cgroup: make cgroup_drain_offline() and cgroup_apply_control_{disable|enable}() recursive
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
a7165264 181static bool cgrp_dfl_visible;
ddbcc7e8 182
223ffb29 183/* Controllers blocked by the commandline in v1 */
6e5c8307 184static u16 cgroup_no_v1_mask;
223ffb29 185
5533e011 186/* some controllers are not supported in the default hierarchy */
a7165264 187static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
9871bf95
TH
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
ddbcc7e8 193
3417ae1f 194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 195static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 196
794611a1 197/*
0cb51d71
TH
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
794611a1 203 */
0cb51d71 204static u64 css_serial_nr_next = 1;
794611a1 205
cb4a3167
AS
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 210 */
6e5c8307
TH
211static u16 have_fork_callback __read_mostly;
212static u16 have_exit_callback __read_mostly;
213static u16 have_free_callback __read_mostly;
ddbcc7e8 214
7e47682e 215/* Ditto for the can_fork callback. */
6e5c8307 216static u16 have_canfork_callback __read_mostly;
7e47682e 217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
a14c6874
TH
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
628f7cd4 221
6e5c8307 222static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
ed27b9f7 223static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 224static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
225static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
226 struct cgroup_subsys *ss);
9d755d33 227static void css_release(struct percpu_ref *ref);
f8f22e53 228static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
229static int cgroup_addrm_files(struct cgroup_subsys_state *css,
230 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 231 bool is_add);
42809dd4 232
fc5ed1e9
TH
233/**
234 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
235 * @ssid: subsys ID of interest
236 *
237 * cgroup_subsys_enabled() can only be used with literal subsys names which
238 * is fine for individual subsystems but unsuitable for cgroup core. This
239 * is slower static_key_enabled() based test indexed by @ssid.
240 */
241static bool cgroup_ssid_enabled(int ssid)
242{
243 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
244}
245
223ffb29
JW
246static bool cgroup_ssid_no_v1(int ssid)
247{
248 return cgroup_no_v1_mask & (1 << ssid);
249}
250
9e10a130
TH
251/**
252 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
253 * @cgrp: the cgroup of interest
254 *
255 * The default hierarchy is the v2 interface of cgroup and this function
256 * can be used to test whether a cgroup is on the default hierarchy for
257 * cases where a subsystem should behave differnetly depending on the
258 * interface version.
259 *
260 * The set of behaviors which change on the default hierarchy are still
261 * being determined and the mount option is prefixed with __DEVEL__.
262 *
263 * List of changed behaviors:
264 *
265 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
266 * and "name" are disallowed.
267 *
268 * - When mounting an existing superblock, mount options should match.
269 *
270 * - Remount is disallowed.
271 *
272 * - rename(2) is disallowed.
273 *
274 * - "tasks" is removed. Everything should be at process granularity. Use
275 * "cgroup.procs" instead.
276 *
277 * - "cgroup.procs" is not sorted. pids will be unique unless they got
278 * recycled inbetween reads.
279 *
280 * - "release_agent" and "notify_on_release" are removed. Replacement
281 * notification mechanism will be implemented.
282 *
283 * - "cgroup.clone_children" is removed.
284 *
285 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
286 * and its descendants contain no task; otherwise, 1. The file also
287 * generates kernfs notification which can be monitored through poll and
288 * [di]notify when the value of the file changes.
289 *
290 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
291 * take masks of ancestors with non-empty cpus/mems, instead of being
292 * moved to an ancestor.
293 *
294 * - cpuset: a task can be moved into an empty cpuset, and again it takes
295 * masks of ancestors.
296 *
297 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
298 * is not created.
299 *
300 * - blkcg: blk-throttle becomes properly hierarchical.
301 *
302 * - debug: disallowed on the default hierarchy.
303 */
304static bool cgroup_on_dfl(const struct cgroup *cgrp)
305{
306 return cgrp->root == &cgrp_dfl_root;
307}
308
6fa4918d
TH
309/* IDR wrappers which synchronize using cgroup_idr_lock */
310static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
311 gfp_t gfp_mask)
312{
313 int ret;
314
315 idr_preload(gfp_mask);
54504e97 316 spin_lock_bh(&cgroup_idr_lock);
d0164adc 317 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 318 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
319 idr_preload_end();
320 return ret;
321}
322
323static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
324{
325 void *ret;
326
54504e97 327 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 328 ret = idr_replace(idr, ptr, id);
54504e97 329 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
330 return ret;
331}
332
333static void cgroup_idr_remove(struct idr *idr, int id)
334{
54504e97 335 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 336 idr_remove(idr, id);
54504e97 337 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
338}
339
d51f39b0
TH
340static struct cgroup *cgroup_parent(struct cgroup *cgrp)
341{
342 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
343
344 if (parent_css)
345 return container_of(parent_css, struct cgroup, self);
346 return NULL;
347}
348
5531dc91
TH
349/* subsystems visibly enabled on a cgroup */
350static u16 cgroup_control(struct cgroup *cgrp)
351{
352 struct cgroup *parent = cgroup_parent(cgrp);
353 u16 root_ss_mask = cgrp->root->subsys_mask;
354
355 if (parent)
356 return parent->subtree_control;
357
358 if (cgroup_on_dfl(cgrp))
359 root_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
360
361 return root_ss_mask;
362}
363
364/* subsystems enabled on a cgroup */
365static u16 cgroup_ss_mask(struct cgroup *cgrp)
366{
367 struct cgroup *parent = cgroup_parent(cgrp);
368
369 if (parent)
370 return parent->subtree_ss_mask;
371
372 return cgrp->root->subsys_mask;
373}
374
95109b62
TH
375/**
376 * cgroup_css - obtain a cgroup's css for the specified subsystem
377 * @cgrp: the cgroup of interest
9d800df1 378 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 379 *
ca8bdcaf
TH
380 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
381 * function must be called either under cgroup_mutex or rcu_read_lock() and
382 * the caller is responsible for pinning the returned css if it wants to
383 * keep accessing it outside the said locks. This function may return
384 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
385 */
386static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 387 struct cgroup_subsys *ss)
95109b62 388{
ca8bdcaf 389 if (ss)
aec25020 390 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 391 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 392 else
9d800df1 393 return &cgrp->self;
95109b62 394}
42809dd4 395
aec3dfcb
TH
396/**
397 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
398 * @cgrp: the cgroup of interest
9d800df1 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 400 *
d0f702e6 401 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
402 * as the matching css of the nearest ancestor including self which has @ss
403 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
404 * function is guaranteed to return non-NULL css.
405 */
406static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
407 struct cgroup_subsys *ss)
408{
409 lockdep_assert_held(&cgroup_mutex);
410
411 if (!ss)
9d800df1 412 return &cgrp->self;
aec3dfcb 413
eeecbd19
TH
414 /*
415 * This function is used while updating css associations and thus
5531dc91 416 * can't test the csses directly. Test ss_mask.
eeecbd19 417 */
5531dc91 418 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 419 cgrp = cgroup_parent(cgrp);
5531dc91
TH
420 if (!cgrp)
421 return NULL;
422 }
aec3dfcb
TH
423
424 return cgroup_css(cgrp, ss);
95109b62 425}
42809dd4 426
eeecbd19
TH
427/**
428 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
429 * @cgrp: the cgroup of interest
430 * @ss: the subsystem of interest
431 *
432 * Find and get the effective css of @cgrp for @ss. The effective css is
433 * defined as the matching css of the nearest ancestor including self which
434 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
435 * the root css is returned, so this function always returns a valid css.
436 * The returned css must be put using css_put().
437 */
438struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
439 struct cgroup_subsys *ss)
440{
441 struct cgroup_subsys_state *css;
442
443 rcu_read_lock();
444
445 do {
446 css = cgroup_css(cgrp, ss);
447
448 if (css && css_tryget_online(css))
449 goto out_unlock;
450 cgrp = cgroup_parent(cgrp);
451 } while (cgrp);
452
453 css = init_css_set.subsys[ss->id];
454 css_get(css);
455out_unlock:
456 rcu_read_unlock();
457 return css;
458}
459
ddbcc7e8 460/* convenient tests for these bits */
54766d4a 461static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 462{
184faf32 463 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
464}
465
052c3f3a
TH
466static void cgroup_get(struct cgroup *cgrp)
467{
468 WARN_ON_ONCE(cgroup_is_dead(cgrp));
469 css_get(&cgrp->self);
470}
471
472static bool cgroup_tryget(struct cgroup *cgrp)
473{
474 return css_tryget(&cgrp->self);
475}
476
b4168640 477struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 478{
2bd59d48 479 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 480 struct cftype *cft = of_cft(of);
2bd59d48
TH
481
482 /*
483 * This is open and unprotected implementation of cgroup_css().
484 * seq_css() is only called from a kernfs file operation which has
485 * an active reference on the file. Because all the subsystem
486 * files are drained before a css is disassociated with a cgroup,
487 * the matching css from the cgroup's subsys table is guaranteed to
488 * be and stay valid until the enclosing operation is complete.
489 */
490 if (cft->ss)
491 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
492 else
9d800df1 493 return &cgrp->self;
59f5296b 494}
b4168640 495EXPORT_SYMBOL_GPL(of_css);
59f5296b 496
e9685a03 497static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 498{
bd89aabc 499 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
500}
501
1c6727af
TH
502/**
503 * for_each_css - iterate all css's of a cgroup
504 * @css: the iteration cursor
505 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
506 * @cgrp: the target cgroup to iterate css's of
507 *
aec3dfcb 508 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
509 */
510#define for_each_css(css, ssid, cgrp) \
511 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
512 if (!((css) = rcu_dereference_check( \
513 (cgrp)->subsys[(ssid)], \
514 lockdep_is_held(&cgroup_mutex)))) { } \
515 else
516
aec3dfcb
TH
517/**
518 * for_each_e_css - iterate all effective css's of a cgroup
519 * @css: the iteration cursor
520 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
521 * @cgrp: the target cgroup to iterate css's of
522 *
523 * Should be called under cgroup_[tree_]mutex.
524 */
525#define for_each_e_css(css, ssid, cgrp) \
526 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
527 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
528 ; \
529 else
530
30159ec7 531/**
3ed80a62 532 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 533 * @ss: the iteration cursor
780cd8b3 534 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 535 */
780cd8b3 536#define for_each_subsys(ss, ssid) \
3ed80a62
TH
537 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
538 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 539
cb4a3167 540/**
b4e0eeaf 541 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
542 * @ss: the iteration cursor
543 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 544 * @ss_mask: the bitmask
cb4a3167
AS
545 *
546 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 547 * @ss_mask is set.
cb4a3167 548 */
b4e0eeaf
TH
549#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
550 unsigned long __ss_mask = (ss_mask); \
551 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 552 (ssid) = 0; \
b4e0eeaf
TH
553 break; \
554 } \
555 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
556 (ss) = cgroup_subsys[ssid]; \
557 {
558
559#define while_each_subsys_mask() \
560 } \
561 } \
562} while (false)
cb4a3167 563
985ed670
TH
564/* iterate across the hierarchies */
565#define for_each_root(root) \
5549c497 566 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 567
f8f22e53
TH
568/* iterate over child cgrps, lock should be held throughout iteration */
569#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 570 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 571 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
572 cgroup_is_dead(child); })) \
573 ; \
574 else
7ae1bad9 575
ce3f1d9d
TH
576/* walk live descendants in preorder */
577#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
578 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
579 if (({ lockdep_assert_held(&cgroup_mutex); \
580 (dsct) = (d_css)->cgroup; \
581 cgroup_is_dead(dsct); })) \
582 ; \
583 else
584
585/* walk live descendants in postorder */
586#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
587 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
588 if (({ lockdep_assert_held(&cgroup_mutex); \
589 (dsct) = (d_css)->cgroup; \
590 cgroup_is_dead(dsct); })) \
591 ; \
592 else
593
81a6a5cd 594static void cgroup_release_agent(struct work_struct *work);
bd89aabc 595static void check_for_release(struct cgroup *cgrp);
81a6a5cd 596
69d0206c
TH
597/*
598 * A cgroup can be associated with multiple css_sets as different tasks may
599 * belong to different cgroups on different hierarchies. In the other
600 * direction, a css_set is naturally associated with multiple cgroups.
601 * This M:N relationship is represented by the following link structure
602 * which exists for each association and allows traversing the associations
603 * from both sides.
604 */
605struct cgrp_cset_link {
606 /* the cgroup and css_set this link associates */
607 struct cgroup *cgrp;
608 struct css_set *cset;
609
610 /* list of cgrp_cset_links anchored at cgrp->cset_links */
611 struct list_head cset_link;
612
613 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
614 struct list_head cgrp_link;
817929ec
PM
615};
616
172a2c06
TH
617/*
618 * The default css_set - used by init and its children prior to any
817929ec
PM
619 * hierarchies being mounted. It contains a pointer to the root state
620 * for each subsystem. Also used to anchor the list of css_sets. Not
621 * reference-counted, to improve performance when child cgroups
622 * haven't been created.
623 */
5024ae29 624struct css_set init_css_set = {
172a2c06
TH
625 .refcount = ATOMIC_INIT(1),
626 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
627 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
628 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
629 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
630 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 631 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 632};
817929ec 633
172a2c06 634static int css_set_count = 1; /* 1 for init_css_set */
817929ec 635
0de0942d
TH
636/**
637 * css_set_populated - does a css_set contain any tasks?
638 * @cset: target css_set
639 */
640static bool css_set_populated(struct css_set *cset)
641{
f0d9a5f1 642 lockdep_assert_held(&css_set_lock);
0de0942d
TH
643
644 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
645}
646
842b597e
TH
647/**
648 * cgroup_update_populated - updated populated count of a cgroup
649 * @cgrp: the target cgroup
650 * @populated: inc or dec populated count
651 *
0de0942d
TH
652 * One of the css_sets associated with @cgrp is either getting its first
653 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
654 * count is propagated towards root so that a given cgroup's populated_cnt
655 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
656 *
657 * @cgrp's interface file "cgroup.populated" is zero if
658 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
659 * changes from or to zero, userland is notified that the content of the
660 * interface file has changed. This can be used to detect when @cgrp and
661 * its descendants become populated or empty.
662 */
663static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
664{
f0d9a5f1 665 lockdep_assert_held(&css_set_lock);
842b597e
TH
666
667 do {
668 bool trigger;
669
670 if (populated)
671 trigger = !cgrp->populated_cnt++;
672 else
673 trigger = !--cgrp->populated_cnt;
674
675 if (!trigger)
676 break;
677
ad2ed2b3 678 check_for_release(cgrp);
6f60eade
TH
679 cgroup_file_notify(&cgrp->events_file);
680
d51f39b0 681 cgrp = cgroup_parent(cgrp);
842b597e
TH
682 } while (cgrp);
683}
684
0de0942d
TH
685/**
686 * css_set_update_populated - update populated state of a css_set
687 * @cset: target css_set
688 * @populated: whether @cset is populated or depopulated
689 *
690 * @cset is either getting the first task or losing the last. Update the
691 * ->populated_cnt of all associated cgroups accordingly.
692 */
693static void css_set_update_populated(struct css_set *cset, bool populated)
694{
695 struct cgrp_cset_link *link;
696
f0d9a5f1 697 lockdep_assert_held(&css_set_lock);
0de0942d
TH
698
699 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
700 cgroup_update_populated(link->cgrp, populated);
701}
702
f6d7d049
TH
703/**
704 * css_set_move_task - move a task from one css_set to another
705 * @task: task being moved
706 * @from_cset: css_set @task currently belongs to (may be NULL)
707 * @to_cset: new css_set @task is being moved to (may be NULL)
708 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
709 *
710 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
711 * css_set, @from_cset can be NULL. If @task is being disassociated
712 * instead of moved, @to_cset can be NULL.
713 *
ed27b9f7
TH
714 * This function automatically handles populated_cnt updates and
715 * css_task_iter adjustments but the caller is responsible for managing
716 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
717 */
718static void css_set_move_task(struct task_struct *task,
719 struct css_set *from_cset, struct css_set *to_cset,
720 bool use_mg_tasks)
721{
f0d9a5f1 722 lockdep_assert_held(&css_set_lock);
f6d7d049 723
20b454a6
TH
724 if (to_cset && !css_set_populated(to_cset))
725 css_set_update_populated(to_cset, true);
726
f6d7d049 727 if (from_cset) {
ed27b9f7
TH
728 struct css_task_iter *it, *pos;
729
f6d7d049 730 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
731
732 /*
733 * @task is leaving, advance task iterators which are
734 * pointing to it so that they can resume at the next
735 * position. Advancing an iterator might remove it from
736 * the list, use safe walk. See css_task_iter_advance*()
737 * for details.
738 */
739 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
740 iters_node)
741 if (it->task_pos == &task->cg_list)
742 css_task_iter_advance(it);
743
f6d7d049
TH
744 list_del_init(&task->cg_list);
745 if (!css_set_populated(from_cset))
746 css_set_update_populated(from_cset, false);
747 } else {
748 WARN_ON_ONCE(!list_empty(&task->cg_list));
749 }
750
751 if (to_cset) {
752 /*
753 * We are synchronized through cgroup_threadgroup_rwsem
754 * against PF_EXITING setting such that we can't race
755 * against cgroup_exit() changing the css_set to
756 * init_css_set and dropping the old one.
757 */
758 WARN_ON_ONCE(task->flags & PF_EXITING);
759
f6d7d049
TH
760 rcu_assign_pointer(task->cgroups, to_cset);
761 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
762 &to_cset->tasks);
763 }
764}
765
7717f7ba
PM
766/*
767 * hash table for cgroup groups. This improves the performance to find
768 * an existing css_set. This hash doesn't (currently) take into
769 * account cgroups in empty hierarchies.
770 */
472b1053 771#define CSS_SET_HASH_BITS 7
0ac801fe 772static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 773
0ac801fe 774static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 775{
0ac801fe 776 unsigned long key = 0UL;
30159ec7
TH
777 struct cgroup_subsys *ss;
778 int i;
472b1053 779
30159ec7 780 for_each_subsys(ss, i)
0ac801fe
LZ
781 key += (unsigned long)css[i];
782 key = (key >> 16) ^ key;
472b1053 783
0ac801fe 784 return key;
472b1053
LZ
785}
786
a25eb52e 787static void put_css_set_locked(struct css_set *cset)
b4f48b63 788{
69d0206c 789 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
790 struct cgroup_subsys *ss;
791 int ssid;
5abb8855 792
f0d9a5f1 793 lockdep_assert_held(&css_set_lock);
89c5509b
TH
794
795 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 796 return;
81a6a5cd 797
53254f90
TH
798 /* This css_set is dead. unlink it and release cgroup and css refs */
799 for_each_subsys(ss, ssid) {
2d8f243a 800 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
801 css_put(cset->subsys[ssid]);
802 }
5abb8855 803 hash_del(&cset->hlist);
2c6ab6d2
PM
804 css_set_count--;
805
69d0206c 806 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
807 list_del(&link->cset_link);
808 list_del(&link->cgrp_link);
2ceb231b
TH
809 if (cgroup_parent(link->cgrp))
810 cgroup_put(link->cgrp);
2c6ab6d2 811 kfree(link);
81a6a5cd 812 }
2c6ab6d2 813
5abb8855 814 kfree_rcu(cset, rcu_head);
b4f48b63
PM
815}
816
a25eb52e 817static void put_css_set(struct css_set *cset)
89c5509b
TH
818{
819 /*
820 * Ensure that the refcount doesn't hit zero while any readers
821 * can see it. Similar to atomic_dec_and_lock(), but for an
822 * rwlock
823 */
824 if (atomic_add_unless(&cset->refcount, -1, 1))
825 return;
826
f0d9a5f1 827 spin_lock_bh(&css_set_lock);
a25eb52e 828 put_css_set_locked(cset);
f0d9a5f1 829 spin_unlock_bh(&css_set_lock);
89c5509b
TH
830}
831
817929ec
PM
832/*
833 * refcounted get/put for css_set objects
834 */
5abb8855 835static inline void get_css_set(struct css_set *cset)
817929ec 836{
5abb8855 837 atomic_inc(&cset->refcount);
817929ec
PM
838}
839
b326f9d0 840/**
7717f7ba 841 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
842 * @cset: candidate css_set being tested
843 * @old_cset: existing css_set for a task
7717f7ba
PM
844 * @new_cgrp: cgroup that's being entered by the task
845 * @template: desired set of css pointers in css_set (pre-calculated)
846 *
6f4b7e63 847 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
848 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
849 */
5abb8855
TH
850static bool compare_css_sets(struct css_set *cset,
851 struct css_set *old_cset,
7717f7ba
PM
852 struct cgroup *new_cgrp,
853 struct cgroup_subsys_state *template[])
854{
855 struct list_head *l1, *l2;
856
aec3dfcb
TH
857 /*
858 * On the default hierarchy, there can be csets which are
859 * associated with the same set of cgroups but different csses.
860 * Let's first ensure that csses match.
861 */
862 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 863 return false;
7717f7ba
PM
864
865 /*
866 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
867 * different cgroups in hierarchies. As different cgroups may
868 * share the same effective css, this comparison is always
869 * necessary.
7717f7ba 870 */
69d0206c
TH
871 l1 = &cset->cgrp_links;
872 l2 = &old_cset->cgrp_links;
7717f7ba 873 while (1) {
69d0206c 874 struct cgrp_cset_link *link1, *link2;
5abb8855 875 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
876
877 l1 = l1->next;
878 l2 = l2->next;
879 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
880 if (l1 == &cset->cgrp_links) {
881 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
882 break;
883 } else {
69d0206c 884 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
885 }
886 /* Locate the cgroups associated with these links. */
69d0206c
TH
887 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
888 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
889 cgrp1 = link1->cgrp;
890 cgrp2 = link2->cgrp;
7717f7ba 891 /* Hierarchies should be linked in the same order. */
5abb8855 892 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
893
894 /*
895 * If this hierarchy is the hierarchy of the cgroup
896 * that's changing, then we need to check that this
897 * css_set points to the new cgroup; if it's any other
898 * hierarchy, then this css_set should point to the
899 * same cgroup as the old css_set.
900 */
5abb8855
TH
901 if (cgrp1->root == new_cgrp->root) {
902 if (cgrp1 != new_cgrp)
7717f7ba
PM
903 return false;
904 } else {
5abb8855 905 if (cgrp1 != cgrp2)
7717f7ba
PM
906 return false;
907 }
908 }
909 return true;
910}
911
b326f9d0
TH
912/**
913 * find_existing_css_set - init css array and find the matching css_set
914 * @old_cset: the css_set that we're using before the cgroup transition
915 * @cgrp: the cgroup that we're moving into
916 * @template: out param for the new set of csses, should be clear on entry
817929ec 917 */
5abb8855
TH
918static struct css_set *find_existing_css_set(struct css_set *old_cset,
919 struct cgroup *cgrp,
920 struct cgroup_subsys_state *template[])
b4f48b63 921{
3dd06ffa 922 struct cgroup_root *root = cgrp->root;
30159ec7 923 struct cgroup_subsys *ss;
5abb8855 924 struct css_set *cset;
0ac801fe 925 unsigned long key;
b326f9d0 926 int i;
817929ec 927
aae8aab4
BB
928 /*
929 * Build the set of subsystem state objects that we want to see in the
930 * new css_set. while subsystems can change globally, the entries here
931 * won't change, so no need for locking.
932 */
30159ec7 933 for_each_subsys(ss, i) {
f392e51c 934 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
935 /*
936 * @ss is in this hierarchy, so we want the
937 * effective css from @cgrp.
938 */
939 template[i] = cgroup_e_css(cgrp, ss);
817929ec 940 } else {
aec3dfcb
TH
941 /*
942 * @ss is not in this hierarchy, so we don't want
943 * to change the css.
944 */
5abb8855 945 template[i] = old_cset->subsys[i];
817929ec
PM
946 }
947 }
948
0ac801fe 949 key = css_set_hash(template);
5abb8855
TH
950 hash_for_each_possible(css_set_table, cset, hlist, key) {
951 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
952 continue;
953
954 /* This css_set matches what we need */
5abb8855 955 return cset;
472b1053 956 }
817929ec
PM
957
958 /* No existing cgroup group matched */
959 return NULL;
960}
961
69d0206c 962static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 963{
69d0206c 964 struct cgrp_cset_link *link, *tmp_link;
36553434 965
69d0206c
TH
966 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
967 list_del(&link->cset_link);
36553434
LZ
968 kfree(link);
969 }
970}
971
69d0206c
TH
972/**
973 * allocate_cgrp_cset_links - allocate cgrp_cset_links
974 * @count: the number of links to allocate
975 * @tmp_links: list_head the allocated links are put on
976 *
977 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
978 * through ->cset_link. Returns 0 on success or -errno.
817929ec 979 */
69d0206c 980static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 981{
69d0206c 982 struct cgrp_cset_link *link;
817929ec 983 int i;
69d0206c
TH
984
985 INIT_LIST_HEAD(tmp_links);
986
817929ec 987 for (i = 0; i < count; i++) {
f4f4be2b 988 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 989 if (!link) {
69d0206c 990 free_cgrp_cset_links(tmp_links);
817929ec
PM
991 return -ENOMEM;
992 }
69d0206c 993 list_add(&link->cset_link, tmp_links);
817929ec
PM
994 }
995 return 0;
996}
997
c12f65d4
LZ
998/**
999 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1000 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1001 * @cset: the css_set to be linked
c12f65d4
LZ
1002 * @cgrp: the destination cgroup
1003 */
69d0206c
TH
1004static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1005 struct cgroup *cgrp)
c12f65d4 1006{
69d0206c 1007 struct cgrp_cset_link *link;
c12f65d4 1008
69d0206c 1009 BUG_ON(list_empty(tmp_links));
6803c006
TH
1010
1011 if (cgroup_on_dfl(cgrp))
1012 cset->dfl_cgrp = cgrp;
1013
69d0206c
TH
1014 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1015 link->cset = cset;
7717f7ba 1016 link->cgrp = cgrp;
842b597e 1017
7717f7ba 1018 /*
389b9c1b
TH
1019 * Always add links to the tail of the lists so that the lists are
1020 * in choronological order.
7717f7ba 1021 */
389b9c1b 1022 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1023 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1024
1025 if (cgroup_parent(cgrp))
1026 cgroup_get(cgrp);
c12f65d4
LZ
1027}
1028
b326f9d0
TH
1029/**
1030 * find_css_set - return a new css_set with one cgroup updated
1031 * @old_cset: the baseline css_set
1032 * @cgrp: the cgroup to be updated
1033 *
1034 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1035 * substituted into the appropriate hierarchy.
817929ec 1036 */
5abb8855
TH
1037static struct css_set *find_css_set(struct css_set *old_cset,
1038 struct cgroup *cgrp)
817929ec 1039{
b326f9d0 1040 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1041 struct css_set *cset;
69d0206c
TH
1042 struct list_head tmp_links;
1043 struct cgrp_cset_link *link;
2d8f243a 1044 struct cgroup_subsys *ss;
0ac801fe 1045 unsigned long key;
2d8f243a 1046 int ssid;
472b1053 1047
b326f9d0
TH
1048 lockdep_assert_held(&cgroup_mutex);
1049
817929ec
PM
1050 /* First see if we already have a cgroup group that matches
1051 * the desired set */
f0d9a5f1 1052 spin_lock_bh(&css_set_lock);
5abb8855
TH
1053 cset = find_existing_css_set(old_cset, cgrp, template);
1054 if (cset)
1055 get_css_set(cset);
f0d9a5f1 1056 spin_unlock_bh(&css_set_lock);
817929ec 1057
5abb8855
TH
1058 if (cset)
1059 return cset;
817929ec 1060
f4f4be2b 1061 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1062 if (!cset)
817929ec
PM
1063 return NULL;
1064
69d0206c 1065 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1066 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1067 kfree(cset);
817929ec
PM
1068 return NULL;
1069 }
1070
5abb8855 1071 atomic_set(&cset->refcount, 1);
69d0206c 1072 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1073 INIT_LIST_HEAD(&cset->tasks);
c7561128 1074 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1075 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1076 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1077 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1078 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1079
1080 /* Copy the set of subsystem state objects generated in
1081 * find_existing_css_set() */
5abb8855 1082 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1083
f0d9a5f1 1084 spin_lock_bh(&css_set_lock);
817929ec 1085 /* Add reference counts and links from the new css_set. */
69d0206c 1086 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1087 struct cgroup *c = link->cgrp;
69d0206c 1088
7717f7ba
PM
1089 if (c->root == cgrp->root)
1090 c = cgrp;
69d0206c 1091 link_css_set(&tmp_links, cset, c);
7717f7ba 1092 }
817929ec 1093
69d0206c 1094 BUG_ON(!list_empty(&tmp_links));
817929ec 1095
817929ec 1096 css_set_count++;
472b1053 1097
2d8f243a 1098 /* Add @cset to the hash table */
5abb8855
TH
1099 key = css_set_hash(cset->subsys);
1100 hash_add(css_set_table, &cset->hlist, key);
472b1053 1101
53254f90
TH
1102 for_each_subsys(ss, ssid) {
1103 struct cgroup_subsys_state *css = cset->subsys[ssid];
1104
2d8f243a 1105 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1106 &css->cgroup->e_csets[ssid]);
1107 css_get(css);
1108 }
2d8f243a 1109
f0d9a5f1 1110 spin_unlock_bh(&css_set_lock);
817929ec 1111
5abb8855 1112 return cset;
b4f48b63
PM
1113}
1114
3dd06ffa 1115static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1116{
3dd06ffa 1117 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1118
3dd06ffa 1119 return root_cgrp->root;
2bd59d48
TH
1120}
1121
3dd06ffa 1122static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1123{
1124 int id;
1125
1126 lockdep_assert_held(&cgroup_mutex);
1127
985ed670 1128 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1129 if (id < 0)
1130 return id;
1131
1132 root->hierarchy_id = id;
1133 return 0;
1134}
1135
3dd06ffa 1136static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1137{
1138 lockdep_assert_held(&cgroup_mutex);
1139
1140 if (root->hierarchy_id) {
1141 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1142 root->hierarchy_id = 0;
1143 }
1144}
1145
3dd06ffa 1146static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1147{
1148 if (root) {
d0f702e6 1149 /* hierarchy ID should already have been released */
f2e85d57
TH
1150 WARN_ON_ONCE(root->hierarchy_id);
1151
1152 idr_destroy(&root->cgroup_idr);
1153 kfree(root);
1154 }
1155}
1156
3dd06ffa 1157static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1158{
3dd06ffa 1159 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1160 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1161
2bd59d48 1162 mutex_lock(&cgroup_mutex);
f2e85d57 1163
776f02fa 1164 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1165 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1166
f2e85d57 1167 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1168 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1169
7717f7ba 1170 /*
f2e85d57
TH
1171 * Release all the links from cset_links to this hierarchy's
1172 * root cgroup
7717f7ba 1173 */
f0d9a5f1 1174 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1175
1176 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1177 list_del(&link->cset_link);
1178 list_del(&link->cgrp_link);
1179 kfree(link);
1180 }
f0d9a5f1
TH
1181
1182 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1183
1184 if (!list_empty(&root->root_list)) {
1185 list_del(&root->root_list);
1186 cgroup_root_count--;
1187 }
1188
1189 cgroup_exit_root_id(root);
1190
1191 mutex_unlock(&cgroup_mutex);
f2e85d57 1192
2bd59d48 1193 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1194 cgroup_free_root(root);
1195}
1196
ceb6a081
TH
1197/* look up cgroup associated with given css_set on the specified hierarchy */
1198static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1199 struct cgroup_root *root)
7717f7ba 1200{
7717f7ba
PM
1201 struct cgroup *res = NULL;
1202
96d365e0 1203 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1204 lockdep_assert_held(&css_set_lock);
96d365e0 1205
5abb8855 1206 if (cset == &init_css_set) {
3dd06ffa 1207 res = &root->cgrp;
7717f7ba 1208 } else {
69d0206c
TH
1209 struct cgrp_cset_link *link;
1210
1211 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1212 struct cgroup *c = link->cgrp;
69d0206c 1213
7717f7ba
PM
1214 if (c->root == root) {
1215 res = c;
1216 break;
1217 }
1218 }
1219 }
96d365e0 1220
7717f7ba
PM
1221 BUG_ON(!res);
1222 return res;
1223}
1224
ddbcc7e8 1225/*
ceb6a081 1226 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1227 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1228 */
1229static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1230 struct cgroup_root *root)
ceb6a081
TH
1231{
1232 /*
1233 * No need to lock the task - since we hold cgroup_mutex the
1234 * task can't change groups, so the only thing that can happen
1235 * is that it exits and its css is set back to init_css_set.
1236 */
1237 return cset_cgroup_from_root(task_css_set(task), root);
1238}
1239
ddbcc7e8 1240/*
ddbcc7e8
PM
1241 * A task must hold cgroup_mutex to modify cgroups.
1242 *
1243 * Any task can increment and decrement the count field without lock.
1244 * So in general, code holding cgroup_mutex can't rely on the count
1245 * field not changing. However, if the count goes to zero, then only
956db3ca 1246 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1247 * means that no tasks are currently attached, therefore there is no
1248 * way a task attached to that cgroup can fork (the other way to
1249 * increment the count). So code holding cgroup_mutex can safely
1250 * assume that if the count is zero, it will stay zero. Similarly, if
1251 * a task holds cgroup_mutex on a cgroup with zero count, it
1252 * knows that the cgroup won't be removed, as cgroup_rmdir()
1253 * needs that mutex.
1254 *
ddbcc7e8
PM
1255 * A cgroup can only be deleted if both its 'count' of using tasks
1256 * is zero, and its list of 'children' cgroups is empty. Since all
1257 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1258 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1259 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1260 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1261 *
1262 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1263 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1264 */
1265
2bd59d48 1266static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1267static const struct file_operations proc_cgroupstats_operations;
a424316c 1268
8d7e6fb0
TH
1269static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1270 char *buf)
ddbcc7e8 1271{
3e1d2eed
TH
1272 struct cgroup_subsys *ss = cft->ss;
1273
8d7e6fb0
TH
1274 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1275 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1276 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1277 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1278 cft->name);
8d7e6fb0
TH
1279 else
1280 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1281 return buf;
ddbcc7e8
PM
1282}
1283
f2e85d57
TH
1284/**
1285 * cgroup_file_mode - deduce file mode of a control file
1286 * @cft: the control file in question
1287 *
7dbdb199 1288 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1289 */
1290static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1291{
f2e85d57 1292 umode_t mode = 0;
65dff759 1293
f2e85d57
TH
1294 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1295 mode |= S_IRUGO;
1296
7dbdb199
TH
1297 if (cft->write_u64 || cft->write_s64 || cft->write) {
1298 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1299 mode |= S_IWUGO;
1300 else
1301 mode |= S_IWUSR;
1302 }
f2e85d57
TH
1303
1304 return mode;
65dff759
LZ
1305}
1306
af0ba678 1307/**
8699b776 1308 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
af0ba678 1309 * @cgrp: the target cgroup
0f060deb 1310 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1311 *
1312 * On the default hierarchy, a subsystem may request other subsystems to be
1313 * enabled together through its ->depends_on mask. In such cases, more
1314 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1315 *
0f060deb
TH
1316 * This function calculates which subsystems need to be enabled if
1317 * @subtree_control is to be applied to @cgrp. The returned mask is always
1318 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1319 */
6e5c8307 1320static u16 cgroup_calc_subtree_ss_mask(struct cgroup *cgrp, u16 subtree_control)
667c2491 1321{
6e5c8307 1322 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1323 struct cgroup_subsys *ss;
1324 int ssid;
1325
1326 lockdep_assert_held(&cgroup_mutex);
1327
0f060deb
TH
1328 if (!cgroup_on_dfl(cgrp))
1329 return cur_ss_mask;
af0ba678
TH
1330
1331 while (true) {
6e5c8307 1332 u16 new_ss_mask = cur_ss_mask;
af0ba678 1333
b4e0eeaf 1334 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1335 new_ss_mask |= ss->depends_on;
b4e0eeaf 1336 } while_each_subsys_mask();
af0ba678
TH
1337
1338 /*
1339 * Mask out subsystems which aren't available. This can
1340 * happen only if some depended-upon subsystems were bound
1341 * to non-default hierarchies.
1342 */
5531dc91 1343 new_ss_mask &= cgroup_ss_mask(cgrp);
af0ba678
TH
1344
1345 if (new_ss_mask == cur_ss_mask)
1346 break;
1347 cur_ss_mask = new_ss_mask;
1348 }
1349
0f060deb
TH
1350 return cur_ss_mask;
1351}
1352
1353/**
8699b776 1354 * cgroup_refresh_subtree_ss_mask - update subtree_ss_mask
0f060deb
TH
1355 * @cgrp: the target cgroup
1356 *
8699b776
TH
1357 * Update @cgrp->subtree_ss_mask according to the current
1358 * @cgrp->subtree_control using cgroup_calc_subtree_ss_mask().
0f060deb 1359 */
8699b776 1360static void cgroup_refresh_subtree_ss_mask(struct cgroup *cgrp)
0f060deb 1361{
8699b776
TH
1362 cgrp->subtree_ss_mask =
1363 cgroup_calc_subtree_ss_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1364}
1365
a9746d8d
TH
1366/**
1367 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1368 * @kn: the kernfs_node being serviced
1369 *
1370 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1371 * the method finishes if locking succeeded. Note that once this function
1372 * returns the cgroup returned by cgroup_kn_lock_live() may become
1373 * inaccessible any time. If the caller intends to continue to access the
1374 * cgroup, it should pin it before invoking this function.
1375 */
1376static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1377{
a9746d8d
TH
1378 struct cgroup *cgrp;
1379
1380 if (kernfs_type(kn) == KERNFS_DIR)
1381 cgrp = kn->priv;
1382 else
1383 cgrp = kn->parent->priv;
1384
1385 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1386
1387 kernfs_unbreak_active_protection(kn);
1388 cgroup_put(cgrp);
ddbcc7e8
PM
1389}
1390
a9746d8d
TH
1391/**
1392 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1393 * @kn: the kernfs_node being serviced
1394 *
1395 * This helper is to be used by a cgroup kernfs method currently servicing
1396 * @kn. It breaks the active protection, performs cgroup locking and
1397 * verifies that the associated cgroup is alive. Returns the cgroup if
1398 * alive; otherwise, %NULL. A successful return should be undone by a
1399 * matching cgroup_kn_unlock() invocation.
1400 *
1401 * Any cgroup kernfs method implementation which requires locking the
1402 * associated cgroup should use this helper. It avoids nesting cgroup
1403 * locking under kernfs active protection and allows all kernfs operations
1404 * including self-removal.
1405 */
1406static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1407{
a9746d8d
TH
1408 struct cgroup *cgrp;
1409
1410 if (kernfs_type(kn) == KERNFS_DIR)
1411 cgrp = kn->priv;
1412 else
1413 cgrp = kn->parent->priv;
05ef1d7c 1414
2739d3cc 1415 /*
01f6474c 1416 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1417 * active_ref. cgroup liveliness check alone provides enough
1418 * protection against removal. Ensure @cgrp stays accessible and
1419 * break the active_ref protection.
2739d3cc 1420 */
aa32362f
LZ
1421 if (!cgroup_tryget(cgrp))
1422 return NULL;
a9746d8d
TH
1423 kernfs_break_active_protection(kn);
1424
2bd59d48 1425 mutex_lock(&cgroup_mutex);
05ef1d7c 1426
a9746d8d
TH
1427 if (!cgroup_is_dead(cgrp))
1428 return cgrp;
1429
1430 cgroup_kn_unlock(kn);
1431 return NULL;
ddbcc7e8 1432}
05ef1d7c 1433
2739d3cc 1434static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1435{
2bd59d48 1436 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1437
01f6474c 1438 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1439
1440 if (cft->file_offset) {
1441 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1442 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1443
1444 spin_lock_irq(&cgroup_file_kn_lock);
1445 cfile->kn = NULL;
1446 spin_unlock_irq(&cgroup_file_kn_lock);
1447 }
1448
2bd59d48 1449 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1450}
1451
13af07df 1452/**
4df8dc90
TH
1453 * css_clear_dir - remove subsys files in a cgroup directory
1454 * @css: taget css
1455 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1456 */
4df8dc90
TH
1457static void css_clear_dir(struct cgroup_subsys_state *css,
1458 struct cgroup *cgrp_override)
05ef1d7c 1459{
4df8dc90
TH
1460 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1461 struct cftype *cfts;
05ef1d7c 1462
88cb04b9
TH
1463 if (!(css->flags & CSS_VISIBLE))
1464 return;
1465
1466 css->flags &= ~CSS_VISIBLE;
1467
4df8dc90
TH
1468 list_for_each_entry(cfts, &css->ss->cfts, node)
1469 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1470}
1471
ccdca218 1472/**
4df8dc90
TH
1473 * css_populate_dir - create subsys files in a cgroup directory
1474 * @css: target css
1475 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1476 *
1477 * On failure, no file is added.
1478 */
4df8dc90
TH
1479static int css_populate_dir(struct cgroup_subsys_state *css,
1480 struct cgroup *cgrp_override)
ccdca218 1481{
4df8dc90
TH
1482 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1483 struct cftype *cfts, *failed_cfts;
1484 int ret;
ccdca218 1485
88cb04b9
TH
1486 if (css->flags & CSS_VISIBLE)
1487 return 0;
1488
4df8dc90
TH
1489 if (!css->ss) {
1490 if (cgroup_on_dfl(cgrp))
1491 cfts = cgroup_dfl_base_files;
1492 else
1493 cfts = cgroup_legacy_base_files;
ccdca218 1494
4df8dc90
TH
1495 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1496 }
ccdca218 1497
4df8dc90
TH
1498 list_for_each_entry(cfts, &css->ss->cfts, node) {
1499 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1500 if (ret < 0) {
1501 failed_cfts = cfts;
1502 goto err;
ccdca218
TH
1503 }
1504 }
88cb04b9
TH
1505
1506 css->flags |= CSS_VISIBLE;
1507
ccdca218
TH
1508 return 0;
1509err:
4df8dc90
TH
1510 list_for_each_entry(cfts, &css->ss->cfts, node) {
1511 if (cfts == failed_cfts)
1512 break;
1513 cgroup_addrm_files(css, cgrp, cfts, false);
1514 }
ccdca218
TH
1515 return ret;
1516}
1517
6e5c8307 1518static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1519{
1ada4838 1520 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1521 struct cgroup_subsys *ss;
6e5c8307 1522 u16 tmp_ss_mask;
2d8f243a 1523 int ssid, i, ret;
ddbcc7e8 1524
ace2bee8 1525 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1526
b4e0eeaf 1527 do_each_subsys_mask(ss, ssid, ss_mask) {
7fd8c565
TH
1528 /* if @ss has non-root csses attached to it, can't move */
1529 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1530 return -EBUSY;
1d5be6b2 1531
5df36032 1532 /* can't move between two non-dummy roots either */
7fd8c565 1533 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1534 return -EBUSY;
b4e0eeaf 1535 } while_each_subsys_mask();
ddbcc7e8 1536
5533e011
TH
1537 /* skip creating root files on dfl_root for inhibited subsystems */
1538 tmp_ss_mask = ss_mask;
1539 if (dst_root == &cgrp_dfl_root)
a7165264 1540 tmp_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
5533e011 1541
b4e0eeaf 1542 do_each_subsys_mask(ss, ssid, tmp_ss_mask) {
4df8dc90
TH
1543 struct cgroup *scgrp = &ss->root->cgrp;
1544 int tssid;
1545
1546 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1547 if (!ret)
1548 continue;
ddbcc7e8 1549
a2dd4247
TH
1550 /*
1551 * Rebinding back to the default root is not allowed to
1552 * fail. Using both default and non-default roots should
1553 * be rare. Moving subsystems back and forth even more so.
1554 * Just warn about it and continue.
1555 */
4df8dc90 1556 if (dst_root == &cgrp_dfl_root) {
a7165264 1557 if (cgrp_dfl_visible) {
6e5c8307 1558 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
4df8dc90
TH
1559 ret, ss_mask);
1560 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1561 }
1562 continue;
a2dd4247 1563 }
4df8dc90 1564
b4e0eeaf 1565 do_each_subsys_mask(ss, tssid, tmp_ss_mask) {
4df8dc90
TH
1566 if (tssid == ssid)
1567 break;
1568 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
b4e0eeaf 1569 } while_each_subsys_mask();
4df8dc90 1570 return ret;
b4e0eeaf 1571 } while_each_subsys_mask();
3126121f
TH
1572
1573 /*
1574 * Nothing can fail from this point on. Remove files for the
1575 * removed subsystems and rebind each subsystem.
1576 */
b4e0eeaf 1577 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1578 struct cgroup_root *src_root = ss->root;
1579 struct cgroup *scgrp = &src_root->cgrp;
1580 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1581 struct css_set *cset;
a8a648c4 1582
1ada4838 1583 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1584
4df8dc90
TH
1585 css_clear_dir(css, NULL);
1586
1ada4838
TH
1587 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1588 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1589 ss->root = dst_root;
1ada4838 1590 css->cgroup = dcgrp;
73e80ed8 1591
f0d9a5f1 1592 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1593 hash_for_each(css_set_table, i, cset, hlist)
1594 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1595 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1596 spin_unlock_bh(&css_set_lock);
2d8f243a 1597
f392e51c 1598 src_root->subsys_mask &= ~(1 << ssid);
1ada4838 1599 scgrp->subtree_control &= ~(1 << ssid);
8699b776 1600 cgroup_refresh_subtree_ss_mask(scgrp);
f392e51c 1601
bd53d617 1602 /* default hierarchy doesn't enable controllers by default */
f392e51c 1603 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1604 if (dst_root == &cgrp_dfl_root) {
1605 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1606 } else {
1ada4838 1607 dcgrp->subtree_control |= 1 << ssid;
8699b776 1608 cgroup_refresh_subtree_ss_mask(dcgrp);
49d1dc4b 1609 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1610 }
a8a648c4 1611
5df36032
TH
1612 if (ss->bind)
1613 ss->bind(css);
b4e0eeaf 1614 } while_each_subsys_mask();
ddbcc7e8 1615
1ada4838 1616 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1617 return 0;
1618}
1619
2bd59d48
TH
1620static int cgroup_show_options(struct seq_file *seq,
1621 struct kernfs_root *kf_root)
ddbcc7e8 1622{
3dd06ffa 1623 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1624 struct cgroup_subsys *ss;
b85d2040 1625 int ssid;
ddbcc7e8 1626
d98817d4
TH
1627 if (root != &cgrp_dfl_root)
1628 for_each_subsys(ss, ssid)
1629 if (root->subsys_mask & (1 << ssid))
61e57c0c 1630 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1631 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1632 seq_puts(seq, ",noprefix");
93438629 1633 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1634 seq_puts(seq, ",xattr");
69e943b7
TH
1635
1636 spin_lock(&release_agent_path_lock);
81a6a5cd 1637 if (strlen(root->release_agent_path))
a068acf2
KC
1638 seq_show_option(seq, "release_agent",
1639 root->release_agent_path);
69e943b7
TH
1640 spin_unlock(&release_agent_path_lock);
1641
3dd06ffa 1642 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1643 seq_puts(seq, ",clone_children");
c6d57f33 1644 if (strlen(root->name))
a068acf2 1645 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1646 return 0;
1647}
1648
1649struct cgroup_sb_opts {
6e5c8307 1650 u16 subsys_mask;
69dfa00c 1651 unsigned int flags;
81a6a5cd 1652 char *release_agent;
2260e7fc 1653 bool cpuset_clone_children;
c6d57f33 1654 char *name;
2c6ab6d2
PM
1655 /* User explicitly requested empty subsystem */
1656 bool none;
ddbcc7e8
PM
1657};
1658
cf5d5941 1659static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1660{
32a8cf23
DL
1661 char *token, *o = data;
1662 bool all_ss = false, one_ss = false;
6e5c8307 1663 u16 mask = U16_MAX;
30159ec7 1664 struct cgroup_subsys *ss;
7b9a6ba5 1665 int nr_opts = 0;
30159ec7 1666 int i;
f9ab5b5b
LZ
1667
1668#ifdef CONFIG_CPUSETS
6e5c8307 1669 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1670#endif
ddbcc7e8 1671
c6d57f33 1672 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1673
1674 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1675 nr_opts++;
1676
ddbcc7e8
PM
1677 if (!*token)
1678 return -EINVAL;
32a8cf23 1679 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1680 /* Explicitly have no subsystems */
1681 opts->none = true;
32a8cf23
DL
1682 continue;
1683 }
1684 if (!strcmp(token, "all")) {
1685 /* Mutually exclusive option 'all' + subsystem name */
1686 if (one_ss)
1687 return -EINVAL;
1688 all_ss = true;
1689 continue;
1690 }
1691 if (!strcmp(token, "noprefix")) {
93438629 1692 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1693 continue;
1694 }
1695 if (!strcmp(token, "clone_children")) {
2260e7fc 1696 opts->cpuset_clone_children = true;
32a8cf23
DL
1697 continue;
1698 }
03b1cde6 1699 if (!strcmp(token, "xattr")) {
93438629 1700 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1701 continue;
1702 }
32a8cf23 1703 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1704 /* Specifying two release agents is forbidden */
1705 if (opts->release_agent)
1706 return -EINVAL;
c6d57f33 1707 opts->release_agent =
e400c285 1708 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1709 if (!opts->release_agent)
1710 return -ENOMEM;
32a8cf23
DL
1711 continue;
1712 }
1713 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1714 const char *name = token + 5;
1715 /* Can't specify an empty name */
1716 if (!strlen(name))
1717 return -EINVAL;
1718 /* Must match [\w.-]+ */
1719 for (i = 0; i < strlen(name); i++) {
1720 char c = name[i];
1721 if (isalnum(c))
1722 continue;
1723 if ((c == '.') || (c == '-') || (c == '_'))
1724 continue;
1725 return -EINVAL;
1726 }
1727 /* Specifying two names is forbidden */
1728 if (opts->name)
1729 return -EINVAL;
1730 opts->name = kstrndup(name,
e400c285 1731 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1732 GFP_KERNEL);
1733 if (!opts->name)
1734 return -ENOMEM;
32a8cf23
DL
1735
1736 continue;
1737 }
1738
30159ec7 1739 for_each_subsys(ss, i) {
3e1d2eed 1740 if (strcmp(token, ss->legacy_name))
32a8cf23 1741 continue;
fc5ed1e9 1742 if (!cgroup_ssid_enabled(i))
32a8cf23 1743 continue;
223ffb29
JW
1744 if (cgroup_ssid_no_v1(i))
1745 continue;
32a8cf23
DL
1746
1747 /* Mutually exclusive option 'all' + subsystem name */
1748 if (all_ss)
1749 return -EINVAL;
69dfa00c 1750 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1751 one_ss = true;
1752
1753 break;
1754 }
1755 if (i == CGROUP_SUBSYS_COUNT)
1756 return -ENOENT;
1757 }
1758
7b9a6ba5
TH
1759 /*
1760 * If the 'all' option was specified select all the subsystems,
1761 * otherwise if 'none', 'name=' and a subsystem name options were
1762 * not specified, let's default to 'all'
1763 */
1764 if (all_ss || (!one_ss && !opts->none && !opts->name))
1765 for_each_subsys(ss, i)
223ffb29 1766 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1767 opts->subsys_mask |= (1 << i);
1768
1769 /*
1770 * We either have to specify by name or by subsystems. (So all
1771 * empty hierarchies must have a name).
1772 */
1773 if (!opts->subsys_mask && !opts->name)
1774 return -EINVAL;
1775
f9ab5b5b
LZ
1776 /*
1777 * Option noprefix was introduced just for backward compatibility
1778 * with the old cpuset, so we allow noprefix only if mounting just
1779 * the cpuset subsystem.
1780 */
93438629 1781 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1782 return -EINVAL;
1783
2c6ab6d2 1784 /* Can't specify "none" and some subsystems */
a1a71b45 1785 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1786 return -EINVAL;
1787
ddbcc7e8
PM
1788 return 0;
1789}
1790
2bd59d48 1791static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1792{
1793 int ret = 0;
3dd06ffa 1794 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1795 struct cgroup_sb_opts opts;
6e5c8307 1796 u16 added_mask, removed_mask;
ddbcc7e8 1797
aa6ec29b
TH
1798 if (root == &cgrp_dfl_root) {
1799 pr_err("remount is not allowed\n");
873fe09e
TH
1800 return -EINVAL;
1801 }
1802
ddbcc7e8
PM
1803 mutex_lock(&cgroup_mutex);
1804
1805 /* See what subsystems are wanted */
1806 ret = parse_cgroupfs_options(data, &opts);
1807 if (ret)
1808 goto out_unlock;
1809
f392e51c 1810 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1811 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1812 task_tgid_nr(current), current->comm);
8b5a5a9d 1813
f392e51c
TH
1814 added_mask = opts.subsys_mask & ~root->subsys_mask;
1815 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1816
cf5d5941 1817 /* Don't allow flags or name to change at remount */
7450e90b 1818 if ((opts.flags ^ root->flags) ||
cf5d5941 1819 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1820 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1821 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1822 ret = -EINVAL;
1823 goto out_unlock;
1824 }
1825
f172e67c 1826 /* remounting is not allowed for populated hierarchies */
d5c419b6 1827 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1828 ret = -EBUSY;
0670e08b 1829 goto out_unlock;
cf5d5941 1830 }
ddbcc7e8 1831
5df36032 1832 ret = rebind_subsystems(root, added_mask);
3126121f 1833 if (ret)
0670e08b 1834 goto out_unlock;
ddbcc7e8 1835
3dd06ffa 1836 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1837
69e943b7
TH
1838 if (opts.release_agent) {
1839 spin_lock(&release_agent_path_lock);
81a6a5cd 1840 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1841 spin_unlock(&release_agent_path_lock);
1842 }
ddbcc7e8 1843 out_unlock:
66bdc9cf 1844 kfree(opts.release_agent);
c6d57f33 1845 kfree(opts.name);
ddbcc7e8 1846 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1847 return ret;
1848}
1849
afeb0f9f
TH
1850/*
1851 * To reduce the fork() overhead for systems that are not actually using
1852 * their cgroups capability, we don't maintain the lists running through
1853 * each css_set to its tasks until we see the list actually used - in other
1854 * words after the first mount.
1855 */
1856static bool use_task_css_set_links __read_mostly;
1857
1858static void cgroup_enable_task_cg_lists(void)
1859{
1860 struct task_struct *p, *g;
1861
f0d9a5f1 1862 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1863
1864 if (use_task_css_set_links)
1865 goto out_unlock;
1866
1867 use_task_css_set_links = true;
1868
1869 /*
1870 * We need tasklist_lock because RCU is not safe against
1871 * while_each_thread(). Besides, a forking task that has passed
1872 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1873 * is not guaranteed to have its child immediately visible in the
1874 * tasklist if we walk through it with RCU.
1875 */
1876 read_lock(&tasklist_lock);
1877 do_each_thread(g, p) {
afeb0f9f
TH
1878 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1879 task_css_set(p) != &init_css_set);
1880
1881 /*
1882 * We should check if the process is exiting, otherwise
1883 * it will race with cgroup_exit() in that the list
1884 * entry won't be deleted though the process has exited.
f153ad11
TH
1885 * Do it while holding siglock so that we don't end up
1886 * racing against cgroup_exit().
afeb0f9f 1887 */
f153ad11 1888 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1889 if (!(p->flags & PF_EXITING)) {
1890 struct css_set *cset = task_css_set(p);
1891
0de0942d
TH
1892 if (!css_set_populated(cset))
1893 css_set_update_populated(cset, true);
389b9c1b 1894 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1895 get_css_set(cset);
1896 }
f153ad11 1897 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1898 } while_each_thread(g, p);
1899 read_unlock(&tasklist_lock);
1900out_unlock:
f0d9a5f1 1901 spin_unlock_bh(&css_set_lock);
afeb0f9f 1902}
ddbcc7e8 1903
cc31edce
PM
1904static void init_cgroup_housekeeping(struct cgroup *cgrp)
1905{
2d8f243a
TH
1906 struct cgroup_subsys *ss;
1907 int ssid;
1908
d5c419b6
TH
1909 INIT_LIST_HEAD(&cgrp->self.sibling);
1910 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1911 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1912 INIT_LIST_HEAD(&cgrp->pidlists);
1913 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1914 cgrp->self.cgroup = cgrp;
184faf32 1915 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1916
1917 for_each_subsys(ss, ssid)
1918 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1919
1920 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1921 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1922}
c6d57f33 1923
3dd06ffa 1924static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1925 struct cgroup_sb_opts *opts)
ddbcc7e8 1926{
3dd06ffa 1927 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1928
ddbcc7e8 1929 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1930 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1931 cgrp->root = root;
cc31edce 1932 init_cgroup_housekeeping(cgrp);
4e96ee8e 1933 idr_init(&root->cgroup_idr);
c6d57f33 1934
c6d57f33
PM
1935 root->flags = opts->flags;
1936 if (opts->release_agent)
1937 strcpy(root->release_agent_path, opts->release_agent);
1938 if (opts->name)
1939 strcpy(root->name, opts->name);
2260e7fc 1940 if (opts->cpuset_clone_children)
3dd06ffa 1941 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1942}
1943
6e5c8307 1944static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1945{
d427dfeb 1946 LIST_HEAD(tmp_links);
3dd06ffa 1947 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1948 struct css_set *cset;
d427dfeb 1949 int i, ret;
2c6ab6d2 1950
d427dfeb 1951 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1952
cf780b7d 1953 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1954 if (ret < 0)
2bd59d48 1955 goto out;
d427dfeb 1956 root_cgrp->id = ret;
b11cfb58 1957 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1958
2aad2a86
TH
1959 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1960 GFP_KERNEL);
9d755d33
TH
1961 if (ret)
1962 goto out;
1963
d427dfeb 1964 /*
f0d9a5f1 1965 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1966 * but that's OK - it can only be increased by someone holding
1967 * cgroup_lock, and that's us. The worst that can happen is that we
1968 * have some link structures left over
1969 */
1970 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1971 if (ret)
9d755d33 1972 goto cancel_ref;
ddbcc7e8 1973
985ed670 1974 ret = cgroup_init_root_id(root);
ddbcc7e8 1975 if (ret)
9d755d33 1976 goto cancel_ref;
ddbcc7e8 1977
2bd59d48
TH
1978 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1979 KERNFS_ROOT_CREATE_DEACTIVATED,
1980 root_cgrp);
1981 if (IS_ERR(root->kf_root)) {
1982 ret = PTR_ERR(root->kf_root);
1983 goto exit_root_id;
1984 }
1985 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1986
4df8dc90 1987 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1988 if (ret)
2bd59d48 1989 goto destroy_root;
ddbcc7e8 1990
5df36032 1991 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1992 if (ret)
2bd59d48 1993 goto destroy_root;
ddbcc7e8 1994
d427dfeb
TH
1995 /*
1996 * There must be no failure case after here, since rebinding takes
1997 * care of subsystems' refcounts, which are explicitly dropped in
1998 * the failure exit path.
1999 */
2000 list_add(&root->root_list, &cgroup_roots);
2001 cgroup_root_count++;
0df6a63f 2002
d427dfeb 2003 /*
3dd06ffa 2004 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2005 * objects.
2006 */
f0d9a5f1 2007 spin_lock_bh(&css_set_lock);
0de0942d 2008 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2009 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2010 if (css_set_populated(cset))
2011 cgroup_update_populated(root_cgrp, true);
2012 }
f0d9a5f1 2013 spin_unlock_bh(&css_set_lock);
ddbcc7e8 2014
d5c419b6 2015 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2016 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2017
2bd59d48 2018 kernfs_activate(root_cgrp->kn);
d427dfeb 2019 ret = 0;
2bd59d48 2020 goto out;
d427dfeb 2021
2bd59d48
TH
2022destroy_root:
2023 kernfs_destroy_root(root->kf_root);
2024 root->kf_root = NULL;
2025exit_root_id:
d427dfeb 2026 cgroup_exit_root_id(root);
9d755d33 2027cancel_ref:
9a1049da 2028 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2029out:
d427dfeb
TH
2030 free_cgrp_cset_links(&tmp_links);
2031 return ret;
ddbcc7e8
PM
2032}
2033
f7e83571 2034static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2035 int flags, const char *unused_dev_name,
f7e83571 2036 void *data)
ddbcc7e8 2037{
67e9c74b 2038 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2039 struct super_block *pinned_sb = NULL;
970317aa 2040 struct cgroup_subsys *ss;
3dd06ffa 2041 struct cgroup_root *root;
ddbcc7e8 2042 struct cgroup_sb_opts opts;
2bd59d48 2043 struct dentry *dentry;
8e30e2b8 2044 int ret;
970317aa 2045 int i;
c6b3d5bc 2046 bool new_sb;
ddbcc7e8 2047
56fde9e0
TH
2048 /*
2049 * The first time anyone tries to mount a cgroup, enable the list
2050 * linking each css_set to its tasks and fix up all existing tasks.
2051 */
2052 if (!use_task_css_set_links)
2053 cgroup_enable_task_cg_lists();
e37a06f1 2054
67e9c74b
TH
2055 if (is_v2) {
2056 if (data) {
2057 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2058 return ERR_PTR(-EINVAL);
2059 }
a7165264 2060 cgrp_dfl_visible = true;
67e9c74b
TH
2061 root = &cgrp_dfl_root;
2062 cgroup_get(&root->cgrp);
2063 goto out_mount;
2064 }
2065
aae8aab4 2066 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2067
2068 /* First find the desired set of subsystems */
ddbcc7e8 2069 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2070 if (ret)
8e30e2b8 2071 goto out_unlock;
a015edd2 2072
970317aa
LZ
2073 /*
2074 * Destruction of cgroup root is asynchronous, so subsystems may
2075 * still be dying after the previous unmount. Let's drain the
2076 * dying subsystems. We just need to ensure that the ones
2077 * unmounted previously finish dying and don't care about new ones
2078 * starting. Testing ref liveliness is good enough.
2079 */
2080 for_each_subsys(ss, i) {
2081 if (!(opts.subsys_mask & (1 << i)) ||
2082 ss->root == &cgrp_dfl_root)
2083 continue;
2084
2085 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2086 mutex_unlock(&cgroup_mutex);
2087 msleep(10);
2088 ret = restart_syscall();
2089 goto out_free;
2090 }
2091 cgroup_put(&ss->root->cgrp);
2092 }
2093
985ed670 2094 for_each_root(root) {
2bd59d48 2095 bool name_match = false;
3126121f 2096
3dd06ffa 2097 if (root == &cgrp_dfl_root)
985ed670 2098 continue;
3126121f 2099
cf5d5941 2100 /*
2bd59d48
TH
2101 * If we asked for a name then it must match. Also, if
2102 * name matches but sybsys_mask doesn't, we should fail.
2103 * Remember whether name matched.
cf5d5941 2104 */
2bd59d48
TH
2105 if (opts.name) {
2106 if (strcmp(opts.name, root->name))
2107 continue;
2108 name_match = true;
2109 }
ddbcc7e8 2110
c6d57f33 2111 /*
2bd59d48
TH
2112 * If we asked for subsystems (or explicitly for no
2113 * subsystems) then they must match.
c6d57f33 2114 */
2bd59d48 2115 if ((opts.subsys_mask || opts.none) &&
f392e51c 2116 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2117 if (!name_match)
2118 continue;
2119 ret = -EBUSY;
2120 goto out_unlock;
2121 }
873fe09e 2122
7b9a6ba5
TH
2123 if (root->flags ^ opts.flags)
2124 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2125
776f02fa 2126 /*
3a32bd72
LZ
2127 * We want to reuse @root whose lifetime is governed by its
2128 * ->cgrp. Let's check whether @root is alive and keep it
2129 * that way. As cgroup_kill_sb() can happen anytime, we
2130 * want to block it by pinning the sb so that @root doesn't
2131 * get killed before mount is complete.
2132 *
2133 * With the sb pinned, tryget_live can reliably indicate
2134 * whether @root can be reused. If it's being killed,
2135 * drain it. We can use wait_queue for the wait but this
2136 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2137 */
3a32bd72
LZ
2138 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2139 if (IS_ERR(pinned_sb) ||
2140 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2141 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2142 if (!IS_ERR_OR_NULL(pinned_sb))
2143 deactivate_super(pinned_sb);
776f02fa 2144 msleep(10);
a015edd2
TH
2145 ret = restart_syscall();
2146 goto out_free;
776f02fa 2147 }
ddbcc7e8 2148
776f02fa 2149 ret = 0;
2bd59d48 2150 goto out_unlock;
ddbcc7e8 2151 }
ddbcc7e8 2152
817929ec 2153 /*
172a2c06
TH
2154 * No such thing, create a new one. name= matching without subsys
2155 * specification is allowed for already existing hierarchies but we
2156 * can't create new one without subsys specification.
817929ec 2157 */
172a2c06
TH
2158 if (!opts.subsys_mask && !opts.none) {
2159 ret = -EINVAL;
2160 goto out_unlock;
817929ec 2161 }
817929ec 2162
172a2c06
TH
2163 root = kzalloc(sizeof(*root), GFP_KERNEL);
2164 if (!root) {
2165 ret = -ENOMEM;
2bd59d48 2166 goto out_unlock;
839ec545 2167 }
e5f6a860 2168
172a2c06
TH
2169 init_cgroup_root(root, &opts);
2170
35585573 2171 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2172 if (ret)
2173 cgroup_free_root(root);
fa3ca07e 2174
8e30e2b8 2175out_unlock:
ddbcc7e8 2176 mutex_unlock(&cgroup_mutex);
a015edd2 2177out_free:
c6d57f33
PM
2178 kfree(opts.release_agent);
2179 kfree(opts.name);
03b1cde6 2180
2bd59d48 2181 if (ret)
8e30e2b8 2182 return ERR_PTR(ret);
67e9c74b 2183out_mount:
c9482a5b 2184 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2185 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2186 &new_sb);
c6b3d5bc 2187 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2188 cgroup_put(&root->cgrp);
3a32bd72
LZ
2189
2190 /*
2191 * If @pinned_sb, we're reusing an existing root and holding an
2192 * extra ref on its sb. Mount is complete. Put the extra ref.
2193 */
2194 if (pinned_sb) {
2195 WARN_ON(new_sb);
2196 deactivate_super(pinned_sb);
2197 }
2198
2bd59d48
TH
2199 return dentry;
2200}
2201
2202static void cgroup_kill_sb(struct super_block *sb)
2203{
2204 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2205 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2206
9d755d33
TH
2207 /*
2208 * If @root doesn't have any mounts or children, start killing it.
2209 * This prevents new mounts by disabling percpu_ref_tryget_live().
2210 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2211 *
2212 * And don't kill the default root.
9d755d33 2213 */
3c606d35 2214 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2215 root == &cgrp_dfl_root)
9d755d33
TH
2216 cgroup_put(&root->cgrp);
2217 else
2218 percpu_ref_kill(&root->cgrp.self.refcnt);
2219
2bd59d48 2220 kernfs_kill_sb(sb);
ddbcc7e8
PM
2221}
2222
2223static struct file_system_type cgroup_fs_type = {
2224 .name = "cgroup",
f7e83571 2225 .mount = cgroup_mount,
ddbcc7e8
PM
2226 .kill_sb = cgroup_kill_sb,
2227};
2228
67e9c74b
TH
2229static struct file_system_type cgroup2_fs_type = {
2230 .name = "cgroup2",
2231 .mount = cgroup_mount,
2232 .kill_sb = cgroup_kill_sb,
2233};
2234
857a2beb 2235/**
913ffdb5 2236 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2237 * @task: target task
857a2beb
TH
2238 * @buf: the buffer to write the path into
2239 * @buflen: the length of the buffer
2240 *
913ffdb5
TH
2241 * Determine @task's cgroup on the first (the one with the lowest non-zero
2242 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2243 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2244 * cgroup controller callbacks.
2245 *
e61734c5 2246 * Return value is the same as kernfs_path().
857a2beb 2247 */
e61734c5 2248char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2249{
3dd06ffa 2250 struct cgroup_root *root;
913ffdb5 2251 struct cgroup *cgrp;
e61734c5
TH
2252 int hierarchy_id = 1;
2253 char *path = NULL;
857a2beb
TH
2254
2255 mutex_lock(&cgroup_mutex);
f0d9a5f1 2256 spin_lock_bh(&css_set_lock);
857a2beb 2257
913ffdb5
TH
2258 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2259
857a2beb
TH
2260 if (root) {
2261 cgrp = task_cgroup_from_root(task, root);
e61734c5 2262 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2263 } else {
2264 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2265 if (strlcpy(buf, "/", buflen) < buflen)
2266 path = buf;
857a2beb
TH
2267 }
2268
f0d9a5f1 2269 spin_unlock_bh(&css_set_lock);
857a2beb 2270 mutex_unlock(&cgroup_mutex);
e61734c5 2271 return path;
857a2beb 2272}
913ffdb5 2273EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2274
b3dc094e 2275/* used to track tasks and other necessary states during migration */
2f7ee569 2276struct cgroup_taskset {
b3dc094e
TH
2277 /* the src and dst cset list running through cset->mg_node */
2278 struct list_head src_csets;
2279 struct list_head dst_csets;
2280
1f7dd3e5
TH
2281 /* the subsys currently being processed */
2282 int ssid;
2283
b3dc094e
TH
2284 /*
2285 * Fields for cgroup_taskset_*() iteration.
2286 *
2287 * Before migration is committed, the target migration tasks are on
2288 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2289 * the csets on ->dst_csets. ->csets point to either ->src_csets
2290 * or ->dst_csets depending on whether migration is committed.
2291 *
2292 * ->cur_csets and ->cur_task point to the current task position
2293 * during iteration.
2294 */
2295 struct list_head *csets;
2296 struct css_set *cur_cset;
2297 struct task_struct *cur_task;
2f7ee569
TH
2298};
2299
adaae5dc
TH
2300#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2301 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2302 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2303 .csets = &tset.src_csets, \
2304}
2305
2306/**
2307 * cgroup_taskset_add - try to add a migration target task to a taskset
2308 * @task: target task
2309 * @tset: target taskset
2310 *
2311 * Add @task, which is a migration target, to @tset. This function becomes
2312 * noop if @task doesn't need to be migrated. @task's css_set should have
2313 * been added as a migration source and @task->cg_list will be moved from
2314 * the css_set's tasks list to mg_tasks one.
2315 */
2316static void cgroup_taskset_add(struct task_struct *task,
2317 struct cgroup_taskset *tset)
2318{
2319 struct css_set *cset;
2320
f0d9a5f1 2321 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2322
2323 /* @task either already exited or can't exit until the end */
2324 if (task->flags & PF_EXITING)
2325 return;
2326
2327 /* leave @task alone if post_fork() hasn't linked it yet */
2328 if (list_empty(&task->cg_list))
2329 return;
2330
2331 cset = task_css_set(task);
2332 if (!cset->mg_src_cgrp)
2333 return;
2334
2335 list_move_tail(&task->cg_list, &cset->mg_tasks);
2336 if (list_empty(&cset->mg_node))
2337 list_add_tail(&cset->mg_node, &tset->src_csets);
2338 if (list_empty(&cset->mg_dst_cset->mg_node))
2339 list_move_tail(&cset->mg_dst_cset->mg_node,
2340 &tset->dst_csets);
2341}
2342
2f7ee569
TH
2343/**
2344 * cgroup_taskset_first - reset taskset and return the first task
2345 * @tset: taskset of interest
1f7dd3e5 2346 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2347 *
2348 * @tset iteration is initialized and the first task is returned.
2349 */
1f7dd3e5
TH
2350struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2351 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2352{
b3dc094e
TH
2353 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2354 tset->cur_task = NULL;
2355
1f7dd3e5 2356 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2357}
2f7ee569
TH
2358
2359/**
2360 * cgroup_taskset_next - iterate to the next task in taskset
2361 * @tset: taskset of interest
1f7dd3e5 2362 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2363 *
2364 * Return the next task in @tset. Iteration must have been initialized
2365 * with cgroup_taskset_first().
2366 */
1f7dd3e5
TH
2367struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2368 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2369{
b3dc094e
TH
2370 struct css_set *cset = tset->cur_cset;
2371 struct task_struct *task = tset->cur_task;
2f7ee569 2372
b3dc094e
TH
2373 while (&cset->mg_node != tset->csets) {
2374 if (!task)
2375 task = list_first_entry(&cset->mg_tasks,
2376 struct task_struct, cg_list);
2377 else
2378 task = list_next_entry(task, cg_list);
2f7ee569 2379
b3dc094e
TH
2380 if (&task->cg_list != &cset->mg_tasks) {
2381 tset->cur_cset = cset;
2382 tset->cur_task = task;
1f7dd3e5
TH
2383
2384 /*
2385 * This function may be called both before and
2386 * after cgroup_taskset_migrate(). The two cases
2387 * can be distinguished by looking at whether @cset
2388 * has its ->mg_dst_cset set.
2389 */
2390 if (cset->mg_dst_cset)
2391 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2392 else
2393 *dst_cssp = cset->subsys[tset->ssid];
2394
b3dc094e
TH
2395 return task;
2396 }
2f7ee569 2397
b3dc094e
TH
2398 cset = list_next_entry(cset, mg_node);
2399 task = NULL;
2400 }
2f7ee569 2401
b3dc094e 2402 return NULL;
2f7ee569 2403}
2f7ee569 2404
adaae5dc
TH
2405/**
2406 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2407 * @tset: taget taskset
2408 * @dst_cgrp: destination cgroup
2409 *
2410 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2411 * ->can_attach callbacks fails and guarantees that either all or none of
2412 * the tasks in @tset are migrated. @tset is consumed regardless of
2413 * success.
2414 */
2415static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2416 struct cgroup *dst_cgrp)
2417{
2418 struct cgroup_subsys_state *css, *failed_css = NULL;
2419 struct task_struct *task, *tmp_task;
2420 struct css_set *cset, *tmp_cset;
2421 int i, ret;
2422
2423 /* methods shouldn't be called if no task is actually migrating */
2424 if (list_empty(&tset->src_csets))
2425 return 0;
2426
2427 /* check that we can legitimately attach to the cgroup */
2428 for_each_e_css(css, i, dst_cgrp) {
2429 if (css->ss->can_attach) {
1f7dd3e5
TH
2430 tset->ssid = i;
2431 ret = css->ss->can_attach(tset);
adaae5dc
TH
2432 if (ret) {
2433 failed_css = css;
2434 goto out_cancel_attach;
2435 }
2436 }
2437 }
2438
2439 /*
2440 * Now that we're guaranteed success, proceed to move all tasks to
2441 * the new cgroup. There are no failure cases after here, so this
2442 * is the commit point.
2443 */
f0d9a5f1 2444 spin_lock_bh(&css_set_lock);
adaae5dc 2445 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2446 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2447 struct css_set *from_cset = task_css_set(task);
2448 struct css_set *to_cset = cset->mg_dst_cset;
2449
2450 get_css_set(to_cset);
2451 css_set_move_task(task, from_cset, to_cset, true);
2452 put_css_set_locked(from_cset);
2453 }
adaae5dc 2454 }
f0d9a5f1 2455 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2456
2457 /*
2458 * Migration is committed, all target tasks are now on dst_csets.
2459 * Nothing is sensitive to fork() after this point. Notify
2460 * controllers that migration is complete.
2461 */
2462 tset->csets = &tset->dst_csets;
2463
1f7dd3e5
TH
2464 for_each_e_css(css, i, dst_cgrp) {
2465 if (css->ss->attach) {
2466 tset->ssid = i;
2467 css->ss->attach(tset);
2468 }
2469 }
adaae5dc
TH
2470
2471 ret = 0;
2472 goto out_release_tset;
2473
2474out_cancel_attach:
2475 for_each_e_css(css, i, dst_cgrp) {
2476 if (css == failed_css)
2477 break;
1f7dd3e5
TH
2478 if (css->ss->cancel_attach) {
2479 tset->ssid = i;
2480 css->ss->cancel_attach(tset);
2481 }
adaae5dc
TH
2482 }
2483out_release_tset:
f0d9a5f1 2484 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2485 list_splice_init(&tset->dst_csets, &tset->src_csets);
2486 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2487 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2488 list_del_init(&cset->mg_node);
2489 }
f0d9a5f1 2490 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2491 return ret;
2492}
2493
a043e3b2 2494/**
1958d2d5
TH
2495 * cgroup_migrate_finish - cleanup after attach
2496 * @preloaded_csets: list of preloaded css_sets
74a1166d 2497 *
1958d2d5
TH
2498 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2499 * those functions for details.
74a1166d 2500 */
1958d2d5 2501static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2502{
1958d2d5 2503 struct css_set *cset, *tmp_cset;
74a1166d 2504
1958d2d5
TH
2505 lockdep_assert_held(&cgroup_mutex);
2506
f0d9a5f1 2507 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2508 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2509 cset->mg_src_cgrp = NULL;
2510 cset->mg_dst_cset = NULL;
2511 list_del_init(&cset->mg_preload_node);
a25eb52e 2512 put_css_set_locked(cset);
1958d2d5 2513 }
f0d9a5f1 2514 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2515}
2516
2517/**
2518 * cgroup_migrate_add_src - add a migration source css_set
2519 * @src_cset: the source css_set to add
2520 * @dst_cgrp: the destination cgroup
2521 * @preloaded_csets: list of preloaded css_sets
2522 *
2523 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2524 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2525 * up by cgroup_migrate_finish().
2526 *
1ed13287
TH
2527 * This function may be called without holding cgroup_threadgroup_rwsem
2528 * even if the target is a process. Threads may be created and destroyed
2529 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2530 * into play and the preloaded css_sets are guaranteed to cover all
2531 * migrations.
1958d2d5
TH
2532 */
2533static void cgroup_migrate_add_src(struct css_set *src_cset,
2534 struct cgroup *dst_cgrp,
2535 struct list_head *preloaded_csets)
2536{
2537 struct cgroup *src_cgrp;
2538
2539 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2540 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2541
2542 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2543
1958d2d5
TH
2544 if (!list_empty(&src_cset->mg_preload_node))
2545 return;
2546
2547 WARN_ON(src_cset->mg_src_cgrp);
2548 WARN_ON(!list_empty(&src_cset->mg_tasks));
2549 WARN_ON(!list_empty(&src_cset->mg_node));
2550
2551 src_cset->mg_src_cgrp = src_cgrp;
2552 get_css_set(src_cset);
2553 list_add(&src_cset->mg_preload_node, preloaded_csets);
2554}
2555
2556/**
2557 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2558 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2559 * @preloaded_csets: list of preloaded source css_sets
2560 *
2561 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2562 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2563 * pins all destination css_sets, links each to its source, and append them
2564 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2565 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2566 *
2567 * This function must be called after cgroup_migrate_add_src() has been
2568 * called on each migration source css_set. After migration is performed
2569 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2570 * @preloaded_csets.
2571 */
2572static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2573 struct list_head *preloaded_csets)
2574{
2575 LIST_HEAD(csets);
f817de98 2576 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2577
2578 lockdep_assert_held(&cgroup_mutex);
2579
f8f22e53 2580 /*
62716ea0 2581 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2582 * with tasks so that child cgroups don't compete against tasks.
2583 */
d51f39b0 2584 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
62716ea0 2585 dst_cgrp->subtree_control)
f8f22e53
TH
2586 return -EBUSY;
2587
1958d2d5 2588 /* look up the dst cset for each src cset and link it to src */
f817de98 2589 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2590 struct css_set *dst_cset;
2591
f817de98
TH
2592 dst_cset = find_css_set(src_cset,
2593 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2594 if (!dst_cset)
2595 goto err;
2596
2597 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2598
2599 /*
2600 * If src cset equals dst, it's noop. Drop the src.
2601 * cgroup_migrate() will skip the cset too. Note that we
2602 * can't handle src == dst as some nodes are used by both.
2603 */
2604 if (src_cset == dst_cset) {
2605 src_cset->mg_src_cgrp = NULL;
2606 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2607 put_css_set(src_cset);
2608 put_css_set(dst_cset);
f817de98
TH
2609 continue;
2610 }
2611
1958d2d5
TH
2612 src_cset->mg_dst_cset = dst_cset;
2613
2614 if (list_empty(&dst_cset->mg_preload_node))
2615 list_add(&dst_cset->mg_preload_node, &csets);
2616 else
a25eb52e 2617 put_css_set(dst_cset);
1958d2d5
TH
2618 }
2619
f817de98 2620 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2621 return 0;
2622err:
2623 cgroup_migrate_finish(&csets);
2624 return -ENOMEM;
2625}
2626
2627/**
2628 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2629 * @leader: the leader of the process or the task to migrate
2630 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2631 * @cgrp: the destination cgroup
1958d2d5
TH
2632 *
2633 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2634 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2635 * caller is also responsible for invoking cgroup_migrate_add_src() and
2636 * cgroup_migrate_prepare_dst() on the targets before invoking this
2637 * function and following up with cgroup_migrate_finish().
2638 *
2639 * As long as a controller's ->can_attach() doesn't fail, this function is
2640 * guaranteed to succeed. This means that, excluding ->can_attach()
2641 * failure, when migrating multiple targets, the success or failure can be
2642 * decided for all targets by invoking group_migrate_prepare_dst() before
2643 * actually starting migrating.
2644 */
9af2ec45
TH
2645static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2646 struct cgroup *cgrp)
74a1166d 2647{
adaae5dc
TH
2648 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2649 struct task_struct *task;
74a1166d 2650
fb5d2b4c
MSB
2651 /*
2652 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2653 * already PF_EXITING could be freed from underneath us unless we
2654 * take an rcu_read_lock.
2655 */
f0d9a5f1 2656 spin_lock_bh(&css_set_lock);
fb5d2b4c 2657 rcu_read_lock();
9db8de37 2658 task = leader;
74a1166d 2659 do {
adaae5dc 2660 cgroup_taskset_add(task, &tset);
081aa458
LZ
2661 if (!threadgroup)
2662 break;
9db8de37 2663 } while_each_thread(leader, task);
fb5d2b4c 2664 rcu_read_unlock();
f0d9a5f1 2665 spin_unlock_bh(&css_set_lock);
74a1166d 2666
adaae5dc 2667 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2668}
2669
1958d2d5
TH
2670/**
2671 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2672 * @dst_cgrp: the cgroup to attach to
2673 * @leader: the task or the leader of the threadgroup to be attached
2674 * @threadgroup: attach the whole threadgroup?
2675 *
1ed13287 2676 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2677 */
2678static int cgroup_attach_task(struct cgroup *dst_cgrp,
2679 struct task_struct *leader, bool threadgroup)
2680{
2681 LIST_HEAD(preloaded_csets);
2682 struct task_struct *task;
2683 int ret;
2684
2685 /* look up all src csets */
f0d9a5f1 2686 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2687 rcu_read_lock();
2688 task = leader;
2689 do {
2690 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2691 &preloaded_csets);
2692 if (!threadgroup)
2693 break;
2694 } while_each_thread(leader, task);
2695 rcu_read_unlock();
f0d9a5f1 2696 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2697
2698 /* prepare dst csets and commit */
2699 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2700 if (!ret)
9af2ec45 2701 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2702
2703 cgroup_migrate_finish(&preloaded_csets);
2704 return ret;
74a1166d
BB
2705}
2706
187fe840
TH
2707static int cgroup_procs_write_permission(struct task_struct *task,
2708 struct cgroup *dst_cgrp,
2709 struct kernfs_open_file *of)
dedf22e9
TH
2710{
2711 const struct cred *cred = current_cred();
2712 const struct cred *tcred = get_task_cred(task);
2713 int ret = 0;
2714
2715 /*
2716 * even if we're attaching all tasks in the thread group, we only
2717 * need to check permissions on one of them.
2718 */
2719 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2720 !uid_eq(cred->euid, tcred->uid) &&
2721 !uid_eq(cred->euid, tcred->suid))
2722 ret = -EACCES;
2723
187fe840
TH
2724 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2725 struct super_block *sb = of->file->f_path.dentry->d_sb;
2726 struct cgroup *cgrp;
2727 struct inode *inode;
2728
f0d9a5f1 2729 spin_lock_bh(&css_set_lock);
187fe840 2730 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2731 spin_unlock_bh(&css_set_lock);
187fe840
TH
2732
2733 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2734 cgrp = cgroup_parent(cgrp);
2735
2736 ret = -ENOMEM;
6f60eade 2737 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2738 if (inode) {
2739 ret = inode_permission(inode, MAY_WRITE);
2740 iput(inode);
2741 }
2742 }
2743
dedf22e9
TH
2744 put_cred(tcred);
2745 return ret;
2746}
2747
74a1166d
BB
2748/*
2749 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2750 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2751 * cgroup_mutex and threadgroup.
bbcb81d0 2752 */
acbef755
TH
2753static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2754 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2755{
bbcb81d0 2756 struct task_struct *tsk;
e76ecaee 2757 struct cgroup *cgrp;
acbef755 2758 pid_t pid;
bbcb81d0
PM
2759 int ret;
2760
acbef755
TH
2761 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2762 return -EINVAL;
2763
e76ecaee
TH
2764 cgrp = cgroup_kn_lock_live(of->kn);
2765 if (!cgrp)
74a1166d
BB
2766 return -ENODEV;
2767
3014dde7 2768 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2769 rcu_read_lock();
bbcb81d0 2770 if (pid) {
73507f33 2771 tsk = find_task_by_vpid(pid);
74a1166d 2772 if (!tsk) {
dd4b0a46 2773 ret = -ESRCH;
3014dde7 2774 goto out_unlock_rcu;
bbcb81d0 2775 }
dedf22e9 2776 } else {
b78949eb 2777 tsk = current;
dedf22e9 2778 }
cd3d0952
TH
2779
2780 if (threadgroup)
b78949eb 2781 tsk = tsk->group_leader;
c4c27fbd
MG
2782
2783 /*
14a40ffc 2784 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2785 * trapped in a cpuset, or RT worker may be born in a cgroup
2786 * with no rt_runtime allocated. Just say no.
2787 */
14a40ffc 2788 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2789 ret = -EINVAL;
3014dde7 2790 goto out_unlock_rcu;
c4c27fbd
MG
2791 }
2792
b78949eb
MSB
2793 get_task_struct(tsk);
2794 rcu_read_unlock();
2795
187fe840 2796 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2797 if (!ret)
2798 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2799
f9f9e7b7 2800 put_task_struct(tsk);
3014dde7
TH
2801 goto out_unlock_threadgroup;
2802
2803out_unlock_rcu:
2804 rcu_read_unlock();
2805out_unlock_threadgroup:
2806 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2807 cgroup_kn_unlock(of->kn);
e93ad19d 2808 cpuset_post_attach_flush();
acbef755 2809 return ret ?: nbytes;
bbcb81d0
PM
2810}
2811
7ae1bad9
TH
2812/**
2813 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2814 * @from: attach to all cgroups of a given task
2815 * @tsk: the task to be attached
2816 */
2817int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2818{
3dd06ffa 2819 struct cgroup_root *root;
7ae1bad9
TH
2820 int retval = 0;
2821
47cfcd09 2822 mutex_lock(&cgroup_mutex);
985ed670 2823 for_each_root(root) {
96d365e0
TH
2824 struct cgroup *from_cgrp;
2825
3dd06ffa 2826 if (root == &cgrp_dfl_root)
985ed670
TH
2827 continue;
2828
f0d9a5f1 2829 spin_lock_bh(&css_set_lock);
96d365e0 2830 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2831 spin_unlock_bh(&css_set_lock);
7ae1bad9 2832
6f4b7e63 2833 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2834 if (retval)
2835 break;
2836 }
47cfcd09 2837 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2838
2839 return retval;
2840}
2841EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2842
acbef755
TH
2843static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2844 char *buf, size_t nbytes, loff_t off)
74a1166d 2845{
acbef755 2846 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2847}
2848
acbef755
TH
2849static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2850 char *buf, size_t nbytes, loff_t off)
af351026 2851{
acbef755 2852 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2853}
2854
451af504
TH
2855static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2856 char *buf, size_t nbytes, loff_t off)
e788e066 2857{
e76ecaee 2858 struct cgroup *cgrp;
5f469907 2859
e76ecaee 2860 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2861
e76ecaee
TH
2862 cgrp = cgroup_kn_lock_live(of->kn);
2863 if (!cgrp)
e788e066 2864 return -ENODEV;
69e943b7 2865 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2866 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2867 sizeof(cgrp->root->release_agent_path));
69e943b7 2868 spin_unlock(&release_agent_path_lock);
e76ecaee 2869 cgroup_kn_unlock(of->kn);
451af504 2870 return nbytes;
e788e066
PM
2871}
2872
2da8ca82 2873static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2874{
2da8ca82 2875 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2876
46cfeb04 2877 spin_lock(&release_agent_path_lock);
e788e066 2878 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2879 spin_unlock(&release_agent_path_lock);
e788e066 2880 seq_putc(seq, '\n');
e788e066
PM
2881 return 0;
2882}
2883
2da8ca82 2884static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2885{
c1d5d42e 2886 seq_puts(seq, "0\n");
e788e066
PM
2887 return 0;
2888}
2889
6e5c8307 2890static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2891{
f8f22e53
TH
2892 struct cgroup_subsys *ss;
2893 bool printed = false;
2894 int ssid;
a742c59d 2895
b4e0eeaf 2896 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2897 if (printed)
2898 seq_putc(seq, ' ');
2899 seq_printf(seq, "%s", ss->name);
2900 printed = true;
b4e0eeaf 2901 } while_each_subsys_mask();
f8f22e53
TH
2902 if (printed)
2903 seq_putc(seq, '\n');
355e0c48
PM
2904}
2905
f8f22e53
TH
2906/* show controllers which are enabled from the parent */
2907static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2908{
f8f22e53
TH
2909 struct cgroup *cgrp = seq_css(seq)->cgroup;
2910
5531dc91 2911 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2912 return 0;
ddbcc7e8
PM
2913}
2914
f8f22e53
TH
2915/* show controllers which are enabled for a given cgroup's children */
2916static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2917{
f8f22e53
TH
2918 struct cgroup *cgrp = seq_css(seq)->cgroup;
2919
667c2491 2920 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2921 return 0;
2922}
2923
2924/**
2925 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2926 * @cgrp: root of the subtree to update csses for
2927 *
8699b776 2928 * @cgrp's subtree_ss_mask has changed and its subtree's (self excluded)
f8f22e53
TH
2929 * css associations need to be updated accordingly. This function looks up
2930 * all css_sets which are attached to the subtree, creates the matching
2931 * updated css_sets and migrates the tasks to the new ones.
2932 */
2933static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2934{
2935 LIST_HEAD(preloaded_csets);
10265075 2936 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2937 struct cgroup_subsys_state *css;
2938 struct css_set *src_cset;
2939 int ret;
2940
f8f22e53
TH
2941 lockdep_assert_held(&cgroup_mutex);
2942
3014dde7
TH
2943 percpu_down_write(&cgroup_threadgroup_rwsem);
2944
f8f22e53 2945 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2946 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2947 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2948 struct cgrp_cset_link *link;
2949
8699b776 2950 /* self is not affected by subtree_ss_mask change */
f8f22e53
TH
2951 if (css->cgroup == cgrp)
2952 continue;
2953
2954 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2955 cgroup_migrate_add_src(link->cset, cgrp,
2956 &preloaded_csets);
2957 }
f0d9a5f1 2958 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2959
2960 /* NULL dst indicates self on default hierarchy */
2961 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2962 if (ret)
2963 goto out_finish;
2964
f0d9a5f1 2965 spin_lock_bh(&css_set_lock);
f8f22e53 2966 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2967 struct task_struct *task, *ntask;
f8f22e53
TH
2968
2969 /* src_csets precede dst_csets, break on the first dst_cset */
2970 if (!src_cset->mg_src_cgrp)
2971 break;
2972
10265075
TH
2973 /* all tasks in src_csets need to be migrated */
2974 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2975 cgroup_taskset_add(task, &tset);
f8f22e53 2976 }
f0d9a5f1 2977 spin_unlock_bh(&css_set_lock);
f8f22e53 2978
10265075 2979 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2980out_finish:
2981 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2982 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2983 return ret;
2984}
2985
1b9b96a1
TH
2986/**
2987 * cgroup_drain_offline - wait for previously offlined csses to go away
ce3f1d9d 2988 * @cgrp: root of the target subtree
1b9b96a1
TH
2989 *
2990 * Because css offlining is asynchronous, userland may try to re-enable a
2991 * controller while the previous css is still around. This function drains
ce3f1d9d 2992 * the previous css instances of @cgrp's subtree.
1b9b96a1
TH
2993 *
2994 * Must be called with cgroup_mutex held. Returns %false if there were no
2995 * dying css instances. Returns %true if there were one or more and this
2996 * function waited. On %true return, cgroup_mutex has been dropped and
2997 * re-acquired inbetween which anything could have happened. The caller
2998 * typically would have to start over.
2999 */
3000static bool cgroup_drain_offline(struct cgroup *cgrp)
3001{
3002 struct cgroup *dsct;
ce3f1d9d 3003 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3004 struct cgroup_subsys *ss;
3005 int ssid;
3006
3007 lockdep_assert_held(&cgroup_mutex);
3008
ce3f1d9d 3009 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3010 for_each_subsys(ss, ssid) {
3011 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3012 DEFINE_WAIT(wait);
3013
ce3f1d9d 3014 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3015 continue;
3016
3017 cgroup_get(dsct);
3018 prepare_to_wait(&dsct->offline_waitq, &wait,
3019 TASK_UNINTERRUPTIBLE);
3020
3021 mutex_unlock(&cgroup_mutex);
3022 schedule();
3023 finish_wait(&dsct->offline_waitq, &wait);
3024 mutex_lock(&cgroup_mutex);
3025
3026 cgroup_put(dsct);
3027 return true;
3028 }
3029 }
3030
3031 return false;
3032}
3033
bdb53bd7
TH
3034/**
3035 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3036 * @cgrp: root of the target subtree
bdb53bd7 3037 *
ce3f1d9d 3038 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3039 * visible. A css is created invisible if it's being implicitly enabled
3040 * through dependency. An invisible css is made visible when the userland
3041 * explicitly enables it.
3042 *
3043 * Returns 0 on success, -errno on failure. On failure, csses which have
3044 * been processed already aren't cleaned up. The caller is responsible for
3045 * cleaning up with cgroup_apply_control_disble().
3046 */
3047static int cgroup_apply_control_enable(struct cgroup *cgrp)
3048{
3049 struct cgroup *dsct;
ce3f1d9d 3050 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3051 struct cgroup_subsys *ss;
3052 int ssid, ret;
3053
ce3f1d9d 3054 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3055 for_each_subsys(ss, ssid) {
3056 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3057
3058 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3059 continue;
3060
3061 if (!css) {
3062 css = css_create(dsct, ss);
3063 if (IS_ERR(css))
3064 return PTR_ERR(css);
3065 }
3066
3067 if (cgroup_control(dsct) & (1 << ss->id)) {
3068 ret = css_populate_dir(css, NULL);
3069 if (ret)
3070 return ret;
3071 }
3072 }
3073 }
3074
3075 return 0;
3076}
3077
12b3bb6a
TH
3078/**
3079 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3080 * @cgrp: root of the target subtree
12b3bb6a 3081 *
ce3f1d9d 3082 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3083 * cgroup_ss_mask() and cgroup_visible_mask().
3084 *
3085 * A css is hidden when the userland requests it to be disabled while other
3086 * subsystems are still depending on it. The css must not actively control
3087 * resources and be in the vanilla state if it's made visible again later.
3088 * Controllers which may be depended upon should provide ->css_reset() for
3089 * this purpose.
3090 */
3091static void cgroup_apply_control_disable(struct cgroup *cgrp)
3092{
3093 struct cgroup *dsct;
ce3f1d9d 3094 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3095 struct cgroup_subsys *ss;
3096 int ssid;
3097
ce3f1d9d 3098 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3099 for_each_subsys(ss, ssid) {
3100 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3101
3102 if (!css)
3103 continue;
3104
3105 if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3106 kill_css(css);
3107 } else if (!(cgroup_control(dsct) & (1 << ss->id))) {
3108 css_clear_dir(css, NULL);
3109 if (ss->css_reset)
3110 ss->css_reset(css);
3111 }
3112 }
3113 }
3114}
3115
f8f22e53 3116/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3117static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3118 char *buf, size_t nbytes,
3119 loff_t off)
f8f22e53 3120{
6e5c8307
TH
3121 u16 enable = 0, disable = 0;
3122 u16 css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 3123 struct cgroup *cgrp, *child;
f8f22e53 3124 struct cgroup_subsys *ss;
451af504 3125 char *tok;
f8f22e53
TH
3126 int ssid, ret;
3127
3128 /*
d37167ab
TH
3129 * Parse input - space separated list of subsystem names prefixed
3130 * with either + or -.
f8f22e53 3131 */
451af504
TH
3132 buf = strstrip(buf);
3133 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3134 if (tok[0] == '\0')
3135 continue;
a7165264 3136 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3137 if (!cgroup_ssid_enabled(ssid) ||
3138 strcmp(tok + 1, ss->name))
f8f22e53
TH
3139 continue;
3140
3141 if (*tok == '+') {
7d331fa9
TH
3142 enable |= 1 << ssid;
3143 disable &= ~(1 << ssid);
f8f22e53 3144 } else if (*tok == '-') {
7d331fa9
TH
3145 disable |= 1 << ssid;
3146 enable &= ~(1 << ssid);
f8f22e53
TH
3147 } else {
3148 return -EINVAL;
3149 }
3150 break;
b4e0eeaf 3151 } while_each_subsys_mask();
f8f22e53
TH
3152 if (ssid == CGROUP_SUBSYS_COUNT)
3153 return -EINVAL;
3154 }
3155
a9746d8d
TH
3156 cgrp = cgroup_kn_lock_live(of->kn);
3157 if (!cgrp)
3158 return -ENODEV;
f8f22e53
TH
3159
3160 for_each_subsys(ss, ssid) {
3161 if (enable & (1 << ssid)) {
667c2491 3162 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3163 enable &= ~(1 << ssid);
3164 continue;
3165 }
3166
5531dc91 3167 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3168 ret = -ENOENT;
3169 goto out_unlock;
3170 }
f8f22e53 3171 } else if (disable & (1 << ssid)) {
667c2491 3172 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3173 disable &= ~(1 << ssid);
3174 continue;
3175 }
3176
3177 /* a child has it enabled? */
3178 cgroup_for_each_live_child(child, cgrp) {
667c2491 3179 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3180 ret = -EBUSY;
ddab2b6e 3181 goto out_unlock;
f8f22e53
TH
3182 }
3183 }
3184 }
3185 }
3186
3187 if (!enable && !disable) {
3188 ret = 0;
ddab2b6e 3189 goto out_unlock;
f8f22e53
TH
3190 }
3191
3192 /*
667c2491 3193 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3194 * with tasks so that child cgroups don't compete against tasks.
3195 */
d51f39b0 3196 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3197 ret = -EBUSY;
3198 goto out_unlock;
3199 }
3200
1b9b96a1
TH
3201 if (cgroup_drain_offline(cgrp)) {
3202 cgroup_kn_unlock(of->kn);
3203 return restart_syscall();
3204 }
3205
f8f22e53 3206 /*
f63070d3
TH
3207 * Update subsys masks and calculate what needs to be done. More
3208 * subsystems than specified may need to be enabled or disabled
3209 * depending on subsystem dependencies.
3210 */
755bf5ee 3211 old_sc = cgrp->subtree_control;
8699b776 3212 old_ss = cgrp->subtree_ss_mask;
755bf5ee 3213 new_sc = (old_sc | enable) & ~disable;
8699b776 3214 new_ss = cgroup_calc_subtree_ss_mask(cgrp, new_sc);
f63070d3 3215
755bf5ee
TH
3216 css_enable = ~old_ss & new_ss;
3217 css_disable = old_ss & ~new_ss;
f63070d3
TH
3218 enable |= css_enable;
3219 disable |= css_disable;
c29adf24 3220
755bf5ee 3221 cgrp->subtree_control = new_sc;
8699b776 3222 cgrp->subtree_ss_mask = new_ss;
755bf5ee 3223
bdb53bd7
TH
3224 /* prepare csses */
3225 ret = cgroup_apply_control_enable(cgrp);
3226 if (ret)
3227 goto err_undo_css;
f8f22e53 3228
c29adf24
TH
3229 /*
3230 * At this point, cgroup_e_css() results reflect the new csses
3231 * making the following cgroup_update_dfl_csses() properly update
3232 * css associations of all tasks in the subtree.
3233 */
f8f22e53
TH
3234 ret = cgroup_update_dfl_csses(cgrp);
3235 if (ret)
3236 goto err_undo_css;
3237
12b3bb6a
TH
3238 /* all tasks are migrated out of disabled csses, commit disable */
3239 cgroup_apply_control_disable(cgrp);
f8f22e53
TH
3240
3241 kernfs_activate(cgrp->kn);
3242 ret = 0;
3243out_unlock:
a9746d8d 3244 cgroup_kn_unlock(of->kn);
451af504 3245 return ret ?: nbytes;
f8f22e53
TH
3246
3247err_undo_css:
12b3bb6a 3248 /* restore masks and shoot down new csses */
755bf5ee 3249 cgrp->subtree_control = old_sc;
8699b776 3250 cgrp->subtree_ss_mask = old_ss;
f8f22e53 3251
12b3bb6a 3252 cgroup_apply_control_disable(cgrp);
f63070d3 3253
f8f22e53
TH
3254 goto out_unlock;
3255}
3256
4a07c222 3257static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3258{
4a07c222 3259 seq_printf(seq, "populated %d\n",
27bd4dbb 3260 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3261 return 0;
3262}
3263
2bd59d48
TH
3264static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3265 size_t nbytes, loff_t off)
355e0c48 3266{
2bd59d48
TH
3267 struct cgroup *cgrp = of->kn->parent->priv;
3268 struct cftype *cft = of->kn->priv;
3269 struct cgroup_subsys_state *css;
a742c59d 3270 int ret;
355e0c48 3271
b4168640
TH
3272 if (cft->write)
3273 return cft->write(of, buf, nbytes, off);
3274
2bd59d48
TH
3275 /*
3276 * kernfs guarantees that a file isn't deleted with operations in
3277 * flight, which means that the matching css is and stays alive and
3278 * doesn't need to be pinned. The RCU locking is not necessary
3279 * either. It's just for the convenience of using cgroup_css().
3280 */
3281 rcu_read_lock();
3282 css = cgroup_css(cgrp, cft->ss);
3283 rcu_read_unlock();
a742c59d 3284
451af504 3285 if (cft->write_u64) {
a742c59d
TH
3286 unsigned long long v;
3287 ret = kstrtoull(buf, 0, &v);
3288 if (!ret)
3289 ret = cft->write_u64(css, cft, v);
3290 } else if (cft->write_s64) {
3291 long long v;
3292 ret = kstrtoll(buf, 0, &v);
3293 if (!ret)
3294 ret = cft->write_s64(css, cft, v);
e73d2c61 3295 } else {
a742c59d 3296 ret = -EINVAL;
e73d2c61 3297 }
2bd59d48 3298
a742c59d 3299 return ret ?: nbytes;
355e0c48
PM
3300}
3301
6612f05b 3302static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3303{
2bd59d48 3304 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3305}
3306
6612f05b 3307static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3308{
2bd59d48 3309 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3310}
3311
6612f05b 3312static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3313{
2bd59d48 3314 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3315}
3316
91796569 3317static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3318{
7da11279
TH
3319 struct cftype *cft = seq_cft(m);
3320 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3321
2da8ca82
TH
3322 if (cft->seq_show)
3323 return cft->seq_show(m, arg);
e73d2c61 3324
f4c753b7 3325 if (cft->read_u64)
896f5199
TH
3326 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3327 else if (cft->read_s64)
3328 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3329 else
3330 return -EINVAL;
3331 return 0;
91796569
PM
3332}
3333
2bd59d48
TH
3334static struct kernfs_ops cgroup_kf_single_ops = {
3335 .atomic_write_len = PAGE_SIZE,
3336 .write = cgroup_file_write,
3337 .seq_show = cgroup_seqfile_show,
91796569
PM
3338};
3339
2bd59d48
TH
3340static struct kernfs_ops cgroup_kf_ops = {
3341 .atomic_write_len = PAGE_SIZE,
3342 .write = cgroup_file_write,
3343 .seq_start = cgroup_seqfile_start,
3344 .seq_next = cgroup_seqfile_next,
3345 .seq_stop = cgroup_seqfile_stop,
3346 .seq_show = cgroup_seqfile_show,
3347};
ddbcc7e8
PM
3348
3349/*
3350 * cgroup_rename - Only allow simple rename of directories in place.
3351 */
2bd59d48
TH
3352static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3353 const char *new_name_str)
ddbcc7e8 3354{
2bd59d48 3355 struct cgroup *cgrp = kn->priv;
65dff759 3356 int ret;
65dff759 3357
2bd59d48 3358 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3359 return -ENOTDIR;
2bd59d48 3360 if (kn->parent != new_parent)
ddbcc7e8 3361 return -EIO;
65dff759 3362
6db8e85c
TH
3363 /*
3364 * This isn't a proper migration and its usefulness is very
aa6ec29b 3365 * limited. Disallow on the default hierarchy.
6db8e85c 3366 */
aa6ec29b 3367 if (cgroup_on_dfl(cgrp))
6db8e85c 3368 return -EPERM;
099fca32 3369
e1b2dc17 3370 /*
8353da1f 3371 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3372 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3373 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3374 */
3375 kernfs_break_active_protection(new_parent);
3376 kernfs_break_active_protection(kn);
099fca32 3377
2bd59d48 3378 mutex_lock(&cgroup_mutex);
099fca32 3379
2bd59d48 3380 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3381
2bd59d48 3382 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3383
3384 kernfs_unbreak_active_protection(kn);
3385 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3386 return ret;
099fca32
LZ
3387}
3388
49957f8e
TH
3389/* set uid and gid of cgroup dirs and files to that of the creator */
3390static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3391{
3392 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3393 .ia_uid = current_fsuid(),
3394 .ia_gid = current_fsgid(), };
3395
3396 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3397 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3398 return 0;
3399
3400 return kernfs_setattr(kn, &iattr);
3401}
3402
4df8dc90
TH
3403static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3404 struct cftype *cft)
ddbcc7e8 3405{
8d7e6fb0 3406 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3407 struct kernfs_node *kn;
3408 struct lock_class_key *key = NULL;
49957f8e 3409 int ret;
05ef1d7c 3410
2bd59d48
TH
3411#ifdef CONFIG_DEBUG_LOCK_ALLOC
3412 key = &cft->lockdep_key;
3413#endif
3414 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3415 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3416 NULL, key);
49957f8e
TH
3417 if (IS_ERR(kn))
3418 return PTR_ERR(kn);
3419
3420 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3421 if (ret) {
49957f8e 3422 kernfs_remove(kn);
f8f22e53
TH
3423 return ret;
3424 }
3425
6f60eade
TH
3426 if (cft->file_offset) {
3427 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3428
34c06254 3429 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3430 cfile->kn = kn;
34c06254 3431 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3432 }
3433
f8f22e53 3434 return 0;
ddbcc7e8
PM
3435}
3436
b1f28d31
TH
3437/**
3438 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3439 * @css: the target css
3440 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3441 * @cfts: array of cftypes to be added
3442 * @is_add: whether to add or remove
3443 *
3444 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3445 * For removals, this function never fails.
b1f28d31 3446 */
4df8dc90
TH
3447static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3448 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3449 bool is_add)
ddbcc7e8 3450{
6732ed85 3451 struct cftype *cft, *cft_end = NULL;
b598dde3 3452 int ret = 0;
b1f28d31 3453
01f6474c 3454 lockdep_assert_held(&cgroup_mutex);
db0416b6 3455
6732ed85
TH
3456restart:
3457 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3458 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3459 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3460 continue;
05ebb6e6 3461 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3462 continue;
d51f39b0 3463 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3464 continue;
d51f39b0 3465 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3466 continue;
3467
2739d3cc 3468 if (is_add) {
4df8dc90 3469 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3470 if (ret) {
ed3d261b
JP
3471 pr_warn("%s: failed to add %s, err=%d\n",
3472 __func__, cft->name, ret);
6732ed85
TH
3473 cft_end = cft;
3474 is_add = false;
3475 goto restart;
b1f28d31 3476 }
2739d3cc
LZ
3477 } else {
3478 cgroup_rm_file(cgrp, cft);
db0416b6 3479 }
ddbcc7e8 3480 }
b598dde3 3481 return ret;
ddbcc7e8
PM
3482}
3483
21a2d343 3484static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3485{
3486 LIST_HEAD(pending);
2bb566cb 3487 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3488 struct cgroup *root = &ss->root->cgrp;
492eb21b 3489 struct cgroup_subsys_state *css;
9ccece80 3490 int ret = 0;
8e3f6541 3491
01f6474c 3492 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3493
e8c82d20 3494 /* add/rm files for all cgroups created before */
ca8bdcaf 3495 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3496 struct cgroup *cgrp = css->cgroup;
3497
88cb04b9 3498 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3499 continue;
3500
4df8dc90 3501 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3502 if (ret)
3503 break;
8e3f6541 3504 }
21a2d343
TH
3505
3506 if (is_add && !ret)
3507 kernfs_activate(root->kn);
9ccece80 3508 return ret;
8e3f6541
TH
3509}
3510
2da440a2 3511static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3512{
2bb566cb 3513 struct cftype *cft;
8e3f6541 3514
2bd59d48
TH
3515 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3516 /* free copy for custom atomic_write_len, see init_cftypes() */
3517 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3518 kfree(cft->kf_ops);
3519 cft->kf_ops = NULL;
2da440a2 3520 cft->ss = NULL;
a8ddc821
TH
3521
3522 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3523 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3524 }
2da440a2
TH
3525}
3526
2bd59d48 3527static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3528{
3529 struct cftype *cft;
3530
2bd59d48
TH
3531 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3532 struct kernfs_ops *kf_ops;
3533
0adb0704
TH
3534 WARN_ON(cft->ss || cft->kf_ops);
3535
2bd59d48
TH
3536 if (cft->seq_start)
3537 kf_ops = &cgroup_kf_ops;
3538 else
3539 kf_ops = &cgroup_kf_single_ops;
3540
3541 /*
3542 * Ugh... if @cft wants a custom max_write_len, we need to
3543 * make a copy of kf_ops to set its atomic_write_len.
3544 */
3545 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3546 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3547 if (!kf_ops) {
3548 cgroup_exit_cftypes(cfts);
3549 return -ENOMEM;
3550 }
3551 kf_ops->atomic_write_len = cft->max_write_len;
3552 }
8e3f6541 3553
2bd59d48 3554 cft->kf_ops = kf_ops;
2bb566cb 3555 cft->ss = ss;
2bd59d48 3556 }
2bb566cb 3557
2bd59d48 3558 return 0;
2da440a2
TH
3559}
3560
21a2d343
TH
3561static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3562{
01f6474c 3563 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3564
3565 if (!cfts || !cfts[0].ss)
3566 return -ENOENT;
3567
3568 list_del(&cfts->node);
3569 cgroup_apply_cftypes(cfts, false);
3570 cgroup_exit_cftypes(cfts);
3571 return 0;
8e3f6541 3572}
8e3f6541 3573
79578621
TH
3574/**
3575 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3576 * @cfts: zero-length name terminated array of cftypes
3577 *
2bb566cb
TH
3578 * Unregister @cfts. Files described by @cfts are removed from all
3579 * existing cgroups and all future cgroups won't have them either. This
3580 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3581 *
3582 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3583 * registered.
79578621 3584 */
2bb566cb 3585int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3586{
21a2d343 3587 int ret;
79578621 3588
01f6474c 3589 mutex_lock(&cgroup_mutex);
21a2d343 3590 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3591 mutex_unlock(&cgroup_mutex);
21a2d343 3592 return ret;
80b13586
TH
3593}
3594
8e3f6541
TH
3595/**
3596 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3597 * @ss: target cgroup subsystem
3598 * @cfts: zero-length name terminated array of cftypes
3599 *
3600 * Register @cfts to @ss. Files described by @cfts are created for all
3601 * existing cgroups to which @ss is attached and all future cgroups will
3602 * have them too. This function can be called anytime whether @ss is
3603 * attached or not.
3604 *
3605 * Returns 0 on successful registration, -errno on failure. Note that this
3606 * function currently returns 0 as long as @cfts registration is successful
3607 * even if some file creation attempts on existing cgroups fail.
3608 */
2cf669a5 3609static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3610{
9ccece80 3611 int ret;
8e3f6541 3612
fc5ed1e9 3613 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3614 return 0;
3615
dc5736ed
LZ
3616 if (!cfts || cfts[0].name[0] == '\0')
3617 return 0;
2bb566cb 3618
2bd59d48
TH
3619 ret = cgroup_init_cftypes(ss, cfts);
3620 if (ret)
3621 return ret;
79578621 3622
01f6474c 3623 mutex_lock(&cgroup_mutex);
21a2d343 3624
0adb0704 3625 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3626 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3627 if (ret)
21a2d343 3628 cgroup_rm_cftypes_locked(cfts);
79578621 3629
01f6474c 3630 mutex_unlock(&cgroup_mutex);
9ccece80 3631 return ret;
79578621
TH
3632}
3633
a8ddc821
TH
3634/**
3635 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3636 * @ss: target cgroup subsystem
3637 * @cfts: zero-length name terminated array of cftypes
3638 *
3639 * Similar to cgroup_add_cftypes() but the added files are only used for
3640 * the default hierarchy.
3641 */
3642int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3643{
3644 struct cftype *cft;
3645
3646 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3647 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3648 return cgroup_add_cftypes(ss, cfts);
3649}
3650
3651/**
3652 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3653 * @ss: target cgroup subsystem
3654 * @cfts: zero-length name terminated array of cftypes
3655 *
3656 * Similar to cgroup_add_cftypes() but the added files are only used for
3657 * the legacy hierarchies.
3658 */
2cf669a5
TH
3659int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3660{
a8ddc821
TH
3661 struct cftype *cft;
3662
e4b7037c
TH
3663 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3664 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3665 return cgroup_add_cftypes(ss, cfts);
3666}
3667
34c06254
TH
3668/**
3669 * cgroup_file_notify - generate a file modified event for a cgroup_file
3670 * @cfile: target cgroup_file
3671 *
3672 * @cfile must have been obtained by setting cftype->file_offset.
3673 */
3674void cgroup_file_notify(struct cgroup_file *cfile)
3675{
3676 unsigned long flags;
3677
3678 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3679 if (cfile->kn)
3680 kernfs_notify(cfile->kn);
3681 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3682}
3683
a043e3b2
LZ
3684/**
3685 * cgroup_task_count - count the number of tasks in a cgroup.
3686 * @cgrp: the cgroup in question
3687 *
3688 * Return the number of tasks in the cgroup.
3689 */
07bc356e 3690static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3691{
3692 int count = 0;
69d0206c 3693 struct cgrp_cset_link *link;
817929ec 3694
f0d9a5f1 3695 spin_lock_bh(&css_set_lock);
69d0206c
TH
3696 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3697 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3698 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3699 return count;
3700}
3701
53fa5261 3702/**
492eb21b 3703 * css_next_child - find the next child of a given css
c2931b70
TH
3704 * @pos: the current position (%NULL to initiate traversal)
3705 * @parent: css whose children to walk
53fa5261 3706 *
c2931b70 3707 * This function returns the next child of @parent and should be called
87fb54f1 3708 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3709 * that @parent and @pos are accessible. The next sibling is guaranteed to
3710 * be returned regardless of their states.
3711 *
3712 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3713 * css which finished ->css_online() is guaranteed to be visible in the
3714 * future iterations and will stay visible until the last reference is put.
3715 * A css which hasn't finished ->css_online() or already finished
3716 * ->css_offline() may show up during traversal. It's each subsystem's
3717 * responsibility to synchronize against on/offlining.
53fa5261 3718 */
c2931b70
TH
3719struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3720 struct cgroup_subsys_state *parent)
53fa5261 3721{
c2931b70 3722 struct cgroup_subsys_state *next;
53fa5261 3723
8353da1f 3724 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3725
3726 /*
de3f0341
TH
3727 * @pos could already have been unlinked from the sibling list.
3728 * Once a cgroup is removed, its ->sibling.next is no longer
3729 * updated when its next sibling changes. CSS_RELEASED is set when
3730 * @pos is taken off list, at which time its next pointer is valid,
3731 * and, as releases are serialized, the one pointed to by the next
3732 * pointer is guaranteed to not have started release yet. This
3733 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3734 * critical section, the one pointed to by its next pointer is
3735 * guaranteed to not have finished its RCU grace period even if we
3736 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3737 *
de3f0341
TH
3738 * If @pos has CSS_RELEASED set, its next pointer can't be
3739 * dereferenced; however, as each css is given a monotonically
3740 * increasing unique serial number and always appended to the
3741 * sibling list, the next one can be found by walking the parent's
3742 * children until the first css with higher serial number than
3743 * @pos's. While this path can be slower, it happens iff iteration
3744 * races against release and the race window is very small.
53fa5261 3745 */
3b287a50 3746 if (!pos) {
c2931b70
TH
3747 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3748 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3749 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3750 } else {
c2931b70 3751 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3752 if (next->serial_nr > pos->serial_nr)
3753 break;
53fa5261
TH
3754 }
3755
3b281afb
TH
3756 /*
3757 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3758 * the next sibling.
3b281afb 3759 */
c2931b70
TH
3760 if (&next->sibling != &parent->children)
3761 return next;
3b281afb 3762 return NULL;
53fa5261 3763}
53fa5261 3764
574bd9f7 3765/**
492eb21b 3766 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3767 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3768 * @root: css whose descendants to walk
574bd9f7 3769 *
492eb21b 3770 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3771 * to visit for pre-order traversal of @root's descendants. @root is
3772 * included in the iteration and the first node to be visited.
75501a6d 3773 *
87fb54f1
TH
3774 * While this function requires cgroup_mutex or RCU read locking, it
3775 * doesn't require the whole traversal to be contained in a single critical
3776 * section. This function will return the correct next descendant as long
3777 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3778 *
3779 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3780 * css which finished ->css_online() is guaranteed to be visible in the
3781 * future iterations and will stay visible until the last reference is put.
3782 * A css which hasn't finished ->css_online() or already finished
3783 * ->css_offline() may show up during traversal. It's each subsystem's
3784 * responsibility to synchronize against on/offlining.
574bd9f7 3785 */
492eb21b
TH
3786struct cgroup_subsys_state *
3787css_next_descendant_pre(struct cgroup_subsys_state *pos,
3788 struct cgroup_subsys_state *root)
574bd9f7 3789{
492eb21b 3790 struct cgroup_subsys_state *next;
574bd9f7 3791
8353da1f 3792 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3793
bd8815a6 3794 /* if first iteration, visit @root */
7805d000 3795 if (!pos)
bd8815a6 3796 return root;
574bd9f7
TH
3797
3798 /* visit the first child if exists */
492eb21b 3799 next = css_next_child(NULL, pos);
574bd9f7
TH
3800 if (next)
3801 return next;
3802
3803 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3804 while (pos != root) {
5c9d535b 3805 next = css_next_child(pos, pos->parent);
75501a6d 3806 if (next)
574bd9f7 3807 return next;
5c9d535b 3808 pos = pos->parent;
7805d000 3809 }
574bd9f7
TH
3810
3811 return NULL;
3812}
574bd9f7 3813
12a9d2fe 3814/**
492eb21b
TH
3815 * css_rightmost_descendant - return the rightmost descendant of a css
3816 * @pos: css of interest
12a9d2fe 3817 *
492eb21b
TH
3818 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3819 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3820 * subtree of @pos.
75501a6d 3821 *
87fb54f1
TH
3822 * While this function requires cgroup_mutex or RCU read locking, it
3823 * doesn't require the whole traversal to be contained in a single critical
3824 * section. This function will return the correct rightmost descendant as
3825 * long as @pos is accessible.
12a9d2fe 3826 */
492eb21b
TH
3827struct cgroup_subsys_state *
3828css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3829{
492eb21b 3830 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3831
8353da1f 3832 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3833
3834 do {
3835 last = pos;
3836 /* ->prev isn't RCU safe, walk ->next till the end */
3837 pos = NULL;
492eb21b 3838 css_for_each_child(tmp, last)
12a9d2fe
TH
3839 pos = tmp;
3840 } while (pos);
3841
3842 return last;
3843}
12a9d2fe 3844
492eb21b
TH
3845static struct cgroup_subsys_state *
3846css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3847{
492eb21b 3848 struct cgroup_subsys_state *last;
574bd9f7
TH
3849
3850 do {
3851 last = pos;
492eb21b 3852 pos = css_next_child(NULL, pos);
574bd9f7
TH
3853 } while (pos);
3854
3855 return last;
3856}
3857
3858/**
492eb21b 3859 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3860 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3861 * @root: css whose descendants to walk
574bd9f7 3862 *
492eb21b 3863 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3864 * to visit for post-order traversal of @root's descendants. @root is
3865 * included in the iteration and the last node to be visited.
75501a6d 3866 *
87fb54f1
TH
3867 * While this function requires cgroup_mutex or RCU read locking, it
3868 * doesn't require the whole traversal to be contained in a single critical
3869 * section. This function will return the correct next descendant as long
3870 * as both @pos and @cgroup are accessible and @pos is a descendant of
3871 * @cgroup.
c2931b70
TH
3872 *
3873 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3874 * css which finished ->css_online() is guaranteed to be visible in the
3875 * future iterations and will stay visible until the last reference is put.
3876 * A css which hasn't finished ->css_online() or already finished
3877 * ->css_offline() may show up during traversal. It's each subsystem's
3878 * responsibility to synchronize against on/offlining.
574bd9f7 3879 */
492eb21b
TH
3880struct cgroup_subsys_state *
3881css_next_descendant_post(struct cgroup_subsys_state *pos,
3882 struct cgroup_subsys_state *root)
574bd9f7 3883{
492eb21b 3884 struct cgroup_subsys_state *next;
574bd9f7 3885
8353da1f 3886 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3887
58b79a91
TH
3888 /* if first iteration, visit leftmost descendant which may be @root */
3889 if (!pos)
3890 return css_leftmost_descendant(root);
574bd9f7 3891
bd8815a6
TH
3892 /* if we visited @root, we're done */
3893 if (pos == root)
3894 return NULL;
3895
574bd9f7 3896 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3897 next = css_next_child(pos, pos->parent);
75501a6d 3898 if (next)
492eb21b 3899 return css_leftmost_descendant(next);
574bd9f7
TH
3900
3901 /* no sibling left, visit parent */
5c9d535b 3902 return pos->parent;
574bd9f7 3903}
574bd9f7 3904
f3d46500
TH
3905/**
3906 * css_has_online_children - does a css have online children
3907 * @css: the target css
3908 *
3909 * Returns %true if @css has any online children; otherwise, %false. This
3910 * function can be called from any context but the caller is responsible
3911 * for synchronizing against on/offlining as necessary.
3912 */
3913bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3914{
f3d46500
TH
3915 struct cgroup_subsys_state *child;
3916 bool ret = false;
cbc125ef
TH
3917
3918 rcu_read_lock();
f3d46500 3919 css_for_each_child(child, css) {
99bae5f9 3920 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3921 ret = true;
3922 break;
cbc125ef
TH
3923 }
3924 }
3925 rcu_read_unlock();
f3d46500 3926 return ret;
574bd9f7 3927}
574bd9f7 3928
0942eeee 3929/**
ecb9d535 3930 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3931 * @it: the iterator to advance
3932 *
3933 * Advance @it to the next css_set to walk.
d515876e 3934 */
ecb9d535 3935static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3936{
0f0a2b4f 3937 struct list_head *l = it->cset_pos;
d515876e
TH
3938 struct cgrp_cset_link *link;
3939 struct css_set *cset;
3940
f0d9a5f1 3941 lockdep_assert_held(&css_set_lock);
ed27b9f7 3942
d515876e
TH
3943 /* Advance to the next non-empty css_set */
3944 do {
3945 l = l->next;
0f0a2b4f
TH
3946 if (l == it->cset_head) {
3947 it->cset_pos = NULL;
ecb9d535 3948 it->task_pos = NULL;
d515876e
TH
3949 return;
3950 }
3ebb2b6e
TH
3951
3952 if (it->ss) {
3953 cset = container_of(l, struct css_set,
3954 e_cset_node[it->ss->id]);
3955 } else {
3956 link = list_entry(l, struct cgrp_cset_link, cset_link);
3957 cset = link->cset;
3958 }
0de0942d 3959 } while (!css_set_populated(cset));
c7561128 3960
0f0a2b4f 3961 it->cset_pos = l;
c7561128
TH
3962
3963 if (!list_empty(&cset->tasks))
0f0a2b4f 3964 it->task_pos = cset->tasks.next;
c7561128 3965 else
0f0a2b4f
TH
3966 it->task_pos = cset->mg_tasks.next;
3967
3968 it->tasks_head = &cset->tasks;
3969 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3970
3971 /*
3972 * We don't keep css_sets locked across iteration steps and thus
3973 * need to take steps to ensure that iteration can be resumed after
3974 * the lock is re-acquired. Iteration is performed at two levels -
3975 * css_sets and tasks in them.
3976 *
3977 * Once created, a css_set never leaves its cgroup lists, so a
3978 * pinned css_set is guaranteed to stay put and we can resume
3979 * iteration afterwards.
3980 *
3981 * Tasks may leave @cset across iteration steps. This is resolved
3982 * by registering each iterator with the css_set currently being
3983 * walked and making css_set_move_task() advance iterators whose
3984 * next task is leaving.
3985 */
3986 if (it->cur_cset) {
3987 list_del(&it->iters_node);
3988 put_css_set_locked(it->cur_cset);
3989 }
3990 get_css_set(cset);
3991 it->cur_cset = cset;
3992 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3993}
3994
ecb9d535
TH
3995static void css_task_iter_advance(struct css_task_iter *it)
3996{
3997 struct list_head *l = it->task_pos;
3998
f0d9a5f1 3999 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4000 WARN_ON_ONCE(!l);
4001
4002 /*
4003 * Advance iterator to find next entry. cset->tasks is consumed
4004 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4005 * next cset.
4006 */
4007 l = l->next;
4008
4009 if (l == it->tasks_head)
4010 l = it->mg_tasks_head->next;
4011
4012 if (l == it->mg_tasks_head)
4013 css_task_iter_advance_css_set(it);
4014 else
4015 it->task_pos = l;
4016}
4017
0942eeee 4018/**
72ec7029
TH
4019 * css_task_iter_start - initiate task iteration
4020 * @css: the css to walk tasks of
0942eeee
TH
4021 * @it: the task iterator to use
4022 *
72ec7029
TH
4023 * Initiate iteration through the tasks of @css. The caller can call
4024 * css_task_iter_next() to walk through the tasks until the function
4025 * returns NULL. On completion of iteration, css_task_iter_end() must be
4026 * called.
0942eeee 4027 */
72ec7029
TH
4028void css_task_iter_start(struct cgroup_subsys_state *css,
4029 struct css_task_iter *it)
817929ec 4030{
56fde9e0
TH
4031 /* no one should try to iterate before mounting cgroups */
4032 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4033
ed27b9f7
TH
4034 memset(it, 0, sizeof(*it));
4035
f0d9a5f1 4036 spin_lock_bh(&css_set_lock);
c59cd3d8 4037
3ebb2b6e
TH
4038 it->ss = css->ss;
4039
4040 if (it->ss)
4041 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4042 else
4043 it->cset_pos = &css->cgroup->cset_links;
4044
0f0a2b4f 4045 it->cset_head = it->cset_pos;
c59cd3d8 4046
ecb9d535 4047 css_task_iter_advance_css_set(it);
ed27b9f7 4048
f0d9a5f1 4049 spin_unlock_bh(&css_set_lock);
817929ec
PM
4050}
4051
0942eeee 4052/**
72ec7029 4053 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4054 * @it: the task iterator being iterated
4055 *
4056 * The "next" function for task iteration. @it should have been
72ec7029
TH
4057 * initialized via css_task_iter_start(). Returns NULL when the iteration
4058 * reaches the end.
0942eeee 4059 */
72ec7029 4060struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4061{
d5745675 4062 if (it->cur_task) {
ed27b9f7 4063 put_task_struct(it->cur_task);
d5745675
TH
4064 it->cur_task = NULL;
4065 }
ed27b9f7 4066
f0d9a5f1 4067 spin_lock_bh(&css_set_lock);
ed27b9f7 4068
d5745675
TH
4069 if (it->task_pos) {
4070 it->cur_task = list_entry(it->task_pos, struct task_struct,
4071 cg_list);
4072 get_task_struct(it->cur_task);
4073 css_task_iter_advance(it);
4074 }
ed27b9f7 4075
f0d9a5f1 4076 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4077
4078 return it->cur_task;
817929ec
PM
4079}
4080
0942eeee 4081/**
72ec7029 4082 * css_task_iter_end - finish task iteration
0942eeee
TH
4083 * @it: the task iterator to finish
4084 *
72ec7029 4085 * Finish task iteration started by css_task_iter_start().
0942eeee 4086 */
72ec7029 4087void css_task_iter_end(struct css_task_iter *it)
31a7df01 4088{
ed27b9f7 4089 if (it->cur_cset) {
f0d9a5f1 4090 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4091 list_del(&it->iters_node);
4092 put_css_set_locked(it->cur_cset);
f0d9a5f1 4093 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4094 }
4095
4096 if (it->cur_task)
4097 put_task_struct(it->cur_task);
31a7df01
CW
4098}
4099
4100/**
8cc99345
TH
4101 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4102 * @to: cgroup to which the tasks will be moved
4103 * @from: cgroup in which the tasks currently reside
31a7df01 4104 *
eaf797ab
TH
4105 * Locking rules between cgroup_post_fork() and the migration path
4106 * guarantee that, if a task is forking while being migrated, the new child
4107 * is guaranteed to be either visible in the source cgroup after the
4108 * parent's migration is complete or put into the target cgroup. No task
4109 * can slip out of migration through forking.
31a7df01 4110 */
8cc99345 4111int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4112{
952aaa12
TH
4113 LIST_HEAD(preloaded_csets);
4114 struct cgrp_cset_link *link;
72ec7029 4115 struct css_task_iter it;
e406d1cf 4116 struct task_struct *task;
952aaa12 4117 int ret;
31a7df01 4118
952aaa12 4119 mutex_lock(&cgroup_mutex);
31a7df01 4120
952aaa12 4121 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4122 spin_lock_bh(&css_set_lock);
952aaa12
TH
4123 list_for_each_entry(link, &from->cset_links, cset_link)
4124 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4125 spin_unlock_bh(&css_set_lock);
31a7df01 4126
952aaa12
TH
4127 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4128 if (ret)
4129 goto out_err;
8cc99345 4130
952aaa12 4131 /*
2cfa2b19 4132 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4133 * ->can_attach() fails.
4134 */
e406d1cf 4135 do {
9d800df1 4136 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4137 task = css_task_iter_next(&it);
4138 if (task)
4139 get_task_struct(task);
4140 css_task_iter_end(&it);
4141
4142 if (task) {
9af2ec45 4143 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4144 put_task_struct(task);
4145 }
4146 } while (task && !ret);
952aaa12
TH
4147out_err:
4148 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4149 mutex_unlock(&cgroup_mutex);
e406d1cf 4150 return ret;
8cc99345
TH
4151}
4152
bbcb81d0 4153/*
102a775e 4154 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4155 *
4156 * Reading this file can return large amounts of data if a cgroup has
4157 * *lots* of attached tasks. So it may need several calls to read(),
4158 * but we cannot guarantee that the information we produce is correct
4159 * unless we produce it entirely atomically.
4160 *
bbcb81d0 4161 */
bbcb81d0 4162
24528255
LZ
4163/* which pidlist file are we talking about? */
4164enum cgroup_filetype {
4165 CGROUP_FILE_PROCS,
4166 CGROUP_FILE_TASKS,
4167};
4168
4169/*
4170 * A pidlist is a list of pids that virtually represents the contents of one
4171 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4172 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4173 * to the cgroup.
4174 */
4175struct cgroup_pidlist {
4176 /*
4177 * used to find which pidlist is wanted. doesn't change as long as
4178 * this particular list stays in the list.
4179 */
4180 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4181 /* array of xids */
4182 pid_t *list;
4183 /* how many elements the above list has */
4184 int length;
24528255
LZ
4185 /* each of these stored in a list by its cgroup */
4186 struct list_head links;
4187 /* pointer to the cgroup we belong to, for list removal purposes */
4188 struct cgroup *owner;
b1a21367
TH
4189 /* for delayed destruction */
4190 struct delayed_work destroy_dwork;
24528255
LZ
4191};
4192
d1d9fd33
BB
4193/*
4194 * The following two functions "fix" the issue where there are more pids
4195 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4196 * TODO: replace with a kernel-wide solution to this problem
4197 */
4198#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4199static void *pidlist_allocate(int count)
4200{
4201 if (PIDLIST_TOO_LARGE(count))
4202 return vmalloc(count * sizeof(pid_t));
4203 else
4204 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4205}
b1a21367 4206
d1d9fd33
BB
4207static void pidlist_free(void *p)
4208{
58794514 4209 kvfree(p);
d1d9fd33 4210}
d1d9fd33 4211
b1a21367
TH
4212/*
4213 * Used to destroy all pidlists lingering waiting for destroy timer. None
4214 * should be left afterwards.
4215 */
4216static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4217{
4218 struct cgroup_pidlist *l, *tmp_l;
4219
4220 mutex_lock(&cgrp->pidlist_mutex);
4221 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4222 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4223 mutex_unlock(&cgrp->pidlist_mutex);
4224
4225 flush_workqueue(cgroup_pidlist_destroy_wq);
4226 BUG_ON(!list_empty(&cgrp->pidlists));
4227}
4228
4229static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4230{
4231 struct delayed_work *dwork = to_delayed_work(work);
4232 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4233 destroy_dwork);
4234 struct cgroup_pidlist *tofree = NULL;
4235
4236 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4237
4238 /*
04502365
TH
4239 * Destroy iff we didn't get queued again. The state won't change
4240 * as destroy_dwork can only be queued while locked.
b1a21367 4241 */
04502365 4242 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4243 list_del(&l->links);
4244 pidlist_free(l->list);
4245 put_pid_ns(l->key.ns);
4246 tofree = l;
4247 }
4248
b1a21367
TH
4249 mutex_unlock(&l->owner->pidlist_mutex);
4250 kfree(tofree);
4251}
4252
bbcb81d0 4253/*
102a775e 4254 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4255 * Returns the number of unique elements.
bbcb81d0 4256 */
6ee211ad 4257static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4258{
102a775e 4259 int src, dest = 1;
102a775e
BB
4260
4261 /*
4262 * we presume the 0th element is unique, so i starts at 1. trivial
4263 * edge cases first; no work needs to be done for either
4264 */
4265 if (length == 0 || length == 1)
4266 return length;
4267 /* src and dest walk down the list; dest counts unique elements */
4268 for (src = 1; src < length; src++) {
4269 /* find next unique element */
4270 while (list[src] == list[src-1]) {
4271 src++;
4272 if (src == length)
4273 goto after;
4274 }
4275 /* dest always points to where the next unique element goes */
4276 list[dest] = list[src];
4277 dest++;
4278 }
4279after:
102a775e
BB
4280 return dest;
4281}
4282
afb2bc14
TH
4283/*
4284 * The two pid files - task and cgroup.procs - guaranteed that the result
4285 * is sorted, which forced this whole pidlist fiasco. As pid order is
4286 * different per namespace, each namespace needs differently sorted list,
4287 * making it impossible to use, for example, single rbtree of member tasks
4288 * sorted by task pointer. As pidlists can be fairly large, allocating one
4289 * per open file is dangerous, so cgroup had to implement shared pool of
4290 * pidlists keyed by cgroup and namespace.
4291 *
4292 * All this extra complexity was caused by the original implementation
4293 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4294 * want to do away with it. Explicitly scramble sort order if on the
4295 * default hierarchy so that no such expectation exists in the new
4296 * interface.
afb2bc14
TH
4297 *
4298 * Scrambling is done by swapping every two consecutive bits, which is
4299 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4300 */
4301static pid_t pid_fry(pid_t pid)
4302{
4303 unsigned a = pid & 0x55555555;
4304 unsigned b = pid & 0xAAAAAAAA;
4305
4306 return (a << 1) | (b >> 1);
4307}
4308
4309static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4310{
aa6ec29b 4311 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4312 return pid_fry(pid);
4313 else
4314 return pid;
4315}
4316
102a775e
BB
4317static int cmppid(const void *a, const void *b)
4318{
4319 return *(pid_t *)a - *(pid_t *)b;
4320}
4321
afb2bc14
TH
4322static int fried_cmppid(const void *a, const void *b)
4323{
4324 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4325}
4326
e6b81710
TH
4327static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4328 enum cgroup_filetype type)
4329{
4330 struct cgroup_pidlist *l;
4331 /* don't need task_nsproxy() if we're looking at ourself */
4332 struct pid_namespace *ns = task_active_pid_ns(current);
4333
4334 lockdep_assert_held(&cgrp->pidlist_mutex);
4335
4336 list_for_each_entry(l, &cgrp->pidlists, links)
4337 if (l->key.type == type && l->key.ns == ns)
4338 return l;
4339 return NULL;
4340}
4341
72a8cb30
BB
4342/*
4343 * find the appropriate pidlist for our purpose (given procs vs tasks)
4344 * returns with the lock on that pidlist already held, and takes care
4345 * of the use count, or returns NULL with no locks held if we're out of
4346 * memory.
4347 */
e6b81710
TH
4348static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4349 enum cgroup_filetype type)
72a8cb30
BB
4350{
4351 struct cgroup_pidlist *l;
b70cc5fd 4352
e6b81710
TH
4353 lockdep_assert_held(&cgrp->pidlist_mutex);
4354
4355 l = cgroup_pidlist_find(cgrp, type);
4356 if (l)
4357 return l;
4358
72a8cb30 4359 /* entry not found; create a new one */
f4f4be2b 4360 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4361 if (!l)
72a8cb30 4362 return l;
e6b81710 4363
b1a21367 4364 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4365 l->key.type = type;
e6b81710
TH
4366 /* don't need task_nsproxy() if we're looking at ourself */
4367 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4368 l->owner = cgrp;
4369 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4370 return l;
4371}
4372
102a775e
BB
4373/*
4374 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4375 */
72a8cb30
BB
4376static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4377 struct cgroup_pidlist **lp)
102a775e
BB
4378{
4379 pid_t *array;
4380 int length;
4381 int pid, n = 0; /* used for populating the array */
72ec7029 4382 struct css_task_iter it;
817929ec 4383 struct task_struct *tsk;
102a775e
BB
4384 struct cgroup_pidlist *l;
4385
4bac00d1
TH
4386 lockdep_assert_held(&cgrp->pidlist_mutex);
4387
102a775e
BB
4388 /*
4389 * If cgroup gets more users after we read count, we won't have
4390 * enough space - tough. This race is indistinguishable to the
4391 * caller from the case that the additional cgroup users didn't
4392 * show up until sometime later on.
4393 */
4394 length = cgroup_task_count(cgrp);
d1d9fd33 4395 array = pidlist_allocate(length);
102a775e
BB
4396 if (!array)
4397 return -ENOMEM;
4398 /* now, populate the array */
9d800df1 4399 css_task_iter_start(&cgrp->self, &it);
72ec7029 4400 while ((tsk = css_task_iter_next(&it))) {
102a775e 4401 if (unlikely(n == length))
817929ec 4402 break;
102a775e 4403 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4404 if (type == CGROUP_FILE_PROCS)
4405 pid = task_tgid_vnr(tsk);
4406 else
4407 pid = task_pid_vnr(tsk);
102a775e
BB
4408 if (pid > 0) /* make sure to only use valid results */
4409 array[n++] = pid;
817929ec 4410 }
72ec7029 4411 css_task_iter_end(&it);
102a775e
BB
4412 length = n;
4413 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4414 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4415 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4416 else
4417 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4418 if (type == CGROUP_FILE_PROCS)
6ee211ad 4419 length = pidlist_uniq(array, length);
e6b81710 4420
e6b81710 4421 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4422 if (!l) {
d1d9fd33 4423 pidlist_free(array);
72a8cb30 4424 return -ENOMEM;
102a775e 4425 }
e6b81710
TH
4426
4427 /* store array, freeing old if necessary */
d1d9fd33 4428 pidlist_free(l->list);
102a775e
BB
4429 l->list = array;
4430 l->length = length;
72a8cb30 4431 *lp = l;
102a775e 4432 return 0;
bbcb81d0
PM
4433}
4434
846c7bb0 4435/**
a043e3b2 4436 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4437 * @stats: cgroupstats to fill information into
4438 * @dentry: A dentry entry belonging to the cgroup for which stats have
4439 * been requested.
a043e3b2
LZ
4440 *
4441 * Build and fill cgroupstats so that taskstats can export it to user
4442 * space.
846c7bb0
BS
4443 */
4444int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4445{
2bd59d48 4446 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4447 struct cgroup *cgrp;
72ec7029 4448 struct css_task_iter it;
846c7bb0 4449 struct task_struct *tsk;
33d283be 4450
2bd59d48
TH
4451 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4452 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4453 kernfs_type(kn) != KERNFS_DIR)
4454 return -EINVAL;
4455
bad34660
LZ
4456 mutex_lock(&cgroup_mutex);
4457
846c7bb0 4458 /*
2bd59d48 4459 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4460 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4461 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4462 */
2bd59d48
TH
4463 rcu_read_lock();
4464 cgrp = rcu_dereference(kn->priv);
bad34660 4465 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4466 rcu_read_unlock();
bad34660 4467 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4468 return -ENOENT;
4469 }
bad34660 4470 rcu_read_unlock();
846c7bb0 4471
9d800df1 4472 css_task_iter_start(&cgrp->self, &it);
72ec7029 4473 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4474 switch (tsk->state) {
4475 case TASK_RUNNING:
4476 stats->nr_running++;
4477 break;
4478 case TASK_INTERRUPTIBLE:
4479 stats->nr_sleeping++;
4480 break;
4481 case TASK_UNINTERRUPTIBLE:
4482 stats->nr_uninterruptible++;
4483 break;
4484 case TASK_STOPPED:
4485 stats->nr_stopped++;
4486 break;
4487 default:
4488 if (delayacct_is_task_waiting_on_io(tsk))
4489 stats->nr_io_wait++;
4490 break;
4491 }
4492 }
72ec7029 4493 css_task_iter_end(&it);
846c7bb0 4494
bad34660 4495 mutex_unlock(&cgroup_mutex);
2bd59d48 4496 return 0;
846c7bb0
BS
4497}
4498
8f3ff208 4499
bbcb81d0 4500/*
102a775e 4501 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4502 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4503 * in the cgroup->l->list array.
bbcb81d0 4504 */
cc31edce 4505
102a775e 4506static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4507{
cc31edce
PM
4508 /*
4509 * Initially we receive a position value that corresponds to
4510 * one more than the last pid shown (or 0 on the first call or
4511 * after a seek to the start). Use a binary-search to find the
4512 * next pid to display, if any
4513 */
2bd59d48 4514 struct kernfs_open_file *of = s->private;
7da11279 4515 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4516 struct cgroup_pidlist *l;
7da11279 4517 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4518 int index = 0, pid = *pos;
4bac00d1
TH
4519 int *iter, ret;
4520
4521 mutex_lock(&cgrp->pidlist_mutex);
4522
4523 /*
5d22444f 4524 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4525 * after open. If the matching pidlist is around, we can use that.
5d22444f 4526 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4527 * could already have been destroyed.
4528 */
5d22444f
TH
4529 if (of->priv)
4530 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4531
4532 /*
4533 * Either this is the first start() after open or the matching
4534 * pidlist has been destroyed inbetween. Create a new one.
4535 */
5d22444f
TH
4536 if (!of->priv) {
4537 ret = pidlist_array_load(cgrp, type,
4538 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4539 if (ret)
4540 return ERR_PTR(ret);
4541 }
5d22444f 4542 l = of->priv;
cc31edce 4543
cc31edce 4544 if (pid) {
102a775e 4545 int end = l->length;
20777766 4546
cc31edce
PM
4547 while (index < end) {
4548 int mid = (index + end) / 2;
afb2bc14 4549 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4550 index = mid;
4551 break;
afb2bc14 4552 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4553 index = mid + 1;
4554 else
4555 end = mid;
4556 }
4557 }
4558 /* If we're off the end of the array, we're done */
102a775e 4559 if (index >= l->length)
cc31edce
PM
4560 return NULL;
4561 /* Update the abstract position to be the actual pid that we found */
102a775e 4562 iter = l->list + index;
afb2bc14 4563 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4564 return iter;
4565}
4566
102a775e 4567static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4568{
2bd59d48 4569 struct kernfs_open_file *of = s->private;
5d22444f 4570 struct cgroup_pidlist *l = of->priv;
62236858 4571
5d22444f
TH
4572 if (l)
4573 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4574 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4575 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4576}
4577
102a775e 4578static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4579{
2bd59d48 4580 struct kernfs_open_file *of = s->private;
5d22444f 4581 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4582 pid_t *p = v;
4583 pid_t *end = l->list + l->length;
cc31edce
PM
4584 /*
4585 * Advance to the next pid in the array. If this goes off the
4586 * end, we're done
4587 */
4588 p++;
4589 if (p >= end) {
4590 return NULL;
4591 } else {
7da11279 4592 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4593 return p;
4594 }
4595}
4596
102a775e 4597static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4598{
94ff212d
JP
4599 seq_printf(s, "%d\n", *(int *)v);
4600
4601 return 0;
cc31edce 4602}
bbcb81d0 4603
182446d0
TH
4604static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4605 struct cftype *cft)
81a6a5cd 4606{
182446d0 4607 return notify_on_release(css->cgroup);
81a6a5cd
PM
4608}
4609
182446d0
TH
4610static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4611 struct cftype *cft, u64 val)
6379c106 4612{
6379c106 4613 if (val)
182446d0 4614 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4615 else
182446d0 4616 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4617 return 0;
4618}
4619
182446d0
TH
4620static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4621 struct cftype *cft)
97978e6d 4622{
182446d0 4623 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4624}
4625
182446d0
TH
4626static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4627 struct cftype *cft, u64 val)
97978e6d
DL
4628{
4629 if (val)
182446d0 4630 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4631 else
182446d0 4632 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4633 return 0;
4634}
4635
a14c6874
TH
4636/* cgroup core interface files for the default hierarchy */
4637static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4638 {
d5c56ced 4639 .name = "cgroup.procs",
6f60eade 4640 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4641 .seq_start = cgroup_pidlist_start,
4642 .seq_next = cgroup_pidlist_next,
4643 .seq_stop = cgroup_pidlist_stop,
4644 .seq_show = cgroup_pidlist_show,
5d22444f 4645 .private = CGROUP_FILE_PROCS,
acbef755 4646 .write = cgroup_procs_write,
102a775e 4647 },
f8f22e53
TH
4648 {
4649 .name = "cgroup.controllers",
f8f22e53
TH
4650 .seq_show = cgroup_controllers_show,
4651 },
4652 {
4653 .name = "cgroup.subtree_control",
f8f22e53 4654 .seq_show = cgroup_subtree_control_show,
451af504 4655 .write = cgroup_subtree_control_write,
f8f22e53 4656 },
842b597e 4657 {
4a07c222 4658 .name = "cgroup.events",
a14c6874 4659 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4660 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4661 .seq_show = cgroup_events_show,
842b597e 4662 },
a14c6874
TH
4663 { } /* terminate */
4664};
d5c56ced 4665
a14c6874
TH
4666/* cgroup core interface files for the legacy hierarchies */
4667static struct cftype cgroup_legacy_base_files[] = {
4668 {
4669 .name = "cgroup.procs",
4670 .seq_start = cgroup_pidlist_start,
4671 .seq_next = cgroup_pidlist_next,
4672 .seq_stop = cgroup_pidlist_stop,
4673 .seq_show = cgroup_pidlist_show,
4674 .private = CGROUP_FILE_PROCS,
4675 .write = cgroup_procs_write,
a14c6874
TH
4676 },
4677 {
4678 .name = "cgroup.clone_children",
4679 .read_u64 = cgroup_clone_children_read,
4680 .write_u64 = cgroup_clone_children_write,
4681 },
4682 {
4683 .name = "cgroup.sane_behavior",
4684 .flags = CFTYPE_ONLY_ON_ROOT,
4685 .seq_show = cgroup_sane_behavior_show,
4686 },
d5c56ced
TH
4687 {
4688 .name = "tasks",
6612f05b
TH
4689 .seq_start = cgroup_pidlist_start,
4690 .seq_next = cgroup_pidlist_next,
4691 .seq_stop = cgroup_pidlist_stop,
4692 .seq_show = cgroup_pidlist_show,
5d22444f 4693 .private = CGROUP_FILE_TASKS,
acbef755 4694 .write = cgroup_tasks_write,
d5c56ced
TH
4695 },
4696 {
4697 .name = "notify_on_release",
d5c56ced
TH
4698 .read_u64 = cgroup_read_notify_on_release,
4699 .write_u64 = cgroup_write_notify_on_release,
4700 },
6e6ff25b
TH
4701 {
4702 .name = "release_agent",
a14c6874 4703 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4704 .seq_show = cgroup_release_agent_show,
451af504 4705 .write = cgroup_release_agent_write,
5f469907 4706 .max_write_len = PATH_MAX - 1,
6e6ff25b 4707 },
db0416b6 4708 { } /* terminate */
bbcb81d0
PM
4709};
4710
0c21ead1
TH
4711/*
4712 * css destruction is four-stage process.
4713 *
4714 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4715 * Implemented in kill_css().
4716 *
4717 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4718 * and thus css_tryget_online() is guaranteed to fail, the css can be
4719 * offlined by invoking offline_css(). After offlining, the base ref is
4720 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4721 *
4722 * 3. When the percpu_ref reaches zero, the only possible remaining
4723 * accessors are inside RCU read sections. css_release() schedules the
4724 * RCU callback.
4725 *
4726 * 4. After the grace period, the css can be freed. Implemented in
4727 * css_free_work_fn().
4728 *
4729 * It is actually hairier because both step 2 and 4 require process context
4730 * and thus involve punting to css->destroy_work adding two additional
4731 * steps to the already complex sequence.
4732 */
35ef10da 4733static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4734{
4735 struct cgroup_subsys_state *css =
35ef10da 4736 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4737 struct cgroup_subsys *ss = css->ss;
0c21ead1 4738 struct cgroup *cgrp = css->cgroup;
48ddbe19 4739
9a1049da
TH
4740 percpu_ref_exit(&css->refcnt);
4741
01e58659 4742 if (ss) {
9d755d33 4743 /* css free path */
8bb5ef79 4744 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4745 int id = css->id;
4746
01e58659
VD
4747 ss->css_free(css);
4748 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4749 cgroup_put(cgrp);
8bb5ef79
TH
4750
4751 if (parent)
4752 css_put(parent);
9d755d33
TH
4753 } else {
4754 /* cgroup free path */
4755 atomic_dec(&cgrp->root->nr_cgrps);
4756 cgroup_pidlist_destroy_all(cgrp);
971ff493 4757 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4758
d51f39b0 4759 if (cgroup_parent(cgrp)) {
9d755d33
TH
4760 /*
4761 * We get a ref to the parent, and put the ref when
4762 * this cgroup is being freed, so it's guaranteed
4763 * that the parent won't be destroyed before its
4764 * children.
4765 */
d51f39b0 4766 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4767 kernfs_put(cgrp->kn);
4768 kfree(cgrp);
4769 } else {
4770 /*
4771 * This is root cgroup's refcnt reaching zero,
4772 * which indicates that the root should be
4773 * released.
4774 */
4775 cgroup_destroy_root(cgrp->root);
4776 }
4777 }
48ddbe19
TH
4778}
4779
0c21ead1 4780static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4781{
4782 struct cgroup_subsys_state *css =
0c21ead1 4783 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4784
35ef10da 4785 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4786 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4787}
4788
25e15d83 4789static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4790{
4791 struct cgroup_subsys_state *css =
25e15d83 4792 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4793 struct cgroup_subsys *ss = css->ss;
9d755d33 4794 struct cgroup *cgrp = css->cgroup;
15a4c835 4795
1fed1b2e
TH
4796 mutex_lock(&cgroup_mutex);
4797
de3f0341 4798 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4799 list_del_rcu(&css->sibling);
4800
9d755d33
TH
4801 if (ss) {
4802 /* css release path */
01e58659 4803 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4804 if (ss->css_released)
4805 ss->css_released(css);
9d755d33
TH
4806 } else {
4807 /* cgroup release path */
9d755d33
TH
4808 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4809 cgrp->id = -1;
a4189487
LZ
4810
4811 /*
4812 * There are two control paths which try to determine
4813 * cgroup from dentry without going through kernfs -
4814 * cgroupstats_build() and css_tryget_online_from_dir().
4815 * Those are supported by RCU protecting clearing of
4816 * cgrp->kn->priv backpointer.
4817 */
6cd0f5bb
TH
4818 if (cgrp->kn)
4819 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4820 NULL);
9d755d33 4821 }
d3daf28d 4822
1fed1b2e
TH
4823 mutex_unlock(&cgroup_mutex);
4824
0c21ead1 4825 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4826}
4827
d3daf28d
TH
4828static void css_release(struct percpu_ref *ref)
4829{
4830 struct cgroup_subsys_state *css =
4831 container_of(ref, struct cgroup_subsys_state, refcnt);
4832
25e15d83
TH
4833 INIT_WORK(&css->destroy_work, css_release_work_fn);
4834 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4835}
4836
ddfcadab
TH
4837static void init_and_link_css(struct cgroup_subsys_state *css,
4838 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4839{
0cb51d71
TH
4840 lockdep_assert_held(&cgroup_mutex);
4841
ddfcadab
TH
4842 cgroup_get(cgrp);
4843
d5c419b6 4844 memset(css, 0, sizeof(*css));
bd89aabc 4845 css->cgroup = cgrp;
72c97e54 4846 css->ss = ss;
d5c419b6
TH
4847 INIT_LIST_HEAD(&css->sibling);
4848 INIT_LIST_HEAD(&css->children);
0cb51d71 4849 css->serial_nr = css_serial_nr_next++;
aa226ff4 4850 atomic_set(&css->online_cnt, 0);
0ae78e0b 4851
d51f39b0
TH
4852 if (cgroup_parent(cgrp)) {
4853 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4854 css_get(css->parent);
ddfcadab 4855 }
48ddbe19 4856
ca8bdcaf 4857 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4858}
4859
2a4ac633 4860/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4861static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4862{
623f926b 4863 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4864 int ret = 0;
4865
a31f2d3f
TH
4866 lockdep_assert_held(&cgroup_mutex);
4867
92fb9748 4868 if (ss->css_online)
eb95419b 4869 ret = ss->css_online(css);
ae7f164a 4870 if (!ret) {
eb95419b 4871 css->flags |= CSS_ONLINE;
aec25020 4872 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4873
4874 atomic_inc(&css->online_cnt);
4875 if (css->parent)
4876 atomic_inc(&css->parent->online_cnt);
ae7f164a 4877 }
b1929db4 4878 return ret;
a31f2d3f
TH
4879}
4880
2a4ac633 4881/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4882static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4883{
623f926b 4884 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4885
4886 lockdep_assert_held(&cgroup_mutex);
4887
4888 if (!(css->flags & CSS_ONLINE))
4889 return;
4890
fa06235b
VD
4891 if (ss->css_reset)
4892 ss->css_reset(css);
4893
d7eeac19 4894 if (ss->css_offline)
eb95419b 4895 ss->css_offline(css);
a31f2d3f 4896
eb95419b 4897 css->flags &= ~CSS_ONLINE;
e3297803 4898 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4899
4900 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4901}
4902
c81c925a 4903/**
6cd0f5bb 4904 * css_create - create a cgroup_subsys_state
c81c925a
TH
4905 * @cgrp: the cgroup new css will be associated with
4906 * @ss: the subsys of new css
4907 *
4908 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
4909 * css is online and installed in @cgrp. This function doesn't create the
4910 * interface files. Returns 0 on success, -errno on failure.
c81c925a 4911 */
6cd0f5bb
TH
4912static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4913 struct cgroup_subsys *ss)
c81c925a 4914{
d51f39b0 4915 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4916 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4917 struct cgroup_subsys_state *css;
4918 int err;
4919
c81c925a
TH
4920 lockdep_assert_held(&cgroup_mutex);
4921
1fed1b2e 4922 css = ss->css_alloc(parent_css);
c81c925a 4923 if (IS_ERR(css))
6cd0f5bb 4924 return css;
c81c925a 4925
ddfcadab 4926 init_and_link_css(css, ss, cgrp);
a2bed820 4927
2aad2a86 4928 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4929 if (err)
3eb59ec6 4930 goto err_free_css;
c81c925a 4931
cf780b7d 4932 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4933 if (err < 0)
4934 goto err_free_percpu_ref;
4935 css->id = err;
c81c925a 4936
15a4c835 4937 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4938 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4939 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4940
4941 err = online_css(css);
4942 if (err)
1fed1b2e 4943 goto err_list_del;
94419627 4944
c81c925a 4945 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4946 cgroup_parent(parent)) {
ed3d261b 4947 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4948 current->comm, current->pid, ss->name);
c81c925a 4949 if (!strcmp(ss->name, "memory"))
ed3d261b 4950 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4951 ss->warned_broken_hierarchy = true;
4952 }
4953
6cd0f5bb 4954 return css;
c81c925a 4955
1fed1b2e
TH
4956err_list_del:
4957 list_del_rcu(&css->sibling);
15a4c835 4958 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4959err_free_percpu_ref:
9a1049da 4960 percpu_ref_exit(&css->refcnt);
3eb59ec6 4961err_free_css:
a2bed820 4962 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 4963 return ERR_PTR(err);
c81c925a
TH
4964}
4965
a5bca215 4966static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 4967{
a5bca215 4968 struct cgroup_root *root = parent->root;
ddbcc7e8 4969 struct cgroup_subsys *ss;
a5bca215
TH
4970 struct cgroup *cgrp, *tcgrp;
4971 int level = parent->level + 1;
4972 int ssid, ret;
ddbcc7e8 4973
0a950f65 4974 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4975 cgrp = kzalloc(sizeof(*cgrp) +
4976 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
4977 if (!cgrp)
4978 return ERR_PTR(-ENOMEM);
0ab02ca8 4979
2aad2a86 4980 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4981 if (ret)
4982 goto out_free_cgrp;
4983
0ab02ca8
LZ
4984 /*
4985 * Temporarily set the pointer to NULL, so idr_find() won't return
4986 * a half-baked cgroup.
4987 */
cf780b7d 4988 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4989 if (cgrp->id < 0) {
ba0f4d76 4990 ret = -ENOMEM;
9d755d33 4991 goto out_cancel_ref;
976c06bc
TH
4992 }
4993
cc31edce 4994 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4995
9d800df1 4996 cgrp->self.parent = &parent->self;
ba0f4d76 4997 cgrp->root = root;
b11cfb58
TH
4998 cgrp->level = level;
4999
5000 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5001 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5002
b6abdb0e
LZ
5003 if (notify_on_release(parent))
5004 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5005
2260e7fc
TH
5006 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5007 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5008
0cb51d71 5009 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5010
4e139afc 5011 /* allocation complete, commit to creation */
d5c419b6 5012 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5013 atomic_inc(&root->nr_cgrps);
59f5296b 5014 cgroup_get(parent);
415cf07a 5015
0d80255e
TH
5016 /*
5017 * @cgrp is now fully operational. If something fails after this
5018 * point, it'll be released via the normal destruction path.
5019 */
6fa4918d 5020 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5021
195e9b6c 5022 /* create the csses */
5531dc91 5023 do_each_subsys_mask(ss, ssid, cgroup_ss_mask(cgrp)) {
6cd0f5bb
TH
5024 struct cgroup_subsys_state *css;
5025
5026 css = css_create(cgrp, ss);
5027 if (IS_ERR(css)) {
5028 ret = PTR_ERR(css);
996cd1fb 5029 goto out_destroy;
6cd0f5bb 5030 }
996cd1fb 5031 } while_each_subsys_mask();
ddbcc7e8 5032
bd53d617
TH
5033 /*
5034 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5035 * subtree_control from the parent. Each is configured manually.
bd53d617 5036 */
667c2491 5037 if (!cgroup_on_dfl(cgrp)) {
5531dc91 5038 cgrp->subtree_control = cgroup_control(cgrp);
8699b776 5039 cgroup_refresh_subtree_ss_mask(cgrp);
667c2491 5040 }
2bd59d48 5041
a5bca215
TH
5042 return cgrp;
5043
5044out_cancel_ref:
5045 percpu_ref_exit(&cgrp->self.refcnt);
5046out_free_cgrp:
5047 kfree(cgrp);
5048 return ERR_PTR(ret);
5049out_destroy:
5050 cgroup_destroy_locked(cgrp);
5051 return ERR_PTR(ret);
5052}
5053
5054static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5055 umode_t mode)
5056{
5057 struct cgroup *parent, *cgrp;
5058 struct cgroup_subsys *ss;
5059 struct kernfs_node *kn;
5060 int ssid, ret;
5061
5062 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5063 if (strchr(name, '\n'))
5064 return -EINVAL;
5065
5066 parent = cgroup_kn_lock_live(parent_kn);
5067 if (!parent)
5068 return -ENODEV;
5069
5070 cgrp = cgroup_create(parent);
5071 if (IS_ERR(cgrp)) {
5072 ret = PTR_ERR(cgrp);
5073 goto out_unlock;
5074 }
5075
195e9b6c
TH
5076 /* create the directory */
5077 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5078 if (IS_ERR(kn)) {
5079 ret = PTR_ERR(kn);
5080 goto out_destroy;
5081 }
5082 cgrp->kn = kn;
5083
5084 /*
5085 * This extra ref will be put in cgroup_free_fn() and guarantees
5086 * that @cgrp->kn is always accessible.
5087 */
5088 kernfs_get(kn);
5089
5090 ret = cgroup_kn_set_ugid(kn);
5091 if (ret)
5092 goto out_destroy;
5093
5094 ret = css_populate_dir(&cgrp->self, NULL);
5095 if (ret)
5096 goto out_destroy;
5097
5531dc91 5098 do_each_subsys_mask(ss, ssid, cgroup_control(cgrp)) {
195e9b6c
TH
5099 ret = css_populate_dir(cgroup_css(cgrp, ss), NULL);
5100 if (ret)
5101 goto out_destroy;
5102 } while_each_subsys_mask();
5103
5104 /* let's create and online css's */
2bd59d48 5105 kernfs_activate(kn);
ddbcc7e8 5106
ba0f4d76
TH
5107 ret = 0;
5108 goto out_unlock;
ddbcc7e8 5109
a5bca215
TH
5110out_destroy:
5111 cgroup_destroy_locked(cgrp);
ba0f4d76 5112out_unlock:
a9746d8d 5113 cgroup_kn_unlock(parent_kn);
ba0f4d76 5114 return ret;
ddbcc7e8
PM
5115}
5116
223dbc38
TH
5117/*
5118 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5119 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5120 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5121 */
5122static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5123{
223dbc38
TH
5124 struct cgroup_subsys_state *css =
5125 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5126
f20104de 5127 mutex_lock(&cgroup_mutex);
09a503ea 5128
aa226ff4
TH
5129 do {
5130 offline_css(css);
5131 css_put(css);
5132 /* @css can't go away while we're holding cgroup_mutex */
5133 css = css->parent;
5134 } while (css && atomic_dec_and_test(&css->online_cnt));
5135
5136 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5137}
5138
223dbc38
TH
5139/* css kill confirmation processing requires process context, bounce */
5140static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5141{
5142 struct cgroup_subsys_state *css =
5143 container_of(ref, struct cgroup_subsys_state, refcnt);
5144
aa226ff4
TH
5145 if (atomic_dec_and_test(&css->online_cnt)) {
5146 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5147 queue_work(cgroup_destroy_wq, &css->destroy_work);
5148 }
d3daf28d
TH
5149}
5150
f392e51c
TH
5151/**
5152 * kill_css - destroy a css
5153 * @css: css to destroy
5154 *
5155 * This function initiates destruction of @css by removing cgroup interface
5156 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5157 * asynchronously once css_tryget_online() is guaranteed to fail and when
5158 * the reference count reaches zero, @css will be released.
f392e51c
TH
5159 */
5160static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5161{
01f6474c 5162 lockdep_assert_held(&cgroup_mutex);
94419627 5163
2bd59d48
TH
5164 /*
5165 * This must happen before css is disassociated with its cgroup.
5166 * See seq_css() for details.
5167 */
4df8dc90 5168 css_clear_dir(css, NULL);
3c14f8b4 5169
edae0c33
TH
5170 /*
5171 * Killing would put the base ref, but we need to keep it alive
5172 * until after ->css_offline().
5173 */
5174 css_get(css);
5175
5176 /*
5177 * cgroup core guarantees that, by the time ->css_offline() is
5178 * invoked, no new css reference will be given out via
ec903c0c 5179 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5180 * proceed to offlining css's because percpu_ref_kill() doesn't
5181 * guarantee that the ref is seen as killed on all CPUs on return.
5182 *
5183 * Use percpu_ref_kill_and_confirm() to get notifications as each
5184 * css is confirmed to be seen as killed on all CPUs.
5185 */
5186 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5187}
5188
5189/**
5190 * cgroup_destroy_locked - the first stage of cgroup destruction
5191 * @cgrp: cgroup to be destroyed
5192 *
5193 * css's make use of percpu refcnts whose killing latency shouldn't be
5194 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5195 * guarantee that css_tryget_online() won't succeed by the time
5196 * ->css_offline() is invoked. To satisfy all the requirements,
5197 * destruction is implemented in the following two steps.
d3daf28d
TH
5198 *
5199 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5200 * userland visible parts and start killing the percpu refcnts of
5201 * css's. Set up so that the next stage will be kicked off once all
5202 * the percpu refcnts are confirmed to be killed.
5203 *
5204 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5205 * rest of destruction. Once all cgroup references are gone, the
5206 * cgroup is RCU-freed.
5207 *
5208 * This function implements s1. After this step, @cgrp is gone as far as
5209 * the userland is concerned and a new cgroup with the same name may be
5210 * created. As cgroup doesn't care about the names internally, this
5211 * doesn't cause any problem.
5212 */
42809dd4
TH
5213static int cgroup_destroy_locked(struct cgroup *cgrp)
5214 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5215{
2bd59d48 5216 struct cgroup_subsys_state *css;
1c6727af 5217 int ssid;
ddbcc7e8 5218
42809dd4
TH
5219 lockdep_assert_held(&cgroup_mutex);
5220
91486f61
TH
5221 /*
5222 * Only migration can raise populated from zero and we're already
5223 * holding cgroup_mutex.
5224 */
5225 if (cgroup_is_populated(cgrp))
ddbcc7e8 5226 return -EBUSY;
a043e3b2 5227
bb78a92f 5228 /*
d5c419b6
TH
5229 * Make sure there's no live children. We can't test emptiness of
5230 * ->self.children as dead children linger on it while being
5231 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5232 */
f3d46500 5233 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5234 return -EBUSY;
5235
455050d2
TH
5236 /*
5237 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5238 * creation by disabling cgroup_lock_live_group().
455050d2 5239 */
184faf32 5240 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5241
249f3468 5242 /* initiate massacre of all css's */
1c6727af
TH
5243 for_each_css(css, ssid, cgrp)
5244 kill_css(css);
455050d2 5245
455050d2 5246 /*
01f6474c
TH
5247 * Remove @cgrp directory along with the base files. @cgrp has an
5248 * extra ref on its kn.
f20104de 5249 */
01f6474c 5250 kernfs_remove(cgrp->kn);
f20104de 5251
d51f39b0 5252 check_for_release(cgroup_parent(cgrp));
2bd59d48 5253
249f3468 5254 /* put the base reference */
9d755d33 5255 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5256
ea15f8cc
TH
5257 return 0;
5258};
5259
2bd59d48 5260static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5261{
a9746d8d 5262 struct cgroup *cgrp;
2bd59d48 5263 int ret = 0;
42809dd4 5264
a9746d8d
TH
5265 cgrp = cgroup_kn_lock_live(kn);
5266 if (!cgrp)
5267 return 0;
42809dd4 5268
a9746d8d 5269 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5270
a9746d8d 5271 cgroup_kn_unlock(kn);
42809dd4 5272 return ret;
8e3f6541
TH
5273}
5274
2bd59d48
TH
5275static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5276 .remount_fs = cgroup_remount,
5277 .show_options = cgroup_show_options,
5278 .mkdir = cgroup_mkdir,
5279 .rmdir = cgroup_rmdir,
5280 .rename = cgroup_rename,
5281};
5282
15a4c835 5283static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5284{
ddbcc7e8 5285 struct cgroup_subsys_state *css;
cfe36bde 5286
a5ae9899 5287 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5288
648bb56d
TH
5289 mutex_lock(&cgroup_mutex);
5290
15a4c835 5291 idr_init(&ss->css_idr);
0adb0704 5292 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5293
3dd06ffa
TH
5294 /* Create the root cgroup state for this subsystem */
5295 ss->root = &cgrp_dfl_root;
5296 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5297 /* We don't handle early failures gracefully */
5298 BUG_ON(IS_ERR(css));
ddfcadab 5299 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5300
5301 /*
5302 * Root csses are never destroyed and we can't initialize
5303 * percpu_ref during early init. Disable refcnting.
5304 */
5305 css->flags |= CSS_NO_REF;
5306
15a4c835 5307 if (early) {
9395a450 5308 /* allocation can't be done safely during early init */
15a4c835
TH
5309 css->id = 1;
5310 } else {
5311 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5312 BUG_ON(css->id < 0);
5313 }
ddbcc7e8 5314
e8d55fde 5315 /* Update the init_css_set to contain a subsys
817929ec 5316 * pointer to this state - since the subsystem is
e8d55fde 5317 * newly registered, all tasks and hence the
3dd06ffa 5318 * init_css_set is in the subsystem's root cgroup. */
aec25020 5319 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5320
cb4a3167
AS
5321 have_fork_callback |= (bool)ss->fork << ss->id;
5322 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5323 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5324 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5325
e8d55fde
LZ
5326 /* At system boot, before all subsystems have been
5327 * registered, no tasks have been forked, so we don't
5328 * need to invoke fork callbacks here. */
5329 BUG_ON(!list_empty(&init_task.tasks));
5330
ae7f164a 5331 BUG_ON(online_css(css));
a8638030 5332
cf5d5941
BB
5333 mutex_unlock(&cgroup_mutex);
5334}
cf5d5941 5335
ddbcc7e8 5336/**
a043e3b2
LZ
5337 * cgroup_init_early - cgroup initialization at system boot
5338 *
5339 * Initialize cgroups at system boot, and initialize any
5340 * subsystems that request early init.
ddbcc7e8
PM
5341 */
5342int __init cgroup_init_early(void)
5343{
7b9a6ba5 5344 static struct cgroup_sb_opts __initdata opts;
30159ec7 5345 struct cgroup_subsys *ss;
ddbcc7e8 5346 int i;
30159ec7 5347
3dd06ffa 5348 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5349 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5350
a4ea1cc9 5351 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5352
3ed80a62 5353 for_each_subsys(ss, i) {
aec25020 5354 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5355 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5356 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5357 ss->id, ss->name);
073219e9
TH
5358 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5359 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5360
aec25020 5361 ss->id = i;
073219e9 5362 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5363 if (!ss->legacy_name)
5364 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5365
5366 if (ss->early_init)
15a4c835 5367 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5368 }
5369 return 0;
5370}
5371
6e5c8307 5372static u16 cgroup_disable_mask __initdata;
a3e72739 5373
ddbcc7e8 5374/**
a043e3b2
LZ
5375 * cgroup_init - cgroup initialization
5376 *
5377 * Register cgroup filesystem and /proc file, and initialize
5378 * any subsystems that didn't request early init.
ddbcc7e8
PM
5379 */
5380int __init cgroup_init(void)
5381{
30159ec7 5382 struct cgroup_subsys *ss;
035f4f51 5383 int ssid;
ddbcc7e8 5384
6e5c8307 5385 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5386 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5387 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5388 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5389
54e7b4eb 5390 mutex_lock(&cgroup_mutex);
54e7b4eb 5391
2378d8b8
TH
5392 /*
5393 * Add init_css_set to the hash table so that dfl_root can link to
5394 * it during init.
5395 */
5396 hash_add(css_set_table, &init_css_set.hlist,
5397 css_set_hash(init_css_set.subsys));
82fe9b0d 5398
3dd06ffa 5399 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5400
54e7b4eb
TH
5401 mutex_unlock(&cgroup_mutex);
5402
172a2c06 5403 for_each_subsys(ss, ssid) {
15a4c835
TH
5404 if (ss->early_init) {
5405 struct cgroup_subsys_state *css =
5406 init_css_set.subsys[ss->id];
5407
5408 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5409 GFP_KERNEL);
5410 BUG_ON(css->id < 0);
5411 } else {
5412 cgroup_init_subsys(ss, false);
5413 }
172a2c06 5414
2d8f243a
TH
5415 list_add_tail(&init_css_set.e_cset_node[ssid],
5416 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5417
5418 /*
c731ae1d
LZ
5419 * Setting dfl_root subsys_mask needs to consider the
5420 * disabled flag and cftype registration needs kmalloc,
5421 * both of which aren't available during early_init.
172a2c06 5422 */
a3e72739
TH
5423 if (cgroup_disable_mask & (1 << ssid)) {
5424 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5425 printk(KERN_INFO "Disabling %s control group subsystem\n",
5426 ss->name);
a8ddc821 5427 continue;
a3e72739 5428 }
a8ddc821 5429
223ffb29
JW
5430 if (cgroup_ssid_no_v1(ssid))
5431 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5432 ss->name);
5433
a8ddc821
TH
5434 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5435
5de4fa13 5436 if (!ss->dfl_cftypes)
a7165264 5437 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5438
a8ddc821
TH
5439 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5440 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5441 } else {
5442 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5443 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5444 }
295458e6
VD
5445
5446 if (ss->bind)
5447 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5448 }
5449
2378d8b8
TH
5450 /* init_css_set.subsys[] has been updated, re-hash */
5451 hash_del(&init_css_set.hlist);
5452 hash_add(css_set_table, &init_css_set.hlist,
5453 css_set_hash(init_css_set.subsys));
5454
035f4f51
TH
5455 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5456 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5457 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5458 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5459
2bd59d48 5460 return 0;
ddbcc7e8 5461}
b4f48b63 5462
e5fca243
TH
5463static int __init cgroup_wq_init(void)
5464{
5465 /*
5466 * There isn't much point in executing destruction path in
5467 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5468 * Use 1 for @max_active.
e5fca243
TH
5469 *
5470 * We would prefer to do this in cgroup_init() above, but that
5471 * is called before init_workqueues(): so leave this until after.
5472 */
1a11533f 5473 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5474 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5475
5476 /*
5477 * Used to destroy pidlists and separate to serve as flush domain.
5478 * Cap @max_active to 1 too.
5479 */
5480 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5481 0, 1);
5482 BUG_ON(!cgroup_pidlist_destroy_wq);
5483
e5fca243
TH
5484 return 0;
5485}
5486core_initcall(cgroup_wq_init);
5487
a424316c
PM
5488/*
5489 * proc_cgroup_show()
5490 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5491 * - Used for /proc/<pid>/cgroup.
a424316c 5492 */
006f4ac4
ZL
5493int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5494 struct pid *pid, struct task_struct *tsk)
a424316c 5495{
e61734c5 5496 char *buf, *path;
a424316c 5497 int retval;
3dd06ffa 5498 struct cgroup_root *root;
a424316c
PM
5499
5500 retval = -ENOMEM;
e61734c5 5501 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5502 if (!buf)
5503 goto out;
5504
a424316c 5505 mutex_lock(&cgroup_mutex);
f0d9a5f1 5506 spin_lock_bh(&css_set_lock);
a424316c 5507
985ed670 5508 for_each_root(root) {
a424316c 5509 struct cgroup_subsys *ss;
bd89aabc 5510 struct cgroup *cgrp;
b85d2040 5511 int ssid, count = 0;
a424316c 5512
a7165264 5513 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5514 continue;
5515
2c6ab6d2 5516 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5517 if (root != &cgrp_dfl_root)
5518 for_each_subsys(ss, ssid)
5519 if (root->subsys_mask & (1 << ssid))
5520 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5521 ss->legacy_name);
c6d57f33
PM
5522 if (strlen(root->name))
5523 seq_printf(m, "%sname=%s", count ? "," : "",
5524 root->name);
a424316c 5525 seq_putc(m, ':');
2e91fa7f 5526
7717f7ba 5527 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5528
5529 /*
5530 * On traditional hierarchies, all zombie tasks show up as
5531 * belonging to the root cgroup. On the default hierarchy,
5532 * while a zombie doesn't show up in "cgroup.procs" and
5533 * thus can't be migrated, its /proc/PID/cgroup keeps
5534 * reporting the cgroup it belonged to before exiting. If
5535 * the cgroup is removed before the zombie is reaped,
5536 * " (deleted)" is appended to the cgroup path.
5537 */
5538 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5539 path = cgroup_path(cgrp, buf, PATH_MAX);
5540 if (!path) {
5541 retval = -ENAMETOOLONG;
5542 goto out_unlock;
5543 }
5544 } else {
5545 path = "/";
e61734c5 5546 }
2e91fa7f 5547
e61734c5 5548 seq_puts(m, path);
2e91fa7f
TH
5549
5550 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5551 seq_puts(m, " (deleted)\n");
5552 else
5553 seq_putc(m, '\n');
a424316c
PM
5554 }
5555
006f4ac4 5556 retval = 0;
a424316c 5557out_unlock:
f0d9a5f1 5558 spin_unlock_bh(&css_set_lock);
a424316c 5559 mutex_unlock(&cgroup_mutex);
a424316c
PM
5560 kfree(buf);
5561out:
5562 return retval;
5563}
5564
a424316c
PM
5565/* Display information about each subsystem and each hierarchy */
5566static int proc_cgroupstats_show(struct seq_file *m, void *v)
5567{
30159ec7 5568 struct cgroup_subsys *ss;
a424316c 5569 int i;
a424316c 5570
8bab8dde 5571 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5572 /*
5573 * ideally we don't want subsystems moving around while we do this.
5574 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5575 * subsys/hierarchy state.
5576 */
a424316c 5577 mutex_lock(&cgroup_mutex);
30159ec7
TH
5578
5579 for_each_subsys(ss, i)
2c6ab6d2 5580 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5581 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5582 atomic_read(&ss->root->nr_cgrps),
5583 cgroup_ssid_enabled(i));
30159ec7 5584
a424316c
PM
5585 mutex_unlock(&cgroup_mutex);
5586 return 0;
5587}
5588
5589static int cgroupstats_open(struct inode *inode, struct file *file)
5590{
9dce07f1 5591 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5592}
5593
828c0950 5594static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5595 .open = cgroupstats_open,
5596 .read = seq_read,
5597 .llseek = seq_lseek,
5598 .release = single_release,
5599};
5600
b4f48b63 5601/**
eaf797ab 5602 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5603 * @child: pointer to task_struct of forking parent process.
b4f48b63 5604 *
eaf797ab
TH
5605 * A task is associated with the init_css_set until cgroup_post_fork()
5606 * attaches it to the parent's css_set. Empty cg_list indicates that
5607 * @child isn't holding reference to its css_set.
b4f48b63
PM
5608 */
5609void cgroup_fork(struct task_struct *child)
5610{
eaf797ab 5611 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5612 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5613}
5614
7e47682e
AS
5615/**
5616 * cgroup_can_fork - called on a new task before the process is exposed
5617 * @child: the task in question.
5618 *
5619 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5620 * returns an error, the fork aborts with that error code. This allows for
5621 * a cgroup subsystem to conditionally allow or deny new forks.
5622 */
b53202e6 5623int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5624{
5625 struct cgroup_subsys *ss;
5626 int i, j, ret;
5627
b4e0eeaf 5628 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5629 ret = ss->can_fork(child);
7e47682e
AS
5630 if (ret)
5631 goto out_revert;
b4e0eeaf 5632 } while_each_subsys_mask();
7e47682e
AS
5633
5634 return 0;
5635
5636out_revert:
5637 for_each_subsys(ss, j) {
5638 if (j >= i)
5639 break;
5640 if (ss->cancel_fork)
b53202e6 5641 ss->cancel_fork(child);
7e47682e
AS
5642 }
5643
5644 return ret;
5645}
5646
5647/**
5648 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5649 * @child: the task in question
5650 *
5651 * This calls the cancel_fork() callbacks if a fork failed *after*
5652 * cgroup_can_fork() succeded.
5653 */
b53202e6 5654void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5655{
5656 struct cgroup_subsys *ss;
5657 int i;
5658
5659 for_each_subsys(ss, i)
5660 if (ss->cancel_fork)
b53202e6 5661 ss->cancel_fork(child);
7e47682e
AS
5662}
5663
817929ec 5664/**
a043e3b2
LZ
5665 * cgroup_post_fork - called on a new task after adding it to the task list
5666 * @child: the task in question
5667 *
5edee61e
TH
5668 * Adds the task to the list running through its css_set if necessary and
5669 * call the subsystem fork() callbacks. Has to be after the task is
5670 * visible on the task list in case we race with the first call to
0942eeee 5671 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5672 * list.
a043e3b2 5673 */
b53202e6 5674void cgroup_post_fork(struct task_struct *child)
817929ec 5675{
30159ec7 5676 struct cgroup_subsys *ss;
5edee61e
TH
5677 int i;
5678
3ce3230a 5679 /*
251f8c03 5680 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5681 * function sets use_task_css_set_links before grabbing
5682 * tasklist_lock and we just went through tasklist_lock to add
5683 * @child, it's guaranteed that either we see the set
5684 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5685 * @child during its iteration.
5686 *
5687 * If we won the race, @child is associated with %current's
f0d9a5f1 5688 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5689 * association is stable, and, on completion of the parent's
5690 * migration, @child is visible in the source of migration or
5691 * already in the destination cgroup. This guarantee is necessary
5692 * when implementing operations which need to migrate all tasks of
5693 * a cgroup to another.
5694 *
251f8c03 5695 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5696 * will remain in init_css_set. This is safe because all tasks are
5697 * in the init_css_set before cg_links is enabled and there's no
5698 * operation which transfers all tasks out of init_css_set.
3ce3230a 5699 */
817929ec 5700 if (use_task_css_set_links) {
eaf797ab
TH
5701 struct css_set *cset;
5702
f0d9a5f1 5703 spin_lock_bh(&css_set_lock);
0e1d768f 5704 cset = task_css_set(current);
eaf797ab 5705 if (list_empty(&child->cg_list)) {
eaf797ab 5706 get_css_set(cset);
f6d7d049 5707 css_set_move_task(child, NULL, cset, false);
eaf797ab 5708 }
f0d9a5f1 5709 spin_unlock_bh(&css_set_lock);
817929ec 5710 }
5edee61e
TH
5711
5712 /*
5713 * Call ss->fork(). This must happen after @child is linked on
5714 * css_set; otherwise, @child might change state between ->fork()
5715 * and addition to css_set.
5716 */
b4e0eeaf 5717 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5718 ss->fork(child);
b4e0eeaf 5719 } while_each_subsys_mask();
817929ec 5720}
5edee61e 5721
b4f48b63
PM
5722/**
5723 * cgroup_exit - detach cgroup from exiting task
5724 * @tsk: pointer to task_struct of exiting process
5725 *
5726 * Description: Detach cgroup from @tsk and release it.
5727 *
5728 * Note that cgroups marked notify_on_release force every task in
5729 * them to take the global cgroup_mutex mutex when exiting.
5730 * This could impact scaling on very large systems. Be reluctant to
5731 * use notify_on_release cgroups where very high task exit scaling
5732 * is required on large systems.
5733 *
0e1d768f
TH
5734 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5735 * call cgroup_exit() while the task is still competent to handle
5736 * notify_on_release(), then leave the task attached to the root cgroup in
5737 * each hierarchy for the remainder of its exit. No need to bother with
5738 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5739 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5740 */
1ec41830 5741void cgroup_exit(struct task_struct *tsk)
b4f48b63 5742{
30159ec7 5743 struct cgroup_subsys *ss;
5abb8855 5744 struct css_set *cset;
d41d5a01 5745 int i;
817929ec
PM
5746
5747 /*
0e1d768f 5748 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5749 * with us, we can check css_set and cg_list without synchronization.
817929ec 5750 */
0de0942d
TH
5751 cset = task_css_set(tsk);
5752
817929ec 5753 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5754 spin_lock_bh(&css_set_lock);
f6d7d049 5755 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5756 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5757 } else {
5758 get_css_set(cset);
817929ec
PM
5759 }
5760
cb4a3167 5761 /* see cgroup_post_fork() for details */
b4e0eeaf 5762 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5763 ss->exit(tsk);
b4e0eeaf 5764 } while_each_subsys_mask();
2e91fa7f 5765}
30159ec7 5766
2e91fa7f
TH
5767void cgroup_free(struct task_struct *task)
5768{
5769 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5770 struct cgroup_subsys *ss;
5771 int ssid;
5772
b4e0eeaf 5773 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5774 ss->free(task);
b4e0eeaf 5775 } while_each_subsys_mask();
d41d5a01 5776
2e91fa7f 5777 put_css_set(cset);
b4f48b63 5778}
697f4161 5779
bd89aabc 5780static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5781{
27bd4dbb 5782 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5783 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5784 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5785}
5786
81a6a5cd
PM
5787/*
5788 * Notify userspace when a cgroup is released, by running the
5789 * configured release agent with the name of the cgroup (path
5790 * relative to the root of cgroup file system) as the argument.
5791 *
5792 * Most likely, this user command will try to rmdir this cgroup.
5793 *
5794 * This races with the possibility that some other task will be
5795 * attached to this cgroup before it is removed, or that some other
5796 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5797 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5798 * unused, and this cgroup will be reprieved from its death sentence,
5799 * to continue to serve a useful existence. Next time it's released,
5800 * we will get notified again, if it still has 'notify_on_release' set.
5801 *
5802 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5803 * means only wait until the task is successfully execve()'d. The
5804 * separate release agent task is forked by call_usermodehelper(),
5805 * then control in this thread returns here, without waiting for the
5806 * release agent task. We don't bother to wait because the caller of
5807 * this routine has no use for the exit status of the release agent
5808 * task, so no sense holding our caller up for that.
81a6a5cd 5809 */
81a6a5cd
PM
5810static void cgroup_release_agent(struct work_struct *work)
5811{
971ff493
ZL
5812 struct cgroup *cgrp =
5813 container_of(work, struct cgroup, release_agent_work);
5814 char *pathbuf = NULL, *agentbuf = NULL, *path;
5815 char *argv[3], *envp[3];
5816
81a6a5cd 5817 mutex_lock(&cgroup_mutex);
971ff493
ZL
5818
5819 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5820 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5821 if (!pathbuf || !agentbuf)
5822 goto out;
5823
5824 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5825 if (!path)
5826 goto out;
5827
5828 argv[0] = agentbuf;
5829 argv[1] = path;
5830 argv[2] = NULL;
5831
5832 /* minimal command environment */
5833 envp[0] = "HOME=/";
5834 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5835 envp[2] = NULL;
5836
81a6a5cd 5837 mutex_unlock(&cgroup_mutex);
971ff493 5838 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5839 goto out_free;
971ff493 5840out:
81a6a5cd 5841 mutex_unlock(&cgroup_mutex);
3e2cd91a 5842out_free:
971ff493
ZL
5843 kfree(agentbuf);
5844 kfree(pathbuf);
81a6a5cd 5845}
8bab8dde
PM
5846
5847static int __init cgroup_disable(char *str)
5848{
30159ec7 5849 struct cgroup_subsys *ss;
8bab8dde 5850 char *token;
30159ec7 5851 int i;
8bab8dde
PM
5852
5853 while ((token = strsep(&str, ",")) != NULL) {
5854 if (!*token)
5855 continue;
be45c900 5856
3ed80a62 5857 for_each_subsys(ss, i) {
3e1d2eed
TH
5858 if (strcmp(token, ss->name) &&
5859 strcmp(token, ss->legacy_name))
5860 continue;
a3e72739 5861 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5862 }
5863 }
5864 return 1;
5865}
5866__setup("cgroup_disable=", cgroup_disable);
38460b48 5867
223ffb29
JW
5868static int __init cgroup_no_v1(char *str)
5869{
5870 struct cgroup_subsys *ss;
5871 char *token;
5872 int i;
5873
5874 while ((token = strsep(&str, ",")) != NULL) {
5875 if (!*token)
5876 continue;
5877
5878 if (!strcmp(token, "all")) {
6e5c8307 5879 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
5880 break;
5881 }
5882
5883 for_each_subsys(ss, i) {
5884 if (strcmp(token, ss->name) &&
5885 strcmp(token, ss->legacy_name))
5886 continue;
5887
5888 cgroup_no_v1_mask |= 1 << i;
5889 }
5890 }
5891 return 1;
5892}
5893__setup("cgroup_no_v1=", cgroup_no_v1);
5894
b77d7b60 5895/**
ec903c0c 5896 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5897 * @dentry: directory dentry of interest
5898 * @ss: subsystem of interest
b77d7b60 5899 *
5a17f543
TH
5900 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5901 * to get the corresponding css and return it. If such css doesn't exist
5902 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5903 */
ec903c0c
TH
5904struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5905 struct cgroup_subsys *ss)
e5d1367f 5906{
2bd59d48 5907 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 5908 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 5909 struct cgroup_subsys_state *css = NULL;
e5d1367f 5910 struct cgroup *cgrp;
e5d1367f 5911
35cf0836 5912 /* is @dentry a cgroup dir? */
f17fc25f
TH
5913 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5914 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5915 return ERR_PTR(-EBADF);
5916
5a17f543
TH
5917 rcu_read_lock();
5918
2bd59d48
TH
5919 /*
5920 * This path doesn't originate from kernfs and @kn could already
5921 * have been or be removed at any point. @kn->priv is RCU
a4189487 5922 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5923 */
5924 cgrp = rcu_dereference(kn->priv);
5925 if (cgrp)
5926 css = cgroup_css(cgrp, ss);
5a17f543 5927
ec903c0c 5928 if (!css || !css_tryget_online(css))
5a17f543
TH
5929 css = ERR_PTR(-ENOENT);
5930
5931 rcu_read_unlock();
5932 return css;
e5d1367f 5933}
e5d1367f 5934
1cb650b9
LZ
5935/**
5936 * css_from_id - lookup css by id
5937 * @id: the cgroup id
5938 * @ss: cgroup subsys to be looked into
5939 *
5940 * Returns the css if there's valid one with @id, otherwise returns NULL.
5941 * Should be called under rcu_read_lock().
5942 */
5943struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5944{
6fa4918d 5945 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5946 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5947}
5948
16af4396
TH
5949/**
5950 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5951 * @path: path on the default hierarchy
5952 *
5953 * Find the cgroup at @path on the default hierarchy, increment its
5954 * reference count and return it. Returns pointer to the found cgroup on
5955 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5956 * if @path points to a non-directory.
5957 */
5958struct cgroup *cgroup_get_from_path(const char *path)
5959{
5960 struct kernfs_node *kn;
5961 struct cgroup *cgrp;
5962
5963 mutex_lock(&cgroup_mutex);
5964
5965 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5966 if (kn) {
5967 if (kernfs_type(kn) == KERNFS_DIR) {
5968 cgrp = kn->priv;
5969 cgroup_get(cgrp);
5970 } else {
5971 cgrp = ERR_PTR(-ENOTDIR);
5972 }
5973 kernfs_put(kn);
5974 } else {
5975 cgrp = ERR_PTR(-ENOENT);
5976 }
5977
5978 mutex_unlock(&cgroup_mutex);
5979 return cgrp;
5980}
5981EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5982
bd1060a1
TH
5983/*
5984 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5985 * definition in cgroup-defs.h.
5986 */
5987#ifdef CONFIG_SOCK_CGROUP_DATA
5988
5989#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5990
3fa4cc9c 5991DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
5992static bool cgroup_sk_alloc_disabled __read_mostly;
5993
5994void cgroup_sk_alloc_disable(void)
5995{
5996 if (cgroup_sk_alloc_disabled)
5997 return;
5998 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5999 cgroup_sk_alloc_disabled = true;
6000}
6001
6002#else
6003
6004#define cgroup_sk_alloc_disabled false
6005
6006#endif
6007
6008void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6009{
6010 if (cgroup_sk_alloc_disabled)
6011 return;
6012
6013 rcu_read_lock();
6014
6015 while (true) {
6016 struct css_set *cset;
6017
6018 cset = task_css_set(current);
6019 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6020 skcd->val = (unsigned long)cset->dfl_cgrp;
6021 break;
6022 }
6023 cpu_relax();
6024 }
6025
6026 rcu_read_unlock();
6027}
6028
6029void cgroup_sk_free(struct sock_cgroup_data *skcd)
6030{
6031 cgroup_put(sock_cgroup_ptr(skcd));
6032}
6033
6034#endif /* CONFIG_SOCK_CGROUP_DATA */
6035
fe693435 6036#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6037static struct cgroup_subsys_state *
6038debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6039{
6040 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6041
6042 if (!css)
6043 return ERR_PTR(-ENOMEM);
6044
6045 return css;
6046}
6047
eb95419b 6048static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6049{
eb95419b 6050 kfree(css);
fe693435
PM
6051}
6052
182446d0
TH
6053static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6054 struct cftype *cft)
fe693435 6055{
182446d0 6056 return cgroup_task_count(css->cgroup);
fe693435
PM
6057}
6058
182446d0
TH
6059static u64 current_css_set_read(struct cgroup_subsys_state *css,
6060 struct cftype *cft)
fe693435
PM
6061{
6062 return (u64)(unsigned long)current->cgroups;
6063}
6064
182446d0 6065static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6066 struct cftype *cft)
fe693435
PM
6067{
6068 u64 count;
6069
6070 rcu_read_lock();
a8ad805c 6071 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6072 rcu_read_unlock();
6073 return count;
6074}
6075
2da8ca82 6076static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6077{
69d0206c 6078 struct cgrp_cset_link *link;
5abb8855 6079 struct css_set *cset;
e61734c5
TH
6080 char *name_buf;
6081
6082 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6083 if (!name_buf)
6084 return -ENOMEM;
7717f7ba 6085
f0d9a5f1 6086 spin_lock_bh(&css_set_lock);
7717f7ba 6087 rcu_read_lock();
5abb8855 6088 cset = rcu_dereference(current->cgroups);
69d0206c 6089 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6090 struct cgroup *c = link->cgrp;
7717f7ba 6091
a2dd4247 6092 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6093 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6094 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6095 }
6096 rcu_read_unlock();
f0d9a5f1 6097 spin_unlock_bh(&css_set_lock);
e61734c5 6098 kfree(name_buf);
7717f7ba
PM
6099 return 0;
6100}
6101
6102#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6103static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6104{
2da8ca82 6105 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6106 struct cgrp_cset_link *link;
7717f7ba 6107
f0d9a5f1 6108 spin_lock_bh(&css_set_lock);
182446d0 6109 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6110 struct css_set *cset = link->cset;
7717f7ba
PM
6111 struct task_struct *task;
6112 int count = 0;
c7561128 6113
5abb8855 6114 seq_printf(seq, "css_set %p\n", cset);
c7561128 6115
5abb8855 6116 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6117 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6118 goto overflow;
6119 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6120 }
6121
6122 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6123 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6124 goto overflow;
6125 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6126 }
c7561128
TH
6127 continue;
6128 overflow:
6129 seq_puts(seq, " ...\n");
7717f7ba 6130 }
f0d9a5f1 6131 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6132 return 0;
6133}
6134
182446d0 6135static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6136{
27bd4dbb 6137 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6138 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6139}
6140
6141static struct cftype debug_files[] = {
fe693435
PM
6142 {
6143 .name = "taskcount",
6144 .read_u64 = debug_taskcount_read,
6145 },
6146
6147 {
6148 .name = "current_css_set",
6149 .read_u64 = current_css_set_read,
6150 },
6151
6152 {
6153 .name = "current_css_set_refcount",
6154 .read_u64 = current_css_set_refcount_read,
6155 },
6156
7717f7ba
PM
6157 {
6158 .name = "current_css_set_cg_links",
2da8ca82 6159 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6160 },
6161
6162 {
6163 .name = "cgroup_css_links",
2da8ca82 6164 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6165 },
6166
fe693435
PM
6167 {
6168 .name = "releasable",
6169 .read_u64 = releasable_read,
6170 },
fe693435 6171
4baf6e33
TH
6172 { } /* terminate */
6173};
fe693435 6174
073219e9 6175struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6176 .css_alloc = debug_css_alloc,
6177 .css_free = debug_css_free,
5577964e 6178 .legacy_cftypes = debug_files,
fe693435
PM
6179};
6180#endif /* CONFIG_CGROUP_DEBUG */