cgroup: unexport locking interface and cgroup_attach_task()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
081aa458 62#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 63#include <linux/kthread.h>
846c7bb0 64
60063497 65#include <linux/atomic.h>
ddbcc7e8 66
28b4c27b
TH
67/* css deactivation bias, makes css->refcnt negative to deny new trygets */
68#define CSS_DEACT_BIAS INT_MIN
69
e25e2cbb
TH
70/*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 87static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 88
aae8aab4
BB
89/*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 91 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
80f4c877 95#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 96#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 97static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
98#include <linux/cgroup_subsys.h>
99};
100
c6d57f33
PM
101#define MAX_CGROUP_ROOT_NAMELEN 64
102
ddbcc7e8
PM
103/*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
a1a71b45 115 unsigned long subsys_mask;
ddbcc7e8 116
2c6ab6d2
PM
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
ddbcc7e8 120 /* The bitmask of subsystems currently attached to this hierarchy */
a1a71b45 121 unsigned long actual_subsys_mask;
ddbcc7e8
PM
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
e5f6a860 132 /* A list running through the active hierarchies */
ddbcc7e8
PM
133 struct list_head root_list;
134
b0ca5a84
TH
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
ddbcc7e8
PM
138 /* Hierarchy-specific flags */
139 unsigned long flags;
81a6a5cd 140
0a950f65
TH
141 /* IDs for cgroups in this hierarchy */
142 struct ida cgroup_ida;
143
e788e066 144 /* The path to use for release notifications. */
81a6a5cd 145 char release_agent_path[PATH_MAX];
c6d57f33
PM
146
147 /* The name for this hierarchy - may be empty */
148 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
149};
150
ddbcc7e8
PM
151/*
152 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
153 * subsystems that are otherwise unattached - it never has more than a
154 * single cgroup, and all tasks are part of that cgroup.
155 */
156static struct cgroupfs_root rootnode;
157
05ef1d7c
TH
158/*
159 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
160 */
161struct cfent {
162 struct list_head node;
163 struct dentry *dentry;
164 struct cftype *type;
165};
166
38460b48
KH
167/*
168 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
169 * cgroup_subsys->use_id != 0.
170 */
171#define CSS_ID_MAX (65535)
172struct css_id {
173 /*
174 * The css to which this ID points. This pointer is set to valid value
175 * after cgroup is populated. If cgroup is removed, this will be NULL.
176 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
177 * is called after synchronize_rcu(). But for safe use, css_tryget()
178 * should be used for avoiding race.
38460b48 179 */
2c392b8c 180 struct cgroup_subsys_state __rcu *css;
38460b48
KH
181 /*
182 * ID of this css.
183 */
184 unsigned short id;
185 /*
186 * Depth in hierarchy which this ID belongs to.
187 */
188 unsigned short depth;
189 /*
190 * ID is freed by RCU. (and lookup routine is RCU safe.)
191 */
192 struct rcu_head rcu_head;
193 /*
194 * Hierarchy of CSS ID belongs to.
195 */
196 unsigned short stack[0]; /* Array of Length (depth+1) */
197};
198
0dea1168 199/*
25985edc 200 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
201 */
202struct cgroup_event {
203 /*
204 * Cgroup which the event belongs to.
205 */
206 struct cgroup *cgrp;
207 /*
208 * Control file which the event associated.
209 */
210 struct cftype *cft;
211 /*
212 * eventfd to signal userspace about the event.
213 */
214 struct eventfd_ctx *eventfd;
215 /*
216 * Each of these stored in a list by the cgroup.
217 */
218 struct list_head list;
219 /*
220 * All fields below needed to unregister event when
221 * userspace closes eventfd.
222 */
223 poll_table pt;
224 wait_queue_head_t *wqh;
225 wait_queue_t wait;
226 struct work_struct remove;
227};
38460b48 228
ddbcc7e8
PM
229/* The list of hierarchy roots */
230
231static LIST_HEAD(roots);
817929ec 232static int root_count;
ddbcc7e8 233
2c6ab6d2
PM
234static DEFINE_IDA(hierarchy_ida);
235static int next_hierarchy_id;
236static DEFINE_SPINLOCK(hierarchy_id_lock);
237
ddbcc7e8
PM
238/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
239#define dummytop (&rootnode.top_cgroup)
240
65dff759
LZ
241static struct cgroup_name root_cgroup_name = { .name = "/" };
242
ddbcc7e8 243/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
244 * check for fork/exit handlers to call. This avoids us having to do
245 * extra work in the fork/exit path if none of the subsystems need to
246 * be called.
ddbcc7e8 247 */
8947f9d5 248static int need_forkexit_callback __read_mostly;
ddbcc7e8 249
42809dd4 250static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
251static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
252 struct cftype cfts[], bool is_add);
42809dd4 253
d11c563d
PM
254#ifdef CONFIG_PROVE_LOCKING
255int cgroup_lock_is_held(void)
256{
257 return lockdep_is_held(&cgroup_mutex);
258}
259#else /* #ifdef CONFIG_PROVE_LOCKING */
260int cgroup_lock_is_held(void)
261{
262 return mutex_is_locked(&cgroup_mutex);
263}
264#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
265
266EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
267
8e3bbf42
SQ
268static int css_unbias_refcnt(int refcnt)
269{
270 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
271}
272
28b4c27b
TH
273/* the current nr of refs, always >= 0 whether @css is deactivated or not */
274static int css_refcnt(struct cgroup_subsys_state *css)
275{
276 int v = atomic_read(&css->refcnt);
277
8e3bbf42 278 return css_unbias_refcnt(v);
28b4c27b
TH
279}
280
ddbcc7e8 281/* convenient tests for these bits */
bd89aabc 282inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 283{
bd89aabc 284 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
285}
286
287/* bits in struct cgroupfs_root flags field */
288enum {
03b1cde6
AR
289 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
290 ROOT_XATTR, /* supports extended attributes */
ddbcc7e8
PM
291};
292
e9685a03 293static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
294{
295 const int bits =
bd89aabc
PM
296 (1 << CGRP_RELEASABLE) |
297 (1 << CGRP_NOTIFY_ON_RELEASE);
298 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
299}
300
e9685a03 301static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 302{
bd89aabc 303 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
304}
305
ddbcc7e8
PM
306/*
307 * for_each_subsys() allows you to iterate on each subsystem attached to
308 * an active hierarchy
309 */
310#define for_each_subsys(_root, _ss) \
311list_for_each_entry(_ss, &_root->subsys_list, sibling)
312
e5f6a860
LZ
313/* for_each_active_root() allows you to iterate across the active hierarchies */
314#define for_each_active_root(_root) \
ddbcc7e8
PM
315list_for_each_entry(_root, &roots, root_list)
316
f6ea9372
TH
317static inline struct cgroup *__d_cgrp(struct dentry *dentry)
318{
319 return dentry->d_fsdata;
320}
321
05ef1d7c 322static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
323{
324 return dentry->d_fsdata;
325}
326
05ef1d7c
TH
327static inline struct cftype *__d_cft(struct dentry *dentry)
328{
329 return __d_cfe(dentry)->type;
330}
331
7ae1bad9
TH
332/**
333 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
334 * @cgrp: the cgroup to be checked for liveness
335 *
336 * On success, returns true; the lock should be later released with
337 * cgroup_unlock(). On failure returns false with no lock held.
338 */
b9777cf8 339static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
340{
341 mutex_lock(&cgroup_mutex);
342 if (cgroup_is_removed(cgrp)) {
343 mutex_unlock(&cgroup_mutex);
344 return false;
345 }
346 return true;
347}
7ae1bad9 348
81a6a5cd
PM
349/* the list of cgroups eligible for automatic release. Protected by
350 * release_list_lock */
351static LIST_HEAD(release_list);
cdcc136f 352static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
353static void cgroup_release_agent(struct work_struct *work);
354static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 355static void check_for_release(struct cgroup *cgrp);
81a6a5cd 356
817929ec
PM
357/* Link structure for associating css_set objects with cgroups */
358struct cg_cgroup_link {
359 /*
360 * List running through cg_cgroup_links associated with a
361 * cgroup, anchored on cgroup->css_sets
362 */
bd89aabc 363 struct list_head cgrp_link_list;
7717f7ba 364 struct cgroup *cgrp;
817929ec
PM
365 /*
366 * List running through cg_cgroup_links pointing at a
367 * single css_set object, anchored on css_set->cg_links
368 */
369 struct list_head cg_link_list;
370 struct css_set *cg;
371};
372
373/* The default css_set - used by init and its children prior to any
374 * hierarchies being mounted. It contains a pointer to the root state
375 * for each subsystem. Also used to anchor the list of css_sets. Not
376 * reference-counted, to improve performance when child cgroups
377 * haven't been created.
378 */
379
380static struct css_set init_css_set;
381static struct cg_cgroup_link init_css_set_link;
382
e6a1105b
BB
383static int cgroup_init_idr(struct cgroup_subsys *ss,
384 struct cgroup_subsys_state *css);
38460b48 385
817929ec
PM
386/* css_set_lock protects the list of css_set objects, and the
387 * chain of tasks off each css_set. Nests outside task->alloc_lock
388 * due to cgroup_iter_start() */
389static DEFINE_RWLOCK(css_set_lock);
390static int css_set_count;
391
7717f7ba
PM
392/*
393 * hash table for cgroup groups. This improves the performance to find
394 * an existing css_set. This hash doesn't (currently) take into
395 * account cgroups in empty hierarchies.
396 */
472b1053 397#define CSS_SET_HASH_BITS 7
0ac801fe 398static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 399
0ac801fe 400static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
401{
402 int i;
0ac801fe 403 unsigned long key = 0UL;
472b1053
LZ
404
405 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
406 key += (unsigned long)css[i];
407 key = (key >> 16) ^ key;
472b1053 408
0ac801fe 409 return key;
472b1053
LZ
410}
411
817929ec
PM
412/* We don't maintain the lists running through each css_set to its
413 * task until after the first call to cgroup_iter_start(). This
414 * reduces the fork()/exit() overhead for people who have cgroups
415 * compiled into their kernel but not actually in use */
8947f9d5 416static int use_task_css_set_links __read_mostly;
817929ec 417
2c6ab6d2 418static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 419{
71cbb949
KM
420 struct cg_cgroup_link *link;
421 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
422 /*
423 * Ensure that the refcount doesn't hit zero while any readers
424 * can see it. Similar to atomic_dec_and_lock(), but for an
425 * rwlock
426 */
427 if (atomic_add_unless(&cg->refcount, -1, 1))
428 return;
429 write_lock(&css_set_lock);
430 if (!atomic_dec_and_test(&cg->refcount)) {
431 write_unlock(&css_set_lock);
432 return;
433 }
81a6a5cd 434
2c6ab6d2 435 /* This css_set is dead. unlink it and release cgroup refcounts */
0ac801fe 436 hash_del(&cg->hlist);
2c6ab6d2
PM
437 css_set_count--;
438
439 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
440 cg_link_list) {
441 struct cgroup *cgrp = link->cgrp;
442 list_del(&link->cg_link_list);
443 list_del(&link->cgrp_link_list);
71b5707e
LZ
444
445 /*
446 * We may not be holding cgroup_mutex, and if cgrp->count is
447 * dropped to 0 the cgroup can be destroyed at any time, hence
448 * rcu_read_lock is used to keep it alive.
449 */
450 rcu_read_lock();
bd89aabc
PM
451 if (atomic_dec_and_test(&cgrp->count) &&
452 notify_on_release(cgrp)) {
81a6a5cd 453 if (taskexit)
bd89aabc
PM
454 set_bit(CGRP_RELEASABLE, &cgrp->flags);
455 check_for_release(cgrp);
81a6a5cd 456 }
71b5707e 457 rcu_read_unlock();
2c6ab6d2
PM
458
459 kfree(link);
81a6a5cd 460 }
2c6ab6d2
PM
461
462 write_unlock(&css_set_lock);
30088ad8 463 kfree_rcu(cg, rcu_head);
b4f48b63
PM
464}
465
817929ec
PM
466/*
467 * refcounted get/put for css_set objects
468 */
469static inline void get_css_set(struct css_set *cg)
470{
146aa1bd 471 atomic_inc(&cg->refcount);
817929ec
PM
472}
473
474static inline void put_css_set(struct css_set *cg)
475{
146aa1bd 476 __put_css_set(cg, 0);
817929ec
PM
477}
478
81a6a5cd
PM
479static inline void put_css_set_taskexit(struct css_set *cg)
480{
146aa1bd 481 __put_css_set(cg, 1);
81a6a5cd
PM
482}
483
7717f7ba
PM
484/*
485 * compare_css_sets - helper function for find_existing_css_set().
486 * @cg: candidate css_set being tested
487 * @old_cg: existing css_set for a task
488 * @new_cgrp: cgroup that's being entered by the task
489 * @template: desired set of css pointers in css_set (pre-calculated)
490 *
491 * Returns true if "cg" matches "old_cg" except for the hierarchy
492 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
493 */
494static bool compare_css_sets(struct css_set *cg,
495 struct css_set *old_cg,
496 struct cgroup *new_cgrp,
497 struct cgroup_subsys_state *template[])
498{
499 struct list_head *l1, *l2;
500
501 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
502 /* Not all subsystems matched */
503 return false;
504 }
505
506 /*
507 * Compare cgroup pointers in order to distinguish between
508 * different cgroups in heirarchies with no subsystems. We
509 * could get by with just this check alone (and skip the
510 * memcmp above) but on most setups the memcmp check will
511 * avoid the need for this more expensive check on almost all
512 * candidates.
513 */
514
515 l1 = &cg->cg_links;
516 l2 = &old_cg->cg_links;
517 while (1) {
518 struct cg_cgroup_link *cgl1, *cgl2;
519 struct cgroup *cg1, *cg2;
520
521 l1 = l1->next;
522 l2 = l2->next;
523 /* See if we reached the end - both lists are equal length. */
524 if (l1 == &cg->cg_links) {
525 BUG_ON(l2 != &old_cg->cg_links);
526 break;
527 } else {
528 BUG_ON(l2 == &old_cg->cg_links);
529 }
530 /* Locate the cgroups associated with these links. */
531 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
532 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
533 cg1 = cgl1->cgrp;
534 cg2 = cgl2->cgrp;
535 /* Hierarchies should be linked in the same order. */
536 BUG_ON(cg1->root != cg2->root);
537
538 /*
539 * If this hierarchy is the hierarchy of the cgroup
540 * that's changing, then we need to check that this
541 * css_set points to the new cgroup; if it's any other
542 * hierarchy, then this css_set should point to the
543 * same cgroup as the old css_set.
544 */
545 if (cg1->root == new_cgrp->root) {
546 if (cg1 != new_cgrp)
547 return false;
548 } else {
549 if (cg1 != cg2)
550 return false;
551 }
552 }
553 return true;
554}
555
817929ec
PM
556/*
557 * find_existing_css_set() is a helper for
558 * find_css_set(), and checks to see whether an existing
472b1053 559 * css_set is suitable.
817929ec
PM
560 *
561 * oldcg: the cgroup group that we're using before the cgroup
562 * transition
563 *
bd89aabc 564 * cgrp: the cgroup that we're moving into
817929ec
PM
565 *
566 * template: location in which to build the desired set of subsystem
567 * state objects for the new cgroup group
568 */
817929ec
PM
569static struct css_set *find_existing_css_set(
570 struct css_set *oldcg,
bd89aabc 571 struct cgroup *cgrp,
817929ec 572 struct cgroup_subsys_state *template[])
b4f48b63
PM
573{
574 int i;
bd89aabc 575 struct cgroupfs_root *root = cgrp->root;
472b1053 576 struct css_set *cg;
0ac801fe 577 unsigned long key;
817929ec 578
aae8aab4
BB
579 /*
580 * Build the set of subsystem state objects that we want to see in the
581 * new css_set. while subsystems can change globally, the entries here
582 * won't change, so no need for locking.
583 */
817929ec 584 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 585 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
586 /* Subsystem is in this hierarchy. So we want
587 * the subsystem state from the new
588 * cgroup */
bd89aabc 589 template[i] = cgrp->subsys[i];
817929ec
PM
590 } else {
591 /* Subsystem is not in this hierarchy, so we
592 * don't want to change the subsystem state */
593 template[i] = oldcg->subsys[i];
594 }
595 }
596
0ac801fe 597 key = css_set_hash(template);
b67bfe0d 598 hash_for_each_possible(css_set_table, cg, hlist, key) {
7717f7ba
PM
599 if (!compare_css_sets(cg, oldcg, cgrp, template))
600 continue;
601
602 /* This css_set matches what we need */
603 return cg;
472b1053 604 }
817929ec
PM
605
606 /* No existing cgroup group matched */
607 return NULL;
608}
609
36553434
LZ
610static void free_cg_links(struct list_head *tmp)
611{
612 struct cg_cgroup_link *link;
613 struct cg_cgroup_link *saved_link;
614
615 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
616 list_del(&link->cgrp_link_list);
617 kfree(link);
618 }
619}
620
817929ec
PM
621/*
622 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 623 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
624 * success or a negative error
625 */
817929ec
PM
626static int allocate_cg_links(int count, struct list_head *tmp)
627{
628 struct cg_cgroup_link *link;
629 int i;
630 INIT_LIST_HEAD(tmp);
631 for (i = 0; i < count; i++) {
632 link = kmalloc(sizeof(*link), GFP_KERNEL);
633 if (!link) {
36553434 634 free_cg_links(tmp);
817929ec
PM
635 return -ENOMEM;
636 }
bd89aabc 637 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
638 }
639 return 0;
640}
641
c12f65d4
LZ
642/**
643 * link_css_set - a helper function to link a css_set to a cgroup
644 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
645 * @cg: the css_set to be linked
646 * @cgrp: the destination cgroup
647 */
648static void link_css_set(struct list_head *tmp_cg_links,
649 struct css_set *cg, struct cgroup *cgrp)
650{
651 struct cg_cgroup_link *link;
652
653 BUG_ON(list_empty(tmp_cg_links));
654 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
655 cgrp_link_list);
656 link->cg = cg;
7717f7ba 657 link->cgrp = cgrp;
2c6ab6d2 658 atomic_inc(&cgrp->count);
c12f65d4 659 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
660 /*
661 * Always add links to the tail of the list so that the list
662 * is sorted by order of hierarchy creation
663 */
664 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
665}
666
817929ec
PM
667/*
668 * find_css_set() takes an existing cgroup group and a
669 * cgroup object, and returns a css_set object that's
670 * equivalent to the old group, but with the given cgroup
671 * substituted into the appropriate hierarchy. Must be called with
672 * cgroup_mutex held
673 */
817929ec 674static struct css_set *find_css_set(
bd89aabc 675 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
676{
677 struct css_set *res;
678 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
679
680 struct list_head tmp_cg_links;
817929ec 681
7717f7ba 682 struct cg_cgroup_link *link;
0ac801fe 683 unsigned long key;
472b1053 684
817929ec
PM
685 /* First see if we already have a cgroup group that matches
686 * the desired set */
7e9abd89 687 read_lock(&css_set_lock);
bd89aabc 688 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
689 if (res)
690 get_css_set(res);
7e9abd89 691 read_unlock(&css_set_lock);
817929ec
PM
692
693 if (res)
694 return res;
695
696 res = kmalloc(sizeof(*res), GFP_KERNEL);
697 if (!res)
698 return NULL;
699
700 /* Allocate all the cg_cgroup_link objects that we'll need */
701 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
702 kfree(res);
703 return NULL;
704 }
705
146aa1bd 706 atomic_set(&res->refcount, 1);
817929ec
PM
707 INIT_LIST_HEAD(&res->cg_links);
708 INIT_LIST_HEAD(&res->tasks);
472b1053 709 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
710
711 /* Copy the set of subsystem state objects generated in
712 * find_existing_css_set() */
713 memcpy(res->subsys, template, sizeof(res->subsys));
714
715 write_lock(&css_set_lock);
716 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
717 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
718 struct cgroup *c = link->cgrp;
719 if (c->root == cgrp->root)
720 c = cgrp;
721 link_css_set(&tmp_cg_links, res, c);
722 }
817929ec
PM
723
724 BUG_ON(!list_empty(&tmp_cg_links));
725
817929ec 726 css_set_count++;
472b1053
LZ
727
728 /* Add this cgroup group to the hash table */
0ac801fe
LZ
729 key = css_set_hash(res->subsys);
730 hash_add(css_set_table, &res->hlist, key);
472b1053 731
817929ec
PM
732 write_unlock(&css_set_lock);
733
734 return res;
b4f48b63
PM
735}
736
7717f7ba
PM
737/*
738 * Return the cgroup for "task" from the given hierarchy. Must be
739 * called with cgroup_mutex held.
740 */
741static struct cgroup *task_cgroup_from_root(struct task_struct *task,
742 struct cgroupfs_root *root)
743{
744 struct css_set *css;
745 struct cgroup *res = NULL;
746
747 BUG_ON(!mutex_is_locked(&cgroup_mutex));
748 read_lock(&css_set_lock);
749 /*
750 * No need to lock the task - since we hold cgroup_mutex the
751 * task can't change groups, so the only thing that can happen
752 * is that it exits and its css is set back to init_css_set.
753 */
754 css = task->cgroups;
755 if (css == &init_css_set) {
756 res = &root->top_cgroup;
757 } else {
758 struct cg_cgroup_link *link;
759 list_for_each_entry(link, &css->cg_links, cg_link_list) {
760 struct cgroup *c = link->cgrp;
761 if (c->root == root) {
762 res = c;
763 break;
764 }
765 }
766 }
767 read_unlock(&css_set_lock);
768 BUG_ON(!res);
769 return res;
770}
771
ddbcc7e8
PM
772/*
773 * There is one global cgroup mutex. We also require taking
774 * task_lock() when dereferencing a task's cgroup subsys pointers.
775 * See "The task_lock() exception", at the end of this comment.
776 *
777 * A task must hold cgroup_mutex to modify cgroups.
778 *
779 * Any task can increment and decrement the count field without lock.
780 * So in general, code holding cgroup_mutex can't rely on the count
781 * field not changing. However, if the count goes to zero, then only
956db3ca 782 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
783 * means that no tasks are currently attached, therefore there is no
784 * way a task attached to that cgroup can fork (the other way to
785 * increment the count). So code holding cgroup_mutex can safely
786 * assume that if the count is zero, it will stay zero. Similarly, if
787 * a task holds cgroup_mutex on a cgroup with zero count, it
788 * knows that the cgroup won't be removed, as cgroup_rmdir()
789 * needs that mutex.
790 *
ddbcc7e8
PM
791 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
792 * (usually) take cgroup_mutex. These are the two most performance
793 * critical pieces of code here. The exception occurs on cgroup_exit(),
794 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
795 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
796 * to the release agent with the name of the cgroup (path relative to
797 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
798 *
799 * A cgroup can only be deleted if both its 'count' of using tasks
800 * is zero, and its list of 'children' cgroups is empty. Since all
801 * tasks in the system use _some_ cgroup, and since there is always at
802 * least one task in the system (init, pid == 1), therefore, top_cgroup
803 * always has either children cgroups and/or using tasks. So we don't
804 * need a special hack to ensure that top_cgroup cannot be deleted.
805 *
806 * The task_lock() exception
807 *
808 * The need for this exception arises from the action of
d0b2fdd2 809 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 810 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
811 * several performance critical places that need to reference
812 * task->cgroup without the expense of grabbing a system global
813 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 814 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
815 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
816 * the task_struct routinely used for such matters.
817 *
818 * P.S. One more locking exception. RCU is used to guard the
956db3ca 819 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
820 */
821
ddbcc7e8
PM
822/**
823 * cgroup_lock - lock out any changes to cgroup structures
824 *
825 */
b9777cf8 826static void cgroup_lock(void)
ddbcc7e8
PM
827{
828 mutex_lock(&cgroup_mutex);
829}
830
831/**
832 * cgroup_unlock - release lock on cgroup changes
833 *
834 * Undo the lock taken in a previous cgroup_lock() call.
835 */
b9777cf8 836static void cgroup_unlock(void)
ddbcc7e8
PM
837{
838 mutex_unlock(&cgroup_mutex);
839}
840
841/*
842 * A couple of forward declarations required, due to cyclic reference loop:
843 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
844 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
845 * -> cgroup_mkdir.
846 */
847
18bb1db3 848static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 849static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 850static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
851static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
852 unsigned long subsys_mask);
6e1d5dcc 853static const struct inode_operations cgroup_dir_inode_operations;
828c0950 854static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
855
856static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 857 .name = "cgroup",
e4ad08fe 858 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 859};
ddbcc7e8 860
38460b48
KH
861static int alloc_css_id(struct cgroup_subsys *ss,
862 struct cgroup *parent, struct cgroup *child);
863
a5e7ed32 864static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
865{
866 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
867
868 if (inode) {
85fe4025 869 inode->i_ino = get_next_ino();
ddbcc7e8 870 inode->i_mode = mode;
76aac0e9
DH
871 inode->i_uid = current_fsuid();
872 inode->i_gid = current_fsgid();
ddbcc7e8
PM
873 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
874 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
875 }
876 return inode;
877}
878
65dff759
LZ
879static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
880{
881 struct cgroup_name *name;
882
883 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
884 if (!name)
885 return NULL;
886 strcpy(name->name, dentry->d_name.name);
887 return name;
888}
889
be445626
LZ
890static void cgroup_free_fn(struct work_struct *work)
891{
892 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
893 struct cgroup_subsys *ss;
894
895 mutex_lock(&cgroup_mutex);
896 /*
897 * Release the subsystem state objects.
898 */
899 for_each_subsys(cgrp->root, ss)
900 ss->css_free(cgrp);
901
902 cgrp->root->number_of_cgroups--;
903 mutex_unlock(&cgroup_mutex);
904
905 /*
906 * Drop the active superblock reference that we took when we
907 * created the cgroup
908 */
909 deactivate_super(cgrp->root->sb);
910
911 /*
912 * if we're getting rid of the cgroup, refcount should ensure
913 * that there are no pidlists left.
914 */
915 BUG_ON(!list_empty(&cgrp->pidlists));
916
917 simple_xattrs_free(&cgrp->xattrs);
918
919 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
65dff759 920 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
921 kfree(cgrp);
922}
923
924static void cgroup_free_rcu(struct rcu_head *head)
925{
926 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
927
928 schedule_work(&cgrp->free_work);
929}
930
ddbcc7e8
PM
931static void cgroup_diput(struct dentry *dentry, struct inode *inode)
932{
933 /* is dentry a directory ? if so, kfree() associated cgroup */
934 if (S_ISDIR(inode->i_mode)) {
bd89aabc 935 struct cgroup *cgrp = dentry->d_fsdata;
be445626 936
bd89aabc 937 BUG_ON(!(cgroup_is_removed(cgrp)));
be445626 938 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
939 } else {
940 struct cfent *cfe = __d_cfe(dentry);
941 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
03b1cde6 942 struct cftype *cft = cfe->type;
05ef1d7c
TH
943
944 WARN_ONCE(!list_empty(&cfe->node) &&
945 cgrp != &cgrp->root->top_cgroup,
946 "cfe still linked for %s\n", cfe->type->name);
947 kfree(cfe);
03b1cde6 948 simple_xattrs_free(&cft->xattrs);
ddbcc7e8
PM
949 }
950 iput(inode);
951}
952
c72a04e3
AV
953static int cgroup_delete(const struct dentry *d)
954{
955 return 1;
956}
957
ddbcc7e8
PM
958static void remove_dir(struct dentry *d)
959{
960 struct dentry *parent = dget(d->d_parent);
961
962 d_delete(d);
963 simple_rmdir(parent->d_inode, d);
964 dput(parent);
965}
966
2739d3cc 967static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
968{
969 struct cfent *cfe;
970
971 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
972 lockdep_assert_held(&cgroup_mutex);
973
2739d3cc
LZ
974 /*
975 * If we're doing cleanup due to failure of cgroup_create(),
976 * the corresponding @cfe may not exist.
977 */
05ef1d7c
TH
978 list_for_each_entry(cfe, &cgrp->files, node) {
979 struct dentry *d = cfe->dentry;
980
981 if (cft && cfe->type != cft)
982 continue;
983
984 dget(d);
985 d_delete(d);
ce27e317 986 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
987 list_del_init(&cfe->node);
988 dput(d);
989
2739d3cc 990 break;
ddbcc7e8 991 }
05ef1d7c
TH
992}
993
13af07df
AR
994/**
995 * cgroup_clear_directory - selective removal of base and subsystem files
996 * @dir: directory containing the files
997 * @base_files: true if the base files should be removed
998 * @subsys_mask: mask of the subsystem ids whose files should be removed
999 */
1000static void cgroup_clear_directory(struct dentry *dir, bool base_files,
1001 unsigned long subsys_mask)
05ef1d7c
TH
1002{
1003 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 1004 struct cgroup_subsys *ss;
05ef1d7c 1005
13af07df
AR
1006 for_each_subsys(cgrp->root, ss) {
1007 struct cftype_set *set;
1008 if (!test_bit(ss->subsys_id, &subsys_mask))
1009 continue;
1010 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 1011 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
1012 }
1013 if (base_files) {
1014 while (!list_empty(&cgrp->files))
1015 cgroup_rm_file(cgrp, NULL);
1016 }
ddbcc7e8
PM
1017}
1018
1019/*
1020 * NOTE : the dentry must have been dget()'ed
1021 */
1022static void cgroup_d_remove_dir(struct dentry *dentry)
1023{
2fd6b7f5 1024 struct dentry *parent;
13af07df 1025 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 1026
a1a71b45 1027 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 1028
2fd6b7f5
NP
1029 parent = dentry->d_parent;
1030 spin_lock(&parent->d_lock);
3ec762ad 1031 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1032 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1033 spin_unlock(&dentry->d_lock);
1034 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1035 remove_dir(dentry);
1036}
1037
aae8aab4 1038/*
cf5d5941
BB
1039 * Call with cgroup_mutex held. Drops reference counts on modules, including
1040 * any duplicate ones that parse_cgroupfs_options took. If this function
1041 * returns an error, no reference counts are touched.
aae8aab4 1042 */
ddbcc7e8 1043static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 1044 unsigned long final_subsys_mask)
ddbcc7e8 1045{
a1a71b45 1046 unsigned long added_mask, removed_mask;
bd89aabc 1047 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1048 int i;
1049
aae8aab4 1050 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1051 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1052
a1a71b45
AR
1053 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1054 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
1055 /* Check that any added subsystems are currently free */
1056 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1057 unsigned long bit = 1UL << i;
ddbcc7e8 1058 struct cgroup_subsys *ss = subsys[i];
a1a71b45 1059 if (!(bit & added_mask))
ddbcc7e8 1060 continue;
aae8aab4
BB
1061 /*
1062 * Nobody should tell us to do a subsys that doesn't exist:
1063 * parse_cgroupfs_options should catch that case and refcounts
1064 * ensure that subsystems won't disappear once selected.
1065 */
1066 BUG_ON(ss == NULL);
ddbcc7e8
PM
1067 if (ss->root != &rootnode) {
1068 /* Subsystem isn't free */
1069 return -EBUSY;
1070 }
1071 }
1072
1073 /* Currently we don't handle adding/removing subsystems when
1074 * any child cgroups exist. This is theoretically supportable
1075 * but involves complex error handling, so it's being left until
1076 * later */
307257cf 1077 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1078 return -EBUSY;
1079
1080 /* Process each subsystem */
1081 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1082 struct cgroup_subsys *ss = subsys[i];
1083 unsigned long bit = 1UL << i;
a1a71b45 1084 if (bit & added_mask) {
ddbcc7e8 1085 /* We're binding this subsystem to this hierarchy */
aae8aab4 1086 BUG_ON(ss == NULL);
bd89aabc 1087 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1088 BUG_ON(!dummytop->subsys[i]);
1089 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1090 cgrp->subsys[i] = dummytop->subsys[i];
1091 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1092 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1093 ss->root = root;
ddbcc7e8 1094 if (ss->bind)
761b3ef5 1095 ss->bind(cgrp);
cf5d5941 1096 /* refcount was already taken, and we're keeping it */
a1a71b45 1097 } else if (bit & removed_mask) {
ddbcc7e8 1098 /* We're removing this subsystem */
aae8aab4 1099 BUG_ON(ss == NULL);
bd89aabc
PM
1100 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1101 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1102 if (ss->bind)
761b3ef5 1103 ss->bind(dummytop);
ddbcc7e8 1104 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1105 cgrp->subsys[i] = NULL;
b2aa30f7 1106 subsys[i]->root = &rootnode;
33a68ac1 1107 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1108 /* subsystem is now free - drop reference on module */
1109 module_put(ss->module);
a1a71b45 1110 } else if (bit & final_subsys_mask) {
ddbcc7e8 1111 /* Subsystem state should already exist */
aae8aab4 1112 BUG_ON(ss == NULL);
bd89aabc 1113 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1114 /*
1115 * a refcount was taken, but we already had one, so
1116 * drop the extra reference.
1117 */
1118 module_put(ss->module);
1119#ifdef CONFIG_MODULE_UNLOAD
1120 BUG_ON(ss->module && !module_refcount(ss->module));
1121#endif
ddbcc7e8
PM
1122 } else {
1123 /* Subsystem state shouldn't exist */
bd89aabc 1124 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1125 }
1126 }
a1a71b45 1127 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1128
1129 return 0;
1130}
1131
34c80b1d 1132static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1133{
34c80b1d 1134 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1135 struct cgroup_subsys *ss;
1136
e25e2cbb 1137 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1138 for_each_subsys(root, ss)
1139 seq_printf(seq, ",%s", ss->name);
1140 if (test_bit(ROOT_NOPREFIX, &root->flags))
1141 seq_puts(seq, ",noprefix");
03b1cde6
AR
1142 if (test_bit(ROOT_XATTR, &root->flags))
1143 seq_puts(seq, ",xattr");
81a6a5cd
PM
1144 if (strlen(root->release_agent_path))
1145 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1146 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1147 seq_puts(seq, ",clone_children");
c6d57f33
PM
1148 if (strlen(root->name))
1149 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1150 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1151 return 0;
1152}
1153
1154struct cgroup_sb_opts {
a1a71b45 1155 unsigned long subsys_mask;
ddbcc7e8 1156 unsigned long flags;
81a6a5cd 1157 char *release_agent;
2260e7fc 1158 bool cpuset_clone_children;
c6d57f33 1159 char *name;
2c6ab6d2
PM
1160 /* User explicitly requested empty subsystem */
1161 bool none;
c6d57f33
PM
1162
1163 struct cgroupfs_root *new_root;
2c6ab6d2 1164
ddbcc7e8
PM
1165};
1166
aae8aab4
BB
1167/*
1168 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1169 * with cgroup_mutex held to protect the subsys[] array. This function takes
1170 * refcounts on subsystems to be used, unless it returns error, in which case
1171 * no refcounts are taken.
aae8aab4 1172 */
cf5d5941 1173static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1174{
32a8cf23
DL
1175 char *token, *o = data;
1176 bool all_ss = false, one_ss = false;
f9ab5b5b 1177 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1178 int i;
1179 bool module_pin_failed = false;
f9ab5b5b 1180
aae8aab4
BB
1181 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1182
f9ab5b5b
LZ
1183#ifdef CONFIG_CPUSETS
1184 mask = ~(1UL << cpuset_subsys_id);
1185#endif
ddbcc7e8 1186
c6d57f33 1187 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1188
1189 while ((token = strsep(&o, ",")) != NULL) {
1190 if (!*token)
1191 return -EINVAL;
32a8cf23 1192 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1193 /* Explicitly have no subsystems */
1194 opts->none = true;
32a8cf23
DL
1195 continue;
1196 }
1197 if (!strcmp(token, "all")) {
1198 /* Mutually exclusive option 'all' + subsystem name */
1199 if (one_ss)
1200 return -EINVAL;
1201 all_ss = true;
1202 continue;
1203 }
1204 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1205 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1206 continue;
1207 }
1208 if (!strcmp(token, "clone_children")) {
2260e7fc 1209 opts->cpuset_clone_children = true;
32a8cf23
DL
1210 continue;
1211 }
03b1cde6
AR
1212 if (!strcmp(token, "xattr")) {
1213 set_bit(ROOT_XATTR, &opts->flags);
1214 continue;
1215 }
32a8cf23 1216 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1217 /* Specifying two release agents is forbidden */
1218 if (opts->release_agent)
1219 return -EINVAL;
c6d57f33 1220 opts->release_agent =
e400c285 1221 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1222 if (!opts->release_agent)
1223 return -ENOMEM;
32a8cf23
DL
1224 continue;
1225 }
1226 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1227 const char *name = token + 5;
1228 /* Can't specify an empty name */
1229 if (!strlen(name))
1230 return -EINVAL;
1231 /* Must match [\w.-]+ */
1232 for (i = 0; i < strlen(name); i++) {
1233 char c = name[i];
1234 if (isalnum(c))
1235 continue;
1236 if ((c == '.') || (c == '-') || (c == '_'))
1237 continue;
1238 return -EINVAL;
1239 }
1240 /* Specifying two names is forbidden */
1241 if (opts->name)
1242 return -EINVAL;
1243 opts->name = kstrndup(name,
e400c285 1244 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1245 GFP_KERNEL);
1246 if (!opts->name)
1247 return -ENOMEM;
32a8cf23
DL
1248
1249 continue;
1250 }
1251
1252 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1253 struct cgroup_subsys *ss = subsys[i];
1254 if (ss == NULL)
1255 continue;
1256 if (strcmp(token, ss->name))
1257 continue;
1258 if (ss->disabled)
1259 continue;
1260
1261 /* Mutually exclusive option 'all' + subsystem name */
1262 if (all_ss)
1263 return -EINVAL;
a1a71b45 1264 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1265 one_ss = true;
1266
1267 break;
1268 }
1269 if (i == CGROUP_SUBSYS_COUNT)
1270 return -ENOENT;
1271 }
1272
1273 /*
1274 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1275 * otherwise if 'none', 'name=' and a subsystem name options
1276 * were not specified, let's default to 'all'
32a8cf23 1277 */
0d19ea86 1278 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1279 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1280 struct cgroup_subsys *ss = subsys[i];
1281 if (ss == NULL)
1282 continue;
1283 if (ss->disabled)
1284 continue;
a1a71b45 1285 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1286 }
1287 }
1288
2c6ab6d2
PM
1289 /* Consistency checks */
1290
f9ab5b5b
LZ
1291 /*
1292 * Option noprefix was introduced just for backward compatibility
1293 * with the old cpuset, so we allow noprefix only if mounting just
1294 * the cpuset subsystem.
1295 */
1296 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
a1a71b45 1297 (opts->subsys_mask & mask))
f9ab5b5b
LZ
1298 return -EINVAL;
1299
2c6ab6d2
PM
1300
1301 /* Can't specify "none" and some subsystems */
a1a71b45 1302 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1303 return -EINVAL;
1304
1305 /*
1306 * We either have to specify by name or by subsystems. (So all
1307 * empty hierarchies must have a name).
1308 */
a1a71b45 1309 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1310 return -EINVAL;
1311
cf5d5941
BB
1312 /*
1313 * Grab references on all the modules we'll need, so the subsystems
1314 * don't dance around before rebind_subsystems attaches them. This may
1315 * take duplicate reference counts on a subsystem that's already used,
1316 * but rebind_subsystems handles this case.
1317 */
be45c900 1318 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1319 unsigned long bit = 1UL << i;
1320
a1a71b45 1321 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1322 continue;
1323 if (!try_module_get(subsys[i]->module)) {
1324 module_pin_failed = true;
1325 break;
1326 }
1327 }
1328 if (module_pin_failed) {
1329 /*
1330 * oops, one of the modules was going away. this means that we
1331 * raced with a module_delete call, and to the user this is
1332 * essentially a "subsystem doesn't exist" case.
1333 */
be45c900 1334 for (i--; i >= 0; i--) {
cf5d5941
BB
1335 /* drop refcounts only on the ones we took */
1336 unsigned long bit = 1UL << i;
1337
a1a71b45 1338 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1339 continue;
1340 module_put(subsys[i]->module);
1341 }
1342 return -ENOENT;
1343 }
1344
ddbcc7e8
PM
1345 return 0;
1346}
1347
a1a71b45 1348static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1349{
1350 int i;
be45c900 1351 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1352 unsigned long bit = 1UL << i;
1353
a1a71b45 1354 if (!(bit & subsys_mask))
cf5d5941
BB
1355 continue;
1356 module_put(subsys[i]->module);
1357 }
1358}
1359
ddbcc7e8
PM
1360static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1361{
1362 int ret = 0;
1363 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1364 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1365 struct cgroup_sb_opts opts;
a1a71b45 1366 unsigned long added_mask, removed_mask;
ddbcc7e8 1367
bd89aabc 1368 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1369 mutex_lock(&cgroup_mutex);
e25e2cbb 1370 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1371
1372 /* See what subsystems are wanted */
1373 ret = parse_cgroupfs_options(data, &opts);
1374 if (ret)
1375 goto out_unlock;
1376
a1a71b45 1377 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1378 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1379 task_tgid_nr(current), current->comm);
1380
a1a71b45
AR
1381 added_mask = opts.subsys_mask & ~root->subsys_mask;
1382 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1383
cf5d5941
BB
1384 /* Don't allow flags or name to change at remount */
1385 if (opts.flags != root->flags ||
1386 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1387 ret = -EINVAL;
a1a71b45 1388 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1389 goto out_unlock;
1390 }
1391
7083d037
G
1392 /*
1393 * Clear out the files of subsystems that should be removed, do
1394 * this before rebind_subsystems, since rebind_subsystems may
1395 * change this hierarchy's subsys_list.
1396 */
1397 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1398
a1a71b45 1399 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1400 if (ret) {
7083d037
G
1401 /* rebind_subsystems failed, re-populate the removed files */
1402 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1403 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1404 goto out_unlock;
cf5d5941 1405 }
ddbcc7e8 1406
13af07df 1407 /* re-populate subsystem files */
a1a71b45 1408 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1409
81a6a5cd
PM
1410 if (opts.release_agent)
1411 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1412 out_unlock:
66bdc9cf 1413 kfree(opts.release_agent);
c6d57f33 1414 kfree(opts.name);
e25e2cbb 1415 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1416 mutex_unlock(&cgroup_mutex);
bd89aabc 1417 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1418 return ret;
1419}
1420
b87221de 1421static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1422 .statfs = simple_statfs,
1423 .drop_inode = generic_delete_inode,
1424 .show_options = cgroup_show_options,
1425 .remount_fs = cgroup_remount,
1426};
1427
cc31edce
PM
1428static void init_cgroup_housekeeping(struct cgroup *cgrp)
1429{
1430 INIT_LIST_HEAD(&cgrp->sibling);
1431 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1432 INIT_LIST_HEAD(&cgrp->files);
cc31edce 1433 INIT_LIST_HEAD(&cgrp->css_sets);
2243076a 1434 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1435 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30 1436 INIT_LIST_HEAD(&cgrp->pidlists);
be445626 1437 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
72a8cb30 1438 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1439 INIT_LIST_HEAD(&cgrp->event_list);
1440 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1441 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1442}
c6d57f33 1443
ddbcc7e8
PM
1444static void init_cgroup_root(struct cgroupfs_root *root)
1445{
bd89aabc 1446 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1447
ddbcc7e8
PM
1448 INIT_LIST_HEAD(&root->subsys_list);
1449 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1450 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1451 root->number_of_cgroups = 1;
bd89aabc 1452 cgrp->root = root;
65dff759 1453 cgrp->name = &root_cgroup_name;
bd89aabc 1454 cgrp->top_cgroup = cgrp;
cc31edce 1455 init_cgroup_housekeeping(cgrp);
fddfb02a 1456 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1457}
1458
2c6ab6d2
PM
1459static bool init_root_id(struct cgroupfs_root *root)
1460{
1461 int ret = 0;
1462
1463 do {
1464 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1465 return false;
1466 spin_lock(&hierarchy_id_lock);
1467 /* Try to allocate the next unused ID */
1468 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1469 &root->hierarchy_id);
1470 if (ret == -ENOSPC)
1471 /* Try again starting from 0 */
1472 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1473 if (!ret) {
1474 next_hierarchy_id = root->hierarchy_id + 1;
1475 } else if (ret != -EAGAIN) {
1476 /* Can only get here if the 31-bit IDR is full ... */
1477 BUG_ON(ret);
1478 }
1479 spin_unlock(&hierarchy_id_lock);
1480 } while (ret);
1481 return true;
1482}
1483
ddbcc7e8
PM
1484static int cgroup_test_super(struct super_block *sb, void *data)
1485{
c6d57f33 1486 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1487 struct cgroupfs_root *root = sb->s_fs_info;
1488
c6d57f33
PM
1489 /* If we asked for a name then it must match */
1490 if (opts->name && strcmp(opts->name, root->name))
1491 return 0;
ddbcc7e8 1492
2c6ab6d2
PM
1493 /*
1494 * If we asked for subsystems (or explicitly for no
1495 * subsystems) then they must match
1496 */
a1a71b45
AR
1497 if ((opts->subsys_mask || opts->none)
1498 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1499 return 0;
1500
1501 return 1;
1502}
1503
c6d57f33
PM
1504static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1505{
1506 struct cgroupfs_root *root;
1507
a1a71b45 1508 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1509 return NULL;
1510
1511 root = kzalloc(sizeof(*root), GFP_KERNEL);
1512 if (!root)
1513 return ERR_PTR(-ENOMEM);
1514
2c6ab6d2
PM
1515 if (!init_root_id(root)) {
1516 kfree(root);
1517 return ERR_PTR(-ENOMEM);
1518 }
c6d57f33 1519 init_cgroup_root(root);
2c6ab6d2 1520
a1a71b45 1521 root->subsys_mask = opts->subsys_mask;
c6d57f33 1522 root->flags = opts->flags;
0a950f65 1523 ida_init(&root->cgroup_ida);
c6d57f33
PM
1524 if (opts->release_agent)
1525 strcpy(root->release_agent_path, opts->release_agent);
1526 if (opts->name)
1527 strcpy(root->name, opts->name);
2260e7fc
TH
1528 if (opts->cpuset_clone_children)
1529 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1530 return root;
1531}
1532
2c6ab6d2
PM
1533static void cgroup_drop_root(struct cgroupfs_root *root)
1534{
1535 if (!root)
1536 return;
1537
1538 BUG_ON(!root->hierarchy_id);
1539 spin_lock(&hierarchy_id_lock);
1540 ida_remove(&hierarchy_ida, root->hierarchy_id);
1541 spin_unlock(&hierarchy_id_lock);
0a950f65 1542 ida_destroy(&root->cgroup_ida);
2c6ab6d2
PM
1543 kfree(root);
1544}
1545
ddbcc7e8
PM
1546static int cgroup_set_super(struct super_block *sb, void *data)
1547{
1548 int ret;
c6d57f33
PM
1549 struct cgroup_sb_opts *opts = data;
1550
1551 /* If we don't have a new root, we can't set up a new sb */
1552 if (!opts->new_root)
1553 return -EINVAL;
1554
a1a71b45 1555 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1556
1557 ret = set_anon_super(sb, NULL);
1558 if (ret)
1559 return ret;
1560
c6d57f33
PM
1561 sb->s_fs_info = opts->new_root;
1562 opts->new_root->sb = sb;
ddbcc7e8
PM
1563
1564 sb->s_blocksize = PAGE_CACHE_SIZE;
1565 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1566 sb->s_magic = CGROUP_SUPER_MAGIC;
1567 sb->s_op = &cgroup_ops;
1568
1569 return 0;
1570}
1571
1572static int cgroup_get_rootdir(struct super_block *sb)
1573{
0df6a63f
AV
1574 static const struct dentry_operations cgroup_dops = {
1575 .d_iput = cgroup_diput,
c72a04e3 1576 .d_delete = cgroup_delete,
0df6a63f
AV
1577 };
1578
ddbcc7e8
PM
1579 struct inode *inode =
1580 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1581
1582 if (!inode)
1583 return -ENOMEM;
1584
ddbcc7e8
PM
1585 inode->i_fop = &simple_dir_operations;
1586 inode->i_op = &cgroup_dir_inode_operations;
1587 /* directories start off with i_nlink == 2 (for "." entry) */
1588 inc_nlink(inode);
48fde701
AV
1589 sb->s_root = d_make_root(inode);
1590 if (!sb->s_root)
ddbcc7e8 1591 return -ENOMEM;
0df6a63f
AV
1592 /* for everything else we want ->d_op set */
1593 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1594 return 0;
1595}
1596
f7e83571 1597static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1598 int flags, const char *unused_dev_name,
f7e83571 1599 void *data)
ddbcc7e8
PM
1600{
1601 struct cgroup_sb_opts opts;
c6d57f33 1602 struct cgroupfs_root *root;
ddbcc7e8
PM
1603 int ret = 0;
1604 struct super_block *sb;
c6d57f33 1605 struct cgroupfs_root *new_root;
e25e2cbb 1606 struct inode *inode;
ddbcc7e8
PM
1607
1608 /* First find the desired set of subsystems */
aae8aab4 1609 mutex_lock(&cgroup_mutex);
ddbcc7e8 1610 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1611 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1612 if (ret)
1613 goto out_err;
ddbcc7e8 1614
c6d57f33
PM
1615 /*
1616 * Allocate a new cgroup root. We may not need it if we're
1617 * reusing an existing hierarchy.
1618 */
1619 new_root = cgroup_root_from_opts(&opts);
1620 if (IS_ERR(new_root)) {
1621 ret = PTR_ERR(new_root);
cf5d5941 1622 goto drop_modules;
81a6a5cd 1623 }
c6d57f33 1624 opts.new_root = new_root;
ddbcc7e8 1625
c6d57f33 1626 /* Locate an existing or new sb for this hierarchy */
9249e17f 1627 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1628 if (IS_ERR(sb)) {
c6d57f33 1629 ret = PTR_ERR(sb);
2c6ab6d2 1630 cgroup_drop_root(opts.new_root);
cf5d5941 1631 goto drop_modules;
ddbcc7e8
PM
1632 }
1633
c6d57f33
PM
1634 root = sb->s_fs_info;
1635 BUG_ON(!root);
1636 if (root == opts.new_root) {
1637 /* We used the new root structure, so this is a new hierarchy */
1638 struct list_head tmp_cg_links;
c12f65d4 1639 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1640 struct cgroupfs_root *existing_root;
2ce9738b 1641 const struct cred *cred;
28fd5dfc 1642 int i;
0ac801fe 1643 struct css_set *cg;
ddbcc7e8
PM
1644
1645 BUG_ON(sb->s_root != NULL);
1646
1647 ret = cgroup_get_rootdir(sb);
1648 if (ret)
1649 goto drop_new_super;
817929ec 1650 inode = sb->s_root->d_inode;
ddbcc7e8 1651
817929ec 1652 mutex_lock(&inode->i_mutex);
ddbcc7e8 1653 mutex_lock(&cgroup_mutex);
e25e2cbb 1654 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1655
e25e2cbb
TH
1656 /* Check for name clashes with existing mounts */
1657 ret = -EBUSY;
1658 if (strlen(root->name))
1659 for_each_active_root(existing_root)
1660 if (!strcmp(existing_root->name, root->name))
1661 goto unlock_drop;
c6d57f33 1662
817929ec
PM
1663 /*
1664 * We're accessing css_set_count without locking
1665 * css_set_lock here, but that's OK - it can only be
1666 * increased by someone holding cgroup_lock, and
1667 * that's us. The worst that can happen is that we
1668 * have some link structures left over
1669 */
1670 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1671 if (ret)
1672 goto unlock_drop;
817929ec 1673
a1a71b45 1674 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1675 if (ret == -EBUSY) {
c6d57f33 1676 free_cg_links(&tmp_cg_links);
e25e2cbb 1677 goto unlock_drop;
ddbcc7e8 1678 }
cf5d5941
BB
1679 /*
1680 * There must be no failure case after here, since rebinding
1681 * takes care of subsystems' refcounts, which are explicitly
1682 * dropped in the failure exit path.
1683 */
ddbcc7e8
PM
1684
1685 /* EBUSY should be the only error here */
1686 BUG_ON(ret);
1687
1688 list_add(&root->root_list, &roots);
817929ec 1689 root_count++;
ddbcc7e8 1690
c12f65d4 1691 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1692 root->top_cgroup.dentry = sb->s_root;
1693
817929ec
PM
1694 /* Link the top cgroup in this hierarchy into all
1695 * the css_set objects */
1696 write_lock(&css_set_lock);
b67bfe0d 1697 hash_for_each(css_set_table, i, cg, hlist)
0ac801fe 1698 link_css_set(&tmp_cg_links, cg, root_cgrp);
817929ec
PM
1699 write_unlock(&css_set_lock);
1700
1701 free_cg_links(&tmp_cg_links);
1702
c12f65d4 1703 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1704 BUG_ON(root->number_of_cgroups != 1);
1705
2ce9738b 1706 cred = override_creds(&init_cred);
a1a71b45 1707 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1708 revert_creds(cred);
e25e2cbb 1709 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1710 mutex_unlock(&cgroup_mutex);
34f77a90 1711 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1712 } else {
1713 /*
1714 * We re-used an existing hierarchy - the new root (if
1715 * any) is not needed
1716 */
2c6ab6d2 1717 cgroup_drop_root(opts.new_root);
cf5d5941 1718 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1719 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1720 }
1721
c6d57f33
PM
1722 kfree(opts.release_agent);
1723 kfree(opts.name);
f7e83571 1724 return dget(sb->s_root);
ddbcc7e8 1725
e25e2cbb
TH
1726 unlock_drop:
1727 mutex_unlock(&cgroup_root_mutex);
1728 mutex_unlock(&cgroup_mutex);
1729 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1730 drop_new_super:
6f5bbff9 1731 deactivate_locked_super(sb);
cf5d5941 1732 drop_modules:
a1a71b45 1733 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1734 out_err:
1735 kfree(opts.release_agent);
1736 kfree(opts.name);
f7e83571 1737 return ERR_PTR(ret);
ddbcc7e8
PM
1738}
1739
1740static void cgroup_kill_sb(struct super_block *sb) {
1741 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1742 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1743 int ret;
71cbb949
KM
1744 struct cg_cgroup_link *link;
1745 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1746
1747 BUG_ON(!root);
1748
1749 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1750 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1751
1752 mutex_lock(&cgroup_mutex);
e25e2cbb 1753 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1754
1755 /* Rebind all subsystems back to the default hierarchy */
1756 ret = rebind_subsystems(root, 0);
1757 /* Shouldn't be able to fail ... */
1758 BUG_ON(ret);
1759
817929ec
PM
1760 /*
1761 * Release all the links from css_sets to this hierarchy's
1762 * root cgroup
1763 */
1764 write_lock(&css_set_lock);
71cbb949
KM
1765
1766 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1767 cgrp_link_list) {
817929ec 1768 list_del(&link->cg_link_list);
bd89aabc 1769 list_del(&link->cgrp_link_list);
817929ec
PM
1770 kfree(link);
1771 }
1772 write_unlock(&css_set_lock);
1773
839ec545
PM
1774 if (!list_empty(&root->root_list)) {
1775 list_del(&root->root_list);
1776 root_count--;
1777 }
e5f6a860 1778
e25e2cbb 1779 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1780 mutex_unlock(&cgroup_mutex);
1781
03b1cde6
AR
1782 simple_xattrs_free(&cgrp->xattrs);
1783
ddbcc7e8 1784 kill_litter_super(sb);
2c6ab6d2 1785 cgroup_drop_root(root);
ddbcc7e8
PM
1786}
1787
1788static struct file_system_type cgroup_fs_type = {
1789 .name = "cgroup",
f7e83571 1790 .mount = cgroup_mount,
ddbcc7e8
PM
1791 .kill_sb = cgroup_kill_sb,
1792};
1793
676db4af
GK
1794static struct kobject *cgroup_kobj;
1795
a043e3b2
LZ
1796/**
1797 * cgroup_path - generate the path of a cgroup
1798 * @cgrp: the cgroup in question
1799 * @buf: the buffer to write the path into
1800 * @buflen: the length of the buffer
1801 *
65dff759
LZ
1802 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1803 *
1804 * We can't generate cgroup path using dentry->d_name, as accessing
1805 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1806 * inode's i_mutex, while on the other hand cgroup_path() can be called
1807 * with some irq-safe spinlocks held.
ddbcc7e8 1808 */
bd89aabc 1809int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1810{
65dff759 1811 int ret = -ENAMETOOLONG;
ddbcc7e8 1812 char *start;
febfcef6 1813
316eb661 1814 start = buf + buflen - 1;
316eb661 1815 *start = '\0';
9a9686b6 1816
65dff759
LZ
1817 rcu_read_lock();
1818 while (cgrp) {
1819 const char *name = cgroup_name(cgrp);
1820 int len;
1821
1822 len = strlen(name);
ddbcc7e8 1823 if ((start -= len) < buf)
65dff759
LZ
1824 goto out;
1825 memcpy(start, name, len);
9a9686b6 1826
bd89aabc 1827 if (!cgrp->parent)
65dff759
LZ
1828 break;
1829
ddbcc7e8 1830 if (--start < buf)
65dff759 1831 goto out;
ddbcc7e8 1832 *start = '/';
65dff759
LZ
1833
1834 cgrp = cgrp->parent;
ddbcc7e8 1835 }
65dff759 1836 ret = 0;
ddbcc7e8 1837 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1838out:
1839 rcu_read_unlock();
1840 return ret;
ddbcc7e8 1841}
67523c48 1842EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1843
2f7ee569
TH
1844/*
1845 * Control Group taskset
1846 */
134d3373
TH
1847struct task_and_cgroup {
1848 struct task_struct *task;
1849 struct cgroup *cgrp;
61d1d219 1850 struct css_set *cg;
134d3373
TH
1851};
1852
2f7ee569
TH
1853struct cgroup_taskset {
1854 struct task_and_cgroup single;
1855 struct flex_array *tc_array;
1856 int tc_array_len;
1857 int idx;
1858 struct cgroup *cur_cgrp;
1859};
1860
1861/**
1862 * cgroup_taskset_first - reset taskset and return the first task
1863 * @tset: taskset of interest
1864 *
1865 * @tset iteration is initialized and the first task is returned.
1866 */
1867struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1868{
1869 if (tset->tc_array) {
1870 tset->idx = 0;
1871 return cgroup_taskset_next(tset);
1872 } else {
1873 tset->cur_cgrp = tset->single.cgrp;
1874 return tset->single.task;
1875 }
1876}
1877EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1878
1879/**
1880 * cgroup_taskset_next - iterate to the next task in taskset
1881 * @tset: taskset of interest
1882 *
1883 * Return the next task in @tset. Iteration must have been initialized
1884 * with cgroup_taskset_first().
1885 */
1886struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1887{
1888 struct task_and_cgroup *tc;
1889
1890 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1891 return NULL;
1892
1893 tc = flex_array_get(tset->tc_array, tset->idx++);
1894 tset->cur_cgrp = tc->cgrp;
1895 return tc->task;
1896}
1897EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1898
1899/**
1900 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1901 * @tset: taskset of interest
1902 *
1903 * Return the cgroup for the current (last returned) task of @tset. This
1904 * function must be preceded by either cgroup_taskset_first() or
1905 * cgroup_taskset_next().
1906 */
1907struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1908{
1909 return tset->cur_cgrp;
1910}
1911EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1912
1913/**
1914 * cgroup_taskset_size - return the number of tasks in taskset
1915 * @tset: taskset of interest
1916 */
1917int cgroup_taskset_size(struct cgroup_taskset *tset)
1918{
1919 return tset->tc_array ? tset->tc_array_len : 1;
1920}
1921EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1922
1923
74a1166d
BB
1924/*
1925 * cgroup_task_migrate - move a task from one cgroup to another.
1926 *
d0b2fdd2 1927 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1928 */
1e2ccd1c 1929static void cgroup_task_migrate(struct cgroup *oldcgrp,
61d1d219 1930 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1931{
1932 struct css_set *oldcg;
74a1166d
BB
1933
1934 /*
026085ef
MSB
1935 * We are synchronized through threadgroup_lock() against PF_EXITING
1936 * setting such that we can't race against cgroup_exit() changing the
1937 * css_set to init_css_set and dropping the old one.
74a1166d 1938 */
c84cdf75 1939 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1940 oldcg = tsk->cgroups;
74a1166d 1941
74a1166d 1942 task_lock(tsk);
74a1166d
BB
1943 rcu_assign_pointer(tsk->cgroups, newcg);
1944 task_unlock(tsk);
1945
1946 /* Update the css_set linked lists if we're using them */
1947 write_lock(&css_set_lock);
1948 if (!list_empty(&tsk->cg_list))
1949 list_move(&tsk->cg_list, &newcg->tasks);
1950 write_unlock(&css_set_lock);
1951
1952 /*
1953 * We just gained a reference on oldcg by taking it from the task. As
1954 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1955 * it here; it will be freed under RCU.
1956 */
74a1166d 1957 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1f5320d5 1958 put_css_set(oldcg);
74a1166d
BB
1959}
1960
74a1166d 1961/**
081aa458 1962 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1963 * @cgrp: the cgroup to attach to
081aa458
LZ
1964 * @tsk: the task or the leader of the threadgroup to be attached
1965 * @threadgroup: attach the whole threadgroup?
74a1166d 1966 *
257058ae 1967 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1968 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1969 */
081aa458
LZ
1970int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1971 bool threadgroup)
74a1166d
BB
1972{
1973 int retval, i, group_size;
1974 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1975 struct cgroupfs_root *root = cgrp->root;
1976 /* threadgroup list cursor and array */
081aa458 1977 struct task_struct *leader = tsk;
134d3373 1978 struct task_and_cgroup *tc;
d846687d 1979 struct flex_array *group;
2f7ee569 1980 struct cgroup_taskset tset = { };
74a1166d
BB
1981
1982 /*
1983 * step 0: in order to do expensive, possibly blocking operations for
1984 * every thread, we cannot iterate the thread group list, since it needs
1985 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1986 * group - group_rwsem prevents new threads from appearing, and if
1987 * threads exit, this will just be an over-estimate.
74a1166d 1988 */
081aa458
LZ
1989 if (threadgroup)
1990 group_size = get_nr_threads(tsk);
1991 else
1992 group_size = 1;
d846687d 1993 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1994 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1995 if (!group)
1996 return -ENOMEM;
d846687d 1997 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1998 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1999 if (retval)
2000 goto out_free_group_list;
74a1166d 2001
74a1166d 2002 i = 0;
fb5d2b4c
MSB
2003 /*
2004 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2005 * already PF_EXITING could be freed from underneath us unless we
2006 * take an rcu_read_lock.
2007 */
2008 rcu_read_lock();
74a1166d 2009 do {
134d3373
TH
2010 struct task_and_cgroup ent;
2011
cd3d0952
TH
2012 /* @tsk either already exited or can't exit until the end */
2013 if (tsk->flags & PF_EXITING)
2014 continue;
2015
74a1166d
BB
2016 /* as per above, nr_threads may decrease, but not increase. */
2017 BUG_ON(i >= group_size);
134d3373
TH
2018 ent.task = tsk;
2019 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2020 /* nothing to do if this task is already in the cgroup */
2021 if (ent.cgrp == cgrp)
2022 continue;
61d1d219
MSB
2023 /*
2024 * saying GFP_ATOMIC has no effect here because we did prealloc
2025 * earlier, but it's good form to communicate our expectations.
2026 */
134d3373 2027 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2028 BUG_ON(retval != 0);
74a1166d 2029 i++;
081aa458
LZ
2030
2031 if (!threadgroup)
2032 break;
74a1166d 2033 } while_each_thread(leader, tsk);
fb5d2b4c 2034 rcu_read_unlock();
74a1166d
BB
2035 /* remember the number of threads in the array for later. */
2036 group_size = i;
2f7ee569
TH
2037 tset.tc_array = group;
2038 tset.tc_array_len = group_size;
74a1166d 2039
134d3373
TH
2040 /* methods shouldn't be called if no task is actually migrating */
2041 retval = 0;
892a2b90 2042 if (!group_size)
b07ef774 2043 goto out_free_group_list;
134d3373 2044
74a1166d
BB
2045 /*
2046 * step 1: check that we can legitimately attach to the cgroup.
2047 */
2048 for_each_subsys(root, ss) {
2049 if (ss->can_attach) {
761b3ef5 2050 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2051 if (retval) {
2052 failed_ss = ss;
2053 goto out_cancel_attach;
2054 }
2055 }
74a1166d
BB
2056 }
2057
2058 /*
2059 * step 2: make sure css_sets exist for all threads to be migrated.
2060 * we use find_css_set, which allocates a new one if necessary.
2061 */
74a1166d 2062 for (i = 0; i < group_size; i++) {
134d3373 2063 tc = flex_array_get(group, i);
61d1d219
MSB
2064 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2065 if (!tc->cg) {
2066 retval = -ENOMEM;
2067 goto out_put_css_set_refs;
74a1166d
BB
2068 }
2069 }
2070
2071 /*
494c167c
TH
2072 * step 3: now that we're guaranteed success wrt the css_sets,
2073 * proceed to move all tasks to the new cgroup. There are no
2074 * failure cases after here, so this is the commit point.
74a1166d 2075 */
74a1166d 2076 for (i = 0; i < group_size; i++) {
134d3373 2077 tc = flex_array_get(group, i);
1e2ccd1c 2078 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2079 }
2080 /* nothing is sensitive to fork() after this point. */
2081
2082 /*
494c167c 2083 * step 4: do subsystem attach callbacks.
74a1166d
BB
2084 */
2085 for_each_subsys(root, ss) {
2086 if (ss->attach)
761b3ef5 2087 ss->attach(cgrp, &tset);
74a1166d
BB
2088 }
2089
2090 /*
2091 * step 5: success! and cleanup
2092 */
74a1166d 2093 retval = 0;
61d1d219
MSB
2094out_put_css_set_refs:
2095 if (retval) {
2096 for (i = 0; i < group_size; i++) {
2097 tc = flex_array_get(group, i);
2098 if (!tc->cg)
2099 break;
2100 put_css_set(tc->cg);
2101 }
74a1166d
BB
2102 }
2103out_cancel_attach:
74a1166d
BB
2104 if (retval) {
2105 for_each_subsys(root, ss) {
494c167c 2106 if (ss == failed_ss)
74a1166d 2107 break;
74a1166d 2108 if (ss->cancel_attach)
761b3ef5 2109 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2110 }
2111 }
74a1166d 2112out_free_group_list:
d846687d 2113 flex_array_free(group);
74a1166d
BB
2114 return retval;
2115}
2116
2117/*
2118 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2119 * function to attach either it or all tasks in its threadgroup. Will lock
2120 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2121 */
74a1166d 2122static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2123{
bbcb81d0 2124 struct task_struct *tsk;
c69e8d9c 2125 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2126 int ret;
2127
74a1166d
BB
2128 if (!cgroup_lock_live_group(cgrp))
2129 return -ENODEV;
2130
b78949eb
MSB
2131retry_find_task:
2132 rcu_read_lock();
bbcb81d0 2133 if (pid) {
73507f33 2134 tsk = find_task_by_vpid(pid);
74a1166d
BB
2135 if (!tsk) {
2136 rcu_read_unlock();
b78949eb
MSB
2137 ret= -ESRCH;
2138 goto out_unlock_cgroup;
bbcb81d0 2139 }
74a1166d
BB
2140 /*
2141 * even if we're attaching all tasks in the thread group, we
2142 * only need to check permissions on one of them.
2143 */
c69e8d9c 2144 tcred = __task_cred(tsk);
14a590c3
EB
2145 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2146 !uid_eq(cred->euid, tcred->uid) &&
2147 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2148 rcu_read_unlock();
b78949eb
MSB
2149 ret = -EACCES;
2150 goto out_unlock_cgroup;
bbcb81d0 2151 }
b78949eb
MSB
2152 } else
2153 tsk = current;
cd3d0952
TH
2154
2155 if (threadgroup)
b78949eb 2156 tsk = tsk->group_leader;
c4c27fbd
MG
2157
2158 /*
2159 * Workqueue threads may acquire PF_THREAD_BOUND and become
2160 * trapped in a cpuset, or RT worker may be born in a cgroup
2161 * with no rt_runtime allocated. Just say no.
2162 */
2163 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2164 ret = -EINVAL;
2165 rcu_read_unlock();
2166 goto out_unlock_cgroup;
2167 }
2168
b78949eb
MSB
2169 get_task_struct(tsk);
2170 rcu_read_unlock();
2171
2172 threadgroup_lock(tsk);
2173 if (threadgroup) {
2174 if (!thread_group_leader(tsk)) {
2175 /*
2176 * a race with de_thread from another thread's exec()
2177 * may strip us of our leadership, if this happens,
2178 * there is no choice but to throw this task away and
2179 * try again; this is
2180 * "double-double-toil-and-trouble-check locking".
2181 */
2182 threadgroup_unlock(tsk);
2183 put_task_struct(tsk);
2184 goto retry_find_task;
2185 }
081aa458
LZ
2186 }
2187
2188 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2189
cd3d0952
TH
2190 threadgroup_unlock(tsk);
2191
bbcb81d0 2192 put_task_struct(tsk);
b78949eb 2193out_unlock_cgroup:
74a1166d 2194 cgroup_unlock();
bbcb81d0
PM
2195 return ret;
2196}
2197
7ae1bad9
TH
2198/**
2199 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2200 * @from: attach to all cgroups of a given task
2201 * @tsk: the task to be attached
2202 */
2203int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2204{
2205 struct cgroupfs_root *root;
2206 int retval = 0;
2207
2208 cgroup_lock();
2209 for_each_active_root(root) {
2210 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2211
2212 retval = cgroup_attach_task(from_cg, tsk, false);
2213 if (retval)
2214 break;
2215 }
2216 cgroup_unlock();
2217
2218 return retval;
2219}
2220EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2221
af351026 2222static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2223{
2224 return attach_task_by_pid(cgrp, pid, false);
2225}
2226
2227static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2228{
b78949eb 2229 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2230}
2231
e788e066
PM
2232static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2233 const char *buffer)
2234{
2235 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2236 if (strlen(buffer) >= PATH_MAX)
2237 return -EINVAL;
e788e066
PM
2238 if (!cgroup_lock_live_group(cgrp))
2239 return -ENODEV;
e25e2cbb 2240 mutex_lock(&cgroup_root_mutex);
e788e066 2241 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2242 mutex_unlock(&cgroup_root_mutex);
84eea842 2243 cgroup_unlock();
e788e066
PM
2244 return 0;
2245}
2246
2247static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2248 struct seq_file *seq)
2249{
2250 if (!cgroup_lock_live_group(cgrp))
2251 return -ENODEV;
2252 seq_puts(seq, cgrp->root->release_agent_path);
2253 seq_putc(seq, '\n');
84eea842 2254 cgroup_unlock();
e788e066
PM
2255 return 0;
2256}
2257
84eea842
PM
2258/* A buffer size big enough for numbers or short strings */
2259#define CGROUP_LOCAL_BUFFER_SIZE 64
2260
e73d2c61 2261static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2262 struct file *file,
2263 const char __user *userbuf,
2264 size_t nbytes, loff_t *unused_ppos)
355e0c48 2265{
84eea842 2266 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2267 int retval = 0;
355e0c48
PM
2268 char *end;
2269
2270 if (!nbytes)
2271 return -EINVAL;
2272 if (nbytes >= sizeof(buffer))
2273 return -E2BIG;
2274 if (copy_from_user(buffer, userbuf, nbytes))
2275 return -EFAULT;
2276
2277 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2278 if (cft->write_u64) {
478988d3 2279 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2280 if (*end)
2281 return -EINVAL;
2282 retval = cft->write_u64(cgrp, cft, val);
2283 } else {
478988d3 2284 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2285 if (*end)
2286 return -EINVAL;
2287 retval = cft->write_s64(cgrp, cft, val);
2288 }
355e0c48
PM
2289 if (!retval)
2290 retval = nbytes;
2291 return retval;
2292}
2293
db3b1497
PM
2294static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2295 struct file *file,
2296 const char __user *userbuf,
2297 size_t nbytes, loff_t *unused_ppos)
2298{
84eea842 2299 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2300 int retval = 0;
2301 size_t max_bytes = cft->max_write_len;
2302 char *buffer = local_buffer;
2303
2304 if (!max_bytes)
2305 max_bytes = sizeof(local_buffer) - 1;
2306 if (nbytes >= max_bytes)
2307 return -E2BIG;
2308 /* Allocate a dynamic buffer if we need one */
2309 if (nbytes >= sizeof(local_buffer)) {
2310 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2311 if (buffer == NULL)
2312 return -ENOMEM;
2313 }
5a3eb9f6
LZ
2314 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2315 retval = -EFAULT;
2316 goto out;
2317 }
db3b1497
PM
2318
2319 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2320 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2321 if (!retval)
2322 retval = nbytes;
5a3eb9f6 2323out:
db3b1497
PM
2324 if (buffer != local_buffer)
2325 kfree(buffer);
2326 return retval;
2327}
2328
ddbcc7e8
PM
2329static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2330 size_t nbytes, loff_t *ppos)
2331{
2332 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2333 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2334
75139b82 2335 if (cgroup_is_removed(cgrp))
ddbcc7e8 2336 return -ENODEV;
355e0c48 2337 if (cft->write)
bd89aabc 2338 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2339 if (cft->write_u64 || cft->write_s64)
2340 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2341 if (cft->write_string)
2342 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2343 if (cft->trigger) {
2344 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2345 return ret ? ret : nbytes;
2346 }
355e0c48 2347 return -EINVAL;
ddbcc7e8
PM
2348}
2349
f4c753b7
PM
2350static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2351 struct file *file,
2352 char __user *buf, size_t nbytes,
2353 loff_t *ppos)
ddbcc7e8 2354{
84eea842 2355 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2356 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2357 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2358
2359 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2360}
2361
e73d2c61
PM
2362static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2363 struct file *file,
2364 char __user *buf, size_t nbytes,
2365 loff_t *ppos)
2366{
84eea842 2367 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2368 s64 val = cft->read_s64(cgrp, cft);
2369 int len = sprintf(tmp, "%lld\n", (long long) val);
2370
2371 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2372}
2373
ddbcc7e8
PM
2374static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2375 size_t nbytes, loff_t *ppos)
2376{
2377 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2378 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2379
75139b82 2380 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2381 return -ENODEV;
2382
2383 if (cft->read)
bd89aabc 2384 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2385 if (cft->read_u64)
2386 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2387 if (cft->read_s64)
2388 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2389 return -EINVAL;
2390}
2391
91796569
PM
2392/*
2393 * seqfile ops/methods for returning structured data. Currently just
2394 * supports string->u64 maps, but can be extended in future.
2395 */
2396
2397struct cgroup_seqfile_state {
2398 struct cftype *cft;
2399 struct cgroup *cgroup;
2400};
2401
2402static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2403{
2404 struct seq_file *sf = cb->state;
2405 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2406}
2407
2408static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2409{
2410 struct cgroup_seqfile_state *state = m->private;
2411 struct cftype *cft = state->cft;
29486df3
SH
2412 if (cft->read_map) {
2413 struct cgroup_map_cb cb = {
2414 .fill = cgroup_map_add,
2415 .state = m,
2416 };
2417 return cft->read_map(state->cgroup, cft, &cb);
2418 }
2419 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2420}
2421
96930a63 2422static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2423{
2424 struct seq_file *seq = file->private_data;
2425 kfree(seq->private);
2426 return single_release(inode, file);
2427}
2428
828c0950 2429static const struct file_operations cgroup_seqfile_operations = {
91796569 2430 .read = seq_read,
e788e066 2431 .write = cgroup_file_write,
91796569
PM
2432 .llseek = seq_lseek,
2433 .release = cgroup_seqfile_release,
2434};
2435
ddbcc7e8
PM
2436static int cgroup_file_open(struct inode *inode, struct file *file)
2437{
2438 int err;
2439 struct cftype *cft;
2440
2441 err = generic_file_open(inode, file);
2442 if (err)
2443 return err;
ddbcc7e8 2444 cft = __d_cft(file->f_dentry);
75139b82 2445
29486df3 2446 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2447 struct cgroup_seqfile_state *state =
2448 kzalloc(sizeof(*state), GFP_USER);
2449 if (!state)
2450 return -ENOMEM;
2451 state->cft = cft;
2452 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2453 file->f_op = &cgroup_seqfile_operations;
2454 err = single_open(file, cgroup_seqfile_show, state);
2455 if (err < 0)
2456 kfree(state);
2457 } else if (cft->open)
ddbcc7e8
PM
2458 err = cft->open(inode, file);
2459 else
2460 err = 0;
2461
2462 return err;
2463}
2464
2465static int cgroup_file_release(struct inode *inode, struct file *file)
2466{
2467 struct cftype *cft = __d_cft(file->f_dentry);
2468 if (cft->release)
2469 return cft->release(inode, file);
2470 return 0;
2471}
2472
2473/*
2474 * cgroup_rename - Only allow simple rename of directories in place.
2475 */
2476static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2477 struct inode *new_dir, struct dentry *new_dentry)
2478{
65dff759
LZ
2479 int ret;
2480 struct cgroup_name *name, *old_name;
2481 struct cgroup *cgrp;
2482
2483 /*
2484 * It's convinient to use parent dir's i_mutex to protected
2485 * cgrp->name.
2486 */
2487 lockdep_assert_held(&old_dir->i_mutex);
2488
ddbcc7e8
PM
2489 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2490 return -ENOTDIR;
2491 if (new_dentry->d_inode)
2492 return -EEXIST;
2493 if (old_dir != new_dir)
2494 return -EIO;
65dff759
LZ
2495
2496 cgrp = __d_cgrp(old_dentry);
2497
2498 name = cgroup_alloc_name(new_dentry);
2499 if (!name)
2500 return -ENOMEM;
2501
2502 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2503 if (ret) {
2504 kfree(name);
2505 return ret;
2506 }
2507
2508 old_name = cgrp->name;
2509 rcu_assign_pointer(cgrp->name, name);
2510
2511 kfree_rcu(old_name, rcu_head);
2512 return 0;
ddbcc7e8
PM
2513}
2514
03b1cde6
AR
2515static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2516{
2517 if (S_ISDIR(dentry->d_inode->i_mode))
2518 return &__d_cgrp(dentry)->xattrs;
2519 else
2520 return &__d_cft(dentry)->xattrs;
2521}
2522
2523static inline int xattr_enabled(struct dentry *dentry)
2524{
2525 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2526 return test_bit(ROOT_XATTR, &root->flags);
2527}
2528
2529static bool is_valid_xattr(const char *name)
2530{
2531 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2532 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2533 return true;
2534 return false;
2535}
2536
2537static int cgroup_setxattr(struct dentry *dentry, const char *name,
2538 const void *val, size_t size, int flags)
2539{
2540 if (!xattr_enabled(dentry))
2541 return -EOPNOTSUPP;
2542 if (!is_valid_xattr(name))
2543 return -EINVAL;
2544 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2545}
2546
2547static int cgroup_removexattr(struct dentry *dentry, const char *name)
2548{
2549 if (!xattr_enabled(dentry))
2550 return -EOPNOTSUPP;
2551 if (!is_valid_xattr(name))
2552 return -EINVAL;
2553 return simple_xattr_remove(__d_xattrs(dentry), name);
2554}
2555
2556static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2557 void *buf, size_t size)
2558{
2559 if (!xattr_enabled(dentry))
2560 return -EOPNOTSUPP;
2561 if (!is_valid_xattr(name))
2562 return -EINVAL;
2563 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2564}
2565
2566static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2567{
2568 if (!xattr_enabled(dentry))
2569 return -EOPNOTSUPP;
2570 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2571}
2572
828c0950 2573static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2574 .read = cgroup_file_read,
2575 .write = cgroup_file_write,
2576 .llseek = generic_file_llseek,
2577 .open = cgroup_file_open,
2578 .release = cgroup_file_release,
2579};
2580
03b1cde6
AR
2581static const struct inode_operations cgroup_file_inode_operations = {
2582 .setxattr = cgroup_setxattr,
2583 .getxattr = cgroup_getxattr,
2584 .listxattr = cgroup_listxattr,
2585 .removexattr = cgroup_removexattr,
2586};
2587
6e1d5dcc 2588static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2589 .lookup = cgroup_lookup,
ddbcc7e8
PM
2590 .mkdir = cgroup_mkdir,
2591 .rmdir = cgroup_rmdir,
2592 .rename = cgroup_rename,
03b1cde6
AR
2593 .setxattr = cgroup_setxattr,
2594 .getxattr = cgroup_getxattr,
2595 .listxattr = cgroup_listxattr,
2596 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2597};
2598
00cd8dd3 2599static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2600{
2601 if (dentry->d_name.len > NAME_MAX)
2602 return ERR_PTR(-ENAMETOOLONG);
2603 d_add(dentry, NULL);
2604 return NULL;
2605}
2606
0dea1168
KS
2607/*
2608 * Check if a file is a control file
2609 */
2610static inline struct cftype *__file_cft(struct file *file)
2611{
496ad9aa 2612 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2613 return ERR_PTR(-EINVAL);
2614 return __d_cft(file->f_dentry);
2615}
2616
a5e7ed32 2617static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2618 struct super_block *sb)
2619{
ddbcc7e8
PM
2620 struct inode *inode;
2621
2622 if (!dentry)
2623 return -ENOENT;
2624 if (dentry->d_inode)
2625 return -EEXIST;
2626
2627 inode = cgroup_new_inode(mode, sb);
2628 if (!inode)
2629 return -ENOMEM;
2630
2631 if (S_ISDIR(mode)) {
2632 inode->i_op = &cgroup_dir_inode_operations;
2633 inode->i_fop = &simple_dir_operations;
2634
2635 /* start off with i_nlink == 2 (for "." entry) */
2636 inc_nlink(inode);
28fd6f30 2637 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2638
b8a2df6a
TH
2639 /*
2640 * Control reaches here with cgroup_mutex held.
2641 * @inode->i_mutex should nest outside cgroup_mutex but we
2642 * want to populate it immediately without releasing
2643 * cgroup_mutex. As @inode isn't visible to anyone else
2644 * yet, trylock will always succeed without affecting
2645 * lockdep checks.
2646 */
2647 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2648 } else if (S_ISREG(mode)) {
2649 inode->i_size = 0;
2650 inode->i_fop = &cgroup_file_operations;
03b1cde6 2651 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2652 }
ddbcc7e8
PM
2653 d_instantiate(dentry, inode);
2654 dget(dentry); /* Extra count - pin the dentry in core */
2655 return 0;
2656}
2657
099fca32
LZ
2658/**
2659 * cgroup_file_mode - deduce file mode of a control file
2660 * @cft: the control file in question
2661 *
2662 * returns cft->mode if ->mode is not 0
2663 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2664 * returns S_IRUGO if it has only a read handler
2665 * returns S_IWUSR if it has only a write hander
2666 */
a5e7ed32 2667static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2668{
a5e7ed32 2669 umode_t mode = 0;
099fca32
LZ
2670
2671 if (cft->mode)
2672 return cft->mode;
2673
2674 if (cft->read || cft->read_u64 || cft->read_s64 ||
2675 cft->read_map || cft->read_seq_string)
2676 mode |= S_IRUGO;
2677
2678 if (cft->write || cft->write_u64 || cft->write_s64 ||
2679 cft->write_string || cft->trigger)
2680 mode |= S_IWUSR;
2681
2682 return mode;
2683}
2684
db0416b6 2685static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2686 struct cftype *cft)
ddbcc7e8 2687{
bd89aabc 2688 struct dentry *dir = cgrp->dentry;
05ef1d7c 2689 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2690 struct dentry *dentry;
05ef1d7c 2691 struct cfent *cfe;
ddbcc7e8 2692 int error;
a5e7ed32 2693 umode_t mode;
ddbcc7e8 2694 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2695
03b1cde6
AR
2696 simple_xattrs_init(&cft->xattrs);
2697
bd89aabc 2698 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2699 strcpy(name, subsys->name);
2700 strcat(name, ".");
2701 }
2702 strcat(name, cft->name);
05ef1d7c 2703
ddbcc7e8 2704 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2705
2706 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2707 if (!cfe)
2708 return -ENOMEM;
2709
ddbcc7e8 2710 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2711 if (IS_ERR(dentry)) {
ddbcc7e8 2712 error = PTR_ERR(dentry);
05ef1d7c
TH
2713 goto out;
2714 }
2715
2716 mode = cgroup_file_mode(cft);
2717 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2718 if (!error) {
2719 cfe->type = (void *)cft;
2720 cfe->dentry = dentry;
2721 dentry->d_fsdata = cfe;
2722 list_add_tail(&cfe->node, &parent->files);
2723 cfe = NULL;
2724 }
2725 dput(dentry);
2726out:
2727 kfree(cfe);
ddbcc7e8
PM
2728 return error;
2729}
2730
79578621 2731static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2732 struct cftype cfts[], bool is_add)
ddbcc7e8 2733{
03b1cde6 2734 struct cftype *cft;
db0416b6
TH
2735 int err, ret = 0;
2736
2737 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2
G
2738 /* does cft->flags tell us to skip this file on @cgrp? */
2739 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2740 continue;
2741 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2742 continue;
2743
2739d3cc 2744 if (is_add) {
79578621 2745 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2746 if (err)
2747 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2748 cft->name, err);
db0416b6 2749 ret = err;
2739d3cc
LZ
2750 } else {
2751 cgroup_rm_file(cgrp, cft);
db0416b6 2752 }
ddbcc7e8 2753 }
db0416b6 2754 return ret;
ddbcc7e8
PM
2755}
2756
8e3f6541
TH
2757static DEFINE_MUTEX(cgroup_cft_mutex);
2758
2759static void cgroup_cfts_prepare(void)
2760 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2761{
2762 /*
2763 * Thanks to the entanglement with vfs inode locking, we can't walk
2764 * the existing cgroups under cgroup_mutex and create files.
2765 * Instead, we increment reference on all cgroups and build list of
2766 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2767 * exclusive access to the field.
2768 */
2769 mutex_lock(&cgroup_cft_mutex);
2770 mutex_lock(&cgroup_mutex);
2771}
2772
2773static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2774 struct cftype *cfts, bool is_add)
8e3f6541
TH
2775 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2776{
2777 LIST_HEAD(pending);
2778 struct cgroup *cgrp, *n;
8e3f6541
TH
2779
2780 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2781 if (cfts && ss->root != &rootnode) {
2782 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2783 dget(cgrp->dentry);
2784 list_add_tail(&cgrp->cft_q_node, &pending);
2785 }
2786 }
2787
2788 mutex_unlock(&cgroup_mutex);
2789
2790 /*
2791 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2792 * files for all cgroups which were created before.
2793 */
2794 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2795 struct inode *inode = cgrp->dentry->d_inode;
2796
2797 mutex_lock(&inode->i_mutex);
2798 mutex_lock(&cgroup_mutex);
2799 if (!cgroup_is_removed(cgrp))
79578621 2800 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2801 mutex_unlock(&cgroup_mutex);
2802 mutex_unlock(&inode->i_mutex);
2803
2804 list_del_init(&cgrp->cft_q_node);
2805 dput(cgrp->dentry);
2806 }
2807
2808 mutex_unlock(&cgroup_cft_mutex);
2809}
2810
2811/**
2812 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2813 * @ss: target cgroup subsystem
2814 * @cfts: zero-length name terminated array of cftypes
2815 *
2816 * Register @cfts to @ss. Files described by @cfts are created for all
2817 * existing cgroups to which @ss is attached and all future cgroups will
2818 * have them too. This function can be called anytime whether @ss is
2819 * attached or not.
2820 *
2821 * Returns 0 on successful registration, -errno on failure. Note that this
2822 * function currently returns 0 as long as @cfts registration is successful
2823 * even if some file creation attempts on existing cgroups fail.
2824 */
03b1cde6 2825int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2826{
2827 struct cftype_set *set;
2828
2829 set = kzalloc(sizeof(*set), GFP_KERNEL);
2830 if (!set)
2831 return -ENOMEM;
2832
2833 cgroup_cfts_prepare();
2834 set->cfts = cfts;
2835 list_add_tail(&set->node, &ss->cftsets);
79578621 2836 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2837
2838 return 0;
2839}
2840EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2841
79578621
TH
2842/**
2843 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2844 * @ss: target cgroup subsystem
2845 * @cfts: zero-length name terminated array of cftypes
2846 *
2847 * Unregister @cfts from @ss. Files described by @cfts are removed from
2848 * all existing cgroups to which @ss is attached and all future cgroups
2849 * won't have them either. This function can be called anytime whether @ss
2850 * is attached or not.
2851 *
2852 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2853 * registered with @ss.
2854 */
03b1cde6 2855int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2856{
2857 struct cftype_set *set;
2858
2859 cgroup_cfts_prepare();
2860
2861 list_for_each_entry(set, &ss->cftsets, node) {
2862 if (set->cfts == cfts) {
2863 list_del_init(&set->node);
2864 cgroup_cfts_commit(ss, cfts, false);
2865 return 0;
2866 }
2867 }
2868
2869 cgroup_cfts_commit(ss, NULL, false);
2870 return -ENOENT;
2871}
2872
a043e3b2
LZ
2873/**
2874 * cgroup_task_count - count the number of tasks in a cgroup.
2875 * @cgrp: the cgroup in question
2876 *
2877 * Return the number of tasks in the cgroup.
2878 */
bd89aabc 2879int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2880{
2881 int count = 0;
71cbb949 2882 struct cg_cgroup_link *link;
817929ec
PM
2883
2884 read_lock(&css_set_lock);
71cbb949 2885 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2886 count += atomic_read(&link->cg->refcount);
817929ec
PM
2887 }
2888 read_unlock(&css_set_lock);
bbcb81d0
PM
2889 return count;
2890}
2891
817929ec
PM
2892/*
2893 * Advance a list_head iterator. The iterator should be positioned at
2894 * the start of a css_set
2895 */
bd89aabc 2896static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2897 struct cgroup_iter *it)
817929ec
PM
2898{
2899 struct list_head *l = it->cg_link;
2900 struct cg_cgroup_link *link;
2901 struct css_set *cg;
2902
2903 /* Advance to the next non-empty css_set */
2904 do {
2905 l = l->next;
bd89aabc 2906 if (l == &cgrp->css_sets) {
817929ec
PM
2907 it->cg_link = NULL;
2908 return;
2909 }
bd89aabc 2910 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2911 cg = link->cg;
2912 } while (list_empty(&cg->tasks));
2913 it->cg_link = l;
2914 it->task = cg->tasks.next;
2915}
2916
31a7df01
CW
2917/*
2918 * To reduce the fork() overhead for systems that are not actually
2919 * using their cgroups capability, we don't maintain the lists running
2920 * through each css_set to its tasks until we see the list actually
2921 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2922 */
3df91fe3 2923static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2924{
2925 struct task_struct *p, *g;
2926 write_lock(&css_set_lock);
2927 use_task_css_set_links = 1;
3ce3230a
FW
2928 /*
2929 * We need tasklist_lock because RCU is not safe against
2930 * while_each_thread(). Besides, a forking task that has passed
2931 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2932 * is not guaranteed to have its child immediately visible in the
2933 * tasklist if we walk through it with RCU.
2934 */
2935 read_lock(&tasklist_lock);
31a7df01
CW
2936 do_each_thread(g, p) {
2937 task_lock(p);
0e04388f
LZ
2938 /*
2939 * We should check if the process is exiting, otherwise
2940 * it will race with cgroup_exit() in that the list
2941 * entry won't be deleted though the process has exited.
2942 */
2943 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2944 list_add(&p->cg_list, &p->cgroups->tasks);
2945 task_unlock(p);
2946 } while_each_thread(g, p);
3ce3230a 2947 read_unlock(&tasklist_lock);
31a7df01
CW
2948 write_unlock(&css_set_lock);
2949}
2950
574bd9f7
TH
2951/**
2952 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2953 * @pos: the current position (%NULL to initiate traversal)
2954 * @cgroup: cgroup whose descendants to walk
2955 *
2956 * To be used by cgroup_for_each_descendant_pre(). Find the next
2957 * descendant to visit for pre-order traversal of @cgroup's descendants.
2958 */
2959struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2960 struct cgroup *cgroup)
2961{
2962 struct cgroup *next;
2963
2964 WARN_ON_ONCE(!rcu_read_lock_held());
2965
2966 /* if first iteration, pretend we just visited @cgroup */
2967 if (!pos) {
2968 if (list_empty(&cgroup->children))
2969 return NULL;
2970 pos = cgroup;
2971 }
2972
2973 /* visit the first child if exists */
2974 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2975 if (next)
2976 return next;
2977
2978 /* no child, visit my or the closest ancestor's next sibling */
2979 do {
2980 next = list_entry_rcu(pos->sibling.next, struct cgroup,
2981 sibling);
2982 if (&next->sibling != &pos->parent->children)
2983 return next;
2984
2985 pos = pos->parent;
2986 } while (pos != cgroup);
2987
2988 return NULL;
2989}
2990EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
2991
12a9d2fe
TH
2992/**
2993 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
2994 * @pos: cgroup of interest
2995 *
2996 * Return the rightmost descendant of @pos. If there's no descendant,
2997 * @pos is returned. This can be used during pre-order traversal to skip
2998 * subtree of @pos.
2999 */
3000struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3001{
3002 struct cgroup *last, *tmp;
3003
3004 WARN_ON_ONCE(!rcu_read_lock_held());
3005
3006 do {
3007 last = pos;
3008 /* ->prev isn't RCU safe, walk ->next till the end */
3009 pos = NULL;
3010 list_for_each_entry_rcu(tmp, &last->children, sibling)
3011 pos = tmp;
3012 } while (pos);
3013
3014 return last;
3015}
3016EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3017
574bd9f7
TH
3018static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3019{
3020 struct cgroup *last;
3021
3022 do {
3023 last = pos;
3024 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3025 sibling);
3026 } while (pos);
3027
3028 return last;
3029}
3030
3031/**
3032 * cgroup_next_descendant_post - find the next descendant for post-order walk
3033 * @pos: the current position (%NULL to initiate traversal)
3034 * @cgroup: cgroup whose descendants to walk
3035 *
3036 * To be used by cgroup_for_each_descendant_post(). Find the next
3037 * descendant to visit for post-order traversal of @cgroup's descendants.
3038 */
3039struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3040 struct cgroup *cgroup)
3041{
3042 struct cgroup *next;
3043
3044 WARN_ON_ONCE(!rcu_read_lock_held());
3045
3046 /* if first iteration, visit the leftmost descendant */
3047 if (!pos) {
3048 next = cgroup_leftmost_descendant(cgroup);
3049 return next != cgroup ? next : NULL;
3050 }
3051
3052 /* if there's an unvisited sibling, visit its leftmost descendant */
3053 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3054 if (&next->sibling != &pos->parent->children)
3055 return cgroup_leftmost_descendant(next);
3056
3057 /* no sibling left, visit parent */
3058 next = pos->parent;
3059 return next != cgroup ? next : NULL;
3060}
3061EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3062
bd89aabc 3063void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3064 __acquires(css_set_lock)
817929ec
PM
3065{
3066 /*
3067 * The first time anyone tries to iterate across a cgroup,
3068 * we need to enable the list linking each css_set to its
3069 * tasks, and fix up all existing tasks.
3070 */
31a7df01
CW
3071 if (!use_task_css_set_links)
3072 cgroup_enable_task_cg_lists();
3073
817929ec 3074 read_lock(&css_set_lock);
bd89aabc
PM
3075 it->cg_link = &cgrp->css_sets;
3076 cgroup_advance_iter(cgrp, it);
817929ec
PM
3077}
3078
bd89aabc 3079struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3080 struct cgroup_iter *it)
3081{
3082 struct task_struct *res;
3083 struct list_head *l = it->task;
2019f634 3084 struct cg_cgroup_link *link;
817929ec
PM
3085
3086 /* If the iterator cg is NULL, we have no tasks */
3087 if (!it->cg_link)
3088 return NULL;
3089 res = list_entry(l, struct task_struct, cg_list);
3090 /* Advance iterator to find next entry */
3091 l = l->next;
2019f634
LJ
3092 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3093 if (l == &link->cg->tasks) {
817929ec
PM
3094 /* We reached the end of this task list - move on to
3095 * the next cg_cgroup_link */
bd89aabc 3096 cgroup_advance_iter(cgrp, it);
817929ec
PM
3097 } else {
3098 it->task = l;
3099 }
3100 return res;
3101}
3102
bd89aabc 3103void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3104 __releases(css_set_lock)
817929ec
PM
3105{
3106 read_unlock(&css_set_lock);
3107}
3108
31a7df01
CW
3109static inline int started_after_time(struct task_struct *t1,
3110 struct timespec *time,
3111 struct task_struct *t2)
3112{
3113 int start_diff = timespec_compare(&t1->start_time, time);
3114 if (start_diff > 0) {
3115 return 1;
3116 } else if (start_diff < 0) {
3117 return 0;
3118 } else {
3119 /*
3120 * Arbitrarily, if two processes started at the same
3121 * time, we'll say that the lower pointer value
3122 * started first. Note that t2 may have exited by now
3123 * so this may not be a valid pointer any longer, but
3124 * that's fine - it still serves to distinguish
3125 * between two tasks started (effectively) simultaneously.
3126 */
3127 return t1 > t2;
3128 }
3129}
3130
3131/*
3132 * This function is a callback from heap_insert() and is used to order
3133 * the heap.
3134 * In this case we order the heap in descending task start time.
3135 */
3136static inline int started_after(void *p1, void *p2)
3137{
3138 struct task_struct *t1 = p1;
3139 struct task_struct *t2 = p2;
3140 return started_after_time(t1, &t2->start_time, t2);
3141}
3142
3143/**
3144 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3145 * @scan: struct cgroup_scanner containing arguments for the scan
3146 *
3147 * Arguments include pointers to callback functions test_task() and
3148 * process_task().
3149 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3150 * and if it returns true, call process_task() for it also.
3151 * The test_task pointer may be NULL, meaning always true (select all tasks).
3152 * Effectively duplicates cgroup_iter_{start,next,end}()
3153 * but does not lock css_set_lock for the call to process_task().
3154 * The struct cgroup_scanner may be embedded in any structure of the caller's
3155 * creation.
3156 * It is guaranteed that process_task() will act on every task that
3157 * is a member of the cgroup for the duration of this call. This
3158 * function may or may not call process_task() for tasks that exit
3159 * or move to a different cgroup during the call, or are forked or
3160 * move into the cgroup during the call.
3161 *
3162 * Note that test_task() may be called with locks held, and may in some
3163 * situations be called multiple times for the same task, so it should
3164 * be cheap.
3165 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3166 * pre-allocated and will be used for heap operations (and its "gt" member will
3167 * be overwritten), else a temporary heap will be used (allocation of which
3168 * may cause this function to fail).
3169 */
3170int cgroup_scan_tasks(struct cgroup_scanner *scan)
3171{
3172 int retval, i;
3173 struct cgroup_iter it;
3174 struct task_struct *p, *dropped;
3175 /* Never dereference latest_task, since it's not refcounted */
3176 struct task_struct *latest_task = NULL;
3177 struct ptr_heap tmp_heap;
3178 struct ptr_heap *heap;
3179 struct timespec latest_time = { 0, 0 };
3180
3181 if (scan->heap) {
3182 /* The caller supplied our heap and pre-allocated its memory */
3183 heap = scan->heap;
3184 heap->gt = &started_after;
3185 } else {
3186 /* We need to allocate our own heap memory */
3187 heap = &tmp_heap;
3188 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3189 if (retval)
3190 /* cannot allocate the heap */
3191 return retval;
3192 }
3193
3194 again:
3195 /*
3196 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3197 * to determine which are of interest, and using the scanner's
3198 * "process_task" callback to process any of them that need an update.
3199 * Since we don't want to hold any locks during the task updates,
3200 * gather tasks to be processed in a heap structure.
3201 * The heap is sorted by descending task start time.
3202 * If the statically-sized heap fills up, we overflow tasks that
3203 * started later, and in future iterations only consider tasks that
3204 * started after the latest task in the previous pass. This
3205 * guarantees forward progress and that we don't miss any tasks.
3206 */
3207 heap->size = 0;
3208 cgroup_iter_start(scan->cg, &it);
3209 while ((p = cgroup_iter_next(scan->cg, &it))) {
3210 /*
3211 * Only affect tasks that qualify per the caller's callback,
3212 * if he provided one
3213 */
3214 if (scan->test_task && !scan->test_task(p, scan))
3215 continue;
3216 /*
3217 * Only process tasks that started after the last task
3218 * we processed
3219 */
3220 if (!started_after_time(p, &latest_time, latest_task))
3221 continue;
3222 dropped = heap_insert(heap, p);
3223 if (dropped == NULL) {
3224 /*
3225 * The new task was inserted; the heap wasn't
3226 * previously full
3227 */
3228 get_task_struct(p);
3229 } else if (dropped != p) {
3230 /*
3231 * The new task was inserted, and pushed out a
3232 * different task
3233 */
3234 get_task_struct(p);
3235 put_task_struct(dropped);
3236 }
3237 /*
3238 * Else the new task was newer than anything already in
3239 * the heap and wasn't inserted
3240 */
3241 }
3242 cgroup_iter_end(scan->cg, &it);
3243
3244 if (heap->size) {
3245 for (i = 0; i < heap->size; i++) {
4fe91d51 3246 struct task_struct *q = heap->ptrs[i];
31a7df01 3247 if (i == 0) {
4fe91d51
PJ
3248 latest_time = q->start_time;
3249 latest_task = q;
31a7df01
CW
3250 }
3251 /* Process the task per the caller's callback */
4fe91d51
PJ
3252 scan->process_task(q, scan);
3253 put_task_struct(q);
31a7df01
CW
3254 }
3255 /*
3256 * If we had to process any tasks at all, scan again
3257 * in case some of them were in the middle of forking
3258 * children that didn't get processed.
3259 * Not the most efficient way to do it, but it avoids
3260 * having to take callback_mutex in the fork path
3261 */
3262 goto again;
3263 }
3264 if (heap == &tmp_heap)
3265 heap_free(&tmp_heap);
3266 return 0;
3267}
3268
8cc99345
TH
3269static void cgroup_transfer_one_task(struct task_struct *task,
3270 struct cgroup_scanner *scan)
3271{
3272 struct cgroup *new_cgroup = scan->data;
3273
3274 cgroup_lock();
3275 cgroup_attach_task(new_cgroup, task, false);
3276 cgroup_unlock();
3277}
3278
3279/**
3280 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3281 * @to: cgroup to which the tasks will be moved
3282 * @from: cgroup in which the tasks currently reside
3283 */
3284int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3285{
3286 struct cgroup_scanner scan;
3287
3288 scan.cg = from;
3289 scan.test_task = NULL; /* select all tasks in cgroup */
3290 scan.process_task = cgroup_transfer_one_task;
3291 scan.heap = NULL;
3292 scan.data = to;
3293
3294 return cgroup_scan_tasks(&scan);
3295}
3296
bbcb81d0 3297/*
102a775e 3298 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3299 *
3300 * Reading this file can return large amounts of data if a cgroup has
3301 * *lots* of attached tasks. So it may need several calls to read(),
3302 * but we cannot guarantee that the information we produce is correct
3303 * unless we produce it entirely atomically.
3304 *
bbcb81d0 3305 */
bbcb81d0 3306
24528255
LZ
3307/* which pidlist file are we talking about? */
3308enum cgroup_filetype {
3309 CGROUP_FILE_PROCS,
3310 CGROUP_FILE_TASKS,
3311};
3312
3313/*
3314 * A pidlist is a list of pids that virtually represents the contents of one
3315 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3316 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3317 * to the cgroup.
3318 */
3319struct cgroup_pidlist {
3320 /*
3321 * used to find which pidlist is wanted. doesn't change as long as
3322 * this particular list stays in the list.
3323 */
3324 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3325 /* array of xids */
3326 pid_t *list;
3327 /* how many elements the above list has */
3328 int length;
3329 /* how many files are using the current array */
3330 int use_count;
3331 /* each of these stored in a list by its cgroup */
3332 struct list_head links;
3333 /* pointer to the cgroup we belong to, for list removal purposes */
3334 struct cgroup *owner;
3335 /* protects the other fields */
3336 struct rw_semaphore mutex;
3337};
3338
d1d9fd33
BB
3339/*
3340 * The following two functions "fix" the issue where there are more pids
3341 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3342 * TODO: replace with a kernel-wide solution to this problem
3343 */
3344#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3345static void *pidlist_allocate(int count)
3346{
3347 if (PIDLIST_TOO_LARGE(count))
3348 return vmalloc(count * sizeof(pid_t));
3349 else
3350 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3351}
3352static void pidlist_free(void *p)
3353{
3354 if (is_vmalloc_addr(p))
3355 vfree(p);
3356 else
3357 kfree(p);
3358}
d1d9fd33 3359
bbcb81d0 3360/*
102a775e 3361 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3362 * Returns the number of unique elements.
bbcb81d0 3363 */
6ee211ad 3364static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3365{
102a775e 3366 int src, dest = 1;
102a775e
BB
3367
3368 /*
3369 * we presume the 0th element is unique, so i starts at 1. trivial
3370 * edge cases first; no work needs to be done for either
3371 */
3372 if (length == 0 || length == 1)
3373 return length;
3374 /* src and dest walk down the list; dest counts unique elements */
3375 for (src = 1; src < length; src++) {
3376 /* find next unique element */
3377 while (list[src] == list[src-1]) {
3378 src++;
3379 if (src == length)
3380 goto after;
3381 }
3382 /* dest always points to where the next unique element goes */
3383 list[dest] = list[src];
3384 dest++;
3385 }
3386after:
102a775e
BB
3387 return dest;
3388}
3389
3390static int cmppid(const void *a, const void *b)
3391{
3392 return *(pid_t *)a - *(pid_t *)b;
3393}
3394
72a8cb30
BB
3395/*
3396 * find the appropriate pidlist for our purpose (given procs vs tasks)
3397 * returns with the lock on that pidlist already held, and takes care
3398 * of the use count, or returns NULL with no locks held if we're out of
3399 * memory.
3400 */
3401static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3402 enum cgroup_filetype type)
3403{
3404 struct cgroup_pidlist *l;
3405 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3406 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3407
72a8cb30
BB
3408 /*
3409 * We can't drop the pidlist_mutex before taking the l->mutex in case
3410 * the last ref-holder is trying to remove l from the list at the same
3411 * time. Holding the pidlist_mutex precludes somebody taking whichever
3412 * list we find out from under us - compare release_pid_array().
3413 */
3414 mutex_lock(&cgrp->pidlist_mutex);
3415 list_for_each_entry(l, &cgrp->pidlists, links) {
3416 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3417 /* make sure l doesn't vanish out from under us */
3418 down_write(&l->mutex);
3419 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3420 return l;
3421 }
3422 }
3423 /* entry not found; create a new one */
3424 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3425 if (!l) {
3426 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3427 return l;
3428 }
3429 init_rwsem(&l->mutex);
3430 down_write(&l->mutex);
3431 l->key.type = type;
b70cc5fd 3432 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3433 l->use_count = 0; /* don't increment here */
3434 l->list = NULL;
3435 l->owner = cgrp;
3436 list_add(&l->links, &cgrp->pidlists);
3437 mutex_unlock(&cgrp->pidlist_mutex);
3438 return l;
3439}
3440
102a775e
BB
3441/*
3442 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3443 */
72a8cb30
BB
3444static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3445 struct cgroup_pidlist **lp)
102a775e
BB
3446{
3447 pid_t *array;
3448 int length;
3449 int pid, n = 0; /* used for populating the array */
817929ec
PM
3450 struct cgroup_iter it;
3451 struct task_struct *tsk;
102a775e
BB
3452 struct cgroup_pidlist *l;
3453
3454 /*
3455 * If cgroup gets more users after we read count, we won't have
3456 * enough space - tough. This race is indistinguishable to the
3457 * caller from the case that the additional cgroup users didn't
3458 * show up until sometime later on.
3459 */
3460 length = cgroup_task_count(cgrp);
d1d9fd33 3461 array = pidlist_allocate(length);
102a775e
BB
3462 if (!array)
3463 return -ENOMEM;
3464 /* now, populate the array */
bd89aabc
PM
3465 cgroup_iter_start(cgrp, &it);
3466 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3467 if (unlikely(n == length))
817929ec 3468 break;
102a775e 3469 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3470 if (type == CGROUP_FILE_PROCS)
3471 pid = task_tgid_vnr(tsk);
3472 else
3473 pid = task_pid_vnr(tsk);
102a775e
BB
3474 if (pid > 0) /* make sure to only use valid results */
3475 array[n++] = pid;
817929ec 3476 }
bd89aabc 3477 cgroup_iter_end(cgrp, &it);
102a775e
BB
3478 length = n;
3479 /* now sort & (if procs) strip out duplicates */
3480 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3481 if (type == CGROUP_FILE_PROCS)
6ee211ad 3482 length = pidlist_uniq(array, length);
72a8cb30
BB
3483 l = cgroup_pidlist_find(cgrp, type);
3484 if (!l) {
d1d9fd33 3485 pidlist_free(array);
72a8cb30 3486 return -ENOMEM;
102a775e 3487 }
72a8cb30 3488 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3489 pidlist_free(l->list);
102a775e
BB
3490 l->list = array;
3491 l->length = length;
3492 l->use_count++;
3493 up_write(&l->mutex);
72a8cb30 3494 *lp = l;
102a775e 3495 return 0;
bbcb81d0
PM
3496}
3497
846c7bb0 3498/**
a043e3b2 3499 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3500 * @stats: cgroupstats to fill information into
3501 * @dentry: A dentry entry belonging to the cgroup for which stats have
3502 * been requested.
a043e3b2
LZ
3503 *
3504 * Build and fill cgroupstats so that taskstats can export it to user
3505 * space.
846c7bb0
BS
3506 */
3507int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3508{
3509 int ret = -EINVAL;
bd89aabc 3510 struct cgroup *cgrp;
846c7bb0
BS
3511 struct cgroup_iter it;
3512 struct task_struct *tsk;
33d283be 3513
846c7bb0 3514 /*
33d283be
LZ
3515 * Validate dentry by checking the superblock operations,
3516 * and make sure it's a directory.
846c7bb0 3517 */
33d283be
LZ
3518 if (dentry->d_sb->s_op != &cgroup_ops ||
3519 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3520 goto err;
3521
3522 ret = 0;
bd89aabc 3523 cgrp = dentry->d_fsdata;
846c7bb0 3524
bd89aabc
PM
3525 cgroup_iter_start(cgrp, &it);
3526 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3527 switch (tsk->state) {
3528 case TASK_RUNNING:
3529 stats->nr_running++;
3530 break;
3531 case TASK_INTERRUPTIBLE:
3532 stats->nr_sleeping++;
3533 break;
3534 case TASK_UNINTERRUPTIBLE:
3535 stats->nr_uninterruptible++;
3536 break;
3537 case TASK_STOPPED:
3538 stats->nr_stopped++;
3539 break;
3540 default:
3541 if (delayacct_is_task_waiting_on_io(tsk))
3542 stats->nr_io_wait++;
3543 break;
3544 }
3545 }
bd89aabc 3546 cgroup_iter_end(cgrp, &it);
846c7bb0 3547
846c7bb0
BS
3548err:
3549 return ret;
3550}
3551
8f3ff208 3552
bbcb81d0 3553/*
102a775e 3554 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3555 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3556 * in the cgroup->l->list array.
bbcb81d0 3557 */
cc31edce 3558
102a775e 3559static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3560{
cc31edce
PM
3561 /*
3562 * Initially we receive a position value that corresponds to
3563 * one more than the last pid shown (or 0 on the first call or
3564 * after a seek to the start). Use a binary-search to find the
3565 * next pid to display, if any
3566 */
102a775e 3567 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3568 int index = 0, pid = *pos;
3569 int *iter;
3570
102a775e 3571 down_read(&l->mutex);
cc31edce 3572 if (pid) {
102a775e 3573 int end = l->length;
20777766 3574
cc31edce
PM
3575 while (index < end) {
3576 int mid = (index + end) / 2;
102a775e 3577 if (l->list[mid] == pid) {
cc31edce
PM
3578 index = mid;
3579 break;
102a775e 3580 } else if (l->list[mid] <= pid)
cc31edce
PM
3581 index = mid + 1;
3582 else
3583 end = mid;
3584 }
3585 }
3586 /* If we're off the end of the array, we're done */
102a775e 3587 if (index >= l->length)
cc31edce
PM
3588 return NULL;
3589 /* Update the abstract position to be the actual pid that we found */
102a775e 3590 iter = l->list + index;
cc31edce
PM
3591 *pos = *iter;
3592 return iter;
3593}
3594
102a775e 3595static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3596{
102a775e
BB
3597 struct cgroup_pidlist *l = s->private;
3598 up_read(&l->mutex);
cc31edce
PM
3599}
3600
102a775e 3601static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3602{
102a775e
BB
3603 struct cgroup_pidlist *l = s->private;
3604 pid_t *p = v;
3605 pid_t *end = l->list + l->length;
cc31edce
PM
3606 /*
3607 * Advance to the next pid in the array. If this goes off the
3608 * end, we're done
3609 */
3610 p++;
3611 if (p >= end) {
3612 return NULL;
3613 } else {
3614 *pos = *p;
3615 return p;
3616 }
3617}
3618
102a775e 3619static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3620{
3621 return seq_printf(s, "%d\n", *(int *)v);
3622}
bbcb81d0 3623
102a775e
BB
3624/*
3625 * seq_operations functions for iterating on pidlists through seq_file -
3626 * independent of whether it's tasks or procs
3627 */
3628static const struct seq_operations cgroup_pidlist_seq_operations = {
3629 .start = cgroup_pidlist_start,
3630 .stop = cgroup_pidlist_stop,
3631 .next = cgroup_pidlist_next,
3632 .show = cgroup_pidlist_show,
cc31edce
PM
3633};
3634
102a775e 3635static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3636{
72a8cb30
BB
3637 /*
3638 * the case where we're the last user of this particular pidlist will
3639 * have us remove it from the cgroup's list, which entails taking the
3640 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3641 * pidlist_mutex, we have to take pidlist_mutex first.
3642 */
3643 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3644 down_write(&l->mutex);
3645 BUG_ON(!l->use_count);
3646 if (!--l->use_count) {
72a8cb30
BB
3647 /* we're the last user if refcount is 0; remove and free */
3648 list_del(&l->links);
3649 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3650 pidlist_free(l->list);
72a8cb30
BB
3651 put_pid_ns(l->key.ns);
3652 up_write(&l->mutex);
3653 kfree(l);
3654 return;
cc31edce 3655 }
72a8cb30 3656 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3657 up_write(&l->mutex);
bbcb81d0
PM
3658}
3659
102a775e 3660static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3661{
102a775e 3662 struct cgroup_pidlist *l;
cc31edce
PM
3663 if (!(file->f_mode & FMODE_READ))
3664 return 0;
102a775e
BB
3665 /*
3666 * the seq_file will only be initialized if the file was opened for
3667 * reading; hence we check if it's not null only in that case.
3668 */
3669 l = ((struct seq_file *)file->private_data)->private;
3670 cgroup_release_pid_array(l);
cc31edce
PM
3671 return seq_release(inode, file);
3672}
3673
102a775e 3674static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3675 .read = seq_read,
3676 .llseek = seq_lseek,
3677 .write = cgroup_file_write,
102a775e 3678 .release = cgroup_pidlist_release,
cc31edce
PM
3679};
3680
bbcb81d0 3681/*
102a775e
BB
3682 * The following functions handle opens on a file that displays a pidlist
3683 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3684 * in the cgroup.
bbcb81d0 3685 */
102a775e 3686/* helper function for the two below it */
72a8cb30 3687static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3688{
bd89aabc 3689 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3690 struct cgroup_pidlist *l;
cc31edce 3691 int retval;
bbcb81d0 3692
cc31edce 3693 /* Nothing to do for write-only files */
bbcb81d0
PM
3694 if (!(file->f_mode & FMODE_READ))
3695 return 0;
3696
102a775e 3697 /* have the array populated */
72a8cb30 3698 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3699 if (retval)
3700 return retval;
3701 /* configure file information */
3702 file->f_op = &cgroup_pidlist_operations;
cc31edce 3703
102a775e 3704 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3705 if (retval) {
102a775e 3706 cgroup_release_pid_array(l);
cc31edce 3707 return retval;
bbcb81d0 3708 }
102a775e 3709 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3710 return 0;
3711}
102a775e
BB
3712static int cgroup_tasks_open(struct inode *unused, struct file *file)
3713{
72a8cb30 3714 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3715}
3716static int cgroup_procs_open(struct inode *unused, struct file *file)
3717{
72a8cb30 3718 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3719}
bbcb81d0 3720
bd89aabc 3721static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3722 struct cftype *cft)
3723{
bd89aabc 3724 return notify_on_release(cgrp);
81a6a5cd
PM
3725}
3726
6379c106
PM
3727static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3728 struct cftype *cft,
3729 u64 val)
3730{
3731 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3732 if (val)
3733 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3734 else
3735 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3736 return 0;
3737}
3738
0dea1168
KS
3739/*
3740 * Unregister event and free resources.
3741 *
3742 * Gets called from workqueue.
3743 */
3744static void cgroup_event_remove(struct work_struct *work)
3745{
3746 struct cgroup_event *event = container_of(work, struct cgroup_event,
3747 remove);
3748 struct cgroup *cgrp = event->cgrp;
3749
810cbee4
LZ
3750 remove_wait_queue(event->wqh, &event->wait);
3751
0dea1168
KS
3752 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3753
810cbee4
LZ
3754 /* Notify userspace the event is going away. */
3755 eventfd_signal(event->eventfd, 1);
3756
0dea1168 3757 eventfd_ctx_put(event->eventfd);
0dea1168 3758 kfree(event);
a0a4db54 3759 dput(cgrp->dentry);
0dea1168
KS
3760}
3761
3762/*
3763 * Gets called on POLLHUP on eventfd when user closes it.
3764 *
3765 * Called with wqh->lock held and interrupts disabled.
3766 */
3767static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3768 int sync, void *key)
3769{
3770 struct cgroup_event *event = container_of(wait,
3771 struct cgroup_event, wait);
3772 struct cgroup *cgrp = event->cgrp;
3773 unsigned long flags = (unsigned long)key;
3774
3775 if (flags & POLLHUP) {
0dea1168 3776 /*
810cbee4
LZ
3777 * If the event has been detached at cgroup removal, we
3778 * can simply return knowing the other side will cleanup
3779 * for us.
3780 *
3781 * We can't race against event freeing since the other
3782 * side will require wqh->lock via remove_wait_queue(),
3783 * which we hold.
0dea1168 3784 */
810cbee4
LZ
3785 spin_lock(&cgrp->event_list_lock);
3786 if (!list_empty(&event->list)) {
3787 list_del_init(&event->list);
3788 /*
3789 * We are in atomic context, but cgroup_event_remove()
3790 * may sleep, so we have to call it in workqueue.
3791 */
3792 schedule_work(&event->remove);
3793 }
3794 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3795 }
3796
3797 return 0;
3798}
3799
3800static void cgroup_event_ptable_queue_proc(struct file *file,
3801 wait_queue_head_t *wqh, poll_table *pt)
3802{
3803 struct cgroup_event *event = container_of(pt,
3804 struct cgroup_event, pt);
3805
3806 event->wqh = wqh;
3807 add_wait_queue(wqh, &event->wait);
3808}
3809
3810/*
3811 * Parse input and register new cgroup event handler.
3812 *
3813 * Input must be in format '<event_fd> <control_fd> <args>'.
3814 * Interpretation of args is defined by control file implementation.
3815 */
3816static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3817 const char *buffer)
3818{
3819 struct cgroup_event *event = NULL;
f169007b 3820 struct cgroup *cgrp_cfile;
0dea1168
KS
3821 unsigned int efd, cfd;
3822 struct file *efile = NULL;
3823 struct file *cfile = NULL;
3824 char *endp;
3825 int ret;
3826
3827 efd = simple_strtoul(buffer, &endp, 10);
3828 if (*endp != ' ')
3829 return -EINVAL;
3830 buffer = endp + 1;
3831
3832 cfd = simple_strtoul(buffer, &endp, 10);
3833 if ((*endp != ' ') && (*endp != '\0'))
3834 return -EINVAL;
3835 buffer = endp + 1;
3836
3837 event = kzalloc(sizeof(*event), GFP_KERNEL);
3838 if (!event)
3839 return -ENOMEM;
3840 event->cgrp = cgrp;
3841 INIT_LIST_HEAD(&event->list);
3842 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3843 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3844 INIT_WORK(&event->remove, cgroup_event_remove);
3845
3846 efile = eventfd_fget(efd);
3847 if (IS_ERR(efile)) {
3848 ret = PTR_ERR(efile);
3849 goto fail;
3850 }
3851
3852 event->eventfd = eventfd_ctx_fileget(efile);
3853 if (IS_ERR(event->eventfd)) {
3854 ret = PTR_ERR(event->eventfd);
3855 goto fail;
3856 }
3857
3858 cfile = fget(cfd);
3859 if (!cfile) {
3860 ret = -EBADF;
3861 goto fail;
3862 }
3863
3864 /* the process need read permission on control file */
3bfa784a 3865 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3866 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3867 if (ret < 0)
3868 goto fail;
3869
3870 event->cft = __file_cft(cfile);
3871 if (IS_ERR(event->cft)) {
3872 ret = PTR_ERR(event->cft);
3873 goto fail;
3874 }
3875
f169007b
LZ
3876 /*
3877 * The file to be monitored must be in the same cgroup as
3878 * cgroup.event_control is.
3879 */
3880 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3881 if (cgrp_cfile != cgrp) {
3882 ret = -EINVAL;
3883 goto fail;
3884 }
3885
0dea1168
KS
3886 if (!event->cft->register_event || !event->cft->unregister_event) {
3887 ret = -EINVAL;
3888 goto fail;
3889 }
3890
3891 ret = event->cft->register_event(cgrp, event->cft,
3892 event->eventfd, buffer);
3893 if (ret)
3894 goto fail;
3895
a0a4db54
KS
3896 /*
3897 * Events should be removed after rmdir of cgroup directory, but before
3898 * destroying subsystem state objects. Let's take reference to cgroup
3899 * directory dentry to do that.
3900 */
3901 dget(cgrp->dentry);
3902
0dea1168
KS
3903 spin_lock(&cgrp->event_list_lock);
3904 list_add(&event->list, &cgrp->event_list);
3905 spin_unlock(&cgrp->event_list_lock);
3906
3907 fput(cfile);
3908 fput(efile);
3909
3910 return 0;
3911
3912fail:
3913 if (cfile)
3914 fput(cfile);
3915
3916 if (event && event->eventfd && !IS_ERR(event->eventfd))
3917 eventfd_ctx_put(event->eventfd);
3918
3919 if (!IS_ERR_OR_NULL(efile))
3920 fput(efile);
3921
3922 kfree(event);
3923
3924 return ret;
3925}
3926
97978e6d
DL
3927static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3928 struct cftype *cft)
3929{
2260e7fc 3930 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3931}
3932
3933static int cgroup_clone_children_write(struct cgroup *cgrp,
3934 struct cftype *cft,
3935 u64 val)
3936{
3937 if (val)
2260e7fc 3938 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3939 else
2260e7fc 3940 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3941 return 0;
3942}
3943
bbcb81d0
PM
3944/*
3945 * for the common functions, 'private' gives the type of file
3946 */
102a775e
BB
3947/* for hysterical raisins, we can't put this on the older files */
3948#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3949static struct cftype files[] = {
3950 {
3951 .name = "tasks",
3952 .open = cgroup_tasks_open,
af351026 3953 .write_u64 = cgroup_tasks_write,
102a775e 3954 .release = cgroup_pidlist_release,
099fca32 3955 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3956 },
102a775e
BB
3957 {
3958 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3959 .open = cgroup_procs_open,
74a1166d 3960 .write_u64 = cgroup_procs_write,
102a775e 3961 .release = cgroup_pidlist_release,
74a1166d 3962 .mode = S_IRUGO | S_IWUSR,
102a775e 3963 },
81a6a5cd
PM
3964 {
3965 .name = "notify_on_release",
f4c753b7 3966 .read_u64 = cgroup_read_notify_on_release,
6379c106 3967 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3968 },
0dea1168
KS
3969 {
3970 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3971 .write_string = cgroup_write_event_control,
3972 .mode = S_IWUGO,
3973 },
97978e6d
DL
3974 {
3975 .name = "cgroup.clone_children",
3976 .read_u64 = cgroup_clone_children_read,
3977 .write_u64 = cgroup_clone_children_write,
3978 },
6e6ff25b
TH
3979 {
3980 .name = "release_agent",
3981 .flags = CFTYPE_ONLY_ON_ROOT,
3982 .read_seq_string = cgroup_release_agent_show,
3983 .write_string = cgroup_release_agent_write,
3984 .max_write_len = PATH_MAX,
3985 },
db0416b6 3986 { } /* terminate */
bbcb81d0
PM
3987};
3988
13af07df
AR
3989/**
3990 * cgroup_populate_dir - selectively creation of files in a directory
3991 * @cgrp: target cgroup
3992 * @base_files: true if the base files should be added
3993 * @subsys_mask: mask of the subsystem ids whose files should be added
3994 */
3995static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3996 unsigned long subsys_mask)
ddbcc7e8
PM
3997{
3998 int err;
3999 struct cgroup_subsys *ss;
4000
13af07df
AR
4001 if (base_files) {
4002 err = cgroup_addrm_files(cgrp, NULL, files, true);
4003 if (err < 0)
4004 return err;
4005 }
bbcb81d0 4006
8e3f6541 4007 /* process cftsets of each subsystem */
bd89aabc 4008 for_each_subsys(cgrp->root, ss) {
8e3f6541 4009 struct cftype_set *set;
13af07df
AR
4010 if (!test_bit(ss->subsys_id, &subsys_mask))
4011 continue;
8e3f6541 4012
db0416b6 4013 list_for_each_entry(set, &ss->cftsets, node)
79578621 4014 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4015 }
8e3f6541 4016
38460b48
KH
4017 /* This cgroup is ready now */
4018 for_each_subsys(cgrp->root, ss) {
4019 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4020 /*
4021 * Update id->css pointer and make this css visible from
4022 * CSS ID functions. This pointer will be dereferened
4023 * from RCU-read-side without locks.
4024 */
4025 if (css->id)
4026 rcu_assign_pointer(css->id->css, css);
4027 }
ddbcc7e8
PM
4028
4029 return 0;
4030}
4031
48ddbe19
TH
4032static void css_dput_fn(struct work_struct *work)
4033{
4034 struct cgroup_subsys_state *css =
4035 container_of(work, struct cgroup_subsys_state, dput_work);
5db9a4d9
TH
4036 struct dentry *dentry = css->cgroup->dentry;
4037 struct super_block *sb = dentry->d_sb;
48ddbe19 4038
5db9a4d9
TH
4039 atomic_inc(&sb->s_active);
4040 dput(dentry);
4041 deactivate_super(sb);
48ddbe19
TH
4042}
4043
ddbcc7e8
PM
4044static void init_cgroup_css(struct cgroup_subsys_state *css,
4045 struct cgroup_subsys *ss,
bd89aabc 4046 struct cgroup *cgrp)
ddbcc7e8 4047{
bd89aabc 4048 css->cgroup = cgrp;
e7c5ec91 4049 atomic_set(&css->refcnt, 1);
ddbcc7e8 4050 css->flags = 0;
38460b48 4051 css->id = NULL;
bd89aabc 4052 if (cgrp == dummytop)
38b53aba 4053 css->flags |= CSS_ROOT;
bd89aabc
PM
4054 BUG_ON(cgrp->subsys[ss->subsys_id]);
4055 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4056
4057 /*
ed957793
TH
4058 * css holds an extra ref to @cgrp->dentry which is put on the last
4059 * css_put(). dput() requires process context, which css_put() may
4060 * be called without. @css->dput_work will be used to invoke
4061 * dput() asynchronously from css_put().
48ddbe19
TH
4062 */
4063 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4064}
4065
b1929db4
TH
4066/* invoke ->post_create() on a new CSS and mark it online if successful */
4067static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4068{
b1929db4
TH
4069 int ret = 0;
4070
a31f2d3f
TH
4071 lockdep_assert_held(&cgroup_mutex);
4072
92fb9748
TH
4073 if (ss->css_online)
4074 ret = ss->css_online(cgrp);
b1929db4
TH
4075 if (!ret)
4076 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4077 return ret;
a31f2d3f
TH
4078}
4079
4080/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4081static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4082 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4083{
4084 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4085
4086 lockdep_assert_held(&cgroup_mutex);
4087
4088 if (!(css->flags & CSS_ONLINE))
4089 return;
4090
d7eeac19 4091 if (ss->css_offline)
92fb9748 4092 ss->css_offline(cgrp);
a31f2d3f
TH
4093
4094 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4095}
4096
ddbcc7e8 4097/*
a043e3b2
LZ
4098 * cgroup_create - create a cgroup
4099 * @parent: cgroup that will be parent of the new cgroup
4100 * @dentry: dentry of the new cgroup
4101 * @mode: mode to set on new inode
ddbcc7e8 4102 *
a043e3b2 4103 * Must be called with the mutex on the parent inode held
ddbcc7e8 4104 */
ddbcc7e8 4105static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4106 umode_t mode)
ddbcc7e8 4107{
bd89aabc 4108 struct cgroup *cgrp;
65dff759 4109 struct cgroup_name *name;
ddbcc7e8
PM
4110 struct cgroupfs_root *root = parent->root;
4111 int err = 0;
4112 struct cgroup_subsys *ss;
4113 struct super_block *sb = root->sb;
4114
0a950f65 4115 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4116 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4117 if (!cgrp)
ddbcc7e8
PM
4118 return -ENOMEM;
4119
65dff759
LZ
4120 name = cgroup_alloc_name(dentry);
4121 if (!name)
4122 goto err_free_cgrp;
4123 rcu_assign_pointer(cgrp->name, name);
4124
0a950f65
TH
4125 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4126 if (cgrp->id < 0)
65dff759 4127 goto err_free_name;
0a950f65 4128
976c06bc
TH
4129 /*
4130 * Only live parents can have children. Note that the liveliness
4131 * check isn't strictly necessary because cgroup_mkdir() and
4132 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4133 * anyway so that locking is contained inside cgroup proper and we
4134 * don't get nasty surprises if we ever grow another caller.
4135 */
4136 if (!cgroup_lock_live_group(parent)) {
4137 err = -ENODEV;
0a950f65 4138 goto err_free_id;
976c06bc
TH
4139 }
4140
ddbcc7e8
PM
4141 /* Grab a reference on the superblock so the hierarchy doesn't
4142 * get deleted on unmount if there are child cgroups. This
4143 * can be done outside cgroup_mutex, since the sb can't
4144 * disappear while someone has an open control file on the
4145 * fs */
4146 atomic_inc(&sb->s_active);
4147
cc31edce 4148 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4149
fe1c06ca
LZ
4150 dentry->d_fsdata = cgrp;
4151 cgrp->dentry = dentry;
4152
bd89aabc
PM
4153 cgrp->parent = parent;
4154 cgrp->root = parent->root;
4155 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 4156
b6abdb0e
LZ
4157 if (notify_on_release(parent))
4158 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4159
2260e7fc
TH
4160 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4161 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4162
ddbcc7e8 4163 for_each_subsys(root, ss) {
8c7f6edb 4164 struct cgroup_subsys_state *css;
4528fd05 4165
92fb9748 4166 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4167 if (IS_ERR(css)) {
4168 err = PTR_ERR(css);
4b8b47eb 4169 goto err_free_all;
ddbcc7e8 4170 }
bd89aabc 4171 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
4172 if (ss->use_id) {
4173 err = alloc_css_id(ss, parent, cgrp);
4174 if (err)
4b8b47eb 4175 goto err_free_all;
4528fd05 4176 }
ddbcc7e8
PM
4177 }
4178
4e139afc
TH
4179 /*
4180 * Create directory. cgroup_create_file() returns with the new
4181 * directory locked on success so that it can be populated without
4182 * dropping cgroup_mutex.
4183 */
28fd6f30 4184 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4185 if (err < 0)
4b8b47eb 4186 goto err_free_all;
4e139afc 4187 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4188
4e139afc 4189 /* allocation complete, commit to creation */
4e139afc
TH
4190 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4191 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4192 root->number_of_cgroups++;
28fd6f30 4193
b1929db4
TH
4194 /* each css holds a ref to the cgroup's dentry */
4195 for_each_subsys(root, ss)
ed957793 4196 dget(dentry);
48ddbe19 4197
b1929db4
TH
4198 /* creation succeeded, notify subsystems */
4199 for_each_subsys(root, ss) {
4200 err = online_css(ss, cgrp);
4201 if (err)
4202 goto err_destroy;
1f869e87
GC
4203
4204 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4205 parent->parent) {
4206 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4207 current->comm, current->pid, ss->name);
4208 if (!strcmp(ss->name, "memory"))
4209 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4210 ss->warned_broken_hierarchy = true;
4211 }
a8638030
TH
4212 }
4213
a1a71b45 4214 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4215 if (err)
4216 goto err_destroy;
ddbcc7e8
PM
4217
4218 mutex_unlock(&cgroup_mutex);
bd89aabc 4219 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4220
4221 return 0;
4222
4b8b47eb 4223err_free_all:
ddbcc7e8 4224 for_each_subsys(root, ss) {
bd89aabc 4225 if (cgrp->subsys[ss->subsys_id])
92fb9748 4226 ss->css_free(cgrp);
ddbcc7e8 4227 }
ddbcc7e8 4228 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4229 /* Release the reference count that we took on the superblock */
4230 deactivate_super(sb);
0a950f65
TH
4231err_free_id:
4232 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4233err_free_name:
4234 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4235err_free_cgrp:
bd89aabc 4236 kfree(cgrp);
ddbcc7e8 4237 return err;
4b8b47eb
TH
4238
4239err_destroy:
4240 cgroup_destroy_locked(cgrp);
4241 mutex_unlock(&cgroup_mutex);
4242 mutex_unlock(&dentry->d_inode->i_mutex);
4243 return err;
ddbcc7e8
PM
4244}
4245
18bb1db3 4246static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4247{
4248 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4249
4250 /* the vfs holds inode->i_mutex already */
4251 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4252}
4253
42809dd4
TH
4254static int cgroup_destroy_locked(struct cgroup *cgrp)
4255 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4256{
42809dd4
TH
4257 struct dentry *d = cgrp->dentry;
4258 struct cgroup *parent = cgrp->parent;
4ab78683 4259 struct cgroup_event *event, *tmp;
ed957793 4260 struct cgroup_subsys *ss;
ddbcc7e8 4261
42809dd4
TH
4262 lockdep_assert_held(&d->d_inode->i_mutex);
4263 lockdep_assert_held(&cgroup_mutex);
4264
4265 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
ddbcc7e8 4266 return -EBUSY;
a043e3b2 4267
88703267 4268 /*
1a90dd50
TH
4269 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4270 * removed. This makes future css_tryget() and child creation
4271 * attempts fail thus maintaining the removal conditions verified
4272 * above.
88703267 4273 */
ed957793
TH
4274 for_each_subsys(cgrp->root, ss) {
4275 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4276
ed957793
TH
4277 WARN_ON(atomic_read(&css->refcnt) < 0);
4278 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
88703267 4279 }
1a90dd50 4280 set_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8 4281
a31f2d3f 4282 /* tell subsystems to initate destruction */
1a90dd50 4283 for_each_subsys(cgrp->root, ss)
a31f2d3f 4284 offline_css(ss, cgrp);
ed957793
TH
4285
4286 /*
ed957793
TH
4287 * Put all the base refs. Each css holds an extra reference to the
4288 * cgroup's dentry and cgroup removal proceeds regardless of css
4289 * refs. On the last put of each css, whenever that may be, the
4290 * extra dentry ref is put so that dentry destruction happens only
4291 * after all css's are released.
4292 */
e9316080
TH
4293 for_each_subsys(cgrp->root, ss)
4294 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4295
cdcc136f 4296 raw_spin_lock(&release_list_lock);
bd89aabc 4297 if (!list_empty(&cgrp->release_list))
8d258797 4298 list_del_init(&cgrp->release_list);
cdcc136f 4299 raw_spin_unlock(&release_list_lock);
999cd8a4 4300
999cd8a4 4301 /* delete this cgroup from parent->children */
eb6fd504 4302 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4303 list_del_init(&cgrp->allcg_node);
4304
42809dd4 4305 dget(d);
ddbcc7e8
PM
4306 cgroup_d_remove_dir(d);
4307 dput(d);
ddbcc7e8 4308
bd89aabc 4309 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4310 check_for_release(parent);
4311
4ab78683
KS
4312 /*
4313 * Unregister events and notify userspace.
4314 * Notify userspace about cgroup removing only after rmdir of cgroup
810cbee4 4315 * directory to avoid race between userspace and kernelspace.
4ab78683
KS
4316 */
4317 spin_lock(&cgrp->event_list_lock);
810cbee4 4318 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
9718ceb3 4319 list_del_init(&event->list);
4ab78683
KS
4320 schedule_work(&event->remove);
4321 }
810cbee4 4322 spin_unlock(&cgrp->event_list_lock);
4ab78683 4323
ddbcc7e8
PM
4324 return 0;
4325}
4326
42809dd4
TH
4327static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4328{
4329 int ret;
4330
4331 mutex_lock(&cgroup_mutex);
4332 ret = cgroup_destroy_locked(dentry->d_fsdata);
4333 mutex_unlock(&cgroup_mutex);
4334
4335 return ret;
4336}
4337
8e3f6541
TH
4338static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4339{
4340 INIT_LIST_HEAD(&ss->cftsets);
4341
4342 /*
4343 * base_cftset is embedded in subsys itself, no need to worry about
4344 * deregistration.
4345 */
4346 if (ss->base_cftypes) {
4347 ss->base_cftset.cfts = ss->base_cftypes;
4348 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4349 }
4350}
4351
06a11920 4352static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4353{
ddbcc7e8 4354 struct cgroup_subsys_state *css;
cfe36bde
DC
4355
4356 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4357
648bb56d
TH
4358 mutex_lock(&cgroup_mutex);
4359
8e3f6541
TH
4360 /* init base cftset */
4361 cgroup_init_cftsets(ss);
4362
ddbcc7e8 4363 /* Create the top cgroup state for this subsystem */
33a68ac1 4364 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4365 ss->root = &rootnode;
92fb9748 4366 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4367 /* We don't handle early failures gracefully */
4368 BUG_ON(IS_ERR(css));
4369 init_cgroup_css(css, ss, dummytop);
4370
e8d55fde 4371 /* Update the init_css_set to contain a subsys
817929ec 4372 * pointer to this state - since the subsystem is
e8d55fde
LZ
4373 * newly registered, all tasks and hence the
4374 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4375 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4376
4377 need_forkexit_callback |= ss->fork || ss->exit;
4378
e8d55fde
LZ
4379 /* At system boot, before all subsystems have been
4380 * registered, no tasks have been forked, so we don't
4381 * need to invoke fork callbacks here. */
4382 BUG_ON(!list_empty(&init_task.tasks));
4383
ddbcc7e8 4384 ss->active = 1;
b1929db4 4385 BUG_ON(online_css(ss, dummytop));
a8638030 4386
648bb56d
TH
4387 mutex_unlock(&cgroup_mutex);
4388
e6a1105b
BB
4389 /* this function shouldn't be used with modular subsystems, since they
4390 * need to register a subsys_id, among other things */
4391 BUG_ON(ss->module);
4392}
4393
4394/**
4395 * cgroup_load_subsys: load and register a modular subsystem at runtime
4396 * @ss: the subsystem to load
4397 *
4398 * This function should be called in a modular subsystem's initcall. If the
88393161 4399 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4400 * up for use. If the subsystem is built-in anyway, work is delegated to the
4401 * simpler cgroup_init_subsys.
4402 */
4403int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4404{
e6a1105b 4405 struct cgroup_subsys_state *css;
d19e19de 4406 int i, ret;
b67bfe0d 4407 struct hlist_node *tmp;
0ac801fe
LZ
4408 struct css_set *cg;
4409 unsigned long key;
e6a1105b
BB
4410
4411 /* check name and function validity */
4412 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4413 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4414 return -EINVAL;
4415
4416 /*
4417 * we don't support callbacks in modular subsystems. this check is
4418 * before the ss->module check for consistency; a subsystem that could
4419 * be a module should still have no callbacks even if the user isn't
4420 * compiling it as one.
4421 */
4422 if (ss->fork || ss->exit)
4423 return -EINVAL;
4424
4425 /*
4426 * an optionally modular subsystem is built-in: we want to do nothing,
4427 * since cgroup_init_subsys will have already taken care of it.
4428 */
4429 if (ss->module == NULL) {
be45c900 4430 /* a sanity check */
e6a1105b
BB
4431 BUG_ON(subsys[ss->subsys_id] != ss);
4432 return 0;
4433 }
4434
8e3f6541
TH
4435 /* init base cftset */
4436 cgroup_init_cftsets(ss);
4437
e6a1105b 4438 mutex_lock(&cgroup_mutex);
8a8e04df 4439 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4440
4441 /*
92fb9748
TH
4442 * no ss->css_alloc seems to need anything important in the ss
4443 * struct, so this can happen first (i.e. before the rootnode
4444 * attachment).
e6a1105b 4445 */
92fb9748 4446 css = ss->css_alloc(dummytop);
e6a1105b
BB
4447 if (IS_ERR(css)) {
4448 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4449 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4450 mutex_unlock(&cgroup_mutex);
4451 return PTR_ERR(css);
4452 }
4453
4454 list_add(&ss->sibling, &rootnode.subsys_list);
4455 ss->root = &rootnode;
4456
4457 /* our new subsystem will be attached to the dummy hierarchy. */
4458 init_cgroup_css(css, ss, dummytop);
4459 /* init_idr must be after init_cgroup_css because it sets css->id. */
4460 if (ss->use_id) {
d19e19de
TH
4461 ret = cgroup_init_idr(ss, css);
4462 if (ret)
4463 goto err_unload;
e6a1105b
BB
4464 }
4465
4466 /*
4467 * Now we need to entangle the css into the existing css_sets. unlike
4468 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4469 * will need a new pointer to it; done by iterating the css_set_table.
4470 * furthermore, modifying the existing css_sets will corrupt the hash
4471 * table state, so each changed css_set will need its hash recomputed.
4472 * this is all done under the css_set_lock.
4473 */
4474 write_lock(&css_set_lock);
b67bfe0d 4475 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
0ac801fe
LZ
4476 /* skip entries that we already rehashed */
4477 if (cg->subsys[ss->subsys_id])
4478 continue;
4479 /* remove existing entry */
4480 hash_del(&cg->hlist);
4481 /* set new value */
4482 cg->subsys[ss->subsys_id] = css;
4483 /* recompute hash and restore entry */
4484 key = css_set_hash(cg->subsys);
b67bfe0d 4485 hash_add(css_set_table, &cg->hlist, key);
e6a1105b
BB
4486 }
4487 write_unlock(&css_set_lock);
4488
e6a1105b 4489 ss->active = 1;
b1929db4
TH
4490 ret = online_css(ss, dummytop);
4491 if (ret)
4492 goto err_unload;
a8638030 4493
e6a1105b
BB
4494 /* success! */
4495 mutex_unlock(&cgroup_mutex);
4496 return 0;
d19e19de
TH
4497
4498err_unload:
4499 mutex_unlock(&cgroup_mutex);
4500 /* @ss can't be mounted here as try_module_get() would fail */
4501 cgroup_unload_subsys(ss);
4502 return ret;
ddbcc7e8 4503}
e6a1105b 4504EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4505
cf5d5941
BB
4506/**
4507 * cgroup_unload_subsys: unload a modular subsystem
4508 * @ss: the subsystem to unload
4509 *
4510 * This function should be called in a modular subsystem's exitcall. When this
4511 * function is invoked, the refcount on the subsystem's module will be 0, so
4512 * the subsystem will not be attached to any hierarchy.
4513 */
4514void cgroup_unload_subsys(struct cgroup_subsys *ss)
4515{
4516 struct cg_cgroup_link *link;
cf5d5941
BB
4517
4518 BUG_ON(ss->module == NULL);
4519
4520 /*
4521 * we shouldn't be called if the subsystem is in use, and the use of
4522 * try_module_get in parse_cgroupfs_options should ensure that it
4523 * doesn't start being used while we're killing it off.
4524 */
4525 BUG_ON(ss->root != &rootnode);
4526
4527 mutex_lock(&cgroup_mutex);
02ae7486 4528
a31f2d3f 4529 offline_css(ss, dummytop);
02ae7486
TH
4530 ss->active = 0;
4531
c897ff68 4532 if (ss->use_id)
02ae7486 4533 idr_destroy(&ss->idr);
02ae7486 4534
cf5d5941 4535 /* deassign the subsys_id */
cf5d5941
BB
4536 subsys[ss->subsys_id] = NULL;
4537
4538 /* remove subsystem from rootnode's list of subsystems */
8d258797 4539 list_del_init(&ss->sibling);
cf5d5941
BB
4540
4541 /*
4542 * disentangle the css from all css_sets attached to the dummytop. as
4543 * in loading, we need to pay our respects to the hashtable gods.
4544 */
4545 write_lock(&css_set_lock);
4546 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4547 struct css_set *cg = link->cg;
0ac801fe 4548 unsigned long key;
cf5d5941 4549
0ac801fe 4550 hash_del(&cg->hlist);
cf5d5941 4551 cg->subsys[ss->subsys_id] = NULL;
0ac801fe
LZ
4552 key = css_set_hash(cg->subsys);
4553 hash_add(css_set_table, &cg->hlist, key);
cf5d5941
BB
4554 }
4555 write_unlock(&css_set_lock);
4556
4557 /*
92fb9748
TH
4558 * remove subsystem's css from the dummytop and free it - need to
4559 * free before marking as null because ss->css_free needs the
4560 * cgrp->subsys pointer to find their state. note that this also
4561 * takes care of freeing the css_id.
cf5d5941 4562 */
92fb9748 4563 ss->css_free(dummytop);
cf5d5941
BB
4564 dummytop->subsys[ss->subsys_id] = NULL;
4565
4566 mutex_unlock(&cgroup_mutex);
4567}
4568EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4569
ddbcc7e8 4570/**
a043e3b2
LZ
4571 * cgroup_init_early - cgroup initialization at system boot
4572 *
4573 * Initialize cgroups at system boot, and initialize any
4574 * subsystems that request early init.
ddbcc7e8
PM
4575 */
4576int __init cgroup_init_early(void)
4577{
4578 int i;
146aa1bd 4579 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4580 INIT_LIST_HEAD(&init_css_set.cg_links);
4581 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4582 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4583 css_set_count = 1;
ddbcc7e8 4584 init_cgroup_root(&rootnode);
817929ec
PM
4585 root_count = 1;
4586 init_task.cgroups = &init_css_set;
4587
4588 init_css_set_link.cg = &init_css_set;
7717f7ba 4589 init_css_set_link.cgrp = dummytop;
bd89aabc 4590 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4591 &rootnode.top_cgroup.css_sets);
4592 list_add(&init_css_set_link.cg_link_list,
4593 &init_css_set.cg_links);
ddbcc7e8 4594
be45c900 4595 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4596 struct cgroup_subsys *ss = subsys[i];
4597
be45c900
DW
4598 /* at bootup time, we don't worry about modular subsystems */
4599 if (!ss || ss->module)
4600 continue;
4601
ddbcc7e8
PM
4602 BUG_ON(!ss->name);
4603 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4604 BUG_ON(!ss->css_alloc);
4605 BUG_ON(!ss->css_free);
ddbcc7e8 4606 if (ss->subsys_id != i) {
cfe36bde 4607 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4608 ss->name, ss->subsys_id);
4609 BUG();
4610 }
4611
4612 if (ss->early_init)
4613 cgroup_init_subsys(ss);
4614 }
4615 return 0;
4616}
4617
4618/**
a043e3b2
LZ
4619 * cgroup_init - cgroup initialization
4620 *
4621 * Register cgroup filesystem and /proc file, and initialize
4622 * any subsystems that didn't request early init.
ddbcc7e8
PM
4623 */
4624int __init cgroup_init(void)
4625{
4626 int err;
4627 int i;
0ac801fe 4628 unsigned long key;
a424316c
PM
4629
4630 err = bdi_init(&cgroup_backing_dev_info);
4631 if (err)
4632 return err;
ddbcc7e8 4633
be45c900 4634 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4635 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4636
4637 /* at bootup time, we don't worry about modular subsystems */
4638 if (!ss || ss->module)
4639 continue;
ddbcc7e8
PM
4640 if (!ss->early_init)
4641 cgroup_init_subsys(ss);
38460b48 4642 if (ss->use_id)
e6a1105b 4643 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4644 }
4645
472b1053 4646 /* Add init_css_set to the hash table */
0ac801fe
LZ
4647 key = css_set_hash(init_css_set.subsys);
4648 hash_add(css_set_table, &init_css_set.hlist, key);
2c6ab6d2 4649 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
4650
4651 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4652 if (!cgroup_kobj) {
4653 err = -ENOMEM;
4654 goto out;
4655 }
4656
ddbcc7e8 4657 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4658 if (err < 0) {
4659 kobject_put(cgroup_kobj);
ddbcc7e8 4660 goto out;
676db4af 4661 }
ddbcc7e8 4662
46ae220b 4663 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4664
ddbcc7e8 4665out:
a424316c
PM
4666 if (err)
4667 bdi_destroy(&cgroup_backing_dev_info);
4668
ddbcc7e8
PM
4669 return err;
4670}
b4f48b63 4671
a424316c
PM
4672/*
4673 * proc_cgroup_show()
4674 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4675 * - Used for /proc/<pid>/cgroup.
4676 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4677 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4678 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4679 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4680 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4681 * cgroup to top_cgroup.
4682 */
4683
4684/* TODO: Use a proper seq_file iterator */
4685static int proc_cgroup_show(struct seq_file *m, void *v)
4686{
4687 struct pid *pid;
4688 struct task_struct *tsk;
4689 char *buf;
4690 int retval;
4691 struct cgroupfs_root *root;
4692
4693 retval = -ENOMEM;
4694 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4695 if (!buf)
4696 goto out;
4697
4698 retval = -ESRCH;
4699 pid = m->private;
4700 tsk = get_pid_task(pid, PIDTYPE_PID);
4701 if (!tsk)
4702 goto out_free;
4703
4704 retval = 0;
4705
4706 mutex_lock(&cgroup_mutex);
4707
e5f6a860 4708 for_each_active_root(root) {
a424316c 4709 struct cgroup_subsys *ss;
bd89aabc 4710 struct cgroup *cgrp;
a424316c
PM
4711 int count = 0;
4712
2c6ab6d2 4713 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4714 for_each_subsys(root, ss)
4715 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4716 if (strlen(root->name))
4717 seq_printf(m, "%sname=%s", count ? "," : "",
4718 root->name);
a424316c 4719 seq_putc(m, ':');
7717f7ba 4720 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4721 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4722 if (retval < 0)
4723 goto out_unlock;
4724 seq_puts(m, buf);
4725 seq_putc(m, '\n');
4726 }
4727
4728out_unlock:
4729 mutex_unlock(&cgroup_mutex);
4730 put_task_struct(tsk);
4731out_free:
4732 kfree(buf);
4733out:
4734 return retval;
4735}
4736
4737static int cgroup_open(struct inode *inode, struct file *file)
4738{
4739 struct pid *pid = PROC_I(inode)->pid;
4740 return single_open(file, proc_cgroup_show, pid);
4741}
4742
828c0950 4743const struct file_operations proc_cgroup_operations = {
a424316c
PM
4744 .open = cgroup_open,
4745 .read = seq_read,
4746 .llseek = seq_lseek,
4747 .release = single_release,
4748};
4749
4750/* Display information about each subsystem and each hierarchy */
4751static int proc_cgroupstats_show(struct seq_file *m, void *v)
4752{
4753 int i;
a424316c 4754
8bab8dde 4755 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4756 /*
4757 * ideally we don't want subsystems moving around while we do this.
4758 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4759 * subsys/hierarchy state.
4760 */
a424316c 4761 mutex_lock(&cgroup_mutex);
a424316c
PM
4762 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4763 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4764 if (ss == NULL)
4765 continue;
2c6ab6d2
PM
4766 seq_printf(m, "%s\t%d\t%d\t%d\n",
4767 ss->name, ss->root->hierarchy_id,
8bab8dde 4768 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4769 }
4770 mutex_unlock(&cgroup_mutex);
4771 return 0;
4772}
4773
4774static int cgroupstats_open(struct inode *inode, struct file *file)
4775{
9dce07f1 4776 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4777}
4778
828c0950 4779static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4780 .open = cgroupstats_open,
4781 .read = seq_read,
4782 .llseek = seq_lseek,
4783 .release = single_release,
4784};
4785
b4f48b63
PM
4786/**
4787 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4788 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4789 *
4790 * Description: A task inherits its parent's cgroup at fork().
4791 *
4792 * A pointer to the shared css_set was automatically copied in
4793 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4794 * it was not made under the protection of RCU or cgroup_mutex, so
4795 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4796 * have already changed current->cgroups, allowing the previously
4797 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4798 *
4799 * At the point that cgroup_fork() is called, 'current' is the parent
4800 * task, and the passed argument 'child' points to the child task.
4801 */
4802void cgroup_fork(struct task_struct *child)
4803{
9bb71308 4804 task_lock(current);
817929ec
PM
4805 child->cgroups = current->cgroups;
4806 get_css_set(child->cgroups);
9bb71308 4807 task_unlock(current);
817929ec 4808 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4809}
4810
817929ec 4811/**
a043e3b2
LZ
4812 * cgroup_post_fork - called on a new task after adding it to the task list
4813 * @child: the task in question
4814 *
5edee61e
TH
4815 * Adds the task to the list running through its css_set if necessary and
4816 * call the subsystem fork() callbacks. Has to be after the task is
4817 * visible on the task list in case we race with the first call to
4818 * cgroup_iter_start() - to guarantee that the new task ends up on its
4819 * list.
a043e3b2 4820 */
817929ec
PM
4821void cgroup_post_fork(struct task_struct *child)
4822{
5edee61e
TH
4823 int i;
4824
3ce3230a
FW
4825 /*
4826 * use_task_css_set_links is set to 1 before we walk the tasklist
4827 * under the tasklist_lock and we read it here after we added the child
4828 * to the tasklist under the tasklist_lock as well. If the child wasn't
4829 * yet in the tasklist when we walked through it from
4830 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4831 * should be visible now due to the paired locking and barriers implied
4832 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4833 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4834 * lock on fork.
4835 */
817929ec
PM
4836 if (use_task_css_set_links) {
4837 write_lock(&css_set_lock);
d8783832
TH
4838 task_lock(child);
4839 if (list_empty(&child->cg_list))
817929ec 4840 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 4841 task_unlock(child);
817929ec
PM
4842 write_unlock(&css_set_lock);
4843 }
5edee61e
TH
4844
4845 /*
4846 * Call ss->fork(). This must happen after @child is linked on
4847 * css_set; otherwise, @child might change state between ->fork()
4848 * and addition to css_set.
4849 */
4850 if (need_forkexit_callback) {
7d8e0bf5
LZ
4851 /*
4852 * fork/exit callbacks are supported only for builtin
4853 * subsystems, and the builtin section of the subsys
4854 * array is immutable, so we don't need to lock the
4855 * subsys array here. On the other hand, modular section
4856 * of the array can be freed at module unload, so we
4857 * can't touch that.
4858 */
4859 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
4860 struct cgroup_subsys *ss = subsys[i];
4861
5edee61e
TH
4862 if (ss->fork)
4863 ss->fork(child);
4864 }
4865 }
817929ec 4866}
5edee61e 4867
b4f48b63
PM
4868/**
4869 * cgroup_exit - detach cgroup from exiting task
4870 * @tsk: pointer to task_struct of exiting process
a043e3b2 4871 * @run_callback: run exit callbacks?
b4f48b63
PM
4872 *
4873 * Description: Detach cgroup from @tsk and release it.
4874 *
4875 * Note that cgroups marked notify_on_release force every task in
4876 * them to take the global cgroup_mutex mutex when exiting.
4877 * This could impact scaling on very large systems. Be reluctant to
4878 * use notify_on_release cgroups where very high task exit scaling
4879 * is required on large systems.
4880 *
4881 * the_top_cgroup_hack:
4882 *
4883 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4884 *
4885 * We call cgroup_exit() while the task is still competent to
4886 * handle notify_on_release(), then leave the task attached to the
4887 * root cgroup in each hierarchy for the remainder of its exit.
4888 *
4889 * To do this properly, we would increment the reference count on
4890 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4891 * code we would add a second cgroup function call, to drop that
4892 * reference. This would just create an unnecessary hot spot on
4893 * the top_cgroup reference count, to no avail.
4894 *
4895 * Normally, holding a reference to a cgroup without bumping its
4896 * count is unsafe. The cgroup could go away, or someone could
4897 * attach us to a different cgroup, decrementing the count on
4898 * the first cgroup that we never incremented. But in this case,
4899 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4900 * which wards off any cgroup_attach_task() attempts, or task is a failed
4901 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4902 */
4903void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4904{
817929ec 4905 struct css_set *cg;
d41d5a01 4906 int i;
817929ec
PM
4907
4908 /*
4909 * Unlink from the css_set task list if necessary.
4910 * Optimistically check cg_list before taking
4911 * css_set_lock
4912 */
4913 if (!list_empty(&tsk->cg_list)) {
4914 write_lock(&css_set_lock);
4915 if (!list_empty(&tsk->cg_list))
8d258797 4916 list_del_init(&tsk->cg_list);
817929ec
PM
4917 write_unlock(&css_set_lock);
4918 }
4919
b4f48b63
PM
4920 /* Reassign the task to the init_css_set. */
4921 task_lock(tsk);
817929ec
PM
4922 cg = tsk->cgroups;
4923 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4924
4925 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
4926 /*
4927 * fork/exit callbacks are supported only for builtin
4928 * subsystems, see cgroup_post_fork() for details.
4929 */
4930 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 4931 struct cgroup_subsys *ss = subsys[i];
be45c900 4932
d41d5a01
PZ
4933 if (ss->exit) {
4934 struct cgroup *old_cgrp =
4935 rcu_dereference_raw(cg->subsys[i])->cgroup;
4936 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4937 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4938 }
4939 }
4940 }
b4f48b63 4941 task_unlock(tsk);
d41d5a01 4942
b5d646f5 4943 put_css_set_taskexit(cg);
b4f48b63 4944}
697f4161 4945
bd89aabc 4946static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4947{
4948 /* All of these checks rely on RCU to keep the cgroup
4949 * structure alive */
f50daa70
LZ
4950 if (cgroup_is_releasable(cgrp) &&
4951 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4952 /*
4953 * Control Group is currently removeable. If it's not
81a6a5cd 4954 * already queued for a userspace notification, queue
f50daa70
LZ
4955 * it now
4956 */
81a6a5cd 4957 int need_schedule_work = 0;
f50daa70 4958
cdcc136f 4959 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4960 if (!cgroup_is_removed(cgrp) &&
4961 list_empty(&cgrp->release_list)) {
4962 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4963 need_schedule_work = 1;
4964 }
cdcc136f 4965 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4966 if (need_schedule_work)
4967 schedule_work(&release_agent_work);
4968 }
4969}
4970
d7b9fff7 4971/* Caller must verify that the css is not for root cgroup */
28b4c27b
TH
4972bool __css_tryget(struct cgroup_subsys_state *css)
4973{
e9316080
TH
4974 while (true) {
4975 int t, v;
28b4c27b 4976
e9316080
TH
4977 v = css_refcnt(css);
4978 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4979 if (likely(t == v))
28b4c27b 4980 return true;
e9316080
TH
4981 else if (t < 0)
4982 return false;
28b4c27b 4983 cpu_relax();
e9316080 4984 }
28b4c27b
TH
4985}
4986EXPORT_SYMBOL_GPL(__css_tryget);
4987
4988/* Caller must verify that the css is not for root cgroup */
4989void __css_put(struct cgroup_subsys_state *css)
81a6a5cd 4990{
8e3bbf42 4991 int v;
28b4c27b 4992
8e3bbf42 4993 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
f50daa70 4994 if (v == 0)
ed957793 4995 schedule_work(&css->dput_work);
81a6a5cd 4996}
67523c48 4997EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4998
4999/*
5000 * Notify userspace when a cgroup is released, by running the
5001 * configured release agent with the name of the cgroup (path
5002 * relative to the root of cgroup file system) as the argument.
5003 *
5004 * Most likely, this user command will try to rmdir this cgroup.
5005 *
5006 * This races with the possibility that some other task will be
5007 * attached to this cgroup before it is removed, or that some other
5008 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5009 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5010 * unused, and this cgroup will be reprieved from its death sentence,
5011 * to continue to serve a useful existence. Next time it's released,
5012 * we will get notified again, if it still has 'notify_on_release' set.
5013 *
5014 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5015 * means only wait until the task is successfully execve()'d. The
5016 * separate release agent task is forked by call_usermodehelper(),
5017 * then control in this thread returns here, without waiting for the
5018 * release agent task. We don't bother to wait because the caller of
5019 * this routine has no use for the exit status of the release agent
5020 * task, so no sense holding our caller up for that.
81a6a5cd 5021 */
81a6a5cd
PM
5022static void cgroup_release_agent(struct work_struct *work)
5023{
5024 BUG_ON(work != &release_agent_work);
5025 mutex_lock(&cgroup_mutex);
cdcc136f 5026 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5027 while (!list_empty(&release_list)) {
5028 char *argv[3], *envp[3];
5029 int i;
e788e066 5030 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5031 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5032 struct cgroup,
5033 release_list);
bd89aabc 5034 list_del_init(&cgrp->release_list);
cdcc136f 5035 raw_spin_unlock(&release_list_lock);
81a6a5cd 5036 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5037 if (!pathbuf)
5038 goto continue_free;
5039 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5040 goto continue_free;
5041 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5042 if (!agentbuf)
5043 goto continue_free;
81a6a5cd
PM
5044
5045 i = 0;
e788e066
PM
5046 argv[i++] = agentbuf;
5047 argv[i++] = pathbuf;
81a6a5cd
PM
5048 argv[i] = NULL;
5049
5050 i = 0;
5051 /* minimal command environment */
5052 envp[i++] = "HOME=/";
5053 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5054 envp[i] = NULL;
5055
5056 /* Drop the lock while we invoke the usermode helper,
5057 * since the exec could involve hitting disk and hence
5058 * be a slow process */
5059 mutex_unlock(&cgroup_mutex);
5060 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5061 mutex_lock(&cgroup_mutex);
e788e066
PM
5062 continue_free:
5063 kfree(pathbuf);
5064 kfree(agentbuf);
cdcc136f 5065 raw_spin_lock(&release_list_lock);
81a6a5cd 5066 }
cdcc136f 5067 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5068 mutex_unlock(&cgroup_mutex);
5069}
8bab8dde
PM
5070
5071static int __init cgroup_disable(char *str)
5072{
5073 int i;
5074 char *token;
5075
5076 while ((token = strsep(&str, ",")) != NULL) {
5077 if (!*token)
5078 continue;
be45c900 5079 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5080 struct cgroup_subsys *ss = subsys[i];
5081
be45c900
DW
5082 /*
5083 * cgroup_disable, being at boot time, can't
5084 * know about module subsystems, so we don't
5085 * worry about them.
5086 */
5087 if (!ss || ss->module)
5088 continue;
5089
8bab8dde
PM
5090 if (!strcmp(token, ss->name)) {
5091 ss->disabled = 1;
5092 printk(KERN_INFO "Disabling %s control group"
5093 " subsystem\n", ss->name);
5094 break;
5095 }
5096 }
5097 }
5098 return 1;
5099}
5100__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5101
5102/*
5103 * Functons for CSS ID.
5104 */
5105
5106/*
5107 *To get ID other than 0, this should be called when !cgroup_is_removed().
5108 */
5109unsigned short css_id(struct cgroup_subsys_state *css)
5110{
7f0f1546
KH
5111 struct css_id *cssid;
5112
5113 /*
5114 * This css_id() can return correct value when somone has refcnt
5115 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5116 * it's unchanged until freed.
5117 */
28b4c27b 5118 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5119
5120 if (cssid)
5121 return cssid->id;
5122 return 0;
5123}
67523c48 5124EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
5125
5126unsigned short css_depth(struct cgroup_subsys_state *css)
5127{
7f0f1546
KH
5128 struct css_id *cssid;
5129
28b4c27b 5130 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5131
5132 if (cssid)
5133 return cssid->depth;
5134 return 0;
5135}
67523c48 5136EXPORT_SYMBOL_GPL(css_depth);
38460b48 5137
747388d7
KH
5138/**
5139 * css_is_ancestor - test "root" css is an ancestor of "child"
5140 * @child: the css to be tested.
5141 * @root: the css supporsed to be an ancestor of the child.
5142 *
5143 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5144 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5145 * But, considering usual usage, the csses should be valid objects after test.
5146 * Assuming that the caller will do some action to the child if this returns
5147 * returns true, the caller must take "child";s reference count.
5148 * If "child" is valid object and this returns true, "root" is valid, too.
5149 */
5150
38460b48 5151bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5152 const struct cgroup_subsys_state *root)
38460b48 5153{
747388d7
KH
5154 struct css_id *child_id;
5155 struct css_id *root_id;
38460b48 5156
747388d7 5157 child_id = rcu_dereference(child->id);
91c63734
JW
5158 if (!child_id)
5159 return false;
747388d7 5160 root_id = rcu_dereference(root->id);
91c63734
JW
5161 if (!root_id)
5162 return false;
5163 if (child_id->depth < root_id->depth)
5164 return false;
5165 if (child_id->stack[root_id->depth] != root_id->id)
5166 return false;
5167 return true;
38460b48
KH
5168}
5169
38460b48
KH
5170void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5171{
5172 struct css_id *id = css->id;
5173 /* When this is called before css_id initialization, id can be NULL */
5174 if (!id)
5175 return;
5176
5177 BUG_ON(!ss->use_id);
5178
5179 rcu_assign_pointer(id->css, NULL);
5180 rcu_assign_pointer(css->id, NULL);
42aee6c4 5181 spin_lock(&ss->id_lock);
38460b48 5182 idr_remove(&ss->idr, id->id);
42aee6c4 5183 spin_unlock(&ss->id_lock);
025cea99 5184 kfree_rcu(id, rcu_head);
38460b48 5185}
67523c48 5186EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5187
5188/*
5189 * This is called by init or create(). Then, calls to this function are
5190 * always serialized (By cgroup_mutex() at create()).
5191 */
5192
5193static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5194{
5195 struct css_id *newid;
d228d9ec 5196 int ret, size;
38460b48
KH
5197
5198 BUG_ON(!ss->use_id);
5199
5200 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5201 newid = kzalloc(size, GFP_KERNEL);
5202 if (!newid)
5203 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5204
5205 idr_preload(GFP_KERNEL);
42aee6c4 5206 spin_lock(&ss->id_lock);
38460b48 5207 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5208 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5209 spin_unlock(&ss->id_lock);
d228d9ec 5210 idr_preload_end();
38460b48
KH
5211
5212 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5213 if (ret < 0)
38460b48 5214 goto err_out;
38460b48 5215
d228d9ec 5216 newid->id = ret;
38460b48
KH
5217 newid->depth = depth;
5218 return newid;
38460b48
KH
5219err_out:
5220 kfree(newid);
d228d9ec 5221 return ERR_PTR(ret);
38460b48
KH
5222
5223}
5224
e6a1105b
BB
5225static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5226 struct cgroup_subsys_state *rootcss)
38460b48
KH
5227{
5228 struct css_id *newid;
38460b48 5229
42aee6c4 5230 spin_lock_init(&ss->id_lock);
38460b48
KH
5231 idr_init(&ss->idr);
5232
38460b48
KH
5233 newid = get_new_cssid(ss, 0);
5234 if (IS_ERR(newid))
5235 return PTR_ERR(newid);
5236
5237 newid->stack[0] = newid->id;
5238 newid->css = rootcss;
5239 rootcss->id = newid;
5240 return 0;
5241}
5242
5243static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5244 struct cgroup *child)
5245{
5246 int subsys_id, i, depth = 0;
5247 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5248 struct css_id *child_id, *parent_id;
38460b48
KH
5249
5250 subsys_id = ss->subsys_id;
5251 parent_css = parent->subsys[subsys_id];
5252 child_css = child->subsys[subsys_id];
38460b48 5253 parent_id = parent_css->id;
94b3dd0f 5254 depth = parent_id->depth + 1;
38460b48
KH
5255
5256 child_id = get_new_cssid(ss, depth);
5257 if (IS_ERR(child_id))
5258 return PTR_ERR(child_id);
5259
5260 for (i = 0; i < depth; i++)
5261 child_id->stack[i] = parent_id->stack[i];
5262 child_id->stack[depth] = child_id->id;
5263 /*
5264 * child_id->css pointer will be set after this cgroup is available
5265 * see cgroup_populate_dir()
5266 */
5267 rcu_assign_pointer(child_css->id, child_id);
5268
5269 return 0;
5270}
5271
5272/**
5273 * css_lookup - lookup css by id
5274 * @ss: cgroup subsys to be looked into.
5275 * @id: the id
5276 *
5277 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5278 * NULL if not. Should be called under rcu_read_lock()
5279 */
5280struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5281{
5282 struct css_id *cssid = NULL;
5283
5284 BUG_ON(!ss->use_id);
5285 cssid = idr_find(&ss->idr, id);
5286
5287 if (unlikely(!cssid))
5288 return NULL;
5289
5290 return rcu_dereference(cssid->css);
5291}
67523c48 5292EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5293
5294/**
5295 * css_get_next - lookup next cgroup under specified hierarchy.
5296 * @ss: pointer to subsystem
5297 * @id: current position of iteration.
5298 * @root: pointer to css. search tree under this.
5299 * @foundid: position of found object.
5300 *
5301 * Search next css under the specified hierarchy of rootid. Calling under
5302 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5303 */
5304struct cgroup_subsys_state *
5305css_get_next(struct cgroup_subsys *ss, int id,
5306 struct cgroup_subsys_state *root, int *foundid)
5307{
5308 struct cgroup_subsys_state *ret = NULL;
5309 struct css_id *tmp;
5310 int tmpid;
5311 int rootid = css_id(root);
5312 int depth = css_depth(root);
5313
5314 if (!rootid)
5315 return NULL;
5316
5317 BUG_ON(!ss->use_id);
ca464d69
HD
5318 WARN_ON_ONCE(!rcu_read_lock_held());
5319
38460b48
KH
5320 /* fill start point for scan */
5321 tmpid = id;
5322 while (1) {
5323 /*
5324 * scan next entry from bitmap(tree), tmpid is updated after
5325 * idr_get_next().
5326 */
38460b48 5327 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5328 if (!tmp)
5329 break;
5330 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5331 ret = rcu_dereference(tmp->css);
5332 if (ret) {
5333 *foundid = tmpid;
5334 break;
5335 }
5336 }
5337 /* continue to scan from next id */
5338 tmpid = tmpid + 1;
5339 }
5340 return ret;
5341}
5342
e5d1367f
SE
5343/*
5344 * get corresponding css from file open on cgroupfs directory
5345 */
5346struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5347{
5348 struct cgroup *cgrp;
5349 struct inode *inode;
5350 struct cgroup_subsys_state *css;
5351
496ad9aa 5352 inode = file_inode(f);
e5d1367f
SE
5353 /* check in cgroup filesystem dir */
5354 if (inode->i_op != &cgroup_dir_inode_operations)
5355 return ERR_PTR(-EBADF);
5356
5357 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5358 return ERR_PTR(-EINVAL);
5359
5360 /* get cgroup */
5361 cgrp = __d_cgrp(f->f_dentry);
5362 css = cgrp->subsys[id];
5363 return css ? css : ERR_PTR(-ENOENT);
5364}
5365
fe693435 5366#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5367static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5368{
5369 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5370
5371 if (!css)
5372 return ERR_PTR(-ENOMEM);
5373
5374 return css;
5375}
5376
92fb9748 5377static void debug_css_free(struct cgroup *cont)
fe693435
PM
5378{
5379 kfree(cont->subsys[debug_subsys_id]);
5380}
5381
5382static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5383{
5384 return atomic_read(&cont->count);
5385}
5386
5387static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5388{
5389 return cgroup_task_count(cont);
5390}
5391
5392static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5393{
5394 return (u64)(unsigned long)current->cgroups;
5395}
5396
5397static u64 current_css_set_refcount_read(struct cgroup *cont,
5398 struct cftype *cft)
5399{
5400 u64 count;
5401
5402 rcu_read_lock();
5403 count = atomic_read(&current->cgroups->refcount);
5404 rcu_read_unlock();
5405 return count;
5406}
5407
7717f7ba
PM
5408static int current_css_set_cg_links_read(struct cgroup *cont,
5409 struct cftype *cft,
5410 struct seq_file *seq)
5411{
5412 struct cg_cgroup_link *link;
5413 struct css_set *cg;
5414
5415 read_lock(&css_set_lock);
5416 rcu_read_lock();
5417 cg = rcu_dereference(current->cgroups);
5418 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5419 struct cgroup *c = link->cgrp;
5420 const char *name;
5421
5422 if (c->dentry)
5423 name = c->dentry->d_name.name;
5424 else
5425 name = "?";
2c6ab6d2
PM
5426 seq_printf(seq, "Root %d group %s\n",
5427 c->root->hierarchy_id, name);
7717f7ba
PM
5428 }
5429 rcu_read_unlock();
5430 read_unlock(&css_set_lock);
5431 return 0;
5432}
5433
5434#define MAX_TASKS_SHOWN_PER_CSS 25
5435static int cgroup_css_links_read(struct cgroup *cont,
5436 struct cftype *cft,
5437 struct seq_file *seq)
5438{
5439 struct cg_cgroup_link *link;
5440
5441 read_lock(&css_set_lock);
5442 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5443 struct css_set *cg = link->cg;
5444 struct task_struct *task;
5445 int count = 0;
5446 seq_printf(seq, "css_set %p\n", cg);
5447 list_for_each_entry(task, &cg->tasks, cg_list) {
5448 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5449 seq_puts(seq, " ...\n");
5450 break;
5451 } else {
5452 seq_printf(seq, " task %d\n",
5453 task_pid_vnr(task));
5454 }
5455 }
5456 }
5457 read_unlock(&css_set_lock);
5458 return 0;
5459}
5460
fe693435
PM
5461static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5462{
5463 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5464}
5465
5466static struct cftype debug_files[] = {
5467 {
5468 .name = "cgroup_refcount",
5469 .read_u64 = cgroup_refcount_read,
5470 },
5471 {
5472 .name = "taskcount",
5473 .read_u64 = debug_taskcount_read,
5474 },
5475
5476 {
5477 .name = "current_css_set",
5478 .read_u64 = current_css_set_read,
5479 },
5480
5481 {
5482 .name = "current_css_set_refcount",
5483 .read_u64 = current_css_set_refcount_read,
5484 },
5485
7717f7ba
PM
5486 {
5487 .name = "current_css_set_cg_links",
5488 .read_seq_string = current_css_set_cg_links_read,
5489 },
5490
5491 {
5492 .name = "cgroup_css_links",
5493 .read_seq_string = cgroup_css_links_read,
5494 },
5495
fe693435
PM
5496 {
5497 .name = "releasable",
5498 .read_u64 = releasable_read,
5499 },
fe693435 5500
4baf6e33
TH
5501 { } /* terminate */
5502};
fe693435
PM
5503
5504struct cgroup_subsys debug_subsys = {
5505 .name = "debug",
92fb9748
TH
5506 .css_alloc = debug_css_alloc,
5507 .css_free = debug_css_free,
fe693435 5508 .subsys_id = debug_subsys_id,
4baf6e33 5509 .base_cftypes = debug_files,
fe693435
PM
5510};
5511#endif /* CONFIG_CGROUP_DEBUG */