signal(event->eventfd, 1);
4165 schedule_work(&event->remove);
4166 }
4167 spin_unlock(&cgrp->event_list_lock);
4168
ddbcc7e8 4169 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4170 return 0;
4171}
4172
8e3f6541
TH
4173static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4174{
4175 INIT_LIST_HEAD(&ss->cftsets);
4176
4177 /*
4178 * base_cftset is embedded in subsys itself, no need to worry about
4179 * deregistration.
4180 */
4181 if (ss->base_cftypes) {
4182 ss->base_cftset.cfts = ss->base_cftypes;
4183 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4184 }
4185}
4186
06a11920 4187static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4188{
ddbcc7e8 4189 struct cgroup_subsys_state *css;
cfe36bde
DC
4190
4191 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4192
8e3f6541
TH
4193 /* init base cftset */
4194 cgroup_init_cftsets(ss);
4195
ddbcc7e8 4196 /* Create the top cgroup state for this subsystem */
33a68ac1 4197 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4198 ss->root = &rootnode;
761b3ef5 4199 css = ss->create(dummytop);
ddbcc7e8
PM
4200 /* We don't handle early failures gracefully */
4201 BUG_ON(IS_ERR(css));
4202 init_cgroup_css(css, ss, dummytop);
4203
e8d55fde 4204 /* Update the init_css_set to contain a subsys
817929ec 4205 * pointer to this state - since the subsystem is
e8d55fde
LZ
4206 * newly registered, all tasks and hence the
4207 * init_css_set is in the subsystem's top cgroup. */
4208 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4209
4210 need_forkexit_callback |= ss->fork || ss->exit;
4211
e8d55fde
LZ
4212 /* At system boot, before all subsystems have been
4213 * registered, no tasks have been forked, so we don't
4214 * need to invoke fork callbacks here. */
4215 BUG_ON(!list_empty(&init_task.tasks));
4216
ddbcc7e8 4217 ss->active = 1;
e6a1105b
BB
4218
4219 /* this function shouldn't be used with modular subsystems, since they
4220 * need to register a subsys_id, among other things */
4221 BUG_ON(ss->module);
4222}
4223
4224/**
4225 * cgroup_load_subsys: load and register a modular subsystem at runtime
4226 * @ss: the subsystem to load
4227 *
4228 * This function should be called in a modular subsystem's initcall. If the
88393161 4229 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4230 * up for use. If the subsystem is built-in anyway, work is delegated to the
4231 * simpler cgroup_init_subsys.
4232 */
4233int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4234{
4235 int i;
4236 struct cgroup_subsys_state *css;
4237
4238 /* check name and function validity */
4239 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4240 ss->create == NULL || ss->destroy == NULL)
4241 return -EINVAL;
4242
4243 /*
4244 * we don't support callbacks in modular subsystems. this check is
4245 * before the ss->module check for consistency; a subsystem that could
4246 * be a module should still have no callbacks even if the user isn't
4247 * compiling it as one.
4248 */
4249 if (ss->fork || ss->exit)
4250 return -EINVAL;
4251
4252 /*
4253 * an optionally modular subsystem is built-in: we want to do nothing,
4254 * since cgroup_init_subsys will have already taken care of it.
4255 */
4256 if (ss->module == NULL) {
4257 /* a few sanity checks */
4258 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4259 BUG_ON(subsys[ss->subsys_id] != ss);
4260 return 0;
4261 }
4262
8e3f6541
TH
4263 /* init base cftset */
4264 cgroup_init_cftsets(ss);
4265
e6a1105b
BB
4266 /*
4267 * need to register a subsys id before anything else - for example,
4268 * init_cgroup_css needs it.
4269 */
4270 mutex_lock(&cgroup_mutex);
4271 /* find the first empty slot in the array */
4272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4273 if (subsys[i] == NULL)
4274 break;
4275 }
4276 if (i == CGROUP_SUBSYS_COUNT) {
4277 /* maximum number of subsystems already registered! */
4278 mutex_unlock(&cgroup_mutex);
4279 return -EBUSY;
4280 }
4281 /* assign ourselves the subsys_id */
4282 ss->subsys_id = i;
4283 subsys[i] = ss;
4284
4285 /*
4286 * no ss->create seems to need anything important in the ss struct, so
4287 * this can happen first (i.e. before the rootnode attachment).
4288 */
761b3ef5 4289 css = ss->create(dummytop);
e6a1105b
BB
4290 if (IS_ERR(css)) {
4291 /* failure case - need to deassign the subsys[] slot. */
4292 subsys[i] = NULL;
4293 mutex_unlock(&cgroup_mutex);
4294 return PTR_ERR(css);
4295 }
4296
4297 list_add(&ss->sibling, &rootnode.subsys_list);
4298 ss->root = &rootnode;
4299
4300 /* our new subsystem will be attached to the dummy hierarchy. */
4301 init_cgroup_css(css, ss, dummytop);
4302 /* init_idr must be after init_cgroup_css because it sets css->id. */
4303 if (ss->use_id) {
4304 int ret = cgroup_init_idr(ss, css);
4305 if (ret) {
4306 dummytop->subsys[ss->subsys_id] = NULL;
761b3ef5 4307 ss->destroy(dummytop);
e6a1105b
BB
4308 subsys[i] = NULL;
4309 mutex_unlock(&cgroup_mutex);
4310 return ret;
4311 }
4312 }
4313
4314 /*
4315 * Now we need to entangle the css into the existing css_sets. unlike
4316 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4317 * will need a new pointer to it; done by iterating the css_set_table.
4318 * furthermore, modifying the existing css_sets will corrupt the hash
4319 * table state, so each changed css_set will need its hash recomputed.
4320 * this is all done under the css_set_lock.
4321 */
4322 write_lock(&css_set_lock);
4323 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4324 struct css_set *cg;
4325 struct hlist_node *node, *tmp;
4326 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4327
4328 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4329 /* skip entries that we already rehashed */
4330 if (cg->subsys[ss->subsys_id])
4331 continue;
4332 /* remove existing entry */
4333 hlist_del(&cg->hlist);
4334 /* set new value */
4335 cg->subsys[ss->subsys_id] = css;
4336 /* recompute hash and restore entry */
4337 new_bucket = css_set_hash(cg->subsys);
4338 hlist_add_head(&cg->hlist, new_bucket);
4339 }
4340 }
4341 write_unlock(&css_set_lock);
4342
e6a1105b
BB
4343 ss->active = 1;
4344
e6a1105b
BB
4345 /* success! */
4346 mutex_unlock(&cgroup_mutex);
4347 return 0;
ddbcc7e8 4348}
e6a1105b 4349EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4350
cf5d5941
BB
4351/**
4352 * cgroup_unload_subsys: unload a modular subsystem
4353 * @ss: the subsystem to unload
4354 *
4355 * This function should be called in a modular subsystem's exitcall. When this
4356 * function is invoked, the refcount on the subsystem's module will be 0, so
4357 * the subsystem will not be attached to any hierarchy.
4358 */
4359void cgroup_unload_subsys(struct cgroup_subsys *ss)
4360{
4361 struct cg_cgroup_link *link;
4362 struct hlist_head *hhead;
4363
4364 BUG_ON(ss->module == NULL);
4365
4366 /*
4367 * we shouldn't be called if the subsystem is in use, and the use of
4368 * try_module_get in parse_cgroupfs_options should ensure that it
4369 * doesn't start being used while we're killing it off.
4370 */
4371 BUG_ON(ss->root != &rootnode);
4372
4373 mutex_lock(&cgroup_mutex);
4374 /* deassign the subsys_id */
4375 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4376 subsys[ss->subsys_id] = NULL;
4377
4378 /* remove subsystem from rootnode's list of subsystems */
8d258797 4379 list_del_init(&ss->sibling);
cf5d5941
BB
4380
4381 /*
4382 * disentangle the css from all css_sets attached to the dummytop. as
4383 * in loading, we need to pay our respects to the hashtable gods.
4384 */
4385 write_lock(&css_set_lock);
4386 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4387 struct css_set *cg = link->cg;
4388
4389 hlist_del(&cg->hlist);
4390 BUG_ON(!cg->subsys[ss->subsys_id]);
4391 cg->subsys[ss->subsys_id] = NULL;
4392 hhead = css_set_hash(cg->subsys);
4393 hlist_add_head(&cg->hlist, hhead);
4394 }
4395 write_unlock(&css_set_lock);
4396
4397 /*
4398 * remove subsystem's css from the dummytop and free it - need to free
4399 * before marking as null because ss->destroy needs the cgrp->subsys
4400 * pointer to find their state. note that this also takes care of
4401 * freeing the css_id.
4402 */
761b3ef5 4403 ss->destroy(dummytop);
cf5d5941
BB
4404 dummytop->subsys[ss->subsys_id] = NULL;
4405
4406 mutex_unlock(&cgroup_mutex);
4407}
4408EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4409
ddbcc7e8 4410/**
a043e3b2
LZ
4411 * cgroup_init_early - cgroup initialization at system boot
4412 *
4413 * Initialize cgroups at system boot, and initialize any
4414 * subsystems that request early init.
ddbcc7e8
PM
4415 */
4416int __init cgroup_init_early(void)
4417{
4418 int i;
146aa1bd 4419 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4420 INIT_LIST_HEAD(&init_css_set.cg_links);
4421 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4422 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4423 css_set_count = 1;
ddbcc7e8 4424 init_cgroup_root(&rootnode);
817929ec
PM
4425 root_count = 1;
4426 init_task.cgroups = &init_css_set;
4427
4428 init_css_set_link.cg = &init_css_set;
7717f7ba 4429 init_css_set_link.cgrp = dummytop;
bd89aabc 4430 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4431 &rootnode.top_cgroup.css_sets);
4432 list_add(&init_css_set_link.cg_link_list,
4433 &init_css_set.cg_links);
ddbcc7e8 4434
472b1053
LZ
4435 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4436 INIT_HLIST_HEAD(&css_set_table[i]);
4437
aae8aab4
BB
4438 /* at bootup time, we don't worry about modular subsystems */
4439 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4440 struct cgroup_subsys *ss = subsys[i];
4441
4442 BUG_ON(!ss->name);
4443 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4444 BUG_ON(!ss->create);
4445 BUG_ON(!ss->destroy);
4446 if (ss->subsys_id != i) {
cfe36bde 4447 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4448 ss->name, ss->subsys_id);
4449 BUG();
4450 }
4451
4452 if (ss->early_init)
4453 cgroup_init_subsys(ss);
4454 }
4455 return 0;
4456}
4457
4458/**
a043e3b2
LZ
4459 * cgroup_init - cgroup initialization
4460 *
4461 * Register cgroup filesystem and /proc file, and initialize
4462 * any subsystems that didn't request early init.
ddbcc7e8
PM
4463 */
4464int __init cgroup_init(void)
4465{
4466 int err;
4467 int i;
472b1053 4468 struct hlist_head *hhead;
a424316c
PM
4469
4470 err = bdi_init(&cgroup_backing_dev_info);
4471 if (err)
4472 return err;
ddbcc7e8 4473
aae8aab4
BB
4474 /* at bootup time, we don't worry about modular subsystems */
4475 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4476 struct cgroup_subsys *ss = subsys[i];
4477 if (!ss->early_init)
4478 cgroup_init_subsys(ss);
38460b48 4479 if (ss->use_id)
e6a1105b 4480 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4481 }
4482
472b1053
LZ
4483 /* Add init_css_set to the hash table */
4484 hhead = css_set_hash(init_css_set.subsys);
4485 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4486 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
4487
4488 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4489 if (!cgroup_kobj) {
4490 err = -ENOMEM;
4491 goto out;
4492 }
4493
ddbcc7e8 4494 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4495 if (err < 0) {
4496 kobject_put(cgroup_kobj);
ddbcc7e8 4497 goto out;
676db4af 4498 }
ddbcc7e8 4499
46ae220b 4500 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4501
ddbcc7e8 4502out:
a424316c
PM
4503 if (err)
4504 bdi_destroy(&cgroup_backing_dev_info);
4505
ddbcc7e8
PM
4506 return err;
4507}
b4f48b63 4508
a424316c
PM
4509/*
4510 * proc_cgroup_show()
4511 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4512 * - Used for /proc/<pid>/cgroup.
4513 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4514 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4515 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4516 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4517 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4518 * cgroup to top_cgroup.
4519 */
4520
4521/* TODO: Use a proper seq_file iterator */
4522static int proc_cgroup_show(struct seq_file *m, void *v)
4523{
4524 struct pid *pid;
4525 struct task_struct *tsk;
4526 char *buf;
4527 int retval;
4528 struct cgroupfs_root *root;
4529
4530 retval = -ENOMEM;
4531 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4532 if (!buf)
4533 goto out;
4534
4535 retval = -ESRCH;
4536 pid = m->private;
4537 tsk = get_pid_task(pid, PIDTYPE_PID);
4538 if (!tsk)
4539 goto out_free;
4540
4541 retval = 0;
4542
4543 mutex_lock(&cgroup_mutex);
4544
e5f6a860 4545 for_each_active_root(root) {
a424316c 4546 struct cgroup_subsys *ss;
bd89aabc 4547 struct cgroup *cgrp;
a424316c
PM
4548 int count = 0;
4549
2c6ab6d2 4550 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4551 for_each_subsys(root, ss)
4552 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4553 if (strlen(root->name))
4554 seq_printf(m, "%sname=%s", count ? "," : "",
4555 root->name);
a424316c 4556 seq_putc(m, ':');
7717f7ba 4557 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4558 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4559 if (retval < 0)
4560 goto out_unlock;
4561 seq_puts(m, buf);
4562 seq_putc(m, '\n');
4563 }
4564
4565out_unlock:
4566 mutex_unlock(&cgroup_mutex);
4567 put_task_struct(tsk);
4568out_free:
4569 kfree(buf);
4570out:
4571 return retval;
4572}
4573
4574static int cgroup_open(struct inode *inode, struct file *file)
4575{
4576 struct pid *pid = PROC_I(inode)->pid;
4577 return single_open(file, proc_cgroup_show, pid);
4578}
4579
828c0950 4580const struct file_operations proc_cgroup_operations = {
a424316c
PM
4581 .open = cgroup_open,
4582 .read = seq_read,
4583 .llseek = seq_lseek,
4584 .release = single_release,
4585};
4586
4587/* Display information about each subsystem and each hierarchy */
4588static int proc_cgroupstats_show(struct seq_file *m, void *v)
4589{
4590 int i;
a424316c 4591
8bab8dde 4592 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4593 /*
4594 * ideally we don't want subsystems moving around while we do this.
4595 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4596 * subsys/hierarchy state.
4597 */
a424316c 4598 mutex_lock(&cgroup_mutex);
a424316c
PM
4599 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4600 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4601 if (ss == NULL)
4602 continue;
2c6ab6d2
PM
4603 seq_printf(m, "%s\t%d\t%d\t%d\n",
4604 ss->name, ss->root->hierarchy_id,
8bab8dde 4605 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4606 }
4607 mutex_unlock(&cgroup_mutex);
4608 return 0;
4609}
4610
4611static int cgroupstats_open(struct inode *inode, struct file *file)
4612{
9dce07f1 4613 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4614}
4615
828c0950 4616static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4617 .open = cgroupstats_open,
4618 .read = seq_read,
4619 .llseek = seq_lseek,
4620 .release = single_release,
4621};
4622
b4f48b63
PM
4623/**
4624 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4625 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4626 *
4627 * Description: A task inherits its parent's cgroup at fork().
4628 *
4629 * A pointer to the shared css_set was automatically copied in
4630 * fork.c by dup_task_struct(). However, we ignore that copy, since
7e381b0e
FW
4631 * it was not made under the protection of RCU, cgroup_mutex or
4632 * threadgroup_change_begin(), so it might no longer be a valid
4633 * cgroup pointer. cgroup_attach_task() might have already changed
4634 * current->cgroups, allowing the previously referenced cgroup
4635 * group to be removed and freed.
4636 *
4637 * Outside the pointer validity we also need to process the css_set
4638 * inheritance between threadgoup_change_begin() and
4639 * threadgoup_change_end(), this way there is no leak in any process
4640 * wide migration performed by cgroup_attach_proc() that could otherwise
4641 * miss a thread because it is too early or too late in the fork stage.
b4f48b63
PM
4642 *
4643 * At the point that cgroup_fork() is called, 'current' is the parent
4644 * task, and the passed argument 'child' points to the child task.
4645 */
4646void cgroup_fork(struct task_struct *child)
4647{
7e381b0e
FW
4648 /*
4649 * We don't need to task_lock() current because current->cgroups
4650 * can't be changed concurrently here. The parent obviously hasn't
4651 * exited and called cgroup_exit(), and we are synchronized against
4652 * cgroup migration through threadgroup_change_begin().
4653 */
817929ec
PM
4654 child->cgroups = current->cgroups;
4655 get_css_set(child->cgroups);
817929ec 4656 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4657}
4658
4659/**
a043e3b2
LZ
4660 * cgroup_fork_callbacks - run fork callbacks
4661 * @child: the new task
4662 *
4663 * Called on a new task very soon before adding it to the
4664 * tasklist. No need to take any locks since no-one can
4665 * be operating on this task.
b4f48b63
PM
4666 */
4667void cgroup_fork_callbacks(struct task_struct *child)
4668{
4669 if (need_forkexit_callback) {
4670 int i;
aae8aab4
BB
4671 /*
4672 * forkexit callbacks are only supported for builtin
4673 * subsystems, and the builtin section of the subsys array is
4674 * immutable, so we don't need to lock the subsys array here.
4675 */
4676 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4677 struct cgroup_subsys *ss = subsys[i];
4678 if (ss->fork)
761b3ef5 4679 ss->fork(child);
b4f48b63
PM
4680 }
4681 }
4682}
4683
817929ec 4684/**
a043e3b2
LZ
4685 * cgroup_post_fork - called on a new task after adding it to the task list
4686 * @child: the task in question
4687 *
4688 * Adds the task to the list running through its css_set if necessary.
4689 * Has to be after the task is visible on the task list in case we race
4690 * with the first call to cgroup_iter_start() - to guarantee that the
4691 * new task ends up on its list.
4692 */
817929ec
PM
4693void cgroup_post_fork(struct task_struct *child)
4694{
3ce3230a
FW
4695 /*
4696 * use_task_css_set_links is set to 1 before we walk the tasklist
4697 * under the tasklist_lock and we read it here after we added the child
4698 * to the tasklist under the tasklist_lock as well. If the child wasn't
4699 * yet in the tasklist when we walked through it from
4700 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4701 * should be visible now due to the paired locking and barriers implied
4702 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4703 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4704 * lock on fork.
4705 */
817929ec
PM
4706 if (use_task_css_set_links) {
4707 write_lock(&css_set_lock);
7e3aa30a
FW
4708 if (list_empty(&child->cg_list)) {
4709 /*
4710 * It's safe to use child->cgroups without task_lock()
4711 * here because we are protected through
4712 * threadgroup_change_begin() against concurrent
4713 * css_set change in cgroup_task_migrate(). Also
4714 * the task can't exit at that point until
4715 * wake_up_new_task() is called, so we are protected
4716 * against cgroup_exit() setting child->cgroup to
4717 * init_css_set.
4718 */
817929ec 4719 list_add(&child->cg_list, &child->cgroups->tasks);
7e3aa30a 4720 }
817929ec
PM
4721 write_unlock(&css_set_lock);
4722 }
4723}
b4f48b63
PM
4724/**
4725 * cgroup_exit - detach cgroup from exiting task
4726 * @tsk: pointer to task_struct of exiting process
a043e3b2 4727 * @run_callback: run exit callbacks?
b4f48b63
PM
4728 *
4729 * Description: Detach cgroup from @tsk and release it.
4730 *
4731 * Note that cgroups marked notify_on_release force every task in
4732 * them to take the global cgroup_mutex mutex when exiting.
4733 * This could impact scaling on very large systems. Be reluctant to
4734 * use notify_on_release cgroups where very high task exit scaling
4735 * is required on large systems.
4736 *
4737 * the_top_cgroup_hack:
4738 *
4739 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4740 *
4741 * We call cgroup_exit() while the task is still competent to
4742 * handle notify_on_release(), then leave the task attached to the
4743 * root cgroup in each hierarchy for the remainder of its exit.
4744 *
4745 * To do this properly, we would increment the reference count on
4746 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4747 * code we would add a second cgroup function call, to drop that
4748 * reference. This would just create an unnecessary hot spot on
4749 * the top_cgroup reference count, to no avail.
4750 *
4751 * Normally, holding a reference to a cgroup without bumping its
4752 * count is unsafe. The cgroup could go away, or someone could
4753 * attach us to a different cgroup, decrementing the count on
4754 * the first cgroup that we never incremented. But in this case,
4755 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4756 * which wards off any cgroup_attach_task() attempts, or task is a failed
4757 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4758 */
4759void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4760{
817929ec 4761 struct css_set *cg;
d41d5a01 4762 int i;
817929ec
PM
4763
4764 /*
4765 * Unlink from the css_set task list if necessary.
4766 * Optimistically check cg_list before taking
4767 * css_set_lock
4768 */
4769 if (!list_empty(&tsk->cg_list)) {
4770 write_lock(&css_set_lock);
4771 if (!list_empty(&tsk->cg_list))
8d258797 4772 list_del_init(&tsk->cg_list);
817929ec
PM
4773 write_unlock(&css_set_lock);
4774 }
4775
b4f48b63
PM
4776 /* Reassign the task to the init_css_set. */
4777 task_lock(tsk);
817929ec
PM
4778 cg = tsk->cgroups;
4779 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4780
4781 if (run_callbacks && need_forkexit_callback) {
4782 /*
4783 * modular subsystems can't use callbacks, so no need to lock
4784 * the subsys array
4785 */
4786 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4787 struct cgroup_subsys *ss = subsys[i];
4788 if (ss->exit) {
4789 struct cgroup *old_cgrp =
4790 rcu_dereference_raw(cg->subsys[i])->cgroup;
4791 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4792 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4793 }
4794 }
4795 }
b4f48b63 4796 task_unlock(tsk);
d41d5a01 4797
817929ec 4798 if (cg)
81a6a5cd 4799 put_css_set_taskexit(cg);
b4f48b63 4800}
697f4161 4801
a043e3b2 4802/**
313e924c 4803 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4804 * @cgrp: the cgroup in question
313e924c 4805 * @task: the task in question
a043e3b2 4806 *
313e924c
GN
4807 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4808 * hierarchy.
697f4161
PM
4809 *
4810 * If we are sending in dummytop, then presumably we are creating
4811 * the top cgroup in the subsystem.
4812 *
4813 * Called only by the ns (nsproxy) cgroup.
4814 */
313e924c 4815int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4816{
4817 int ret;
4818 struct cgroup *target;
697f4161 4819
bd89aabc 4820 if (cgrp == dummytop)
697f4161
PM
4821 return 1;
4822
7717f7ba 4823 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4824 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4825 cgrp = cgrp->parent;
4826 ret = (cgrp == target);
697f4161
PM
4827 return ret;
4828}
81a6a5cd 4829
bd89aabc 4830static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4831{
4832 /* All of these checks rely on RCU to keep the cgroup
4833 * structure alive */
bd89aabc
PM
4834 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4835 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4836 /* Control Group is currently removeable. If it's not
4837 * already queued for a userspace notification, queue
4838 * it now */
4839 int need_schedule_work = 0;
cdcc136f 4840 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4841 if (!cgroup_is_removed(cgrp) &&
4842 list_empty(&cgrp->release_list)) {
4843 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4844 need_schedule_work = 1;
4845 }
cdcc136f 4846 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4847 if (need_schedule_work)
4848 schedule_work(&release_agent_work);
4849 }
4850}
4851
d7b9fff7 4852/* Caller must verify that the css is not for root cgroup */
28b4c27b
TH
4853bool __css_tryget(struct cgroup_subsys_state *css)
4854{
e9316080
TH
4855 while (true) {
4856 int t, v;
28b4c27b 4857
e9316080
TH
4858 v = css_refcnt(css);
4859 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4860 if (likely(t == v))
28b4c27b 4861 return true;
e9316080
TH
4862 else if (t < 0)
4863 return false;
28b4c27b 4864 cpu_relax();
e9316080 4865 }
28b4c27b
TH
4866}
4867EXPORT_SYMBOL_GPL(__css_tryget);
4868
4869/* Caller must verify that the css is not for root cgroup */
4870void __css_put(struct cgroup_subsys_state *css)
81a6a5cd 4871{
bd89aabc 4872 struct cgroup *cgrp = css->cgroup;
8e3bbf42 4873 int v;
28b4c27b 4874
81a6a5cd 4875 rcu_read_lock();
8e3bbf42
SQ
4876 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
4877
4878 switch (v) {
48ddbe19 4879 case 1:
ec64f515
KH
4880 if (notify_on_release(cgrp)) {
4881 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4882 check_for_release(cgrp);
4883 }
88703267 4884 cgroup_wakeup_rmdir_waiter(cgrp);
48ddbe19
TH
4885 break;
4886 case 0:
ed957793 4887 schedule_work(&css->dput_work);
48ddbe19 4888 break;
81a6a5cd
PM
4889 }
4890 rcu_read_unlock();
4891}
67523c48 4892EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4893
4894/*
4895 * Notify userspace when a cgroup is released, by running the
4896 * configured release agent with the name of the cgroup (path
4897 * relative to the root of cgroup file system) as the argument.
4898 *
4899 * Most likely, this user command will try to rmdir this cgroup.
4900 *
4901 * This races with the possibility that some other task will be
4902 * attached to this cgroup before it is removed, or that some other
4903 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4904 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4905 * unused, and this cgroup will be reprieved from its death sentence,
4906 * to continue to serve a useful existence. Next time it's released,
4907 * we will get notified again, if it still has 'notify_on_release' set.
4908 *
4909 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4910 * means only wait until the task is successfully execve()'d. The
4911 * separate release agent task is forked by call_usermodehelper(),
4912 * then control in this thread returns here, without waiting for the
4913 * release agent task. We don't bother to wait because the caller of
4914 * this routine has no use for the exit status of the release agent
4915 * task, so no sense holding our caller up for that.
81a6a5cd 4916 */
81a6a5cd
PM
4917static void cgroup_release_agent(struct work_struct *work)
4918{
4919 BUG_ON(work != &release_agent_work);
4920 mutex_lock(&cgroup_mutex);
cdcc136f 4921 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4922 while (!list_empty(&release_list)) {
4923 char *argv[3], *envp[3];
4924 int i;
e788e066 4925 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4926 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4927 struct cgroup,
4928 release_list);
bd89aabc 4929 list_del_init(&cgrp->release_list);
cdcc136f 4930 raw_spin_unlock(&release_list_lock);
81a6a5cd 4931 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4932 if (!pathbuf)
4933 goto continue_free;
4934 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4935 goto continue_free;
4936 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4937 if (!agentbuf)
4938 goto continue_free;
81a6a5cd
PM
4939
4940 i = 0;
e788e066
PM
4941 argv[i++] = agentbuf;
4942 argv[i++] = pathbuf;
81a6a5cd
PM
4943 argv[i] = NULL;
4944
4945 i = 0;
4946 /* minimal command environment */
4947 envp[i++] = "HOME=/";
4948 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4949 envp[i] = NULL;
4950
4951 /* Drop the lock while we invoke the usermode helper,
4952 * since the exec could involve hitting disk and hence
4953 * be a slow process */
4954 mutex_unlock(&cgroup_mutex);
4955 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4956 mutex_lock(&cgroup_mutex);
e788e066
PM
4957 continue_free:
4958 kfree(pathbuf);
4959 kfree(agentbuf);
cdcc136f 4960 raw_spin_lock(&release_list_lock);
81a6a5cd 4961 }
cdcc136f 4962 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4963 mutex_unlock(&cgroup_mutex);
4964}
8bab8dde
PM
4965
4966static int __init cgroup_disable(char *str)
4967{
4968 int i;
4969 char *token;
4970
4971 while ((token = strsep(&str, ",")) != NULL) {
4972 if (!*token)
4973 continue;
aae8aab4
BB
4974 /*
4975 * cgroup_disable, being at boot time, can't know about module
4976 * subsystems, so we don't worry about them.
4977 */
4978 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4979 struct cgroup_subsys *ss = subsys[i];
4980
4981 if (!strcmp(token, ss->name)) {
4982 ss->disabled = 1;
4983 printk(KERN_INFO "Disabling %s control group"
4984 " subsystem\n", ss->name);
4985 break;
4986 }
4987 }
4988 }
4989 return 1;
4990}
4991__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4992
4993/*
4994 * Functons for CSS ID.
4995 */
4996
4997/*
4998 *To get ID other than 0, this should be called when !cgroup_is_removed().
4999 */
5000unsigned short css_id(struct cgroup_subsys_state *css)
5001{
7f0f1546
KH
5002 struct css_id *cssid;
5003
5004 /*
5005 * This css_id() can return correct value when somone has refcnt
5006 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5007 * it's unchanged until freed.
5008 */
28b4c27b 5009 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5010
5011 if (cssid)
5012 return cssid->id;
5013 return 0;
5014}
67523c48 5015EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
5016
5017unsigned short css_depth(struct cgroup_subsys_state *css)
5018{
7f0f1546
KH
5019 struct css_id *cssid;
5020
28b4c27b 5021 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5022
5023 if (cssid)
5024 return cssid->depth;
5025 return 0;
5026}
67523c48 5027EXPORT_SYMBOL_GPL(css_depth);
38460b48 5028
747388d7
KH
5029/**
5030 * css_is_ancestor - test "root" css is an ancestor of "child"
5031 * @child: the css to be tested.
5032 * @root: the css supporsed to be an ancestor of the child.
5033 *
5034 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5035 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5036 * But, considering usual usage, the csses should be valid objects after test.
5037 * Assuming that the caller will do some action to the child if this returns
5038 * returns true, the caller must take "child";s reference count.
5039 * If "child" is valid object and this returns true, "root" is valid, too.
5040 */
5041
38460b48 5042bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5043 const struct cgroup_subsys_state *root)
38460b48 5044{
747388d7
KH
5045 struct css_id *child_id;
5046 struct css_id *root_id;
38460b48 5047
747388d7 5048 child_id = rcu_dereference(child->id);
91c63734
JW
5049 if (!child_id)
5050 return false;
747388d7 5051 root_id = rcu_dereference(root->id);
91c63734
JW
5052 if (!root_id)
5053 return false;
5054 if (child_id->depth < root_id->depth)
5055 return false;
5056 if (child_id->stack[root_id->depth] != root_id->id)
5057 return false;
5058 return true;
38460b48
KH
5059}
5060
38460b48
KH
5061void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5062{
5063 struct css_id *id = css->id;
5064 /* When this is called before css_id initialization, id can be NULL */
5065 if (!id)
5066 return;
5067
5068 BUG_ON(!ss->use_id);
5069
5070 rcu_assign_pointer(id->css, NULL);
5071 rcu_assign_pointer(css->id, NULL);
42aee6c4 5072 spin_lock(&ss->id_lock);
38460b48 5073 idr_remove(&ss->idr, id->id);
42aee6c4 5074 spin_unlock(&ss->id_lock);
025cea99 5075 kfree_rcu(id, rcu_head);
38460b48 5076}
67523c48 5077EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5078
5079/*
5080 * This is called by init or create(). Then, calls to this function are
5081 * always serialized (By cgroup_mutex() at create()).
5082 */
5083
5084static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5085{
5086 struct css_id *newid;
5087 int myid, error, size;
5088
5089 BUG_ON(!ss->use_id);
5090
5091 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5092 newid = kzalloc(size, GFP_KERNEL);
5093 if (!newid)
5094 return ERR_PTR(-ENOMEM);
5095 /* get id */
5096 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5097 error = -ENOMEM;
5098 goto err_out;
5099 }
42aee6c4 5100 spin_lock(&ss->id_lock);
38460b48
KH
5101 /* Don't use 0. allocates an ID of 1-65535 */
5102 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
42aee6c4 5103 spin_unlock(&ss->id_lock);
38460b48
KH
5104
5105 /* Returns error when there are no free spaces for new ID.*/
5106 if (error) {
5107 error = -ENOSPC;
5108 goto err_out;
5109 }
5110 if (myid > CSS_ID_MAX)
5111 goto remove_idr;
5112
5113 newid->id = myid;
5114 newid->depth = depth;
5115 return newid;
5116remove_idr:
5117 error = -ENOSPC;
42aee6c4 5118 spin_lock(&ss->id_lock);
38460b48 5119 idr_remove(&ss->idr, myid);
42aee6c4 5120 spin_unlock(&ss->id_lock);
38460b48
KH
5121err_out:
5122 kfree(newid);
5123 return ERR_PTR(error);
5124
5125}
5126
e6a1105b
BB
5127static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5128 struct cgroup_subsys_state *rootcss)
38460b48
KH
5129{
5130 struct css_id *newid;
38460b48 5131
42aee6c4 5132 spin_lock_init(&ss->id_lock);
38460b48
KH
5133 idr_init(&ss->idr);
5134
38460b48
KH
5135 newid = get_new_cssid(ss, 0);
5136 if (IS_ERR(newid))
5137 return PTR_ERR(newid);
5138
5139 newid->stack[0] = newid->id;
5140 newid->css = rootcss;
5141 rootcss->id = newid;
5142 return 0;
5143}
5144
5145static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5146 struct cgroup *child)
5147{
5148 int subsys_id, i, depth = 0;
5149 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5150 struct css_id *child_id, *parent_id;
38460b48
KH
5151
5152 subsys_id = ss->subsys_id;
5153 parent_css = parent->subsys[subsys_id];
5154 child_css = child->subsys[subsys_id];
38460b48 5155 parent_id = parent_css->id;
94b3dd0f 5156 depth = parent_id->depth + 1;
38460b48
KH
5157
5158 child_id = get_new_cssid(ss, depth);
5159 if (IS_ERR(child_id))
5160 return PTR_ERR(child_id);
5161
5162 for (i = 0; i < depth; i++)
5163 child_id->stack[i] = parent_id->stack[i];
5164 child_id->stack[depth] = child_id->id;
5165 /*
5166 * child_id->css pointer will be set after this cgroup is available
5167 * see cgroup_populate_dir()
5168 */
5169 rcu_assign_pointer(child_css->id, child_id);
5170
5171 return 0;
5172}
5173
5174/**
5175 * css_lookup - lookup css by id
5176 * @ss: cgroup subsys to be looked into.
5177 * @id: the id
5178 *
5179 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5180 * NULL if not. Should be called under rcu_read_lock()
5181 */
5182struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5183{
5184 struct css_id *cssid = NULL;
5185
5186 BUG_ON(!ss->use_id);
5187 cssid = idr_find(&ss->idr, id);
5188
5189 if (unlikely(!cssid))
5190 return NULL;
5191
5192 return rcu_dereference(cssid->css);
5193}
67523c48 5194EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5195
5196/**
5197 * css_get_next - lookup next cgroup under specified hierarchy.
5198 * @ss: pointer to subsystem
5199 * @id: current position of iteration.
5200 * @root: pointer to css. search tree under this.
5201 * @foundid: position of found object.
5202 *
5203 * Search next css under the specified hierarchy of rootid. Calling under
5204 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5205 */
5206struct cgroup_subsys_state *
5207css_get_next(struct cgroup_subsys *ss, int id,
5208 struct cgroup_subsys_state *root, int *foundid)
5209{
5210 struct cgroup_subsys_state *ret = NULL;
5211 struct css_id *tmp;
5212 int tmpid;
5213 int rootid = css_id(root);
5214 int depth = css_depth(root);
5215
5216 if (!rootid)
5217 return NULL;
5218
5219 BUG_ON(!ss->use_id);
ca464d69
HD
5220 WARN_ON_ONCE(!rcu_read_lock_held());
5221
38460b48
KH
5222 /* fill start point for scan */
5223 tmpid = id;
5224 while (1) {
5225 /*
5226 * scan next entry from bitmap(tree), tmpid is updated after
5227 * idr_get_next().
5228 */
38460b48 5229 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5230 if (!tmp)
5231 break;
5232 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5233 ret = rcu_dereference(tmp->css);
5234 if (ret) {
5235 *foundid = tmpid;
5236 break;
5237 }
5238 }
5239 /* continue to scan from next id */
5240 tmpid = tmpid + 1;
5241 }
5242 return ret;
5243}
5244
e5d1367f
SE
5245/*
5246 * get corresponding css from file open on cgroupfs directory
5247 */
5248struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5249{
5250 struct cgroup *cgrp;
5251 struct inode *inode;
5252 struct cgroup_subsys_state *css;
5253
5254 inode = f->f_dentry->d_inode;
5255 /* check in cgroup filesystem dir */
5256 if (inode->i_op != &cgroup_dir_inode_operations)
5257 return ERR_PTR(-EBADF);
5258
5259 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5260 return ERR_PTR(-EINVAL);
5261
5262 /* get cgroup */
5263 cgrp = __d_cgrp(f->f_dentry);
5264 css = cgrp->subsys[id];
5265 return css ? css : ERR_PTR(-ENOENT);
5266}
5267
fe693435 5268#ifdef CONFIG_CGROUP_DEBUG
761b3ef5 5269static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
fe693435
PM
5270{
5271 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5272
5273 if (!css)
5274 return ERR_PTR(-ENOMEM);
5275
5276 return css;
5277}
5278
761b3ef5 5279static void debug_destroy(struct cgroup *cont)
fe693435
PM
5280{
5281 kfree(cont->subsys[debug_subsys_id]);
5282}
5283
5284static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5285{
5286 return atomic_read(&cont->count);
5287}
5288
5289static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5290{
5291 return cgroup_task_count(cont);
5292}
5293
5294static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5295{
5296 return (u64)(unsigned long)current->cgroups;
5297}
5298
5299static u64 current_css_set_refcount_read(struct cgroup *cont,
5300 struct cftype *cft)
5301{
5302 u64 count;
5303
5304 rcu_read_lock();
5305 count = atomic_read(&current->cgroups->refcount);
5306 rcu_read_unlock();
5307 return count;
5308}
5309
7717f7ba
PM
5310static int current_css_set_cg_links_read(struct cgroup *cont,
5311 struct cftype *cft,
5312 struct seq_file *seq)
5313{
5314 struct cg_cgroup_link *link;
5315 struct css_set *cg;
5316
5317 read_lock(&css_set_lock);
5318 rcu_read_lock();
5319 cg = rcu_dereference(current->cgroups);
5320 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5321 struct cgroup *c = link->cgrp;
5322 const char *name;
5323
5324 if (c->dentry)
5325 name = c->dentry->d_name.name;
5326 else
5327 name = "?";
2c6ab6d2
PM
5328 seq_printf(seq, "Root %d group %s\n",
5329 c->root->hierarchy_id, name);
7717f7ba
PM
5330 }
5331 rcu_read_unlock();
5332 read_unlock(&css_set_lock);
5333 return 0;
5334}
5335
5336#define MAX_TASKS_SHOWN_PER_CSS 25
5337static int cgroup_css_links_read(struct cgroup *cont,
5338 struct cftype *cft,
5339 struct seq_file *seq)
5340{
5341 struct cg_cgroup_link *link;
5342
5343 read_lock(&css_set_lock);
5344 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5345 struct css_set *cg = link->cg;
5346 struct task_struct *task;
5347 int count = 0;
5348 seq_printf(seq, "css_set %p\n", cg);
5349 list_for_each_entry(task, &cg->tasks, cg_list) {
5350 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5351 seq_puts(seq, " ...\n");
5352 break;
5353 } else {
5354 seq_printf(seq, " task %d\n",
5355 task_pid_vnr(task));
5356 }
5357 }
5358 }
5359 read_unlock(&css_set_lock);
5360 return 0;
5361}
5362
fe693435
PM
5363static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5364{
5365 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5366}
5367
5368static struct cftype debug_files[] = {
5369 {
5370 .name = "cgroup_refcount",
5371 .read_u64 = cgroup_refcount_read,
5372 },
5373 {
5374 .name = "taskcount",
5375 .read_u64 = debug_taskcount_read,
5376 },
5377
5378 {
5379 .name = "current_css_set",
5380 .read_u64 = current_css_set_read,
5381 },
5382
5383 {
5384 .name = "current_css_set_refcount",
5385 .read_u64 = current_css_set_refcount_read,
5386 },
5387
7717f7ba
PM
5388 {
5389 .name = "current_css_set_cg_links",
5390 .read_seq_string = current_css_set_cg_links_read,
5391 },
5392
5393 {
5394 .name = "cgroup_css_links",
5395 .read_seq_string = cgroup_css_links_read,
5396 },
5397
fe693435
PM
5398 {
5399 .name = "releasable",
5400 .read_u64 = releasable_read,
5401 },
fe693435 5402
4baf6e33
TH
5403 { } /* terminate */
5404};
fe693435
PM
5405
5406struct cgroup_subsys debug_subsys = {
5407 .name = "debug",
5408 .create = debug_create,
5409 .destroy = debug_destroy,
fe693435 5410 .subsys_id = debug_subsys_id,
4baf6e33 5411 .base_cftypes = debug_files,
fe693435
PM
5412};
5413#endif /* CONFIG_CGROUP_DEBUG */