cgroup: add css_set->mg_tasks
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 55#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 56#include <linux/kthread.h>
776f02fa 57#include <linux/delay.h>
846c7bb0 58
60063497 59#include <linux/atomic.h>
ddbcc7e8 60
b1a21367
TH
61/*
62 * pidlists linger the following amount before being destroyed. The goal
63 * is avoiding frequent destruction in the middle of consecutive read calls
64 * Expiring in the middle is a performance problem not a correctness one.
65 * 1 sec should be enough.
66 */
67#define CGROUP_PIDLIST_DESTROY_DELAY HZ
68
8d7e6fb0
TH
69#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
70 MAX_CFTYPE_NAME + 2)
71
ace2bee8
TH
72/*
73 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
74 * creation/removal and hierarchy changing operations including cgroup
75 * creation, removal, css association and controller rebinding. This outer
76 * lock is needed mainly to resolve the circular dependency between kernfs
77 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
78 */
79static DEFINE_MUTEX(cgroup_tree_mutex);
80
e25e2cbb
TH
81/*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
8af01f56 87EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 88#else
81a6a5cd 89static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
90#endif
91
69e943b7
TH
92/*
93 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
94 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
95 */
96static DEFINE_SPINLOCK(release_agent_path_lock);
97
ace2bee8 98#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 99 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 100 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 101 lockdep_is_held(&cgroup_mutex), \
ace2bee8 102 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 103
e5fca243
TH
104/*
105 * cgroup destruction makes heavy use of work items and there can be a lot
106 * of concurrent destructions. Use a separate workqueue so that cgroup
107 * destruction work items don't end up filling up max_active of system_wq
108 * which may lead to deadlock.
109 */
110static struct workqueue_struct *cgroup_destroy_wq;
111
b1a21367
TH
112/*
113 * pidlist destructions need to be flushed on cgroup destruction. Use a
114 * separate workqueue as flush domain.
115 */
116static struct workqueue_struct *cgroup_pidlist_destroy_wq;
117
3ed80a62 118/* generate an array of cgroup subsystem pointers */
073219e9 119#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 120static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
121#include <linux/cgroup_subsys.h>
122};
073219e9
TH
123#undef SUBSYS
124
125/* array of cgroup subsystem names */
126#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
127static const char *cgroup_subsys_name[] = {
128#include <linux/cgroup_subsys.h>
129};
130#undef SUBSYS
ddbcc7e8 131
ddbcc7e8 132/*
9871bf95
TH
133 * The dummy hierarchy, reserved for the subsystems that are otherwise
134 * unattached - it never has more than a single cgroup, and all tasks are
135 * part of that cgroup.
ddbcc7e8 136 */
9871bf95
TH
137static struct cgroupfs_root cgroup_dummy_root;
138
139/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
140static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
141
142/* The list of hierarchy roots */
143
9871bf95
TH
144static LIST_HEAD(cgroup_roots);
145static int cgroup_root_count;
ddbcc7e8 146
3417ae1f 147/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 148static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 149
794611a1
LZ
150/*
151 * Assign a monotonically increasing serial number to cgroups. It
152 * guarantees cgroups with bigger numbers are newer than those with smaller
153 * numbers. Also, as cgroups are always appended to the parent's
154 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
155 * the ascending serial number order on the list. Protected by
156 * cgroup_mutex.
794611a1 157 */
00356bd5 158static u64 cgroup_serial_nr_next = 1;
794611a1 159
ddbcc7e8 160/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
161 * check for fork/exit handlers to call. This avoids us having to do
162 * extra work in the fork/exit path if none of the subsystems need to
163 * be called.
ddbcc7e8 164 */
8947f9d5 165static int need_forkexit_callback __read_mostly;
ddbcc7e8 166
628f7cd4
TH
167static struct cftype cgroup_base_files[];
168
59f5296b 169static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
170static int rebind_subsystems(struct cgroupfs_root *root,
171 unsigned long added_mask, unsigned removed_mask);
f20104de 172static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 173static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
174static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
175 bool is_add);
b1a21367 176static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 177
95109b62
TH
178/**
179 * cgroup_css - obtain a cgroup's css for the specified subsystem
180 * @cgrp: the cgroup of interest
ca8bdcaf 181 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 182 *
ca8bdcaf
TH
183 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
184 * function must be called either under cgroup_mutex or rcu_read_lock() and
185 * the caller is responsible for pinning the returned css if it wants to
186 * keep accessing it outside the said locks. This function may return
187 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
188 */
189static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 190 struct cgroup_subsys *ss)
95109b62 191{
ca8bdcaf 192 if (ss)
aec25020 193 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
194 lockdep_is_held(&cgroup_tree_mutex) ||
195 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
196 else
197 return &cgrp->dummy_css;
95109b62 198}
42809dd4 199
ddbcc7e8 200/* convenient tests for these bits */
54766d4a 201static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 202{
54766d4a 203 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
204}
205
59f5296b
TH
206struct cgroup_subsys_state *seq_css(struct seq_file *seq)
207{
2bd59d48
TH
208 struct kernfs_open_file *of = seq->private;
209 struct cgroup *cgrp = of->kn->parent->priv;
210 struct cftype *cft = seq_cft(seq);
211
212 /*
213 * This is open and unprotected implementation of cgroup_css().
214 * seq_css() is only called from a kernfs file operation which has
215 * an active reference on the file. Because all the subsystem
216 * files are drained before a css is disassociated with a cgroup,
217 * the matching css from the cgroup's subsys table is guaranteed to
218 * be and stay valid until the enclosing operation is complete.
219 */
220 if (cft->ss)
221 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
222 else
223 return &cgrp->dummy_css;
59f5296b
TH
224}
225EXPORT_SYMBOL_GPL(seq_css);
226
78574cf9
LZ
227/**
228 * cgroup_is_descendant - test ancestry
229 * @cgrp: the cgroup to be tested
230 * @ancestor: possible ancestor of @cgrp
231 *
232 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
233 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
234 * and @ancestor are accessible.
235 */
236bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
237{
238 while (cgrp) {
239 if (cgrp == ancestor)
240 return true;
241 cgrp = cgrp->parent;
242 }
243 return false;
244}
ddbcc7e8 245
e9685a03 246static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
247{
248 const int bits =
bd89aabc
PM
249 (1 << CGRP_RELEASABLE) |
250 (1 << CGRP_NOTIFY_ON_RELEASE);
251 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
252}
253
e9685a03 254static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 255{
bd89aabc 256 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
257}
258
1c6727af
TH
259/**
260 * for_each_css - iterate all css's of a cgroup
261 * @css: the iteration cursor
262 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
263 * @cgrp: the target cgroup to iterate css's of
264 *
265 * Should be called under cgroup_mutex.
266 */
267#define for_each_css(css, ssid, cgrp) \
268 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
269 if (!((css) = rcu_dereference_check( \
270 (cgrp)->subsys[(ssid)], \
ace2bee8 271 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
272 lockdep_is_held(&cgroup_mutex)))) { } \
273 else
274
30159ec7 275/**
3ed80a62 276 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 277 * @ss: the iteration cursor
780cd8b3 278 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 279 */
780cd8b3 280#define for_each_subsys(ss, ssid) \
3ed80a62
TH
281 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
282 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 283
5549c497
TH
284/* iterate across the active hierarchies */
285#define for_each_active_root(root) \
286 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
0942eeee 343/*
96d365e0
TH
344 * css_set_rwsem protects the list of css_set objects, and the chain of
345 * tasks off each css_set.
0942eeee 346 */
96d365e0 347static DECLARE_RWSEM(css_set_rwsem);
817929ec
PM
348static int css_set_count;
349
7717f7ba
PM
350/*
351 * hash table for cgroup groups. This improves the performance to find
352 * an existing css_set. This hash doesn't (currently) take into
353 * account cgroups in empty hierarchies.
354 */
472b1053 355#define CSS_SET_HASH_BITS 7
0ac801fe 356static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 357
0ac801fe 358static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 359{
0ac801fe 360 unsigned long key = 0UL;
30159ec7
TH
361 struct cgroup_subsys *ss;
362 int i;
472b1053 363
30159ec7 364 for_each_subsys(ss, i)
0ac801fe
LZ
365 key += (unsigned long)css[i];
366 key = (key >> 16) ^ key;
472b1053 367
0ac801fe 368 return key;
472b1053
LZ
369}
370
89c5509b 371static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 372{
69d0206c 373 struct cgrp_cset_link *link, *tmp_link;
5abb8855 374
89c5509b
TH
375 lockdep_assert_held(&css_set_rwsem);
376
377 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 378 return;
81a6a5cd 379
2c6ab6d2 380 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 381 hash_del(&cset->hlist);
2c6ab6d2
PM
382 css_set_count--;
383
69d0206c 384 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 385 struct cgroup *cgrp = link->cgrp;
5abb8855 386
69d0206c
TH
387 list_del(&link->cset_link);
388 list_del(&link->cgrp_link);
71b5707e 389
96d365e0 390 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 391 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 392 if (taskexit)
bd89aabc
PM
393 set_bit(CGRP_RELEASABLE, &cgrp->flags);
394 check_for_release(cgrp);
81a6a5cd 395 }
2c6ab6d2
PM
396
397 kfree(link);
81a6a5cd 398 }
2c6ab6d2 399
5abb8855 400 kfree_rcu(cset, rcu_head);
b4f48b63
PM
401}
402
89c5509b
TH
403static void put_css_set(struct css_set *cset, bool taskexit)
404{
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cset->refcount, -1, 1))
411 return;
412
413 down_write(&css_set_rwsem);
414 put_css_set_locked(cset, taskexit);
415 up_write(&css_set_rwsem);
416}
417
817929ec
PM
418/*
419 * refcounted get/put for css_set objects
420 */
5abb8855 421static inline void get_css_set(struct css_set *cset)
817929ec 422{
5abb8855 423 atomic_inc(&cset->refcount);
817929ec
PM
424}
425
b326f9d0 426/**
7717f7ba 427 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
428 * @cset: candidate css_set being tested
429 * @old_cset: existing css_set for a task
7717f7ba
PM
430 * @new_cgrp: cgroup that's being entered by the task
431 * @template: desired set of css pointers in css_set (pre-calculated)
432 *
6f4b7e63 433 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
434 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
435 */
5abb8855
TH
436static bool compare_css_sets(struct css_set *cset,
437 struct css_set *old_cset,
7717f7ba
PM
438 struct cgroup *new_cgrp,
439 struct cgroup_subsys_state *template[])
440{
441 struct list_head *l1, *l2;
442
5abb8855 443 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
444 /* Not all subsystems matched */
445 return false;
446 }
447
448 /*
449 * Compare cgroup pointers in order to distinguish between
450 * different cgroups in heirarchies with no subsystems. We
451 * could get by with just this check alone (and skip the
452 * memcmp above) but on most setups the memcmp check will
453 * avoid the need for this more expensive check on almost all
454 * candidates.
455 */
456
69d0206c
TH
457 l1 = &cset->cgrp_links;
458 l2 = &old_cset->cgrp_links;
7717f7ba 459 while (1) {
69d0206c 460 struct cgrp_cset_link *link1, *link2;
5abb8855 461 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
462
463 l1 = l1->next;
464 l2 = l2->next;
465 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
466 if (l1 == &cset->cgrp_links) {
467 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
468 break;
469 } else {
69d0206c 470 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
471 }
472 /* Locate the cgroups associated with these links. */
69d0206c
TH
473 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
474 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
475 cgrp1 = link1->cgrp;
476 cgrp2 = link2->cgrp;
7717f7ba 477 /* Hierarchies should be linked in the same order. */
5abb8855 478 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
479
480 /*
481 * If this hierarchy is the hierarchy of the cgroup
482 * that's changing, then we need to check that this
483 * css_set points to the new cgroup; if it's any other
484 * hierarchy, then this css_set should point to the
485 * same cgroup as the old css_set.
486 */
5abb8855
TH
487 if (cgrp1->root == new_cgrp->root) {
488 if (cgrp1 != new_cgrp)
7717f7ba
PM
489 return false;
490 } else {
5abb8855 491 if (cgrp1 != cgrp2)
7717f7ba
PM
492 return false;
493 }
494 }
495 return true;
496}
497
b326f9d0
TH
498/**
499 * find_existing_css_set - init css array and find the matching css_set
500 * @old_cset: the css_set that we're using before the cgroup transition
501 * @cgrp: the cgroup that we're moving into
502 * @template: out param for the new set of csses, should be clear on entry
817929ec 503 */
5abb8855
TH
504static struct css_set *find_existing_css_set(struct css_set *old_cset,
505 struct cgroup *cgrp,
506 struct cgroup_subsys_state *template[])
b4f48b63 507{
bd89aabc 508 struct cgroupfs_root *root = cgrp->root;
30159ec7 509 struct cgroup_subsys *ss;
5abb8855 510 struct css_set *cset;
0ac801fe 511 unsigned long key;
b326f9d0 512 int i;
817929ec 513
aae8aab4
BB
514 /*
515 * Build the set of subsystem state objects that we want to see in the
516 * new css_set. while subsystems can change globally, the entries here
517 * won't change, so no need for locking.
518 */
30159ec7 519 for_each_subsys(ss, i) {
a1a71b45 520 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
521 /* Subsystem is in this hierarchy. So we want
522 * the subsystem state from the new
523 * cgroup */
ca8bdcaf 524 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
525 } else {
526 /* Subsystem is not in this hierarchy, so we
527 * don't want to change the subsystem state */
5abb8855 528 template[i] = old_cset->subsys[i];
817929ec
PM
529 }
530 }
531
0ac801fe 532 key = css_set_hash(template);
5abb8855
TH
533 hash_for_each_possible(css_set_table, cset, hlist, key) {
534 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
535 continue;
536
537 /* This css_set matches what we need */
5abb8855 538 return cset;
472b1053 539 }
817929ec
PM
540
541 /* No existing cgroup group matched */
542 return NULL;
543}
544
69d0206c 545static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 546{
69d0206c 547 struct cgrp_cset_link *link, *tmp_link;
36553434 548
69d0206c
TH
549 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
550 list_del(&link->cset_link);
36553434
LZ
551 kfree(link);
552 }
553}
554
69d0206c
TH
555/**
556 * allocate_cgrp_cset_links - allocate cgrp_cset_links
557 * @count: the number of links to allocate
558 * @tmp_links: list_head the allocated links are put on
559 *
560 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
561 * through ->cset_link. Returns 0 on success or -errno.
817929ec 562 */
69d0206c 563static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 564{
69d0206c 565 struct cgrp_cset_link *link;
817929ec 566 int i;
69d0206c
TH
567
568 INIT_LIST_HEAD(tmp_links);
569
817929ec 570 for (i = 0; i < count; i++) {
f4f4be2b 571 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 572 if (!link) {
69d0206c 573 free_cgrp_cset_links(tmp_links);
817929ec
PM
574 return -ENOMEM;
575 }
69d0206c 576 list_add(&link->cset_link, tmp_links);
817929ec
PM
577 }
578 return 0;
579}
580
c12f65d4
LZ
581/**
582 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 583 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 584 * @cset: the css_set to be linked
c12f65d4
LZ
585 * @cgrp: the destination cgroup
586 */
69d0206c
TH
587static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
588 struct cgroup *cgrp)
c12f65d4 589{
69d0206c 590 struct cgrp_cset_link *link;
c12f65d4 591
69d0206c
TH
592 BUG_ON(list_empty(tmp_links));
593 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
594 link->cset = cset;
7717f7ba 595 link->cgrp = cgrp;
69d0206c 596 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
597 /*
598 * Always add links to the tail of the list so that the list
599 * is sorted by order of hierarchy creation
600 */
69d0206c 601 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
602}
603
b326f9d0
TH
604/**
605 * find_css_set - return a new css_set with one cgroup updated
606 * @old_cset: the baseline css_set
607 * @cgrp: the cgroup to be updated
608 *
609 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
610 * substituted into the appropriate hierarchy.
817929ec 611 */
5abb8855
TH
612static struct css_set *find_css_set(struct css_set *old_cset,
613 struct cgroup *cgrp)
817929ec 614{
b326f9d0 615 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 616 struct css_set *cset;
69d0206c
TH
617 struct list_head tmp_links;
618 struct cgrp_cset_link *link;
0ac801fe 619 unsigned long key;
472b1053 620
b326f9d0
TH
621 lockdep_assert_held(&cgroup_mutex);
622
817929ec
PM
623 /* First see if we already have a cgroup group that matches
624 * the desired set */
96d365e0 625 down_read(&css_set_rwsem);
5abb8855
TH
626 cset = find_existing_css_set(old_cset, cgrp, template);
627 if (cset)
628 get_css_set(cset);
96d365e0 629 up_read(&css_set_rwsem);
817929ec 630
5abb8855
TH
631 if (cset)
632 return cset;
817929ec 633
f4f4be2b 634 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 635 if (!cset)
817929ec
PM
636 return NULL;
637
69d0206c 638 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 639 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 640 kfree(cset);
817929ec
PM
641 return NULL;
642 }
643
5abb8855 644 atomic_set(&cset->refcount, 1);
69d0206c 645 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 646 INIT_LIST_HEAD(&cset->tasks);
c7561128 647 INIT_LIST_HEAD(&cset->mg_tasks);
5abb8855 648 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
649
650 /* Copy the set of subsystem state objects generated in
651 * find_existing_css_set() */
5abb8855 652 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 653
96d365e0 654 down_write(&css_set_rwsem);
817929ec 655 /* Add reference counts and links from the new css_set. */
69d0206c 656 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 657 struct cgroup *c = link->cgrp;
69d0206c 658
7717f7ba
PM
659 if (c->root == cgrp->root)
660 c = cgrp;
69d0206c 661 link_css_set(&tmp_links, cset, c);
7717f7ba 662 }
817929ec 663
69d0206c 664 BUG_ON(!list_empty(&tmp_links));
817929ec 665
817929ec 666 css_set_count++;
472b1053
LZ
667
668 /* Add this cgroup group to the hash table */
5abb8855
TH
669 key = css_set_hash(cset->subsys);
670 hash_add(css_set_table, &cset->hlist, key);
472b1053 671
96d365e0 672 up_write(&css_set_rwsem);
817929ec 673
5abb8855 674 return cset;
b4f48b63
PM
675}
676
2bd59d48
TH
677static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
678{
679 struct cgroup *top_cgrp = kf_root->kn->priv;
680
681 return top_cgrp->root;
682}
683
f2e85d57
TH
684static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
685{
686 int id;
687
688 lockdep_assert_held(&cgroup_mutex);
689
690 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
691 GFP_KERNEL);
692 if (id < 0)
693 return id;
694
695 root->hierarchy_id = id;
696 return 0;
697}
698
699static void cgroup_exit_root_id(struct cgroupfs_root *root)
700{
701 lockdep_assert_held(&cgroup_mutex);
702
703 if (root->hierarchy_id) {
704 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
705 root->hierarchy_id = 0;
706 }
707}
708
709static void cgroup_free_root(struct cgroupfs_root *root)
710{
711 if (root) {
712 /* hierarhcy ID shoulid already have been released */
713 WARN_ON_ONCE(root->hierarchy_id);
714
715 idr_destroy(&root->cgroup_idr);
716 kfree(root);
717 }
718}
719
776f02fa 720static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 721{
f2e85d57
TH
722 struct cgroup *cgrp = &root->top_cgroup;
723 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 724
2bd59d48 725 mutex_lock(&cgroup_tree_mutex);
2bd59d48 726 mutex_lock(&cgroup_mutex);
f2e85d57 727
776f02fa 728 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
729 BUG_ON(!list_empty(&cgrp->children));
730
f2e85d57 731 /* Rebind all subsystems back to the default hierarchy */
35585573 732 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
733
734 /*
735 * Release all the links from cset_links to this hierarchy's
736 * root cgroup
737 */
96d365e0 738 down_write(&css_set_rwsem);
f2e85d57
TH
739
740 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
741 list_del(&link->cset_link);
742 list_del(&link->cgrp_link);
743 kfree(link);
744 }
96d365e0 745 up_write(&css_set_rwsem);
f2e85d57
TH
746
747 if (!list_empty(&root->root_list)) {
748 list_del(&root->root_list);
749 cgroup_root_count--;
750 }
751
752 cgroup_exit_root_id(root);
753
754 mutex_unlock(&cgroup_mutex);
755 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 756
2bd59d48 757 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
758 cgroup_free_root(root);
759}
760
7717f7ba
PM
761/*
762 * Return the cgroup for "task" from the given hierarchy. Must be
96d365e0 763 * called with cgroup_mutex and css_set_rwsem held.
7717f7ba
PM
764 */
765static struct cgroup *task_cgroup_from_root(struct task_struct *task,
766 struct cgroupfs_root *root)
767{
5abb8855 768 struct css_set *cset;
7717f7ba
PM
769 struct cgroup *res = NULL;
770
96d365e0
TH
771 lockdep_assert_held(&cgroup_mutex);
772 lockdep_assert_held(&css_set_rwsem);
773
7717f7ba
PM
774 /*
775 * No need to lock the task - since we hold cgroup_mutex the
776 * task can't change groups, so the only thing that can happen
777 * is that it exits and its css is set back to init_css_set.
778 */
a8ad805c 779 cset = task_css_set(task);
5abb8855 780 if (cset == &init_css_set) {
7717f7ba
PM
781 res = &root->top_cgroup;
782 } else {
69d0206c
TH
783 struct cgrp_cset_link *link;
784
785 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 786 struct cgroup *c = link->cgrp;
69d0206c 787
7717f7ba
PM
788 if (c->root == root) {
789 res = c;
790 break;
791 }
792 }
793 }
96d365e0 794
7717f7ba
PM
795 BUG_ON(!res);
796 return res;
797}
798
ddbcc7e8
PM
799/*
800 * There is one global cgroup mutex. We also require taking
801 * task_lock() when dereferencing a task's cgroup subsys pointers.
802 * See "The task_lock() exception", at the end of this comment.
803 *
804 * A task must hold cgroup_mutex to modify cgroups.
805 *
806 * Any task can increment and decrement the count field without lock.
807 * So in general, code holding cgroup_mutex can't rely on the count
808 * field not changing. However, if the count goes to zero, then only
956db3ca 809 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
810 * means that no tasks are currently attached, therefore there is no
811 * way a task attached to that cgroup can fork (the other way to
812 * increment the count). So code holding cgroup_mutex can safely
813 * assume that if the count is zero, it will stay zero. Similarly, if
814 * a task holds cgroup_mutex on a cgroup with zero count, it
815 * knows that the cgroup won't be removed, as cgroup_rmdir()
816 * needs that mutex.
817 *
ddbcc7e8
PM
818 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
819 * (usually) take cgroup_mutex. These are the two most performance
820 * critical pieces of code here. The exception occurs on cgroup_exit(),
821 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
822 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
823 * to the release agent with the name of the cgroup (path relative to
824 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
825 *
826 * A cgroup can only be deleted if both its 'count' of using tasks
827 * is zero, and its list of 'children' cgroups is empty. Since all
828 * tasks in the system use _some_ cgroup, and since there is always at
829 * least one task in the system (init, pid == 1), therefore, top_cgroup
830 * always has either children cgroups and/or using tasks. So we don't
831 * need a special hack to ensure that top_cgroup cannot be deleted.
832 *
833 * The task_lock() exception
834 *
835 * The need for this exception arises from the action of
d0b2fdd2 836 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 837 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
838 * several performance critical places that need to reference
839 * task->cgroup without the expense of grabbing a system global
840 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 841 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
842 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
843 * the task_struct routinely used for such matters.
844 *
845 * P.S. One more locking exception. RCU is used to guard the
956db3ca 846 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
847 */
848
628f7cd4 849static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 850static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 851static const struct file_operations proc_cgroupstats_operations;
a424316c 852
8d7e6fb0
TH
853static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
854 char *buf)
855{
856 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
857 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
858 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
859 cft->ss->name, cft->name);
860 else
861 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
862 return buf;
863}
864
f2e85d57
TH
865/**
866 * cgroup_file_mode - deduce file mode of a control file
867 * @cft: the control file in question
868 *
869 * returns cft->mode if ->mode is not 0
870 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
871 * returns S_IRUGO if it has only a read handler
872 * returns S_IWUSR if it has only a write hander
873 */
874static umode_t cgroup_file_mode(const struct cftype *cft)
875{
876 umode_t mode = 0;
877
878 if (cft->mode)
879 return cft->mode;
880
881 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
882 mode |= S_IRUGO;
883
884 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
885 cft->trigger)
886 mode |= S_IWUSR;
887
888 return mode;
889}
890
be445626
LZ
891static void cgroup_free_fn(struct work_struct *work)
892{
ea15f8cc 893 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 894
3c9c825b 895 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 896 cgroup_pidlist_destroy_all(cgrp);
be445626 897
776f02fa
TH
898 if (cgrp->parent) {
899 /*
900 * We get a ref to the parent, and put the ref when this
901 * cgroup is being freed, so it's guaranteed that the
902 * parent won't be destroyed before its children.
903 */
904 cgroup_put(cgrp->parent);
905 kernfs_put(cgrp->kn);
906 kfree(cgrp);
907 } else {
908 /*
909 * This is top cgroup's refcnt reaching zero, which
910 * indicates that the root should be released.
911 */
912 cgroup_destroy_root(cgrp->root);
913 }
be445626
LZ
914}
915
916static void cgroup_free_rcu(struct rcu_head *head)
917{
918 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
919
ea15f8cc 920 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 921 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
922}
923
59f5296b
TH
924static void cgroup_get(struct cgroup *cgrp)
925{
2bd59d48
TH
926 WARN_ON_ONCE(cgroup_is_dead(cgrp));
927 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
928 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
929}
930
59f5296b
TH
931static void cgroup_put(struct cgroup *cgrp)
932{
2bd59d48
TH
933 if (!atomic_dec_and_test(&cgrp->refcnt))
934 return;
776f02fa 935 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 936 return;
59f5296b 937
2bd59d48
TH
938 /*
939 * XXX: cgrp->id is only used to look up css's. As cgroup and
940 * css's lifetimes will be decoupled, it should be made
941 * per-subsystem and moved to css->id so that lookups are
942 * successful until the target css is released.
943 */
944 mutex_lock(&cgroup_mutex);
945 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
946 mutex_unlock(&cgroup_mutex);
947 cgrp->id = -1;
ddbcc7e8 948
2bd59d48 949 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
950}
951
2739d3cc 952static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 953{
2bd59d48 954 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 955
ace2bee8 956 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 957 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
958}
959
13af07df 960/**
628f7cd4 961 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 962 * @cgrp: target cgroup
13af07df
AR
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
628f7cd4 965static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 966{
13af07df 967 struct cgroup_subsys *ss;
b420ba7d 968 int i;
05ef1d7c 969
b420ba7d 970 for_each_subsys(ss, i) {
0adb0704 971 struct cftype *cfts;
b420ba7d
TH
972
973 if (!test_bit(i, &subsys_mask))
13af07df 974 continue;
0adb0704
TH
975 list_for_each_entry(cfts, &ss->cfts, node)
976 cgroup_addrm_files(cgrp, cfts, false);
13af07df 977 }
ddbcc7e8
PM
978}
979
ddbcc7e8 980static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 981 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 982{
bd89aabc 983 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 984 struct cgroup_subsys *ss;
3126121f 985 int i, ret;
ddbcc7e8 986
ace2bee8
TH
987 lockdep_assert_held(&cgroup_tree_mutex);
988 lockdep_assert_held(&cgroup_mutex);
aae8aab4 989
ddbcc7e8 990 /* Check that any added subsystems are currently free */
3ed80a62
TH
991 for_each_subsys(ss, i)
992 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
993 return -EBUSY;
ddbcc7e8 994
3126121f
TH
995 ret = cgroup_populate_dir(cgrp, added_mask);
996 if (ret)
3ed80a62 997 return ret;
3126121f
TH
998
999 /*
1000 * Nothing can fail from this point on. Remove files for the
1001 * removed subsystems and rebind each subsystem.
1002 */
4ac06017 1003 mutex_unlock(&cgroup_mutex);
3126121f 1004 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1005 mutex_lock(&cgroup_mutex);
ddbcc7e8 1006
30159ec7 1007 for_each_subsys(ss, i) {
ddbcc7e8 1008 unsigned long bit = 1UL << i;
30159ec7 1009
a1a71b45 1010 if (bit & added_mask) {
ddbcc7e8 1011 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1012 BUG_ON(cgroup_css(cgrp, ss));
1013 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1014 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1015
73e80ed8 1016 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1017 cgroup_css(cgroup_dummy_top, ss));
1018 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1019
b2aa30f7 1020 ss->root = root;
ddbcc7e8 1021 if (ss->bind)
ca8bdcaf 1022 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1023
cf5d5941 1024 /* refcount was already taken, and we're keeping it */
a8a648c4 1025 root->subsys_mask |= bit;
a1a71b45 1026 } else if (bit & removed_mask) {
ddbcc7e8 1027 /* We're removing this subsystem */
ca8bdcaf
TH
1028 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1029 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1030
ddbcc7e8 1031 if (ss->bind)
ca8bdcaf 1032 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1033
ca8bdcaf 1034 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1035 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1036
9871bf95 1037 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1038 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1039 }
1040 }
ddbcc7e8 1041
2bd59d48 1042 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1043 return 0;
1044}
1045
2bd59d48
TH
1046static int cgroup_show_options(struct seq_file *seq,
1047 struct kernfs_root *kf_root)
ddbcc7e8 1048{
2bd59d48 1049 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1050 struct cgroup_subsys *ss;
b85d2040 1051 int ssid;
ddbcc7e8 1052
b85d2040
TH
1053 for_each_subsys(ss, ssid)
1054 if (root->subsys_mask & (1 << ssid))
1055 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1056 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1057 seq_puts(seq, ",sane_behavior");
93438629 1058 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1059 seq_puts(seq, ",noprefix");
93438629 1060 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1061 seq_puts(seq, ",xattr");
69e943b7
TH
1062
1063 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1064 if (strlen(root->release_agent_path))
1065 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1066 spin_unlock(&release_agent_path_lock);
1067
2260e7fc 1068 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1069 seq_puts(seq, ",clone_children");
c6d57f33
PM
1070 if (strlen(root->name))
1071 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1072 return 0;
1073}
1074
1075struct cgroup_sb_opts {
a1a71b45 1076 unsigned long subsys_mask;
ddbcc7e8 1077 unsigned long flags;
81a6a5cd 1078 char *release_agent;
2260e7fc 1079 bool cpuset_clone_children;
c6d57f33 1080 char *name;
2c6ab6d2
PM
1081 /* User explicitly requested empty subsystem */
1082 bool none;
ddbcc7e8
PM
1083};
1084
aae8aab4 1085/*
9871bf95
TH
1086 * Convert a hierarchy specifier into a bitmask of subsystems and
1087 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1088 * array. This function takes refcounts on subsystems to be used, unless it
1089 * returns error, in which case no refcounts are taken.
aae8aab4 1090 */
cf5d5941 1091static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1092{
32a8cf23
DL
1093 char *token, *o = data;
1094 bool all_ss = false, one_ss = false;
f9ab5b5b 1095 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1096 struct cgroup_subsys *ss;
1097 int i;
f9ab5b5b 1098
aae8aab4
BB
1099 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1100
f9ab5b5b 1101#ifdef CONFIG_CPUSETS
073219e9 1102 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1103#endif
ddbcc7e8 1104
c6d57f33 1105 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1106
1107 while ((token = strsep(&o, ",")) != NULL) {
1108 if (!*token)
1109 return -EINVAL;
32a8cf23 1110 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1111 /* Explicitly have no subsystems */
1112 opts->none = true;
32a8cf23
DL
1113 continue;
1114 }
1115 if (!strcmp(token, "all")) {
1116 /* Mutually exclusive option 'all' + subsystem name */
1117 if (one_ss)
1118 return -EINVAL;
1119 all_ss = true;
1120 continue;
1121 }
873fe09e
TH
1122 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1123 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1124 continue;
1125 }
32a8cf23 1126 if (!strcmp(token, "noprefix")) {
93438629 1127 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1128 continue;
1129 }
1130 if (!strcmp(token, "clone_children")) {
2260e7fc 1131 opts->cpuset_clone_children = true;
32a8cf23
DL
1132 continue;
1133 }
03b1cde6 1134 if (!strcmp(token, "xattr")) {
93438629 1135 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1136 continue;
1137 }
32a8cf23 1138 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1139 /* Specifying two release agents is forbidden */
1140 if (opts->release_agent)
1141 return -EINVAL;
c6d57f33 1142 opts->release_agent =
e400c285 1143 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1144 if (!opts->release_agent)
1145 return -ENOMEM;
32a8cf23
DL
1146 continue;
1147 }
1148 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1149 const char *name = token + 5;
1150 /* Can't specify an empty name */
1151 if (!strlen(name))
1152 return -EINVAL;
1153 /* Must match [\w.-]+ */
1154 for (i = 0; i < strlen(name); i++) {
1155 char c = name[i];
1156 if (isalnum(c))
1157 continue;
1158 if ((c == '.') || (c == '-') || (c == '_'))
1159 continue;
1160 return -EINVAL;
1161 }
1162 /* Specifying two names is forbidden */
1163 if (opts->name)
1164 return -EINVAL;
1165 opts->name = kstrndup(name,
e400c285 1166 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1167 GFP_KERNEL);
1168 if (!opts->name)
1169 return -ENOMEM;
32a8cf23
DL
1170
1171 continue;
1172 }
1173
30159ec7 1174 for_each_subsys(ss, i) {
32a8cf23
DL
1175 if (strcmp(token, ss->name))
1176 continue;
1177 if (ss->disabled)
1178 continue;
1179
1180 /* Mutually exclusive option 'all' + subsystem name */
1181 if (all_ss)
1182 return -EINVAL;
a1a71b45 1183 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1184 one_ss = true;
1185
1186 break;
1187 }
1188 if (i == CGROUP_SUBSYS_COUNT)
1189 return -ENOENT;
1190 }
1191
1192 /*
1193 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1194 * otherwise if 'none', 'name=' and a subsystem name options
1195 * were not specified, let's default to 'all'
32a8cf23 1196 */
30159ec7
TH
1197 if (all_ss || (!one_ss && !opts->none && !opts->name))
1198 for_each_subsys(ss, i)
1199 if (!ss->disabled)
1200 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1201
2c6ab6d2
PM
1202 /* Consistency checks */
1203
873fe09e
TH
1204 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1205 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1206
d3ba07c3
TH
1207 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1208 opts->cpuset_clone_children || opts->release_agent ||
1209 opts->name) {
1210 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1211 return -EINVAL;
1212 }
873fe09e
TH
1213 }
1214
f9ab5b5b
LZ
1215 /*
1216 * Option noprefix was introduced just for backward compatibility
1217 * with the old cpuset, so we allow noprefix only if mounting just
1218 * the cpuset subsystem.
1219 */
93438629 1220 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1221 return -EINVAL;
1222
2c6ab6d2
PM
1223
1224 /* Can't specify "none" and some subsystems */
a1a71b45 1225 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1226 return -EINVAL;
1227
1228 /*
1229 * We either have to specify by name or by subsystems. (So all
1230 * empty hierarchies must have a name).
1231 */
a1a71b45 1232 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1233 return -EINVAL;
1234
1235 return 0;
1236}
1237
2bd59d48 1238static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1239{
1240 int ret = 0;
2bd59d48 1241 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1242 struct cgroup_sb_opts opts;
a1a71b45 1243 unsigned long added_mask, removed_mask;
ddbcc7e8 1244
873fe09e
TH
1245 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1246 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1247 return -EINVAL;
1248 }
1249
ace2bee8 1250 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1251 mutex_lock(&cgroup_mutex);
1252
1253 /* See what subsystems are wanted */
1254 ret = parse_cgroupfs_options(data, &opts);
1255 if (ret)
1256 goto out_unlock;
1257
a8a648c4 1258 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1259 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1260 task_tgid_nr(current), current->comm);
1261
a1a71b45
AR
1262 added_mask = opts.subsys_mask & ~root->subsys_mask;
1263 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1264
cf5d5941 1265 /* Don't allow flags or name to change at remount */
0ce6cba3 1266 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1267 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1268 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1269 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1270 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1271 ret = -EINVAL;
1272 goto out_unlock;
1273 }
1274
f172e67c 1275 /* remounting is not allowed for populated hierarchies */
3c9c825b 1276 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1277 ret = -EBUSY;
0670e08b 1278 goto out_unlock;
cf5d5941 1279 }
ddbcc7e8 1280
a8a648c4 1281 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1282 if (ret)
0670e08b 1283 goto out_unlock;
ddbcc7e8 1284
69e943b7
TH
1285 if (opts.release_agent) {
1286 spin_lock(&release_agent_path_lock);
81a6a5cd 1287 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1288 spin_unlock(&release_agent_path_lock);
1289 }
ddbcc7e8 1290 out_unlock:
66bdc9cf 1291 kfree(opts.release_agent);
c6d57f33 1292 kfree(opts.name);
ddbcc7e8 1293 mutex_unlock(&cgroup_mutex);
ace2bee8 1294 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1295 return ret;
1296}
1297
afeb0f9f
TH
1298/*
1299 * To reduce the fork() overhead for systems that are not actually using
1300 * their cgroups capability, we don't maintain the lists running through
1301 * each css_set to its tasks until we see the list actually used - in other
1302 * words after the first mount.
1303 */
1304static bool use_task_css_set_links __read_mostly;
1305
1306static void cgroup_enable_task_cg_lists(void)
1307{
1308 struct task_struct *p, *g;
1309
96d365e0 1310 down_write(&css_set_rwsem);
afeb0f9f
TH
1311
1312 if (use_task_css_set_links)
1313 goto out_unlock;
1314
1315 use_task_css_set_links = true;
1316
1317 /*
1318 * We need tasklist_lock because RCU is not safe against
1319 * while_each_thread(). Besides, a forking task that has passed
1320 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1321 * is not guaranteed to have its child immediately visible in the
1322 * tasklist if we walk through it with RCU.
1323 */
1324 read_lock(&tasklist_lock);
1325 do_each_thread(g, p) {
1326 task_lock(p);
1327
1328 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1329 task_css_set(p) != &init_css_set);
1330
1331 /*
1332 * We should check if the process is exiting, otherwise
1333 * it will race with cgroup_exit() in that the list
1334 * entry won't be deleted though the process has exited.
f153ad11
TH
1335 * Do it while holding siglock so that we don't end up
1336 * racing against cgroup_exit().
afeb0f9f 1337 */
f153ad11 1338 spin_lock_irq(&p->sighand->siglock);
afeb0f9f
TH
1339 if (!(p->flags & PF_EXITING))
1340 list_add(&p->cg_list, &task_css_set(p)->tasks);
f153ad11 1341 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1342
1343 task_unlock(p);
1344 } while_each_thread(g, p);
1345 read_unlock(&tasklist_lock);
1346out_unlock:
96d365e0 1347 up_write(&css_set_rwsem);
afeb0f9f
TH
1348}
1349
cc31edce
PM
1350static void init_cgroup_housekeeping(struct cgroup *cgrp)
1351{
2bd59d48 1352 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1353 INIT_LIST_HEAD(&cgrp->sibling);
1354 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1355 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1356 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1357 INIT_LIST_HEAD(&cgrp->pidlists);
1358 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1359 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1360}
c6d57f33 1361
ddbcc7e8
PM
1362static void init_cgroup_root(struct cgroupfs_root *root)
1363{
bd89aabc 1364 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1365
ddbcc7e8 1366 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1367 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1368 cgrp->root = root;
cc31edce 1369 init_cgroup_housekeeping(cgrp);
4e96ee8e 1370 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1371}
1372
c6d57f33
PM
1373static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1374{
1375 struct cgroupfs_root *root;
1376
a1a71b45 1377 if (!opts->subsys_mask && !opts->none)
2bd59d48 1378 return ERR_PTR(-EINVAL);
c6d57f33
PM
1379
1380 root = kzalloc(sizeof(*root), GFP_KERNEL);
1381 if (!root)
1382 return ERR_PTR(-ENOMEM);
1383
1384 init_cgroup_root(root);
2c6ab6d2 1385
c6d57f33
PM
1386 root->flags = opts->flags;
1387 if (opts->release_agent)
1388 strcpy(root->release_agent_path, opts->release_agent);
1389 if (opts->name)
1390 strcpy(root->name, opts->name);
2260e7fc
TH
1391 if (opts->cpuset_clone_children)
1392 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1393 return root;
1394}
1395
35585573 1396static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1397{
1398 LIST_HEAD(tmp_links);
d427dfeb 1399 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1400 struct css_set *cset;
d427dfeb
TH
1401 int i, ret;
1402
1403 lockdep_assert_held(&cgroup_tree_mutex);
1404 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1405
1406 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1407 if (ret < 0)
2bd59d48 1408 goto out;
d427dfeb
TH
1409 root_cgrp->id = ret;
1410
d427dfeb 1411 /*
96d365e0 1412 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1413 * but that's OK - it can only be increased by someone holding
1414 * cgroup_lock, and that's us. The worst that can happen is that we
1415 * have some link structures left over
1416 */
1417 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1418 if (ret)
2bd59d48 1419 goto out;
d427dfeb
TH
1420
1421 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1422 ret = cgroup_init_root_id(root, 2, 0);
1423 if (ret)
2bd59d48 1424 goto out;
d427dfeb 1425
2bd59d48
TH
1426 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1427 KERNFS_ROOT_CREATE_DEACTIVATED,
1428 root_cgrp);
1429 if (IS_ERR(root->kf_root)) {
1430 ret = PTR_ERR(root->kf_root);
1431 goto exit_root_id;
1432 }
1433 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1434
1435 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1436 if (ret)
2bd59d48 1437 goto destroy_root;
d427dfeb 1438
35585573 1439 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1440 if (ret)
2bd59d48 1441 goto destroy_root;
d427dfeb
TH
1442
1443 /*
1444 * There must be no failure case after here, since rebinding takes
1445 * care of subsystems' refcounts, which are explicitly dropped in
1446 * the failure exit path.
1447 */
1448 list_add(&root->root_list, &cgroup_roots);
1449 cgroup_root_count++;
1450
1451 /*
1452 * Link the top cgroup in this hierarchy into all the css_set
1453 * objects.
1454 */
96d365e0 1455 down_write(&css_set_rwsem);
d427dfeb
TH
1456 hash_for_each(css_set_table, i, cset, hlist)
1457 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1458 up_write(&css_set_rwsem);
d427dfeb
TH
1459
1460 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1461 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1462
2bd59d48 1463 kernfs_activate(root_cgrp->kn);
d427dfeb 1464 ret = 0;
2bd59d48 1465 goto out;
d427dfeb 1466
2bd59d48
TH
1467destroy_root:
1468 kernfs_destroy_root(root->kf_root);
1469 root->kf_root = NULL;
1470exit_root_id:
d427dfeb 1471 cgroup_exit_root_id(root);
2bd59d48 1472out:
d427dfeb
TH
1473 free_cgrp_cset_links(&tmp_links);
1474 return ret;
1475}
1476
f7e83571 1477static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1478 int flags, const char *unused_dev_name,
f7e83571 1479 void *data)
ddbcc7e8 1480{
2bd59d48 1481 struct cgroupfs_root *root;
ddbcc7e8 1482 struct cgroup_sb_opts opts;
2bd59d48 1483 struct dentry *dentry;
8e30e2b8 1484 int ret;
56fde9e0
TH
1485
1486 /*
1487 * The first time anyone tries to mount a cgroup, enable the list
1488 * linking each css_set to its tasks and fix up all existing tasks.
1489 */
1490 if (!use_task_css_set_links)
1491 cgroup_enable_task_cg_lists();
776f02fa 1492retry:
8e30e2b8 1493 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1494 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1495
1496 /* First find the desired set of subsystems */
ddbcc7e8 1497 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1498 if (ret)
8e30e2b8 1499 goto out_unlock;
ddbcc7e8 1500
2bd59d48
TH
1501 /* look for a matching existing root */
1502 for_each_active_root(root) {
1503 bool name_match = false;
ddbcc7e8 1504
2bd59d48
TH
1505 /*
1506 * If we asked for a name then it must match. Also, if
1507 * name matches but sybsys_mask doesn't, we should fail.
1508 * Remember whether name matched.
1509 */
1510 if (opts.name) {
1511 if (strcmp(opts.name, root->name))
1512 continue;
1513 name_match = true;
1514 }
ddbcc7e8 1515
c6d57f33 1516 /*
2bd59d48
TH
1517 * If we asked for subsystems (or explicitly for no
1518 * subsystems) then they must match.
c6d57f33 1519 */
2bd59d48
TH
1520 if ((opts.subsys_mask || opts.none) &&
1521 (opts.subsys_mask != root->subsys_mask)) {
1522 if (!name_match)
1523 continue;
1524 ret = -EBUSY;
1525 goto out_unlock;
1526 }
873fe09e 1527
c7ba8287 1528 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1529 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1530 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1531 ret = -EINVAL;
8e30e2b8 1532 goto out_unlock;
2a0ff3fb
JL
1533 } else {
1534 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1535 }
873fe09e 1536 }
2bd59d48 1537
776f02fa
TH
1538 /*
1539 * A root's lifetime is governed by its top cgroup. Zero
1540 * ref indicate that the root is being destroyed. Wait for
1541 * destruction to complete so that the subsystems are free.
1542 * We can use wait_queue for the wait but this path is
1543 * super cold. Let's just sleep for a bit and retry.
1544 */
1545 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1546 mutex_unlock(&cgroup_mutex);
1547 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1548 kfree(opts.release_agent);
1549 kfree(opts.name);
776f02fa
TH
1550 msleep(10);
1551 goto retry;
1552 }
1553
1554 ret = 0;
2bd59d48 1555 goto out_unlock;
ddbcc7e8
PM
1556 }
1557
2bd59d48
TH
1558 /* no such thing, create a new one */
1559 root = cgroup_root_from_opts(&opts);
1560 if (IS_ERR(root)) {
1561 ret = PTR_ERR(root);
1562 goto out_unlock;
1563 }
1564
35585573 1565 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1566 if (ret)
1567 cgroup_free_root(root);
1568
8e30e2b8 1569out_unlock:
e25e2cbb 1570 mutex_unlock(&cgroup_mutex);
ace2bee8 1571 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1572
c6d57f33
PM
1573 kfree(opts.release_agent);
1574 kfree(opts.name);
8e30e2b8 1575
2bd59d48 1576 if (ret)
8e30e2b8 1577 return ERR_PTR(ret);
2bd59d48
TH
1578
1579 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1580 if (IS_ERR(dentry))
776f02fa 1581 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1582 return dentry;
1583}
1584
1585static void cgroup_kill_sb(struct super_block *sb)
1586{
1587 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1588 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1589
776f02fa 1590 cgroup_put(&root->top_cgroup);
2bd59d48 1591 kernfs_kill_sb(sb);
ddbcc7e8
PM
1592}
1593
ddbcc7e8
PM
1594static struct file_system_type cgroup_fs_type = {
1595 .name = "cgroup",
f7e83571 1596 .mount = cgroup_mount,
ddbcc7e8
PM
1597 .kill_sb = cgroup_kill_sb,
1598};
1599
676db4af
GK
1600static struct kobject *cgroup_kobj;
1601
857a2beb 1602/**
913ffdb5 1603 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1604 * @task: target task
857a2beb
TH
1605 * @buf: the buffer to write the path into
1606 * @buflen: the length of the buffer
1607 *
913ffdb5
TH
1608 * Determine @task's cgroup on the first (the one with the lowest non-zero
1609 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1610 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1611 * cgroup controller callbacks.
1612 *
e61734c5 1613 * Return value is the same as kernfs_path().
857a2beb 1614 */
e61734c5 1615char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1616{
1617 struct cgroupfs_root *root;
913ffdb5 1618 struct cgroup *cgrp;
e61734c5
TH
1619 int hierarchy_id = 1;
1620 char *path = NULL;
857a2beb
TH
1621
1622 mutex_lock(&cgroup_mutex);
96d365e0 1623 down_read(&css_set_rwsem);
857a2beb 1624
913ffdb5
TH
1625 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1626
857a2beb
TH
1627 if (root) {
1628 cgrp = task_cgroup_from_root(task, root);
e61734c5 1629 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1630 } else {
1631 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1632 if (strlcpy(buf, "/", buflen) < buflen)
1633 path = buf;
857a2beb
TH
1634 }
1635
96d365e0 1636 up_read(&css_set_rwsem);
857a2beb 1637 mutex_unlock(&cgroup_mutex);
e61734c5 1638 return path;
857a2beb 1639}
913ffdb5 1640EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1641
2f7ee569
TH
1642/*
1643 * Control Group taskset
1644 */
134d3373
TH
1645struct task_and_cgroup {
1646 struct task_struct *task;
1647 struct cgroup *cgrp;
6f4b7e63 1648 struct css_set *cset;
134d3373
TH
1649};
1650
2f7ee569
TH
1651struct cgroup_taskset {
1652 struct task_and_cgroup single;
1653 struct flex_array *tc_array;
1654 int tc_array_len;
1655 int idx;
2f7ee569
TH
1656};
1657
1658/**
1659 * cgroup_taskset_first - reset taskset and return the first task
1660 * @tset: taskset of interest
1661 *
1662 * @tset iteration is initialized and the first task is returned.
1663 */
1664struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1665{
1666 if (tset->tc_array) {
1667 tset->idx = 0;
1668 return cgroup_taskset_next(tset);
1669 } else {
2f7ee569
TH
1670 return tset->single.task;
1671 }
1672}
2f7ee569
TH
1673
1674/**
1675 * cgroup_taskset_next - iterate to the next task in taskset
1676 * @tset: taskset of interest
1677 *
1678 * Return the next task in @tset. Iteration must have been initialized
1679 * with cgroup_taskset_first().
1680 */
1681struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1682{
1683 struct task_and_cgroup *tc;
1684
1685 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1686 return NULL;
1687
1688 tc = flex_array_get(tset->tc_array, tset->idx++);
2f7ee569
TH
1689 return tc->task;
1690}
2f7ee569 1691
cb0f1fe9 1692/**
74a1166d 1693 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1694 * @old_cgrp; the cgroup @tsk is being migrated from
1695 * @tsk: the task being migrated
1696 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1697 *
cb0f1fe9 1698 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1699 */
5abb8855
TH
1700static void cgroup_task_migrate(struct cgroup *old_cgrp,
1701 struct task_struct *tsk,
1702 struct css_set *new_cset)
74a1166d 1703{
5abb8855 1704 struct css_set *old_cset;
74a1166d 1705
cb0f1fe9
TH
1706 lockdep_assert_held(&cgroup_mutex);
1707 lockdep_assert_held(&css_set_rwsem);
1708
74a1166d 1709 /*
026085ef
MSB
1710 * We are synchronized through threadgroup_lock() against PF_EXITING
1711 * setting such that we can't race against cgroup_exit() changing the
1712 * css_set to init_css_set and dropping the old one.
74a1166d 1713 */
c84cdf75 1714 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1715 old_cset = task_css_set(tsk);
74a1166d 1716
74a1166d 1717 task_lock(tsk);
5abb8855 1718 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1719 task_unlock(tsk);
1720
56fde9e0 1721 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1722
1723 /*
5abb8855
TH
1724 * We just gained a reference on old_cset by taking it from the
1725 * task. As trading it for new_cset is protected by cgroup_mutex,
1726 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1727 */
5abb8855 1728 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1729 put_css_set_locked(old_cset, false);
74a1166d
BB
1730}
1731
a043e3b2 1732/**
081aa458 1733 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1734 * @cgrp: the cgroup to attach to
9db8de37 1735 * @leader: the task or the leader of the threadgroup to be attached
081aa458 1736 * @threadgroup: attach the whole threadgroup?
74a1166d 1737 *
257058ae 1738 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1739 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1740 */
9db8de37 1741static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *leader,
47cfcd09 1742 bool threadgroup)
74a1166d 1743{
9db8de37 1744 int ret, i, group_size;
74a1166d 1745 struct cgroupfs_root *root = cgrp->root;
1c6727af 1746 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1747 /* threadgroup list cursor and array */
9db8de37 1748 struct task_struct *task;
134d3373 1749 struct task_and_cgroup *tc;
d846687d 1750 struct flex_array *group;
2f7ee569 1751 struct cgroup_taskset tset = { };
74a1166d
BB
1752
1753 /*
1754 * step 0: in order to do expensive, possibly blocking operations for
1755 * every thread, we cannot iterate the thread group list, since it needs
1756 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1757 * group - group_rwsem prevents new threads from appearing, and if
1758 * threads exit, this will just be an over-estimate.
74a1166d 1759 */
081aa458 1760 if (threadgroup)
9db8de37 1761 group_size = get_nr_threads(leader);
081aa458
LZ
1762 else
1763 group_size = 1;
d846687d 1764 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1765 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1766 if (!group)
1767 return -ENOMEM;
d846687d 1768 /* pre-allocate to guarantee space while iterating in rcu read-side. */
9db8de37
TH
1769 ret = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1770 if (ret)
d846687d 1771 goto out_free_group_list;
74a1166d 1772
74a1166d 1773 i = 0;
fb5d2b4c
MSB
1774 /*
1775 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1776 * already PF_EXITING could be freed from underneath us unless we
1777 * take an rcu_read_lock.
1778 */
96d365e0 1779 down_read(&css_set_rwsem);
fb5d2b4c 1780 rcu_read_lock();
9db8de37 1781 task = leader;
74a1166d 1782 do {
134d3373
TH
1783 struct task_and_cgroup ent;
1784
9db8de37
TH
1785 /* @task either already exited or can't exit until the end */
1786 if (task->flags & PF_EXITING)
ea84753c 1787 goto next;
cd3d0952 1788
74a1166d
BB
1789 /* as per above, nr_threads may decrease, but not increase. */
1790 BUG_ON(i >= group_size);
9db8de37
TH
1791 ent.task = task;
1792 ent.cgrp = task_cgroup_from_root(task, root);
892a2b90
MSB
1793 /* nothing to do if this task is already in the cgroup */
1794 if (ent.cgrp == cgrp)
ea84753c 1795 goto next;
61d1d219
MSB
1796 /*
1797 * saying GFP_ATOMIC has no effect here because we did prealloc
1798 * earlier, but it's good form to communicate our expectations.
1799 */
9db8de37
TH
1800 ret = flex_array_put(group, i, &ent, GFP_ATOMIC);
1801 BUG_ON(ret != 0);
74a1166d 1802 i++;
ea84753c 1803 next:
081aa458
LZ
1804 if (!threadgroup)
1805 break;
9db8de37 1806 } while_each_thread(leader, task);
fb5d2b4c 1807 rcu_read_unlock();
96d365e0 1808 up_read(&css_set_rwsem);
74a1166d
BB
1809 /* remember the number of threads in the array for later. */
1810 group_size = i;
2f7ee569
TH
1811 tset.tc_array = group;
1812 tset.tc_array_len = group_size;
74a1166d 1813
134d3373 1814 /* methods shouldn't be called if no task is actually migrating */
9db8de37 1815 ret = 0;
892a2b90 1816 if (!group_size)
b07ef774 1817 goto out_free_group_list;
134d3373 1818
74a1166d
BB
1819 /*
1820 * step 1: check that we can legitimately attach to the cgroup.
1821 */
1c6727af
TH
1822 for_each_css(css, i, cgrp) {
1823 if (css->ss->can_attach) {
9db8de37
TH
1824 ret = css->ss->can_attach(css, &tset);
1825 if (ret) {
1c6727af 1826 failed_css = css;
74a1166d
BB
1827 goto out_cancel_attach;
1828 }
1829 }
74a1166d
BB
1830 }
1831
1832 /*
1833 * step 2: make sure css_sets exist for all threads to be migrated.
1834 * we use find_css_set, which allocates a new one if necessary.
1835 */
74a1166d 1836 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1837 struct css_set *old_cset;
1838
134d3373 1839 tc = flex_array_get(group, i);
a8ad805c 1840 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1841 tc->cset = find_css_set(old_cset, cgrp);
1842 if (!tc->cset) {
9db8de37 1843 ret = -ENOMEM;
61d1d219 1844 goto out_put_css_set_refs;
74a1166d
BB
1845 }
1846 }
1847
1848 /*
494c167c
TH
1849 * step 3: now that we're guaranteed success wrt the css_sets,
1850 * proceed to move all tasks to the new cgroup. There are no
1851 * failure cases after here, so this is the commit point.
74a1166d 1852 */
cb0f1fe9 1853 down_write(&css_set_rwsem);
74a1166d 1854 for (i = 0; i < group_size; i++) {
134d3373 1855 tc = flex_array_get(group, i);
6f4b7e63 1856 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d 1857 }
cb0f1fe9 1858 up_write(&css_set_rwsem);
74a1166d
BB
1859 /* nothing is sensitive to fork() after this point. */
1860
1861 /*
494c167c 1862 * step 4: do subsystem attach callbacks.
74a1166d 1863 */
1c6727af
TH
1864 for_each_css(css, i, cgrp)
1865 if (css->ss->attach)
1866 css->ss->attach(css, &tset);
74a1166d
BB
1867
1868 /*
1869 * step 5: success! and cleanup
1870 */
9db8de37 1871 ret = 0;
61d1d219 1872out_put_css_set_refs:
9db8de37 1873 if (ret) {
61d1d219
MSB
1874 for (i = 0; i < group_size; i++) {
1875 tc = flex_array_get(group, i);
6f4b7e63 1876 if (!tc->cset)
61d1d219 1877 break;
89c5509b 1878 put_css_set(tc->cset, false);
61d1d219 1879 }
74a1166d
BB
1880 }
1881out_cancel_attach:
9db8de37 1882 if (ret) {
1c6727af
TH
1883 for_each_css(css, i, cgrp) {
1884 if (css == failed_css)
74a1166d 1885 break;
1c6727af
TH
1886 if (css->ss->cancel_attach)
1887 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1888 }
1889 }
74a1166d 1890out_free_group_list:
d846687d 1891 flex_array_free(group);
9db8de37 1892 return ret;
74a1166d
BB
1893}
1894
1895/*
1896 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1897 * function to attach either it or all tasks in its threadgroup. Will lock
1898 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1899 */
74a1166d 1900static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1901{
bbcb81d0 1902 struct task_struct *tsk;
c69e8d9c 1903 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1904 int ret;
1905
74a1166d
BB
1906 if (!cgroup_lock_live_group(cgrp))
1907 return -ENODEV;
1908
b78949eb
MSB
1909retry_find_task:
1910 rcu_read_lock();
bbcb81d0 1911 if (pid) {
73507f33 1912 tsk = find_task_by_vpid(pid);
74a1166d
BB
1913 if (!tsk) {
1914 rcu_read_unlock();
dd4b0a46 1915 ret = -ESRCH;
b78949eb 1916 goto out_unlock_cgroup;
bbcb81d0 1917 }
74a1166d
BB
1918 /*
1919 * even if we're attaching all tasks in the thread group, we
1920 * only need to check permissions on one of them.
1921 */
c69e8d9c 1922 tcred = __task_cred(tsk);
14a590c3
EB
1923 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1924 !uid_eq(cred->euid, tcred->uid) &&
1925 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1926 rcu_read_unlock();
b78949eb
MSB
1927 ret = -EACCES;
1928 goto out_unlock_cgroup;
bbcb81d0 1929 }
b78949eb
MSB
1930 } else
1931 tsk = current;
cd3d0952
TH
1932
1933 if (threadgroup)
b78949eb 1934 tsk = tsk->group_leader;
c4c27fbd
MG
1935
1936 /*
14a40ffc 1937 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1938 * trapped in a cpuset, or RT worker may be born in a cgroup
1939 * with no rt_runtime allocated. Just say no.
1940 */
14a40ffc 1941 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1942 ret = -EINVAL;
1943 rcu_read_unlock();
1944 goto out_unlock_cgroup;
1945 }
1946
b78949eb
MSB
1947 get_task_struct(tsk);
1948 rcu_read_unlock();
1949
1950 threadgroup_lock(tsk);
1951 if (threadgroup) {
1952 if (!thread_group_leader(tsk)) {
1953 /*
1954 * a race with de_thread from another thread's exec()
1955 * may strip us of our leadership, if this happens,
1956 * there is no choice but to throw this task away and
1957 * try again; this is
1958 * "double-double-toil-and-trouble-check locking".
1959 */
1960 threadgroup_unlock(tsk);
1961 put_task_struct(tsk);
1962 goto retry_find_task;
1963 }
081aa458
LZ
1964 }
1965
1966 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1967
cd3d0952
TH
1968 threadgroup_unlock(tsk);
1969
bbcb81d0 1970 put_task_struct(tsk);
b78949eb 1971out_unlock_cgroup:
47cfcd09 1972 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1973 return ret;
1974}
1975
7ae1bad9
TH
1976/**
1977 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1978 * @from: attach to all cgroups of a given task
1979 * @tsk: the task to be attached
1980 */
1981int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1982{
1983 struct cgroupfs_root *root;
1984 int retval = 0;
1985
47cfcd09 1986 mutex_lock(&cgroup_mutex);
7ae1bad9 1987 for_each_active_root(root) {
96d365e0
TH
1988 struct cgroup *from_cgrp;
1989
1990 down_read(&css_set_rwsem);
1991 from_cgrp = task_cgroup_from_root(from, root);
1992 up_read(&css_set_rwsem);
7ae1bad9 1993
6f4b7e63 1994 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
1995 if (retval)
1996 break;
1997 }
47cfcd09 1998 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
1999
2000 return retval;
2001}
2002EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2003
182446d0
TH
2004static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2005 struct cftype *cft, u64 pid)
74a1166d 2006{
182446d0 2007 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2008}
2009
182446d0
TH
2010static int cgroup_procs_write(struct cgroup_subsys_state *css,
2011 struct cftype *cft, u64 tgid)
af351026 2012{
182446d0 2013 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2014}
2015
182446d0
TH
2016static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2017 struct cftype *cft, const char *buffer)
e788e066 2018{
5f469907
TH
2019 struct cgroupfs_root *root = css->cgroup->root;
2020
2021 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2022 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2023 return -ENODEV;
69e943b7 2024 spin_lock(&release_agent_path_lock);
5f469907
TH
2025 strlcpy(root->release_agent_path, buffer,
2026 sizeof(root->release_agent_path));
69e943b7 2027 spin_unlock(&release_agent_path_lock);
47cfcd09 2028 mutex_unlock(&cgroup_mutex);
e788e066
PM
2029 return 0;
2030}
2031
2da8ca82 2032static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2033{
2da8ca82 2034 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2035
e788e066
PM
2036 if (!cgroup_lock_live_group(cgrp))
2037 return -ENODEV;
2038 seq_puts(seq, cgrp->root->release_agent_path);
2039 seq_putc(seq, '\n');
47cfcd09 2040 mutex_unlock(&cgroup_mutex);
e788e066
PM
2041 return 0;
2042}
2043
2da8ca82 2044static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2045{
2da8ca82
TH
2046 struct cgroup *cgrp = seq_css(seq)->cgroup;
2047
2048 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2049 return 0;
2050}
2051
2bd59d48
TH
2052static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2053 size_t nbytes, loff_t off)
355e0c48 2054{
2bd59d48
TH
2055 struct cgroup *cgrp = of->kn->parent->priv;
2056 struct cftype *cft = of->kn->priv;
2057 struct cgroup_subsys_state *css;
a742c59d 2058 int ret;
355e0c48 2059
2bd59d48
TH
2060 /*
2061 * kernfs guarantees that a file isn't deleted with operations in
2062 * flight, which means that the matching css is and stays alive and
2063 * doesn't need to be pinned. The RCU locking is not necessary
2064 * either. It's just for the convenience of using cgroup_css().
2065 */
2066 rcu_read_lock();
2067 css = cgroup_css(cgrp, cft->ss);
2068 rcu_read_unlock();
a742c59d
TH
2069
2070 if (cft->write_string) {
2071 ret = cft->write_string(css, cft, strstrip(buf));
2072 } else if (cft->write_u64) {
2073 unsigned long long v;
2074 ret = kstrtoull(buf, 0, &v);
2075 if (!ret)
2076 ret = cft->write_u64(css, cft, v);
2077 } else if (cft->write_s64) {
2078 long long v;
2079 ret = kstrtoll(buf, 0, &v);
2080 if (!ret)
2081 ret = cft->write_s64(css, cft, v);
2082 } else if (cft->trigger) {
2083 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2084 } else {
a742c59d 2085 ret = -EINVAL;
e73d2c61 2086 }
2bd59d48 2087
a742c59d 2088 return ret ?: nbytes;
355e0c48
PM
2089}
2090
6612f05b 2091static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2092{
2bd59d48 2093 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2094}
2095
6612f05b 2096static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2097{
2bd59d48 2098 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2099}
2100
6612f05b 2101static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2102{
2bd59d48 2103 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2104}
2105
91796569 2106static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2107{
7da11279
TH
2108 struct cftype *cft = seq_cft(m);
2109 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2110
2da8ca82
TH
2111 if (cft->seq_show)
2112 return cft->seq_show(m, arg);
e73d2c61 2113
f4c753b7 2114 if (cft->read_u64)
896f5199
TH
2115 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2116 else if (cft->read_s64)
2117 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2118 else
2119 return -EINVAL;
2120 return 0;
91796569
PM
2121}
2122
2bd59d48
TH
2123static struct kernfs_ops cgroup_kf_single_ops = {
2124 .atomic_write_len = PAGE_SIZE,
2125 .write = cgroup_file_write,
2126 .seq_show = cgroup_seqfile_show,
91796569
PM
2127};
2128
2bd59d48
TH
2129static struct kernfs_ops cgroup_kf_ops = {
2130 .atomic_write_len = PAGE_SIZE,
2131 .write = cgroup_file_write,
2132 .seq_start = cgroup_seqfile_start,
2133 .seq_next = cgroup_seqfile_next,
2134 .seq_stop = cgroup_seqfile_stop,
2135 .seq_show = cgroup_seqfile_show,
2136};
ddbcc7e8
PM
2137
2138/*
2139 * cgroup_rename - Only allow simple rename of directories in place.
2140 */
2bd59d48
TH
2141static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2142 const char *new_name_str)
ddbcc7e8 2143{
2bd59d48 2144 struct cgroup *cgrp = kn->priv;
2bd59d48 2145 int ret;
65dff759 2146
2bd59d48 2147 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2148 return -ENOTDIR;
2bd59d48 2149 if (kn->parent != new_parent)
ddbcc7e8 2150 return -EIO;
65dff759 2151
6db8e85c
TH
2152 /*
2153 * This isn't a proper migration and its usefulness is very
2154 * limited. Disallow if sane_behavior.
2155 */
2156 if (cgroup_sane_behavior(cgrp))
2157 return -EPERM;
2158
2bd59d48
TH
2159 mutex_lock(&cgroup_tree_mutex);
2160 mutex_lock(&cgroup_mutex);
2161
2162 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2163
2bd59d48
TH
2164 mutex_unlock(&cgroup_mutex);
2165 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2166 return ret;
ddbcc7e8
PM
2167}
2168
2bb566cb 2169static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2170{
8d7e6fb0 2171 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2172 struct kernfs_node *kn;
2173 struct lock_class_key *key = NULL;
05ef1d7c 2174
2bd59d48
TH
2175#ifdef CONFIG_DEBUG_LOCK_ALLOC
2176 key = &cft->lockdep_key;
2177#endif
2178 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2179 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2180 NULL, false, key);
430af8ad 2181 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2182}
2183
b1f28d31
TH
2184/**
2185 * cgroup_addrm_files - add or remove files to a cgroup directory
2186 * @cgrp: the target cgroup
b1f28d31
TH
2187 * @cfts: array of cftypes to be added
2188 * @is_add: whether to add or remove
2189 *
2190 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2191 * For removals, this function never fails. If addition fails, this
2192 * function doesn't remove files already added. The caller is responsible
2193 * for cleaning up.
b1f28d31 2194 */
2bb566cb
TH
2195static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2196 bool is_add)
ddbcc7e8 2197{
03b1cde6 2198 struct cftype *cft;
b1f28d31
TH
2199 int ret;
2200
ace2bee8 2201 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2202
2203 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2204 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2205 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2206 continue;
f33fddc2
G
2207 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2208 continue;
2209 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2210 continue;
2211
2739d3cc 2212 if (is_add) {
2bb566cb 2213 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2214 if (ret) {
2739d3cc 2215 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2216 cft->name, ret);
2217 return ret;
2218 }
2739d3cc
LZ
2219 } else {
2220 cgroup_rm_file(cgrp, cft);
db0416b6 2221 }
ddbcc7e8 2222 }
b1f28d31 2223 return 0;
ddbcc7e8
PM
2224}
2225
21a2d343 2226static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2227{
2228 LIST_HEAD(pending);
2bb566cb 2229 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2230 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2231 struct cgroup_subsys_state *css;
9ccece80 2232 int ret = 0;
8e3f6541 2233
21a2d343 2234 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2235
21a2d343
TH
2236 /* don't bother if @ss isn't attached */
2237 if (ss->root == &cgroup_dummy_root)
9ccece80 2238 return 0;
e8c82d20 2239
e8c82d20 2240 /* add/rm files for all cgroups created before */
ca8bdcaf 2241 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2242 struct cgroup *cgrp = css->cgroup;
2243
e8c82d20
LZ
2244 if (cgroup_is_dead(cgrp))
2245 continue;
2246
21a2d343 2247 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2248 if (ret)
2249 break;
8e3f6541 2250 }
21a2d343
TH
2251
2252 if (is_add && !ret)
2253 kernfs_activate(root->kn);
9ccece80 2254 return ret;
8e3f6541
TH
2255}
2256
2da440a2
TH
2257static void cgroup_exit_cftypes(struct cftype *cfts)
2258{
2259 struct cftype *cft;
2260
2bd59d48
TH
2261 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2262 /* free copy for custom atomic_write_len, see init_cftypes() */
2263 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2264 kfree(cft->kf_ops);
2265 cft->kf_ops = NULL;
2da440a2 2266 cft->ss = NULL;
2bd59d48 2267 }
2da440a2
TH
2268}
2269
2bd59d48 2270static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2271{
2272 struct cftype *cft;
2273
2bd59d48
TH
2274 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2275 struct kernfs_ops *kf_ops;
2276
0adb0704
TH
2277 WARN_ON(cft->ss || cft->kf_ops);
2278
2bd59d48
TH
2279 if (cft->seq_start)
2280 kf_ops = &cgroup_kf_ops;
2281 else
2282 kf_ops = &cgroup_kf_single_ops;
2283
2284 /*
2285 * Ugh... if @cft wants a custom max_write_len, we need to
2286 * make a copy of kf_ops to set its atomic_write_len.
2287 */
2288 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2289 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2290 if (!kf_ops) {
2291 cgroup_exit_cftypes(cfts);
2292 return -ENOMEM;
2293 }
2294 kf_ops->atomic_write_len = cft->max_write_len;
2295 }
2296
2297 cft->kf_ops = kf_ops;
2da440a2 2298 cft->ss = ss;
2bd59d48
TH
2299 }
2300
2301 return 0;
2da440a2
TH
2302}
2303
21a2d343
TH
2304static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2305{
2306 lockdep_assert_held(&cgroup_tree_mutex);
2307
2308 if (!cfts || !cfts[0].ss)
2309 return -ENOENT;
2310
2311 list_del(&cfts->node);
2312 cgroup_apply_cftypes(cfts, false);
2313 cgroup_exit_cftypes(cfts);
2314 return 0;
2315}
2316
80b13586
TH
2317/**
2318 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2319 * @cfts: zero-length name terminated array of cftypes
2320 *
2321 * Unregister @cfts. Files described by @cfts are removed from all
2322 * existing cgroups and all future cgroups won't have them either. This
2323 * function can be called anytime whether @cfts' subsys is attached or not.
2324 *
2325 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2326 * registered.
2327 */
2328int cgroup_rm_cftypes(struct cftype *cfts)
2329{
21a2d343 2330 int ret;
80b13586 2331
21a2d343
TH
2332 mutex_lock(&cgroup_tree_mutex);
2333 ret = cgroup_rm_cftypes_locked(cfts);
2334 mutex_unlock(&cgroup_tree_mutex);
2335 return ret;
80b13586
TH
2336}
2337
8e3f6541
TH
2338/**
2339 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2340 * @ss: target cgroup subsystem
2341 * @cfts: zero-length name terminated array of cftypes
2342 *
2343 * Register @cfts to @ss. Files described by @cfts are created for all
2344 * existing cgroups to which @ss is attached and all future cgroups will
2345 * have them too. This function can be called anytime whether @ss is
2346 * attached or not.
2347 *
2348 * Returns 0 on successful registration, -errno on failure. Note that this
2349 * function currently returns 0 as long as @cfts registration is successful
2350 * even if some file creation attempts on existing cgroups fail.
2351 */
03b1cde6 2352int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2353{
9ccece80 2354 int ret;
8e3f6541 2355
dc5736ed
LZ
2356 if (!cfts || cfts[0].name[0] == '\0')
2357 return 0;
2358
2bd59d48
TH
2359 ret = cgroup_init_cftypes(ss, cfts);
2360 if (ret)
2361 return ret;
2bb566cb 2362
21a2d343
TH
2363 mutex_lock(&cgroup_tree_mutex);
2364
0adb0704 2365 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2366 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2367 if (ret)
21a2d343
TH
2368 cgroup_rm_cftypes_locked(cfts);
2369
2370 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2371 return ret;
8e3f6541 2372}
8e3f6541 2373
a043e3b2
LZ
2374/**
2375 * cgroup_task_count - count the number of tasks in a cgroup.
2376 * @cgrp: the cgroup in question
2377 *
2378 * Return the number of tasks in the cgroup.
2379 */
07bc356e 2380static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2381{
2382 int count = 0;
69d0206c 2383 struct cgrp_cset_link *link;
817929ec 2384
96d365e0 2385 down_read(&css_set_rwsem);
69d0206c
TH
2386 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2387 count += atomic_read(&link->cset->refcount);
96d365e0 2388 up_read(&css_set_rwsem);
bbcb81d0
PM
2389 return count;
2390}
2391
53fa5261 2392/**
492eb21b
TH
2393 * css_next_child - find the next child of a given css
2394 * @pos_css: the current position (%NULL to initiate traversal)
2395 * @parent_css: css whose children to walk
53fa5261 2396 *
492eb21b 2397 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2398 * under either cgroup_mutex or RCU read lock. The only requirement is
2399 * that @parent_css and @pos_css are accessible. The next sibling is
2400 * guaranteed to be returned regardless of their states.
53fa5261 2401 */
492eb21b
TH
2402struct cgroup_subsys_state *
2403css_next_child(struct cgroup_subsys_state *pos_css,
2404 struct cgroup_subsys_state *parent_css)
53fa5261 2405{
492eb21b
TH
2406 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2407 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2408 struct cgroup *next;
2409
ace2bee8 2410 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2411
2412 /*
2413 * @pos could already have been removed. Once a cgroup is removed,
2414 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2415 * changes. As CGRP_DEAD assertion is serialized and happens
2416 * before the cgroup is taken off the ->sibling list, if we see it
2417 * unasserted, it's guaranteed that the next sibling hasn't
2418 * finished its grace period even if it's already removed, and thus
2419 * safe to dereference from this RCU critical section. If
2420 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2421 * to be visible as %true here.
3b287a50
TH
2422 *
2423 * If @pos is dead, its next pointer can't be dereferenced;
2424 * however, as each cgroup is given a monotonically increasing
2425 * unique serial number and always appended to the sibling list,
2426 * the next one can be found by walking the parent's children until
2427 * we see a cgroup with higher serial number than @pos's. While
2428 * this path can be slower, it's taken only when either the current
2429 * cgroup is removed or iteration and removal race.
53fa5261 2430 */
3b287a50
TH
2431 if (!pos) {
2432 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2433 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2434 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2435 } else {
2436 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2437 if (next->serial_nr > pos->serial_nr)
2438 break;
53fa5261
TH
2439 }
2440
492eb21b
TH
2441 if (&next->sibling == &cgrp->children)
2442 return NULL;
2443
ca8bdcaf 2444 return cgroup_css(next, parent_css->ss);
53fa5261 2445}
53fa5261 2446
574bd9f7 2447/**
492eb21b 2448 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2449 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2450 * @root: css whose descendants to walk
574bd9f7 2451 *
492eb21b 2452 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2453 * to visit for pre-order traversal of @root's descendants. @root is
2454 * included in the iteration and the first node to be visited.
75501a6d 2455 *
87fb54f1
TH
2456 * While this function requires cgroup_mutex or RCU read locking, it
2457 * doesn't require the whole traversal to be contained in a single critical
2458 * section. This function will return the correct next descendant as long
2459 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2460 */
492eb21b
TH
2461struct cgroup_subsys_state *
2462css_next_descendant_pre(struct cgroup_subsys_state *pos,
2463 struct cgroup_subsys_state *root)
574bd9f7 2464{
492eb21b 2465 struct cgroup_subsys_state *next;
574bd9f7 2466
ace2bee8 2467 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2468
bd8815a6 2469 /* if first iteration, visit @root */
7805d000 2470 if (!pos)
bd8815a6 2471 return root;
574bd9f7
TH
2472
2473 /* visit the first child if exists */
492eb21b 2474 next = css_next_child(NULL, pos);
574bd9f7
TH
2475 if (next)
2476 return next;
2477
2478 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2479 while (pos != root) {
2480 next = css_next_child(pos, css_parent(pos));
75501a6d 2481 if (next)
574bd9f7 2482 return next;
492eb21b 2483 pos = css_parent(pos);
7805d000 2484 }
574bd9f7
TH
2485
2486 return NULL;
2487}
574bd9f7 2488
12a9d2fe 2489/**
492eb21b
TH
2490 * css_rightmost_descendant - return the rightmost descendant of a css
2491 * @pos: css of interest
12a9d2fe 2492 *
492eb21b
TH
2493 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2494 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2495 * subtree of @pos.
75501a6d 2496 *
87fb54f1
TH
2497 * While this function requires cgroup_mutex or RCU read locking, it
2498 * doesn't require the whole traversal to be contained in a single critical
2499 * section. This function will return the correct rightmost descendant as
2500 * long as @pos is accessible.
12a9d2fe 2501 */
492eb21b
TH
2502struct cgroup_subsys_state *
2503css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2504{
492eb21b 2505 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2506
ace2bee8 2507 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2508
2509 do {
2510 last = pos;
2511 /* ->prev isn't RCU safe, walk ->next till the end */
2512 pos = NULL;
492eb21b 2513 css_for_each_child(tmp, last)
12a9d2fe
TH
2514 pos = tmp;
2515 } while (pos);
2516
2517 return last;
2518}
12a9d2fe 2519
492eb21b
TH
2520static struct cgroup_subsys_state *
2521css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2522{
492eb21b 2523 struct cgroup_subsys_state *last;
574bd9f7
TH
2524
2525 do {
2526 last = pos;
492eb21b 2527 pos = css_next_child(NULL, pos);
574bd9f7
TH
2528 } while (pos);
2529
2530 return last;
2531}
2532
2533/**
492eb21b 2534 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2535 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2536 * @root: css whose descendants to walk
574bd9f7 2537 *
492eb21b 2538 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2539 * to visit for post-order traversal of @root's descendants. @root is
2540 * included in the iteration and the last node to be visited.
75501a6d 2541 *
87fb54f1
TH
2542 * While this function requires cgroup_mutex or RCU read locking, it
2543 * doesn't require the whole traversal to be contained in a single critical
2544 * section. This function will return the correct next descendant as long
2545 * as both @pos and @cgroup are accessible and @pos is a descendant of
2546 * @cgroup.
574bd9f7 2547 */
492eb21b
TH
2548struct cgroup_subsys_state *
2549css_next_descendant_post(struct cgroup_subsys_state *pos,
2550 struct cgroup_subsys_state *root)
574bd9f7 2551{
492eb21b 2552 struct cgroup_subsys_state *next;
574bd9f7 2553
ace2bee8 2554 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2555
58b79a91
TH
2556 /* if first iteration, visit leftmost descendant which may be @root */
2557 if (!pos)
2558 return css_leftmost_descendant(root);
574bd9f7 2559
bd8815a6
TH
2560 /* if we visited @root, we're done */
2561 if (pos == root)
2562 return NULL;
2563
574bd9f7 2564 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2565 next = css_next_child(pos, css_parent(pos));
75501a6d 2566 if (next)
492eb21b 2567 return css_leftmost_descendant(next);
574bd9f7
TH
2568
2569 /* no sibling left, visit parent */
bd8815a6 2570 return css_parent(pos);
574bd9f7 2571}
574bd9f7 2572
0942eeee 2573/**
72ec7029 2574 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2575 * @it: the iterator to advance
2576 *
2577 * Advance @it to the next css_set to walk.
d515876e 2578 */
72ec7029 2579static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2580{
2581 struct list_head *l = it->cset_link;
2582 struct cgrp_cset_link *link;
2583 struct css_set *cset;
2584
2585 /* Advance to the next non-empty css_set */
2586 do {
2587 l = l->next;
72ec7029 2588 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2589 it->cset_link = NULL;
2590 return;
2591 }
2592 link = list_entry(l, struct cgrp_cset_link, cset_link);
2593 cset = link->cset;
c7561128
TH
2594 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2595
d515876e 2596 it->cset_link = l;
c7561128
TH
2597
2598 if (!list_empty(&cset->tasks))
2599 it->task = cset->tasks.next;
2600 else
2601 it->task = cset->mg_tasks.next;
d515876e
TH
2602}
2603
0942eeee 2604/**
72ec7029
TH
2605 * css_task_iter_start - initiate task iteration
2606 * @css: the css to walk tasks of
0942eeee
TH
2607 * @it: the task iterator to use
2608 *
72ec7029
TH
2609 * Initiate iteration through the tasks of @css. The caller can call
2610 * css_task_iter_next() to walk through the tasks until the function
2611 * returns NULL. On completion of iteration, css_task_iter_end() must be
2612 * called.
0942eeee
TH
2613 *
2614 * Note that this function acquires a lock which is released when the
2615 * iteration finishes. The caller can't sleep while iteration is in
2616 * progress.
2617 */
72ec7029
TH
2618void css_task_iter_start(struct cgroup_subsys_state *css,
2619 struct css_task_iter *it)
96d365e0 2620 __acquires(css_set_rwsem)
817929ec 2621{
56fde9e0
TH
2622 /* no one should try to iterate before mounting cgroups */
2623 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2624
96d365e0 2625 down_read(&css_set_rwsem);
c59cd3d8 2626
72ec7029
TH
2627 it->origin_css = css;
2628 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2629
72ec7029 2630 css_advance_task_iter(it);
817929ec
PM
2631}
2632
0942eeee 2633/**
72ec7029 2634 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2635 * @it: the task iterator being iterated
2636 *
2637 * The "next" function for task iteration. @it should have been
72ec7029
TH
2638 * initialized via css_task_iter_start(). Returns NULL when the iteration
2639 * reaches the end.
0942eeee 2640 */
72ec7029 2641struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2642{
2643 struct task_struct *res;
2644 struct list_head *l = it->task;
c7561128
TH
2645 struct cgrp_cset_link *link = list_entry(it->cset_link,
2646 struct cgrp_cset_link, cset_link);
817929ec
PM
2647
2648 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2649 if (!it->cset_link)
817929ec
PM
2650 return NULL;
2651 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2652
2653 /*
2654 * Advance iterator to find next entry. cset->tasks is consumed
2655 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2656 * next cset.
2657 */
817929ec 2658 l = l->next;
c7561128
TH
2659
2660 if (l == &link->cset->tasks)
2661 l = link->cset->mg_tasks.next;
2662
2663 if (l == &link->cset->mg_tasks)
72ec7029 2664 css_advance_task_iter(it);
c7561128 2665 else
817929ec 2666 it->task = l;
c7561128 2667
817929ec
PM
2668 return res;
2669}
2670
0942eeee 2671/**
72ec7029 2672 * css_task_iter_end - finish task iteration
0942eeee
TH
2673 * @it: the task iterator to finish
2674 *
72ec7029 2675 * Finish task iteration started by css_task_iter_start().
0942eeee 2676 */
72ec7029 2677void css_task_iter_end(struct css_task_iter *it)
96d365e0 2678 __releases(css_set_rwsem)
817929ec 2679{
96d365e0 2680 up_read(&css_set_rwsem);
817929ec
PM
2681}
2682
8cc99345
TH
2683/**
2684 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2685 * @to: cgroup to which the tasks will be moved
2686 * @from: cgroup in which the tasks currently reside
2687 */
2688int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2689{
e406d1cf
TH
2690 struct css_task_iter it;
2691 struct task_struct *task;
2692 int ret = 0;
2693
2694 do {
2695 css_task_iter_start(&from->dummy_css, &it);
2696 task = css_task_iter_next(&it);
2697 if (task)
2698 get_task_struct(task);
2699 css_task_iter_end(&it);
2700
2701 if (task) {
2702 mutex_lock(&cgroup_mutex);
2703 ret = cgroup_attach_task(to, task, false);
2704 mutex_unlock(&cgroup_mutex);
2705 put_task_struct(task);
2706 }
2707 } while (task && !ret);
2708
2709 return ret;
8cc99345
TH
2710}
2711
bbcb81d0 2712/*
102a775e 2713 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2714 *
2715 * Reading this file can return large amounts of data if a cgroup has
2716 * *lots* of attached tasks. So it may need several calls to read(),
2717 * but we cannot guarantee that the information we produce is correct
2718 * unless we produce it entirely atomically.
2719 *
bbcb81d0 2720 */
bbcb81d0 2721
24528255
LZ
2722/* which pidlist file are we talking about? */
2723enum cgroup_filetype {
2724 CGROUP_FILE_PROCS,
2725 CGROUP_FILE_TASKS,
2726};
2727
2728/*
2729 * A pidlist is a list of pids that virtually represents the contents of one
2730 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2731 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2732 * to the cgroup.
2733 */
2734struct cgroup_pidlist {
2735 /*
2736 * used to find which pidlist is wanted. doesn't change as long as
2737 * this particular list stays in the list.
2738 */
2739 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2740 /* array of xids */
2741 pid_t *list;
2742 /* how many elements the above list has */
2743 int length;
24528255
LZ
2744 /* each of these stored in a list by its cgroup */
2745 struct list_head links;
2746 /* pointer to the cgroup we belong to, for list removal purposes */
2747 struct cgroup *owner;
b1a21367
TH
2748 /* for delayed destruction */
2749 struct delayed_work destroy_dwork;
24528255
LZ
2750};
2751
d1d9fd33
BB
2752/*
2753 * The following two functions "fix" the issue where there are more pids
2754 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2755 * TODO: replace with a kernel-wide solution to this problem
2756 */
2757#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2758static void *pidlist_allocate(int count)
2759{
2760 if (PIDLIST_TOO_LARGE(count))
2761 return vmalloc(count * sizeof(pid_t));
2762 else
2763 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2764}
b1a21367 2765
d1d9fd33
BB
2766static void pidlist_free(void *p)
2767{
2768 if (is_vmalloc_addr(p))
2769 vfree(p);
2770 else
2771 kfree(p);
2772}
d1d9fd33 2773
b1a21367
TH
2774/*
2775 * Used to destroy all pidlists lingering waiting for destroy timer. None
2776 * should be left afterwards.
2777 */
2778static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2779{
2780 struct cgroup_pidlist *l, *tmp_l;
2781
2782 mutex_lock(&cgrp->pidlist_mutex);
2783 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2784 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2785 mutex_unlock(&cgrp->pidlist_mutex);
2786
2787 flush_workqueue(cgroup_pidlist_destroy_wq);
2788 BUG_ON(!list_empty(&cgrp->pidlists));
2789}
2790
2791static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2792{
2793 struct delayed_work *dwork = to_delayed_work(work);
2794 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2795 destroy_dwork);
2796 struct cgroup_pidlist *tofree = NULL;
2797
2798 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2799
2800 /*
04502365
TH
2801 * Destroy iff we didn't get queued again. The state won't change
2802 * as destroy_dwork can only be queued while locked.
b1a21367 2803 */
04502365 2804 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2805 list_del(&l->links);
2806 pidlist_free(l->list);
2807 put_pid_ns(l->key.ns);
2808 tofree = l;
2809 }
2810
b1a21367
TH
2811 mutex_unlock(&l->owner->pidlist_mutex);
2812 kfree(tofree);
2813}
2814
bbcb81d0 2815/*
102a775e 2816 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2817 * Returns the number of unique elements.
bbcb81d0 2818 */
6ee211ad 2819static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2820{
102a775e 2821 int src, dest = 1;
102a775e
BB
2822
2823 /*
2824 * we presume the 0th element is unique, so i starts at 1. trivial
2825 * edge cases first; no work needs to be done for either
2826 */
2827 if (length == 0 || length == 1)
2828 return length;
2829 /* src and dest walk down the list; dest counts unique elements */
2830 for (src = 1; src < length; src++) {
2831 /* find next unique element */
2832 while (list[src] == list[src-1]) {
2833 src++;
2834 if (src == length)
2835 goto after;
2836 }
2837 /* dest always points to where the next unique element goes */
2838 list[dest] = list[src];
2839 dest++;
2840 }
2841after:
102a775e
BB
2842 return dest;
2843}
2844
afb2bc14
TH
2845/*
2846 * The two pid files - task and cgroup.procs - guaranteed that the result
2847 * is sorted, which forced this whole pidlist fiasco. As pid order is
2848 * different per namespace, each namespace needs differently sorted list,
2849 * making it impossible to use, for example, single rbtree of member tasks
2850 * sorted by task pointer. As pidlists can be fairly large, allocating one
2851 * per open file is dangerous, so cgroup had to implement shared pool of
2852 * pidlists keyed by cgroup and namespace.
2853 *
2854 * All this extra complexity was caused by the original implementation
2855 * committing to an entirely unnecessary property. In the long term, we
2856 * want to do away with it. Explicitly scramble sort order if
2857 * sane_behavior so that no such expectation exists in the new interface.
2858 *
2859 * Scrambling is done by swapping every two consecutive bits, which is
2860 * non-identity one-to-one mapping which disturbs sort order sufficiently.
2861 */
2862static pid_t pid_fry(pid_t pid)
2863{
2864 unsigned a = pid & 0x55555555;
2865 unsigned b = pid & 0xAAAAAAAA;
2866
2867 return (a << 1) | (b >> 1);
2868}
2869
2870static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
2871{
2872 if (cgroup_sane_behavior(cgrp))
2873 return pid_fry(pid);
2874 else
2875 return pid;
2876}
2877
102a775e
BB
2878static int cmppid(const void *a, const void *b)
2879{
2880 return *(pid_t *)a - *(pid_t *)b;
2881}
2882
afb2bc14
TH
2883static int fried_cmppid(const void *a, const void *b)
2884{
2885 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
2886}
2887
e6b81710
TH
2888static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2889 enum cgroup_filetype type)
2890{
2891 struct cgroup_pidlist *l;
2892 /* don't need task_nsproxy() if we're looking at ourself */
2893 struct pid_namespace *ns = task_active_pid_ns(current);
2894
2895 lockdep_assert_held(&cgrp->pidlist_mutex);
2896
2897 list_for_each_entry(l, &cgrp->pidlists, links)
2898 if (l->key.type == type && l->key.ns == ns)
2899 return l;
2900 return NULL;
2901}
2902
72a8cb30
BB
2903/*
2904 * find the appropriate pidlist for our purpose (given procs vs tasks)
2905 * returns with the lock on that pidlist already held, and takes care
2906 * of the use count, or returns NULL with no locks held if we're out of
2907 * memory.
2908 */
e6b81710
TH
2909static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
2910 enum cgroup_filetype type)
72a8cb30
BB
2911{
2912 struct cgroup_pidlist *l;
b70cc5fd 2913
e6b81710
TH
2914 lockdep_assert_held(&cgrp->pidlist_mutex);
2915
2916 l = cgroup_pidlist_find(cgrp, type);
2917 if (l)
2918 return l;
2919
72a8cb30 2920 /* entry not found; create a new one */
f4f4be2b 2921 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 2922 if (!l)
72a8cb30 2923 return l;
e6b81710 2924
b1a21367 2925 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 2926 l->key.type = type;
e6b81710
TH
2927 /* don't need task_nsproxy() if we're looking at ourself */
2928 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
2929 l->owner = cgrp;
2930 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
2931 return l;
2932}
2933
102a775e
BB
2934/*
2935 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2936 */
72a8cb30
BB
2937static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2938 struct cgroup_pidlist **lp)
102a775e
BB
2939{
2940 pid_t *array;
2941 int length;
2942 int pid, n = 0; /* used for populating the array */
72ec7029 2943 struct css_task_iter it;
817929ec 2944 struct task_struct *tsk;
102a775e
BB
2945 struct cgroup_pidlist *l;
2946
4bac00d1
TH
2947 lockdep_assert_held(&cgrp->pidlist_mutex);
2948
102a775e
BB
2949 /*
2950 * If cgroup gets more users after we read count, we won't have
2951 * enough space - tough. This race is indistinguishable to the
2952 * caller from the case that the additional cgroup users didn't
2953 * show up until sometime later on.
2954 */
2955 length = cgroup_task_count(cgrp);
d1d9fd33 2956 array = pidlist_allocate(length);
102a775e
BB
2957 if (!array)
2958 return -ENOMEM;
2959 /* now, populate the array */
72ec7029
TH
2960 css_task_iter_start(&cgrp->dummy_css, &it);
2961 while ((tsk = css_task_iter_next(&it))) {
102a775e 2962 if (unlikely(n == length))
817929ec 2963 break;
102a775e 2964 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2965 if (type == CGROUP_FILE_PROCS)
2966 pid = task_tgid_vnr(tsk);
2967 else
2968 pid = task_pid_vnr(tsk);
102a775e
BB
2969 if (pid > 0) /* make sure to only use valid results */
2970 array[n++] = pid;
817929ec 2971 }
72ec7029 2972 css_task_iter_end(&it);
102a775e
BB
2973 length = n;
2974 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
2975 if (cgroup_sane_behavior(cgrp))
2976 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
2977 else
2978 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2979 if (type == CGROUP_FILE_PROCS)
6ee211ad 2980 length = pidlist_uniq(array, length);
e6b81710 2981
e6b81710 2982 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 2983 if (!l) {
e6b81710 2984 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 2985 pidlist_free(array);
72a8cb30 2986 return -ENOMEM;
102a775e 2987 }
e6b81710
TH
2988
2989 /* store array, freeing old if necessary */
d1d9fd33 2990 pidlist_free(l->list);
102a775e
BB
2991 l->list = array;
2992 l->length = length;
72a8cb30 2993 *lp = l;
102a775e 2994 return 0;
bbcb81d0
PM
2995}
2996
846c7bb0 2997/**
a043e3b2 2998 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2999 * @stats: cgroupstats to fill information into
3000 * @dentry: A dentry entry belonging to the cgroup for which stats have
3001 * been requested.
a043e3b2
LZ
3002 *
3003 * Build and fill cgroupstats so that taskstats can export it to user
3004 * space.
846c7bb0
BS
3005 */
3006int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3007{
2bd59d48 3008 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3009 struct cgroup *cgrp;
72ec7029 3010 struct css_task_iter it;
846c7bb0 3011 struct task_struct *tsk;
33d283be 3012
2bd59d48
TH
3013 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3014 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3015 kernfs_type(kn) != KERNFS_DIR)
3016 return -EINVAL;
3017
bad34660
LZ
3018 mutex_lock(&cgroup_mutex);
3019
846c7bb0 3020 /*
2bd59d48
TH
3021 * We aren't being called from kernfs and there's no guarantee on
3022 * @kn->priv's validity. For this and css_tryget_from_dir(),
3023 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3024 */
2bd59d48
TH
3025 rcu_read_lock();
3026 cgrp = rcu_dereference(kn->priv);
bad34660 3027 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3028 rcu_read_unlock();
bad34660 3029 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3030 return -ENOENT;
3031 }
bad34660 3032 rcu_read_unlock();
846c7bb0 3033
72ec7029
TH
3034 css_task_iter_start(&cgrp->dummy_css, &it);
3035 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3036 switch (tsk->state) {
3037 case TASK_RUNNING:
3038 stats->nr_running++;
3039 break;
3040 case TASK_INTERRUPTIBLE:
3041 stats->nr_sleeping++;
3042 break;
3043 case TASK_UNINTERRUPTIBLE:
3044 stats->nr_uninterruptible++;
3045 break;
3046 case TASK_STOPPED:
3047 stats->nr_stopped++;
3048 break;
3049 default:
3050 if (delayacct_is_task_waiting_on_io(tsk))
3051 stats->nr_io_wait++;
3052 break;
3053 }
3054 }
72ec7029 3055 css_task_iter_end(&it);
846c7bb0 3056
bad34660 3057 mutex_unlock(&cgroup_mutex);
2bd59d48 3058 return 0;
846c7bb0
BS
3059}
3060
8f3ff208 3061
bbcb81d0 3062/*
102a775e 3063 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3064 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3065 * in the cgroup->l->list array.
bbcb81d0 3066 */
cc31edce 3067
102a775e 3068static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3069{
cc31edce
PM
3070 /*
3071 * Initially we receive a position value that corresponds to
3072 * one more than the last pid shown (or 0 on the first call or
3073 * after a seek to the start). Use a binary-search to find the
3074 * next pid to display, if any
3075 */
2bd59d48 3076 struct kernfs_open_file *of = s->private;
7da11279 3077 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3078 struct cgroup_pidlist *l;
7da11279 3079 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3080 int index = 0, pid = *pos;
4bac00d1
TH
3081 int *iter, ret;
3082
3083 mutex_lock(&cgrp->pidlist_mutex);
3084
3085 /*
5d22444f 3086 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3087 * after open. If the matching pidlist is around, we can use that.
5d22444f 3088 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3089 * could already have been destroyed.
3090 */
5d22444f
TH
3091 if (of->priv)
3092 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3093
3094 /*
3095 * Either this is the first start() after open or the matching
3096 * pidlist has been destroyed inbetween. Create a new one.
3097 */
5d22444f
TH
3098 if (!of->priv) {
3099 ret = pidlist_array_load(cgrp, type,
3100 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3101 if (ret)
3102 return ERR_PTR(ret);
3103 }
5d22444f 3104 l = of->priv;
cc31edce 3105
cc31edce 3106 if (pid) {
102a775e 3107 int end = l->length;
20777766 3108
cc31edce
PM
3109 while (index < end) {
3110 int mid = (index + end) / 2;
afb2bc14 3111 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3112 index = mid;
3113 break;
afb2bc14 3114 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3115 index = mid + 1;
3116 else
3117 end = mid;
3118 }
3119 }
3120 /* If we're off the end of the array, we're done */
102a775e 3121 if (index >= l->length)
cc31edce
PM
3122 return NULL;
3123 /* Update the abstract position to be the actual pid that we found */
102a775e 3124 iter = l->list + index;
afb2bc14 3125 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3126 return iter;
3127}
3128
102a775e 3129static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3130{
2bd59d48 3131 struct kernfs_open_file *of = s->private;
5d22444f 3132 struct cgroup_pidlist *l = of->priv;
62236858 3133
5d22444f
TH
3134 if (l)
3135 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3136 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3137 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3138}
3139
102a775e 3140static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3141{
2bd59d48 3142 struct kernfs_open_file *of = s->private;
5d22444f 3143 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3144 pid_t *p = v;
3145 pid_t *end = l->list + l->length;
cc31edce
PM
3146 /*
3147 * Advance to the next pid in the array. If this goes off the
3148 * end, we're done
3149 */
3150 p++;
3151 if (p >= end) {
3152 return NULL;
3153 } else {
7da11279 3154 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3155 return p;
3156 }
3157}
3158
102a775e 3159static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3160{
3161 return seq_printf(s, "%d\n", *(int *)v);
3162}
bbcb81d0 3163
102a775e
BB
3164/*
3165 * seq_operations functions for iterating on pidlists through seq_file -
3166 * independent of whether it's tasks or procs
3167 */
3168static const struct seq_operations cgroup_pidlist_seq_operations = {
3169 .start = cgroup_pidlist_start,
3170 .stop = cgroup_pidlist_stop,
3171 .next = cgroup_pidlist_next,
3172 .show = cgroup_pidlist_show,
cc31edce
PM
3173};
3174
182446d0
TH
3175static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3176 struct cftype *cft)
81a6a5cd 3177{
182446d0 3178 return notify_on_release(css->cgroup);
81a6a5cd
PM
3179}
3180
182446d0
TH
3181static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3182 struct cftype *cft, u64 val)
6379c106 3183{
182446d0 3184 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3185 if (val)
182446d0 3186 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3187 else
182446d0 3188 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3189 return 0;
3190}
3191
182446d0
TH
3192static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3193 struct cftype *cft)
97978e6d 3194{
182446d0 3195 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3196}
3197
182446d0
TH
3198static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3199 struct cftype *cft, u64 val)
97978e6d
DL
3200{
3201 if (val)
182446d0 3202 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3203 else
182446d0 3204 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3205 return 0;
3206}
3207
d5c56ced 3208static struct cftype cgroup_base_files[] = {
81a6a5cd 3209 {
d5c56ced 3210 .name = "cgroup.procs",
6612f05b
TH
3211 .seq_start = cgroup_pidlist_start,
3212 .seq_next = cgroup_pidlist_next,
3213 .seq_stop = cgroup_pidlist_stop,
3214 .seq_show = cgroup_pidlist_show,
5d22444f 3215 .private = CGROUP_FILE_PROCS,
74a1166d 3216 .write_u64 = cgroup_procs_write,
74a1166d 3217 .mode = S_IRUGO | S_IWUSR,
102a775e 3218 },
97978e6d
DL
3219 {
3220 .name = "cgroup.clone_children",
873fe09e 3221 .flags = CFTYPE_INSANE,
97978e6d
DL
3222 .read_u64 = cgroup_clone_children_read,
3223 .write_u64 = cgroup_clone_children_write,
3224 },
873fe09e
TH
3225 {
3226 .name = "cgroup.sane_behavior",
3227 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3228 .seq_show = cgroup_sane_behavior_show,
873fe09e 3229 },
d5c56ced
TH
3230
3231 /*
3232 * Historical crazy stuff. These don't have "cgroup." prefix and
3233 * don't exist if sane_behavior. If you're depending on these, be
3234 * prepared to be burned.
3235 */
3236 {
3237 .name = "tasks",
3238 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3239 .seq_start = cgroup_pidlist_start,
3240 .seq_next = cgroup_pidlist_next,
3241 .seq_stop = cgroup_pidlist_stop,
3242 .seq_show = cgroup_pidlist_show,
5d22444f 3243 .private = CGROUP_FILE_TASKS,
d5c56ced 3244 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3245 .mode = S_IRUGO | S_IWUSR,
3246 },
3247 {
3248 .name = "notify_on_release",
3249 .flags = CFTYPE_INSANE,
3250 .read_u64 = cgroup_read_notify_on_release,
3251 .write_u64 = cgroup_write_notify_on_release,
3252 },
6e6ff25b
TH
3253 {
3254 .name = "release_agent",
cc5943a7 3255 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3256 .seq_show = cgroup_release_agent_show,
6e6ff25b 3257 .write_string = cgroup_release_agent_write,
5f469907 3258 .max_write_len = PATH_MAX - 1,
6e6ff25b 3259 },
db0416b6 3260 { } /* terminate */
bbcb81d0
PM
3261};
3262
13af07df 3263/**
628f7cd4 3264 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3265 * @cgrp: target cgroup
13af07df 3266 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3267 *
3268 * On failure, no file is added.
13af07df 3269 */
628f7cd4 3270static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3271{
ddbcc7e8 3272 struct cgroup_subsys *ss;
b420ba7d 3273 int i, ret = 0;
bbcb81d0 3274
8e3f6541 3275 /* process cftsets of each subsystem */
b420ba7d 3276 for_each_subsys(ss, i) {
0adb0704 3277 struct cftype *cfts;
b420ba7d
TH
3278
3279 if (!test_bit(i, &subsys_mask))
13af07df 3280 continue;
8e3f6541 3281
0adb0704
TH
3282 list_for_each_entry(cfts, &ss->cfts, node) {
3283 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3284 if (ret < 0)
3285 goto err;
3286 }
ddbcc7e8 3287 }
ddbcc7e8 3288 return 0;
bee55099
TH
3289err:
3290 cgroup_clear_dir(cgrp, subsys_mask);
3291 return ret;
ddbcc7e8
PM
3292}
3293
0c21ead1
TH
3294/*
3295 * css destruction is four-stage process.
3296 *
3297 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3298 * Implemented in kill_css().
3299 *
3300 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3301 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3302 * by invoking offline_css(). After offlining, the base ref is put.
3303 * Implemented in css_killed_work_fn().
3304 *
3305 * 3. When the percpu_ref reaches zero, the only possible remaining
3306 * accessors are inside RCU read sections. css_release() schedules the
3307 * RCU callback.
3308 *
3309 * 4. After the grace period, the css can be freed. Implemented in
3310 * css_free_work_fn().
3311 *
3312 * It is actually hairier because both step 2 and 4 require process context
3313 * and thus involve punting to css->destroy_work adding two additional
3314 * steps to the already complex sequence.
3315 */
35ef10da 3316static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3317{
3318 struct cgroup_subsys_state *css =
35ef10da 3319 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3320 struct cgroup *cgrp = css->cgroup;
48ddbe19 3321
0ae78e0b
TH
3322 if (css->parent)
3323 css_put(css->parent);
3324
0c21ead1 3325 css->ss->css_free(css);
2bd59d48 3326 cgroup_put(cgrp);
48ddbe19
TH
3327}
3328
0c21ead1 3329static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3330{
3331 struct cgroup_subsys_state *css =
0c21ead1 3332 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3333
35ef10da 3334 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3335 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3336}
3337
d3daf28d
TH
3338static void css_release(struct percpu_ref *ref)
3339{
3340 struct cgroup_subsys_state *css =
3341 container_of(ref, struct cgroup_subsys_state, refcnt);
3342
aec25020 3343 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3344 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3345}
3346
623f926b
TH
3347static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3348 struct cgroup *cgrp)
ddbcc7e8 3349{
bd89aabc 3350 css->cgroup = cgrp;
72c97e54 3351 css->ss = ss;
ddbcc7e8 3352 css->flags = 0;
0ae78e0b
TH
3353
3354 if (cgrp->parent)
ca8bdcaf 3355 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3356 else
38b53aba 3357 css->flags |= CSS_ROOT;
48ddbe19 3358
ca8bdcaf 3359 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3360}
3361
2a4ac633 3362/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3363static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3364{
623f926b 3365 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3366 int ret = 0;
3367
ace2bee8 3368 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3369 lockdep_assert_held(&cgroup_mutex);
3370
92fb9748 3371 if (ss->css_online)
eb95419b 3372 ret = ss->css_online(css);
ae7f164a 3373 if (!ret) {
eb95419b 3374 css->flags |= CSS_ONLINE;
f20104de 3375 css->cgroup->nr_css++;
aec25020 3376 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3377 }
b1929db4 3378 return ret;
a31f2d3f
TH
3379}
3380
2a4ac633 3381/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3382static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3383{
623f926b 3384 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3385
ace2bee8 3386 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3387 lockdep_assert_held(&cgroup_mutex);
3388
3389 if (!(css->flags & CSS_ONLINE))
3390 return;
3391
d7eeac19 3392 if (ss->css_offline)
eb95419b 3393 ss->css_offline(css);
a31f2d3f 3394
eb95419b 3395 css->flags &= ~CSS_ONLINE;
09a503ea 3396 css->cgroup->nr_css--;
aec25020 3397 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3398}
3399
c81c925a
TH
3400/**
3401 * create_css - create a cgroup_subsys_state
3402 * @cgrp: the cgroup new css will be associated with
3403 * @ss: the subsys of new css
3404 *
3405 * Create a new css associated with @cgrp - @ss pair. On success, the new
3406 * css is online and installed in @cgrp with all interface files created.
3407 * Returns 0 on success, -errno on failure.
3408 */
3409static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3410{
3411 struct cgroup *parent = cgrp->parent;
3412 struct cgroup_subsys_state *css;
3413 int err;
3414
c81c925a
TH
3415 lockdep_assert_held(&cgroup_mutex);
3416
3417 css = ss->css_alloc(cgroup_css(parent, ss));
3418 if (IS_ERR(css))
3419 return PTR_ERR(css);
3420
3421 err = percpu_ref_init(&css->refcnt, css_release);
3422 if (err)
3423 goto err_free;
3424
3425 init_css(css, ss, cgrp);
3426
aec25020 3427 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3428 if (err)
3429 goto err_free;
3430
3431 err = online_css(css);
3432 if (err)
3433 goto err_free;
3434
59f5296b 3435 cgroup_get(cgrp);
c81c925a
TH
3436 css_get(css->parent);
3437
3438 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3439 parent->parent) {
3440 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3441 current->comm, current->pid, ss->name);
3442 if (!strcmp(ss->name, "memory"))
3443 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3444 ss->warned_broken_hierarchy = true;
3445 }
3446
3447 return 0;
3448
3449err_free:
3450 percpu_ref_cancel_init(&css->refcnt);
3451 ss->css_free(css);
3452 return err;
3453}
3454
2bd59d48 3455/**
a043e3b2
LZ
3456 * cgroup_create - create a cgroup
3457 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3458 * @name: name of the new cgroup
2bd59d48 3459 * @mode: mode to set on new cgroup
ddbcc7e8 3460 */
e61734c5 3461static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3462 umode_t mode)
ddbcc7e8 3463{
bd89aabc 3464 struct cgroup *cgrp;
ddbcc7e8 3465 struct cgroupfs_root *root = parent->root;
b58c8998 3466 int ssid, err;
ddbcc7e8 3467 struct cgroup_subsys *ss;
2bd59d48 3468 struct kernfs_node *kn;
ddbcc7e8 3469
0a950f65 3470 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3471 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3472 if (!cgrp)
ddbcc7e8
PM
3473 return -ENOMEM;
3474
ace2bee8
TH
3475 mutex_lock(&cgroup_tree_mutex);
3476
976c06bc
TH
3477 /*
3478 * Only live parents can have children. Note that the liveliness
3479 * check isn't strictly necessary because cgroup_mkdir() and
3480 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3481 * anyway so that locking is contained inside cgroup proper and we
3482 * don't get nasty surprises if we ever grow another caller.
3483 */
3484 if (!cgroup_lock_live_group(parent)) {
3485 err = -ENODEV;
ace2bee8 3486 goto err_unlock_tree;
0ab02ca8
LZ
3487 }
3488
3489 /*
3490 * Temporarily set the pointer to NULL, so idr_find() won't return
3491 * a half-baked cgroup.
3492 */
3493 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3494 if (cgrp->id < 0) {
3495 err = -ENOMEM;
3496 goto err_unlock;
976c06bc
TH
3497 }
3498
cc31edce 3499 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3500
bd89aabc 3501 cgrp->parent = parent;
0ae78e0b 3502 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3503 cgrp->root = parent->root;
ddbcc7e8 3504
b6abdb0e
LZ
3505 if (notify_on_release(parent))
3506 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3507
2260e7fc
TH
3508 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3509 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3510
2bd59d48 3511 /* create the directory */
e61734c5 3512 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3513 if (IS_ERR(kn)) {
3514 err = PTR_ERR(kn);
0ab02ca8 3515 goto err_free_id;
2bd59d48
TH
3516 }
3517 cgrp->kn = kn;
ddbcc7e8 3518
6f30558f
TH
3519 /*
3520 * This extra ref will be put in cgroup_free_fn() and guarantees
3521 * that @cgrp->kn is always accessible.
3522 */
3523 kernfs_get(kn);
3524
00356bd5 3525 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3526
4e139afc 3527 /* allocation complete, commit to creation */
4e139afc 3528 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3529 atomic_inc(&root->nr_cgrps);
59f5296b 3530 cgroup_get(parent);
415cf07a 3531
0d80255e
TH
3532 /*
3533 * @cgrp is now fully operational. If something fails after this
3534 * point, it'll be released via the normal destruction path.
3535 */
4e96ee8e
LZ
3536 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3537
2bb566cb 3538 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3539 if (err)
3540 goto err_destroy;
3541
9d403e99 3542 /* let's create and online css's */
b85d2040
TH
3543 for_each_subsys(ss, ssid) {
3544 if (root->subsys_mask & (1 << ssid)) {
3545 err = create_css(cgrp, ss);
3546 if (err)
3547 goto err_destroy;
3548 }
a8638030 3549 }
ddbcc7e8 3550
2bd59d48
TH
3551 kernfs_activate(kn);
3552
ddbcc7e8 3553 mutex_unlock(&cgroup_mutex);
ace2bee8 3554 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3555
3556 return 0;
3557
0a950f65 3558err_free_id:
4e96ee8e 3559 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3560err_unlock:
3561 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3562err_unlock_tree:
3563 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3564 kfree(cgrp);
ddbcc7e8 3565 return err;
4b8b47eb
TH
3566
3567err_destroy:
3568 cgroup_destroy_locked(cgrp);
3569 mutex_unlock(&cgroup_mutex);
ace2bee8 3570 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3571 return err;
ddbcc7e8
PM
3572}
3573
2bd59d48
TH
3574static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3575 umode_t mode)
ddbcc7e8 3576{
2bd59d48 3577 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3578
2bd59d48 3579 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3580}
3581
223dbc38
TH
3582/*
3583 * This is called when the refcnt of a css is confirmed to be killed.
3584 * css_tryget() is now guaranteed to fail.
3585 */
3586static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3587{
223dbc38
TH
3588 struct cgroup_subsys_state *css =
3589 container_of(work, struct cgroup_subsys_state, destroy_work);
3590 struct cgroup *cgrp = css->cgroup;
d3daf28d 3591
ace2bee8 3592 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3593 mutex_lock(&cgroup_mutex);
3594
09a503ea
TH
3595 /*
3596 * css_tryget() is guaranteed to fail now. Tell subsystems to
3597 * initate destruction.
3598 */
3599 offline_css(css);
3600
f20104de
TH
3601 /*
3602 * If @cgrp is marked dead, it's waiting for refs of all css's to
3603 * be disabled before proceeding to the second phase of cgroup
3604 * destruction. If we are the last one, kick it off.
3605 */
09a503ea 3606 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3607 cgroup_destroy_css_killed(cgrp);
3608
3609 mutex_unlock(&cgroup_mutex);
ace2bee8 3610 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3611
3612 /*
3613 * Put the css refs from kill_css(). Each css holds an extra
3614 * reference to the cgroup's dentry and cgroup removal proceeds
3615 * regardless of css refs. On the last put of each css, whenever
3616 * that may be, the extra dentry ref is put so that dentry
3617 * destruction happens only after all css's are released.
3618 */
3619 css_put(css);
d3daf28d
TH
3620}
3621
223dbc38
TH
3622/* css kill confirmation processing requires process context, bounce */
3623static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3624{
3625 struct cgroup_subsys_state *css =
3626 container_of(ref, struct cgroup_subsys_state, refcnt);
3627
223dbc38 3628 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3629 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3630}
3631
edae0c33
TH
3632/**
3633 * kill_css - destroy a css
3634 * @css: css to destroy
3635 *
3c14f8b4
TH
3636 * This function initiates destruction of @css by removing cgroup interface
3637 * files and putting its base reference. ->css_offline() will be invoked
3638 * asynchronously once css_tryget() is guaranteed to fail and when the
3639 * reference count reaches zero, @css will be released.
edae0c33
TH
3640 */
3641static void kill_css(struct cgroup_subsys_state *css)
3642{
2bd59d48
TH
3643 /*
3644 * This must happen before css is disassociated with its cgroup.
3645 * See seq_css() for details.
3646 */
aec25020 3647 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3648
edae0c33
TH
3649 /*
3650 * Killing would put the base ref, but we need to keep it alive
3651 * until after ->css_offline().
3652 */
3653 css_get(css);
3654
3655 /*
3656 * cgroup core guarantees that, by the time ->css_offline() is
3657 * invoked, no new css reference will be given out via
3658 * css_tryget(). We can't simply call percpu_ref_kill() and
3659 * proceed to offlining css's because percpu_ref_kill() doesn't
3660 * guarantee that the ref is seen as killed on all CPUs on return.
3661 *
3662 * Use percpu_ref_kill_and_confirm() to get notifications as each
3663 * css is confirmed to be seen as killed on all CPUs.
3664 */
3665 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3666}
3667
3668/**
3669 * cgroup_destroy_locked - the first stage of cgroup destruction
3670 * @cgrp: cgroup to be destroyed
3671 *
3672 * css's make use of percpu refcnts whose killing latency shouldn't be
3673 * exposed to userland and are RCU protected. Also, cgroup core needs to
3674 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3675 * invoked. To satisfy all the requirements, destruction is implemented in
3676 * the following two steps.
3677 *
3678 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3679 * userland visible parts and start killing the percpu refcnts of
3680 * css's. Set up so that the next stage will be kicked off once all
3681 * the percpu refcnts are confirmed to be killed.
3682 *
3683 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3684 * rest of destruction. Once all cgroup references are gone, the
3685 * cgroup is RCU-freed.
3686 *
3687 * This function implements s1. After this step, @cgrp is gone as far as
3688 * the userland is concerned and a new cgroup with the same name may be
3689 * created. As cgroup doesn't care about the names internally, this
3690 * doesn't cause any problem.
3691 */
42809dd4
TH
3692static int cgroup_destroy_locked(struct cgroup *cgrp)
3693 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3694{
bb78a92f 3695 struct cgroup *child;
2bd59d48 3696 struct cgroup_subsys_state *css;
ddd69148 3697 bool empty;
1c6727af 3698 int ssid;
ddbcc7e8 3699
ace2bee8 3700 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3701 lockdep_assert_held(&cgroup_mutex);
3702
ddd69148 3703 /*
96d365e0 3704 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3705 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3706 */
96d365e0 3707 down_read(&css_set_rwsem);
bb78a92f 3708 empty = list_empty(&cgrp->cset_links);
96d365e0 3709 up_read(&css_set_rwsem);
ddd69148 3710 if (!empty)
ddbcc7e8 3711 return -EBUSY;
a043e3b2 3712
bb78a92f
HD
3713 /*
3714 * Make sure there's no live children. We can't test ->children
3715 * emptiness as dead children linger on it while being destroyed;
3716 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3717 */
3718 empty = true;
3719 rcu_read_lock();
3720 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3721 empty = cgroup_is_dead(child);
3722 if (!empty)
3723 break;
3724 }
3725 rcu_read_unlock();
3726 if (!empty)
3727 return -EBUSY;
3728
88703267 3729 /*
edae0c33
TH
3730 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3731 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3732 * percpu refs of all css's are confirmed to be killed. This
3733 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3734 */
4ac06017 3735 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3736 for_each_css(css, ssid, cgrp)
3737 kill_css(css);
4ac06017 3738 mutex_lock(&cgroup_mutex);
455050d2
TH
3739
3740 /*
3741 * Mark @cgrp dead. This prevents further task migration and child
3742 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3743 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3744 * resume iteration after dropping RCU read lock. See
492eb21b 3745 * css_next_child() for details.
455050d2 3746 */
54766d4a 3747 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3748
455050d2
TH
3749 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3750 raw_spin_lock(&release_list_lock);
3751 if (!list_empty(&cgrp->release_list))
3752 list_del_init(&cgrp->release_list);
3753 raw_spin_unlock(&release_list_lock);
3754
3755 /*
f20104de
TH
3756 * If @cgrp has css's attached, the second stage of cgroup
3757 * destruction is kicked off from css_killed_work_fn() after the
3758 * refs of all attached css's are killed. If @cgrp doesn't have
3759 * any css, we kick it off here.
3760 */
3761 if (!cgrp->nr_css)
3762 cgroup_destroy_css_killed(cgrp);
3763
2bd59d48
TH
3764 /* remove @cgrp directory along with the base files */
3765 mutex_unlock(&cgroup_mutex);
3766
455050d2 3767 /*
2bd59d48
TH
3768 * There are two control paths which try to determine cgroup from
3769 * dentry without going through kernfs - cgroupstats_build() and
3770 * css_tryget_from_dir(). Those are supported by RCU protecting
3771 * clearing of cgrp->kn->priv backpointer, which should happen
3772 * after all files under it have been removed.
455050d2 3773 */
6f30558f 3774 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3775 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3776
4ac06017 3777 mutex_lock(&cgroup_mutex);
455050d2 3778
ea15f8cc
TH
3779 return 0;
3780};
3781
d3daf28d 3782/**
f20104de 3783 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3784 * @work: cgroup->destroy_free_work
3785 *
3786 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3787 * destroyed after all css's are offlined and performs the rest of
3788 * destruction. This is the second step of destruction described in the
3789 * comment above cgroup_destroy_locked().
d3daf28d 3790 */
f20104de 3791static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3792{
ea15f8cc 3793 struct cgroup *parent = cgrp->parent;
ea15f8cc 3794
ace2bee8 3795 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3796 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3797
999cd8a4 3798 /* delete this cgroup from parent->children */
eb6fd504 3799 list_del_rcu(&cgrp->sibling);
ed957793 3800
59f5296b 3801 cgroup_put(cgrp);
ddbcc7e8 3802
bd89aabc 3803 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3804 check_for_release(parent);
ddbcc7e8
PM
3805}
3806
2bd59d48 3807static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3808{
2bd59d48
TH
3809 struct cgroup *cgrp = kn->priv;
3810 int ret = 0;
3811
3812 /*
3813 * This is self-destruction but @kn can't be removed while this
3814 * callback is in progress. Let's break active protection. Once
3815 * the protection is broken, @cgrp can be destroyed at any point.
3816 * Pin it so that it stays accessible.
3817 */
3818 cgroup_get(cgrp);
3819 kernfs_break_active_protection(kn);
42809dd4 3820
ace2bee8 3821 mutex_lock(&cgroup_tree_mutex);
42809dd4 3822 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3823
3824 /*
3825 * @cgrp might already have been destroyed while we're trying to
3826 * grab the mutexes.
3827 */
3828 if (!cgroup_is_dead(cgrp))
3829 ret = cgroup_destroy_locked(cgrp);
3830
42809dd4 3831 mutex_unlock(&cgroup_mutex);
ace2bee8 3832 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3833
2bd59d48
TH
3834 kernfs_unbreak_active_protection(kn);
3835 cgroup_put(cgrp);
42809dd4
TH
3836 return ret;
3837}
3838
2bd59d48
TH
3839static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3840 .remount_fs = cgroup_remount,
3841 .show_options = cgroup_show_options,
3842 .mkdir = cgroup_mkdir,
3843 .rmdir = cgroup_rmdir,
3844 .rename = cgroup_rename,
3845};
3846
06a11920 3847static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3848{
ddbcc7e8 3849 struct cgroup_subsys_state *css;
cfe36bde
DC
3850
3851 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 3852
ace2bee8 3853 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
3854 mutex_lock(&cgroup_mutex);
3855
0adb0704 3856 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 3857
ddbcc7e8 3858 /* Create the top cgroup state for this subsystem */
9871bf95 3859 ss->root = &cgroup_dummy_root;
ca8bdcaf 3860 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
3861 /* We don't handle early failures gracefully */
3862 BUG_ON(IS_ERR(css));
623f926b 3863 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 3864
e8d55fde 3865 /* Update the init_css_set to contain a subsys
817929ec 3866 * pointer to this state - since the subsystem is
e8d55fde
LZ
3867 * newly registered, all tasks and hence the
3868 * init_css_set is in the subsystem's top cgroup. */
aec25020 3869 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
3870
3871 need_forkexit_callback |= ss->fork || ss->exit;
3872
e8d55fde
LZ
3873 /* At system boot, before all subsystems have been
3874 * registered, no tasks have been forked, so we don't
3875 * need to invoke fork callbacks here. */
3876 BUG_ON(!list_empty(&init_task.tasks));
3877
ae7f164a 3878 BUG_ON(online_css(css));
a8638030 3879
648bb56d 3880 mutex_unlock(&cgroup_mutex);
ace2bee8 3881 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
3882}
3883
ddbcc7e8 3884/**
a043e3b2
LZ
3885 * cgroup_init_early - cgroup initialization at system boot
3886 *
3887 * Initialize cgroups at system boot, and initialize any
3888 * subsystems that request early init.
ddbcc7e8
PM
3889 */
3890int __init cgroup_init_early(void)
3891{
30159ec7 3892 struct cgroup_subsys *ss;
ddbcc7e8 3893 int i;
30159ec7 3894
146aa1bd 3895 atomic_set(&init_css_set.refcount, 1);
69d0206c 3896 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 3897 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3898 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3899 css_set_count = 1;
9871bf95
TH
3900 init_cgroup_root(&cgroup_dummy_root);
3901 cgroup_root_count = 1;
a4ea1cc9 3902 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 3903
69d0206c 3904 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
3905 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
3906 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 3907 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 3908
3ed80a62 3909 for_each_subsys(ss, i) {
aec25020 3910 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
3911 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
3912 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 3913 ss->id, ss->name);
073219e9
TH
3914 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
3915 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
3916
aec25020 3917 ss->id = i;
073219e9 3918 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
3919
3920 if (ss->early_init)
3921 cgroup_init_subsys(ss);
3922 }
3923 return 0;
3924}
3925
3926/**
a043e3b2
LZ
3927 * cgroup_init - cgroup initialization
3928 *
3929 * Register cgroup filesystem and /proc file, and initialize
3930 * any subsystems that didn't request early init.
ddbcc7e8
PM
3931 */
3932int __init cgroup_init(void)
3933{
30159ec7 3934 struct cgroup_subsys *ss;
0ac801fe 3935 unsigned long key;
30159ec7 3936 int i, err;
a424316c 3937
2bd59d48 3938 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 3939
3ed80a62 3940 for_each_subsys(ss, i) {
ddbcc7e8
PM
3941 if (!ss->early_init)
3942 cgroup_init_subsys(ss);
de00ffa5
TH
3943
3944 /*
3945 * cftype registration needs kmalloc and can't be done
3946 * during early_init. Register base cftypes separately.
3947 */
3948 if (ss->base_cftypes)
3949 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
3950 }
3951
fa3ca07e 3952 /* allocate id for the dummy hierarchy */
54e7b4eb 3953 mutex_lock(&cgroup_mutex);
54e7b4eb 3954
82fe9b0d
TH
3955 /* Add init_css_set to the hash table */
3956 key = css_set_hash(init_css_set.subsys);
3957 hash_add(css_set_table, &init_css_set.hlist, key);
3958
fc76df70 3959 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 3960
4e96ee8e
LZ
3961 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
3962 0, 1, GFP_KERNEL);
3963 BUG_ON(err < 0);
3964
54e7b4eb
TH
3965 mutex_unlock(&cgroup_mutex);
3966
676db4af 3967 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
3968 if (!cgroup_kobj)
3969 return -ENOMEM;
676db4af 3970
ddbcc7e8 3971 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
3972 if (err < 0) {
3973 kobject_put(cgroup_kobj);
2bd59d48 3974 return err;
676db4af 3975 }
ddbcc7e8 3976
46ae220b 3977 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 3978 return 0;
ddbcc7e8 3979}
b4f48b63 3980
e5fca243
TH
3981static int __init cgroup_wq_init(void)
3982{
3983 /*
3984 * There isn't much point in executing destruction path in
3985 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 3986 * Use 1 for @max_active.
e5fca243
TH
3987 *
3988 * We would prefer to do this in cgroup_init() above, but that
3989 * is called before init_workqueues(): so leave this until after.
3990 */
1a11533f 3991 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 3992 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
3993
3994 /*
3995 * Used to destroy pidlists and separate to serve as flush domain.
3996 * Cap @max_active to 1 too.
3997 */
3998 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
3999 0, 1);
4000 BUG_ON(!cgroup_pidlist_destroy_wq);
4001
e5fca243
TH
4002 return 0;
4003}
4004core_initcall(cgroup_wq_init);
4005
a424316c
PM
4006/*
4007 * proc_cgroup_show()
4008 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4009 * - Used for /proc/<pid>/cgroup.
4010 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4011 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4012 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4013 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4014 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4015 * cgroup to top_cgroup.
4016 */
4017
4018/* TODO: Use a proper seq_file iterator */
8d8b97ba 4019int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4020{
4021 struct pid *pid;
4022 struct task_struct *tsk;
e61734c5 4023 char *buf, *path;
a424316c
PM
4024 int retval;
4025 struct cgroupfs_root *root;
4026
4027 retval = -ENOMEM;
e61734c5 4028 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4029 if (!buf)
4030 goto out;
4031
4032 retval = -ESRCH;
4033 pid = m->private;
4034 tsk = get_pid_task(pid, PIDTYPE_PID);
4035 if (!tsk)
4036 goto out_free;
4037
4038 retval = 0;
4039
4040 mutex_lock(&cgroup_mutex);
96d365e0 4041 down_read(&css_set_rwsem);
a424316c 4042
e5f6a860 4043 for_each_active_root(root) {
a424316c 4044 struct cgroup_subsys *ss;
bd89aabc 4045 struct cgroup *cgrp;
b85d2040 4046 int ssid, count = 0;
a424316c 4047
2c6ab6d2 4048 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4049 for_each_subsys(ss, ssid)
4050 if (root->subsys_mask & (1 << ssid))
4051 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4052 if (strlen(root->name))
4053 seq_printf(m, "%sname=%s", count ? "," : "",
4054 root->name);
a424316c 4055 seq_putc(m, ':');
7717f7ba 4056 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4057 path = cgroup_path(cgrp, buf, PATH_MAX);
4058 if (!path) {
4059 retval = -ENAMETOOLONG;
a424316c 4060 goto out_unlock;
e61734c5
TH
4061 }
4062 seq_puts(m, path);
a424316c
PM
4063 seq_putc(m, '\n');
4064 }
4065
4066out_unlock:
96d365e0 4067 up_read(&css_set_rwsem);
a424316c
PM
4068 mutex_unlock(&cgroup_mutex);
4069 put_task_struct(tsk);
4070out_free:
4071 kfree(buf);
4072out:
4073 return retval;
4074}
4075
a424316c
PM
4076/* Display information about each subsystem and each hierarchy */
4077static int proc_cgroupstats_show(struct seq_file *m, void *v)
4078{
30159ec7 4079 struct cgroup_subsys *ss;
a424316c 4080 int i;
a424316c 4081
8bab8dde 4082 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4083 /*
4084 * ideally we don't want subsystems moving around while we do this.
4085 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4086 * subsys/hierarchy state.
4087 */
a424316c 4088 mutex_lock(&cgroup_mutex);
30159ec7
TH
4089
4090 for_each_subsys(ss, i)
2c6ab6d2
PM
4091 seq_printf(m, "%s\t%d\t%d\t%d\n",
4092 ss->name, ss->root->hierarchy_id,
3c9c825b 4093 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4094
a424316c
PM
4095 mutex_unlock(&cgroup_mutex);
4096 return 0;
4097}
4098
4099static int cgroupstats_open(struct inode *inode, struct file *file)
4100{
9dce07f1 4101 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4102}
4103
828c0950 4104static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4105 .open = cgroupstats_open,
4106 .read = seq_read,
4107 .llseek = seq_lseek,
4108 .release = single_release,
4109};
4110
b4f48b63
PM
4111/**
4112 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4113 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4114 *
4115 * Description: A task inherits its parent's cgroup at fork().
4116 *
4117 * A pointer to the shared css_set was automatically copied in
4118 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4119 * it was not made under the protection of RCU or cgroup_mutex, so
4120 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4121 * have already changed current->cgroups, allowing the previously
4122 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4123 *
4124 * At the point that cgroup_fork() is called, 'current' is the parent
4125 * task, and the passed argument 'child' points to the child task.
4126 */
4127void cgroup_fork(struct task_struct *child)
4128{
9bb71308 4129 task_lock(current);
a8ad805c 4130 get_css_set(task_css_set(current));
817929ec 4131 child->cgroups = current->cgroups;
9bb71308 4132 task_unlock(current);
817929ec 4133 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4134}
4135
817929ec 4136/**
a043e3b2
LZ
4137 * cgroup_post_fork - called on a new task after adding it to the task list
4138 * @child: the task in question
4139 *
5edee61e
TH
4140 * Adds the task to the list running through its css_set if necessary and
4141 * call the subsystem fork() callbacks. Has to be after the task is
4142 * visible on the task list in case we race with the first call to
0942eeee 4143 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4144 * list.
a043e3b2 4145 */
817929ec
PM
4146void cgroup_post_fork(struct task_struct *child)
4147{
30159ec7 4148 struct cgroup_subsys *ss;
5edee61e
TH
4149 int i;
4150
3ce3230a
FW
4151 /*
4152 * use_task_css_set_links is set to 1 before we walk the tasklist
4153 * under the tasklist_lock and we read it here after we added the child
4154 * to the tasklist under the tasklist_lock as well. If the child wasn't
4155 * yet in the tasklist when we walked through it from
4156 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4157 * should be visible now due to the paired locking and barriers implied
4158 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4159 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4160 * lock on fork.
4161 */
817929ec 4162 if (use_task_css_set_links) {
96d365e0 4163 down_write(&css_set_rwsem);
d8783832
TH
4164 task_lock(child);
4165 if (list_empty(&child->cg_list))
a8ad805c 4166 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4167 task_unlock(child);
96d365e0 4168 up_write(&css_set_rwsem);
817929ec 4169 }
5edee61e
TH
4170
4171 /*
4172 * Call ss->fork(). This must happen after @child is linked on
4173 * css_set; otherwise, @child might change state between ->fork()
4174 * and addition to css_set.
4175 */
4176 if (need_forkexit_callback) {
3ed80a62 4177 for_each_subsys(ss, i)
5edee61e
TH
4178 if (ss->fork)
4179 ss->fork(child);
5edee61e 4180 }
817929ec 4181}
5edee61e 4182
b4f48b63
PM
4183/**
4184 * cgroup_exit - detach cgroup from exiting task
4185 * @tsk: pointer to task_struct of exiting process
a043e3b2 4186 * @run_callback: run exit callbacks?
b4f48b63
PM
4187 *
4188 * Description: Detach cgroup from @tsk and release it.
4189 *
4190 * Note that cgroups marked notify_on_release force every task in
4191 * them to take the global cgroup_mutex mutex when exiting.
4192 * This could impact scaling on very large systems. Be reluctant to
4193 * use notify_on_release cgroups where very high task exit scaling
4194 * is required on large systems.
4195 *
4196 * the_top_cgroup_hack:
4197 *
4198 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4199 *
4200 * We call cgroup_exit() while the task is still competent to
4201 * handle notify_on_release(), then leave the task attached to the
4202 * root cgroup in each hierarchy for the remainder of its exit.
4203 *
4204 * To do this properly, we would increment the reference count on
4205 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4206 * code we would add a second cgroup function call, to drop that
4207 * reference. This would just create an unnecessary hot spot on
4208 * the top_cgroup reference count, to no avail.
4209 *
4210 * Normally, holding a reference to a cgroup without bumping its
4211 * count is unsafe. The cgroup could go away, or someone could
4212 * attach us to a different cgroup, decrementing the count on
4213 * the first cgroup that we never incremented. But in this case,
4214 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4215 * which wards off any cgroup_attach_task() attempts, or task is a failed
4216 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4217 */
4218void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4219{
30159ec7 4220 struct cgroup_subsys *ss;
5abb8855 4221 struct css_set *cset;
d41d5a01 4222 int i;
817929ec
PM
4223
4224 /*
96d365e0
TH
4225 * Unlink from the css_set task list if necessary. Optimistically
4226 * check cg_list before taking css_set_rwsem.
817929ec
PM
4227 */
4228 if (!list_empty(&tsk->cg_list)) {
96d365e0 4229 down_write(&css_set_rwsem);
817929ec 4230 if (!list_empty(&tsk->cg_list))
8d258797 4231 list_del_init(&tsk->cg_list);
96d365e0 4232 up_write(&css_set_rwsem);
817929ec
PM
4233 }
4234
b4f48b63
PM
4235 /* Reassign the task to the init_css_set. */
4236 task_lock(tsk);
a8ad805c
TH
4237 cset = task_css_set(tsk);
4238 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4239
4240 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4241 /* see cgroup_post_fork() for details */
4242 for_each_subsys(ss, i) {
d41d5a01 4243 if (ss->exit) {
eb95419b
TH
4244 struct cgroup_subsys_state *old_css = cset->subsys[i];
4245 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4246
eb95419b 4247 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4248 }
4249 }
4250 }
b4f48b63 4251 task_unlock(tsk);
d41d5a01 4252
89c5509b 4253 put_css_set(cset, true);
b4f48b63 4254}
697f4161 4255
bd89aabc 4256static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4257{
f50daa70 4258 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4259 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4260 /*
4261 * Control Group is currently removeable. If it's not
81a6a5cd 4262 * already queued for a userspace notification, queue
f50daa70
LZ
4263 * it now
4264 */
81a6a5cd 4265 int need_schedule_work = 0;
f50daa70 4266
cdcc136f 4267 raw_spin_lock(&release_list_lock);
54766d4a 4268 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4269 list_empty(&cgrp->release_list)) {
4270 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4271 need_schedule_work = 1;
4272 }
cdcc136f 4273 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4274 if (need_schedule_work)
4275 schedule_work(&release_agent_work);
4276 }
4277}
4278
81a6a5cd
PM
4279/*
4280 * Notify userspace when a cgroup is released, by running the
4281 * configured release agent with the name of the cgroup (path
4282 * relative to the root of cgroup file system) as the argument.
4283 *
4284 * Most likely, this user command will try to rmdir this cgroup.
4285 *
4286 * This races with the possibility that some other task will be
4287 * attached to this cgroup before it is removed, or that some other
4288 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4289 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4290 * unused, and this cgroup will be reprieved from its death sentence,
4291 * to continue to serve a useful existence. Next time it's released,
4292 * we will get notified again, if it still has 'notify_on_release' set.
4293 *
4294 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4295 * means only wait until the task is successfully execve()'d. The
4296 * separate release agent task is forked by call_usermodehelper(),
4297 * then control in this thread returns here, without waiting for the
4298 * release agent task. We don't bother to wait because the caller of
4299 * this routine has no use for the exit status of the release agent
4300 * task, so no sense holding our caller up for that.
81a6a5cd 4301 */
81a6a5cd
PM
4302static void cgroup_release_agent(struct work_struct *work)
4303{
4304 BUG_ON(work != &release_agent_work);
4305 mutex_lock(&cgroup_mutex);
cdcc136f 4306 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4307 while (!list_empty(&release_list)) {
4308 char *argv[3], *envp[3];
4309 int i;
e61734c5 4310 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4311 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4312 struct cgroup,
4313 release_list);
bd89aabc 4314 list_del_init(&cgrp->release_list);
cdcc136f 4315 raw_spin_unlock(&release_list_lock);
e61734c5 4316 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4317 if (!pathbuf)
4318 goto continue_free;
e61734c5
TH
4319 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4320 if (!path)
e788e066
PM
4321 goto continue_free;
4322 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4323 if (!agentbuf)
4324 goto continue_free;
81a6a5cd
PM
4325
4326 i = 0;
e788e066 4327 argv[i++] = agentbuf;
e61734c5 4328 argv[i++] = path;
81a6a5cd
PM
4329 argv[i] = NULL;
4330
4331 i = 0;
4332 /* minimal command environment */
4333 envp[i++] = "HOME=/";
4334 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4335 envp[i] = NULL;
4336
4337 /* Drop the lock while we invoke the usermode helper,
4338 * since the exec could involve hitting disk and hence
4339 * be a slow process */
4340 mutex_unlock(&cgroup_mutex);
4341 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4342 mutex_lock(&cgroup_mutex);
e788e066
PM
4343 continue_free:
4344 kfree(pathbuf);
4345 kfree(agentbuf);
cdcc136f 4346 raw_spin_lock(&release_list_lock);
81a6a5cd 4347 }
cdcc136f 4348 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4349 mutex_unlock(&cgroup_mutex);
4350}
8bab8dde
PM
4351
4352static int __init cgroup_disable(char *str)
4353{
30159ec7 4354 struct cgroup_subsys *ss;
8bab8dde 4355 char *token;
30159ec7 4356 int i;
8bab8dde
PM
4357
4358 while ((token = strsep(&str, ",")) != NULL) {
4359 if (!*token)
4360 continue;
be45c900 4361
3ed80a62 4362 for_each_subsys(ss, i) {
8bab8dde
PM
4363 if (!strcmp(token, ss->name)) {
4364 ss->disabled = 1;
4365 printk(KERN_INFO "Disabling %s control group"
4366 " subsystem\n", ss->name);
4367 break;
4368 }
4369 }
4370 }
4371 return 1;
4372}
4373__setup("cgroup_disable=", cgroup_disable);
38460b48 4374
b77d7b60 4375/**
5a17f543 4376 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4377 * @dentry: directory dentry of interest
4378 * @ss: subsystem of interest
b77d7b60 4379 *
5a17f543
TH
4380 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4381 * to get the corresponding css and return it. If such css doesn't exist
4382 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4383 */
5a17f543
TH
4384struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4385 struct cgroup_subsys *ss)
e5d1367f 4386{
2bd59d48
TH
4387 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4388 struct cgroup_subsys_state *css = NULL;
e5d1367f 4389 struct cgroup *cgrp;
b77d7b60 4390
35cf0836 4391 /* is @dentry a cgroup dir? */
2bd59d48
TH
4392 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4393 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4394 return ERR_PTR(-EBADF);
4395
5a17f543
TH
4396 rcu_read_lock();
4397
2bd59d48
TH
4398 /*
4399 * This path doesn't originate from kernfs and @kn could already
4400 * have been or be removed at any point. @kn->priv is RCU
4401 * protected for this access. See destroy_locked() for details.
4402 */
4403 cgrp = rcu_dereference(kn->priv);
4404 if (cgrp)
4405 css = cgroup_css(cgrp, ss);
5a17f543
TH
4406
4407 if (!css || !css_tryget(css))
4408 css = ERR_PTR(-ENOENT);
4409
4410 rcu_read_unlock();
4411 return css;
e5d1367f 4412}
e5d1367f 4413
1cb650b9
LZ
4414/**
4415 * css_from_id - lookup css by id
4416 * @id: the cgroup id
4417 * @ss: cgroup subsys to be looked into
4418 *
4419 * Returns the css if there's valid one with @id, otherwise returns NULL.
4420 * Should be called under rcu_read_lock().
4421 */
4422struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4423{
4424 struct cgroup *cgrp;
4425
ace2bee8 4426 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4427
4428 cgrp = idr_find(&ss->root->cgroup_idr, id);
4429 if (cgrp)
d1625964 4430 return cgroup_css(cgrp, ss);
1cb650b9 4431 return NULL;
e5d1367f
SE
4432}
4433
fe693435 4434#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4435static struct cgroup_subsys_state *
4436debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4437{
4438 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4439
4440 if (!css)
4441 return ERR_PTR(-ENOMEM);
4442
4443 return css;
4444}
4445
eb95419b 4446static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4447{
eb95419b 4448 kfree(css);
fe693435
PM
4449}
4450
182446d0
TH
4451static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4452 struct cftype *cft)
fe693435 4453{
182446d0 4454 return cgroup_task_count(css->cgroup);
fe693435
PM
4455}
4456
182446d0
TH
4457static u64 current_css_set_read(struct cgroup_subsys_state *css,
4458 struct cftype *cft)
fe693435
PM
4459{
4460 return (u64)(unsigned long)current->cgroups;
4461}
4462
182446d0 4463static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4464 struct cftype *cft)
fe693435
PM
4465{
4466 u64 count;
4467
4468 rcu_read_lock();
a8ad805c 4469 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4470 rcu_read_unlock();
4471 return count;
4472}
4473
2da8ca82 4474static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4475{
69d0206c 4476 struct cgrp_cset_link *link;
5abb8855 4477 struct css_set *cset;
e61734c5
TH
4478 char *name_buf;
4479
4480 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4481 if (!name_buf)
4482 return -ENOMEM;
7717f7ba 4483
96d365e0 4484 down_read(&css_set_rwsem);
7717f7ba 4485 rcu_read_lock();
5abb8855 4486 cset = rcu_dereference(current->cgroups);
69d0206c 4487 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4488 struct cgroup *c = link->cgrp;
59f5296b
TH
4489 const char *name = "?";
4490
e61734c5
TH
4491 if (c != cgroup_dummy_top) {
4492 cgroup_name(c, name_buf, NAME_MAX + 1);
4493 name = name_buf;
4494 }
7717f7ba 4495
2c6ab6d2
PM
4496 seq_printf(seq, "Root %d group %s\n",
4497 c->root->hierarchy_id, name);
7717f7ba
PM
4498 }
4499 rcu_read_unlock();
96d365e0 4500 up_read(&css_set_rwsem);
e61734c5 4501 kfree(name_buf);
7717f7ba
PM
4502 return 0;
4503}
4504
4505#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4506static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4507{
2da8ca82 4508 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4509 struct cgrp_cset_link *link;
7717f7ba 4510
96d365e0 4511 down_read(&css_set_rwsem);
182446d0 4512 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4513 struct css_set *cset = link->cset;
7717f7ba
PM
4514 struct task_struct *task;
4515 int count = 0;
c7561128 4516
5abb8855 4517 seq_printf(seq, "css_set %p\n", cset);
c7561128 4518
5abb8855 4519 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4520 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4521 goto overflow;
4522 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4523 }
4524
4525 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4526 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4527 goto overflow;
4528 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4529 }
c7561128
TH
4530 continue;
4531 overflow:
4532 seq_puts(seq, " ...\n");
7717f7ba 4533 }
96d365e0 4534 up_read(&css_set_rwsem);
7717f7ba
PM
4535 return 0;
4536}
4537
182446d0 4538static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4539{
182446d0 4540 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4541}
4542
4543static struct cftype debug_files[] = {
fe693435
PM
4544 {
4545 .name = "taskcount",
4546 .read_u64 = debug_taskcount_read,
4547 },
4548
4549 {
4550 .name = "current_css_set",
4551 .read_u64 = current_css_set_read,
4552 },
4553
4554 {
4555 .name = "current_css_set_refcount",
4556 .read_u64 = current_css_set_refcount_read,
4557 },
4558
7717f7ba
PM
4559 {
4560 .name = "current_css_set_cg_links",
2da8ca82 4561 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4562 },
4563
4564 {
4565 .name = "cgroup_css_links",
2da8ca82 4566 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4567 },
4568
fe693435
PM
4569 {
4570 .name = "releasable",
4571 .read_u64 = releasable_read,
4572 },
fe693435 4573
4baf6e33
TH
4574 { } /* terminate */
4575};
fe693435 4576
073219e9 4577struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4578 .css_alloc = debug_css_alloc,
4579 .css_free = debug_css_free,
4baf6e33 4580 .base_cftypes = debug_files,
fe693435
PM
4581};
4582#endif /* CONFIG_CGROUP_DEBUG */