cgroup: allow cgroup creation and suppress automatic css creation in the unified...
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
83 *
0e1d768f
TH
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
e25e2cbb 86 *
0e1d768f
TH
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
780cd8b3 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9 138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
3dd06ffa 141 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
a2dd4247 145struct cgroup_root cgrp_dfl_root;
9871bf95 146
a2dd4247
TH
147/*
148 * The default hierarchy always exists but is hidden until mounted for the
149 * first time. This is for backward compatibility.
150 */
151static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
152
153/* The list of hierarchy roots */
154
9871bf95
TH
155static LIST_HEAD(cgroup_roots);
156static int cgroup_root_count;
ddbcc7e8 157
3417ae1f 158/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 159static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 160
794611a1
LZ
161/*
162 * Assign a monotonically increasing serial number to cgroups. It
163 * guarantees cgroups with bigger numbers are newer than those with smaller
164 * numbers. Also, as cgroups are always appended to the parent's
165 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
166 * the ascending serial number order on the list. Protected by
167 * cgroup_mutex.
794611a1 168 */
00356bd5 169static u64 cgroup_serial_nr_next = 1;
794611a1 170
ddbcc7e8 171/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
172 * check for fork/exit handlers to call. This avoids us having to do
173 * extra work in the fork/exit path if none of the subsystems need to
174 * be called.
ddbcc7e8 175 */
8947f9d5 176static int need_forkexit_callback __read_mostly;
ddbcc7e8 177
628f7cd4
TH
178static struct cftype cgroup_base_files[];
179
59f5296b 180static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 181static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 182 unsigned long ss_mask);
f20104de 183static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 184static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
185static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
186 bool is_add);
b1a21367 187static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 188
95109b62
TH
189/**
190 * cgroup_css - obtain a cgroup's css for the specified subsystem
191 * @cgrp: the cgroup of interest
ca8bdcaf 192 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 193 *
ca8bdcaf
TH
194 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
195 * function must be called either under cgroup_mutex or rcu_read_lock() and
196 * the caller is responsible for pinning the returned css if it wants to
197 * keep accessing it outside the said locks. This function may return
198 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
199 */
200static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 201 struct cgroup_subsys *ss)
95109b62 202{
ca8bdcaf 203 if (ss)
aec25020 204 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
205 lockdep_is_held(&cgroup_tree_mutex) ||
206 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
207 else
208 return &cgrp->dummy_css;
95109b62 209}
42809dd4 210
aec3dfcb
TH
211/**
212 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
213 * @cgrp: the cgroup of interest
214 * @ss: the subsystem of interest (%NULL returns the dummy_css)
215 *
216 * Similar to cgroup_css() but returns the effctive css, which is defined
217 * as the matching css of the nearest ancestor including self which has @ss
218 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
219 * function is guaranteed to return non-NULL css.
220 */
221static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
222 struct cgroup_subsys *ss)
223{
224 lockdep_assert_held(&cgroup_mutex);
225
226 if (!ss)
227 return &cgrp->dummy_css;
228
229 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
230 return NULL;
231
232 while (cgrp->parent &&
233 !(cgrp->parent->child_subsys_mask & (1 << ss->id)))
234 cgrp = cgrp->parent;
235
236 return cgroup_css(cgrp, ss);
237}
238
ddbcc7e8 239/* convenient tests for these bits */
54766d4a 240static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 241{
54766d4a 242 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
243}
244
59f5296b
TH
245struct cgroup_subsys_state *seq_css(struct seq_file *seq)
246{
2bd59d48
TH
247 struct kernfs_open_file *of = seq->private;
248 struct cgroup *cgrp = of->kn->parent->priv;
249 struct cftype *cft = seq_cft(seq);
250
251 /*
252 * This is open and unprotected implementation of cgroup_css().
253 * seq_css() is only called from a kernfs file operation which has
254 * an active reference on the file. Because all the subsystem
255 * files are drained before a css is disassociated with a cgroup,
256 * the matching css from the cgroup's subsys table is guaranteed to
257 * be and stay valid until the enclosing operation is complete.
258 */
259 if (cft->ss)
260 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
261 else
262 return &cgrp->dummy_css;
59f5296b
TH
263}
264EXPORT_SYMBOL_GPL(seq_css);
265
78574cf9
LZ
266/**
267 * cgroup_is_descendant - test ancestry
268 * @cgrp: the cgroup to be tested
269 * @ancestor: possible ancestor of @cgrp
270 *
271 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
272 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
273 * and @ancestor are accessible.
274 */
275bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
276{
277 while (cgrp) {
278 if (cgrp == ancestor)
279 return true;
280 cgrp = cgrp->parent;
281 }
282 return false;
283}
ddbcc7e8 284
e9685a03 285static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
286{
287 const int bits =
bd89aabc
PM
288 (1 << CGRP_RELEASABLE) |
289 (1 << CGRP_NOTIFY_ON_RELEASE);
290 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
291}
292
e9685a03 293static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 294{
bd89aabc 295 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
296}
297
1c6727af
TH
298/**
299 * for_each_css - iterate all css's of a cgroup
300 * @css: the iteration cursor
301 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
302 * @cgrp: the target cgroup to iterate css's of
303 *
aec3dfcb 304 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
305 */
306#define for_each_css(css, ssid, cgrp) \
307 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
308 if (!((css) = rcu_dereference_check( \
309 (cgrp)->subsys[(ssid)], \
ace2bee8 310 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
311 lockdep_is_held(&cgroup_mutex)))) { } \
312 else
313
aec3dfcb
TH
314/**
315 * for_each_e_css - iterate all effective css's of a cgroup
316 * @css: the iteration cursor
317 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
318 * @cgrp: the target cgroup to iterate css's of
319 *
320 * Should be called under cgroup_[tree_]mutex.
321 */
322#define for_each_e_css(css, ssid, cgrp) \
323 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
324 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
325 ; \
326 else
327
30159ec7 328/**
3ed80a62 329 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 330 * @ss: the iteration cursor
780cd8b3 331 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 332 */
780cd8b3 333#define for_each_subsys(ss, ssid) \
3ed80a62
TH
334 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
335 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 336
985ed670
TH
337/* iterate across the hierarchies */
338#define for_each_root(root) \
5549c497 339 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 340
7ae1bad9
TH
341/**
342 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
343 * @cgrp: the cgroup to be checked for liveness
344 *
47cfcd09
TH
345 * On success, returns true; the mutex should be later unlocked. On
346 * failure returns false with no lock held.
7ae1bad9 347 */
b9777cf8 348static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
349{
350 mutex_lock(&cgroup_mutex);
54766d4a 351 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
352 mutex_unlock(&cgroup_mutex);
353 return false;
354 }
355 return true;
356}
7ae1bad9 357
81a6a5cd
PM
358/* the list of cgroups eligible for automatic release. Protected by
359 * release_list_lock */
360static LIST_HEAD(release_list);
cdcc136f 361static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
362static void cgroup_release_agent(struct work_struct *work);
363static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 364static void check_for_release(struct cgroup *cgrp);
81a6a5cd 365
69d0206c
TH
366/*
367 * A cgroup can be associated with multiple css_sets as different tasks may
368 * belong to different cgroups on different hierarchies. In the other
369 * direction, a css_set is naturally associated with multiple cgroups.
370 * This M:N relationship is represented by the following link structure
371 * which exists for each association and allows traversing the associations
372 * from both sides.
373 */
374struct cgrp_cset_link {
375 /* the cgroup and css_set this link associates */
376 struct cgroup *cgrp;
377 struct css_set *cset;
378
379 /* list of cgrp_cset_links anchored at cgrp->cset_links */
380 struct list_head cset_link;
381
382 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
383 struct list_head cgrp_link;
817929ec
PM
384};
385
172a2c06
TH
386/*
387 * The default css_set - used by init and its children prior to any
817929ec
PM
388 * hierarchies being mounted. It contains a pointer to the root state
389 * for each subsystem. Also used to anchor the list of css_sets. Not
390 * reference-counted, to improve performance when child cgroups
391 * haven't been created.
392 */
172a2c06
TH
393static struct css_set init_css_set = {
394 .refcount = ATOMIC_INIT(1),
395 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
396 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
397 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
398 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
399 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
400};
817929ec 401
172a2c06 402static int css_set_count = 1; /* 1 for init_css_set */
817929ec 403
7717f7ba
PM
404/*
405 * hash table for cgroup groups. This improves the performance to find
406 * an existing css_set. This hash doesn't (currently) take into
407 * account cgroups in empty hierarchies.
408 */
472b1053 409#define CSS_SET_HASH_BITS 7
0ac801fe 410static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 411
0ac801fe 412static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 413{
0ac801fe 414 unsigned long key = 0UL;
30159ec7
TH
415 struct cgroup_subsys *ss;
416 int i;
472b1053 417
30159ec7 418 for_each_subsys(ss, i)
0ac801fe
LZ
419 key += (unsigned long)css[i];
420 key = (key >> 16) ^ key;
472b1053 421
0ac801fe 422 return key;
472b1053
LZ
423}
424
89c5509b 425static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 426{
69d0206c 427 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
428 struct cgroup_subsys *ss;
429 int ssid;
5abb8855 430
89c5509b
TH
431 lockdep_assert_held(&css_set_rwsem);
432
433 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 434 return;
81a6a5cd 435
2c6ab6d2 436 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
437 for_each_subsys(ss, ssid)
438 list_del(&cset->e_cset_node[ssid]);
5abb8855 439 hash_del(&cset->hlist);
2c6ab6d2
PM
440 css_set_count--;
441
69d0206c 442 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 443 struct cgroup *cgrp = link->cgrp;
5abb8855 444
69d0206c
TH
445 list_del(&link->cset_link);
446 list_del(&link->cgrp_link);
71b5707e 447
96d365e0 448 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 449 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 450 if (taskexit)
bd89aabc
PM
451 set_bit(CGRP_RELEASABLE, &cgrp->flags);
452 check_for_release(cgrp);
81a6a5cd 453 }
2c6ab6d2
PM
454
455 kfree(link);
81a6a5cd 456 }
2c6ab6d2 457
5abb8855 458 kfree_rcu(cset, rcu_head);
b4f48b63
PM
459}
460
89c5509b
TH
461static void put_css_set(struct css_set *cset, bool taskexit)
462{
463 /*
464 * Ensure that the refcount doesn't hit zero while any readers
465 * can see it. Similar to atomic_dec_and_lock(), but for an
466 * rwlock
467 */
468 if (atomic_add_unless(&cset->refcount, -1, 1))
469 return;
470
471 down_write(&css_set_rwsem);
472 put_css_set_locked(cset, taskexit);
473 up_write(&css_set_rwsem);
474}
475
817929ec
PM
476/*
477 * refcounted get/put for css_set objects
478 */
5abb8855 479static inline void get_css_set(struct css_set *cset)
817929ec 480{
5abb8855 481 atomic_inc(&cset->refcount);
817929ec
PM
482}
483
b326f9d0 484/**
7717f7ba 485 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
486 * @cset: candidate css_set being tested
487 * @old_cset: existing css_set for a task
7717f7ba
PM
488 * @new_cgrp: cgroup that's being entered by the task
489 * @template: desired set of css pointers in css_set (pre-calculated)
490 *
6f4b7e63 491 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
492 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
493 */
5abb8855
TH
494static bool compare_css_sets(struct css_set *cset,
495 struct css_set *old_cset,
7717f7ba
PM
496 struct cgroup *new_cgrp,
497 struct cgroup_subsys_state *template[])
498{
499 struct list_head *l1, *l2;
500
aec3dfcb
TH
501 /*
502 * On the default hierarchy, there can be csets which are
503 * associated with the same set of cgroups but different csses.
504 * Let's first ensure that csses match.
505 */
506 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 507 return false;
7717f7ba
PM
508
509 /*
510 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
511 * different cgroups in hierarchies. As different cgroups may
512 * share the same effective css, this comparison is always
513 * necessary.
7717f7ba 514 */
69d0206c
TH
515 l1 = &cset->cgrp_links;
516 l2 = &old_cset->cgrp_links;
7717f7ba 517 while (1) {
69d0206c 518 struct cgrp_cset_link *link1, *link2;
5abb8855 519 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
520
521 l1 = l1->next;
522 l2 = l2->next;
523 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
524 if (l1 == &cset->cgrp_links) {
525 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
526 break;
527 } else {
69d0206c 528 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
529 }
530 /* Locate the cgroups associated with these links. */
69d0206c
TH
531 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
532 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
533 cgrp1 = link1->cgrp;
534 cgrp2 = link2->cgrp;
7717f7ba 535 /* Hierarchies should be linked in the same order. */
5abb8855 536 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
537
538 /*
539 * If this hierarchy is the hierarchy of the cgroup
540 * that's changing, then we need to check that this
541 * css_set points to the new cgroup; if it's any other
542 * hierarchy, then this css_set should point to the
543 * same cgroup as the old css_set.
544 */
5abb8855
TH
545 if (cgrp1->root == new_cgrp->root) {
546 if (cgrp1 != new_cgrp)
7717f7ba
PM
547 return false;
548 } else {
5abb8855 549 if (cgrp1 != cgrp2)
7717f7ba
PM
550 return false;
551 }
552 }
553 return true;
554}
555
b326f9d0
TH
556/**
557 * find_existing_css_set - init css array and find the matching css_set
558 * @old_cset: the css_set that we're using before the cgroup transition
559 * @cgrp: the cgroup that we're moving into
560 * @template: out param for the new set of csses, should be clear on entry
817929ec 561 */
5abb8855
TH
562static struct css_set *find_existing_css_set(struct css_set *old_cset,
563 struct cgroup *cgrp,
564 struct cgroup_subsys_state *template[])
b4f48b63 565{
3dd06ffa 566 struct cgroup_root *root = cgrp->root;
30159ec7 567 struct cgroup_subsys *ss;
5abb8855 568 struct css_set *cset;
0ac801fe 569 unsigned long key;
b326f9d0 570 int i;
817929ec 571
aae8aab4
BB
572 /*
573 * Build the set of subsystem state objects that we want to see in the
574 * new css_set. while subsystems can change globally, the entries here
575 * won't change, so no need for locking.
576 */
30159ec7 577 for_each_subsys(ss, i) {
f392e51c 578 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
579 /*
580 * @ss is in this hierarchy, so we want the
581 * effective css from @cgrp.
582 */
583 template[i] = cgroup_e_css(cgrp, ss);
817929ec 584 } else {
aec3dfcb
TH
585 /*
586 * @ss is not in this hierarchy, so we don't want
587 * to change the css.
588 */
5abb8855 589 template[i] = old_cset->subsys[i];
817929ec
PM
590 }
591 }
592
0ac801fe 593 key = css_set_hash(template);
5abb8855
TH
594 hash_for_each_possible(css_set_table, cset, hlist, key) {
595 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
596 continue;
597
598 /* This css_set matches what we need */
5abb8855 599 return cset;
472b1053 600 }
817929ec
PM
601
602 /* No existing cgroup group matched */
603 return NULL;
604}
605
69d0206c 606static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 607{
69d0206c 608 struct cgrp_cset_link *link, *tmp_link;
36553434 609
69d0206c
TH
610 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
611 list_del(&link->cset_link);
36553434
LZ
612 kfree(link);
613 }
614}
615
69d0206c
TH
616/**
617 * allocate_cgrp_cset_links - allocate cgrp_cset_links
618 * @count: the number of links to allocate
619 * @tmp_links: list_head the allocated links are put on
620 *
621 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
622 * through ->cset_link. Returns 0 on success or -errno.
817929ec 623 */
69d0206c 624static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 625{
69d0206c 626 struct cgrp_cset_link *link;
817929ec 627 int i;
69d0206c
TH
628
629 INIT_LIST_HEAD(tmp_links);
630
817929ec 631 for (i = 0; i < count; i++) {
f4f4be2b 632 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 633 if (!link) {
69d0206c 634 free_cgrp_cset_links(tmp_links);
817929ec
PM
635 return -ENOMEM;
636 }
69d0206c 637 list_add(&link->cset_link, tmp_links);
817929ec
PM
638 }
639 return 0;
640}
641
c12f65d4
LZ
642/**
643 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 644 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 645 * @cset: the css_set to be linked
c12f65d4
LZ
646 * @cgrp: the destination cgroup
647 */
69d0206c
TH
648static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
649 struct cgroup *cgrp)
c12f65d4 650{
69d0206c 651 struct cgrp_cset_link *link;
c12f65d4 652
69d0206c
TH
653 BUG_ON(list_empty(tmp_links));
654 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
655 link->cset = cset;
7717f7ba 656 link->cgrp = cgrp;
69d0206c 657 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
658 /*
659 * Always add links to the tail of the list so that the list
660 * is sorted by order of hierarchy creation
661 */
69d0206c 662 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
663}
664
b326f9d0
TH
665/**
666 * find_css_set - return a new css_set with one cgroup updated
667 * @old_cset: the baseline css_set
668 * @cgrp: the cgroup to be updated
669 *
670 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
671 * substituted into the appropriate hierarchy.
817929ec 672 */
5abb8855
TH
673static struct css_set *find_css_set(struct css_set *old_cset,
674 struct cgroup *cgrp)
817929ec 675{
b326f9d0 676 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 677 struct css_set *cset;
69d0206c
TH
678 struct list_head tmp_links;
679 struct cgrp_cset_link *link;
2d8f243a 680 struct cgroup_subsys *ss;
0ac801fe 681 unsigned long key;
2d8f243a 682 int ssid;
472b1053 683
b326f9d0
TH
684 lockdep_assert_held(&cgroup_mutex);
685
817929ec
PM
686 /* First see if we already have a cgroup group that matches
687 * the desired set */
96d365e0 688 down_read(&css_set_rwsem);
5abb8855
TH
689 cset = find_existing_css_set(old_cset, cgrp, template);
690 if (cset)
691 get_css_set(cset);
96d365e0 692 up_read(&css_set_rwsem);
817929ec 693
5abb8855
TH
694 if (cset)
695 return cset;
817929ec 696
f4f4be2b 697 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 698 if (!cset)
817929ec
PM
699 return NULL;
700
69d0206c 701 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 702 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 703 kfree(cset);
817929ec
PM
704 return NULL;
705 }
706
5abb8855 707 atomic_set(&cset->refcount, 1);
69d0206c 708 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 709 INIT_LIST_HEAD(&cset->tasks);
c7561128 710 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 711 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 712 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 713 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
714
715 /* Copy the set of subsystem state objects generated in
716 * find_existing_css_set() */
5abb8855 717 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 718
96d365e0 719 down_write(&css_set_rwsem);
817929ec 720 /* Add reference counts and links from the new css_set. */
69d0206c 721 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 722 struct cgroup *c = link->cgrp;
69d0206c 723
7717f7ba
PM
724 if (c->root == cgrp->root)
725 c = cgrp;
69d0206c 726 link_css_set(&tmp_links, cset, c);
7717f7ba 727 }
817929ec 728
69d0206c 729 BUG_ON(!list_empty(&tmp_links));
817929ec 730
817929ec 731 css_set_count++;
472b1053 732
2d8f243a 733 /* Add @cset to the hash table */
5abb8855
TH
734 key = css_set_hash(cset->subsys);
735 hash_add(css_set_table, &cset->hlist, key);
472b1053 736
2d8f243a
TH
737 for_each_subsys(ss, ssid)
738 list_add_tail(&cset->e_cset_node[ssid],
739 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
740
96d365e0 741 up_write(&css_set_rwsem);
817929ec 742
5abb8855 743 return cset;
b4f48b63
PM
744}
745
3dd06ffa 746static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 747{
3dd06ffa 748 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 749
3dd06ffa 750 return root_cgrp->root;
2bd59d48
TH
751}
752
3dd06ffa 753static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
754{
755 int id;
756
757 lockdep_assert_held(&cgroup_mutex);
758
985ed670 759 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
760 if (id < 0)
761 return id;
762
763 root->hierarchy_id = id;
764 return 0;
765}
766
3dd06ffa 767static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
768{
769 lockdep_assert_held(&cgroup_mutex);
770
771 if (root->hierarchy_id) {
772 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
773 root->hierarchy_id = 0;
774 }
775}
776
3dd06ffa 777static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
778{
779 if (root) {
780 /* hierarhcy ID shoulid already have been released */
781 WARN_ON_ONCE(root->hierarchy_id);
782
783 idr_destroy(&root->cgroup_idr);
784 kfree(root);
785 }
786}
787
3dd06ffa 788static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 789{
3dd06ffa 790 struct cgroup *cgrp = &root->cgrp;
f2e85d57 791 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 792
2bd59d48 793 mutex_lock(&cgroup_tree_mutex);
2bd59d48 794 mutex_lock(&cgroup_mutex);
f2e85d57 795
776f02fa 796 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
797 BUG_ON(!list_empty(&cgrp->children));
798
f2e85d57 799 /* Rebind all subsystems back to the default hierarchy */
f392e51c 800 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 801
7717f7ba 802 /*
f2e85d57
TH
803 * Release all the links from cset_links to this hierarchy's
804 * root cgroup
7717f7ba 805 */
96d365e0 806 down_write(&css_set_rwsem);
f2e85d57
TH
807
808 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
809 list_del(&link->cset_link);
810 list_del(&link->cgrp_link);
811 kfree(link);
812 }
96d365e0 813 up_write(&css_set_rwsem);
f2e85d57
TH
814
815 if (!list_empty(&root->root_list)) {
816 list_del(&root->root_list);
817 cgroup_root_count--;
818 }
819
820 cgroup_exit_root_id(root);
821
822 mutex_unlock(&cgroup_mutex);
823 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 824
2bd59d48 825 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
826 cgroup_free_root(root);
827}
828
ceb6a081
TH
829/* look up cgroup associated with given css_set on the specified hierarchy */
830static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 831 struct cgroup_root *root)
7717f7ba 832{
7717f7ba
PM
833 struct cgroup *res = NULL;
834
96d365e0
TH
835 lockdep_assert_held(&cgroup_mutex);
836 lockdep_assert_held(&css_set_rwsem);
837
5abb8855 838 if (cset == &init_css_set) {
3dd06ffa 839 res = &root->cgrp;
7717f7ba 840 } else {
69d0206c
TH
841 struct cgrp_cset_link *link;
842
843 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 844 struct cgroup *c = link->cgrp;
69d0206c 845
7717f7ba
PM
846 if (c->root == root) {
847 res = c;
848 break;
849 }
850 }
851 }
96d365e0 852
7717f7ba
PM
853 BUG_ON(!res);
854 return res;
855}
856
ddbcc7e8 857/*
ceb6a081
TH
858 * Return the cgroup for "task" from the given hierarchy. Must be
859 * called with cgroup_mutex and css_set_rwsem held.
860 */
861static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 862 struct cgroup_root *root)
ceb6a081
TH
863{
864 /*
865 * No need to lock the task - since we hold cgroup_mutex the
866 * task can't change groups, so the only thing that can happen
867 * is that it exits and its css is set back to init_css_set.
868 */
869 return cset_cgroup_from_root(task_css_set(task), root);
870}
871
ddbcc7e8 872/*
ddbcc7e8
PM
873 * A task must hold cgroup_mutex to modify cgroups.
874 *
875 * Any task can increment and decrement the count field without lock.
876 * So in general, code holding cgroup_mutex can't rely on the count
877 * field not changing. However, if the count goes to zero, then only
956db3ca 878 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
879 * means that no tasks are currently attached, therefore there is no
880 * way a task attached to that cgroup can fork (the other way to
881 * increment the count). So code holding cgroup_mutex can safely
882 * assume that if the count is zero, it will stay zero. Similarly, if
883 * a task holds cgroup_mutex on a cgroup with zero count, it
884 * knows that the cgroup won't be removed, as cgroup_rmdir()
885 * needs that mutex.
886 *
ddbcc7e8
PM
887 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
888 * (usually) take cgroup_mutex. These are the two most performance
889 * critical pieces of code here. The exception occurs on cgroup_exit(),
890 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
891 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
892 * to the release agent with the name of the cgroup (path relative to
893 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
894 *
895 * A cgroup can only be deleted if both its 'count' of using tasks
896 * is zero, and its list of 'children' cgroups is empty. Since all
897 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 898 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 899 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 900 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
901 *
902 * P.S. One more locking exception. RCU is used to guard the
956db3ca 903 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
904 */
905
628f7cd4 906static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 907static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 908static const struct file_operations proc_cgroupstats_operations;
a424316c 909
8d7e6fb0
TH
910static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
911 char *buf)
ddbcc7e8 912{
8d7e6fb0
TH
913 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
914 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
915 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
916 cft->ss->name, cft->name);
917 else
918 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
919 return buf;
ddbcc7e8
PM
920}
921
f2e85d57
TH
922/**
923 * cgroup_file_mode - deduce file mode of a control file
924 * @cft: the control file in question
925 *
926 * returns cft->mode if ->mode is not 0
927 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
928 * returns S_IRUGO if it has only a read handler
929 * returns S_IWUSR if it has only a write hander
930 */
931static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 932{
f2e85d57 933 umode_t mode = 0;
65dff759 934
f2e85d57
TH
935 if (cft->mode)
936 return cft->mode;
937
938 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
939 mode |= S_IRUGO;
940
941 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
942 cft->trigger)
943 mode |= S_IWUSR;
944
945 return mode;
65dff759
LZ
946}
947
be445626
LZ
948static void cgroup_free_fn(struct work_struct *work)
949{
ea15f8cc 950 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 951
3c9c825b 952 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 953 cgroup_pidlist_destroy_all(cgrp);
be445626 954
776f02fa
TH
955 if (cgrp->parent) {
956 /*
957 * We get a ref to the parent, and put the ref when this
958 * cgroup is being freed, so it's guaranteed that the
959 * parent won't be destroyed before its children.
960 */
961 cgroup_put(cgrp->parent);
962 kernfs_put(cgrp->kn);
963 kfree(cgrp);
964 } else {
965 /*
3dd06ffa 966 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
967 * indicates that the root should be released.
968 */
969 cgroup_destroy_root(cgrp->root);
970 }
be445626
LZ
971}
972
973static void cgroup_free_rcu(struct rcu_head *head)
974{
975 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
976
ea15f8cc 977 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 978 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
979}
980
59f5296b 981static void cgroup_get(struct cgroup *cgrp)
ddbcc7e8 982{
2bd59d48
TH
983 WARN_ON_ONCE(cgroup_is_dead(cgrp));
984 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
985 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
986}
987
59f5296b 988static void cgroup_put(struct cgroup *cgrp)
05ef1d7c 989{
2bd59d48
TH
990 if (!atomic_dec_and_test(&cgrp->refcnt))
991 return;
776f02fa 992 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 993 return;
05ef1d7c 994
2739d3cc 995 /*
2bd59d48
TH
996 * XXX: cgrp->id is only used to look up css's. As cgroup and
997 * css's lifetimes will be decoupled, it should be made
998 * per-subsystem and moved to css->id so that lookups are
999 * successful until the target css is released.
2739d3cc 1000 */
2bd59d48
TH
1001 mutex_lock(&cgroup_mutex);
1002 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
1003 mutex_unlock(&cgroup_mutex);
1004 cgrp->id = -1;
05ef1d7c 1005
2bd59d48 1006 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8 1007}
05ef1d7c 1008
2739d3cc 1009static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1010{
2bd59d48 1011 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1012
ace2bee8 1013 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 1014 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1015}
1016
13af07df 1017/**
628f7cd4 1018 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1019 * @cgrp: target cgroup
13af07df
AR
1020 * @subsys_mask: mask of the subsystem ids whose files should be removed
1021 */
628f7cd4 1022static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1023{
13af07df 1024 struct cgroup_subsys *ss;
b420ba7d 1025 int i;
05ef1d7c 1026
b420ba7d 1027 for_each_subsys(ss, i) {
0adb0704 1028 struct cftype *cfts;
b420ba7d
TH
1029
1030 if (!test_bit(i, &subsys_mask))
13af07df 1031 continue;
0adb0704
TH
1032 list_for_each_entry(cfts, &ss->cfts, node)
1033 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1034 }
ddbcc7e8
PM
1035}
1036
3dd06ffa 1037static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 1038 unsigned long ss_mask)
ddbcc7e8 1039{
30159ec7 1040 struct cgroup_subsys *ss;
2d8f243a 1041 int ssid, i, ret;
ddbcc7e8 1042
ace2bee8
TH
1043 lockdep_assert_held(&cgroup_tree_mutex);
1044 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1045
5df36032
TH
1046 for_each_subsys(ss, ssid) {
1047 if (!(ss_mask & (1 << ssid)))
1048 continue;
aae8aab4 1049
5df36032 1050 /* if @ss is on the dummy_root, we can always move it */
3dd06ffa 1051 if (ss->root == &cgrp_dfl_root)
ddbcc7e8 1052 continue;
30159ec7 1053
5df36032 1054 /* if @ss has non-root cgroups attached to it, can't move */
3dd06ffa 1055 if (!list_empty(&ss->root->cgrp.children))
3ed80a62 1056 return -EBUSY;
1d5be6b2 1057
5df36032 1058 /* can't move between two non-dummy roots either */
3dd06ffa 1059 if (dst_root != &cgrp_dfl_root)
5df36032 1060 return -EBUSY;
ddbcc7e8
PM
1061 }
1062
a2dd4247
TH
1063 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1064 if (ret) {
1065 if (dst_root != &cgrp_dfl_root)
5df36032 1066 return ret;
ddbcc7e8 1067
a2dd4247
TH
1068 /*
1069 * Rebinding back to the default root is not allowed to
1070 * fail. Using both default and non-default roots should
1071 * be rare. Moving subsystems back and forth even more so.
1072 * Just warn about it and continue.
1073 */
1074 if (cgrp_dfl_root_visible) {
1075 pr_warning("cgroup: failed to create files (%d) while rebinding 0x%lx to default root\n",
1076 ret, ss_mask);
1077 pr_warning("cgroup: you may retry by moving them to a different hierarchy and unbinding\n");
1078 }
5df36032 1079 }
3126121f
TH
1080
1081 /*
1082 * Nothing can fail from this point on. Remove files for the
1083 * removed subsystems and rebind each subsystem.
1084 */
4ac06017 1085 mutex_unlock(&cgroup_mutex);
5df36032 1086 for_each_subsys(ss, ssid)
a2dd4247 1087 if (ss_mask & (1 << ssid))
3dd06ffa 1088 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1089 mutex_lock(&cgroup_mutex);
a8a648c4 1090
5df36032 1091 for_each_subsys(ss, ssid) {
3dd06ffa 1092 struct cgroup_root *src_root;
5df36032 1093 struct cgroup_subsys_state *css;
2d8f243a 1094 struct css_set *cset;
a8a648c4 1095
5df36032
TH
1096 if (!(ss_mask & (1 << ssid)))
1097 continue;
a8a648c4 1098
5df36032 1099 src_root = ss->root;
3dd06ffa 1100 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1101
3dd06ffa 1102 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1103
3dd06ffa
TH
1104 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1105 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1106 ss->root = dst_root;
3dd06ffa 1107 css->cgroup = &dst_root->cgrp;
73e80ed8 1108
2d8f243a
TH
1109 down_write(&css_set_rwsem);
1110 hash_for_each(css_set_table, i, cset, hlist)
1111 list_move_tail(&cset->e_cset_node[ss->id],
1112 &dst_root->cgrp.e_csets[ss->id]);
1113 up_write(&css_set_rwsem);
1114
f392e51c
TH
1115 src_root->subsys_mask &= ~(1 << ssid);
1116 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1117
bd53d617 1118 /* default hierarchy doesn't enable controllers by default */
f392e51c 1119 dst_root->subsys_mask |= 1 << ssid;
bd53d617
TH
1120 if (dst_root != &cgrp_dfl_root)
1121 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1122
5df36032
TH
1123 if (ss->bind)
1124 ss->bind(css);
ddbcc7e8 1125 }
ddbcc7e8 1126
a2dd4247 1127 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1128 return 0;
1129}
1130
2bd59d48
TH
1131static int cgroup_show_options(struct seq_file *seq,
1132 struct kernfs_root *kf_root)
ddbcc7e8 1133{
3dd06ffa 1134 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1135 struct cgroup_subsys *ss;
b85d2040 1136 int ssid;
ddbcc7e8 1137
b85d2040 1138 for_each_subsys(ss, ssid)
f392e51c 1139 if (root->subsys_mask & (1 << ssid))
b85d2040 1140 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1141 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1142 seq_puts(seq, ",sane_behavior");
93438629 1143 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1144 seq_puts(seq, ",noprefix");
93438629 1145 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1146 seq_puts(seq, ",xattr");
69e943b7
TH
1147
1148 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1149 if (strlen(root->release_agent_path))
1150 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1151 spin_unlock(&release_agent_path_lock);
1152
3dd06ffa 1153 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1154 seq_puts(seq, ",clone_children");
c6d57f33
PM
1155 if (strlen(root->name))
1156 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1157 return 0;
1158}
1159
1160struct cgroup_sb_opts {
a1a71b45 1161 unsigned long subsys_mask;
ddbcc7e8 1162 unsigned long flags;
81a6a5cd 1163 char *release_agent;
2260e7fc 1164 bool cpuset_clone_children;
c6d57f33 1165 char *name;
2c6ab6d2
PM
1166 /* User explicitly requested empty subsystem */
1167 bool none;
ddbcc7e8
PM
1168};
1169
aae8aab4 1170/*
9871bf95
TH
1171 * Convert a hierarchy specifier into a bitmask of subsystems and
1172 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1173 * array. This function takes refcounts on subsystems to be used, unless it
1174 * returns error, in which case no refcounts are taken.
aae8aab4 1175 */
cf5d5941 1176static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1177{
32a8cf23
DL
1178 char *token, *o = data;
1179 bool all_ss = false, one_ss = false;
f9ab5b5b 1180 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1181 struct cgroup_subsys *ss;
1182 int i;
f9ab5b5b 1183
aae8aab4
BB
1184 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1185
f9ab5b5b 1186#ifdef CONFIG_CPUSETS
073219e9 1187 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1188#endif
ddbcc7e8 1189
c6d57f33 1190 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1191
1192 while ((token = strsep(&o, ",")) != NULL) {
1193 if (!*token)
1194 return -EINVAL;
32a8cf23 1195 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1196 /* Explicitly have no subsystems */
1197 opts->none = true;
32a8cf23
DL
1198 continue;
1199 }
1200 if (!strcmp(token, "all")) {
1201 /* Mutually exclusive option 'all' + subsystem name */
1202 if (one_ss)
1203 return -EINVAL;
1204 all_ss = true;
1205 continue;
1206 }
873fe09e
TH
1207 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1208 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1209 continue;
1210 }
32a8cf23 1211 if (!strcmp(token, "noprefix")) {
93438629 1212 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1213 continue;
1214 }
1215 if (!strcmp(token, "clone_children")) {
2260e7fc 1216 opts->cpuset_clone_children = true;
32a8cf23
DL
1217 continue;
1218 }
03b1cde6 1219 if (!strcmp(token, "xattr")) {
93438629 1220 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1221 continue;
1222 }
32a8cf23 1223 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1224 /* Specifying two release agents is forbidden */
1225 if (opts->release_agent)
1226 return -EINVAL;
c6d57f33 1227 opts->release_agent =
e400c285 1228 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1229 if (!opts->release_agent)
1230 return -ENOMEM;
32a8cf23
DL
1231 continue;
1232 }
1233 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1234 const char *name = token + 5;
1235 /* Can't specify an empty name */
1236 if (!strlen(name))
1237 return -EINVAL;
1238 /* Must match [\w.-]+ */
1239 for (i = 0; i < strlen(name); i++) {
1240 char c = name[i];
1241 if (isalnum(c))
1242 continue;
1243 if ((c == '.') || (c == '-') || (c == '_'))
1244 continue;
1245 return -EINVAL;
1246 }
1247 /* Specifying two names is forbidden */
1248 if (opts->name)
1249 return -EINVAL;
1250 opts->name = kstrndup(name,
e400c285 1251 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1252 GFP_KERNEL);
1253 if (!opts->name)
1254 return -ENOMEM;
32a8cf23
DL
1255
1256 continue;
1257 }
1258
30159ec7 1259 for_each_subsys(ss, i) {
32a8cf23
DL
1260 if (strcmp(token, ss->name))
1261 continue;
1262 if (ss->disabled)
1263 continue;
1264
1265 /* Mutually exclusive option 'all' + subsystem name */
1266 if (all_ss)
1267 return -EINVAL;
a1a71b45 1268 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1269 one_ss = true;
1270
1271 break;
1272 }
1273 if (i == CGROUP_SUBSYS_COUNT)
1274 return -ENOENT;
1275 }
1276
2c6ab6d2
PM
1277 /* Consistency checks */
1278
873fe09e
TH
1279 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1280 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1281
d3ba07c3
TH
1282 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1283 opts->cpuset_clone_children || opts->release_agent ||
1284 opts->name) {
1285 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1286 return -EINVAL;
1287 }
a2dd4247
TH
1288 } else {
1289 /*
1290 * If the 'all' option was specified select all the
1291 * subsystems, otherwise if 'none', 'name=' and a subsystem
1292 * name options were not specified, let's default to 'all'
1293 */
1294 if (all_ss || (!one_ss && !opts->none && !opts->name))
1295 for_each_subsys(ss, i)
1296 if (!ss->disabled)
1297 set_bit(i, &opts->subsys_mask);
873fe09e 1298
a2dd4247
TH
1299 /*
1300 * We either have to specify by name or by subsystems. (So
1301 * all empty hierarchies must have a name).
1302 */
1303 if (!opts->subsys_mask && !opts->name)
873fe09e 1304 return -EINVAL;
873fe09e
TH
1305 }
1306
f9ab5b5b
LZ
1307 /*
1308 * Option noprefix was introduced just for backward compatibility
1309 * with the old cpuset, so we allow noprefix only if mounting just
1310 * the cpuset subsystem.
1311 */
93438629 1312 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1313 return -EINVAL;
1314
2c6ab6d2
PM
1315
1316 /* Can't specify "none" and some subsystems */
a1a71b45 1317 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1318 return -EINVAL;
1319
ddbcc7e8
PM
1320 return 0;
1321}
1322
2bd59d48 1323static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1324{
1325 int ret = 0;
3dd06ffa 1326 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1327 struct cgroup_sb_opts opts;
a1a71b45 1328 unsigned long added_mask, removed_mask;
ddbcc7e8 1329
873fe09e
TH
1330 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1331 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1332 return -EINVAL;
1333 }
1334
ace2bee8 1335 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1336 mutex_lock(&cgroup_mutex);
1337
1338 /* See what subsystems are wanted */
1339 ret = parse_cgroupfs_options(data, &opts);
1340 if (ret)
1341 goto out_unlock;
1342
f392e51c 1343 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1344 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1345 task_tgid_nr(current), current->comm);
1346
f392e51c
TH
1347 added_mask = opts.subsys_mask & ~root->subsys_mask;
1348 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1349
cf5d5941 1350 /* Don't allow flags or name to change at remount */
0ce6cba3 1351 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1352 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1353 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1354 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1355 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1356 ret = -EINVAL;
1357 goto out_unlock;
1358 }
1359
f172e67c 1360 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1361 if (!list_empty(&root->cgrp.children)) {
f172e67c 1362 ret = -EBUSY;
0670e08b 1363 goto out_unlock;
cf5d5941 1364 }
ddbcc7e8 1365
5df36032 1366 ret = rebind_subsystems(root, added_mask);
3126121f 1367 if (ret)
0670e08b 1368 goto out_unlock;
ddbcc7e8 1369
3dd06ffa 1370 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1371
69e943b7
TH
1372 if (opts.release_agent) {
1373 spin_lock(&release_agent_path_lock);
81a6a5cd 1374 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1375 spin_unlock(&release_agent_path_lock);
1376 }
ddbcc7e8 1377 out_unlock:
66bdc9cf 1378 kfree(opts.release_agent);
c6d57f33 1379 kfree(opts.name);
ddbcc7e8 1380 mutex_unlock(&cgroup_mutex);
ace2bee8 1381 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1382 return ret;
1383}
1384
afeb0f9f
TH
1385/*
1386 * To reduce the fork() overhead for systems that are not actually using
1387 * their cgroups capability, we don't maintain the lists running through
1388 * each css_set to its tasks until we see the list actually used - in other
1389 * words after the first mount.
1390 */
1391static bool use_task_css_set_links __read_mostly;
1392
1393static void cgroup_enable_task_cg_lists(void)
1394{
1395 struct task_struct *p, *g;
1396
96d365e0 1397 down_write(&css_set_rwsem);
afeb0f9f
TH
1398
1399 if (use_task_css_set_links)
1400 goto out_unlock;
1401
1402 use_task_css_set_links = true;
1403
1404 /*
1405 * We need tasklist_lock because RCU is not safe against
1406 * while_each_thread(). Besides, a forking task that has passed
1407 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1408 * is not guaranteed to have its child immediately visible in the
1409 * tasklist if we walk through it with RCU.
1410 */
1411 read_lock(&tasklist_lock);
1412 do_each_thread(g, p) {
afeb0f9f
TH
1413 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1414 task_css_set(p) != &init_css_set);
1415
1416 /*
1417 * We should check if the process is exiting, otherwise
1418 * it will race with cgroup_exit() in that the list
1419 * entry won't be deleted though the process has exited.
f153ad11
TH
1420 * Do it while holding siglock so that we don't end up
1421 * racing against cgroup_exit().
afeb0f9f 1422 */
f153ad11 1423 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1424 if (!(p->flags & PF_EXITING)) {
1425 struct css_set *cset = task_css_set(p);
1426
1427 list_add(&p->cg_list, &cset->tasks);
1428 get_css_set(cset);
1429 }
f153ad11 1430 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1431 } while_each_thread(g, p);
1432 read_unlock(&tasklist_lock);
1433out_unlock:
96d365e0 1434 up_write(&css_set_rwsem);
afeb0f9f 1435}
ddbcc7e8 1436
cc31edce
PM
1437static void init_cgroup_housekeeping(struct cgroup *cgrp)
1438{
2d8f243a
TH
1439 struct cgroup_subsys *ss;
1440 int ssid;
1441
2bd59d48 1442 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1443 INIT_LIST_HEAD(&cgrp->sibling);
1444 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1445 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1446 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1447 INIT_LIST_HEAD(&cgrp->pidlists);
1448 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1449 cgrp->dummy_css.cgroup = cgrp;
2d8f243a
TH
1450
1451 for_each_subsys(ss, ssid)
1452 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
cc31edce 1453}
c6d57f33 1454
3dd06ffa 1455static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1456 struct cgroup_sb_opts *opts)
ddbcc7e8 1457{
3dd06ffa 1458 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1459
ddbcc7e8 1460 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1461 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1462 cgrp->root = root;
cc31edce 1463 init_cgroup_housekeeping(cgrp);
4e96ee8e 1464 idr_init(&root->cgroup_idr);
c6d57f33 1465
c6d57f33
PM
1466 root->flags = opts->flags;
1467 if (opts->release_agent)
1468 strcpy(root->release_agent_path, opts->release_agent);
1469 if (opts->name)
1470 strcpy(root->name, opts->name);
2260e7fc 1471 if (opts->cpuset_clone_children)
3dd06ffa 1472 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1473}
1474
3dd06ffa 1475static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1476{
d427dfeb 1477 LIST_HEAD(tmp_links);
3dd06ffa 1478 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1479 struct css_set *cset;
d427dfeb 1480 int i, ret;
2c6ab6d2 1481
d427dfeb
TH
1482 lockdep_assert_held(&cgroup_tree_mutex);
1483 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1484
d427dfeb
TH
1485 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1486 if (ret < 0)
2bd59d48 1487 goto out;
d427dfeb 1488 root_cgrp->id = ret;
c6d57f33 1489
d427dfeb 1490 /*
96d365e0 1491 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1492 * but that's OK - it can only be increased by someone holding
1493 * cgroup_lock, and that's us. The worst that can happen is that we
1494 * have some link structures left over
1495 */
1496 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1497 if (ret)
2bd59d48 1498 goto out;
ddbcc7e8 1499
985ed670 1500 ret = cgroup_init_root_id(root);
ddbcc7e8 1501 if (ret)
2bd59d48 1502 goto out;
ddbcc7e8 1503
2bd59d48
TH
1504 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1505 KERNFS_ROOT_CREATE_DEACTIVATED,
1506 root_cgrp);
1507 if (IS_ERR(root->kf_root)) {
1508 ret = PTR_ERR(root->kf_root);
1509 goto exit_root_id;
1510 }
1511 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1512
d427dfeb
TH
1513 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1514 if (ret)
2bd59d48 1515 goto destroy_root;
ddbcc7e8 1516
5df36032 1517 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1518 if (ret)
2bd59d48 1519 goto destroy_root;
ddbcc7e8 1520
d427dfeb
TH
1521 /*
1522 * There must be no failure case after here, since rebinding takes
1523 * care of subsystems' refcounts, which are explicitly dropped in
1524 * the failure exit path.
1525 */
1526 list_add(&root->root_list, &cgroup_roots);
1527 cgroup_root_count++;
0df6a63f 1528
d427dfeb 1529 /*
3dd06ffa 1530 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1531 * objects.
1532 */
96d365e0 1533 down_write(&css_set_rwsem);
d427dfeb
TH
1534 hash_for_each(css_set_table, i, cset, hlist)
1535 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1536 up_write(&css_set_rwsem);
ddbcc7e8 1537
d427dfeb 1538 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1539 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1540
2bd59d48 1541 kernfs_activate(root_cgrp->kn);
d427dfeb 1542 ret = 0;
2bd59d48 1543 goto out;
d427dfeb 1544
2bd59d48
TH
1545destroy_root:
1546 kernfs_destroy_root(root->kf_root);
1547 root->kf_root = NULL;
1548exit_root_id:
d427dfeb 1549 cgroup_exit_root_id(root);
2bd59d48 1550out:
d427dfeb
TH
1551 free_cgrp_cset_links(&tmp_links);
1552 return ret;
ddbcc7e8
PM
1553}
1554
f7e83571 1555static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1556 int flags, const char *unused_dev_name,
f7e83571 1557 void *data)
ddbcc7e8 1558{
3dd06ffa 1559 struct cgroup_root *root;
ddbcc7e8 1560 struct cgroup_sb_opts opts;
2bd59d48 1561 struct dentry *dentry;
8e30e2b8 1562 int ret;
c6b3d5bc 1563 bool new_sb;
ddbcc7e8 1564
56fde9e0
TH
1565 /*
1566 * The first time anyone tries to mount a cgroup, enable the list
1567 * linking each css_set to its tasks and fix up all existing tasks.
1568 */
1569 if (!use_task_css_set_links)
1570 cgroup_enable_task_cg_lists();
e37a06f1 1571
8e30e2b8 1572 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1573 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1574
1575 /* First find the desired set of subsystems */
ddbcc7e8 1576 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1577 if (ret)
8e30e2b8 1578 goto out_unlock;
e37a06f1 1579retry:
2bd59d48 1580 /* look for a matching existing root */
a2dd4247
TH
1581 if (!opts.subsys_mask && !opts.none && !opts.name) {
1582 cgrp_dfl_root_visible = true;
1583 root = &cgrp_dfl_root;
1584 cgroup_get(&root->cgrp);
1585 ret = 0;
1586 goto out_unlock;
ddbcc7e8
PM
1587 }
1588
985ed670 1589 for_each_root(root) {
2bd59d48 1590 bool name_match = false;
3126121f 1591
3dd06ffa 1592 if (root == &cgrp_dfl_root)
985ed670 1593 continue;
3126121f 1594
cf5d5941 1595 /*
2bd59d48
TH
1596 * If we asked for a name then it must match. Also, if
1597 * name matches but sybsys_mask doesn't, we should fail.
1598 * Remember whether name matched.
cf5d5941 1599 */
2bd59d48
TH
1600 if (opts.name) {
1601 if (strcmp(opts.name, root->name))
1602 continue;
1603 name_match = true;
1604 }
ddbcc7e8 1605
c6d57f33 1606 /*
2bd59d48
TH
1607 * If we asked for subsystems (or explicitly for no
1608 * subsystems) then they must match.
c6d57f33 1609 */
2bd59d48 1610 if ((opts.subsys_mask || opts.none) &&
f392e51c 1611 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1612 if (!name_match)
1613 continue;
1614 ret = -EBUSY;
1615 goto out_unlock;
1616 }
873fe09e 1617
c7ba8287 1618 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1619 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1620 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1621 ret = -EINVAL;
8e30e2b8 1622 goto out_unlock;
2a0ff3fb
JL
1623 } else {
1624 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1625 }
873fe09e 1626 }
ddbcc7e8 1627
776f02fa 1628 /*
3dd06ffa 1629 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1630 * ref indicate that the root is being destroyed. Wait for
1631 * destruction to complete so that the subsystems are free.
1632 * We can use wait_queue for the wait but this path is
1633 * super cold. Let's just sleep for a bit and retry.
1634 */
3dd06ffa 1635 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1636 mutex_unlock(&cgroup_mutex);
1637 mutex_unlock(&cgroup_tree_mutex);
1638 msleep(10);
e37a06f1
LZ
1639 mutex_lock(&cgroup_tree_mutex);
1640 mutex_lock(&cgroup_mutex);
776f02fa
TH
1641 goto retry;
1642 }
ddbcc7e8 1643
776f02fa 1644 ret = 0;
2bd59d48 1645 goto out_unlock;
ddbcc7e8 1646 }
ddbcc7e8 1647
817929ec 1648 /*
172a2c06
TH
1649 * No such thing, create a new one. name= matching without subsys
1650 * specification is allowed for already existing hierarchies but we
1651 * can't create new one without subsys specification.
817929ec 1652 */
172a2c06
TH
1653 if (!opts.subsys_mask && !opts.none) {
1654 ret = -EINVAL;
1655 goto out_unlock;
817929ec 1656 }
817929ec 1657
172a2c06
TH
1658 root = kzalloc(sizeof(*root), GFP_KERNEL);
1659 if (!root) {
1660 ret = -ENOMEM;
2bd59d48 1661 goto out_unlock;
839ec545 1662 }
e5f6a860 1663
172a2c06
TH
1664 init_cgroup_root(root, &opts);
1665
35585573 1666 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1667 if (ret)
1668 cgroup_free_root(root);
fa3ca07e 1669
8e30e2b8 1670out_unlock:
ddbcc7e8 1671 mutex_unlock(&cgroup_mutex);
ace2bee8 1672 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8 1673
c6d57f33
PM
1674 kfree(opts.release_agent);
1675 kfree(opts.name);
03b1cde6 1676
2bd59d48 1677 if (ret)
8e30e2b8 1678 return ERR_PTR(ret);
2bd59d48 1679
c6b3d5bc
LZ
1680 dentry = kernfs_mount(fs_type, flags, root->kf_root, &new_sb);
1681 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1682 cgroup_put(&root->cgrp);
2bd59d48
TH
1683 return dentry;
1684}
1685
1686static void cgroup_kill_sb(struct super_block *sb)
1687{
1688 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1689 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1690
3dd06ffa 1691 cgroup_put(&root->cgrp);
2bd59d48 1692 kernfs_kill_sb(sb);
ddbcc7e8
PM
1693}
1694
1695static struct file_system_type cgroup_fs_type = {
1696 .name = "cgroup",
f7e83571 1697 .mount = cgroup_mount,
ddbcc7e8
PM
1698 .kill_sb = cgroup_kill_sb,
1699};
1700
676db4af
GK
1701static struct kobject *cgroup_kobj;
1702
857a2beb 1703/**
913ffdb5 1704 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1705 * @task: target task
857a2beb
TH
1706 * @buf: the buffer to write the path into
1707 * @buflen: the length of the buffer
1708 *
913ffdb5
TH
1709 * Determine @task's cgroup on the first (the one with the lowest non-zero
1710 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1711 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1712 * cgroup controller callbacks.
1713 *
e61734c5 1714 * Return value is the same as kernfs_path().
857a2beb 1715 */
e61734c5 1716char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1717{
3dd06ffa 1718 struct cgroup_root *root;
913ffdb5 1719 struct cgroup *cgrp;
e61734c5
TH
1720 int hierarchy_id = 1;
1721 char *path = NULL;
857a2beb
TH
1722
1723 mutex_lock(&cgroup_mutex);
96d365e0 1724 down_read(&css_set_rwsem);
857a2beb 1725
913ffdb5
TH
1726 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1727
857a2beb
TH
1728 if (root) {
1729 cgrp = task_cgroup_from_root(task, root);
e61734c5 1730 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1731 } else {
1732 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1733 if (strlcpy(buf, "/", buflen) < buflen)
1734 path = buf;
857a2beb
TH
1735 }
1736
96d365e0 1737 up_read(&css_set_rwsem);
857a2beb 1738 mutex_unlock(&cgroup_mutex);
e61734c5 1739 return path;
857a2beb 1740}
913ffdb5 1741EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1742
b3dc094e 1743/* used to track tasks and other necessary states during migration */
2f7ee569 1744struct cgroup_taskset {
b3dc094e
TH
1745 /* the src and dst cset list running through cset->mg_node */
1746 struct list_head src_csets;
1747 struct list_head dst_csets;
1748
1749 /*
1750 * Fields for cgroup_taskset_*() iteration.
1751 *
1752 * Before migration is committed, the target migration tasks are on
1753 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1754 * the csets on ->dst_csets. ->csets point to either ->src_csets
1755 * or ->dst_csets depending on whether migration is committed.
1756 *
1757 * ->cur_csets and ->cur_task point to the current task position
1758 * during iteration.
1759 */
1760 struct list_head *csets;
1761 struct css_set *cur_cset;
1762 struct task_struct *cur_task;
2f7ee569
TH
1763};
1764
1765/**
1766 * cgroup_taskset_first - reset taskset and return the first task
1767 * @tset: taskset of interest
1768 *
1769 * @tset iteration is initialized and the first task is returned.
1770 */
1771struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1772{
b3dc094e
TH
1773 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1774 tset->cur_task = NULL;
1775
1776 return cgroup_taskset_next(tset);
2f7ee569 1777}
2f7ee569
TH
1778
1779/**
1780 * cgroup_taskset_next - iterate to the next task in taskset
1781 * @tset: taskset of interest
1782 *
1783 * Return the next task in @tset. Iteration must have been initialized
1784 * with cgroup_taskset_first().
1785 */
1786struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1787{
b3dc094e
TH
1788 struct css_set *cset = tset->cur_cset;
1789 struct task_struct *task = tset->cur_task;
2f7ee569 1790
b3dc094e
TH
1791 while (&cset->mg_node != tset->csets) {
1792 if (!task)
1793 task = list_first_entry(&cset->mg_tasks,
1794 struct task_struct, cg_list);
1795 else
1796 task = list_next_entry(task, cg_list);
2f7ee569 1797
b3dc094e
TH
1798 if (&task->cg_list != &cset->mg_tasks) {
1799 tset->cur_cset = cset;
1800 tset->cur_task = task;
1801 return task;
1802 }
2f7ee569 1803
b3dc094e
TH
1804 cset = list_next_entry(cset, mg_node);
1805 task = NULL;
1806 }
2f7ee569 1807
b3dc094e 1808 return NULL;
2f7ee569 1809}
2f7ee569 1810
cb0f1fe9 1811/**
74a1166d 1812 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1813 * @old_cgrp; the cgroup @tsk is being migrated from
1814 * @tsk: the task being migrated
1815 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1816 *
cb0f1fe9 1817 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1818 */
5abb8855
TH
1819static void cgroup_task_migrate(struct cgroup *old_cgrp,
1820 struct task_struct *tsk,
1821 struct css_set *new_cset)
74a1166d 1822{
5abb8855 1823 struct css_set *old_cset;
74a1166d 1824
cb0f1fe9
TH
1825 lockdep_assert_held(&cgroup_mutex);
1826 lockdep_assert_held(&css_set_rwsem);
1827
74a1166d 1828 /*
026085ef
MSB
1829 * We are synchronized through threadgroup_lock() against PF_EXITING
1830 * setting such that we can't race against cgroup_exit() changing the
1831 * css_set to init_css_set and dropping the old one.
74a1166d 1832 */
c84cdf75 1833 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1834 old_cset = task_css_set(tsk);
74a1166d 1835
b3dc094e 1836 get_css_set(new_cset);
5abb8855 1837 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1838
1b9aba49
TH
1839 /*
1840 * Use move_tail so that cgroup_taskset_first() still returns the
1841 * leader after migration. This works because cgroup_migrate()
1842 * ensures that the dst_cset of the leader is the first on the
1843 * tset's dst_csets list.
1844 */
1845 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1846
1847 /*
5abb8855
TH
1848 * We just gained a reference on old_cset by taking it from the
1849 * task. As trading it for new_cset is protected by cgroup_mutex,
1850 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1851 */
5abb8855 1852 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1853 put_css_set_locked(old_cset, false);
74a1166d
BB
1854}
1855
a043e3b2 1856/**
1958d2d5
TH
1857 * cgroup_migrate_finish - cleanup after attach
1858 * @preloaded_csets: list of preloaded css_sets
74a1166d 1859 *
1958d2d5
TH
1860 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1861 * those functions for details.
74a1166d 1862 */
1958d2d5 1863static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1864{
1958d2d5 1865 struct css_set *cset, *tmp_cset;
74a1166d 1866
1958d2d5
TH
1867 lockdep_assert_held(&cgroup_mutex);
1868
1869 down_write(&css_set_rwsem);
1870 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1871 cset->mg_src_cgrp = NULL;
1872 cset->mg_dst_cset = NULL;
1873 list_del_init(&cset->mg_preload_node);
1874 put_css_set_locked(cset, false);
1875 }
1876 up_write(&css_set_rwsem);
1877}
1878
1879/**
1880 * cgroup_migrate_add_src - add a migration source css_set
1881 * @src_cset: the source css_set to add
1882 * @dst_cgrp: the destination cgroup
1883 * @preloaded_csets: list of preloaded css_sets
1884 *
1885 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1886 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1887 * up by cgroup_migrate_finish().
1888 *
1889 * This function may be called without holding threadgroup_lock even if the
1890 * target is a process. Threads may be created and destroyed but as long
1891 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1892 * the preloaded css_sets are guaranteed to cover all migrations.
1893 */
1894static void cgroup_migrate_add_src(struct css_set *src_cset,
1895 struct cgroup *dst_cgrp,
1896 struct list_head *preloaded_csets)
1897{
1898 struct cgroup *src_cgrp;
1899
1900 lockdep_assert_held(&cgroup_mutex);
1901 lockdep_assert_held(&css_set_rwsem);
1902
1903 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1904
1905 /* nothing to do if this cset already belongs to the cgroup */
1906 if (src_cgrp == dst_cgrp)
1907 return;
1908
1909 if (!list_empty(&src_cset->mg_preload_node))
1910 return;
1911
1912 WARN_ON(src_cset->mg_src_cgrp);
1913 WARN_ON(!list_empty(&src_cset->mg_tasks));
1914 WARN_ON(!list_empty(&src_cset->mg_node));
1915
1916 src_cset->mg_src_cgrp = src_cgrp;
1917 get_css_set(src_cset);
1918 list_add(&src_cset->mg_preload_node, preloaded_csets);
1919}
1920
1921/**
1922 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1923 * @dst_cgrp: the destination cgroup
1924 * @preloaded_csets: list of preloaded source css_sets
1925 *
1926 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1927 * have been preloaded to @preloaded_csets. This function looks up and
1928 * pins all destination css_sets, links each to its source, and put them on
1929 * @preloaded_csets.
1930 *
1931 * This function must be called after cgroup_migrate_add_src() has been
1932 * called on each migration source css_set. After migration is performed
1933 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1934 * @preloaded_csets.
1935 */
1936static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1937 struct list_head *preloaded_csets)
1938{
1939 LIST_HEAD(csets);
1940 struct css_set *src_cset;
1941
1942 lockdep_assert_held(&cgroup_mutex);
1943
1944 /* look up the dst cset for each src cset and link it to src */
1945 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1946 struct css_set *dst_cset;
1947
1948 dst_cset = find_css_set(src_cset, dst_cgrp);
1949 if (!dst_cset)
1950 goto err;
1951
1952 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1953 src_cset->mg_dst_cset = dst_cset;
1954
1955 if (list_empty(&dst_cset->mg_preload_node))
1956 list_add(&dst_cset->mg_preload_node, &csets);
1957 else
1958 put_css_set(dst_cset, false);
1959 }
1960
1961 list_splice(&csets, preloaded_csets);
1962 return 0;
1963err:
1964 cgroup_migrate_finish(&csets);
1965 return -ENOMEM;
1966}
1967
1968/**
1969 * cgroup_migrate - migrate a process or task to a cgroup
1970 * @cgrp: the destination cgroup
1971 * @leader: the leader of the process or the task to migrate
1972 * @threadgroup: whether @leader points to the whole process or a single task
1973 *
1974 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1975 * process, the caller must be holding threadgroup_lock of @leader. The
1976 * caller is also responsible for invoking cgroup_migrate_add_src() and
1977 * cgroup_migrate_prepare_dst() on the targets before invoking this
1978 * function and following up with cgroup_migrate_finish().
1979 *
1980 * As long as a controller's ->can_attach() doesn't fail, this function is
1981 * guaranteed to succeed. This means that, excluding ->can_attach()
1982 * failure, when migrating multiple targets, the success or failure can be
1983 * decided for all targets by invoking group_migrate_prepare_dst() before
1984 * actually starting migrating.
1985 */
1986static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1987 bool threadgroup)
74a1166d 1988{
b3dc094e
TH
1989 struct cgroup_taskset tset = {
1990 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1991 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1992 .csets = &tset.src_csets,
1993 };
1c6727af 1994 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1995 struct css_set *cset, *tmp_cset;
1996 struct task_struct *task, *tmp_task;
1997 int i, ret;
74a1166d 1998
fb5d2b4c
MSB
1999 /*
2000 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2001 * already PF_EXITING could be freed from underneath us unless we
2002 * take an rcu_read_lock.
2003 */
b3dc094e 2004 down_write(&css_set_rwsem);
fb5d2b4c 2005 rcu_read_lock();
9db8de37 2006 task = leader;
74a1166d 2007 do {
9db8de37
TH
2008 /* @task either already exited or can't exit until the end */
2009 if (task->flags & PF_EXITING)
ea84753c 2010 goto next;
134d3373 2011
eaf797ab
TH
2012 /* leave @task alone if post_fork() hasn't linked it yet */
2013 if (list_empty(&task->cg_list))
ea84753c 2014 goto next;
cd3d0952 2015
b3dc094e 2016 cset = task_css_set(task);
1958d2d5 2017 if (!cset->mg_src_cgrp)
ea84753c 2018 goto next;
b3dc094e 2019
61d1d219 2020 /*
1b9aba49
TH
2021 * cgroup_taskset_first() must always return the leader.
2022 * Take care to avoid disturbing the ordering.
61d1d219 2023 */
1b9aba49
TH
2024 list_move_tail(&task->cg_list, &cset->mg_tasks);
2025 if (list_empty(&cset->mg_node))
2026 list_add_tail(&cset->mg_node, &tset.src_csets);
2027 if (list_empty(&cset->mg_dst_cset->mg_node))
2028 list_move_tail(&cset->mg_dst_cset->mg_node,
2029 &tset.dst_csets);
ea84753c 2030 next:
081aa458
LZ
2031 if (!threadgroup)
2032 break;
9db8de37 2033 } while_each_thread(leader, task);
fb5d2b4c 2034 rcu_read_unlock();
b3dc094e 2035 up_write(&css_set_rwsem);
74a1166d 2036
134d3373 2037 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2038 if (list_empty(&tset.src_csets))
2039 return 0;
134d3373 2040
1958d2d5 2041 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2042 for_each_e_css(css, i, cgrp) {
1c6727af 2043 if (css->ss->can_attach) {
9db8de37
TH
2044 ret = css->ss->can_attach(css, &tset);
2045 if (ret) {
1c6727af 2046 failed_css = css;
74a1166d
BB
2047 goto out_cancel_attach;
2048 }
2049 }
74a1166d
BB
2050 }
2051
2052 /*
1958d2d5
TH
2053 * Now that we're guaranteed success, proceed to move all tasks to
2054 * the new cgroup. There are no failure cases after here, so this
2055 * is the commit point.
74a1166d 2056 */
cb0f1fe9 2057 down_write(&css_set_rwsem);
b3dc094e
TH
2058 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2059 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2060 cgroup_task_migrate(cset->mg_src_cgrp, task,
2061 cset->mg_dst_cset);
74a1166d 2062 }
cb0f1fe9 2063 up_write(&css_set_rwsem);
74a1166d
BB
2064
2065 /*
1958d2d5
TH
2066 * Migration is committed, all target tasks are now on dst_csets.
2067 * Nothing is sensitive to fork() after this point. Notify
2068 * controllers that migration is complete.
74a1166d 2069 */
1958d2d5 2070 tset.csets = &tset.dst_csets;
74a1166d 2071
aec3dfcb 2072 for_each_e_css(css, i, cgrp)
1c6727af
TH
2073 if (css->ss->attach)
2074 css->ss->attach(css, &tset);
74a1166d 2075
9db8de37 2076 ret = 0;
b3dc094e
TH
2077 goto out_release_tset;
2078
74a1166d 2079out_cancel_attach:
aec3dfcb 2080 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2081 if (css == failed_css)
2082 break;
2083 if (css->ss->cancel_attach)
2084 css->ss->cancel_attach(css, &tset);
74a1166d 2085 }
b3dc094e
TH
2086out_release_tset:
2087 down_write(&css_set_rwsem);
2088 list_splice_init(&tset.dst_csets, &tset.src_csets);
2089 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2090 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2091 list_del_init(&cset->mg_node);
b3dc094e
TH
2092 }
2093 up_write(&css_set_rwsem);
9db8de37 2094 return ret;
74a1166d
BB
2095}
2096
1958d2d5
TH
2097/**
2098 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2099 * @dst_cgrp: the cgroup to attach to
2100 * @leader: the task or the leader of the threadgroup to be attached
2101 * @threadgroup: attach the whole threadgroup?
2102 *
0e1d768f 2103 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2104 */
2105static int cgroup_attach_task(struct cgroup *dst_cgrp,
2106 struct task_struct *leader, bool threadgroup)
2107{
2108 LIST_HEAD(preloaded_csets);
2109 struct task_struct *task;
2110 int ret;
2111
2112 /* look up all src csets */
2113 down_read(&css_set_rwsem);
2114 rcu_read_lock();
2115 task = leader;
2116 do {
2117 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2118 &preloaded_csets);
2119 if (!threadgroup)
2120 break;
2121 } while_each_thread(leader, task);
2122 rcu_read_unlock();
2123 up_read(&css_set_rwsem);
2124
2125 /* prepare dst csets and commit */
2126 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2127 if (!ret)
2128 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2129
2130 cgroup_migrate_finish(&preloaded_csets);
2131 return ret;
74a1166d
BB
2132}
2133
2134/*
2135 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2136 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2137 * cgroup_mutex and threadgroup.
bbcb81d0 2138 */
74a1166d 2139static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2140{
bbcb81d0 2141 struct task_struct *tsk;
c69e8d9c 2142 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2143 int ret;
2144
74a1166d
BB
2145 if (!cgroup_lock_live_group(cgrp))
2146 return -ENODEV;
2147
b78949eb
MSB
2148retry_find_task:
2149 rcu_read_lock();
bbcb81d0 2150 if (pid) {
73507f33 2151 tsk = find_task_by_vpid(pid);
74a1166d
BB
2152 if (!tsk) {
2153 rcu_read_unlock();
dd4b0a46 2154 ret = -ESRCH;
b78949eb 2155 goto out_unlock_cgroup;
bbcb81d0 2156 }
74a1166d
BB
2157 /*
2158 * even if we're attaching all tasks in the thread group, we
2159 * only need to check permissions on one of them.
2160 */
c69e8d9c 2161 tcred = __task_cred(tsk);
14a590c3
EB
2162 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2163 !uid_eq(cred->euid, tcred->uid) &&
2164 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2165 rcu_read_unlock();
b78949eb
MSB
2166 ret = -EACCES;
2167 goto out_unlock_cgroup;
bbcb81d0 2168 }
b78949eb
MSB
2169 } else
2170 tsk = current;
cd3d0952
TH
2171
2172 if (threadgroup)
b78949eb 2173 tsk = tsk->group_leader;
c4c27fbd
MG
2174
2175 /*
14a40ffc 2176 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2177 * trapped in a cpuset, or RT worker may be born in a cgroup
2178 * with no rt_runtime allocated. Just say no.
2179 */
14a40ffc 2180 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2181 ret = -EINVAL;
2182 rcu_read_unlock();
2183 goto out_unlock_cgroup;
2184 }
2185
b78949eb
MSB
2186 get_task_struct(tsk);
2187 rcu_read_unlock();
2188
2189 threadgroup_lock(tsk);
2190 if (threadgroup) {
2191 if (!thread_group_leader(tsk)) {
2192 /*
2193 * a race with de_thread from another thread's exec()
2194 * may strip us of our leadership, if this happens,
2195 * there is no choice but to throw this task away and
2196 * try again; this is
2197 * "double-double-toil-and-trouble-check locking".
2198 */
2199 threadgroup_unlock(tsk);
2200 put_task_struct(tsk);
2201 goto retry_find_task;
2202 }
081aa458
LZ
2203 }
2204
2205 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2206
cd3d0952
TH
2207 threadgroup_unlock(tsk);
2208
bbcb81d0 2209 put_task_struct(tsk);
b78949eb 2210out_unlock_cgroup:
47cfcd09 2211 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2212 return ret;
2213}
2214
7ae1bad9
TH
2215/**
2216 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2217 * @from: attach to all cgroups of a given task
2218 * @tsk: the task to be attached
2219 */
2220int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2221{
3dd06ffa 2222 struct cgroup_root *root;
7ae1bad9
TH
2223 int retval = 0;
2224
47cfcd09 2225 mutex_lock(&cgroup_mutex);
985ed670 2226 for_each_root(root) {
96d365e0
TH
2227 struct cgroup *from_cgrp;
2228
3dd06ffa 2229 if (root == &cgrp_dfl_root)
985ed670
TH
2230 continue;
2231
96d365e0
TH
2232 down_read(&css_set_rwsem);
2233 from_cgrp = task_cgroup_from_root(from, root);
2234 up_read(&css_set_rwsem);
7ae1bad9 2235
6f4b7e63 2236 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2237 if (retval)
2238 break;
2239 }
47cfcd09 2240 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2241
2242 return retval;
2243}
2244EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2245
182446d0
TH
2246static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2247 struct cftype *cft, u64 pid)
74a1166d 2248{
182446d0 2249 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2250}
2251
182446d0
TH
2252static int cgroup_procs_write(struct cgroup_subsys_state *css,
2253 struct cftype *cft, u64 tgid)
af351026 2254{
182446d0 2255 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2256}
2257
182446d0 2258static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2259 struct cftype *cft, char *buffer)
e788e066 2260{
3dd06ffa 2261 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2262
2263 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2264 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2265 return -ENODEV;
69e943b7 2266 spin_lock(&release_agent_path_lock);
5f469907
TH
2267 strlcpy(root->release_agent_path, buffer,
2268 sizeof(root->release_agent_path));
69e943b7 2269 spin_unlock(&release_agent_path_lock);
47cfcd09 2270 mutex_unlock(&cgroup_mutex);
e788e066
PM
2271 return 0;
2272}
2273
2da8ca82 2274static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2275{
2da8ca82 2276 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2277
e788e066
PM
2278 if (!cgroup_lock_live_group(cgrp))
2279 return -ENODEV;
2280 seq_puts(seq, cgrp->root->release_agent_path);
2281 seq_putc(seq, '\n');
47cfcd09 2282 mutex_unlock(&cgroup_mutex);
e788e066
PM
2283 return 0;
2284}
2285
2da8ca82 2286static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2287{
2da8ca82
TH
2288 struct cgroup *cgrp = seq_css(seq)->cgroup;
2289
2290 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2291 return 0;
2292}
2293
2bd59d48
TH
2294static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2295 size_t nbytes, loff_t off)
355e0c48 2296{
2bd59d48
TH
2297 struct cgroup *cgrp = of->kn->parent->priv;
2298 struct cftype *cft = of->kn->priv;
2299 struct cgroup_subsys_state *css;
a742c59d 2300 int ret;
355e0c48 2301
2bd59d48
TH
2302 /*
2303 * kernfs guarantees that a file isn't deleted with operations in
2304 * flight, which means that the matching css is and stays alive and
2305 * doesn't need to be pinned. The RCU locking is not necessary
2306 * either. It's just for the convenience of using cgroup_css().
2307 */
2308 rcu_read_lock();
2309 css = cgroup_css(cgrp, cft->ss);
2310 rcu_read_unlock();
a742c59d
TH
2311
2312 if (cft->write_string) {
2313 ret = cft->write_string(css, cft, strstrip(buf));
2314 } else if (cft->write_u64) {
2315 unsigned long long v;
2316 ret = kstrtoull(buf, 0, &v);
2317 if (!ret)
2318 ret = cft->write_u64(css, cft, v);
2319 } else if (cft->write_s64) {
2320 long long v;
2321 ret = kstrtoll(buf, 0, &v);
2322 if (!ret)
2323 ret = cft->write_s64(css, cft, v);
2324 } else if (cft->trigger) {
2325 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2326 } else {
a742c59d 2327 ret = -EINVAL;
e73d2c61 2328 }
2bd59d48 2329
a742c59d 2330 return ret ?: nbytes;
355e0c48
PM
2331}
2332
6612f05b 2333static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2334{
2bd59d48 2335 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2336}
2337
6612f05b 2338static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2339{
2bd59d48 2340 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2341}
2342
6612f05b 2343static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2344{
2bd59d48 2345 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2346}
2347
91796569 2348static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2349{
7da11279
TH
2350 struct cftype *cft = seq_cft(m);
2351 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2352
2da8ca82
TH
2353 if (cft->seq_show)
2354 return cft->seq_show(m, arg);
e73d2c61 2355
f4c753b7 2356 if (cft->read_u64)
896f5199
TH
2357 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2358 else if (cft->read_s64)
2359 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2360 else
2361 return -EINVAL;
2362 return 0;
91796569
PM
2363}
2364
2bd59d48
TH
2365static struct kernfs_ops cgroup_kf_single_ops = {
2366 .atomic_write_len = PAGE_SIZE,
2367 .write = cgroup_file_write,
2368 .seq_show = cgroup_seqfile_show,
91796569
PM
2369};
2370
2bd59d48
TH
2371static struct kernfs_ops cgroup_kf_ops = {
2372 .atomic_write_len = PAGE_SIZE,
2373 .write = cgroup_file_write,
2374 .seq_start = cgroup_seqfile_start,
2375 .seq_next = cgroup_seqfile_next,
2376 .seq_stop = cgroup_seqfile_stop,
2377 .seq_show = cgroup_seqfile_show,
2378};
ddbcc7e8
PM
2379
2380/*
2381 * cgroup_rename - Only allow simple rename of directories in place.
2382 */
2bd59d48
TH
2383static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2384 const char *new_name_str)
ddbcc7e8 2385{
2bd59d48 2386 struct cgroup *cgrp = kn->priv;
65dff759 2387 int ret;
65dff759 2388
2bd59d48 2389 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2390 return -ENOTDIR;
2bd59d48 2391 if (kn->parent != new_parent)
ddbcc7e8 2392 return -EIO;
65dff759 2393
6db8e85c
TH
2394 /*
2395 * This isn't a proper migration and its usefulness is very
2396 * limited. Disallow if sane_behavior.
2397 */
2398 if (cgroup_sane_behavior(cgrp))
2399 return -EPERM;
099fca32 2400
e1b2dc17
TH
2401 /*
2402 * We're gonna grab cgroup_tree_mutex which nests outside kernfs
2403 * active_ref. kernfs_rename() doesn't require active_ref
2404 * protection. Break them before grabbing cgroup_tree_mutex.
2405 */
2406 kernfs_break_active_protection(new_parent);
2407 kernfs_break_active_protection(kn);
099fca32 2408
2bd59d48
TH
2409 mutex_lock(&cgroup_tree_mutex);
2410 mutex_lock(&cgroup_mutex);
099fca32 2411
2bd59d48 2412 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2413
2bd59d48
TH
2414 mutex_unlock(&cgroup_mutex);
2415 mutex_unlock(&cgroup_tree_mutex);
e1b2dc17
TH
2416
2417 kernfs_unbreak_active_protection(kn);
2418 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2419 return ret;
099fca32
LZ
2420}
2421
49957f8e
TH
2422/* set uid and gid of cgroup dirs and files to that of the creator */
2423static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2424{
2425 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2426 .ia_uid = current_fsuid(),
2427 .ia_gid = current_fsgid(), };
2428
2429 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2430 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2431 return 0;
2432
2433 return kernfs_setattr(kn, &iattr);
2434}
2435
2bb566cb 2436static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2437{
8d7e6fb0 2438 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2439 struct kernfs_node *kn;
2440 struct lock_class_key *key = NULL;
49957f8e 2441 int ret;
05ef1d7c 2442
2bd59d48
TH
2443#ifdef CONFIG_DEBUG_LOCK_ALLOC
2444 key = &cft->lockdep_key;
2445#endif
2446 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2447 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2448 NULL, false, key);
49957f8e
TH
2449 if (IS_ERR(kn))
2450 return PTR_ERR(kn);
2451
2452 ret = cgroup_kn_set_ugid(kn);
2453 if (ret)
2454 kernfs_remove(kn);
2455 return ret;
ddbcc7e8
PM
2456}
2457
b1f28d31
TH
2458/**
2459 * cgroup_addrm_files - add or remove files to a cgroup directory
2460 * @cgrp: the target cgroup
b1f28d31
TH
2461 * @cfts: array of cftypes to be added
2462 * @is_add: whether to add or remove
2463 *
2464 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2465 * For removals, this function never fails. If addition fails, this
2466 * function doesn't remove files already added. The caller is responsible
2467 * for cleaning up.
b1f28d31 2468 */
2bb566cb
TH
2469static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2470 bool is_add)
ddbcc7e8 2471{
03b1cde6 2472 struct cftype *cft;
b1f28d31
TH
2473 int ret;
2474
ace2bee8 2475 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2476
2477 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2478 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2479 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2480 continue;
873fe09e
TH
2481 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2482 continue;
f33fddc2
G
2483 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2484 continue;
2485 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2486 continue;
2487
2739d3cc 2488 if (is_add) {
2bb566cb 2489 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2490 if (ret) {
2739d3cc 2491 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2492 cft->name, ret);
2493 return ret;
2494 }
2739d3cc
LZ
2495 } else {
2496 cgroup_rm_file(cgrp, cft);
db0416b6 2497 }
ddbcc7e8 2498 }
b1f28d31 2499 return 0;
ddbcc7e8
PM
2500}
2501
21a2d343 2502static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2503{
2504 LIST_HEAD(pending);
2bb566cb 2505 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2506 struct cgroup *root = &ss->root->cgrp;
492eb21b 2507 struct cgroup_subsys_state *css;
9ccece80 2508 int ret = 0;
8e3f6541 2509
21a2d343 2510 lockdep_assert_held(&cgroup_tree_mutex);
8e3f6541 2511
e8c82d20 2512 /* add/rm files for all cgroups created before */
ca8bdcaf 2513 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2514 struct cgroup *cgrp = css->cgroup;
2515
e8c82d20
LZ
2516 if (cgroup_is_dead(cgrp))
2517 continue;
2518
21a2d343 2519 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2520 if (ret)
2521 break;
8e3f6541 2522 }
21a2d343
TH
2523
2524 if (is_add && !ret)
2525 kernfs_activate(root->kn);
9ccece80 2526 return ret;
8e3f6541
TH
2527}
2528
2da440a2 2529static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2530{
2bb566cb 2531 struct cftype *cft;
8e3f6541 2532
2bd59d48
TH
2533 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2534 /* free copy for custom atomic_write_len, see init_cftypes() */
2535 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2536 kfree(cft->kf_ops);
2537 cft->kf_ops = NULL;
2da440a2 2538 cft->ss = NULL;
2bd59d48 2539 }
2da440a2
TH
2540}
2541
2bd59d48 2542static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2543{
2544 struct cftype *cft;
2545
2bd59d48
TH
2546 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2547 struct kernfs_ops *kf_ops;
2548
0adb0704
TH
2549 WARN_ON(cft->ss || cft->kf_ops);
2550
2bd59d48
TH
2551 if (cft->seq_start)
2552 kf_ops = &cgroup_kf_ops;
2553 else
2554 kf_ops = &cgroup_kf_single_ops;
2555
2556 /*
2557 * Ugh... if @cft wants a custom max_write_len, we need to
2558 * make a copy of kf_ops to set its atomic_write_len.
2559 */
2560 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2561 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2562 if (!kf_ops) {
2563 cgroup_exit_cftypes(cfts);
2564 return -ENOMEM;
2565 }
2566 kf_ops->atomic_write_len = cft->max_write_len;
2567 }
8e3f6541 2568
2bd59d48 2569 cft->kf_ops = kf_ops;
2bb566cb 2570 cft->ss = ss;
2bd59d48 2571 }
2bb566cb 2572
2bd59d48 2573 return 0;
2da440a2
TH
2574}
2575
21a2d343
TH
2576static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2577{
2578 lockdep_assert_held(&cgroup_tree_mutex);
2579
2580 if (!cfts || !cfts[0].ss)
2581 return -ENOENT;
2582
2583 list_del(&cfts->node);
2584 cgroup_apply_cftypes(cfts, false);
2585 cgroup_exit_cftypes(cfts);
2586 return 0;
8e3f6541 2587}
8e3f6541 2588
79578621
TH
2589/**
2590 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2591 * @cfts: zero-length name terminated array of cftypes
2592 *
2bb566cb
TH
2593 * Unregister @cfts. Files described by @cfts are removed from all
2594 * existing cgroups and all future cgroups won't have them either. This
2595 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2596 *
2597 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2598 * registered.
79578621 2599 */
2bb566cb 2600int cgroup_rm_cftypes(struct cftype *cfts)
79578621 2601{
21a2d343 2602 int ret;
79578621 2603
21a2d343
TH
2604 mutex_lock(&cgroup_tree_mutex);
2605 ret = cgroup_rm_cftypes_locked(cfts);
2606 mutex_unlock(&cgroup_tree_mutex);
2607 return ret;
80b13586
TH
2608}
2609
8e3f6541
TH
2610/**
2611 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2612 * @ss: target cgroup subsystem
2613 * @cfts: zero-length name terminated array of cftypes
2614 *
2615 * Register @cfts to @ss. Files described by @cfts are created for all
2616 * existing cgroups to which @ss is attached and all future cgroups will
2617 * have them too. This function can be called anytime whether @ss is
2618 * attached or not.
2619 *
2620 * Returns 0 on successful registration, -errno on failure. Note that this
2621 * function currently returns 0 as long as @cfts registration is successful
2622 * even if some file creation attempts on existing cgroups fail.
2623 */
03b1cde6 2624int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2625{
9ccece80 2626 int ret;
8e3f6541 2627
dc5736ed
LZ
2628 if (!cfts || cfts[0].name[0] == '\0')
2629 return 0;
2bb566cb 2630
2bd59d48
TH
2631 ret = cgroup_init_cftypes(ss, cfts);
2632 if (ret)
2633 return ret;
79578621 2634
21a2d343
TH
2635 mutex_lock(&cgroup_tree_mutex);
2636
0adb0704 2637 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2638 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2639 if (ret)
21a2d343 2640 cgroup_rm_cftypes_locked(cfts);
79578621 2641
21a2d343 2642 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2643 return ret;
79578621
TH
2644}
2645
a043e3b2
LZ
2646/**
2647 * cgroup_task_count - count the number of tasks in a cgroup.
2648 * @cgrp: the cgroup in question
2649 *
2650 * Return the number of tasks in the cgroup.
2651 */
07bc356e 2652static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2653{
2654 int count = 0;
69d0206c 2655 struct cgrp_cset_link *link;
817929ec 2656
96d365e0 2657 down_read(&css_set_rwsem);
69d0206c
TH
2658 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2659 count += atomic_read(&link->cset->refcount);
96d365e0 2660 up_read(&css_set_rwsem);
bbcb81d0
PM
2661 return count;
2662}
2663
53fa5261 2664/**
492eb21b
TH
2665 * css_next_child - find the next child of a given css
2666 * @pos_css: the current position (%NULL to initiate traversal)
2667 * @parent_css: css whose children to walk
53fa5261 2668 *
492eb21b 2669 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2670 * under either cgroup_mutex or RCU read lock. The only requirement is
2671 * that @parent_css and @pos_css are accessible. The next sibling is
2672 * guaranteed to be returned regardless of their states.
53fa5261 2673 */
492eb21b
TH
2674struct cgroup_subsys_state *
2675css_next_child(struct cgroup_subsys_state *pos_css,
2676 struct cgroup_subsys_state *parent_css)
53fa5261 2677{
492eb21b
TH
2678 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2679 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2680 struct cgroup *next;
2681
ace2bee8 2682 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2683
2684 /*
2685 * @pos could already have been removed. Once a cgroup is removed,
2686 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2687 * changes. As CGRP_DEAD assertion is serialized and happens
2688 * before the cgroup is taken off the ->sibling list, if we see it
2689 * unasserted, it's guaranteed that the next sibling hasn't
2690 * finished its grace period even if it's already removed, and thus
2691 * safe to dereference from this RCU critical section. If
2692 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2693 * to be visible as %true here.
3b287a50
TH
2694 *
2695 * If @pos is dead, its next pointer can't be dereferenced;
2696 * however, as each cgroup is given a monotonically increasing
2697 * unique serial number and always appended to the sibling list,
2698 * the next one can be found by walking the parent's children until
2699 * we see a cgroup with higher serial number than @pos's. While
2700 * this path can be slower, it's taken only when either the current
2701 * cgroup is removed or iteration and removal race.
53fa5261 2702 */
3b287a50
TH
2703 if (!pos) {
2704 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2705 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2706 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2707 } else {
2708 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2709 if (next->serial_nr > pos->serial_nr)
2710 break;
53fa5261
TH
2711 }
2712
3b281afb
TH
2713 /*
2714 * @next, if not pointing to the head, can be dereferenced and is
2715 * the next sibling; however, it might have @ss disabled. If so,
2716 * fast-forward to the next enabled one.
2717 */
2718 while (&next->sibling != &cgrp->children) {
2719 struct cgroup_subsys_state *next_css = cgroup_css(next, parent_css->ss);
492eb21b 2720
3b281afb
TH
2721 if (next_css)
2722 return next_css;
2723 next = list_entry_rcu(next->sibling.next, struct cgroup, sibling);
2724 }
2725 return NULL;
53fa5261 2726}
53fa5261 2727
574bd9f7 2728/**
492eb21b 2729 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2730 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2731 * @root: css whose descendants to walk
574bd9f7 2732 *
492eb21b 2733 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2734 * to visit for pre-order traversal of @root's descendants. @root is
2735 * included in the iteration and the first node to be visited.
75501a6d 2736 *
87fb54f1
TH
2737 * While this function requires cgroup_mutex or RCU read locking, it
2738 * doesn't require the whole traversal to be contained in a single critical
2739 * section. This function will return the correct next descendant as long
2740 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2741 */
492eb21b
TH
2742struct cgroup_subsys_state *
2743css_next_descendant_pre(struct cgroup_subsys_state *pos,
2744 struct cgroup_subsys_state *root)
574bd9f7 2745{
492eb21b 2746 struct cgroup_subsys_state *next;
574bd9f7 2747
ace2bee8 2748 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2749
bd8815a6 2750 /* if first iteration, visit @root */
7805d000 2751 if (!pos)
bd8815a6 2752 return root;
574bd9f7
TH
2753
2754 /* visit the first child if exists */
492eb21b 2755 next = css_next_child(NULL, pos);
574bd9f7
TH
2756 if (next)
2757 return next;
2758
2759 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2760 while (pos != root) {
2761 next = css_next_child(pos, css_parent(pos));
75501a6d 2762 if (next)
574bd9f7 2763 return next;
492eb21b 2764 pos = css_parent(pos);
7805d000 2765 }
574bd9f7
TH
2766
2767 return NULL;
2768}
574bd9f7 2769
12a9d2fe 2770/**
492eb21b
TH
2771 * css_rightmost_descendant - return the rightmost descendant of a css
2772 * @pos: css of interest
12a9d2fe 2773 *
492eb21b
TH
2774 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2775 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2776 * subtree of @pos.
75501a6d 2777 *
87fb54f1
TH
2778 * While this function requires cgroup_mutex or RCU read locking, it
2779 * doesn't require the whole traversal to be contained in a single critical
2780 * section. This function will return the correct rightmost descendant as
2781 * long as @pos is accessible.
12a9d2fe 2782 */
492eb21b
TH
2783struct cgroup_subsys_state *
2784css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2785{
492eb21b 2786 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2787
ace2bee8 2788 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2789
2790 do {
2791 last = pos;
2792 /* ->prev isn't RCU safe, walk ->next till the end */
2793 pos = NULL;
492eb21b 2794 css_for_each_child(tmp, last)
12a9d2fe
TH
2795 pos = tmp;
2796 } while (pos);
2797
2798 return last;
2799}
12a9d2fe 2800
492eb21b
TH
2801static struct cgroup_subsys_state *
2802css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2803{
492eb21b 2804 struct cgroup_subsys_state *last;
574bd9f7
TH
2805
2806 do {
2807 last = pos;
492eb21b 2808 pos = css_next_child(NULL, pos);
574bd9f7
TH
2809 } while (pos);
2810
2811 return last;
2812}
2813
2814/**
492eb21b 2815 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2816 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2817 * @root: css whose descendants to walk
574bd9f7 2818 *
492eb21b 2819 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2820 * to visit for post-order traversal of @root's descendants. @root is
2821 * included in the iteration and the last node to be visited.
75501a6d 2822 *
87fb54f1
TH
2823 * While this function requires cgroup_mutex or RCU read locking, it
2824 * doesn't require the whole traversal to be contained in a single critical
2825 * section. This function will return the correct next descendant as long
2826 * as both @pos and @cgroup are accessible and @pos is a descendant of
2827 * @cgroup.
574bd9f7 2828 */
492eb21b
TH
2829struct cgroup_subsys_state *
2830css_next_descendant_post(struct cgroup_subsys_state *pos,
2831 struct cgroup_subsys_state *root)
574bd9f7 2832{
492eb21b 2833 struct cgroup_subsys_state *next;
574bd9f7 2834
ace2bee8 2835 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2836
58b79a91
TH
2837 /* if first iteration, visit leftmost descendant which may be @root */
2838 if (!pos)
2839 return css_leftmost_descendant(root);
574bd9f7 2840
bd8815a6
TH
2841 /* if we visited @root, we're done */
2842 if (pos == root)
2843 return NULL;
2844
574bd9f7 2845 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2846 next = css_next_child(pos, css_parent(pos));
75501a6d 2847 if (next)
492eb21b 2848 return css_leftmost_descendant(next);
574bd9f7
TH
2849
2850 /* no sibling left, visit parent */
bd8815a6 2851 return css_parent(pos);
574bd9f7 2852}
574bd9f7 2853
0942eeee 2854/**
72ec7029 2855 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2856 * @it: the iterator to advance
2857 *
2858 * Advance @it to the next css_set to walk.
d515876e 2859 */
72ec7029 2860static void css_advance_task_iter(struct css_task_iter *it)
d515876e 2861{
0f0a2b4f 2862 struct list_head *l = it->cset_pos;
d515876e
TH
2863 struct cgrp_cset_link *link;
2864 struct css_set *cset;
2865
2866 /* Advance to the next non-empty css_set */
2867 do {
2868 l = l->next;
0f0a2b4f
TH
2869 if (l == it->cset_head) {
2870 it->cset_pos = NULL;
d515876e
TH
2871 return;
2872 }
3ebb2b6e
TH
2873
2874 if (it->ss) {
2875 cset = container_of(l, struct css_set,
2876 e_cset_node[it->ss->id]);
2877 } else {
2878 link = list_entry(l, struct cgrp_cset_link, cset_link);
2879 cset = link->cset;
2880 }
c7561128
TH
2881 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2882
0f0a2b4f 2883 it->cset_pos = l;
c7561128
TH
2884
2885 if (!list_empty(&cset->tasks))
0f0a2b4f 2886 it->task_pos = cset->tasks.next;
c7561128 2887 else
0f0a2b4f
TH
2888 it->task_pos = cset->mg_tasks.next;
2889
2890 it->tasks_head = &cset->tasks;
2891 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
2892}
2893
0942eeee 2894/**
72ec7029
TH
2895 * css_task_iter_start - initiate task iteration
2896 * @css: the css to walk tasks of
0942eeee
TH
2897 * @it: the task iterator to use
2898 *
72ec7029
TH
2899 * Initiate iteration through the tasks of @css. The caller can call
2900 * css_task_iter_next() to walk through the tasks until the function
2901 * returns NULL. On completion of iteration, css_task_iter_end() must be
2902 * called.
0942eeee
TH
2903 *
2904 * Note that this function acquires a lock which is released when the
2905 * iteration finishes. The caller can't sleep while iteration is in
2906 * progress.
2907 */
72ec7029
TH
2908void css_task_iter_start(struct cgroup_subsys_state *css,
2909 struct css_task_iter *it)
96d365e0 2910 __acquires(css_set_rwsem)
817929ec 2911{
56fde9e0
TH
2912 /* no one should try to iterate before mounting cgroups */
2913 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2914
96d365e0 2915 down_read(&css_set_rwsem);
c59cd3d8 2916
3ebb2b6e
TH
2917 it->ss = css->ss;
2918
2919 if (it->ss)
2920 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
2921 else
2922 it->cset_pos = &css->cgroup->cset_links;
2923
0f0a2b4f 2924 it->cset_head = it->cset_pos;
c59cd3d8 2925
72ec7029 2926 css_advance_task_iter(it);
817929ec
PM
2927}
2928
0942eeee 2929/**
72ec7029 2930 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2931 * @it: the task iterator being iterated
2932 *
2933 * The "next" function for task iteration. @it should have been
72ec7029
TH
2934 * initialized via css_task_iter_start(). Returns NULL when the iteration
2935 * reaches the end.
0942eeee 2936 */
72ec7029 2937struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2938{
2939 struct task_struct *res;
0f0a2b4f 2940 struct list_head *l = it->task_pos;
817929ec
PM
2941
2942 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 2943 if (!it->cset_pos)
817929ec
PM
2944 return NULL;
2945 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2946
2947 /*
2948 * Advance iterator to find next entry. cset->tasks is consumed
2949 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2950 * next cset.
2951 */
817929ec 2952 l = l->next;
c7561128 2953
0f0a2b4f
TH
2954 if (l == it->tasks_head)
2955 l = it->mg_tasks_head->next;
c7561128 2956
0f0a2b4f 2957 if (l == it->mg_tasks_head)
72ec7029 2958 css_advance_task_iter(it);
c7561128 2959 else
0f0a2b4f 2960 it->task_pos = l;
c7561128 2961
817929ec
PM
2962 return res;
2963}
2964
0942eeee 2965/**
72ec7029 2966 * css_task_iter_end - finish task iteration
0942eeee
TH
2967 * @it: the task iterator to finish
2968 *
72ec7029 2969 * Finish task iteration started by css_task_iter_start().
0942eeee 2970 */
72ec7029 2971void css_task_iter_end(struct css_task_iter *it)
96d365e0 2972 __releases(css_set_rwsem)
31a7df01 2973{
96d365e0 2974 up_read(&css_set_rwsem);
31a7df01
CW
2975}
2976
2977/**
8cc99345
TH
2978 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2979 * @to: cgroup to which the tasks will be moved
2980 * @from: cgroup in which the tasks currently reside
31a7df01 2981 *
eaf797ab
TH
2982 * Locking rules between cgroup_post_fork() and the migration path
2983 * guarantee that, if a task is forking while being migrated, the new child
2984 * is guaranteed to be either visible in the source cgroup after the
2985 * parent's migration is complete or put into the target cgroup. No task
2986 * can slip out of migration through forking.
31a7df01 2987 */
8cc99345 2988int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 2989{
952aaa12
TH
2990 LIST_HEAD(preloaded_csets);
2991 struct cgrp_cset_link *link;
72ec7029 2992 struct css_task_iter it;
e406d1cf 2993 struct task_struct *task;
952aaa12 2994 int ret;
31a7df01 2995
952aaa12 2996 mutex_lock(&cgroup_mutex);
31a7df01 2997
952aaa12
TH
2998 /* all tasks in @from are being moved, all csets are source */
2999 down_read(&css_set_rwsem);
3000 list_for_each_entry(link, &from->cset_links, cset_link)
3001 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3002 up_read(&css_set_rwsem);
31a7df01 3003
952aaa12
TH
3004 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3005 if (ret)
3006 goto out_err;
8cc99345 3007
952aaa12
TH
3008 /*
3009 * Migrate tasks one-by-one until @form is empty. This fails iff
3010 * ->can_attach() fails.
3011 */
e406d1cf
TH
3012 do {
3013 css_task_iter_start(&from->dummy_css, &it);
3014 task = css_task_iter_next(&it);
3015 if (task)
3016 get_task_struct(task);
3017 css_task_iter_end(&it);
3018
3019 if (task) {
952aaa12 3020 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3021 put_task_struct(task);
3022 }
3023 } while (task && !ret);
952aaa12
TH
3024out_err:
3025 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3026 mutex_unlock(&cgroup_mutex);
e406d1cf 3027 return ret;
8cc99345
TH
3028}
3029
bbcb81d0 3030/*
102a775e 3031 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3032 *
3033 * Reading this file can return large amounts of data if a cgroup has
3034 * *lots* of attached tasks. So it may need several calls to read(),
3035 * but we cannot guarantee that the information we produce is correct
3036 * unless we produce it entirely atomically.
3037 *
bbcb81d0 3038 */
bbcb81d0 3039
24528255
LZ
3040/* which pidlist file are we talking about? */
3041enum cgroup_filetype {
3042 CGROUP_FILE_PROCS,
3043 CGROUP_FILE_TASKS,
3044};
3045
3046/*
3047 * A pidlist is a list of pids that virtually represents the contents of one
3048 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3049 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3050 * to the cgroup.
3051 */
3052struct cgroup_pidlist {
3053 /*
3054 * used to find which pidlist is wanted. doesn't change as long as
3055 * this particular list stays in the list.
3056 */
3057 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3058 /* array of xids */
3059 pid_t *list;
3060 /* how many elements the above list has */
3061 int length;
24528255
LZ
3062 /* each of these stored in a list by its cgroup */
3063 struct list_head links;
3064 /* pointer to the cgroup we belong to, for list removal purposes */
3065 struct cgroup *owner;
b1a21367
TH
3066 /* for delayed destruction */
3067 struct delayed_work destroy_dwork;
24528255
LZ
3068};
3069
d1d9fd33
BB
3070/*
3071 * The following two functions "fix" the issue where there are more pids
3072 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3073 * TODO: replace with a kernel-wide solution to this problem
3074 */
3075#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3076static void *pidlist_allocate(int count)
3077{
3078 if (PIDLIST_TOO_LARGE(count))
3079 return vmalloc(count * sizeof(pid_t));
3080 else
3081 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3082}
b1a21367 3083
d1d9fd33
BB
3084static void pidlist_free(void *p)
3085{
3086 if (is_vmalloc_addr(p))
3087 vfree(p);
3088 else
3089 kfree(p);
3090}
d1d9fd33 3091
b1a21367
TH
3092/*
3093 * Used to destroy all pidlists lingering waiting for destroy timer. None
3094 * should be left afterwards.
3095 */
3096static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3097{
3098 struct cgroup_pidlist *l, *tmp_l;
3099
3100 mutex_lock(&cgrp->pidlist_mutex);
3101 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3102 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3103 mutex_unlock(&cgrp->pidlist_mutex);
3104
3105 flush_workqueue(cgroup_pidlist_destroy_wq);
3106 BUG_ON(!list_empty(&cgrp->pidlists));
3107}
3108
3109static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3110{
3111 struct delayed_work *dwork = to_delayed_work(work);
3112 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3113 destroy_dwork);
3114 struct cgroup_pidlist *tofree = NULL;
3115
3116 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3117
3118 /*
04502365
TH
3119 * Destroy iff we didn't get queued again. The state won't change
3120 * as destroy_dwork can only be queued while locked.
b1a21367 3121 */
04502365 3122 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3123 list_del(&l->links);
3124 pidlist_free(l->list);
3125 put_pid_ns(l->key.ns);
3126 tofree = l;
3127 }
3128
b1a21367
TH
3129 mutex_unlock(&l->owner->pidlist_mutex);
3130 kfree(tofree);
3131}
3132
bbcb81d0 3133/*
102a775e 3134 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3135 * Returns the number of unique elements.
bbcb81d0 3136 */
6ee211ad 3137static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3138{
102a775e 3139 int src, dest = 1;
102a775e
BB
3140
3141 /*
3142 * we presume the 0th element is unique, so i starts at 1. trivial
3143 * edge cases first; no work needs to be done for either
3144 */
3145 if (length == 0 || length == 1)
3146 return length;
3147 /* src and dest walk down the list; dest counts unique elements */
3148 for (src = 1; src < length; src++) {
3149 /* find next unique element */
3150 while (list[src] == list[src-1]) {
3151 src++;
3152 if (src == length)
3153 goto after;
3154 }
3155 /* dest always points to where the next unique element goes */
3156 list[dest] = list[src];
3157 dest++;
3158 }
3159after:
102a775e
BB
3160 return dest;
3161}
3162
afb2bc14
TH
3163/*
3164 * The two pid files - task and cgroup.procs - guaranteed that the result
3165 * is sorted, which forced this whole pidlist fiasco. As pid order is
3166 * different per namespace, each namespace needs differently sorted list,
3167 * making it impossible to use, for example, single rbtree of member tasks
3168 * sorted by task pointer. As pidlists can be fairly large, allocating one
3169 * per open file is dangerous, so cgroup had to implement shared pool of
3170 * pidlists keyed by cgroup and namespace.
3171 *
3172 * All this extra complexity was caused by the original implementation
3173 * committing to an entirely unnecessary property. In the long term, we
3174 * want to do away with it. Explicitly scramble sort order if
3175 * sane_behavior so that no such expectation exists in the new interface.
3176 *
3177 * Scrambling is done by swapping every two consecutive bits, which is
3178 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3179 */
3180static pid_t pid_fry(pid_t pid)
3181{
3182 unsigned a = pid & 0x55555555;
3183 unsigned b = pid & 0xAAAAAAAA;
3184
3185 return (a << 1) | (b >> 1);
3186}
3187
3188static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3189{
3190 if (cgroup_sane_behavior(cgrp))
3191 return pid_fry(pid);
3192 else
3193 return pid;
3194}
3195
102a775e
BB
3196static int cmppid(const void *a, const void *b)
3197{
3198 return *(pid_t *)a - *(pid_t *)b;
3199}
3200
afb2bc14
TH
3201static int fried_cmppid(const void *a, const void *b)
3202{
3203 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3204}
3205
e6b81710
TH
3206static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3207 enum cgroup_filetype type)
3208{
3209 struct cgroup_pidlist *l;
3210 /* don't need task_nsproxy() if we're looking at ourself */
3211 struct pid_namespace *ns = task_active_pid_ns(current);
3212
3213 lockdep_assert_held(&cgrp->pidlist_mutex);
3214
3215 list_for_each_entry(l, &cgrp->pidlists, links)
3216 if (l->key.type == type && l->key.ns == ns)
3217 return l;
3218 return NULL;
3219}
3220
72a8cb30
BB
3221/*
3222 * find the appropriate pidlist for our purpose (given procs vs tasks)
3223 * returns with the lock on that pidlist already held, and takes care
3224 * of the use count, or returns NULL with no locks held if we're out of
3225 * memory.
3226 */
e6b81710
TH
3227static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3228 enum cgroup_filetype type)
72a8cb30
BB
3229{
3230 struct cgroup_pidlist *l;
b70cc5fd 3231
e6b81710
TH
3232 lockdep_assert_held(&cgrp->pidlist_mutex);
3233
3234 l = cgroup_pidlist_find(cgrp, type);
3235 if (l)
3236 return l;
3237
72a8cb30 3238 /* entry not found; create a new one */
f4f4be2b 3239 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3240 if (!l)
72a8cb30 3241 return l;
e6b81710 3242
b1a21367 3243 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3244 l->key.type = type;
e6b81710
TH
3245 /* don't need task_nsproxy() if we're looking at ourself */
3246 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3247 l->owner = cgrp;
3248 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3249 return l;
3250}
3251
102a775e
BB
3252/*
3253 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3254 */
72a8cb30
BB
3255static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3256 struct cgroup_pidlist **lp)
102a775e
BB
3257{
3258 pid_t *array;
3259 int length;
3260 int pid, n = 0; /* used for populating the array */
72ec7029 3261 struct css_task_iter it;
817929ec 3262 struct task_struct *tsk;
102a775e
BB
3263 struct cgroup_pidlist *l;
3264
4bac00d1
TH
3265 lockdep_assert_held(&cgrp->pidlist_mutex);
3266
102a775e
BB
3267 /*
3268 * If cgroup gets more users after we read count, we won't have
3269 * enough space - tough. This race is indistinguishable to the
3270 * caller from the case that the additional cgroup users didn't
3271 * show up until sometime later on.
3272 */
3273 length = cgroup_task_count(cgrp);
d1d9fd33 3274 array = pidlist_allocate(length);
102a775e
BB
3275 if (!array)
3276 return -ENOMEM;
3277 /* now, populate the array */
72ec7029
TH
3278 css_task_iter_start(&cgrp->dummy_css, &it);
3279 while ((tsk = css_task_iter_next(&it))) {
102a775e 3280 if (unlikely(n == length))
817929ec 3281 break;
102a775e 3282 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3283 if (type == CGROUP_FILE_PROCS)
3284 pid = task_tgid_vnr(tsk);
3285 else
3286 pid = task_pid_vnr(tsk);
102a775e
BB
3287 if (pid > 0) /* make sure to only use valid results */
3288 array[n++] = pid;
817929ec 3289 }
72ec7029 3290 css_task_iter_end(&it);
102a775e
BB
3291 length = n;
3292 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3293 if (cgroup_sane_behavior(cgrp))
3294 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3295 else
3296 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3297 if (type == CGROUP_FILE_PROCS)
6ee211ad 3298 length = pidlist_uniq(array, length);
e6b81710 3299
e6b81710 3300 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3301 if (!l) {
e6b81710 3302 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3303 pidlist_free(array);
72a8cb30 3304 return -ENOMEM;
102a775e 3305 }
e6b81710
TH
3306
3307 /* store array, freeing old if necessary */
d1d9fd33 3308 pidlist_free(l->list);
102a775e
BB
3309 l->list = array;
3310 l->length = length;
72a8cb30 3311 *lp = l;
102a775e 3312 return 0;
bbcb81d0
PM
3313}
3314
846c7bb0 3315/**
a043e3b2 3316 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3317 * @stats: cgroupstats to fill information into
3318 * @dentry: A dentry entry belonging to the cgroup for which stats have
3319 * been requested.
a043e3b2
LZ
3320 *
3321 * Build and fill cgroupstats so that taskstats can export it to user
3322 * space.
846c7bb0
BS
3323 */
3324int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3325{
2bd59d48 3326 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3327 struct cgroup *cgrp;
72ec7029 3328 struct css_task_iter it;
846c7bb0 3329 struct task_struct *tsk;
33d283be 3330
2bd59d48
TH
3331 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3332 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3333 kernfs_type(kn) != KERNFS_DIR)
3334 return -EINVAL;
3335
bad34660
LZ
3336 mutex_lock(&cgroup_mutex);
3337
846c7bb0 3338 /*
2bd59d48
TH
3339 * We aren't being called from kernfs and there's no guarantee on
3340 * @kn->priv's validity. For this and css_tryget_from_dir(),
3341 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3342 */
2bd59d48
TH
3343 rcu_read_lock();
3344 cgrp = rcu_dereference(kn->priv);
bad34660 3345 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3346 rcu_read_unlock();
bad34660 3347 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3348 return -ENOENT;
3349 }
bad34660 3350 rcu_read_unlock();
846c7bb0 3351
72ec7029
TH
3352 css_task_iter_start(&cgrp->dummy_css, &it);
3353 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3354 switch (tsk->state) {
3355 case TASK_RUNNING:
3356 stats->nr_running++;
3357 break;
3358 case TASK_INTERRUPTIBLE:
3359 stats->nr_sleeping++;
3360 break;
3361 case TASK_UNINTERRUPTIBLE:
3362 stats->nr_uninterruptible++;
3363 break;
3364 case TASK_STOPPED:
3365 stats->nr_stopped++;
3366 break;
3367 default:
3368 if (delayacct_is_task_waiting_on_io(tsk))
3369 stats->nr_io_wait++;
3370 break;
3371 }
3372 }
72ec7029 3373 css_task_iter_end(&it);
846c7bb0 3374
bad34660 3375 mutex_unlock(&cgroup_mutex);
2bd59d48 3376 return 0;
846c7bb0
BS
3377}
3378
8f3ff208 3379
bbcb81d0 3380/*
102a775e 3381 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3382 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3383 * in the cgroup->l->list array.
bbcb81d0 3384 */
cc31edce 3385
102a775e 3386static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3387{
cc31edce
PM
3388 /*
3389 * Initially we receive a position value that corresponds to
3390 * one more than the last pid shown (or 0 on the first call or
3391 * after a seek to the start). Use a binary-search to find the
3392 * next pid to display, if any
3393 */
2bd59d48 3394 struct kernfs_open_file *of = s->private;
7da11279 3395 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3396 struct cgroup_pidlist *l;
7da11279 3397 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3398 int index = 0, pid = *pos;
4bac00d1
TH
3399 int *iter, ret;
3400
3401 mutex_lock(&cgrp->pidlist_mutex);
3402
3403 /*
5d22444f 3404 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3405 * after open. If the matching pidlist is around, we can use that.
5d22444f 3406 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3407 * could already have been destroyed.
3408 */
5d22444f
TH
3409 if (of->priv)
3410 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3411
3412 /*
3413 * Either this is the first start() after open or the matching
3414 * pidlist has been destroyed inbetween. Create a new one.
3415 */
5d22444f
TH
3416 if (!of->priv) {
3417 ret = pidlist_array_load(cgrp, type,
3418 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3419 if (ret)
3420 return ERR_PTR(ret);
3421 }
5d22444f 3422 l = of->priv;
cc31edce 3423
cc31edce 3424 if (pid) {
102a775e 3425 int end = l->length;
20777766 3426
cc31edce
PM
3427 while (index < end) {
3428 int mid = (index + end) / 2;
afb2bc14 3429 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3430 index = mid;
3431 break;
afb2bc14 3432 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3433 index = mid + 1;
3434 else
3435 end = mid;
3436 }
3437 }
3438 /* If we're off the end of the array, we're done */
102a775e 3439 if (index >= l->length)
cc31edce
PM
3440 return NULL;
3441 /* Update the abstract position to be the actual pid that we found */
102a775e 3442 iter = l->list + index;
afb2bc14 3443 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3444 return iter;
3445}
3446
102a775e 3447static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3448{
2bd59d48 3449 struct kernfs_open_file *of = s->private;
5d22444f 3450 struct cgroup_pidlist *l = of->priv;
62236858 3451
5d22444f
TH
3452 if (l)
3453 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3454 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3455 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3456}
3457
102a775e 3458static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3459{
2bd59d48 3460 struct kernfs_open_file *of = s->private;
5d22444f 3461 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3462 pid_t *p = v;
3463 pid_t *end = l->list + l->length;
cc31edce
PM
3464 /*
3465 * Advance to the next pid in the array. If this goes off the
3466 * end, we're done
3467 */
3468 p++;
3469 if (p >= end) {
3470 return NULL;
3471 } else {
7da11279 3472 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3473 return p;
3474 }
3475}
3476
102a775e 3477static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3478{
3479 return seq_printf(s, "%d\n", *(int *)v);
3480}
bbcb81d0 3481
102a775e
BB
3482/*
3483 * seq_operations functions for iterating on pidlists through seq_file -
3484 * independent of whether it's tasks or procs
3485 */
3486static const struct seq_operations cgroup_pidlist_seq_operations = {
3487 .start = cgroup_pidlist_start,
3488 .stop = cgroup_pidlist_stop,
3489 .next = cgroup_pidlist_next,
3490 .show = cgroup_pidlist_show,
cc31edce
PM
3491};
3492
182446d0
TH
3493static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3494 struct cftype *cft)
81a6a5cd 3495{
182446d0 3496 return notify_on_release(css->cgroup);
81a6a5cd
PM
3497}
3498
182446d0
TH
3499static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3500 struct cftype *cft, u64 val)
6379c106 3501{
182446d0 3502 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3503 if (val)
182446d0 3504 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3505 else
182446d0 3506 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3507 return 0;
3508}
3509
182446d0
TH
3510static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3511 struct cftype *cft)
97978e6d 3512{
182446d0 3513 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3514}
3515
182446d0
TH
3516static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3517 struct cftype *cft, u64 val)
97978e6d
DL
3518{
3519 if (val)
182446d0 3520 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3521 else
182446d0 3522 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3523 return 0;
3524}
3525
d5c56ced 3526static struct cftype cgroup_base_files[] = {
81a6a5cd 3527 {
d5c56ced 3528 .name = "cgroup.procs",
6612f05b
TH
3529 .seq_start = cgroup_pidlist_start,
3530 .seq_next = cgroup_pidlist_next,
3531 .seq_stop = cgroup_pidlist_stop,
3532 .seq_show = cgroup_pidlist_show,
5d22444f 3533 .private = CGROUP_FILE_PROCS,
74a1166d 3534 .write_u64 = cgroup_procs_write,
74a1166d 3535 .mode = S_IRUGO | S_IWUSR,
102a775e 3536 },
97978e6d
DL
3537 {
3538 .name = "cgroup.clone_children",
873fe09e 3539 .flags = CFTYPE_INSANE,
97978e6d
DL
3540 .read_u64 = cgroup_clone_children_read,
3541 .write_u64 = cgroup_clone_children_write,
3542 },
873fe09e
TH
3543 {
3544 .name = "cgroup.sane_behavior",
3545 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3546 .seq_show = cgroup_sane_behavior_show,
873fe09e 3547 },
d5c56ced
TH
3548
3549 /*
3550 * Historical crazy stuff. These don't have "cgroup." prefix and
3551 * don't exist if sane_behavior. If you're depending on these, be
3552 * prepared to be burned.
3553 */
3554 {
3555 .name = "tasks",
3556 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3557 .seq_start = cgroup_pidlist_start,
3558 .seq_next = cgroup_pidlist_next,
3559 .seq_stop = cgroup_pidlist_stop,
3560 .seq_show = cgroup_pidlist_show,
5d22444f 3561 .private = CGROUP_FILE_TASKS,
d5c56ced 3562 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3563 .mode = S_IRUGO | S_IWUSR,
3564 },
3565 {
3566 .name = "notify_on_release",
3567 .flags = CFTYPE_INSANE,
3568 .read_u64 = cgroup_read_notify_on_release,
3569 .write_u64 = cgroup_write_notify_on_release,
3570 },
6e6ff25b
TH
3571 {
3572 .name = "release_agent",
cc5943a7 3573 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3574 .seq_show = cgroup_release_agent_show,
6e6ff25b 3575 .write_string = cgroup_release_agent_write,
5f469907 3576 .max_write_len = PATH_MAX - 1,
6e6ff25b 3577 },
db0416b6 3578 { } /* terminate */
bbcb81d0
PM
3579};
3580
13af07df 3581/**
628f7cd4 3582 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3583 * @cgrp: target cgroup
13af07df 3584 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3585 *
3586 * On failure, no file is added.
13af07df 3587 */
628f7cd4 3588static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3589{
ddbcc7e8 3590 struct cgroup_subsys *ss;
b420ba7d 3591 int i, ret = 0;
bbcb81d0 3592
8e3f6541 3593 /* process cftsets of each subsystem */
b420ba7d 3594 for_each_subsys(ss, i) {
0adb0704 3595 struct cftype *cfts;
b420ba7d
TH
3596
3597 if (!test_bit(i, &subsys_mask))
13af07df 3598 continue;
8e3f6541 3599
0adb0704
TH
3600 list_for_each_entry(cfts, &ss->cfts, node) {
3601 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3602 if (ret < 0)
3603 goto err;
3604 }
ddbcc7e8 3605 }
ddbcc7e8 3606 return 0;
bee55099
TH
3607err:
3608 cgroup_clear_dir(cgrp, subsys_mask);
3609 return ret;
ddbcc7e8
PM
3610}
3611
0c21ead1
TH
3612/*
3613 * css destruction is four-stage process.
3614 *
3615 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3616 * Implemented in kill_css().
3617 *
3618 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3619 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3620 * by invoking offline_css(). After offlining, the base ref is put.
3621 * Implemented in css_killed_work_fn().
3622 *
3623 * 3. When the percpu_ref reaches zero, the only possible remaining
3624 * accessors are inside RCU read sections. css_release() schedules the
3625 * RCU callback.
3626 *
3627 * 4. After the grace period, the css can be freed. Implemented in
3628 * css_free_work_fn().
3629 *
3630 * It is actually hairier because both step 2 and 4 require process context
3631 * and thus involve punting to css->destroy_work adding two additional
3632 * steps to the already complex sequence.
3633 */
35ef10da 3634static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3635{
3636 struct cgroup_subsys_state *css =
35ef10da 3637 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3638 struct cgroup *cgrp = css->cgroup;
48ddbe19 3639
0ae78e0b
TH
3640 if (css->parent)
3641 css_put(css->parent);
3642
0c21ead1 3643 css->ss->css_free(css);
2bd59d48 3644 cgroup_put(cgrp);
48ddbe19
TH
3645}
3646
0c21ead1 3647static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3648{
3649 struct cgroup_subsys_state *css =
0c21ead1 3650 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3651
35ef10da 3652 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3653 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3654}
3655
d3daf28d
TH
3656static void css_release(struct percpu_ref *ref)
3657{
3658 struct cgroup_subsys_state *css =
3659 container_of(ref, struct cgroup_subsys_state, refcnt);
3660
01a97140 3661 RCU_INIT_POINTER(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3662 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3663}
3664
623f926b
TH
3665static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3666 struct cgroup *cgrp)
ddbcc7e8 3667{
bd89aabc 3668 css->cgroup = cgrp;
72c97e54 3669 css->ss = ss;
ddbcc7e8 3670 css->flags = 0;
0ae78e0b
TH
3671
3672 if (cgrp->parent)
ca8bdcaf 3673 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3674 else
38b53aba 3675 css->flags |= CSS_ROOT;
48ddbe19 3676
ca8bdcaf 3677 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3678}
3679
2a4ac633 3680/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3681static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3682{
623f926b 3683 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3684 int ret = 0;
3685
ace2bee8 3686 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3687 lockdep_assert_held(&cgroup_mutex);
3688
92fb9748 3689 if (ss->css_online)
eb95419b 3690 ret = ss->css_online(css);
ae7f164a 3691 if (!ret) {
eb95419b 3692 css->flags |= CSS_ONLINE;
f20104de 3693 css->cgroup->nr_css++;
aec25020 3694 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3695 }
b1929db4 3696 return ret;
a31f2d3f
TH
3697}
3698
2a4ac633 3699/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3700static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3701{
623f926b 3702 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3703
ace2bee8 3704 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3705 lockdep_assert_held(&cgroup_mutex);
3706
3707 if (!(css->flags & CSS_ONLINE))
3708 return;
3709
d7eeac19 3710 if (ss->css_offline)
eb95419b 3711 ss->css_offline(css);
a31f2d3f 3712
eb95419b 3713 css->flags &= ~CSS_ONLINE;
09a503ea 3714 css->cgroup->nr_css--;
e3297803 3715 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
a31f2d3f
TH
3716}
3717
c81c925a
TH
3718/**
3719 * create_css - create a cgroup_subsys_state
3720 * @cgrp: the cgroup new css will be associated with
3721 * @ss: the subsys of new css
3722 *
3723 * Create a new css associated with @cgrp - @ss pair. On success, the new
3724 * css is online and installed in @cgrp with all interface files created.
3725 * Returns 0 on success, -errno on failure.
3726 */
3727static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3728{
3729 struct cgroup *parent = cgrp->parent;
3730 struct cgroup_subsys_state *css;
3731 int err;
3732
c81c925a
TH
3733 lockdep_assert_held(&cgroup_mutex);
3734
3735 css = ss->css_alloc(cgroup_css(parent, ss));
3736 if (IS_ERR(css))
3737 return PTR_ERR(css);
3738
3739 err = percpu_ref_init(&css->refcnt, css_release);
3740 if (err)
3eb59ec6 3741 goto err_free_css;
c81c925a
TH
3742
3743 init_css(css, ss, cgrp);
3744
aec25020 3745 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 3746 if (err)
3eb59ec6 3747 goto err_free_percpu_ref;
c81c925a
TH
3748
3749 err = online_css(css);
3750 if (err)
3eb59ec6 3751 goto err_clear_dir;
c81c925a 3752
59f5296b 3753 cgroup_get(cgrp);
c81c925a
TH
3754 css_get(css->parent);
3755
3756 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3757 parent->parent) {
3758 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3759 current->comm, current->pid, ss->name);
3760 if (!strcmp(ss->name, "memory"))
3761 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3762 ss->warned_broken_hierarchy = true;
3763 }
3764
3765 return 0;
3766
3eb59ec6 3767err_clear_dir:
32d01dc7 3768 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3eb59ec6 3769err_free_percpu_ref:
c81c925a 3770 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 3771err_free_css:
c81c925a
TH
3772 ss->css_free(css);
3773 return err;
3774}
3775
2bd59d48 3776/**
a043e3b2
LZ
3777 * cgroup_create - create a cgroup
3778 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3779 * @name: name of the new cgroup
2bd59d48 3780 * @mode: mode to set on new cgroup
ddbcc7e8 3781 */
e61734c5 3782static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3783 umode_t mode)
ddbcc7e8 3784{
bd89aabc 3785 struct cgroup *cgrp;
3dd06ffa 3786 struct cgroup_root *root = parent->root;
b58c8998 3787 int ssid, err;
ddbcc7e8 3788 struct cgroup_subsys *ss;
2bd59d48 3789 struct kernfs_node *kn;
ddbcc7e8 3790
0a950f65 3791 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3792 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3793 if (!cgrp)
ddbcc7e8
PM
3794 return -ENOMEM;
3795
ace2bee8 3796 mutex_lock(&cgroup_tree_mutex);
65dff759 3797
976c06bc
TH
3798 /*
3799 * Only live parents can have children. Note that the liveliness
3800 * check isn't strictly necessary because cgroup_mkdir() and
3801 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3802 * anyway so that locking is contained inside cgroup proper and we
3803 * don't get nasty surprises if we ever grow another caller.
3804 */
3805 if (!cgroup_lock_live_group(parent)) {
3806 err = -ENODEV;
ace2bee8 3807 goto err_unlock_tree;
0ab02ca8
LZ
3808 }
3809
3810 /*
3811 * Temporarily set the pointer to NULL, so idr_find() won't return
3812 * a half-baked cgroup.
3813 */
3814 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3815 if (cgrp->id < 0) {
3816 err = -ENOMEM;
3817 goto err_unlock;
976c06bc
TH
3818 }
3819
cc31edce 3820 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3821
bd89aabc 3822 cgrp->parent = parent;
0ae78e0b 3823 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3824 cgrp->root = parent->root;
ddbcc7e8 3825
b6abdb0e
LZ
3826 if (notify_on_release(parent))
3827 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3828
2260e7fc
TH
3829 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3830 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3831
2bd59d48 3832 /* create the directory */
e61734c5 3833 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3834 if (IS_ERR(kn)) {
3835 err = PTR_ERR(kn);
0ab02ca8 3836 goto err_free_id;
2bd59d48
TH
3837 }
3838 cgrp->kn = kn;
ddbcc7e8 3839
4e139afc 3840 /*
6f30558f
TH
3841 * This extra ref will be put in cgroup_free_fn() and guarantees
3842 * that @cgrp->kn is always accessible.
4e139afc 3843 */
6f30558f 3844 kernfs_get(kn);
ddbcc7e8 3845
00356bd5 3846 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3847
4e139afc 3848 /* allocation complete, commit to creation */
4e139afc 3849 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3850 atomic_inc(&root->nr_cgrps);
59f5296b 3851 cgroup_get(parent);
415cf07a 3852
0d80255e
TH
3853 /*
3854 * @cgrp is now fully operational. If something fails after this
3855 * point, it'll be released via the normal destruction path.
3856 */
4e96ee8e
LZ
3857 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3858
49957f8e
TH
3859 err = cgroup_kn_set_ugid(kn);
3860 if (err)
3861 goto err_destroy;
3862
2bb566cb 3863 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3864 if (err)
3865 goto err_destroy;
3866
9d403e99 3867 /* let's create and online css's */
b85d2040 3868 for_each_subsys(ss, ssid) {
f392e51c 3869 if (parent->child_subsys_mask & (1 << ssid)) {
b85d2040
TH
3870 err = create_css(cgrp, ss);
3871 if (err)
3872 goto err_destroy;
3873 }
a8638030 3874 }
ddbcc7e8 3875
bd53d617
TH
3876 /*
3877 * On the default hierarchy, a child doesn't automatically inherit
3878 * child_subsys_mask from the parent. Each is configured manually.
3879 */
3880 if (!cgroup_on_dfl(cgrp))
3881 cgrp->child_subsys_mask = parent->child_subsys_mask;
f392e51c 3882
2bd59d48
TH
3883 kernfs_activate(kn);
3884
ddbcc7e8 3885 mutex_unlock(&cgroup_mutex);
ace2bee8 3886 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3887
3888 return 0;
3889
0a950f65 3890err_free_id:
4e96ee8e 3891 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3892err_unlock:
3893 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3894err_unlock_tree:
3895 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3896 kfree(cgrp);
ddbcc7e8 3897 return err;
4b8b47eb
TH
3898
3899err_destroy:
3900 cgroup_destroy_locked(cgrp);
3901 mutex_unlock(&cgroup_mutex);
ace2bee8 3902 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3903 return err;
ddbcc7e8
PM
3904}
3905
2bd59d48
TH
3906static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3907 umode_t mode)
ddbcc7e8 3908{
2bd59d48 3909 struct cgroup *parent = parent_kn->priv;
e1b2dc17 3910 int ret;
ddbcc7e8 3911
e1b2dc17
TH
3912 /*
3913 * cgroup_create() grabs cgroup_tree_mutex which nests outside
3914 * kernfs active_ref and cgroup_create() already synchronizes
3915 * properly against removal through cgroup_lock_live_group().
3916 * Break it before calling cgroup_create().
3917 */
3918 cgroup_get(parent);
3919 kernfs_break_active_protection(parent_kn);
ddbcc7e8 3920
e1b2dc17
TH
3921 ret = cgroup_create(parent, name, mode);
3922
3923 kernfs_unbreak_active_protection(parent_kn);
3924 cgroup_put(parent);
3925 return ret;
ddbcc7e8
PM
3926}
3927
223dbc38
TH
3928/*
3929 * This is called when the refcnt of a css is confirmed to be killed.
3930 * css_tryget() is now guaranteed to fail.
3931 */
3932static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3933{
223dbc38
TH
3934 struct cgroup_subsys_state *css =
3935 container_of(work, struct cgroup_subsys_state, destroy_work);
3936 struct cgroup *cgrp = css->cgroup;
d3daf28d 3937
ace2bee8 3938 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3939 mutex_lock(&cgroup_mutex);
3940
09a503ea
TH
3941 /*
3942 * css_tryget() is guaranteed to fail now. Tell subsystems to
3943 * initate destruction.
3944 */
3945 offline_css(css);
3946
f20104de
TH
3947 /*
3948 * If @cgrp is marked dead, it's waiting for refs of all css's to
3949 * be disabled before proceeding to the second phase of cgroup
3950 * destruction. If we are the last one, kick it off.
3951 */
09a503ea 3952 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3953 cgroup_destroy_css_killed(cgrp);
3954
3955 mutex_unlock(&cgroup_mutex);
ace2bee8 3956 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3957
3958 /*
3959 * Put the css refs from kill_css(). Each css holds an extra
3960 * reference to the cgroup's dentry and cgroup removal proceeds
3961 * regardless of css refs. On the last put of each css, whenever
3962 * that may be, the extra dentry ref is put so that dentry
3963 * destruction happens only after all css's are released.
3964 */
3965 css_put(css);
d3daf28d
TH
3966}
3967
223dbc38
TH
3968/* css kill confirmation processing requires process context, bounce */
3969static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3970{
3971 struct cgroup_subsys_state *css =
3972 container_of(ref, struct cgroup_subsys_state, refcnt);
3973
223dbc38 3974 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3975 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3976}
3977
f392e51c
TH
3978/**
3979 * kill_css - destroy a css
3980 * @css: css to destroy
3981 *
3982 * This function initiates destruction of @css by removing cgroup interface
3983 * files and putting its base reference. ->css_offline() will be invoked
3984 * asynchronously once css_tryget() is guaranteed to fail and when the
3985 * reference count reaches zero, @css will be released.
3986 */
3987static void kill_css(struct cgroup_subsys_state *css)
edae0c33 3988{
94419627
TH
3989 lockdep_assert_held(&cgroup_tree_mutex);
3990
2bd59d48
TH
3991 /*
3992 * This must happen before css is disassociated with its cgroup.
3993 * See seq_css() for details.
3994 */
aec25020 3995 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3996
edae0c33
TH
3997 /*
3998 * Killing would put the base ref, but we need to keep it alive
3999 * until after ->css_offline().
4000 */
4001 css_get(css);
4002
4003 /*
4004 * cgroup core guarantees that, by the time ->css_offline() is
4005 * invoked, no new css reference will be given out via
4006 * css_tryget(). We can't simply call percpu_ref_kill() and
4007 * proceed to offlining css's because percpu_ref_kill() doesn't
4008 * guarantee that the ref is seen as killed on all CPUs on return.
4009 *
4010 * Use percpu_ref_kill_and_confirm() to get notifications as each
4011 * css is confirmed to be seen as killed on all CPUs.
4012 */
4013 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4014}
4015
4016/**
4017 * cgroup_destroy_locked - the first stage of cgroup destruction
4018 * @cgrp: cgroup to be destroyed
4019 *
4020 * css's make use of percpu refcnts whose killing latency shouldn't be
4021 * exposed to userland and are RCU protected. Also, cgroup core needs to
4022 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4023 * invoked. To satisfy all the requirements, destruction is implemented in
4024 * the following two steps.
4025 *
4026 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4027 * userland visible parts and start killing the percpu refcnts of
4028 * css's. Set up so that the next stage will be kicked off once all
4029 * the percpu refcnts are confirmed to be killed.
4030 *
4031 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4032 * rest of destruction. Once all cgroup references are gone, the
4033 * cgroup is RCU-freed.
4034 *
4035 * This function implements s1. After this step, @cgrp is gone as far as
4036 * the userland is concerned and a new cgroup with the same name may be
4037 * created. As cgroup doesn't care about the names internally, this
4038 * doesn't cause any problem.
4039 */
42809dd4
TH
4040static int cgroup_destroy_locked(struct cgroup *cgrp)
4041 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4042{
bb78a92f 4043 struct cgroup *child;
2bd59d48 4044 struct cgroup_subsys_state *css;
ddd69148 4045 bool empty;
1c6727af 4046 int ssid;
ddbcc7e8 4047
ace2bee8 4048 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
4049 lockdep_assert_held(&cgroup_mutex);
4050
ddd69148 4051 /*
96d365e0 4052 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4053 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4054 */
96d365e0 4055 down_read(&css_set_rwsem);
bb78a92f 4056 empty = list_empty(&cgrp->cset_links);
96d365e0 4057 up_read(&css_set_rwsem);
ddd69148 4058 if (!empty)
ddbcc7e8 4059 return -EBUSY;
a043e3b2 4060
bb78a92f
HD
4061 /*
4062 * Make sure there's no live children. We can't test ->children
4063 * emptiness as dead children linger on it while being destroyed;
4064 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4065 */
4066 empty = true;
4067 rcu_read_lock();
4068 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4069 empty = cgroup_is_dead(child);
4070 if (!empty)
4071 break;
4072 }
4073 rcu_read_unlock();
4074 if (!empty)
4075 return -EBUSY;
4076
455050d2
TH
4077 /*
4078 * Mark @cgrp dead. This prevents further task migration and child
4079 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4080 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4081 * resume iteration after dropping RCU read lock. See
492eb21b 4082 * css_next_child() for details.
455050d2 4083 */
54766d4a 4084 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4085
88703267 4086 /*
edae0c33
TH
4087 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4088 * will be invoked to perform the rest of destruction once the
4ac06017
TH
4089 * percpu refs of all css's are confirmed to be killed. This
4090 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 4091 */
4ac06017 4092 mutex_unlock(&cgroup_mutex);
1c6727af
TH
4093 for_each_css(css, ssid, cgrp)
4094 kill_css(css);
4ac06017 4095 mutex_lock(&cgroup_mutex);
455050d2 4096
455050d2
TH
4097 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4098 raw_spin_lock(&release_list_lock);
4099 if (!list_empty(&cgrp->release_list))
4100 list_del_init(&cgrp->release_list);
4101 raw_spin_unlock(&release_list_lock);
4102
4103 /*
f20104de
TH
4104 * If @cgrp has css's attached, the second stage of cgroup
4105 * destruction is kicked off from css_killed_work_fn() after the
4106 * refs of all attached css's are killed. If @cgrp doesn't have
4107 * any css, we kick it off here.
4108 */
4109 if (!cgrp->nr_css)
4110 cgroup_destroy_css_killed(cgrp);
4111
2bd59d48
TH
4112 /* remove @cgrp directory along with the base files */
4113 mutex_unlock(&cgroup_mutex);
4114
455050d2 4115 /*
2bd59d48
TH
4116 * There are two control paths which try to determine cgroup from
4117 * dentry without going through kernfs - cgroupstats_build() and
4118 * css_tryget_from_dir(). Those are supported by RCU protecting
4119 * clearing of cgrp->kn->priv backpointer, which should happen
4120 * after all files under it have been removed.
455050d2 4121 */
6f30558f 4122 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 4123 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 4124
4ac06017 4125 mutex_lock(&cgroup_mutex);
455050d2 4126
ea15f8cc
TH
4127 return 0;
4128};
4129
d3daf28d 4130/**
f20104de 4131 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4132 * @work: cgroup->destroy_free_work
4133 *
4134 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4135 * destroyed after all css's are offlined and performs the rest of
4136 * destruction. This is the second step of destruction described in the
4137 * comment above cgroup_destroy_locked().
d3daf28d 4138 */
f20104de 4139static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4140{
ea15f8cc 4141 struct cgroup *parent = cgrp->parent;
ea15f8cc 4142
ace2bee8 4143 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 4144 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4145
999cd8a4 4146 /* delete this cgroup from parent->children */
eb6fd504 4147 list_del_rcu(&cgrp->sibling);
ed957793 4148
59f5296b 4149 cgroup_put(cgrp);
ddbcc7e8 4150
bd89aabc 4151 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4152 check_for_release(parent);
ddbcc7e8
PM
4153}
4154
2bd59d48 4155static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4156{
2bd59d48
TH
4157 struct cgroup *cgrp = kn->priv;
4158 int ret = 0;
42809dd4 4159
2bd59d48
TH
4160 /*
4161 * This is self-destruction but @kn can't be removed while this
4162 * callback is in progress. Let's break active protection. Once
4163 * the protection is broken, @cgrp can be destroyed at any point.
4164 * Pin it so that it stays accessible.
4165 */
4166 cgroup_get(cgrp);
4167 kernfs_break_active_protection(kn);
42809dd4 4168
ace2bee8 4169 mutex_lock(&cgroup_tree_mutex);
42809dd4 4170 mutex_lock(&cgroup_mutex);
8e3f6541
TH
4171
4172 /*
2bd59d48
TH
4173 * @cgrp might already have been destroyed while we're trying to
4174 * grab the mutexes.
8e3f6541 4175 */
2bd59d48
TH
4176 if (!cgroup_is_dead(cgrp))
4177 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4178
42809dd4 4179 mutex_unlock(&cgroup_mutex);
ace2bee8 4180 mutex_unlock(&cgroup_tree_mutex);
2bb566cb 4181
2bd59d48
TH
4182 kernfs_unbreak_active_protection(kn);
4183 cgroup_put(cgrp);
42809dd4 4184 return ret;
8e3f6541
TH
4185}
4186
2bd59d48
TH
4187static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4188 .remount_fs = cgroup_remount,
4189 .show_options = cgroup_show_options,
4190 .mkdir = cgroup_mkdir,
4191 .rmdir = cgroup_rmdir,
4192 .rename = cgroup_rename,
4193};
4194
06a11920 4195static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4196{
ddbcc7e8 4197 struct cgroup_subsys_state *css;
cfe36bde
DC
4198
4199 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4200
ace2bee8 4201 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4202 mutex_lock(&cgroup_mutex);
4203
0adb0704 4204 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4205
3dd06ffa
TH
4206 /* Create the root cgroup state for this subsystem */
4207 ss->root = &cgrp_dfl_root;
4208 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4209 /* We don't handle early failures gracefully */
4210 BUG_ON(IS_ERR(css));
3dd06ffa 4211 init_css(css, ss, &cgrp_dfl_root.cgrp);
ddbcc7e8 4212
e8d55fde 4213 /* Update the init_css_set to contain a subsys
817929ec 4214 * pointer to this state - since the subsystem is
e8d55fde 4215 * newly registered, all tasks and hence the
3dd06ffa 4216 * init_css_set is in the subsystem's root cgroup. */
aec25020 4217 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4218
4219 need_forkexit_callback |= ss->fork || ss->exit;
4220
e8d55fde
LZ
4221 /* At system boot, before all subsystems have been
4222 * registered, no tasks have been forked, so we don't
4223 * need to invoke fork callbacks here. */
4224 BUG_ON(!list_empty(&init_task.tasks));
4225
ae7f164a 4226 BUG_ON(online_css(css));
a8638030 4227
f392e51c 4228 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
cf5d5941
BB
4229
4230 mutex_unlock(&cgroup_mutex);
ace2bee8 4231 mutex_unlock(&cgroup_tree_mutex);
cf5d5941 4232}
cf5d5941 4233
ddbcc7e8 4234/**
a043e3b2
LZ
4235 * cgroup_init_early - cgroup initialization at system boot
4236 *
4237 * Initialize cgroups at system boot, and initialize any
4238 * subsystems that request early init.
ddbcc7e8
PM
4239 */
4240int __init cgroup_init_early(void)
4241{
a2dd4247
TH
4242 static struct cgroup_sb_opts __initdata opts =
4243 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4244 struct cgroup_subsys *ss;
ddbcc7e8 4245 int i;
30159ec7 4246
3dd06ffa 4247 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4248 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4249
3ed80a62 4250 for_each_subsys(ss, i) {
aec25020 4251 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4252 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4253 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4254 ss->id, ss->name);
073219e9
TH
4255 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4256 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4257
aec25020 4258 ss->id = i;
073219e9 4259 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4260
4261 if (ss->early_init)
4262 cgroup_init_subsys(ss);
4263 }
4264 return 0;
4265}
4266
4267/**
a043e3b2
LZ
4268 * cgroup_init - cgroup initialization
4269 *
4270 * Register cgroup filesystem and /proc file, and initialize
4271 * any subsystems that didn't request early init.
ddbcc7e8
PM
4272 */
4273int __init cgroup_init(void)
4274{
30159ec7 4275 struct cgroup_subsys *ss;
0ac801fe 4276 unsigned long key;
172a2c06 4277 int ssid, err;
ddbcc7e8 4278
2bd59d48 4279 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4280
985ed670 4281 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4282 mutex_lock(&cgroup_mutex);
54e7b4eb 4283
82fe9b0d
TH
4284 /* Add init_css_set to the hash table */
4285 key = css_set_hash(init_css_set.subsys);
4286 hash_add(css_set_table, &init_css_set.hlist, key);
4287
3dd06ffa 4288 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4289
54e7b4eb 4290 mutex_unlock(&cgroup_mutex);
985ed670 4291 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4292
172a2c06
TH
4293 for_each_subsys(ss, ssid) {
4294 if (!ss->early_init)
4295 cgroup_init_subsys(ss);
4296
2d8f243a
TH
4297 list_add_tail(&init_css_set.e_cset_node[ssid],
4298 &cgrp_dfl_root.cgrp.e_csets[ssid]);
4299
172a2c06
TH
4300 /*
4301 * cftype registration needs kmalloc and can't be done
4302 * during early_init. Register base cftypes separately.
4303 */
4304 if (ss->base_cftypes)
4305 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
676db4af
GK
4306 }
4307
676db4af 4308 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4309 if (!cgroup_kobj)
4310 return -ENOMEM;
676db4af 4311
ddbcc7e8 4312 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4313 if (err < 0) {
4314 kobject_put(cgroup_kobj);
2bd59d48 4315 return err;
676db4af 4316 }
ddbcc7e8 4317
46ae220b 4318 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4319 return 0;
ddbcc7e8 4320}
b4f48b63 4321
e5fca243
TH
4322static int __init cgroup_wq_init(void)
4323{
4324 /*
4325 * There isn't much point in executing destruction path in
4326 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4327 * Use 1 for @max_active.
e5fca243
TH
4328 *
4329 * We would prefer to do this in cgroup_init() above, but that
4330 * is called before init_workqueues(): so leave this until after.
4331 */
1a11533f 4332 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4333 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4334
4335 /*
4336 * Used to destroy pidlists and separate to serve as flush domain.
4337 * Cap @max_active to 1 too.
4338 */
4339 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4340 0, 1);
4341 BUG_ON(!cgroup_pidlist_destroy_wq);
4342
e5fca243
TH
4343 return 0;
4344}
4345core_initcall(cgroup_wq_init);
4346
a424316c
PM
4347/*
4348 * proc_cgroup_show()
4349 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4350 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4351 */
4352
4353/* TODO: Use a proper seq_file iterator */
8d8b97ba 4354int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4355{
4356 struct pid *pid;
4357 struct task_struct *tsk;
e61734c5 4358 char *buf, *path;
a424316c 4359 int retval;
3dd06ffa 4360 struct cgroup_root *root;
a424316c
PM
4361
4362 retval = -ENOMEM;
e61734c5 4363 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4364 if (!buf)
4365 goto out;
4366
4367 retval = -ESRCH;
4368 pid = m->private;
4369 tsk = get_pid_task(pid, PIDTYPE_PID);
4370 if (!tsk)
4371 goto out_free;
4372
4373 retval = 0;
4374
4375 mutex_lock(&cgroup_mutex);
96d365e0 4376 down_read(&css_set_rwsem);
a424316c 4377
985ed670 4378 for_each_root(root) {
a424316c 4379 struct cgroup_subsys *ss;
bd89aabc 4380 struct cgroup *cgrp;
b85d2040 4381 int ssid, count = 0;
a424316c 4382
a2dd4247 4383 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4384 continue;
4385
2c6ab6d2 4386 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4387 for_each_subsys(ss, ssid)
f392e51c 4388 if (root->subsys_mask & (1 << ssid))
b85d2040 4389 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4390 if (strlen(root->name))
4391 seq_printf(m, "%sname=%s", count ? "," : "",
4392 root->name);
a424316c 4393 seq_putc(m, ':');
7717f7ba 4394 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4395 path = cgroup_path(cgrp, buf, PATH_MAX);
4396 if (!path) {
4397 retval = -ENAMETOOLONG;
a424316c 4398 goto out_unlock;
e61734c5
TH
4399 }
4400 seq_puts(m, path);
a424316c
PM
4401 seq_putc(m, '\n');
4402 }
4403
4404out_unlock:
96d365e0 4405 up_read(&css_set_rwsem);
a424316c
PM
4406 mutex_unlock(&cgroup_mutex);
4407 put_task_struct(tsk);
4408out_free:
4409 kfree(buf);
4410out:
4411 return retval;
4412}
4413
a424316c
PM
4414/* Display information about each subsystem and each hierarchy */
4415static int proc_cgroupstats_show(struct seq_file *m, void *v)
4416{
30159ec7 4417 struct cgroup_subsys *ss;
a424316c 4418 int i;
a424316c 4419
8bab8dde 4420 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4421 /*
4422 * ideally we don't want subsystems moving around while we do this.
4423 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4424 * subsys/hierarchy state.
4425 */
a424316c 4426 mutex_lock(&cgroup_mutex);
30159ec7
TH
4427
4428 for_each_subsys(ss, i)
2c6ab6d2
PM
4429 seq_printf(m, "%s\t%d\t%d\t%d\n",
4430 ss->name, ss->root->hierarchy_id,
3c9c825b 4431 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4432
a424316c
PM
4433 mutex_unlock(&cgroup_mutex);
4434 return 0;
4435}
4436
4437static int cgroupstats_open(struct inode *inode, struct file *file)
4438{
9dce07f1 4439 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4440}
4441
828c0950 4442static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4443 .open = cgroupstats_open,
4444 .read = seq_read,
4445 .llseek = seq_lseek,
4446 .release = single_release,
4447};
4448
b4f48b63 4449/**
eaf797ab 4450 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4451 * @child: pointer to task_struct of forking parent process.
b4f48b63 4452 *
eaf797ab
TH
4453 * A task is associated with the init_css_set until cgroup_post_fork()
4454 * attaches it to the parent's css_set. Empty cg_list indicates that
4455 * @child isn't holding reference to its css_set.
b4f48b63
PM
4456 */
4457void cgroup_fork(struct task_struct *child)
4458{
eaf797ab 4459 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4460 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4461}
4462
817929ec 4463/**
a043e3b2
LZ
4464 * cgroup_post_fork - called on a new task after adding it to the task list
4465 * @child: the task in question
4466 *
5edee61e
TH
4467 * Adds the task to the list running through its css_set if necessary and
4468 * call the subsystem fork() callbacks. Has to be after the task is
4469 * visible on the task list in case we race with the first call to
0942eeee 4470 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4471 * list.
a043e3b2 4472 */
817929ec
PM
4473void cgroup_post_fork(struct task_struct *child)
4474{
30159ec7 4475 struct cgroup_subsys *ss;
5edee61e
TH
4476 int i;
4477
3ce3230a 4478 /*
eaf797ab
TH
4479 * This may race against cgroup_enable_task_cg_links(). As that
4480 * function sets use_task_css_set_links before grabbing
4481 * tasklist_lock and we just went through tasklist_lock to add
4482 * @child, it's guaranteed that either we see the set
4483 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4484 * @child during its iteration.
4485 *
4486 * If we won the race, @child is associated with %current's
4487 * css_set. Grabbing css_set_rwsem guarantees both that the
4488 * association is stable, and, on completion of the parent's
4489 * migration, @child is visible in the source of migration or
4490 * already in the destination cgroup. This guarantee is necessary
4491 * when implementing operations which need to migrate all tasks of
4492 * a cgroup to another.
4493 *
4494 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4495 * will remain in init_css_set. This is safe because all tasks are
4496 * in the init_css_set before cg_links is enabled and there's no
4497 * operation which transfers all tasks out of init_css_set.
3ce3230a 4498 */
817929ec 4499 if (use_task_css_set_links) {
eaf797ab
TH
4500 struct css_set *cset;
4501
96d365e0 4502 down_write(&css_set_rwsem);
0e1d768f 4503 cset = task_css_set(current);
eaf797ab
TH
4504 if (list_empty(&child->cg_list)) {
4505 rcu_assign_pointer(child->cgroups, cset);
4506 list_add(&child->cg_list, &cset->tasks);
4507 get_css_set(cset);
4508 }
96d365e0 4509 up_write(&css_set_rwsem);
817929ec 4510 }
5edee61e
TH
4511
4512 /*
4513 * Call ss->fork(). This must happen after @child is linked on
4514 * css_set; otherwise, @child might change state between ->fork()
4515 * and addition to css_set.
4516 */
4517 if (need_forkexit_callback) {
3ed80a62 4518 for_each_subsys(ss, i)
5edee61e
TH
4519 if (ss->fork)
4520 ss->fork(child);
5edee61e 4521 }
817929ec 4522}
5edee61e 4523
b4f48b63
PM
4524/**
4525 * cgroup_exit - detach cgroup from exiting task
4526 * @tsk: pointer to task_struct of exiting process
4527 *
4528 * Description: Detach cgroup from @tsk and release it.
4529 *
4530 * Note that cgroups marked notify_on_release force every task in
4531 * them to take the global cgroup_mutex mutex when exiting.
4532 * This could impact scaling on very large systems. Be reluctant to
4533 * use notify_on_release cgroups where very high task exit scaling
4534 * is required on large systems.
4535 *
0e1d768f
TH
4536 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4537 * call cgroup_exit() while the task is still competent to handle
4538 * notify_on_release(), then leave the task attached to the root cgroup in
4539 * each hierarchy for the remainder of its exit. No need to bother with
4540 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 4541 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 4542 */
1ec41830 4543void cgroup_exit(struct task_struct *tsk)
b4f48b63 4544{
30159ec7 4545 struct cgroup_subsys *ss;
5abb8855 4546 struct css_set *cset;
eaf797ab 4547 bool put_cset = false;
d41d5a01 4548 int i;
817929ec
PM
4549
4550 /*
0e1d768f
TH
4551 * Unlink from @tsk from its css_set. As migration path can't race
4552 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4553 */
4554 if (!list_empty(&tsk->cg_list)) {
96d365e0 4555 down_write(&css_set_rwsem);
0e1d768f 4556 list_del_init(&tsk->cg_list);
96d365e0 4557 up_write(&css_set_rwsem);
0e1d768f 4558 put_cset = true;
817929ec
PM
4559 }
4560
b4f48b63 4561 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4562 cset = task_css_set(tsk);
4563 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 4564
1ec41830 4565 if (need_forkexit_callback) {
3ed80a62
TH
4566 /* see cgroup_post_fork() for details */
4567 for_each_subsys(ss, i) {
d41d5a01 4568 if (ss->exit) {
eb95419b
TH
4569 struct cgroup_subsys_state *old_css = cset->subsys[i];
4570 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4571
eb95419b 4572 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4573 }
4574 }
4575 }
d41d5a01 4576
eaf797ab
TH
4577 if (put_cset)
4578 put_css_set(cset, true);
b4f48b63 4579}
697f4161 4580
bd89aabc 4581static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4582{
f50daa70 4583 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4584 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4585 /*
4586 * Control Group is currently removeable. If it's not
81a6a5cd 4587 * already queued for a userspace notification, queue
f50daa70
LZ
4588 * it now
4589 */
81a6a5cd 4590 int need_schedule_work = 0;
f50daa70 4591
cdcc136f 4592 raw_spin_lock(&release_list_lock);
54766d4a 4593 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4594 list_empty(&cgrp->release_list)) {
4595 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4596 need_schedule_work = 1;
4597 }
cdcc136f 4598 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4599 if (need_schedule_work)
4600 schedule_work(&release_agent_work);
4601 }
4602}
4603
81a6a5cd
PM
4604/*
4605 * Notify userspace when a cgroup is released, by running the
4606 * configured release agent with the name of the cgroup (path
4607 * relative to the root of cgroup file system) as the argument.
4608 *
4609 * Most likely, this user command will try to rmdir this cgroup.
4610 *
4611 * This races with the possibility that some other task will be
4612 * attached to this cgroup before it is removed, or that some other
4613 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4614 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4615 * unused, and this cgroup will be reprieved from its death sentence,
4616 * to continue to serve a useful existence. Next time it's released,
4617 * we will get notified again, if it still has 'notify_on_release' set.
4618 *
4619 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4620 * means only wait until the task is successfully execve()'d. The
4621 * separate release agent task is forked by call_usermodehelper(),
4622 * then control in this thread returns here, without waiting for the
4623 * release agent task. We don't bother to wait because the caller of
4624 * this routine has no use for the exit status of the release agent
4625 * task, so no sense holding our caller up for that.
81a6a5cd 4626 */
81a6a5cd
PM
4627static void cgroup_release_agent(struct work_struct *work)
4628{
4629 BUG_ON(work != &release_agent_work);
4630 mutex_lock(&cgroup_mutex);
cdcc136f 4631 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4632 while (!list_empty(&release_list)) {
4633 char *argv[3], *envp[3];
4634 int i;
e61734c5 4635 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4636 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4637 struct cgroup,
4638 release_list);
bd89aabc 4639 list_del_init(&cgrp->release_list);
cdcc136f 4640 raw_spin_unlock(&release_list_lock);
e61734c5 4641 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4642 if (!pathbuf)
4643 goto continue_free;
e61734c5
TH
4644 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4645 if (!path)
e788e066
PM
4646 goto continue_free;
4647 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4648 if (!agentbuf)
4649 goto continue_free;
81a6a5cd
PM
4650
4651 i = 0;
e788e066 4652 argv[i++] = agentbuf;
e61734c5 4653 argv[i++] = path;
81a6a5cd
PM
4654 argv[i] = NULL;
4655
4656 i = 0;
4657 /* minimal command environment */
4658 envp[i++] = "HOME=/";
4659 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4660 envp[i] = NULL;
4661
4662 /* Drop the lock while we invoke the usermode helper,
4663 * since the exec could involve hitting disk and hence
4664 * be a slow process */
4665 mutex_unlock(&cgroup_mutex);
4666 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4667 mutex_lock(&cgroup_mutex);
e788e066
PM
4668 continue_free:
4669 kfree(pathbuf);
4670 kfree(agentbuf);
cdcc136f 4671 raw_spin_lock(&release_list_lock);
81a6a5cd 4672 }
cdcc136f 4673 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4674 mutex_unlock(&cgroup_mutex);
4675}
8bab8dde
PM
4676
4677static int __init cgroup_disable(char *str)
4678{
30159ec7 4679 struct cgroup_subsys *ss;
8bab8dde 4680 char *token;
30159ec7 4681 int i;
8bab8dde
PM
4682
4683 while ((token = strsep(&str, ",")) != NULL) {
4684 if (!*token)
4685 continue;
be45c900 4686
3ed80a62 4687 for_each_subsys(ss, i) {
8bab8dde
PM
4688 if (!strcmp(token, ss->name)) {
4689 ss->disabled = 1;
4690 printk(KERN_INFO "Disabling %s control group"
4691 " subsystem\n", ss->name);
4692 break;
4693 }
4694 }
4695 }
4696 return 1;
4697}
4698__setup("cgroup_disable=", cgroup_disable);
38460b48 4699
b77d7b60 4700/**
5a17f543 4701 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4702 * @dentry: directory dentry of interest
4703 * @ss: subsystem of interest
b77d7b60 4704 *
5a17f543
TH
4705 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4706 * to get the corresponding css and return it. If such css doesn't exist
4707 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4708 */
5a17f543
TH
4709struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4710 struct cgroup_subsys *ss)
e5d1367f 4711{
2bd59d48
TH
4712 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4713 struct cgroup_subsys_state *css = NULL;
e5d1367f 4714 struct cgroup *cgrp;
e5d1367f 4715
35cf0836 4716 /* is @dentry a cgroup dir? */
2bd59d48
TH
4717 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4718 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4719 return ERR_PTR(-EBADF);
4720
5a17f543
TH
4721 rcu_read_lock();
4722
2bd59d48
TH
4723 /*
4724 * This path doesn't originate from kernfs and @kn could already
4725 * have been or be removed at any point. @kn->priv is RCU
4726 * protected for this access. See destroy_locked() for details.
4727 */
4728 cgrp = rcu_dereference(kn->priv);
4729 if (cgrp)
4730 css = cgroup_css(cgrp, ss);
5a17f543
TH
4731
4732 if (!css || !css_tryget(css))
4733 css = ERR_PTR(-ENOENT);
4734
4735 rcu_read_unlock();
4736 return css;
e5d1367f 4737}
e5d1367f 4738
1cb650b9
LZ
4739/**
4740 * css_from_id - lookup css by id
4741 * @id: the cgroup id
4742 * @ss: cgroup subsys to be looked into
4743 *
4744 * Returns the css if there's valid one with @id, otherwise returns NULL.
4745 * Should be called under rcu_read_lock().
4746 */
4747struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4748{
4749 struct cgroup *cgrp;
4750
ace2bee8 4751 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4752
4753 cgrp = idr_find(&ss->root->cgroup_idr, id);
4754 if (cgrp)
d1625964 4755 return cgroup_css(cgrp, ss);
1cb650b9 4756 return NULL;
e5d1367f
SE
4757}
4758
fe693435 4759#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4760static struct cgroup_subsys_state *
4761debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4762{
4763 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4764
4765 if (!css)
4766 return ERR_PTR(-ENOMEM);
4767
4768 return css;
4769}
4770
eb95419b 4771static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4772{
eb95419b 4773 kfree(css);
fe693435
PM
4774}
4775
182446d0
TH
4776static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4777 struct cftype *cft)
fe693435 4778{
182446d0 4779 return cgroup_task_count(css->cgroup);
fe693435
PM
4780}
4781
182446d0
TH
4782static u64 current_css_set_read(struct cgroup_subsys_state *css,
4783 struct cftype *cft)
fe693435
PM
4784{
4785 return (u64)(unsigned long)current->cgroups;
4786}
4787
182446d0 4788static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4789 struct cftype *cft)
fe693435
PM
4790{
4791 u64 count;
4792
4793 rcu_read_lock();
a8ad805c 4794 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4795 rcu_read_unlock();
4796 return count;
4797}
4798
2da8ca82 4799static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4800{
69d0206c 4801 struct cgrp_cset_link *link;
5abb8855 4802 struct css_set *cset;
e61734c5
TH
4803 char *name_buf;
4804
4805 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4806 if (!name_buf)
4807 return -ENOMEM;
7717f7ba 4808
96d365e0 4809 down_read(&css_set_rwsem);
7717f7ba 4810 rcu_read_lock();
5abb8855 4811 cset = rcu_dereference(current->cgroups);
69d0206c 4812 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4813 struct cgroup *c = link->cgrp;
7717f7ba 4814
a2dd4247 4815 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 4816 seq_printf(seq, "Root %d group %s\n",
a2dd4247 4817 c->root->hierarchy_id, name_buf);
7717f7ba
PM
4818 }
4819 rcu_read_unlock();
96d365e0 4820 up_read(&css_set_rwsem);
e61734c5 4821 kfree(name_buf);
7717f7ba
PM
4822 return 0;
4823}
4824
4825#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4826static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4827{
2da8ca82 4828 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4829 struct cgrp_cset_link *link;
7717f7ba 4830
96d365e0 4831 down_read(&css_set_rwsem);
182446d0 4832 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4833 struct css_set *cset = link->cset;
7717f7ba
PM
4834 struct task_struct *task;
4835 int count = 0;
c7561128 4836
5abb8855 4837 seq_printf(seq, "css_set %p\n", cset);
c7561128 4838
5abb8855 4839 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4840 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4841 goto overflow;
4842 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4843 }
4844
4845 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4846 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4847 goto overflow;
4848 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4849 }
c7561128
TH
4850 continue;
4851 overflow:
4852 seq_puts(seq, " ...\n");
7717f7ba 4853 }
96d365e0 4854 up_read(&css_set_rwsem);
7717f7ba
PM
4855 return 0;
4856}
4857
182446d0 4858static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4859{
182446d0 4860 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4861}
4862
4863static struct cftype debug_files[] = {
fe693435
PM
4864 {
4865 .name = "taskcount",
4866 .read_u64 = debug_taskcount_read,
4867 },
4868
4869 {
4870 .name = "current_css_set",
4871 .read_u64 = current_css_set_read,
4872 },
4873
4874 {
4875 .name = "current_css_set_refcount",
4876 .read_u64 = current_css_set_refcount_read,
4877 },
4878
7717f7ba
PM
4879 {
4880 .name = "current_css_set_cg_links",
2da8ca82 4881 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4882 },
4883
4884 {
4885 .name = "cgroup_css_links",
2da8ca82 4886 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4887 },
4888
fe693435
PM
4889 {
4890 .name = "releasable",
4891 .read_u64 = releasable_read,
4892 },
fe693435 4893
4baf6e33
TH
4894 { } /* terminate */
4895};
fe693435 4896
073219e9 4897struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4898 .css_alloc = debug_css_alloc,
4899 .css_free = debug_css_free,
4baf6e33 4900 .base_cftypes = debug_files,
fe693435
PM
4901};
4902#endif /* CONFIG_CGROUP_DEBUG */