cgroup: add a validation check to cgroup_add_cftyps()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 55#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 56#include <linux/kthread.h>
776f02fa 57#include <linux/delay.h>
846c7bb0 58
60063497 59#include <linux/atomic.h>
ddbcc7e8 60
b1a21367
TH
61/*
62 * pidlists linger the following amount before being destroyed. The goal
63 * is avoiding frequent destruction in the middle of consecutive read calls
64 * Expiring in the middle is a performance problem not a correctness one.
65 * 1 sec should be enough.
66 */
67#define CGROUP_PIDLIST_DESTROY_DELAY HZ
68
8d7e6fb0
TH
69#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
70 MAX_CFTYPE_NAME + 2)
71
ace2bee8
TH
72/*
73 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
74 * creation/removal and hierarchy changing operations including cgroup
75 * creation, removal, css association and controller rebinding. This outer
76 * lock is needed mainly to resolve the circular dependency between kernfs
77 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
78 */
79static DEFINE_MUTEX(cgroup_tree_mutex);
80
e25e2cbb
TH
81/*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
8af01f56 87EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 88#else
81a6a5cd 89static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
90#endif
91
69e943b7
TH
92/*
93 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
94 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
95 */
96static DEFINE_SPINLOCK(release_agent_path_lock);
97
ace2bee8 98#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 99 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 100 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 101 lockdep_is_held(&cgroup_mutex), \
ace2bee8 102 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 103
e5fca243
TH
104/*
105 * cgroup destruction makes heavy use of work items and there can be a lot
106 * of concurrent destructions. Use a separate workqueue so that cgroup
107 * destruction work items don't end up filling up max_active of system_wq
108 * which may lead to deadlock.
109 */
110static struct workqueue_struct *cgroup_destroy_wq;
111
b1a21367
TH
112/*
113 * pidlist destructions need to be flushed on cgroup destruction. Use a
114 * separate workqueue as flush domain.
115 */
116static struct workqueue_struct *cgroup_pidlist_destroy_wq;
117
3ed80a62 118/* generate an array of cgroup subsystem pointers */
073219e9 119#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 120static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
121#include <linux/cgroup_subsys.h>
122};
073219e9
TH
123#undef SUBSYS
124
125/* array of cgroup subsystem names */
126#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
127static const char *cgroup_subsys_name[] = {
128#include <linux/cgroup_subsys.h>
129};
130#undef SUBSYS
ddbcc7e8 131
ddbcc7e8 132/*
9871bf95
TH
133 * The dummy hierarchy, reserved for the subsystems that are otherwise
134 * unattached - it never has more than a single cgroup, and all tasks are
135 * part of that cgroup.
ddbcc7e8 136 */
9871bf95
TH
137static struct cgroupfs_root cgroup_dummy_root;
138
139/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
140static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
141
142/* The list of hierarchy roots */
143
9871bf95
TH
144static LIST_HEAD(cgroup_roots);
145static int cgroup_root_count;
ddbcc7e8 146
3417ae1f 147/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 148static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 149
794611a1
LZ
150/*
151 * Assign a monotonically increasing serial number to cgroups. It
152 * guarantees cgroups with bigger numbers are newer than those with smaller
153 * numbers. Also, as cgroups are always appended to the parent's
154 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
155 * the ascending serial number order on the list. Protected by
156 * cgroup_mutex.
794611a1 157 */
00356bd5 158static u64 cgroup_serial_nr_next = 1;
794611a1 159
ddbcc7e8 160/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
161 * check for fork/exit handlers to call. This avoids us having to do
162 * extra work in the fork/exit path if none of the subsystems need to
163 * be called.
ddbcc7e8 164 */
8947f9d5 165static int need_forkexit_callback __read_mostly;
ddbcc7e8 166
628f7cd4
TH
167static struct cftype cgroup_base_files[];
168
59f5296b 169static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
170static int rebind_subsystems(struct cgroupfs_root *root,
171 unsigned long added_mask, unsigned removed_mask);
f20104de 172static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 173static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
174static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
175 bool is_add);
b1a21367 176static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 177
95109b62
TH
178/**
179 * cgroup_css - obtain a cgroup's css for the specified subsystem
180 * @cgrp: the cgroup of interest
ca8bdcaf 181 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 182 *
ca8bdcaf
TH
183 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
184 * function must be called either under cgroup_mutex or rcu_read_lock() and
185 * the caller is responsible for pinning the returned css if it wants to
186 * keep accessing it outside the said locks. This function may return
187 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
188 */
189static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 190 struct cgroup_subsys *ss)
95109b62 191{
ca8bdcaf 192 if (ss)
aec25020 193 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
194 lockdep_is_held(&cgroup_tree_mutex) ||
195 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
196 else
197 return &cgrp->dummy_css;
95109b62 198}
42809dd4 199
ddbcc7e8 200/* convenient tests for these bits */
54766d4a 201static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 202{
54766d4a 203 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
204}
205
59f5296b
TH
206struct cgroup_subsys_state *seq_css(struct seq_file *seq)
207{
2bd59d48
TH
208 struct kernfs_open_file *of = seq->private;
209 struct cgroup *cgrp = of->kn->parent->priv;
210 struct cftype *cft = seq_cft(seq);
211
212 /*
213 * This is open and unprotected implementation of cgroup_css().
214 * seq_css() is only called from a kernfs file operation which has
215 * an active reference on the file. Because all the subsystem
216 * files are drained before a css is disassociated with a cgroup,
217 * the matching css from the cgroup's subsys table is guaranteed to
218 * be and stay valid until the enclosing operation is complete.
219 */
220 if (cft->ss)
221 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
222 else
223 return &cgrp->dummy_css;
59f5296b
TH
224}
225EXPORT_SYMBOL_GPL(seq_css);
226
78574cf9
LZ
227/**
228 * cgroup_is_descendant - test ancestry
229 * @cgrp: the cgroup to be tested
230 * @ancestor: possible ancestor of @cgrp
231 *
232 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
233 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
234 * and @ancestor are accessible.
235 */
236bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
237{
238 while (cgrp) {
239 if (cgrp == ancestor)
240 return true;
241 cgrp = cgrp->parent;
242 }
243 return false;
244}
ddbcc7e8 245
e9685a03 246static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
247{
248 const int bits =
bd89aabc
PM
249 (1 << CGRP_RELEASABLE) |
250 (1 << CGRP_NOTIFY_ON_RELEASE);
251 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
252}
253
e9685a03 254static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 255{
bd89aabc 256 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
257}
258
1c6727af
TH
259/**
260 * for_each_css - iterate all css's of a cgroup
261 * @css: the iteration cursor
262 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
263 * @cgrp: the target cgroup to iterate css's of
264 *
265 * Should be called under cgroup_mutex.
266 */
267#define for_each_css(css, ssid, cgrp) \
268 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
269 if (!((css) = rcu_dereference_check( \
270 (cgrp)->subsys[(ssid)], \
ace2bee8 271 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
272 lockdep_is_held(&cgroup_mutex)))) { } \
273 else
274
30159ec7 275/**
3ed80a62 276 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 277 * @ss: the iteration cursor
780cd8b3 278 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 279 */
780cd8b3 280#define for_each_subsys(ss, ssid) \
3ed80a62
TH
281 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
282 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 283
5549c497
TH
284/* iterate across the active hierarchies */
285#define for_each_active_root(root) \
286 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
0942eeee 343/*
96d365e0
TH
344 * css_set_rwsem protects the list of css_set objects, and the chain of
345 * tasks off each css_set.
0942eeee 346 */
96d365e0 347static DECLARE_RWSEM(css_set_rwsem);
817929ec
PM
348static int css_set_count;
349
7717f7ba
PM
350/*
351 * hash table for cgroup groups. This improves the performance to find
352 * an existing css_set. This hash doesn't (currently) take into
353 * account cgroups in empty hierarchies.
354 */
472b1053 355#define CSS_SET_HASH_BITS 7
0ac801fe 356static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 357
0ac801fe 358static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 359{
0ac801fe 360 unsigned long key = 0UL;
30159ec7
TH
361 struct cgroup_subsys *ss;
362 int i;
472b1053 363
30159ec7 364 for_each_subsys(ss, i)
0ac801fe
LZ
365 key += (unsigned long)css[i];
366 key = (key >> 16) ^ key;
472b1053 367
0ac801fe 368 return key;
472b1053
LZ
369}
370
89c5509b 371static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 372{
69d0206c 373 struct cgrp_cset_link *link, *tmp_link;
5abb8855 374
89c5509b
TH
375 lockdep_assert_held(&css_set_rwsem);
376
377 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 378 return;
81a6a5cd 379
2c6ab6d2 380 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 381 hash_del(&cset->hlist);
2c6ab6d2
PM
382 css_set_count--;
383
69d0206c 384 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 385 struct cgroup *cgrp = link->cgrp;
5abb8855 386
69d0206c
TH
387 list_del(&link->cset_link);
388 list_del(&link->cgrp_link);
71b5707e 389
96d365e0 390 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 391 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 392 if (taskexit)
bd89aabc
PM
393 set_bit(CGRP_RELEASABLE, &cgrp->flags);
394 check_for_release(cgrp);
81a6a5cd 395 }
2c6ab6d2
PM
396
397 kfree(link);
81a6a5cd 398 }
2c6ab6d2 399
5abb8855 400 kfree_rcu(cset, rcu_head);
b4f48b63
PM
401}
402
89c5509b
TH
403static void put_css_set(struct css_set *cset, bool taskexit)
404{
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cset->refcount, -1, 1))
411 return;
412
413 down_write(&css_set_rwsem);
414 put_css_set_locked(cset, taskexit);
415 up_write(&css_set_rwsem);
416}
417
817929ec
PM
418/*
419 * refcounted get/put for css_set objects
420 */
5abb8855 421static inline void get_css_set(struct css_set *cset)
817929ec 422{
5abb8855 423 atomic_inc(&cset->refcount);
817929ec
PM
424}
425
b326f9d0 426/**
7717f7ba 427 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
428 * @cset: candidate css_set being tested
429 * @old_cset: existing css_set for a task
7717f7ba
PM
430 * @new_cgrp: cgroup that's being entered by the task
431 * @template: desired set of css pointers in css_set (pre-calculated)
432 *
6f4b7e63 433 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
434 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
435 */
5abb8855
TH
436static bool compare_css_sets(struct css_set *cset,
437 struct css_set *old_cset,
7717f7ba
PM
438 struct cgroup *new_cgrp,
439 struct cgroup_subsys_state *template[])
440{
441 struct list_head *l1, *l2;
442
5abb8855 443 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
444 /* Not all subsystems matched */
445 return false;
446 }
447
448 /*
449 * Compare cgroup pointers in order to distinguish between
450 * different cgroups in heirarchies with no subsystems. We
451 * could get by with just this check alone (and skip the
452 * memcmp above) but on most setups the memcmp check will
453 * avoid the need for this more expensive check on almost all
454 * candidates.
455 */
456
69d0206c
TH
457 l1 = &cset->cgrp_links;
458 l2 = &old_cset->cgrp_links;
7717f7ba 459 while (1) {
69d0206c 460 struct cgrp_cset_link *link1, *link2;
5abb8855 461 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
462
463 l1 = l1->next;
464 l2 = l2->next;
465 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
466 if (l1 == &cset->cgrp_links) {
467 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
468 break;
469 } else {
69d0206c 470 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
471 }
472 /* Locate the cgroups associated with these links. */
69d0206c
TH
473 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
474 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
475 cgrp1 = link1->cgrp;
476 cgrp2 = link2->cgrp;
7717f7ba 477 /* Hierarchies should be linked in the same order. */
5abb8855 478 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
479
480 /*
481 * If this hierarchy is the hierarchy of the cgroup
482 * that's changing, then we need to check that this
483 * css_set points to the new cgroup; if it's any other
484 * hierarchy, then this css_set should point to the
485 * same cgroup as the old css_set.
486 */
5abb8855
TH
487 if (cgrp1->root == new_cgrp->root) {
488 if (cgrp1 != new_cgrp)
7717f7ba
PM
489 return false;
490 } else {
5abb8855 491 if (cgrp1 != cgrp2)
7717f7ba
PM
492 return false;
493 }
494 }
495 return true;
496}
497
b326f9d0
TH
498/**
499 * find_existing_css_set - init css array and find the matching css_set
500 * @old_cset: the css_set that we're using before the cgroup transition
501 * @cgrp: the cgroup that we're moving into
502 * @template: out param for the new set of csses, should be clear on entry
817929ec 503 */
5abb8855
TH
504static struct css_set *find_existing_css_set(struct css_set *old_cset,
505 struct cgroup *cgrp,
506 struct cgroup_subsys_state *template[])
b4f48b63 507{
bd89aabc 508 struct cgroupfs_root *root = cgrp->root;
30159ec7 509 struct cgroup_subsys *ss;
5abb8855 510 struct css_set *cset;
0ac801fe 511 unsigned long key;
b326f9d0 512 int i;
817929ec 513
aae8aab4
BB
514 /*
515 * Build the set of subsystem state objects that we want to see in the
516 * new css_set. while subsystems can change globally, the entries here
517 * won't change, so no need for locking.
518 */
30159ec7 519 for_each_subsys(ss, i) {
a1a71b45 520 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
521 /* Subsystem is in this hierarchy. So we want
522 * the subsystem state from the new
523 * cgroup */
ca8bdcaf 524 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
525 } else {
526 /* Subsystem is not in this hierarchy, so we
527 * don't want to change the subsystem state */
5abb8855 528 template[i] = old_cset->subsys[i];
817929ec
PM
529 }
530 }
531
0ac801fe 532 key = css_set_hash(template);
5abb8855
TH
533 hash_for_each_possible(css_set_table, cset, hlist, key) {
534 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
535 continue;
536
537 /* This css_set matches what we need */
5abb8855 538 return cset;
472b1053 539 }
817929ec
PM
540
541 /* No existing cgroup group matched */
542 return NULL;
543}
544
69d0206c 545static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 546{
69d0206c 547 struct cgrp_cset_link *link, *tmp_link;
36553434 548
69d0206c
TH
549 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
550 list_del(&link->cset_link);
36553434
LZ
551 kfree(link);
552 }
553}
554
69d0206c
TH
555/**
556 * allocate_cgrp_cset_links - allocate cgrp_cset_links
557 * @count: the number of links to allocate
558 * @tmp_links: list_head the allocated links are put on
559 *
560 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
561 * through ->cset_link. Returns 0 on success or -errno.
817929ec 562 */
69d0206c 563static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 564{
69d0206c 565 struct cgrp_cset_link *link;
817929ec 566 int i;
69d0206c
TH
567
568 INIT_LIST_HEAD(tmp_links);
569
817929ec 570 for (i = 0; i < count; i++) {
f4f4be2b 571 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 572 if (!link) {
69d0206c 573 free_cgrp_cset_links(tmp_links);
817929ec
PM
574 return -ENOMEM;
575 }
69d0206c 576 list_add(&link->cset_link, tmp_links);
817929ec
PM
577 }
578 return 0;
579}
580
c12f65d4
LZ
581/**
582 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 583 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 584 * @cset: the css_set to be linked
c12f65d4
LZ
585 * @cgrp: the destination cgroup
586 */
69d0206c
TH
587static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
588 struct cgroup *cgrp)
c12f65d4 589{
69d0206c 590 struct cgrp_cset_link *link;
c12f65d4 591
69d0206c
TH
592 BUG_ON(list_empty(tmp_links));
593 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
594 link->cset = cset;
7717f7ba 595 link->cgrp = cgrp;
69d0206c 596 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
597 /*
598 * Always add links to the tail of the list so that the list
599 * is sorted by order of hierarchy creation
600 */
69d0206c 601 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
602}
603
b326f9d0
TH
604/**
605 * find_css_set - return a new css_set with one cgroup updated
606 * @old_cset: the baseline css_set
607 * @cgrp: the cgroup to be updated
608 *
609 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
610 * substituted into the appropriate hierarchy.
817929ec 611 */
5abb8855
TH
612static struct css_set *find_css_set(struct css_set *old_cset,
613 struct cgroup *cgrp)
817929ec 614{
b326f9d0 615 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 616 struct css_set *cset;
69d0206c
TH
617 struct list_head tmp_links;
618 struct cgrp_cset_link *link;
0ac801fe 619 unsigned long key;
472b1053 620
b326f9d0
TH
621 lockdep_assert_held(&cgroup_mutex);
622
817929ec
PM
623 /* First see if we already have a cgroup group that matches
624 * the desired set */
96d365e0 625 down_read(&css_set_rwsem);
5abb8855
TH
626 cset = find_existing_css_set(old_cset, cgrp, template);
627 if (cset)
628 get_css_set(cset);
96d365e0 629 up_read(&css_set_rwsem);
817929ec 630
5abb8855
TH
631 if (cset)
632 return cset;
817929ec 633
f4f4be2b 634 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 635 if (!cset)
817929ec
PM
636 return NULL;
637
69d0206c 638 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 639 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 640 kfree(cset);
817929ec
PM
641 return NULL;
642 }
643
5abb8855 644 atomic_set(&cset->refcount, 1);
69d0206c 645 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
646 INIT_LIST_HEAD(&cset->tasks);
647 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
648
649 /* Copy the set of subsystem state objects generated in
650 * find_existing_css_set() */
5abb8855 651 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 652
96d365e0 653 down_write(&css_set_rwsem);
817929ec 654 /* Add reference counts and links from the new css_set. */
69d0206c 655 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 656 struct cgroup *c = link->cgrp;
69d0206c 657
7717f7ba
PM
658 if (c->root == cgrp->root)
659 c = cgrp;
69d0206c 660 link_css_set(&tmp_links, cset, c);
7717f7ba 661 }
817929ec 662
69d0206c 663 BUG_ON(!list_empty(&tmp_links));
817929ec 664
817929ec 665 css_set_count++;
472b1053
LZ
666
667 /* Add this cgroup group to the hash table */
5abb8855
TH
668 key = css_set_hash(cset->subsys);
669 hash_add(css_set_table, &cset->hlist, key);
472b1053 670
96d365e0 671 up_write(&css_set_rwsem);
817929ec 672
5abb8855 673 return cset;
b4f48b63
PM
674}
675
2bd59d48
TH
676static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
677{
678 struct cgroup *top_cgrp = kf_root->kn->priv;
679
680 return top_cgrp->root;
681}
682
f2e85d57
TH
683static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
684{
685 int id;
686
687 lockdep_assert_held(&cgroup_mutex);
688
689 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
690 GFP_KERNEL);
691 if (id < 0)
692 return id;
693
694 root->hierarchy_id = id;
695 return 0;
696}
697
698static void cgroup_exit_root_id(struct cgroupfs_root *root)
699{
700 lockdep_assert_held(&cgroup_mutex);
701
702 if (root->hierarchy_id) {
703 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
704 root->hierarchy_id = 0;
705 }
706}
707
708static void cgroup_free_root(struct cgroupfs_root *root)
709{
710 if (root) {
711 /* hierarhcy ID shoulid already have been released */
712 WARN_ON_ONCE(root->hierarchy_id);
713
714 idr_destroy(&root->cgroup_idr);
715 kfree(root);
716 }
717}
718
776f02fa 719static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 720{
f2e85d57
TH
721 struct cgroup *cgrp = &root->top_cgroup;
722 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 723
2bd59d48 724 mutex_lock(&cgroup_tree_mutex);
2bd59d48 725 mutex_lock(&cgroup_mutex);
f2e85d57 726
776f02fa 727 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
728 BUG_ON(!list_empty(&cgrp->children));
729
f2e85d57 730 /* Rebind all subsystems back to the default hierarchy */
35585573 731 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
732
733 /*
734 * Release all the links from cset_links to this hierarchy's
735 * root cgroup
736 */
96d365e0 737 down_write(&css_set_rwsem);
f2e85d57
TH
738
739 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
740 list_del(&link->cset_link);
741 list_del(&link->cgrp_link);
742 kfree(link);
743 }
96d365e0 744 up_write(&css_set_rwsem);
f2e85d57
TH
745
746 if (!list_empty(&root->root_list)) {
747 list_del(&root->root_list);
748 cgroup_root_count--;
749 }
750
751 cgroup_exit_root_id(root);
752
753 mutex_unlock(&cgroup_mutex);
754 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 755
2bd59d48 756 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
757 cgroup_free_root(root);
758}
759
7717f7ba
PM
760/*
761 * Return the cgroup for "task" from the given hierarchy. Must be
96d365e0 762 * called with cgroup_mutex and css_set_rwsem held.
7717f7ba
PM
763 */
764static struct cgroup *task_cgroup_from_root(struct task_struct *task,
765 struct cgroupfs_root *root)
766{
5abb8855 767 struct css_set *cset;
7717f7ba
PM
768 struct cgroup *res = NULL;
769
96d365e0
TH
770 lockdep_assert_held(&cgroup_mutex);
771 lockdep_assert_held(&css_set_rwsem);
772
7717f7ba
PM
773 /*
774 * No need to lock the task - since we hold cgroup_mutex the
775 * task can't change groups, so the only thing that can happen
776 * is that it exits and its css is set back to init_css_set.
777 */
a8ad805c 778 cset = task_css_set(task);
5abb8855 779 if (cset == &init_css_set) {
7717f7ba
PM
780 res = &root->top_cgroup;
781 } else {
69d0206c
TH
782 struct cgrp_cset_link *link;
783
784 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 785 struct cgroup *c = link->cgrp;
69d0206c 786
7717f7ba
PM
787 if (c->root == root) {
788 res = c;
789 break;
790 }
791 }
792 }
96d365e0 793
7717f7ba
PM
794 BUG_ON(!res);
795 return res;
796}
797
ddbcc7e8
PM
798/*
799 * There is one global cgroup mutex. We also require taking
800 * task_lock() when dereferencing a task's cgroup subsys pointers.
801 * See "The task_lock() exception", at the end of this comment.
802 *
803 * A task must hold cgroup_mutex to modify cgroups.
804 *
805 * Any task can increment and decrement the count field without lock.
806 * So in general, code holding cgroup_mutex can't rely on the count
807 * field not changing. However, if the count goes to zero, then only
956db3ca 808 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
809 * means that no tasks are currently attached, therefore there is no
810 * way a task attached to that cgroup can fork (the other way to
811 * increment the count). So code holding cgroup_mutex can safely
812 * assume that if the count is zero, it will stay zero. Similarly, if
813 * a task holds cgroup_mutex on a cgroup with zero count, it
814 * knows that the cgroup won't be removed, as cgroup_rmdir()
815 * needs that mutex.
816 *
ddbcc7e8
PM
817 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
818 * (usually) take cgroup_mutex. These are the two most performance
819 * critical pieces of code here. The exception occurs on cgroup_exit(),
820 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
821 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
822 * to the release agent with the name of the cgroup (path relative to
823 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
824 *
825 * A cgroup can only be deleted if both its 'count' of using tasks
826 * is zero, and its list of 'children' cgroups is empty. Since all
827 * tasks in the system use _some_ cgroup, and since there is always at
828 * least one task in the system (init, pid == 1), therefore, top_cgroup
829 * always has either children cgroups and/or using tasks. So we don't
830 * need a special hack to ensure that top_cgroup cannot be deleted.
831 *
832 * The task_lock() exception
833 *
834 * The need for this exception arises from the action of
d0b2fdd2 835 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 836 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
837 * several performance critical places that need to reference
838 * task->cgroup without the expense of grabbing a system global
839 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 840 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
841 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
842 * the task_struct routinely used for such matters.
843 *
844 * P.S. One more locking exception. RCU is used to guard the
956db3ca 845 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
846 */
847
628f7cd4 848static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 849static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 850static const struct file_operations proc_cgroupstats_operations;
a424316c 851
8d7e6fb0
TH
852static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
853 char *buf)
854{
855 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
856 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
857 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
858 cft->ss->name, cft->name);
859 else
860 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
861 return buf;
862}
863
f2e85d57
TH
864/**
865 * cgroup_file_mode - deduce file mode of a control file
866 * @cft: the control file in question
867 *
868 * returns cft->mode if ->mode is not 0
869 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
870 * returns S_IRUGO if it has only a read handler
871 * returns S_IWUSR if it has only a write hander
872 */
873static umode_t cgroup_file_mode(const struct cftype *cft)
874{
875 umode_t mode = 0;
876
877 if (cft->mode)
878 return cft->mode;
879
880 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
881 mode |= S_IRUGO;
882
883 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
884 cft->trigger)
885 mode |= S_IWUSR;
886
887 return mode;
888}
889
be445626
LZ
890static void cgroup_free_fn(struct work_struct *work)
891{
ea15f8cc 892 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 893
3c9c825b 894 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 895 cgroup_pidlist_destroy_all(cgrp);
be445626 896
776f02fa
TH
897 if (cgrp->parent) {
898 /*
899 * We get a ref to the parent, and put the ref when this
900 * cgroup is being freed, so it's guaranteed that the
901 * parent won't be destroyed before its children.
902 */
903 cgroup_put(cgrp->parent);
904 kernfs_put(cgrp->kn);
905 kfree(cgrp);
906 } else {
907 /*
908 * This is top cgroup's refcnt reaching zero, which
909 * indicates that the root should be released.
910 */
911 cgroup_destroy_root(cgrp->root);
912 }
be445626
LZ
913}
914
915static void cgroup_free_rcu(struct rcu_head *head)
916{
917 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
918
ea15f8cc 919 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 920 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
921}
922
59f5296b
TH
923static void cgroup_get(struct cgroup *cgrp)
924{
2bd59d48
TH
925 WARN_ON_ONCE(cgroup_is_dead(cgrp));
926 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
927 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
928}
929
59f5296b
TH
930static void cgroup_put(struct cgroup *cgrp)
931{
2bd59d48
TH
932 if (!atomic_dec_and_test(&cgrp->refcnt))
933 return;
776f02fa 934 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 935 return;
59f5296b 936
2bd59d48
TH
937 /*
938 * XXX: cgrp->id is only used to look up css's. As cgroup and
939 * css's lifetimes will be decoupled, it should be made
940 * per-subsystem and moved to css->id so that lookups are
941 * successful until the target css is released.
942 */
943 mutex_lock(&cgroup_mutex);
944 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
945 mutex_unlock(&cgroup_mutex);
946 cgrp->id = -1;
ddbcc7e8 947
2bd59d48 948 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
949}
950
2739d3cc 951static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 952{
2bd59d48 953 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 954
ace2bee8 955 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 956 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
957}
958
13af07df 959/**
628f7cd4 960 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 961 * @cgrp: target cgroup
13af07df
AR
962 * @subsys_mask: mask of the subsystem ids whose files should be removed
963 */
628f7cd4 964static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 965{
13af07df 966 struct cgroup_subsys *ss;
b420ba7d 967 int i;
05ef1d7c 968
b420ba7d 969 for_each_subsys(ss, i) {
0adb0704 970 struct cftype *cfts;
b420ba7d
TH
971
972 if (!test_bit(i, &subsys_mask))
13af07df 973 continue;
0adb0704
TH
974 list_for_each_entry(cfts, &ss->cfts, node)
975 cgroup_addrm_files(cgrp, cfts, false);
13af07df 976 }
ddbcc7e8
PM
977}
978
ddbcc7e8 979static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 980 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 981{
bd89aabc 982 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 983 struct cgroup_subsys *ss;
3126121f 984 int i, ret;
ddbcc7e8 985
ace2bee8
TH
986 lockdep_assert_held(&cgroup_tree_mutex);
987 lockdep_assert_held(&cgroup_mutex);
aae8aab4 988
ddbcc7e8 989 /* Check that any added subsystems are currently free */
3ed80a62
TH
990 for_each_subsys(ss, i)
991 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
992 return -EBUSY;
ddbcc7e8 993
3126121f
TH
994 ret = cgroup_populate_dir(cgrp, added_mask);
995 if (ret)
3ed80a62 996 return ret;
3126121f
TH
997
998 /*
999 * Nothing can fail from this point on. Remove files for the
1000 * removed subsystems and rebind each subsystem.
1001 */
4ac06017 1002 mutex_unlock(&cgroup_mutex);
3126121f 1003 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1004 mutex_lock(&cgroup_mutex);
ddbcc7e8 1005
30159ec7 1006 for_each_subsys(ss, i) {
ddbcc7e8 1007 unsigned long bit = 1UL << i;
30159ec7 1008
a1a71b45 1009 if (bit & added_mask) {
ddbcc7e8 1010 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1011 BUG_ON(cgroup_css(cgrp, ss));
1012 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1013 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1014
73e80ed8 1015 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1016 cgroup_css(cgroup_dummy_top, ss));
1017 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1018
b2aa30f7 1019 ss->root = root;
ddbcc7e8 1020 if (ss->bind)
ca8bdcaf 1021 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1022
cf5d5941 1023 /* refcount was already taken, and we're keeping it */
a8a648c4 1024 root->subsys_mask |= bit;
a1a71b45 1025 } else if (bit & removed_mask) {
ddbcc7e8 1026 /* We're removing this subsystem */
ca8bdcaf
TH
1027 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1028 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1029
ddbcc7e8 1030 if (ss->bind)
ca8bdcaf 1031 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1032
ca8bdcaf 1033 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1034 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1035
9871bf95 1036 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1037 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1038 }
1039 }
ddbcc7e8 1040
2bd59d48 1041 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1042 return 0;
1043}
1044
2bd59d48
TH
1045static int cgroup_show_options(struct seq_file *seq,
1046 struct kernfs_root *kf_root)
ddbcc7e8 1047{
2bd59d48 1048 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1049 struct cgroup_subsys *ss;
b85d2040 1050 int ssid;
ddbcc7e8 1051
b85d2040
TH
1052 for_each_subsys(ss, ssid)
1053 if (root->subsys_mask & (1 << ssid))
1054 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1055 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1056 seq_puts(seq, ",sane_behavior");
93438629 1057 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1058 seq_puts(seq, ",noprefix");
93438629 1059 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1060 seq_puts(seq, ",xattr");
69e943b7
TH
1061
1062 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1063 if (strlen(root->release_agent_path))
1064 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1065 spin_unlock(&release_agent_path_lock);
1066
2260e7fc 1067 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1068 seq_puts(seq, ",clone_children");
c6d57f33
PM
1069 if (strlen(root->name))
1070 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1071 return 0;
1072}
1073
1074struct cgroup_sb_opts {
a1a71b45 1075 unsigned long subsys_mask;
ddbcc7e8 1076 unsigned long flags;
81a6a5cd 1077 char *release_agent;
2260e7fc 1078 bool cpuset_clone_children;
c6d57f33 1079 char *name;
2c6ab6d2
PM
1080 /* User explicitly requested empty subsystem */
1081 bool none;
ddbcc7e8
PM
1082};
1083
aae8aab4 1084/*
9871bf95
TH
1085 * Convert a hierarchy specifier into a bitmask of subsystems and
1086 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1087 * array. This function takes refcounts on subsystems to be used, unless it
1088 * returns error, in which case no refcounts are taken.
aae8aab4 1089 */
cf5d5941 1090static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1091{
32a8cf23
DL
1092 char *token, *o = data;
1093 bool all_ss = false, one_ss = false;
f9ab5b5b 1094 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1095 struct cgroup_subsys *ss;
1096 int i;
f9ab5b5b 1097
aae8aab4
BB
1098 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1099
f9ab5b5b 1100#ifdef CONFIG_CPUSETS
073219e9 1101 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1102#endif
ddbcc7e8 1103
c6d57f33 1104 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1105
1106 while ((token = strsep(&o, ",")) != NULL) {
1107 if (!*token)
1108 return -EINVAL;
32a8cf23 1109 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1110 /* Explicitly have no subsystems */
1111 opts->none = true;
32a8cf23
DL
1112 continue;
1113 }
1114 if (!strcmp(token, "all")) {
1115 /* Mutually exclusive option 'all' + subsystem name */
1116 if (one_ss)
1117 return -EINVAL;
1118 all_ss = true;
1119 continue;
1120 }
873fe09e
TH
1121 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1122 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1123 continue;
1124 }
32a8cf23 1125 if (!strcmp(token, "noprefix")) {
93438629 1126 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1127 continue;
1128 }
1129 if (!strcmp(token, "clone_children")) {
2260e7fc 1130 opts->cpuset_clone_children = true;
32a8cf23
DL
1131 continue;
1132 }
03b1cde6 1133 if (!strcmp(token, "xattr")) {
93438629 1134 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1135 continue;
1136 }
32a8cf23 1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
30159ec7 1173 for_each_subsys(ss, i) {
32a8cf23
DL
1174 if (strcmp(token, ss->name))
1175 continue;
1176 if (ss->disabled)
1177 continue;
1178
1179 /* Mutually exclusive option 'all' + subsystem name */
1180 if (all_ss)
1181 return -EINVAL;
a1a71b45 1182 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1183 one_ss = true;
1184
1185 break;
1186 }
1187 if (i == CGROUP_SUBSYS_COUNT)
1188 return -ENOENT;
1189 }
1190
1191 /*
1192 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1193 * otherwise if 'none', 'name=' and a subsystem name options
1194 * were not specified, let's default to 'all'
32a8cf23 1195 */
30159ec7
TH
1196 if (all_ss || (!one_ss && !opts->none && !opts->name))
1197 for_each_subsys(ss, i)
1198 if (!ss->disabled)
1199 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1200
2c6ab6d2
PM
1201 /* Consistency checks */
1202
873fe09e
TH
1203 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1204 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1205
d3ba07c3
TH
1206 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1207 opts->cpuset_clone_children || opts->release_agent ||
1208 opts->name) {
1209 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1210 return -EINVAL;
1211 }
873fe09e
TH
1212 }
1213
f9ab5b5b
LZ
1214 /*
1215 * Option noprefix was introduced just for backward compatibility
1216 * with the old cpuset, so we allow noprefix only if mounting just
1217 * the cpuset subsystem.
1218 */
93438629 1219 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1220 return -EINVAL;
1221
2c6ab6d2
PM
1222
1223 /* Can't specify "none" and some subsystems */
a1a71b45 1224 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1225 return -EINVAL;
1226
1227 /*
1228 * We either have to specify by name or by subsystems. (So all
1229 * empty hierarchies must have a name).
1230 */
a1a71b45 1231 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1232 return -EINVAL;
1233
1234 return 0;
1235}
1236
2bd59d48 1237static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1238{
1239 int ret = 0;
2bd59d48 1240 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1241 struct cgroup_sb_opts opts;
a1a71b45 1242 unsigned long added_mask, removed_mask;
ddbcc7e8 1243
873fe09e
TH
1244 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1245 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1246 return -EINVAL;
1247 }
1248
ace2bee8 1249 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1250 mutex_lock(&cgroup_mutex);
1251
1252 /* See what subsystems are wanted */
1253 ret = parse_cgroupfs_options(data, &opts);
1254 if (ret)
1255 goto out_unlock;
1256
a8a648c4 1257 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1258 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1259 task_tgid_nr(current), current->comm);
1260
a1a71b45
AR
1261 added_mask = opts.subsys_mask & ~root->subsys_mask;
1262 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1263
cf5d5941 1264 /* Don't allow flags or name to change at remount */
0ce6cba3 1265 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1266 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1267 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1268 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1269 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1270 ret = -EINVAL;
1271 goto out_unlock;
1272 }
1273
f172e67c 1274 /* remounting is not allowed for populated hierarchies */
3c9c825b 1275 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1276 ret = -EBUSY;
0670e08b 1277 goto out_unlock;
cf5d5941 1278 }
ddbcc7e8 1279
a8a648c4 1280 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1281 if (ret)
0670e08b 1282 goto out_unlock;
ddbcc7e8 1283
69e943b7
TH
1284 if (opts.release_agent) {
1285 spin_lock(&release_agent_path_lock);
81a6a5cd 1286 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1287 spin_unlock(&release_agent_path_lock);
1288 }
ddbcc7e8 1289 out_unlock:
66bdc9cf 1290 kfree(opts.release_agent);
c6d57f33 1291 kfree(opts.name);
ddbcc7e8 1292 mutex_unlock(&cgroup_mutex);
ace2bee8 1293 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1294 return ret;
1295}
1296
afeb0f9f
TH
1297/*
1298 * To reduce the fork() overhead for systems that are not actually using
1299 * their cgroups capability, we don't maintain the lists running through
1300 * each css_set to its tasks until we see the list actually used - in other
1301 * words after the first mount.
1302 */
1303static bool use_task_css_set_links __read_mostly;
1304
1305static void cgroup_enable_task_cg_lists(void)
1306{
1307 struct task_struct *p, *g;
1308
96d365e0 1309 down_write(&css_set_rwsem);
afeb0f9f
TH
1310
1311 if (use_task_css_set_links)
1312 goto out_unlock;
1313
1314 use_task_css_set_links = true;
1315
1316 /*
1317 * We need tasklist_lock because RCU is not safe against
1318 * while_each_thread(). Besides, a forking task that has passed
1319 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1320 * is not guaranteed to have its child immediately visible in the
1321 * tasklist if we walk through it with RCU.
1322 */
1323 read_lock(&tasklist_lock);
1324 do_each_thread(g, p) {
1325 task_lock(p);
1326
1327 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1328 task_css_set(p) != &init_css_set);
1329
1330 /*
1331 * We should check if the process is exiting, otherwise
1332 * it will race with cgroup_exit() in that the list
1333 * entry won't be deleted though the process has exited.
1334 */
1335 if (!(p->flags & PF_EXITING))
1336 list_add(&p->cg_list, &task_css_set(p)->tasks);
1337
1338 task_unlock(p);
1339 } while_each_thread(g, p);
1340 read_unlock(&tasklist_lock);
1341out_unlock:
96d365e0 1342 up_write(&css_set_rwsem);
afeb0f9f
TH
1343}
1344
cc31edce
PM
1345static void init_cgroup_housekeeping(struct cgroup *cgrp)
1346{
2bd59d48 1347 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1348 INIT_LIST_HEAD(&cgrp->sibling);
1349 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1350 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1351 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1352 INIT_LIST_HEAD(&cgrp->pidlists);
1353 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1354 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1355}
c6d57f33 1356
ddbcc7e8
PM
1357static void init_cgroup_root(struct cgroupfs_root *root)
1358{
bd89aabc 1359 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1360
ddbcc7e8 1361 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1362 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1363 cgrp->root = root;
cc31edce 1364 init_cgroup_housekeeping(cgrp);
4e96ee8e 1365 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1366}
1367
c6d57f33
PM
1368static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1369{
1370 struct cgroupfs_root *root;
1371
a1a71b45 1372 if (!opts->subsys_mask && !opts->none)
2bd59d48 1373 return ERR_PTR(-EINVAL);
c6d57f33
PM
1374
1375 root = kzalloc(sizeof(*root), GFP_KERNEL);
1376 if (!root)
1377 return ERR_PTR(-ENOMEM);
1378
1379 init_cgroup_root(root);
2c6ab6d2 1380
c6d57f33
PM
1381 root->flags = opts->flags;
1382 if (opts->release_agent)
1383 strcpy(root->release_agent_path, opts->release_agent);
1384 if (opts->name)
1385 strcpy(root->name, opts->name);
2260e7fc
TH
1386 if (opts->cpuset_clone_children)
1387 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1388 return root;
1389}
1390
35585573 1391static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1392{
1393 LIST_HEAD(tmp_links);
d427dfeb 1394 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1395 struct css_set *cset;
d427dfeb
TH
1396 int i, ret;
1397
1398 lockdep_assert_held(&cgroup_tree_mutex);
1399 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1400
1401 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1402 if (ret < 0)
2bd59d48 1403 goto out;
d427dfeb
TH
1404 root_cgrp->id = ret;
1405
d427dfeb 1406 /*
96d365e0 1407 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1408 * but that's OK - it can only be increased by someone holding
1409 * cgroup_lock, and that's us. The worst that can happen is that we
1410 * have some link structures left over
1411 */
1412 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1413 if (ret)
2bd59d48 1414 goto out;
d427dfeb
TH
1415
1416 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1417 ret = cgroup_init_root_id(root, 2, 0);
1418 if (ret)
2bd59d48 1419 goto out;
d427dfeb 1420
2bd59d48
TH
1421 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1422 KERNFS_ROOT_CREATE_DEACTIVATED,
1423 root_cgrp);
1424 if (IS_ERR(root->kf_root)) {
1425 ret = PTR_ERR(root->kf_root);
1426 goto exit_root_id;
1427 }
1428 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1429
1430 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1431 if (ret)
2bd59d48 1432 goto destroy_root;
d427dfeb 1433
35585573 1434 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1435 if (ret)
2bd59d48 1436 goto destroy_root;
d427dfeb
TH
1437
1438 /*
1439 * There must be no failure case after here, since rebinding takes
1440 * care of subsystems' refcounts, which are explicitly dropped in
1441 * the failure exit path.
1442 */
1443 list_add(&root->root_list, &cgroup_roots);
1444 cgroup_root_count++;
1445
1446 /*
1447 * Link the top cgroup in this hierarchy into all the css_set
1448 * objects.
1449 */
96d365e0 1450 down_write(&css_set_rwsem);
d427dfeb
TH
1451 hash_for_each(css_set_table, i, cset, hlist)
1452 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1453 up_write(&css_set_rwsem);
d427dfeb
TH
1454
1455 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1456 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1457
2bd59d48 1458 kernfs_activate(root_cgrp->kn);
d427dfeb 1459 ret = 0;
2bd59d48 1460 goto out;
d427dfeb 1461
2bd59d48
TH
1462destroy_root:
1463 kernfs_destroy_root(root->kf_root);
1464 root->kf_root = NULL;
1465exit_root_id:
d427dfeb 1466 cgroup_exit_root_id(root);
2bd59d48 1467out:
d427dfeb
TH
1468 free_cgrp_cset_links(&tmp_links);
1469 return ret;
1470}
1471
f7e83571 1472static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1473 int flags, const char *unused_dev_name,
f7e83571 1474 void *data)
ddbcc7e8 1475{
2bd59d48 1476 struct cgroupfs_root *root;
ddbcc7e8 1477 struct cgroup_sb_opts opts;
2bd59d48 1478 struct dentry *dentry;
8e30e2b8 1479 int ret;
56fde9e0
TH
1480
1481 /*
1482 * The first time anyone tries to mount a cgroup, enable the list
1483 * linking each css_set to its tasks and fix up all existing tasks.
1484 */
1485 if (!use_task_css_set_links)
1486 cgroup_enable_task_cg_lists();
776f02fa 1487retry:
8e30e2b8 1488 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1489 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1490
1491 /* First find the desired set of subsystems */
ddbcc7e8 1492 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1493 if (ret)
8e30e2b8 1494 goto out_unlock;
ddbcc7e8 1495
2bd59d48
TH
1496 /* look for a matching existing root */
1497 for_each_active_root(root) {
1498 bool name_match = false;
ddbcc7e8 1499
2bd59d48
TH
1500 /*
1501 * If we asked for a name then it must match. Also, if
1502 * name matches but sybsys_mask doesn't, we should fail.
1503 * Remember whether name matched.
1504 */
1505 if (opts.name) {
1506 if (strcmp(opts.name, root->name))
1507 continue;
1508 name_match = true;
1509 }
ddbcc7e8 1510
c6d57f33 1511 /*
2bd59d48
TH
1512 * If we asked for subsystems (or explicitly for no
1513 * subsystems) then they must match.
c6d57f33 1514 */
2bd59d48
TH
1515 if ((opts.subsys_mask || opts.none) &&
1516 (opts.subsys_mask != root->subsys_mask)) {
1517 if (!name_match)
1518 continue;
1519 ret = -EBUSY;
1520 goto out_unlock;
1521 }
873fe09e 1522
c7ba8287 1523 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1524 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1525 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1526 ret = -EINVAL;
8e30e2b8 1527 goto out_unlock;
2a0ff3fb
JL
1528 } else {
1529 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1530 }
873fe09e 1531 }
2bd59d48 1532
776f02fa
TH
1533 /*
1534 * A root's lifetime is governed by its top cgroup. Zero
1535 * ref indicate that the root is being destroyed. Wait for
1536 * destruction to complete so that the subsystems are free.
1537 * We can use wait_queue for the wait but this path is
1538 * super cold. Let's just sleep for a bit and retry.
1539 */
1540 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1541 mutex_unlock(&cgroup_mutex);
1542 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1543 kfree(opts.release_agent);
1544 kfree(opts.name);
776f02fa
TH
1545 msleep(10);
1546 goto retry;
1547 }
1548
1549 ret = 0;
2bd59d48 1550 goto out_unlock;
ddbcc7e8
PM
1551 }
1552
2bd59d48
TH
1553 /* no such thing, create a new one */
1554 root = cgroup_root_from_opts(&opts);
1555 if (IS_ERR(root)) {
1556 ret = PTR_ERR(root);
1557 goto out_unlock;
1558 }
1559
35585573 1560 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1561 if (ret)
1562 cgroup_free_root(root);
1563
8e30e2b8 1564out_unlock:
e25e2cbb 1565 mutex_unlock(&cgroup_mutex);
ace2bee8 1566 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1567
c6d57f33
PM
1568 kfree(opts.release_agent);
1569 kfree(opts.name);
8e30e2b8 1570
2bd59d48 1571 if (ret)
8e30e2b8 1572 return ERR_PTR(ret);
2bd59d48
TH
1573
1574 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1575 if (IS_ERR(dentry))
776f02fa 1576 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1577 return dentry;
1578}
1579
1580static void cgroup_kill_sb(struct super_block *sb)
1581{
1582 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1583 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1584
776f02fa 1585 cgroup_put(&root->top_cgroup);
2bd59d48 1586 kernfs_kill_sb(sb);
ddbcc7e8
PM
1587}
1588
ddbcc7e8
PM
1589static struct file_system_type cgroup_fs_type = {
1590 .name = "cgroup",
f7e83571 1591 .mount = cgroup_mount,
ddbcc7e8
PM
1592 .kill_sb = cgroup_kill_sb,
1593};
1594
676db4af
GK
1595static struct kobject *cgroup_kobj;
1596
857a2beb 1597/**
913ffdb5 1598 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1599 * @task: target task
857a2beb
TH
1600 * @buf: the buffer to write the path into
1601 * @buflen: the length of the buffer
1602 *
913ffdb5
TH
1603 * Determine @task's cgroup on the first (the one with the lowest non-zero
1604 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1605 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1606 * cgroup controller callbacks.
1607 *
e61734c5 1608 * Return value is the same as kernfs_path().
857a2beb 1609 */
e61734c5 1610char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1611{
1612 struct cgroupfs_root *root;
913ffdb5 1613 struct cgroup *cgrp;
e61734c5
TH
1614 int hierarchy_id = 1;
1615 char *path = NULL;
857a2beb
TH
1616
1617 mutex_lock(&cgroup_mutex);
96d365e0 1618 down_read(&css_set_rwsem);
857a2beb 1619
913ffdb5
TH
1620 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1621
857a2beb
TH
1622 if (root) {
1623 cgrp = task_cgroup_from_root(task, root);
e61734c5 1624 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1625 } else {
1626 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1627 if (strlcpy(buf, "/", buflen) < buflen)
1628 path = buf;
857a2beb
TH
1629 }
1630
96d365e0 1631 up_read(&css_set_rwsem);
857a2beb 1632 mutex_unlock(&cgroup_mutex);
e61734c5 1633 return path;
857a2beb 1634}
913ffdb5 1635EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1636
2f7ee569
TH
1637/*
1638 * Control Group taskset
1639 */
134d3373
TH
1640struct task_and_cgroup {
1641 struct task_struct *task;
1642 struct cgroup *cgrp;
6f4b7e63 1643 struct css_set *cset;
134d3373
TH
1644};
1645
2f7ee569
TH
1646struct cgroup_taskset {
1647 struct task_and_cgroup single;
1648 struct flex_array *tc_array;
1649 int tc_array_len;
1650 int idx;
2f7ee569
TH
1651};
1652
1653/**
1654 * cgroup_taskset_first - reset taskset and return the first task
1655 * @tset: taskset of interest
1656 *
1657 * @tset iteration is initialized and the first task is returned.
1658 */
1659struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1660{
1661 if (tset->tc_array) {
1662 tset->idx = 0;
1663 return cgroup_taskset_next(tset);
1664 } else {
2f7ee569
TH
1665 return tset->single.task;
1666 }
1667}
2f7ee569
TH
1668
1669/**
1670 * cgroup_taskset_next - iterate to the next task in taskset
1671 * @tset: taskset of interest
1672 *
1673 * Return the next task in @tset. Iteration must have been initialized
1674 * with cgroup_taskset_first().
1675 */
1676struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1677{
1678 struct task_and_cgroup *tc;
1679
1680 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1681 return NULL;
1682
1683 tc = flex_array_get(tset->tc_array, tset->idx++);
2f7ee569
TH
1684 return tc->task;
1685}
2f7ee569 1686
cb0f1fe9 1687/**
74a1166d 1688 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1689 * @old_cgrp; the cgroup @tsk is being migrated from
1690 * @tsk: the task being migrated
1691 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1692 *
cb0f1fe9 1693 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1694 */
5abb8855
TH
1695static void cgroup_task_migrate(struct cgroup *old_cgrp,
1696 struct task_struct *tsk,
1697 struct css_set *new_cset)
74a1166d 1698{
5abb8855 1699 struct css_set *old_cset;
74a1166d 1700
cb0f1fe9
TH
1701 lockdep_assert_held(&cgroup_mutex);
1702 lockdep_assert_held(&css_set_rwsem);
1703
74a1166d 1704 /*
026085ef
MSB
1705 * We are synchronized through threadgroup_lock() against PF_EXITING
1706 * setting such that we can't race against cgroup_exit() changing the
1707 * css_set to init_css_set and dropping the old one.
74a1166d 1708 */
c84cdf75 1709 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1710 old_cset = task_css_set(tsk);
74a1166d 1711
74a1166d 1712 task_lock(tsk);
5abb8855 1713 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1714 task_unlock(tsk);
1715
56fde9e0 1716 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1717
1718 /*
5abb8855
TH
1719 * We just gained a reference on old_cset by taking it from the
1720 * task. As trading it for new_cset is protected by cgroup_mutex,
1721 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1722 */
5abb8855 1723 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1724 put_css_set_locked(old_cset, false);
74a1166d
BB
1725}
1726
a043e3b2 1727/**
081aa458 1728 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1729 * @cgrp: the cgroup to attach to
9db8de37 1730 * @leader: the task or the leader of the threadgroup to be attached
081aa458 1731 * @threadgroup: attach the whole threadgroup?
74a1166d 1732 *
257058ae 1733 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1734 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1735 */
9db8de37 1736static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *leader,
47cfcd09 1737 bool threadgroup)
74a1166d 1738{
9db8de37 1739 int ret, i, group_size;
74a1166d 1740 struct cgroupfs_root *root = cgrp->root;
1c6727af 1741 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1742 /* threadgroup list cursor and array */
9db8de37 1743 struct task_struct *task;
134d3373 1744 struct task_and_cgroup *tc;
d846687d 1745 struct flex_array *group;
2f7ee569 1746 struct cgroup_taskset tset = { };
74a1166d
BB
1747
1748 /*
1749 * step 0: in order to do expensive, possibly blocking operations for
1750 * every thread, we cannot iterate the thread group list, since it needs
1751 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1752 * group - group_rwsem prevents new threads from appearing, and if
1753 * threads exit, this will just be an over-estimate.
74a1166d 1754 */
081aa458 1755 if (threadgroup)
9db8de37 1756 group_size = get_nr_threads(leader);
081aa458
LZ
1757 else
1758 group_size = 1;
d846687d 1759 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1760 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1761 if (!group)
1762 return -ENOMEM;
d846687d 1763 /* pre-allocate to guarantee space while iterating in rcu read-side. */
9db8de37
TH
1764 ret = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1765 if (ret)
d846687d 1766 goto out_free_group_list;
74a1166d 1767
74a1166d 1768 i = 0;
fb5d2b4c
MSB
1769 /*
1770 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1771 * already PF_EXITING could be freed from underneath us unless we
1772 * take an rcu_read_lock.
1773 */
96d365e0 1774 down_read(&css_set_rwsem);
fb5d2b4c 1775 rcu_read_lock();
9db8de37 1776 task = leader;
74a1166d 1777 do {
134d3373
TH
1778 struct task_and_cgroup ent;
1779
9db8de37
TH
1780 /* @task either already exited or can't exit until the end */
1781 if (task->flags & PF_EXITING)
ea84753c 1782 goto next;
cd3d0952 1783
74a1166d
BB
1784 /* as per above, nr_threads may decrease, but not increase. */
1785 BUG_ON(i >= group_size);
9db8de37
TH
1786 ent.task = task;
1787 ent.cgrp = task_cgroup_from_root(task, root);
892a2b90
MSB
1788 /* nothing to do if this task is already in the cgroup */
1789 if (ent.cgrp == cgrp)
ea84753c 1790 goto next;
61d1d219
MSB
1791 /*
1792 * saying GFP_ATOMIC has no effect here because we did prealloc
1793 * earlier, but it's good form to communicate our expectations.
1794 */
9db8de37
TH
1795 ret = flex_array_put(group, i, &ent, GFP_ATOMIC);
1796 BUG_ON(ret != 0);
74a1166d 1797 i++;
ea84753c 1798 next:
081aa458
LZ
1799 if (!threadgroup)
1800 break;
9db8de37 1801 } while_each_thread(leader, task);
fb5d2b4c 1802 rcu_read_unlock();
96d365e0 1803 up_read(&css_set_rwsem);
74a1166d
BB
1804 /* remember the number of threads in the array for later. */
1805 group_size = i;
2f7ee569
TH
1806 tset.tc_array = group;
1807 tset.tc_array_len = group_size;
74a1166d 1808
134d3373 1809 /* methods shouldn't be called if no task is actually migrating */
9db8de37 1810 ret = 0;
892a2b90 1811 if (!group_size)
b07ef774 1812 goto out_free_group_list;
134d3373 1813
74a1166d
BB
1814 /*
1815 * step 1: check that we can legitimately attach to the cgroup.
1816 */
1c6727af
TH
1817 for_each_css(css, i, cgrp) {
1818 if (css->ss->can_attach) {
9db8de37
TH
1819 ret = css->ss->can_attach(css, &tset);
1820 if (ret) {
1c6727af 1821 failed_css = css;
74a1166d
BB
1822 goto out_cancel_attach;
1823 }
1824 }
74a1166d
BB
1825 }
1826
1827 /*
1828 * step 2: make sure css_sets exist for all threads to be migrated.
1829 * we use find_css_set, which allocates a new one if necessary.
1830 */
74a1166d 1831 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1832 struct css_set *old_cset;
1833
134d3373 1834 tc = flex_array_get(group, i);
a8ad805c 1835 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1836 tc->cset = find_css_set(old_cset, cgrp);
1837 if (!tc->cset) {
9db8de37 1838 ret = -ENOMEM;
61d1d219 1839 goto out_put_css_set_refs;
74a1166d
BB
1840 }
1841 }
1842
1843 /*
494c167c
TH
1844 * step 3: now that we're guaranteed success wrt the css_sets,
1845 * proceed to move all tasks to the new cgroup. There are no
1846 * failure cases after here, so this is the commit point.
74a1166d 1847 */
cb0f1fe9 1848 down_write(&css_set_rwsem);
74a1166d 1849 for (i = 0; i < group_size; i++) {
134d3373 1850 tc = flex_array_get(group, i);
6f4b7e63 1851 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d 1852 }
cb0f1fe9 1853 up_write(&css_set_rwsem);
74a1166d
BB
1854 /* nothing is sensitive to fork() after this point. */
1855
1856 /*
494c167c 1857 * step 4: do subsystem attach callbacks.
74a1166d 1858 */
1c6727af
TH
1859 for_each_css(css, i, cgrp)
1860 if (css->ss->attach)
1861 css->ss->attach(css, &tset);
74a1166d
BB
1862
1863 /*
1864 * step 5: success! and cleanup
1865 */
9db8de37 1866 ret = 0;
61d1d219 1867out_put_css_set_refs:
9db8de37 1868 if (ret) {
61d1d219
MSB
1869 for (i = 0; i < group_size; i++) {
1870 tc = flex_array_get(group, i);
6f4b7e63 1871 if (!tc->cset)
61d1d219 1872 break;
89c5509b 1873 put_css_set(tc->cset, false);
61d1d219 1874 }
74a1166d
BB
1875 }
1876out_cancel_attach:
9db8de37 1877 if (ret) {
1c6727af
TH
1878 for_each_css(css, i, cgrp) {
1879 if (css == failed_css)
74a1166d 1880 break;
1c6727af
TH
1881 if (css->ss->cancel_attach)
1882 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1883 }
1884 }
74a1166d 1885out_free_group_list:
d846687d 1886 flex_array_free(group);
9db8de37 1887 return ret;
74a1166d
BB
1888}
1889
1890/*
1891 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1892 * function to attach either it or all tasks in its threadgroup. Will lock
1893 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1894 */
74a1166d 1895static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1896{
bbcb81d0 1897 struct task_struct *tsk;
c69e8d9c 1898 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1899 int ret;
1900
74a1166d
BB
1901 if (!cgroup_lock_live_group(cgrp))
1902 return -ENODEV;
1903
b78949eb
MSB
1904retry_find_task:
1905 rcu_read_lock();
bbcb81d0 1906 if (pid) {
73507f33 1907 tsk = find_task_by_vpid(pid);
74a1166d
BB
1908 if (!tsk) {
1909 rcu_read_unlock();
dd4b0a46 1910 ret = -ESRCH;
b78949eb 1911 goto out_unlock_cgroup;
bbcb81d0 1912 }
74a1166d
BB
1913 /*
1914 * even if we're attaching all tasks in the thread group, we
1915 * only need to check permissions on one of them.
1916 */
c69e8d9c 1917 tcred = __task_cred(tsk);
14a590c3
EB
1918 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1919 !uid_eq(cred->euid, tcred->uid) &&
1920 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1921 rcu_read_unlock();
b78949eb
MSB
1922 ret = -EACCES;
1923 goto out_unlock_cgroup;
bbcb81d0 1924 }
b78949eb
MSB
1925 } else
1926 tsk = current;
cd3d0952
TH
1927
1928 if (threadgroup)
b78949eb 1929 tsk = tsk->group_leader;
c4c27fbd
MG
1930
1931 /*
14a40ffc 1932 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1933 * trapped in a cpuset, or RT worker may be born in a cgroup
1934 * with no rt_runtime allocated. Just say no.
1935 */
14a40ffc 1936 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1937 ret = -EINVAL;
1938 rcu_read_unlock();
1939 goto out_unlock_cgroup;
1940 }
1941
b78949eb
MSB
1942 get_task_struct(tsk);
1943 rcu_read_unlock();
1944
1945 threadgroup_lock(tsk);
1946 if (threadgroup) {
1947 if (!thread_group_leader(tsk)) {
1948 /*
1949 * a race with de_thread from another thread's exec()
1950 * may strip us of our leadership, if this happens,
1951 * there is no choice but to throw this task away and
1952 * try again; this is
1953 * "double-double-toil-and-trouble-check locking".
1954 */
1955 threadgroup_unlock(tsk);
1956 put_task_struct(tsk);
1957 goto retry_find_task;
1958 }
081aa458
LZ
1959 }
1960
1961 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1962
cd3d0952
TH
1963 threadgroup_unlock(tsk);
1964
bbcb81d0 1965 put_task_struct(tsk);
b78949eb 1966out_unlock_cgroup:
47cfcd09 1967 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1968 return ret;
1969}
1970
7ae1bad9
TH
1971/**
1972 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1973 * @from: attach to all cgroups of a given task
1974 * @tsk: the task to be attached
1975 */
1976int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1977{
1978 struct cgroupfs_root *root;
1979 int retval = 0;
1980
47cfcd09 1981 mutex_lock(&cgroup_mutex);
7ae1bad9 1982 for_each_active_root(root) {
96d365e0
TH
1983 struct cgroup *from_cgrp;
1984
1985 down_read(&css_set_rwsem);
1986 from_cgrp = task_cgroup_from_root(from, root);
1987 up_read(&css_set_rwsem);
7ae1bad9 1988
6f4b7e63 1989 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
1990 if (retval)
1991 break;
1992 }
47cfcd09 1993 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
1994
1995 return retval;
1996}
1997EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1998
182446d0
TH
1999static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2000 struct cftype *cft, u64 pid)
74a1166d 2001{
182446d0 2002 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2003}
2004
182446d0
TH
2005static int cgroup_procs_write(struct cgroup_subsys_state *css,
2006 struct cftype *cft, u64 tgid)
af351026 2007{
182446d0 2008 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2009}
2010
182446d0
TH
2011static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2012 struct cftype *cft, const char *buffer)
e788e066 2013{
5f469907
TH
2014 struct cgroupfs_root *root = css->cgroup->root;
2015
2016 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2017 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2018 return -ENODEV;
69e943b7 2019 spin_lock(&release_agent_path_lock);
5f469907
TH
2020 strlcpy(root->release_agent_path, buffer,
2021 sizeof(root->release_agent_path));
69e943b7 2022 spin_unlock(&release_agent_path_lock);
47cfcd09 2023 mutex_unlock(&cgroup_mutex);
e788e066
PM
2024 return 0;
2025}
2026
2da8ca82 2027static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2028{
2da8ca82 2029 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2030
e788e066
PM
2031 if (!cgroup_lock_live_group(cgrp))
2032 return -ENODEV;
2033 seq_puts(seq, cgrp->root->release_agent_path);
2034 seq_putc(seq, '\n');
47cfcd09 2035 mutex_unlock(&cgroup_mutex);
e788e066
PM
2036 return 0;
2037}
2038
2da8ca82 2039static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2040{
2da8ca82
TH
2041 struct cgroup *cgrp = seq_css(seq)->cgroup;
2042
2043 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2044 return 0;
2045}
2046
2bd59d48
TH
2047static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2048 size_t nbytes, loff_t off)
355e0c48 2049{
2bd59d48
TH
2050 struct cgroup *cgrp = of->kn->parent->priv;
2051 struct cftype *cft = of->kn->priv;
2052 struct cgroup_subsys_state *css;
a742c59d 2053 int ret;
355e0c48 2054
2bd59d48
TH
2055 /*
2056 * kernfs guarantees that a file isn't deleted with operations in
2057 * flight, which means that the matching css is and stays alive and
2058 * doesn't need to be pinned. The RCU locking is not necessary
2059 * either. It's just for the convenience of using cgroup_css().
2060 */
2061 rcu_read_lock();
2062 css = cgroup_css(cgrp, cft->ss);
2063 rcu_read_unlock();
a742c59d
TH
2064
2065 if (cft->write_string) {
2066 ret = cft->write_string(css, cft, strstrip(buf));
2067 } else if (cft->write_u64) {
2068 unsigned long long v;
2069 ret = kstrtoull(buf, 0, &v);
2070 if (!ret)
2071 ret = cft->write_u64(css, cft, v);
2072 } else if (cft->write_s64) {
2073 long long v;
2074 ret = kstrtoll(buf, 0, &v);
2075 if (!ret)
2076 ret = cft->write_s64(css, cft, v);
2077 } else if (cft->trigger) {
2078 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2079 } else {
a742c59d 2080 ret = -EINVAL;
e73d2c61 2081 }
2bd59d48 2082
a742c59d 2083 return ret ?: nbytes;
355e0c48
PM
2084}
2085
6612f05b 2086static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2087{
2bd59d48 2088 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2089}
2090
6612f05b 2091static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2092{
2bd59d48 2093 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2094}
2095
6612f05b 2096static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2097{
2bd59d48 2098 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2099}
2100
91796569 2101static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2102{
7da11279
TH
2103 struct cftype *cft = seq_cft(m);
2104 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2105
2da8ca82
TH
2106 if (cft->seq_show)
2107 return cft->seq_show(m, arg);
e73d2c61 2108
f4c753b7 2109 if (cft->read_u64)
896f5199
TH
2110 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2111 else if (cft->read_s64)
2112 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2113 else
2114 return -EINVAL;
2115 return 0;
91796569
PM
2116}
2117
2bd59d48
TH
2118static struct kernfs_ops cgroup_kf_single_ops = {
2119 .atomic_write_len = PAGE_SIZE,
2120 .write = cgroup_file_write,
2121 .seq_show = cgroup_seqfile_show,
91796569
PM
2122};
2123
2bd59d48
TH
2124static struct kernfs_ops cgroup_kf_ops = {
2125 .atomic_write_len = PAGE_SIZE,
2126 .write = cgroup_file_write,
2127 .seq_start = cgroup_seqfile_start,
2128 .seq_next = cgroup_seqfile_next,
2129 .seq_stop = cgroup_seqfile_stop,
2130 .seq_show = cgroup_seqfile_show,
2131};
ddbcc7e8
PM
2132
2133/*
2134 * cgroup_rename - Only allow simple rename of directories in place.
2135 */
2bd59d48
TH
2136static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2137 const char *new_name_str)
ddbcc7e8 2138{
2bd59d48 2139 struct cgroup *cgrp = kn->priv;
2bd59d48 2140 int ret;
65dff759 2141
2bd59d48 2142 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2143 return -ENOTDIR;
2bd59d48 2144 if (kn->parent != new_parent)
ddbcc7e8 2145 return -EIO;
65dff759 2146
6db8e85c
TH
2147 /*
2148 * This isn't a proper migration and its usefulness is very
2149 * limited. Disallow if sane_behavior.
2150 */
2151 if (cgroup_sane_behavior(cgrp))
2152 return -EPERM;
2153
2bd59d48
TH
2154 mutex_lock(&cgroup_tree_mutex);
2155 mutex_lock(&cgroup_mutex);
2156
2157 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2158
2bd59d48
TH
2159 mutex_unlock(&cgroup_mutex);
2160 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2161 return ret;
ddbcc7e8
PM
2162}
2163
2bb566cb 2164static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2165{
8d7e6fb0 2166 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2167 struct kernfs_node *kn;
2168 struct lock_class_key *key = NULL;
05ef1d7c 2169
2bd59d48
TH
2170#ifdef CONFIG_DEBUG_LOCK_ALLOC
2171 key = &cft->lockdep_key;
2172#endif
2173 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2174 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2175 NULL, false, key);
430af8ad 2176 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2177}
2178
b1f28d31
TH
2179/**
2180 * cgroup_addrm_files - add or remove files to a cgroup directory
2181 * @cgrp: the target cgroup
b1f28d31
TH
2182 * @cfts: array of cftypes to be added
2183 * @is_add: whether to add or remove
2184 *
2185 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2186 * For removals, this function never fails. If addition fails, this
2187 * function doesn't remove files already added. The caller is responsible
2188 * for cleaning up.
b1f28d31 2189 */
2bb566cb
TH
2190static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2191 bool is_add)
ddbcc7e8 2192{
03b1cde6 2193 struct cftype *cft;
b1f28d31
TH
2194 int ret;
2195
ace2bee8 2196 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2197
2198 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2199 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2200 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2201 continue;
f33fddc2
G
2202 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2203 continue;
2204 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2205 continue;
2206
2739d3cc 2207 if (is_add) {
2bb566cb 2208 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2209 if (ret) {
2739d3cc 2210 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2211 cft->name, ret);
2212 return ret;
2213 }
2739d3cc
LZ
2214 } else {
2215 cgroup_rm_file(cgrp, cft);
db0416b6 2216 }
ddbcc7e8 2217 }
b1f28d31 2218 return 0;
ddbcc7e8
PM
2219}
2220
21a2d343 2221static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2222{
2223 LIST_HEAD(pending);
2bb566cb 2224 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2225 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2226 struct cgroup_subsys_state *css;
9ccece80 2227 int ret = 0;
8e3f6541 2228
21a2d343 2229 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2230
21a2d343
TH
2231 /* don't bother if @ss isn't attached */
2232 if (ss->root == &cgroup_dummy_root)
9ccece80 2233 return 0;
e8c82d20 2234
e8c82d20 2235 /* add/rm files for all cgroups created before */
ca8bdcaf 2236 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2237 struct cgroup *cgrp = css->cgroup;
2238
e8c82d20
LZ
2239 if (cgroup_is_dead(cgrp))
2240 continue;
2241
21a2d343 2242 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2243 if (ret)
2244 break;
8e3f6541 2245 }
21a2d343
TH
2246
2247 if (is_add && !ret)
2248 kernfs_activate(root->kn);
9ccece80 2249 return ret;
8e3f6541
TH
2250}
2251
2da440a2
TH
2252static void cgroup_exit_cftypes(struct cftype *cfts)
2253{
2254 struct cftype *cft;
2255
2bd59d48
TH
2256 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2257 /* free copy for custom atomic_write_len, see init_cftypes() */
2258 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2259 kfree(cft->kf_ops);
2260 cft->kf_ops = NULL;
2da440a2 2261 cft->ss = NULL;
2bd59d48 2262 }
2da440a2
TH
2263}
2264
2bd59d48 2265static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2266{
2267 struct cftype *cft;
2268
2bd59d48
TH
2269 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2270 struct kernfs_ops *kf_ops;
2271
0adb0704
TH
2272 WARN_ON(cft->ss || cft->kf_ops);
2273
2bd59d48
TH
2274 if (cft->seq_start)
2275 kf_ops = &cgroup_kf_ops;
2276 else
2277 kf_ops = &cgroup_kf_single_ops;
2278
2279 /*
2280 * Ugh... if @cft wants a custom max_write_len, we need to
2281 * make a copy of kf_ops to set its atomic_write_len.
2282 */
2283 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2284 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2285 if (!kf_ops) {
2286 cgroup_exit_cftypes(cfts);
2287 return -ENOMEM;
2288 }
2289 kf_ops->atomic_write_len = cft->max_write_len;
2290 }
2291
2292 cft->kf_ops = kf_ops;
2da440a2 2293 cft->ss = ss;
2bd59d48
TH
2294 }
2295
2296 return 0;
2da440a2
TH
2297}
2298
21a2d343
TH
2299static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2300{
2301 lockdep_assert_held(&cgroup_tree_mutex);
2302
2303 if (!cfts || !cfts[0].ss)
2304 return -ENOENT;
2305
2306 list_del(&cfts->node);
2307 cgroup_apply_cftypes(cfts, false);
2308 cgroup_exit_cftypes(cfts);
2309 return 0;
2310}
2311
80b13586
TH
2312/**
2313 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2314 * @cfts: zero-length name terminated array of cftypes
2315 *
2316 * Unregister @cfts. Files described by @cfts are removed from all
2317 * existing cgroups and all future cgroups won't have them either. This
2318 * function can be called anytime whether @cfts' subsys is attached or not.
2319 *
2320 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2321 * registered.
2322 */
2323int cgroup_rm_cftypes(struct cftype *cfts)
2324{
21a2d343 2325 int ret;
80b13586 2326
21a2d343
TH
2327 mutex_lock(&cgroup_tree_mutex);
2328 ret = cgroup_rm_cftypes_locked(cfts);
2329 mutex_unlock(&cgroup_tree_mutex);
2330 return ret;
80b13586
TH
2331}
2332
8e3f6541
TH
2333/**
2334 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2335 * @ss: target cgroup subsystem
2336 * @cfts: zero-length name terminated array of cftypes
2337 *
2338 * Register @cfts to @ss. Files described by @cfts are created for all
2339 * existing cgroups to which @ss is attached and all future cgroups will
2340 * have them too. This function can be called anytime whether @ss is
2341 * attached or not.
2342 *
2343 * Returns 0 on successful registration, -errno on failure. Note that this
2344 * function currently returns 0 as long as @cfts registration is successful
2345 * even if some file creation attempts on existing cgroups fail.
2346 */
03b1cde6 2347int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2348{
9ccece80 2349 int ret;
8e3f6541 2350
dc5736ed
LZ
2351 if (!cfts || cfts[0].name[0] == '\0')
2352 return 0;
2353
2bd59d48
TH
2354 ret = cgroup_init_cftypes(ss, cfts);
2355 if (ret)
2356 return ret;
2bb566cb 2357
21a2d343
TH
2358 mutex_lock(&cgroup_tree_mutex);
2359
0adb0704 2360 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2361 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2362 if (ret)
21a2d343
TH
2363 cgroup_rm_cftypes_locked(cfts);
2364
2365 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2366 return ret;
8e3f6541 2367}
8e3f6541 2368
a043e3b2
LZ
2369/**
2370 * cgroup_task_count - count the number of tasks in a cgroup.
2371 * @cgrp: the cgroup in question
2372 *
2373 * Return the number of tasks in the cgroup.
2374 */
07bc356e 2375static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2376{
2377 int count = 0;
69d0206c 2378 struct cgrp_cset_link *link;
817929ec 2379
96d365e0 2380 down_read(&css_set_rwsem);
69d0206c
TH
2381 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2382 count += atomic_read(&link->cset->refcount);
96d365e0 2383 up_read(&css_set_rwsem);
bbcb81d0
PM
2384 return count;
2385}
2386
53fa5261 2387/**
492eb21b
TH
2388 * css_next_child - find the next child of a given css
2389 * @pos_css: the current position (%NULL to initiate traversal)
2390 * @parent_css: css whose children to walk
53fa5261 2391 *
492eb21b 2392 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2393 * under either cgroup_mutex or RCU read lock. The only requirement is
2394 * that @parent_css and @pos_css are accessible. The next sibling is
2395 * guaranteed to be returned regardless of their states.
53fa5261 2396 */
492eb21b
TH
2397struct cgroup_subsys_state *
2398css_next_child(struct cgroup_subsys_state *pos_css,
2399 struct cgroup_subsys_state *parent_css)
53fa5261 2400{
492eb21b
TH
2401 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2402 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2403 struct cgroup *next;
2404
ace2bee8 2405 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2406
2407 /*
2408 * @pos could already have been removed. Once a cgroup is removed,
2409 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2410 * changes. As CGRP_DEAD assertion is serialized and happens
2411 * before the cgroup is taken off the ->sibling list, if we see it
2412 * unasserted, it's guaranteed that the next sibling hasn't
2413 * finished its grace period even if it's already removed, and thus
2414 * safe to dereference from this RCU critical section. If
2415 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2416 * to be visible as %true here.
3b287a50
TH
2417 *
2418 * If @pos is dead, its next pointer can't be dereferenced;
2419 * however, as each cgroup is given a monotonically increasing
2420 * unique serial number and always appended to the sibling list,
2421 * the next one can be found by walking the parent's children until
2422 * we see a cgroup with higher serial number than @pos's. While
2423 * this path can be slower, it's taken only when either the current
2424 * cgroup is removed or iteration and removal race.
53fa5261 2425 */
3b287a50
TH
2426 if (!pos) {
2427 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2428 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2429 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2430 } else {
2431 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2432 if (next->serial_nr > pos->serial_nr)
2433 break;
53fa5261
TH
2434 }
2435
492eb21b
TH
2436 if (&next->sibling == &cgrp->children)
2437 return NULL;
2438
ca8bdcaf 2439 return cgroup_css(next, parent_css->ss);
53fa5261 2440}
53fa5261 2441
574bd9f7 2442/**
492eb21b 2443 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2444 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2445 * @root: css whose descendants to walk
574bd9f7 2446 *
492eb21b 2447 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2448 * to visit for pre-order traversal of @root's descendants. @root is
2449 * included in the iteration and the first node to be visited.
75501a6d 2450 *
87fb54f1
TH
2451 * While this function requires cgroup_mutex or RCU read locking, it
2452 * doesn't require the whole traversal to be contained in a single critical
2453 * section. This function will return the correct next descendant as long
2454 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2455 */
492eb21b
TH
2456struct cgroup_subsys_state *
2457css_next_descendant_pre(struct cgroup_subsys_state *pos,
2458 struct cgroup_subsys_state *root)
574bd9f7 2459{
492eb21b 2460 struct cgroup_subsys_state *next;
574bd9f7 2461
ace2bee8 2462 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2463
bd8815a6 2464 /* if first iteration, visit @root */
7805d000 2465 if (!pos)
bd8815a6 2466 return root;
574bd9f7
TH
2467
2468 /* visit the first child if exists */
492eb21b 2469 next = css_next_child(NULL, pos);
574bd9f7
TH
2470 if (next)
2471 return next;
2472
2473 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2474 while (pos != root) {
2475 next = css_next_child(pos, css_parent(pos));
75501a6d 2476 if (next)
574bd9f7 2477 return next;
492eb21b 2478 pos = css_parent(pos);
7805d000 2479 }
574bd9f7
TH
2480
2481 return NULL;
2482}
574bd9f7 2483
12a9d2fe 2484/**
492eb21b
TH
2485 * css_rightmost_descendant - return the rightmost descendant of a css
2486 * @pos: css of interest
12a9d2fe 2487 *
492eb21b
TH
2488 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2489 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2490 * subtree of @pos.
75501a6d 2491 *
87fb54f1
TH
2492 * While this function requires cgroup_mutex or RCU read locking, it
2493 * doesn't require the whole traversal to be contained in a single critical
2494 * section. This function will return the correct rightmost descendant as
2495 * long as @pos is accessible.
12a9d2fe 2496 */
492eb21b
TH
2497struct cgroup_subsys_state *
2498css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2499{
492eb21b 2500 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2501
ace2bee8 2502 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2503
2504 do {
2505 last = pos;
2506 /* ->prev isn't RCU safe, walk ->next till the end */
2507 pos = NULL;
492eb21b 2508 css_for_each_child(tmp, last)
12a9d2fe
TH
2509 pos = tmp;
2510 } while (pos);
2511
2512 return last;
2513}
12a9d2fe 2514
492eb21b
TH
2515static struct cgroup_subsys_state *
2516css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2517{
492eb21b 2518 struct cgroup_subsys_state *last;
574bd9f7
TH
2519
2520 do {
2521 last = pos;
492eb21b 2522 pos = css_next_child(NULL, pos);
574bd9f7
TH
2523 } while (pos);
2524
2525 return last;
2526}
2527
2528/**
492eb21b 2529 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2530 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2531 * @root: css whose descendants to walk
574bd9f7 2532 *
492eb21b 2533 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2534 * to visit for post-order traversal of @root's descendants. @root is
2535 * included in the iteration and the last node to be visited.
75501a6d 2536 *
87fb54f1
TH
2537 * While this function requires cgroup_mutex or RCU read locking, it
2538 * doesn't require the whole traversal to be contained in a single critical
2539 * section. This function will return the correct next descendant as long
2540 * as both @pos and @cgroup are accessible and @pos is a descendant of
2541 * @cgroup.
574bd9f7 2542 */
492eb21b
TH
2543struct cgroup_subsys_state *
2544css_next_descendant_post(struct cgroup_subsys_state *pos,
2545 struct cgroup_subsys_state *root)
574bd9f7 2546{
492eb21b 2547 struct cgroup_subsys_state *next;
574bd9f7 2548
ace2bee8 2549 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2550
58b79a91
TH
2551 /* if first iteration, visit leftmost descendant which may be @root */
2552 if (!pos)
2553 return css_leftmost_descendant(root);
574bd9f7 2554
bd8815a6
TH
2555 /* if we visited @root, we're done */
2556 if (pos == root)
2557 return NULL;
2558
574bd9f7 2559 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2560 next = css_next_child(pos, css_parent(pos));
75501a6d 2561 if (next)
492eb21b 2562 return css_leftmost_descendant(next);
574bd9f7
TH
2563
2564 /* no sibling left, visit parent */
bd8815a6 2565 return css_parent(pos);
574bd9f7 2566}
574bd9f7 2567
0942eeee 2568/**
72ec7029 2569 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2570 * @it: the iterator to advance
2571 *
2572 * Advance @it to the next css_set to walk.
d515876e 2573 */
72ec7029 2574static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2575{
2576 struct list_head *l = it->cset_link;
2577 struct cgrp_cset_link *link;
2578 struct css_set *cset;
2579
2580 /* Advance to the next non-empty css_set */
2581 do {
2582 l = l->next;
72ec7029 2583 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2584 it->cset_link = NULL;
2585 return;
2586 }
2587 link = list_entry(l, struct cgrp_cset_link, cset_link);
2588 cset = link->cset;
2589 } while (list_empty(&cset->tasks));
2590 it->cset_link = l;
2591 it->task = cset->tasks.next;
2592}
2593
0942eeee 2594/**
72ec7029
TH
2595 * css_task_iter_start - initiate task iteration
2596 * @css: the css to walk tasks of
0942eeee
TH
2597 * @it: the task iterator to use
2598 *
72ec7029
TH
2599 * Initiate iteration through the tasks of @css. The caller can call
2600 * css_task_iter_next() to walk through the tasks until the function
2601 * returns NULL. On completion of iteration, css_task_iter_end() must be
2602 * called.
0942eeee
TH
2603 *
2604 * Note that this function acquires a lock which is released when the
2605 * iteration finishes. The caller can't sleep while iteration is in
2606 * progress.
2607 */
72ec7029
TH
2608void css_task_iter_start(struct cgroup_subsys_state *css,
2609 struct css_task_iter *it)
96d365e0 2610 __acquires(css_set_rwsem)
817929ec 2611{
56fde9e0
TH
2612 /* no one should try to iterate before mounting cgroups */
2613 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2614
96d365e0 2615 down_read(&css_set_rwsem);
c59cd3d8 2616
72ec7029
TH
2617 it->origin_css = css;
2618 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2619
72ec7029 2620 css_advance_task_iter(it);
817929ec
PM
2621}
2622
0942eeee 2623/**
72ec7029 2624 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2625 * @it: the task iterator being iterated
2626 *
2627 * The "next" function for task iteration. @it should have been
72ec7029
TH
2628 * initialized via css_task_iter_start(). Returns NULL when the iteration
2629 * reaches the end.
0942eeee 2630 */
72ec7029 2631struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2632{
2633 struct task_struct *res;
2634 struct list_head *l = it->task;
69d0206c 2635 struct cgrp_cset_link *link;
817929ec
PM
2636
2637 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2638 if (!it->cset_link)
817929ec
PM
2639 return NULL;
2640 res = list_entry(l, struct task_struct, cg_list);
2641 /* Advance iterator to find next entry */
2642 l = l->next;
69d0206c
TH
2643 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2644 if (l == &link->cset->tasks) {
0942eeee
TH
2645 /*
2646 * We reached the end of this task list - move on to the
2647 * next cgrp_cset_link.
2648 */
72ec7029 2649 css_advance_task_iter(it);
817929ec
PM
2650 } else {
2651 it->task = l;
2652 }
2653 return res;
2654}
2655
0942eeee 2656/**
72ec7029 2657 * css_task_iter_end - finish task iteration
0942eeee
TH
2658 * @it: the task iterator to finish
2659 *
72ec7029 2660 * Finish task iteration started by css_task_iter_start().
0942eeee 2661 */
72ec7029 2662void css_task_iter_end(struct css_task_iter *it)
96d365e0 2663 __releases(css_set_rwsem)
817929ec 2664{
96d365e0 2665 up_read(&css_set_rwsem);
817929ec
PM
2666}
2667
8cc99345
TH
2668/**
2669 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2670 * @to: cgroup to which the tasks will be moved
2671 * @from: cgroup in which the tasks currently reside
2672 */
2673int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2674{
e406d1cf
TH
2675 struct css_task_iter it;
2676 struct task_struct *task;
2677 int ret = 0;
2678
2679 do {
2680 css_task_iter_start(&from->dummy_css, &it);
2681 task = css_task_iter_next(&it);
2682 if (task)
2683 get_task_struct(task);
2684 css_task_iter_end(&it);
2685
2686 if (task) {
2687 mutex_lock(&cgroup_mutex);
2688 ret = cgroup_attach_task(to, task, false);
2689 mutex_unlock(&cgroup_mutex);
2690 put_task_struct(task);
2691 }
2692 } while (task && !ret);
2693
2694 return ret;
8cc99345
TH
2695}
2696
bbcb81d0 2697/*
102a775e 2698 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2699 *
2700 * Reading this file can return large amounts of data if a cgroup has
2701 * *lots* of attached tasks. So it may need several calls to read(),
2702 * but we cannot guarantee that the information we produce is correct
2703 * unless we produce it entirely atomically.
2704 *
bbcb81d0 2705 */
bbcb81d0 2706
24528255
LZ
2707/* which pidlist file are we talking about? */
2708enum cgroup_filetype {
2709 CGROUP_FILE_PROCS,
2710 CGROUP_FILE_TASKS,
2711};
2712
2713/*
2714 * A pidlist is a list of pids that virtually represents the contents of one
2715 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2716 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2717 * to the cgroup.
2718 */
2719struct cgroup_pidlist {
2720 /*
2721 * used to find which pidlist is wanted. doesn't change as long as
2722 * this particular list stays in the list.
2723 */
2724 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2725 /* array of xids */
2726 pid_t *list;
2727 /* how many elements the above list has */
2728 int length;
24528255
LZ
2729 /* each of these stored in a list by its cgroup */
2730 struct list_head links;
2731 /* pointer to the cgroup we belong to, for list removal purposes */
2732 struct cgroup *owner;
b1a21367
TH
2733 /* for delayed destruction */
2734 struct delayed_work destroy_dwork;
24528255
LZ
2735};
2736
d1d9fd33
BB
2737/*
2738 * The following two functions "fix" the issue where there are more pids
2739 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2740 * TODO: replace with a kernel-wide solution to this problem
2741 */
2742#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2743static void *pidlist_allocate(int count)
2744{
2745 if (PIDLIST_TOO_LARGE(count))
2746 return vmalloc(count * sizeof(pid_t));
2747 else
2748 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2749}
b1a21367 2750
d1d9fd33
BB
2751static void pidlist_free(void *p)
2752{
2753 if (is_vmalloc_addr(p))
2754 vfree(p);
2755 else
2756 kfree(p);
2757}
d1d9fd33 2758
b1a21367
TH
2759/*
2760 * Used to destroy all pidlists lingering waiting for destroy timer. None
2761 * should be left afterwards.
2762 */
2763static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2764{
2765 struct cgroup_pidlist *l, *tmp_l;
2766
2767 mutex_lock(&cgrp->pidlist_mutex);
2768 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2769 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2770 mutex_unlock(&cgrp->pidlist_mutex);
2771
2772 flush_workqueue(cgroup_pidlist_destroy_wq);
2773 BUG_ON(!list_empty(&cgrp->pidlists));
2774}
2775
2776static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2777{
2778 struct delayed_work *dwork = to_delayed_work(work);
2779 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2780 destroy_dwork);
2781 struct cgroup_pidlist *tofree = NULL;
2782
2783 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2784
2785 /*
04502365
TH
2786 * Destroy iff we didn't get queued again. The state won't change
2787 * as destroy_dwork can only be queued while locked.
b1a21367 2788 */
04502365 2789 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2790 list_del(&l->links);
2791 pidlist_free(l->list);
2792 put_pid_ns(l->key.ns);
2793 tofree = l;
2794 }
2795
b1a21367
TH
2796 mutex_unlock(&l->owner->pidlist_mutex);
2797 kfree(tofree);
2798}
2799
bbcb81d0 2800/*
102a775e 2801 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2802 * Returns the number of unique elements.
bbcb81d0 2803 */
6ee211ad 2804static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2805{
102a775e 2806 int src, dest = 1;
102a775e
BB
2807
2808 /*
2809 * we presume the 0th element is unique, so i starts at 1. trivial
2810 * edge cases first; no work needs to be done for either
2811 */
2812 if (length == 0 || length == 1)
2813 return length;
2814 /* src and dest walk down the list; dest counts unique elements */
2815 for (src = 1; src < length; src++) {
2816 /* find next unique element */
2817 while (list[src] == list[src-1]) {
2818 src++;
2819 if (src == length)
2820 goto after;
2821 }
2822 /* dest always points to where the next unique element goes */
2823 list[dest] = list[src];
2824 dest++;
2825 }
2826after:
102a775e
BB
2827 return dest;
2828}
2829
afb2bc14
TH
2830/*
2831 * The two pid files - task and cgroup.procs - guaranteed that the result
2832 * is sorted, which forced this whole pidlist fiasco. As pid order is
2833 * different per namespace, each namespace needs differently sorted list,
2834 * making it impossible to use, for example, single rbtree of member tasks
2835 * sorted by task pointer. As pidlists can be fairly large, allocating one
2836 * per open file is dangerous, so cgroup had to implement shared pool of
2837 * pidlists keyed by cgroup and namespace.
2838 *
2839 * All this extra complexity was caused by the original implementation
2840 * committing to an entirely unnecessary property. In the long term, we
2841 * want to do away with it. Explicitly scramble sort order if
2842 * sane_behavior so that no such expectation exists in the new interface.
2843 *
2844 * Scrambling is done by swapping every two consecutive bits, which is
2845 * non-identity one-to-one mapping which disturbs sort order sufficiently.
2846 */
2847static pid_t pid_fry(pid_t pid)
2848{
2849 unsigned a = pid & 0x55555555;
2850 unsigned b = pid & 0xAAAAAAAA;
2851
2852 return (a << 1) | (b >> 1);
2853}
2854
2855static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
2856{
2857 if (cgroup_sane_behavior(cgrp))
2858 return pid_fry(pid);
2859 else
2860 return pid;
2861}
2862
102a775e
BB
2863static int cmppid(const void *a, const void *b)
2864{
2865 return *(pid_t *)a - *(pid_t *)b;
2866}
2867
afb2bc14
TH
2868static int fried_cmppid(const void *a, const void *b)
2869{
2870 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
2871}
2872
e6b81710
TH
2873static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2874 enum cgroup_filetype type)
2875{
2876 struct cgroup_pidlist *l;
2877 /* don't need task_nsproxy() if we're looking at ourself */
2878 struct pid_namespace *ns = task_active_pid_ns(current);
2879
2880 lockdep_assert_held(&cgrp->pidlist_mutex);
2881
2882 list_for_each_entry(l, &cgrp->pidlists, links)
2883 if (l->key.type == type && l->key.ns == ns)
2884 return l;
2885 return NULL;
2886}
2887
72a8cb30
BB
2888/*
2889 * find the appropriate pidlist for our purpose (given procs vs tasks)
2890 * returns with the lock on that pidlist already held, and takes care
2891 * of the use count, or returns NULL with no locks held if we're out of
2892 * memory.
2893 */
e6b81710
TH
2894static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
2895 enum cgroup_filetype type)
72a8cb30
BB
2896{
2897 struct cgroup_pidlist *l;
b70cc5fd 2898
e6b81710
TH
2899 lockdep_assert_held(&cgrp->pidlist_mutex);
2900
2901 l = cgroup_pidlist_find(cgrp, type);
2902 if (l)
2903 return l;
2904
72a8cb30 2905 /* entry not found; create a new one */
f4f4be2b 2906 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 2907 if (!l)
72a8cb30 2908 return l;
e6b81710 2909
b1a21367 2910 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 2911 l->key.type = type;
e6b81710
TH
2912 /* don't need task_nsproxy() if we're looking at ourself */
2913 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
2914 l->owner = cgrp;
2915 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
2916 return l;
2917}
2918
102a775e
BB
2919/*
2920 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2921 */
72a8cb30
BB
2922static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2923 struct cgroup_pidlist **lp)
102a775e
BB
2924{
2925 pid_t *array;
2926 int length;
2927 int pid, n = 0; /* used for populating the array */
72ec7029 2928 struct css_task_iter it;
817929ec 2929 struct task_struct *tsk;
102a775e
BB
2930 struct cgroup_pidlist *l;
2931
4bac00d1
TH
2932 lockdep_assert_held(&cgrp->pidlist_mutex);
2933
102a775e
BB
2934 /*
2935 * If cgroup gets more users after we read count, we won't have
2936 * enough space - tough. This race is indistinguishable to the
2937 * caller from the case that the additional cgroup users didn't
2938 * show up until sometime later on.
2939 */
2940 length = cgroup_task_count(cgrp);
d1d9fd33 2941 array = pidlist_allocate(length);
102a775e
BB
2942 if (!array)
2943 return -ENOMEM;
2944 /* now, populate the array */
72ec7029
TH
2945 css_task_iter_start(&cgrp->dummy_css, &it);
2946 while ((tsk = css_task_iter_next(&it))) {
102a775e 2947 if (unlikely(n == length))
817929ec 2948 break;
102a775e 2949 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2950 if (type == CGROUP_FILE_PROCS)
2951 pid = task_tgid_vnr(tsk);
2952 else
2953 pid = task_pid_vnr(tsk);
102a775e
BB
2954 if (pid > 0) /* make sure to only use valid results */
2955 array[n++] = pid;
817929ec 2956 }
72ec7029 2957 css_task_iter_end(&it);
102a775e
BB
2958 length = n;
2959 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
2960 if (cgroup_sane_behavior(cgrp))
2961 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
2962 else
2963 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2964 if (type == CGROUP_FILE_PROCS)
6ee211ad 2965 length = pidlist_uniq(array, length);
e6b81710 2966
e6b81710 2967 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 2968 if (!l) {
e6b81710 2969 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 2970 pidlist_free(array);
72a8cb30 2971 return -ENOMEM;
102a775e 2972 }
e6b81710
TH
2973
2974 /* store array, freeing old if necessary */
d1d9fd33 2975 pidlist_free(l->list);
102a775e
BB
2976 l->list = array;
2977 l->length = length;
72a8cb30 2978 *lp = l;
102a775e 2979 return 0;
bbcb81d0
PM
2980}
2981
846c7bb0 2982/**
a043e3b2 2983 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2984 * @stats: cgroupstats to fill information into
2985 * @dentry: A dentry entry belonging to the cgroup for which stats have
2986 * been requested.
a043e3b2
LZ
2987 *
2988 * Build and fill cgroupstats so that taskstats can export it to user
2989 * space.
846c7bb0
BS
2990 */
2991int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2992{
2bd59d48 2993 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 2994 struct cgroup *cgrp;
72ec7029 2995 struct css_task_iter it;
846c7bb0 2996 struct task_struct *tsk;
33d283be 2997
2bd59d48
TH
2998 /* it should be kernfs_node belonging to cgroupfs and is a directory */
2999 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3000 kernfs_type(kn) != KERNFS_DIR)
3001 return -EINVAL;
3002
bad34660
LZ
3003 mutex_lock(&cgroup_mutex);
3004
846c7bb0 3005 /*
2bd59d48
TH
3006 * We aren't being called from kernfs and there's no guarantee on
3007 * @kn->priv's validity. For this and css_tryget_from_dir(),
3008 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3009 */
2bd59d48
TH
3010 rcu_read_lock();
3011 cgrp = rcu_dereference(kn->priv);
bad34660 3012 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3013 rcu_read_unlock();
bad34660 3014 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3015 return -ENOENT;
3016 }
bad34660 3017 rcu_read_unlock();
846c7bb0 3018
72ec7029
TH
3019 css_task_iter_start(&cgrp->dummy_css, &it);
3020 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3021 switch (tsk->state) {
3022 case TASK_RUNNING:
3023 stats->nr_running++;
3024 break;
3025 case TASK_INTERRUPTIBLE:
3026 stats->nr_sleeping++;
3027 break;
3028 case TASK_UNINTERRUPTIBLE:
3029 stats->nr_uninterruptible++;
3030 break;
3031 case TASK_STOPPED:
3032 stats->nr_stopped++;
3033 break;
3034 default:
3035 if (delayacct_is_task_waiting_on_io(tsk))
3036 stats->nr_io_wait++;
3037 break;
3038 }
3039 }
72ec7029 3040 css_task_iter_end(&it);
846c7bb0 3041
bad34660 3042 mutex_unlock(&cgroup_mutex);
2bd59d48 3043 return 0;
846c7bb0
BS
3044}
3045
8f3ff208 3046
bbcb81d0 3047/*
102a775e 3048 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3049 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3050 * in the cgroup->l->list array.
bbcb81d0 3051 */
cc31edce 3052
102a775e 3053static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3054{
cc31edce
PM
3055 /*
3056 * Initially we receive a position value that corresponds to
3057 * one more than the last pid shown (or 0 on the first call or
3058 * after a seek to the start). Use a binary-search to find the
3059 * next pid to display, if any
3060 */
2bd59d48 3061 struct kernfs_open_file *of = s->private;
7da11279 3062 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3063 struct cgroup_pidlist *l;
7da11279 3064 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3065 int index = 0, pid = *pos;
4bac00d1
TH
3066 int *iter, ret;
3067
3068 mutex_lock(&cgrp->pidlist_mutex);
3069
3070 /*
5d22444f 3071 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3072 * after open. If the matching pidlist is around, we can use that.
5d22444f 3073 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3074 * could already have been destroyed.
3075 */
5d22444f
TH
3076 if (of->priv)
3077 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3078
3079 /*
3080 * Either this is the first start() after open or the matching
3081 * pidlist has been destroyed inbetween. Create a new one.
3082 */
5d22444f
TH
3083 if (!of->priv) {
3084 ret = pidlist_array_load(cgrp, type,
3085 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3086 if (ret)
3087 return ERR_PTR(ret);
3088 }
5d22444f 3089 l = of->priv;
cc31edce 3090
cc31edce 3091 if (pid) {
102a775e 3092 int end = l->length;
20777766 3093
cc31edce
PM
3094 while (index < end) {
3095 int mid = (index + end) / 2;
afb2bc14 3096 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3097 index = mid;
3098 break;
afb2bc14 3099 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3100 index = mid + 1;
3101 else
3102 end = mid;
3103 }
3104 }
3105 /* If we're off the end of the array, we're done */
102a775e 3106 if (index >= l->length)
cc31edce
PM
3107 return NULL;
3108 /* Update the abstract position to be the actual pid that we found */
102a775e 3109 iter = l->list + index;
afb2bc14 3110 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3111 return iter;
3112}
3113
102a775e 3114static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3115{
2bd59d48 3116 struct kernfs_open_file *of = s->private;
5d22444f 3117 struct cgroup_pidlist *l = of->priv;
62236858 3118
5d22444f
TH
3119 if (l)
3120 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3121 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3122 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3123}
3124
102a775e 3125static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3126{
2bd59d48 3127 struct kernfs_open_file *of = s->private;
5d22444f 3128 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3129 pid_t *p = v;
3130 pid_t *end = l->list + l->length;
cc31edce
PM
3131 /*
3132 * Advance to the next pid in the array. If this goes off the
3133 * end, we're done
3134 */
3135 p++;
3136 if (p >= end) {
3137 return NULL;
3138 } else {
7da11279 3139 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3140 return p;
3141 }
3142}
3143
102a775e 3144static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3145{
3146 return seq_printf(s, "%d\n", *(int *)v);
3147}
bbcb81d0 3148
102a775e
BB
3149/*
3150 * seq_operations functions for iterating on pidlists through seq_file -
3151 * independent of whether it's tasks or procs
3152 */
3153static const struct seq_operations cgroup_pidlist_seq_operations = {
3154 .start = cgroup_pidlist_start,
3155 .stop = cgroup_pidlist_stop,
3156 .next = cgroup_pidlist_next,
3157 .show = cgroup_pidlist_show,
cc31edce
PM
3158};
3159
182446d0
TH
3160static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3161 struct cftype *cft)
81a6a5cd 3162{
182446d0 3163 return notify_on_release(css->cgroup);
81a6a5cd
PM
3164}
3165
182446d0
TH
3166static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3167 struct cftype *cft, u64 val)
6379c106 3168{
182446d0 3169 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3170 if (val)
182446d0 3171 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3172 else
182446d0 3173 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3174 return 0;
3175}
3176
182446d0
TH
3177static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3178 struct cftype *cft)
97978e6d 3179{
182446d0 3180 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3181}
3182
182446d0
TH
3183static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3184 struct cftype *cft, u64 val)
97978e6d
DL
3185{
3186 if (val)
182446d0 3187 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3188 else
182446d0 3189 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3190 return 0;
3191}
3192
d5c56ced 3193static struct cftype cgroup_base_files[] = {
81a6a5cd 3194 {
d5c56ced 3195 .name = "cgroup.procs",
6612f05b
TH
3196 .seq_start = cgroup_pidlist_start,
3197 .seq_next = cgroup_pidlist_next,
3198 .seq_stop = cgroup_pidlist_stop,
3199 .seq_show = cgroup_pidlist_show,
5d22444f 3200 .private = CGROUP_FILE_PROCS,
74a1166d 3201 .write_u64 = cgroup_procs_write,
74a1166d 3202 .mode = S_IRUGO | S_IWUSR,
102a775e 3203 },
97978e6d
DL
3204 {
3205 .name = "cgroup.clone_children",
873fe09e 3206 .flags = CFTYPE_INSANE,
97978e6d
DL
3207 .read_u64 = cgroup_clone_children_read,
3208 .write_u64 = cgroup_clone_children_write,
3209 },
873fe09e
TH
3210 {
3211 .name = "cgroup.sane_behavior",
3212 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3213 .seq_show = cgroup_sane_behavior_show,
873fe09e 3214 },
d5c56ced
TH
3215
3216 /*
3217 * Historical crazy stuff. These don't have "cgroup." prefix and
3218 * don't exist if sane_behavior. If you're depending on these, be
3219 * prepared to be burned.
3220 */
3221 {
3222 .name = "tasks",
3223 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3224 .seq_start = cgroup_pidlist_start,
3225 .seq_next = cgroup_pidlist_next,
3226 .seq_stop = cgroup_pidlist_stop,
3227 .seq_show = cgroup_pidlist_show,
5d22444f 3228 .private = CGROUP_FILE_TASKS,
d5c56ced 3229 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3230 .mode = S_IRUGO | S_IWUSR,
3231 },
3232 {
3233 .name = "notify_on_release",
3234 .flags = CFTYPE_INSANE,
3235 .read_u64 = cgroup_read_notify_on_release,
3236 .write_u64 = cgroup_write_notify_on_release,
3237 },
6e6ff25b
TH
3238 {
3239 .name = "release_agent",
cc5943a7 3240 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3241 .seq_show = cgroup_release_agent_show,
6e6ff25b 3242 .write_string = cgroup_release_agent_write,
5f469907 3243 .max_write_len = PATH_MAX - 1,
6e6ff25b 3244 },
db0416b6 3245 { } /* terminate */
bbcb81d0
PM
3246};
3247
13af07df 3248/**
628f7cd4 3249 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3250 * @cgrp: target cgroup
13af07df 3251 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3252 *
3253 * On failure, no file is added.
13af07df 3254 */
628f7cd4 3255static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3256{
ddbcc7e8 3257 struct cgroup_subsys *ss;
b420ba7d 3258 int i, ret = 0;
bbcb81d0 3259
8e3f6541 3260 /* process cftsets of each subsystem */
b420ba7d 3261 for_each_subsys(ss, i) {
0adb0704 3262 struct cftype *cfts;
b420ba7d
TH
3263
3264 if (!test_bit(i, &subsys_mask))
13af07df 3265 continue;
8e3f6541 3266
0adb0704
TH
3267 list_for_each_entry(cfts, &ss->cfts, node) {
3268 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3269 if (ret < 0)
3270 goto err;
3271 }
ddbcc7e8 3272 }
ddbcc7e8 3273 return 0;
bee55099
TH
3274err:
3275 cgroup_clear_dir(cgrp, subsys_mask);
3276 return ret;
ddbcc7e8
PM
3277}
3278
0c21ead1
TH
3279/*
3280 * css destruction is four-stage process.
3281 *
3282 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3283 * Implemented in kill_css().
3284 *
3285 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3286 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3287 * by invoking offline_css(). After offlining, the base ref is put.
3288 * Implemented in css_killed_work_fn().
3289 *
3290 * 3. When the percpu_ref reaches zero, the only possible remaining
3291 * accessors are inside RCU read sections. css_release() schedules the
3292 * RCU callback.
3293 *
3294 * 4. After the grace period, the css can be freed. Implemented in
3295 * css_free_work_fn().
3296 *
3297 * It is actually hairier because both step 2 and 4 require process context
3298 * and thus involve punting to css->destroy_work adding two additional
3299 * steps to the already complex sequence.
3300 */
35ef10da 3301static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3302{
3303 struct cgroup_subsys_state *css =
35ef10da 3304 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3305 struct cgroup *cgrp = css->cgroup;
48ddbe19 3306
0ae78e0b
TH
3307 if (css->parent)
3308 css_put(css->parent);
3309
0c21ead1 3310 css->ss->css_free(css);
2bd59d48 3311 cgroup_put(cgrp);
48ddbe19
TH
3312}
3313
0c21ead1 3314static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3315{
3316 struct cgroup_subsys_state *css =
0c21ead1 3317 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3318
35ef10da 3319 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3320 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3321}
3322
d3daf28d
TH
3323static void css_release(struct percpu_ref *ref)
3324{
3325 struct cgroup_subsys_state *css =
3326 container_of(ref, struct cgroup_subsys_state, refcnt);
3327
aec25020 3328 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3329 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3330}
3331
623f926b
TH
3332static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3333 struct cgroup *cgrp)
ddbcc7e8 3334{
bd89aabc 3335 css->cgroup = cgrp;
72c97e54 3336 css->ss = ss;
ddbcc7e8 3337 css->flags = 0;
0ae78e0b
TH
3338
3339 if (cgrp->parent)
ca8bdcaf 3340 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3341 else
38b53aba 3342 css->flags |= CSS_ROOT;
48ddbe19 3343
ca8bdcaf 3344 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3345}
3346
2a4ac633 3347/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3348static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3349{
623f926b 3350 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3351 int ret = 0;
3352
ace2bee8 3353 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3354 lockdep_assert_held(&cgroup_mutex);
3355
92fb9748 3356 if (ss->css_online)
eb95419b 3357 ret = ss->css_online(css);
ae7f164a 3358 if (!ret) {
eb95419b 3359 css->flags |= CSS_ONLINE;
f20104de 3360 css->cgroup->nr_css++;
aec25020 3361 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3362 }
b1929db4 3363 return ret;
a31f2d3f
TH
3364}
3365
2a4ac633 3366/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3367static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3368{
623f926b 3369 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3370
ace2bee8 3371 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3372 lockdep_assert_held(&cgroup_mutex);
3373
3374 if (!(css->flags & CSS_ONLINE))
3375 return;
3376
d7eeac19 3377 if (ss->css_offline)
eb95419b 3378 ss->css_offline(css);
a31f2d3f 3379
eb95419b 3380 css->flags &= ~CSS_ONLINE;
09a503ea 3381 css->cgroup->nr_css--;
aec25020 3382 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3383}
3384
c81c925a
TH
3385/**
3386 * create_css - create a cgroup_subsys_state
3387 * @cgrp: the cgroup new css will be associated with
3388 * @ss: the subsys of new css
3389 *
3390 * Create a new css associated with @cgrp - @ss pair. On success, the new
3391 * css is online and installed in @cgrp with all interface files created.
3392 * Returns 0 on success, -errno on failure.
3393 */
3394static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3395{
3396 struct cgroup *parent = cgrp->parent;
3397 struct cgroup_subsys_state *css;
3398 int err;
3399
c81c925a
TH
3400 lockdep_assert_held(&cgroup_mutex);
3401
3402 css = ss->css_alloc(cgroup_css(parent, ss));
3403 if (IS_ERR(css))
3404 return PTR_ERR(css);
3405
3406 err = percpu_ref_init(&css->refcnt, css_release);
3407 if (err)
3408 goto err_free;
3409
3410 init_css(css, ss, cgrp);
3411
aec25020 3412 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3413 if (err)
3414 goto err_free;
3415
3416 err = online_css(css);
3417 if (err)
3418 goto err_free;
3419
59f5296b 3420 cgroup_get(cgrp);
c81c925a
TH
3421 css_get(css->parent);
3422
3423 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3424 parent->parent) {
3425 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3426 current->comm, current->pid, ss->name);
3427 if (!strcmp(ss->name, "memory"))
3428 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3429 ss->warned_broken_hierarchy = true;
3430 }
3431
3432 return 0;
3433
3434err_free:
3435 percpu_ref_cancel_init(&css->refcnt);
3436 ss->css_free(css);
3437 return err;
3438}
3439
2bd59d48 3440/**
a043e3b2
LZ
3441 * cgroup_create - create a cgroup
3442 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3443 * @name: name of the new cgroup
2bd59d48 3444 * @mode: mode to set on new cgroup
ddbcc7e8 3445 */
e61734c5 3446static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3447 umode_t mode)
ddbcc7e8 3448{
bd89aabc 3449 struct cgroup *cgrp;
ddbcc7e8 3450 struct cgroupfs_root *root = parent->root;
b58c8998 3451 int ssid, err;
ddbcc7e8 3452 struct cgroup_subsys *ss;
2bd59d48 3453 struct kernfs_node *kn;
ddbcc7e8 3454
0a950f65 3455 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3456 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3457 if (!cgrp)
ddbcc7e8
PM
3458 return -ENOMEM;
3459
ace2bee8
TH
3460 mutex_lock(&cgroup_tree_mutex);
3461
976c06bc
TH
3462 /*
3463 * Only live parents can have children. Note that the liveliness
3464 * check isn't strictly necessary because cgroup_mkdir() and
3465 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3466 * anyway so that locking is contained inside cgroup proper and we
3467 * don't get nasty surprises if we ever grow another caller.
3468 */
3469 if (!cgroup_lock_live_group(parent)) {
3470 err = -ENODEV;
ace2bee8 3471 goto err_unlock_tree;
0ab02ca8
LZ
3472 }
3473
3474 /*
3475 * Temporarily set the pointer to NULL, so idr_find() won't return
3476 * a half-baked cgroup.
3477 */
3478 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3479 if (cgrp->id < 0) {
3480 err = -ENOMEM;
3481 goto err_unlock;
976c06bc
TH
3482 }
3483
cc31edce 3484 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3485
bd89aabc 3486 cgrp->parent = parent;
0ae78e0b 3487 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3488 cgrp->root = parent->root;
ddbcc7e8 3489
b6abdb0e
LZ
3490 if (notify_on_release(parent))
3491 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3492
2260e7fc
TH
3493 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3494 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3495
2bd59d48 3496 /* create the directory */
e61734c5 3497 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3498 if (IS_ERR(kn)) {
3499 err = PTR_ERR(kn);
0ab02ca8 3500 goto err_free_id;
2bd59d48
TH
3501 }
3502 cgrp->kn = kn;
ddbcc7e8 3503
6f30558f
TH
3504 /*
3505 * This extra ref will be put in cgroup_free_fn() and guarantees
3506 * that @cgrp->kn is always accessible.
3507 */
3508 kernfs_get(kn);
3509
00356bd5 3510 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3511
4e139afc 3512 /* allocation complete, commit to creation */
4e139afc 3513 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3514 atomic_inc(&root->nr_cgrps);
59f5296b 3515 cgroup_get(parent);
415cf07a 3516
0d80255e
TH
3517 /*
3518 * @cgrp is now fully operational. If something fails after this
3519 * point, it'll be released via the normal destruction path.
3520 */
4e96ee8e
LZ
3521 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3522
2bb566cb 3523 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3524 if (err)
3525 goto err_destroy;
3526
9d403e99 3527 /* let's create and online css's */
b85d2040
TH
3528 for_each_subsys(ss, ssid) {
3529 if (root->subsys_mask & (1 << ssid)) {
3530 err = create_css(cgrp, ss);
3531 if (err)
3532 goto err_destroy;
3533 }
a8638030 3534 }
ddbcc7e8 3535
2bd59d48
TH
3536 kernfs_activate(kn);
3537
ddbcc7e8 3538 mutex_unlock(&cgroup_mutex);
ace2bee8 3539 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3540
3541 return 0;
3542
0a950f65 3543err_free_id:
4e96ee8e 3544 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3545err_unlock:
3546 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3547err_unlock_tree:
3548 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3549 kfree(cgrp);
ddbcc7e8 3550 return err;
4b8b47eb
TH
3551
3552err_destroy:
3553 cgroup_destroy_locked(cgrp);
3554 mutex_unlock(&cgroup_mutex);
ace2bee8 3555 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3556 return err;
ddbcc7e8
PM
3557}
3558
2bd59d48
TH
3559static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3560 umode_t mode)
ddbcc7e8 3561{
2bd59d48 3562 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3563
2bd59d48 3564 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3565}
3566
223dbc38
TH
3567/*
3568 * This is called when the refcnt of a css is confirmed to be killed.
3569 * css_tryget() is now guaranteed to fail.
3570 */
3571static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3572{
223dbc38
TH
3573 struct cgroup_subsys_state *css =
3574 container_of(work, struct cgroup_subsys_state, destroy_work);
3575 struct cgroup *cgrp = css->cgroup;
d3daf28d 3576
ace2bee8 3577 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3578 mutex_lock(&cgroup_mutex);
3579
09a503ea
TH
3580 /*
3581 * css_tryget() is guaranteed to fail now. Tell subsystems to
3582 * initate destruction.
3583 */
3584 offline_css(css);
3585
f20104de
TH
3586 /*
3587 * If @cgrp is marked dead, it's waiting for refs of all css's to
3588 * be disabled before proceeding to the second phase of cgroup
3589 * destruction. If we are the last one, kick it off.
3590 */
09a503ea 3591 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3592 cgroup_destroy_css_killed(cgrp);
3593
3594 mutex_unlock(&cgroup_mutex);
ace2bee8 3595 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3596
3597 /*
3598 * Put the css refs from kill_css(). Each css holds an extra
3599 * reference to the cgroup's dentry and cgroup removal proceeds
3600 * regardless of css refs. On the last put of each css, whenever
3601 * that may be, the extra dentry ref is put so that dentry
3602 * destruction happens only after all css's are released.
3603 */
3604 css_put(css);
d3daf28d
TH
3605}
3606
223dbc38
TH
3607/* css kill confirmation processing requires process context, bounce */
3608static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3609{
3610 struct cgroup_subsys_state *css =
3611 container_of(ref, struct cgroup_subsys_state, refcnt);
3612
223dbc38 3613 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3614 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3615}
3616
edae0c33
TH
3617/**
3618 * kill_css - destroy a css
3619 * @css: css to destroy
3620 *
3c14f8b4
TH
3621 * This function initiates destruction of @css by removing cgroup interface
3622 * files and putting its base reference. ->css_offline() will be invoked
3623 * asynchronously once css_tryget() is guaranteed to fail and when the
3624 * reference count reaches zero, @css will be released.
edae0c33
TH
3625 */
3626static void kill_css(struct cgroup_subsys_state *css)
3627{
2bd59d48
TH
3628 /*
3629 * This must happen before css is disassociated with its cgroup.
3630 * See seq_css() for details.
3631 */
aec25020 3632 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3633
edae0c33
TH
3634 /*
3635 * Killing would put the base ref, but we need to keep it alive
3636 * until after ->css_offline().
3637 */
3638 css_get(css);
3639
3640 /*
3641 * cgroup core guarantees that, by the time ->css_offline() is
3642 * invoked, no new css reference will be given out via
3643 * css_tryget(). We can't simply call percpu_ref_kill() and
3644 * proceed to offlining css's because percpu_ref_kill() doesn't
3645 * guarantee that the ref is seen as killed on all CPUs on return.
3646 *
3647 * Use percpu_ref_kill_and_confirm() to get notifications as each
3648 * css is confirmed to be seen as killed on all CPUs.
3649 */
3650 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3651}
3652
3653/**
3654 * cgroup_destroy_locked - the first stage of cgroup destruction
3655 * @cgrp: cgroup to be destroyed
3656 *
3657 * css's make use of percpu refcnts whose killing latency shouldn't be
3658 * exposed to userland and are RCU protected. Also, cgroup core needs to
3659 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3660 * invoked. To satisfy all the requirements, destruction is implemented in
3661 * the following two steps.
3662 *
3663 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3664 * userland visible parts and start killing the percpu refcnts of
3665 * css's. Set up so that the next stage will be kicked off once all
3666 * the percpu refcnts are confirmed to be killed.
3667 *
3668 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3669 * rest of destruction. Once all cgroup references are gone, the
3670 * cgroup is RCU-freed.
3671 *
3672 * This function implements s1. After this step, @cgrp is gone as far as
3673 * the userland is concerned and a new cgroup with the same name may be
3674 * created. As cgroup doesn't care about the names internally, this
3675 * doesn't cause any problem.
3676 */
42809dd4
TH
3677static int cgroup_destroy_locked(struct cgroup *cgrp)
3678 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3679{
bb78a92f 3680 struct cgroup *child;
2bd59d48 3681 struct cgroup_subsys_state *css;
ddd69148 3682 bool empty;
1c6727af 3683 int ssid;
ddbcc7e8 3684
ace2bee8 3685 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3686 lockdep_assert_held(&cgroup_mutex);
3687
ddd69148 3688 /*
96d365e0 3689 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3690 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3691 */
96d365e0 3692 down_read(&css_set_rwsem);
bb78a92f 3693 empty = list_empty(&cgrp->cset_links);
96d365e0 3694 up_read(&css_set_rwsem);
ddd69148 3695 if (!empty)
ddbcc7e8 3696 return -EBUSY;
a043e3b2 3697
bb78a92f
HD
3698 /*
3699 * Make sure there's no live children. We can't test ->children
3700 * emptiness as dead children linger on it while being destroyed;
3701 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3702 */
3703 empty = true;
3704 rcu_read_lock();
3705 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3706 empty = cgroup_is_dead(child);
3707 if (!empty)
3708 break;
3709 }
3710 rcu_read_unlock();
3711 if (!empty)
3712 return -EBUSY;
3713
88703267 3714 /*
edae0c33
TH
3715 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3716 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3717 * percpu refs of all css's are confirmed to be killed. This
3718 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3719 */
4ac06017 3720 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3721 for_each_css(css, ssid, cgrp)
3722 kill_css(css);
4ac06017 3723 mutex_lock(&cgroup_mutex);
455050d2
TH
3724
3725 /*
3726 * Mark @cgrp dead. This prevents further task migration and child
3727 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3728 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3729 * resume iteration after dropping RCU read lock. See
492eb21b 3730 * css_next_child() for details.
455050d2 3731 */
54766d4a 3732 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3733
455050d2
TH
3734 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3735 raw_spin_lock(&release_list_lock);
3736 if (!list_empty(&cgrp->release_list))
3737 list_del_init(&cgrp->release_list);
3738 raw_spin_unlock(&release_list_lock);
3739
3740 /*
f20104de
TH
3741 * If @cgrp has css's attached, the second stage of cgroup
3742 * destruction is kicked off from css_killed_work_fn() after the
3743 * refs of all attached css's are killed. If @cgrp doesn't have
3744 * any css, we kick it off here.
3745 */
3746 if (!cgrp->nr_css)
3747 cgroup_destroy_css_killed(cgrp);
3748
2bd59d48
TH
3749 /* remove @cgrp directory along with the base files */
3750 mutex_unlock(&cgroup_mutex);
3751
455050d2 3752 /*
2bd59d48
TH
3753 * There are two control paths which try to determine cgroup from
3754 * dentry without going through kernfs - cgroupstats_build() and
3755 * css_tryget_from_dir(). Those are supported by RCU protecting
3756 * clearing of cgrp->kn->priv backpointer, which should happen
3757 * after all files under it have been removed.
455050d2 3758 */
6f30558f 3759 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3760 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3761
4ac06017 3762 mutex_lock(&cgroup_mutex);
455050d2 3763
ea15f8cc
TH
3764 return 0;
3765};
3766
d3daf28d 3767/**
f20104de 3768 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3769 * @work: cgroup->destroy_free_work
3770 *
3771 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3772 * destroyed after all css's are offlined and performs the rest of
3773 * destruction. This is the second step of destruction described in the
3774 * comment above cgroup_destroy_locked().
d3daf28d 3775 */
f20104de 3776static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3777{
ea15f8cc 3778 struct cgroup *parent = cgrp->parent;
ea15f8cc 3779
ace2bee8 3780 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3781 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3782
999cd8a4 3783 /* delete this cgroup from parent->children */
eb6fd504 3784 list_del_rcu(&cgrp->sibling);
ed957793 3785
59f5296b 3786 cgroup_put(cgrp);
ddbcc7e8 3787
bd89aabc 3788 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3789 check_for_release(parent);
ddbcc7e8
PM
3790}
3791
2bd59d48 3792static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3793{
2bd59d48
TH
3794 struct cgroup *cgrp = kn->priv;
3795 int ret = 0;
3796
3797 /*
3798 * This is self-destruction but @kn can't be removed while this
3799 * callback is in progress. Let's break active protection. Once
3800 * the protection is broken, @cgrp can be destroyed at any point.
3801 * Pin it so that it stays accessible.
3802 */
3803 cgroup_get(cgrp);
3804 kernfs_break_active_protection(kn);
42809dd4 3805
ace2bee8 3806 mutex_lock(&cgroup_tree_mutex);
42809dd4 3807 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3808
3809 /*
3810 * @cgrp might already have been destroyed while we're trying to
3811 * grab the mutexes.
3812 */
3813 if (!cgroup_is_dead(cgrp))
3814 ret = cgroup_destroy_locked(cgrp);
3815
42809dd4 3816 mutex_unlock(&cgroup_mutex);
ace2bee8 3817 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3818
2bd59d48
TH
3819 kernfs_unbreak_active_protection(kn);
3820 cgroup_put(cgrp);
42809dd4
TH
3821 return ret;
3822}
3823
2bd59d48
TH
3824static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3825 .remount_fs = cgroup_remount,
3826 .show_options = cgroup_show_options,
3827 .mkdir = cgroup_mkdir,
3828 .rmdir = cgroup_rmdir,
3829 .rename = cgroup_rename,
3830};
3831
06a11920 3832static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3833{
ddbcc7e8 3834 struct cgroup_subsys_state *css;
cfe36bde
DC
3835
3836 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 3837
ace2bee8 3838 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
3839 mutex_lock(&cgroup_mutex);
3840
0adb0704 3841 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 3842
ddbcc7e8 3843 /* Create the top cgroup state for this subsystem */
9871bf95 3844 ss->root = &cgroup_dummy_root;
ca8bdcaf 3845 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
3846 /* We don't handle early failures gracefully */
3847 BUG_ON(IS_ERR(css));
623f926b 3848 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 3849
e8d55fde 3850 /* Update the init_css_set to contain a subsys
817929ec 3851 * pointer to this state - since the subsystem is
e8d55fde
LZ
3852 * newly registered, all tasks and hence the
3853 * init_css_set is in the subsystem's top cgroup. */
aec25020 3854 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
3855
3856 need_forkexit_callback |= ss->fork || ss->exit;
3857
e8d55fde
LZ
3858 /* At system boot, before all subsystems have been
3859 * registered, no tasks have been forked, so we don't
3860 * need to invoke fork callbacks here. */
3861 BUG_ON(!list_empty(&init_task.tasks));
3862
ae7f164a 3863 BUG_ON(online_css(css));
a8638030 3864
648bb56d 3865 mutex_unlock(&cgroup_mutex);
ace2bee8 3866 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
3867}
3868
ddbcc7e8 3869/**
a043e3b2
LZ
3870 * cgroup_init_early - cgroup initialization at system boot
3871 *
3872 * Initialize cgroups at system boot, and initialize any
3873 * subsystems that request early init.
ddbcc7e8
PM
3874 */
3875int __init cgroup_init_early(void)
3876{
30159ec7 3877 struct cgroup_subsys *ss;
ddbcc7e8 3878 int i;
30159ec7 3879
146aa1bd 3880 atomic_set(&init_css_set.refcount, 1);
69d0206c 3881 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 3882 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3883 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3884 css_set_count = 1;
9871bf95
TH
3885 init_cgroup_root(&cgroup_dummy_root);
3886 cgroup_root_count = 1;
a4ea1cc9 3887 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 3888
69d0206c 3889 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
3890 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
3891 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 3892 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 3893
3ed80a62 3894 for_each_subsys(ss, i) {
aec25020 3895 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
3896 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
3897 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 3898 ss->id, ss->name);
073219e9
TH
3899 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
3900 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
3901
aec25020 3902 ss->id = i;
073219e9 3903 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
3904
3905 if (ss->early_init)
3906 cgroup_init_subsys(ss);
3907 }
3908 return 0;
3909}
3910
3911/**
a043e3b2
LZ
3912 * cgroup_init - cgroup initialization
3913 *
3914 * Register cgroup filesystem and /proc file, and initialize
3915 * any subsystems that didn't request early init.
ddbcc7e8
PM
3916 */
3917int __init cgroup_init(void)
3918{
30159ec7 3919 struct cgroup_subsys *ss;
0ac801fe 3920 unsigned long key;
30159ec7 3921 int i, err;
a424316c 3922
2bd59d48 3923 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 3924
3ed80a62 3925 for_each_subsys(ss, i) {
ddbcc7e8
PM
3926 if (!ss->early_init)
3927 cgroup_init_subsys(ss);
de00ffa5
TH
3928
3929 /*
3930 * cftype registration needs kmalloc and can't be done
3931 * during early_init. Register base cftypes separately.
3932 */
3933 if (ss->base_cftypes)
3934 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
3935 }
3936
fa3ca07e 3937 /* allocate id for the dummy hierarchy */
54e7b4eb 3938 mutex_lock(&cgroup_mutex);
54e7b4eb 3939
82fe9b0d
TH
3940 /* Add init_css_set to the hash table */
3941 key = css_set_hash(init_css_set.subsys);
3942 hash_add(css_set_table, &init_css_set.hlist, key);
3943
fc76df70 3944 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 3945
4e96ee8e
LZ
3946 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
3947 0, 1, GFP_KERNEL);
3948 BUG_ON(err < 0);
3949
54e7b4eb
TH
3950 mutex_unlock(&cgroup_mutex);
3951
676db4af 3952 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
3953 if (!cgroup_kobj)
3954 return -ENOMEM;
676db4af 3955
ddbcc7e8 3956 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
3957 if (err < 0) {
3958 kobject_put(cgroup_kobj);
2bd59d48 3959 return err;
676db4af 3960 }
ddbcc7e8 3961
46ae220b 3962 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 3963 return 0;
ddbcc7e8 3964}
b4f48b63 3965
e5fca243
TH
3966static int __init cgroup_wq_init(void)
3967{
3968 /*
3969 * There isn't much point in executing destruction path in
3970 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
3971 *
3972 * XXX: Must be ordered to make sure parent is offlined after
3973 * children. The ordering requirement is for memcg where a
3974 * parent's offline may wait for a child's leading to deadlock. In
3975 * the long term, this should be fixed from memcg side.
e5fca243
TH
3976 *
3977 * We would prefer to do this in cgroup_init() above, but that
3978 * is called before init_workqueues(): so leave this until after.
3979 */
ab3f5faa 3980 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 3981 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
3982
3983 /*
3984 * Used to destroy pidlists and separate to serve as flush domain.
3985 * Cap @max_active to 1 too.
3986 */
3987 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
3988 0, 1);
3989 BUG_ON(!cgroup_pidlist_destroy_wq);
3990
e5fca243
TH
3991 return 0;
3992}
3993core_initcall(cgroup_wq_init);
3994
a424316c
PM
3995/*
3996 * proc_cgroup_show()
3997 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3998 * - Used for /proc/<pid>/cgroup.
3999 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4000 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4001 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4002 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4003 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4004 * cgroup to top_cgroup.
4005 */
4006
4007/* TODO: Use a proper seq_file iterator */
8d8b97ba 4008int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4009{
4010 struct pid *pid;
4011 struct task_struct *tsk;
e61734c5 4012 char *buf, *path;
a424316c
PM
4013 int retval;
4014 struct cgroupfs_root *root;
4015
4016 retval = -ENOMEM;
e61734c5 4017 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4018 if (!buf)
4019 goto out;
4020
4021 retval = -ESRCH;
4022 pid = m->private;
4023 tsk = get_pid_task(pid, PIDTYPE_PID);
4024 if (!tsk)
4025 goto out_free;
4026
4027 retval = 0;
4028
4029 mutex_lock(&cgroup_mutex);
96d365e0 4030 down_read(&css_set_rwsem);
a424316c 4031
e5f6a860 4032 for_each_active_root(root) {
a424316c 4033 struct cgroup_subsys *ss;
bd89aabc 4034 struct cgroup *cgrp;
b85d2040 4035 int ssid, count = 0;
a424316c 4036
2c6ab6d2 4037 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4038 for_each_subsys(ss, ssid)
4039 if (root->subsys_mask & (1 << ssid))
4040 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4041 if (strlen(root->name))
4042 seq_printf(m, "%sname=%s", count ? "," : "",
4043 root->name);
a424316c 4044 seq_putc(m, ':');
7717f7ba 4045 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4046 path = cgroup_path(cgrp, buf, PATH_MAX);
4047 if (!path) {
4048 retval = -ENAMETOOLONG;
a424316c 4049 goto out_unlock;
e61734c5
TH
4050 }
4051 seq_puts(m, path);
a424316c
PM
4052 seq_putc(m, '\n');
4053 }
4054
4055out_unlock:
96d365e0 4056 up_read(&css_set_rwsem);
a424316c
PM
4057 mutex_unlock(&cgroup_mutex);
4058 put_task_struct(tsk);
4059out_free:
4060 kfree(buf);
4061out:
4062 return retval;
4063}
4064
a424316c
PM
4065/* Display information about each subsystem and each hierarchy */
4066static int proc_cgroupstats_show(struct seq_file *m, void *v)
4067{
30159ec7 4068 struct cgroup_subsys *ss;
a424316c 4069 int i;
a424316c 4070
8bab8dde 4071 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4072 /*
4073 * ideally we don't want subsystems moving around while we do this.
4074 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4075 * subsys/hierarchy state.
4076 */
a424316c 4077 mutex_lock(&cgroup_mutex);
30159ec7
TH
4078
4079 for_each_subsys(ss, i)
2c6ab6d2
PM
4080 seq_printf(m, "%s\t%d\t%d\t%d\n",
4081 ss->name, ss->root->hierarchy_id,
3c9c825b 4082 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4083
a424316c
PM
4084 mutex_unlock(&cgroup_mutex);
4085 return 0;
4086}
4087
4088static int cgroupstats_open(struct inode *inode, struct file *file)
4089{
9dce07f1 4090 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4091}
4092
828c0950 4093static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4094 .open = cgroupstats_open,
4095 .read = seq_read,
4096 .llseek = seq_lseek,
4097 .release = single_release,
4098};
4099
b4f48b63
PM
4100/**
4101 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4102 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4103 *
4104 * Description: A task inherits its parent's cgroup at fork().
4105 *
4106 * A pointer to the shared css_set was automatically copied in
4107 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4108 * it was not made under the protection of RCU or cgroup_mutex, so
4109 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4110 * have already changed current->cgroups, allowing the previously
4111 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4112 *
4113 * At the point that cgroup_fork() is called, 'current' is the parent
4114 * task, and the passed argument 'child' points to the child task.
4115 */
4116void cgroup_fork(struct task_struct *child)
4117{
9bb71308 4118 task_lock(current);
a8ad805c 4119 get_css_set(task_css_set(current));
817929ec 4120 child->cgroups = current->cgroups;
9bb71308 4121 task_unlock(current);
817929ec 4122 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4123}
4124
817929ec 4125/**
a043e3b2
LZ
4126 * cgroup_post_fork - called on a new task after adding it to the task list
4127 * @child: the task in question
4128 *
5edee61e
TH
4129 * Adds the task to the list running through its css_set if necessary and
4130 * call the subsystem fork() callbacks. Has to be after the task is
4131 * visible on the task list in case we race with the first call to
0942eeee 4132 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4133 * list.
a043e3b2 4134 */
817929ec
PM
4135void cgroup_post_fork(struct task_struct *child)
4136{
30159ec7 4137 struct cgroup_subsys *ss;
5edee61e
TH
4138 int i;
4139
3ce3230a
FW
4140 /*
4141 * use_task_css_set_links is set to 1 before we walk the tasklist
4142 * under the tasklist_lock and we read it here after we added the child
4143 * to the tasklist under the tasklist_lock as well. If the child wasn't
4144 * yet in the tasklist when we walked through it from
4145 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4146 * should be visible now due to the paired locking and barriers implied
4147 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4148 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4149 * lock on fork.
4150 */
817929ec 4151 if (use_task_css_set_links) {
96d365e0 4152 down_write(&css_set_rwsem);
d8783832
TH
4153 task_lock(child);
4154 if (list_empty(&child->cg_list))
a8ad805c 4155 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4156 task_unlock(child);
96d365e0 4157 up_write(&css_set_rwsem);
817929ec 4158 }
5edee61e
TH
4159
4160 /*
4161 * Call ss->fork(). This must happen after @child is linked on
4162 * css_set; otherwise, @child might change state between ->fork()
4163 * and addition to css_set.
4164 */
4165 if (need_forkexit_callback) {
3ed80a62 4166 for_each_subsys(ss, i)
5edee61e
TH
4167 if (ss->fork)
4168 ss->fork(child);
5edee61e 4169 }
817929ec 4170}
5edee61e 4171
b4f48b63
PM
4172/**
4173 * cgroup_exit - detach cgroup from exiting task
4174 * @tsk: pointer to task_struct of exiting process
a043e3b2 4175 * @run_callback: run exit callbacks?
b4f48b63
PM
4176 *
4177 * Description: Detach cgroup from @tsk and release it.
4178 *
4179 * Note that cgroups marked notify_on_release force every task in
4180 * them to take the global cgroup_mutex mutex when exiting.
4181 * This could impact scaling on very large systems. Be reluctant to
4182 * use notify_on_release cgroups where very high task exit scaling
4183 * is required on large systems.
4184 *
4185 * the_top_cgroup_hack:
4186 *
4187 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4188 *
4189 * We call cgroup_exit() while the task is still competent to
4190 * handle notify_on_release(), then leave the task attached to the
4191 * root cgroup in each hierarchy for the remainder of its exit.
4192 *
4193 * To do this properly, we would increment the reference count on
4194 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4195 * code we would add a second cgroup function call, to drop that
4196 * reference. This would just create an unnecessary hot spot on
4197 * the top_cgroup reference count, to no avail.
4198 *
4199 * Normally, holding a reference to a cgroup without bumping its
4200 * count is unsafe. The cgroup could go away, or someone could
4201 * attach us to a different cgroup, decrementing the count on
4202 * the first cgroup that we never incremented. But in this case,
4203 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4204 * which wards off any cgroup_attach_task() attempts, or task is a failed
4205 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4206 */
4207void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4208{
30159ec7 4209 struct cgroup_subsys *ss;
5abb8855 4210 struct css_set *cset;
d41d5a01 4211 int i;
817929ec
PM
4212
4213 /*
96d365e0
TH
4214 * Unlink from the css_set task list if necessary. Optimistically
4215 * check cg_list before taking css_set_rwsem.
817929ec
PM
4216 */
4217 if (!list_empty(&tsk->cg_list)) {
96d365e0 4218 down_write(&css_set_rwsem);
817929ec 4219 if (!list_empty(&tsk->cg_list))
8d258797 4220 list_del_init(&tsk->cg_list);
96d365e0 4221 up_write(&css_set_rwsem);
817929ec
PM
4222 }
4223
b4f48b63
PM
4224 /* Reassign the task to the init_css_set. */
4225 task_lock(tsk);
a8ad805c
TH
4226 cset = task_css_set(tsk);
4227 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4228
4229 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4230 /* see cgroup_post_fork() for details */
4231 for_each_subsys(ss, i) {
d41d5a01 4232 if (ss->exit) {
eb95419b
TH
4233 struct cgroup_subsys_state *old_css = cset->subsys[i];
4234 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4235
eb95419b 4236 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4237 }
4238 }
4239 }
b4f48b63 4240 task_unlock(tsk);
d41d5a01 4241
89c5509b 4242 put_css_set(cset, true);
b4f48b63 4243}
697f4161 4244
bd89aabc 4245static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4246{
f50daa70 4247 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4248 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4249 /*
4250 * Control Group is currently removeable. If it's not
81a6a5cd 4251 * already queued for a userspace notification, queue
f50daa70
LZ
4252 * it now
4253 */
81a6a5cd 4254 int need_schedule_work = 0;
f50daa70 4255
cdcc136f 4256 raw_spin_lock(&release_list_lock);
54766d4a 4257 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4258 list_empty(&cgrp->release_list)) {
4259 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4260 need_schedule_work = 1;
4261 }
cdcc136f 4262 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4263 if (need_schedule_work)
4264 schedule_work(&release_agent_work);
4265 }
4266}
4267
81a6a5cd
PM
4268/*
4269 * Notify userspace when a cgroup is released, by running the
4270 * configured release agent with the name of the cgroup (path
4271 * relative to the root of cgroup file system) as the argument.
4272 *
4273 * Most likely, this user command will try to rmdir this cgroup.
4274 *
4275 * This races with the possibility that some other task will be
4276 * attached to this cgroup before it is removed, or that some other
4277 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4278 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4279 * unused, and this cgroup will be reprieved from its death sentence,
4280 * to continue to serve a useful existence. Next time it's released,
4281 * we will get notified again, if it still has 'notify_on_release' set.
4282 *
4283 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4284 * means only wait until the task is successfully execve()'d. The
4285 * separate release agent task is forked by call_usermodehelper(),
4286 * then control in this thread returns here, without waiting for the
4287 * release agent task. We don't bother to wait because the caller of
4288 * this routine has no use for the exit status of the release agent
4289 * task, so no sense holding our caller up for that.
81a6a5cd 4290 */
81a6a5cd
PM
4291static void cgroup_release_agent(struct work_struct *work)
4292{
4293 BUG_ON(work != &release_agent_work);
4294 mutex_lock(&cgroup_mutex);
cdcc136f 4295 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4296 while (!list_empty(&release_list)) {
4297 char *argv[3], *envp[3];
4298 int i;
e61734c5 4299 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4300 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4301 struct cgroup,
4302 release_list);
bd89aabc 4303 list_del_init(&cgrp->release_list);
cdcc136f 4304 raw_spin_unlock(&release_list_lock);
e61734c5 4305 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4306 if (!pathbuf)
4307 goto continue_free;
e61734c5
TH
4308 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4309 if (!path)
e788e066
PM
4310 goto continue_free;
4311 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4312 if (!agentbuf)
4313 goto continue_free;
81a6a5cd
PM
4314
4315 i = 0;
e788e066 4316 argv[i++] = agentbuf;
e61734c5 4317 argv[i++] = path;
81a6a5cd
PM
4318 argv[i] = NULL;
4319
4320 i = 0;
4321 /* minimal command environment */
4322 envp[i++] = "HOME=/";
4323 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4324 envp[i] = NULL;
4325
4326 /* Drop the lock while we invoke the usermode helper,
4327 * since the exec could involve hitting disk and hence
4328 * be a slow process */
4329 mutex_unlock(&cgroup_mutex);
4330 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4331 mutex_lock(&cgroup_mutex);
e788e066
PM
4332 continue_free:
4333 kfree(pathbuf);
4334 kfree(agentbuf);
cdcc136f 4335 raw_spin_lock(&release_list_lock);
81a6a5cd 4336 }
cdcc136f 4337 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4338 mutex_unlock(&cgroup_mutex);
4339}
8bab8dde
PM
4340
4341static int __init cgroup_disable(char *str)
4342{
30159ec7 4343 struct cgroup_subsys *ss;
8bab8dde 4344 char *token;
30159ec7 4345 int i;
8bab8dde
PM
4346
4347 while ((token = strsep(&str, ",")) != NULL) {
4348 if (!*token)
4349 continue;
be45c900 4350
3ed80a62 4351 for_each_subsys(ss, i) {
8bab8dde
PM
4352 if (!strcmp(token, ss->name)) {
4353 ss->disabled = 1;
4354 printk(KERN_INFO "Disabling %s control group"
4355 " subsystem\n", ss->name);
4356 break;
4357 }
4358 }
4359 }
4360 return 1;
4361}
4362__setup("cgroup_disable=", cgroup_disable);
38460b48 4363
b77d7b60 4364/**
5a17f543 4365 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4366 * @dentry: directory dentry of interest
4367 * @ss: subsystem of interest
b77d7b60 4368 *
5a17f543
TH
4369 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4370 * to get the corresponding css and return it. If such css doesn't exist
4371 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4372 */
5a17f543
TH
4373struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4374 struct cgroup_subsys *ss)
e5d1367f 4375{
2bd59d48
TH
4376 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4377 struct cgroup_subsys_state *css = NULL;
e5d1367f 4378 struct cgroup *cgrp;
b77d7b60 4379
35cf0836 4380 /* is @dentry a cgroup dir? */
2bd59d48
TH
4381 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4382 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4383 return ERR_PTR(-EBADF);
4384
5a17f543
TH
4385 rcu_read_lock();
4386
2bd59d48
TH
4387 /*
4388 * This path doesn't originate from kernfs and @kn could already
4389 * have been or be removed at any point. @kn->priv is RCU
4390 * protected for this access. See destroy_locked() for details.
4391 */
4392 cgrp = rcu_dereference(kn->priv);
4393 if (cgrp)
4394 css = cgroup_css(cgrp, ss);
5a17f543
TH
4395
4396 if (!css || !css_tryget(css))
4397 css = ERR_PTR(-ENOENT);
4398
4399 rcu_read_unlock();
4400 return css;
e5d1367f 4401}
e5d1367f 4402
1cb650b9
LZ
4403/**
4404 * css_from_id - lookup css by id
4405 * @id: the cgroup id
4406 * @ss: cgroup subsys to be looked into
4407 *
4408 * Returns the css if there's valid one with @id, otherwise returns NULL.
4409 * Should be called under rcu_read_lock().
4410 */
4411struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4412{
4413 struct cgroup *cgrp;
4414
ace2bee8 4415 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4416
4417 cgrp = idr_find(&ss->root->cgroup_idr, id);
4418 if (cgrp)
d1625964 4419 return cgroup_css(cgrp, ss);
1cb650b9 4420 return NULL;
e5d1367f
SE
4421}
4422
fe693435 4423#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4424static struct cgroup_subsys_state *
4425debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4426{
4427 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4428
4429 if (!css)
4430 return ERR_PTR(-ENOMEM);
4431
4432 return css;
4433}
4434
eb95419b 4435static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4436{
eb95419b 4437 kfree(css);
fe693435
PM
4438}
4439
182446d0
TH
4440static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4441 struct cftype *cft)
fe693435 4442{
182446d0 4443 return cgroup_task_count(css->cgroup);
fe693435
PM
4444}
4445
182446d0
TH
4446static u64 current_css_set_read(struct cgroup_subsys_state *css,
4447 struct cftype *cft)
fe693435
PM
4448{
4449 return (u64)(unsigned long)current->cgroups;
4450}
4451
182446d0 4452static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4453 struct cftype *cft)
fe693435
PM
4454{
4455 u64 count;
4456
4457 rcu_read_lock();
a8ad805c 4458 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4459 rcu_read_unlock();
4460 return count;
4461}
4462
2da8ca82 4463static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4464{
69d0206c 4465 struct cgrp_cset_link *link;
5abb8855 4466 struct css_set *cset;
e61734c5
TH
4467 char *name_buf;
4468
4469 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4470 if (!name_buf)
4471 return -ENOMEM;
7717f7ba 4472
96d365e0 4473 down_read(&css_set_rwsem);
7717f7ba 4474 rcu_read_lock();
5abb8855 4475 cset = rcu_dereference(current->cgroups);
69d0206c 4476 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4477 struct cgroup *c = link->cgrp;
59f5296b
TH
4478 const char *name = "?";
4479
e61734c5
TH
4480 if (c != cgroup_dummy_top) {
4481 cgroup_name(c, name_buf, NAME_MAX + 1);
4482 name = name_buf;
4483 }
7717f7ba 4484
2c6ab6d2
PM
4485 seq_printf(seq, "Root %d group %s\n",
4486 c->root->hierarchy_id, name);
7717f7ba
PM
4487 }
4488 rcu_read_unlock();
96d365e0 4489 up_read(&css_set_rwsem);
e61734c5 4490 kfree(name_buf);
7717f7ba
PM
4491 return 0;
4492}
4493
4494#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4495static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4496{
2da8ca82 4497 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4498 struct cgrp_cset_link *link;
7717f7ba 4499
96d365e0 4500 down_read(&css_set_rwsem);
182446d0 4501 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4502 struct css_set *cset = link->cset;
7717f7ba
PM
4503 struct task_struct *task;
4504 int count = 0;
5abb8855
TH
4505 seq_printf(seq, "css_set %p\n", cset);
4506 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4507 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4508 seq_puts(seq, " ...\n");
4509 break;
4510 } else {
4511 seq_printf(seq, " task %d\n",
4512 task_pid_vnr(task));
4513 }
4514 }
4515 }
96d365e0 4516 up_read(&css_set_rwsem);
7717f7ba
PM
4517 return 0;
4518}
4519
182446d0 4520static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4521{
182446d0 4522 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4523}
4524
4525static struct cftype debug_files[] = {
fe693435
PM
4526 {
4527 .name = "taskcount",
4528 .read_u64 = debug_taskcount_read,
4529 },
4530
4531 {
4532 .name = "current_css_set",
4533 .read_u64 = current_css_set_read,
4534 },
4535
4536 {
4537 .name = "current_css_set_refcount",
4538 .read_u64 = current_css_set_refcount_read,
4539 },
4540
7717f7ba
PM
4541 {
4542 .name = "current_css_set_cg_links",
2da8ca82 4543 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4544 },
4545
4546 {
4547 .name = "cgroup_css_links",
2da8ca82 4548 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4549 },
4550
fe693435
PM
4551 {
4552 .name = "releasable",
4553 .read_u64 = releasable_read,
4554 },
fe693435 4555
4baf6e33
TH
4556 { } /* terminate */
4557};
fe693435 4558
073219e9 4559struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4560 .css_alloc = debug_css_alloc,
4561 .css_free = debug_css_free,
4baf6e33 4562 .base_cftypes = debug_files,
fe693435
PM
4563};
4564#endif /* CONFIG_CGROUP_DEBUG */