cgroup: use css_set->mg_tasks to track target tasks during migration
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
8af01f56 86EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 87#else
81a6a5cd 88static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
89#endif
90
69e943b7
TH
91/*
92 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
93 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
94 */
95static DEFINE_SPINLOCK(release_agent_path_lock);
96
ace2bee8 97#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 98 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 99 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 100 lockdep_is_held(&cgroup_mutex), \
ace2bee8 101 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 102
e5fca243
TH
103/*
104 * cgroup destruction makes heavy use of work items and there can be a lot
105 * of concurrent destructions. Use a separate workqueue so that cgroup
106 * destruction work items don't end up filling up max_active of system_wq
107 * which may lead to deadlock.
108 */
109static struct workqueue_struct *cgroup_destroy_wq;
110
b1a21367
TH
111/*
112 * pidlist destructions need to be flushed on cgroup destruction. Use a
113 * separate workqueue as flush domain.
114 */
115static struct workqueue_struct *cgroup_pidlist_destroy_wq;
116
3ed80a62 117/* generate an array of cgroup subsystem pointers */
073219e9 118#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 119static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
120#include <linux/cgroup_subsys.h>
121};
073219e9
TH
122#undef SUBSYS
123
124/* array of cgroup subsystem names */
125#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126static const char *cgroup_subsys_name[] = {
127#include <linux/cgroup_subsys.h>
128};
129#undef SUBSYS
ddbcc7e8 130
ddbcc7e8 131/*
9871bf95
TH
132 * The dummy hierarchy, reserved for the subsystems that are otherwise
133 * unattached - it never has more than a single cgroup, and all tasks are
134 * part of that cgroup.
ddbcc7e8 135 */
9871bf95
TH
136static struct cgroupfs_root cgroup_dummy_root;
137
138/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
139static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
140
141/* The list of hierarchy roots */
142
9871bf95
TH
143static LIST_HEAD(cgroup_roots);
144static int cgroup_root_count;
ddbcc7e8 145
3417ae1f 146/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 147static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 148
794611a1
LZ
149/*
150 * Assign a monotonically increasing serial number to cgroups. It
151 * guarantees cgroups with bigger numbers are newer than those with smaller
152 * numbers. Also, as cgroups are always appended to the parent's
153 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
154 * the ascending serial number order on the list. Protected by
155 * cgroup_mutex.
794611a1 156 */
00356bd5 157static u64 cgroup_serial_nr_next = 1;
794611a1 158
ddbcc7e8 159/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
160 * check for fork/exit handlers to call. This avoids us having to do
161 * extra work in the fork/exit path if none of the subsystems need to
162 * be called.
ddbcc7e8 163 */
8947f9d5 164static int need_forkexit_callback __read_mostly;
ddbcc7e8 165
628f7cd4
TH
166static struct cftype cgroup_base_files[];
167
59f5296b 168static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
169static int rebind_subsystems(struct cgroupfs_root *root,
170 unsigned long added_mask, unsigned removed_mask);
f20104de 171static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 172static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
173static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
174 bool is_add);
b1a21367 175static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 176
95109b62
TH
177/**
178 * cgroup_css - obtain a cgroup's css for the specified subsystem
179 * @cgrp: the cgroup of interest
ca8bdcaf 180 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 181 *
ca8bdcaf
TH
182 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
183 * function must be called either under cgroup_mutex or rcu_read_lock() and
184 * the caller is responsible for pinning the returned css if it wants to
185 * keep accessing it outside the said locks. This function may return
186 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
187 */
188static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 189 struct cgroup_subsys *ss)
95109b62 190{
ca8bdcaf 191 if (ss)
aec25020 192 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
193 lockdep_is_held(&cgroup_tree_mutex) ||
194 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
195 else
196 return &cgrp->dummy_css;
95109b62 197}
42809dd4 198
ddbcc7e8 199/* convenient tests for these bits */
54766d4a 200static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 201{
54766d4a 202 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
203}
204
59f5296b
TH
205struct cgroup_subsys_state *seq_css(struct seq_file *seq)
206{
2bd59d48
TH
207 struct kernfs_open_file *of = seq->private;
208 struct cgroup *cgrp = of->kn->parent->priv;
209 struct cftype *cft = seq_cft(seq);
210
211 /*
212 * This is open and unprotected implementation of cgroup_css().
213 * seq_css() is only called from a kernfs file operation which has
214 * an active reference on the file. Because all the subsystem
215 * files are drained before a css is disassociated with a cgroup,
216 * the matching css from the cgroup's subsys table is guaranteed to
217 * be and stay valid until the enclosing operation is complete.
218 */
219 if (cft->ss)
220 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
221 else
222 return &cgrp->dummy_css;
59f5296b
TH
223}
224EXPORT_SYMBOL_GPL(seq_css);
225
78574cf9
LZ
226/**
227 * cgroup_is_descendant - test ancestry
228 * @cgrp: the cgroup to be tested
229 * @ancestor: possible ancestor of @cgrp
230 *
231 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
232 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
233 * and @ancestor are accessible.
234 */
235bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
236{
237 while (cgrp) {
238 if (cgrp == ancestor)
239 return true;
240 cgrp = cgrp->parent;
241 }
242 return false;
243}
ddbcc7e8 244
e9685a03 245static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
246{
247 const int bits =
bd89aabc
PM
248 (1 << CGRP_RELEASABLE) |
249 (1 << CGRP_NOTIFY_ON_RELEASE);
250 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
251}
252
e9685a03 253static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 254{
bd89aabc 255 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
256}
257
1c6727af
TH
258/**
259 * for_each_css - iterate all css's of a cgroup
260 * @css: the iteration cursor
261 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
262 * @cgrp: the target cgroup to iterate css's of
263 *
264 * Should be called under cgroup_mutex.
265 */
266#define for_each_css(css, ssid, cgrp) \
267 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
268 if (!((css) = rcu_dereference_check( \
269 (cgrp)->subsys[(ssid)], \
ace2bee8 270 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
271 lockdep_is_held(&cgroup_mutex)))) { } \
272 else
273
30159ec7 274/**
3ed80a62 275 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 276 * @ss: the iteration cursor
780cd8b3 277 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 278 */
780cd8b3 279#define for_each_subsys(ss, ssid) \
3ed80a62
TH
280 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
281 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 282
5549c497
TH
283/* iterate across the active hierarchies */
284#define for_each_active_root(root) \
285 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 286
7ae1bad9
TH
287/**
288 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
289 * @cgrp: the cgroup to be checked for liveness
290 *
47cfcd09
TH
291 * On success, returns true; the mutex should be later unlocked. On
292 * failure returns false with no lock held.
7ae1bad9 293 */
b9777cf8 294static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
295{
296 mutex_lock(&cgroup_mutex);
54766d4a 297 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
298 mutex_unlock(&cgroup_mutex);
299 return false;
300 }
301 return true;
302}
7ae1bad9 303
81a6a5cd
PM
304/* the list of cgroups eligible for automatic release. Protected by
305 * release_list_lock */
306static LIST_HEAD(release_list);
cdcc136f 307static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
308static void cgroup_release_agent(struct work_struct *work);
309static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 310static void check_for_release(struct cgroup *cgrp);
81a6a5cd 311
69d0206c
TH
312/*
313 * A cgroup can be associated with multiple css_sets as different tasks may
314 * belong to different cgroups on different hierarchies. In the other
315 * direction, a css_set is naturally associated with multiple cgroups.
316 * This M:N relationship is represented by the following link structure
317 * which exists for each association and allows traversing the associations
318 * from both sides.
319 */
320struct cgrp_cset_link {
321 /* the cgroup and css_set this link associates */
322 struct cgroup *cgrp;
323 struct css_set *cset;
324
325 /* list of cgrp_cset_links anchored at cgrp->cset_links */
326 struct list_head cset_link;
327
328 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
329 struct list_head cgrp_link;
817929ec
PM
330};
331
332/* The default css_set - used by init and its children prior to any
333 * hierarchies being mounted. It contains a pointer to the root state
334 * for each subsystem. Also used to anchor the list of css_sets. Not
335 * reference-counted, to improve performance when child cgroups
336 * haven't been created.
337 */
338
339static struct css_set init_css_set;
69d0206c 340static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 341
0942eeee 342/*
96d365e0
TH
343 * css_set_rwsem protects the list of css_set objects, and the chain of
344 * tasks off each css_set.
0942eeee 345 */
96d365e0 346static DECLARE_RWSEM(css_set_rwsem);
817929ec
PM
347static int css_set_count;
348
7717f7ba
PM
349/*
350 * hash table for cgroup groups. This improves the performance to find
351 * an existing css_set. This hash doesn't (currently) take into
352 * account cgroups in empty hierarchies.
353 */
472b1053 354#define CSS_SET_HASH_BITS 7
0ac801fe 355static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 356
0ac801fe 357static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 358{
0ac801fe 359 unsigned long key = 0UL;
30159ec7
TH
360 struct cgroup_subsys *ss;
361 int i;
472b1053 362
30159ec7 363 for_each_subsys(ss, i)
0ac801fe
LZ
364 key += (unsigned long)css[i];
365 key = (key >> 16) ^ key;
472b1053 366
0ac801fe 367 return key;
472b1053
LZ
368}
369
89c5509b 370static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 371{
69d0206c 372 struct cgrp_cset_link *link, *tmp_link;
5abb8855 373
89c5509b
TH
374 lockdep_assert_held(&css_set_rwsem);
375
376 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 377 return;
81a6a5cd 378
2c6ab6d2 379 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 380 hash_del(&cset->hlist);
2c6ab6d2
PM
381 css_set_count--;
382
69d0206c 383 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 384 struct cgroup *cgrp = link->cgrp;
5abb8855 385
69d0206c
TH
386 list_del(&link->cset_link);
387 list_del(&link->cgrp_link);
71b5707e 388
96d365e0 389 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 390 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 391 if (taskexit)
bd89aabc
PM
392 set_bit(CGRP_RELEASABLE, &cgrp->flags);
393 check_for_release(cgrp);
81a6a5cd 394 }
2c6ab6d2
PM
395
396 kfree(link);
81a6a5cd 397 }
2c6ab6d2 398
5abb8855 399 kfree_rcu(cset, rcu_head);
b4f48b63
PM
400}
401
89c5509b
TH
402static void put_css_set(struct css_set *cset, bool taskexit)
403{
404 /*
405 * Ensure that the refcount doesn't hit zero while any readers
406 * can see it. Similar to atomic_dec_and_lock(), but for an
407 * rwlock
408 */
409 if (atomic_add_unless(&cset->refcount, -1, 1))
410 return;
411
412 down_write(&css_set_rwsem);
413 put_css_set_locked(cset, taskexit);
414 up_write(&css_set_rwsem);
415}
416
817929ec
PM
417/*
418 * refcounted get/put for css_set objects
419 */
5abb8855 420static inline void get_css_set(struct css_set *cset)
817929ec 421{
5abb8855 422 atomic_inc(&cset->refcount);
817929ec
PM
423}
424
b326f9d0 425/**
7717f7ba 426 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
427 * @cset: candidate css_set being tested
428 * @old_cset: existing css_set for a task
7717f7ba
PM
429 * @new_cgrp: cgroup that's being entered by the task
430 * @template: desired set of css pointers in css_set (pre-calculated)
431 *
6f4b7e63 432 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
433 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
434 */
5abb8855
TH
435static bool compare_css_sets(struct css_set *cset,
436 struct css_set *old_cset,
7717f7ba
PM
437 struct cgroup *new_cgrp,
438 struct cgroup_subsys_state *template[])
439{
440 struct list_head *l1, *l2;
441
5abb8855 442 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
443 /* Not all subsystems matched */
444 return false;
445 }
446
447 /*
448 * Compare cgroup pointers in order to distinguish between
449 * different cgroups in heirarchies with no subsystems. We
450 * could get by with just this check alone (and skip the
451 * memcmp above) but on most setups the memcmp check will
452 * avoid the need for this more expensive check on almost all
453 * candidates.
454 */
455
69d0206c
TH
456 l1 = &cset->cgrp_links;
457 l2 = &old_cset->cgrp_links;
7717f7ba 458 while (1) {
69d0206c 459 struct cgrp_cset_link *link1, *link2;
5abb8855 460 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
461
462 l1 = l1->next;
463 l2 = l2->next;
464 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
465 if (l1 == &cset->cgrp_links) {
466 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
467 break;
468 } else {
69d0206c 469 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
470 }
471 /* Locate the cgroups associated with these links. */
69d0206c
TH
472 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
473 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
474 cgrp1 = link1->cgrp;
475 cgrp2 = link2->cgrp;
7717f7ba 476 /* Hierarchies should be linked in the same order. */
5abb8855 477 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
478
479 /*
480 * If this hierarchy is the hierarchy of the cgroup
481 * that's changing, then we need to check that this
482 * css_set points to the new cgroup; if it's any other
483 * hierarchy, then this css_set should point to the
484 * same cgroup as the old css_set.
485 */
5abb8855
TH
486 if (cgrp1->root == new_cgrp->root) {
487 if (cgrp1 != new_cgrp)
7717f7ba
PM
488 return false;
489 } else {
5abb8855 490 if (cgrp1 != cgrp2)
7717f7ba
PM
491 return false;
492 }
493 }
494 return true;
495}
496
b326f9d0
TH
497/**
498 * find_existing_css_set - init css array and find the matching css_set
499 * @old_cset: the css_set that we're using before the cgroup transition
500 * @cgrp: the cgroup that we're moving into
501 * @template: out param for the new set of csses, should be clear on entry
817929ec 502 */
5abb8855
TH
503static struct css_set *find_existing_css_set(struct css_set *old_cset,
504 struct cgroup *cgrp,
505 struct cgroup_subsys_state *template[])
b4f48b63 506{
bd89aabc 507 struct cgroupfs_root *root = cgrp->root;
30159ec7 508 struct cgroup_subsys *ss;
5abb8855 509 struct css_set *cset;
0ac801fe 510 unsigned long key;
b326f9d0 511 int i;
817929ec 512
aae8aab4
BB
513 /*
514 * Build the set of subsystem state objects that we want to see in the
515 * new css_set. while subsystems can change globally, the entries here
516 * won't change, so no need for locking.
517 */
30159ec7 518 for_each_subsys(ss, i) {
a1a71b45 519 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
520 /* Subsystem is in this hierarchy. So we want
521 * the subsystem state from the new
522 * cgroup */
ca8bdcaf 523 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
524 } else {
525 /* Subsystem is not in this hierarchy, so we
526 * don't want to change the subsystem state */
5abb8855 527 template[i] = old_cset->subsys[i];
817929ec
PM
528 }
529 }
530
0ac801fe 531 key = css_set_hash(template);
5abb8855
TH
532 hash_for_each_possible(css_set_table, cset, hlist, key) {
533 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
534 continue;
535
536 /* This css_set matches what we need */
5abb8855 537 return cset;
472b1053 538 }
817929ec
PM
539
540 /* No existing cgroup group matched */
541 return NULL;
542}
543
69d0206c 544static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 545{
69d0206c 546 struct cgrp_cset_link *link, *tmp_link;
36553434 547
69d0206c
TH
548 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
549 list_del(&link->cset_link);
36553434
LZ
550 kfree(link);
551 }
552}
553
69d0206c
TH
554/**
555 * allocate_cgrp_cset_links - allocate cgrp_cset_links
556 * @count: the number of links to allocate
557 * @tmp_links: list_head the allocated links are put on
558 *
559 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
560 * through ->cset_link. Returns 0 on success or -errno.
817929ec 561 */
69d0206c 562static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 563{
69d0206c 564 struct cgrp_cset_link *link;
817929ec 565 int i;
69d0206c
TH
566
567 INIT_LIST_HEAD(tmp_links);
568
817929ec 569 for (i = 0; i < count; i++) {
f4f4be2b 570 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 571 if (!link) {
69d0206c 572 free_cgrp_cset_links(tmp_links);
817929ec
PM
573 return -ENOMEM;
574 }
69d0206c 575 list_add(&link->cset_link, tmp_links);
817929ec
PM
576 }
577 return 0;
578}
579
c12f65d4
LZ
580/**
581 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 582 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 583 * @cset: the css_set to be linked
c12f65d4
LZ
584 * @cgrp: the destination cgroup
585 */
69d0206c
TH
586static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
587 struct cgroup *cgrp)
c12f65d4 588{
69d0206c 589 struct cgrp_cset_link *link;
c12f65d4 590
69d0206c
TH
591 BUG_ON(list_empty(tmp_links));
592 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
593 link->cset = cset;
7717f7ba 594 link->cgrp = cgrp;
69d0206c 595 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
596 /*
597 * Always add links to the tail of the list so that the list
598 * is sorted by order of hierarchy creation
599 */
69d0206c 600 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
601}
602
b326f9d0
TH
603/**
604 * find_css_set - return a new css_set with one cgroup updated
605 * @old_cset: the baseline css_set
606 * @cgrp: the cgroup to be updated
607 *
608 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
609 * substituted into the appropriate hierarchy.
817929ec 610 */
5abb8855
TH
611static struct css_set *find_css_set(struct css_set *old_cset,
612 struct cgroup *cgrp)
817929ec 613{
b326f9d0 614 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 615 struct css_set *cset;
69d0206c
TH
616 struct list_head tmp_links;
617 struct cgrp_cset_link *link;
0ac801fe 618 unsigned long key;
472b1053 619
b326f9d0
TH
620 lockdep_assert_held(&cgroup_mutex);
621
817929ec
PM
622 /* First see if we already have a cgroup group that matches
623 * the desired set */
96d365e0 624 down_read(&css_set_rwsem);
5abb8855
TH
625 cset = find_existing_css_set(old_cset, cgrp, template);
626 if (cset)
627 get_css_set(cset);
96d365e0 628 up_read(&css_set_rwsem);
817929ec 629
5abb8855
TH
630 if (cset)
631 return cset;
817929ec 632
f4f4be2b 633 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 634 if (!cset)
817929ec
PM
635 return NULL;
636
69d0206c 637 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 638 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 639 kfree(cset);
817929ec
PM
640 return NULL;
641 }
642
5abb8855 643 atomic_set(&cset->refcount, 1);
69d0206c 644 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 645 INIT_LIST_HEAD(&cset->tasks);
c7561128 646 INIT_LIST_HEAD(&cset->mg_tasks);
b3dc094e 647 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 648 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
649
650 /* Copy the set of subsystem state objects generated in
651 * find_existing_css_set() */
5abb8855 652 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 653
96d365e0 654 down_write(&css_set_rwsem);
817929ec 655 /* Add reference counts and links from the new css_set. */
69d0206c 656 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 657 struct cgroup *c = link->cgrp;
69d0206c 658
7717f7ba
PM
659 if (c->root == cgrp->root)
660 c = cgrp;
69d0206c 661 link_css_set(&tmp_links, cset, c);
7717f7ba 662 }
817929ec 663
69d0206c 664 BUG_ON(!list_empty(&tmp_links));
817929ec 665
817929ec 666 css_set_count++;
472b1053
LZ
667
668 /* Add this cgroup group to the hash table */
5abb8855
TH
669 key = css_set_hash(cset->subsys);
670 hash_add(css_set_table, &cset->hlist, key);
472b1053 671
96d365e0 672 up_write(&css_set_rwsem);
817929ec 673
5abb8855 674 return cset;
b4f48b63
PM
675}
676
2bd59d48
TH
677static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
678{
679 struct cgroup *top_cgrp = kf_root->kn->priv;
680
681 return top_cgrp->root;
682}
683
f2e85d57
TH
684static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
685{
686 int id;
687
688 lockdep_assert_held(&cgroup_mutex);
689
690 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
691 GFP_KERNEL);
692 if (id < 0)
693 return id;
694
695 root->hierarchy_id = id;
696 return 0;
697}
698
699static void cgroup_exit_root_id(struct cgroupfs_root *root)
700{
701 lockdep_assert_held(&cgroup_mutex);
702
703 if (root->hierarchy_id) {
704 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
705 root->hierarchy_id = 0;
706 }
707}
708
709static void cgroup_free_root(struct cgroupfs_root *root)
710{
711 if (root) {
712 /* hierarhcy ID shoulid already have been released */
713 WARN_ON_ONCE(root->hierarchy_id);
714
715 idr_destroy(&root->cgroup_idr);
716 kfree(root);
717 }
718}
719
776f02fa 720static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 721{
f2e85d57
TH
722 struct cgroup *cgrp = &root->top_cgroup;
723 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 724
2bd59d48 725 mutex_lock(&cgroup_tree_mutex);
2bd59d48 726 mutex_lock(&cgroup_mutex);
f2e85d57 727
776f02fa 728 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
729 BUG_ON(!list_empty(&cgrp->children));
730
f2e85d57 731 /* Rebind all subsystems back to the default hierarchy */
35585573 732 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
733
734 /*
735 * Release all the links from cset_links to this hierarchy's
736 * root cgroup
737 */
96d365e0 738 down_write(&css_set_rwsem);
f2e85d57
TH
739
740 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
741 list_del(&link->cset_link);
742 list_del(&link->cgrp_link);
743 kfree(link);
744 }
96d365e0 745 up_write(&css_set_rwsem);
f2e85d57
TH
746
747 if (!list_empty(&root->root_list)) {
748 list_del(&root->root_list);
749 cgroup_root_count--;
750 }
751
752 cgroup_exit_root_id(root);
753
754 mutex_unlock(&cgroup_mutex);
755 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 756
2bd59d48 757 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
758 cgroup_free_root(root);
759}
760
7717f7ba
PM
761/*
762 * Return the cgroup for "task" from the given hierarchy. Must be
96d365e0 763 * called with cgroup_mutex and css_set_rwsem held.
7717f7ba
PM
764 */
765static struct cgroup *task_cgroup_from_root(struct task_struct *task,
766 struct cgroupfs_root *root)
767{
5abb8855 768 struct css_set *cset;
7717f7ba
PM
769 struct cgroup *res = NULL;
770
96d365e0
TH
771 lockdep_assert_held(&cgroup_mutex);
772 lockdep_assert_held(&css_set_rwsem);
773
7717f7ba
PM
774 /*
775 * No need to lock the task - since we hold cgroup_mutex the
776 * task can't change groups, so the only thing that can happen
777 * is that it exits and its css is set back to init_css_set.
778 */
a8ad805c 779 cset = task_css_set(task);
5abb8855 780 if (cset == &init_css_set) {
7717f7ba
PM
781 res = &root->top_cgroup;
782 } else {
69d0206c
TH
783 struct cgrp_cset_link *link;
784
785 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 786 struct cgroup *c = link->cgrp;
69d0206c 787
7717f7ba
PM
788 if (c->root == root) {
789 res = c;
790 break;
791 }
792 }
793 }
96d365e0 794
7717f7ba
PM
795 BUG_ON(!res);
796 return res;
797}
798
ddbcc7e8
PM
799/*
800 * There is one global cgroup mutex. We also require taking
801 * task_lock() when dereferencing a task's cgroup subsys pointers.
802 * See "The task_lock() exception", at the end of this comment.
803 *
804 * A task must hold cgroup_mutex to modify cgroups.
805 *
806 * Any task can increment and decrement the count field without lock.
807 * So in general, code holding cgroup_mutex can't rely on the count
808 * field not changing. However, if the count goes to zero, then only
956db3ca 809 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
810 * means that no tasks are currently attached, therefore there is no
811 * way a task attached to that cgroup can fork (the other way to
812 * increment the count). So code holding cgroup_mutex can safely
813 * assume that if the count is zero, it will stay zero. Similarly, if
814 * a task holds cgroup_mutex on a cgroup with zero count, it
815 * knows that the cgroup won't be removed, as cgroup_rmdir()
816 * needs that mutex.
817 *
ddbcc7e8
PM
818 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
819 * (usually) take cgroup_mutex. These are the two most performance
820 * critical pieces of code here. The exception occurs on cgroup_exit(),
821 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
822 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
823 * to the release agent with the name of the cgroup (path relative to
824 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
825 *
826 * A cgroup can only be deleted if both its 'count' of using tasks
827 * is zero, and its list of 'children' cgroups is empty. Since all
828 * tasks in the system use _some_ cgroup, and since there is always at
829 * least one task in the system (init, pid == 1), therefore, top_cgroup
830 * always has either children cgroups and/or using tasks. So we don't
831 * need a special hack to ensure that top_cgroup cannot be deleted.
832 *
833 * The task_lock() exception
834 *
835 * The need for this exception arises from the action of
d0b2fdd2 836 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 837 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
838 * several performance critical places that need to reference
839 * task->cgroup without the expense of grabbing a system global
840 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 841 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
842 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
843 * the task_struct routinely used for such matters.
844 *
845 * P.S. One more locking exception. RCU is used to guard the
956db3ca 846 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
847 */
848
628f7cd4 849static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 850static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 851static const struct file_operations proc_cgroupstats_operations;
a424316c 852
8d7e6fb0
TH
853static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
854 char *buf)
855{
856 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
857 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
858 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
859 cft->ss->name, cft->name);
860 else
861 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
862 return buf;
863}
864
f2e85d57
TH
865/**
866 * cgroup_file_mode - deduce file mode of a control file
867 * @cft: the control file in question
868 *
869 * returns cft->mode if ->mode is not 0
870 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
871 * returns S_IRUGO if it has only a read handler
872 * returns S_IWUSR if it has only a write hander
873 */
874static umode_t cgroup_file_mode(const struct cftype *cft)
875{
876 umode_t mode = 0;
877
878 if (cft->mode)
879 return cft->mode;
880
881 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
882 mode |= S_IRUGO;
883
884 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
885 cft->trigger)
886 mode |= S_IWUSR;
887
888 return mode;
889}
890
be445626
LZ
891static void cgroup_free_fn(struct work_struct *work)
892{
ea15f8cc 893 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 894
3c9c825b 895 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 896 cgroup_pidlist_destroy_all(cgrp);
be445626 897
776f02fa
TH
898 if (cgrp->parent) {
899 /*
900 * We get a ref to the parent, and put the ref when this
901 * cgroup is being freed, so it's guaranteed that the
902 * parent won't be destroyed before its children.
903 */
904 cgroup_put(cgrp->parent);
905 kernfs_put(cgrp->kn);
906 kfree(cgrp);
907 } else {
908 /*
909 * This is top cgroup's refcnt reaching zero, which
910 * indicates that the root should be released.
911 */
912 cgroup_destroy_root(cgrp->root);
913 }
be445626
LZ
914}
915
916static void cgroup_free_rcu(struct rcu_head *head)
917{
918 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
919
ea15f8cc 920 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 921 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
922}
923
59f5296b
TH
924static void cgroup_get(struct cgroup *cgrp)
925{
2bd59d48
TH
926 WARN_ON_ONCE(cgroup_is_dead(cgrp));
927 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
928 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
929}
930
59f5296b
TH
931static void cgroup_put(struct cgroup *cgrp)
932{
2bd59d48
TH
933 if (!atomic_dec_and_test(&cgrp->refcnt))
934 return;
776f02fa 935 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 936 return;
59f5296b 937
2bd59d48
TH
938 /*
939 * XXX: cgrp->id is only used to look up css's. As cgroup and
940 * css's lifetimes will be decoupled, it should be made
941 * per-subsystem and moved to css->id so that lookups are
942 * successful until the target css is released.
943 */
944 mutex_lock(&cgroup_mutex);
945 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
946 mutex_unlock(&cgroup_mutex);
947 cgrp->id = -1;
ddbcc7e8 948
2bd59d48 949 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
950}
951
2739d3cc 952static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 953{
2bd59d48 954 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 955
ace2bee8 956 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 957 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
958}
959
13af07df 960/**
628f7cd4 961 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 962 * @cgrp: target cgroup
13af07df
AR
963 * @subsys_mask: mask of the subsystem ids whose files should be removed
964 */
628f7cd4 965static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 966{
13af07df 967 struct cgroup_subsys *ss;
b420ba7d 968 int i;
05ef1d7c 969
b420ba7d 970 for_each_subsys(ss, i) {
0adb0704 971 struct cftype *cfts;
b420ba7d
TH
972
973 if (!test_bit(i, &subsys_mask))
13af07df 974 continue;
0adb0704
TH
975 list_for_each_entry(cfts, &ss->cfts, node)
976 cgroup_addrm_files(cgrp, cfts, false);
13af07df 977 }
ddbcc7e8
PM
978}
979
ddbcc7e8 980static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 981 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 982{
bd89aabc 983 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 984 struct cgroup_subsys *ss;
3126121f 985 int i, ret;
ddbcc7e8 986
ace2bee8
TH
987 lockdep_assert_held(&cgroup_tree_mutex);
988 lockdep_assert_held(&cgroup_mutex);
aae8aab4 989
ddbcc7e8 990 /* Check that any added subsystems are currently free */
3ed80a62
TH
991 for_each_subsys(ss, i)
992 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
993 return -EBUSY;
ddbcc7e8 994
3126121f
TH
995 ret = cgroup_populate_dir(cgrp, added_mask);
996 if (ret)
3ed80a62 997 return ret;
3126121f
TH
998
999 /*
1000 * Nothing can fail from this point on. Remove files for the
1001 * removed subsystems and rebind each subsystem.
1002 */
4ac06017 1003 mutex_unlock(&cgroup_mutex);
3126121f 1004 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1005 mutex_lock(&cgroup_mutex);
ddbcc7e8 1006
30159ec7 1007 for_each_subsys(ss, i) {
ddbcc7e8 1008 unsigned long bit = 1UL << i;
30159ec7 1009
a1a71b45 1010 if (bit & added_mask) {
ddbcc7e8 1011 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1012 BUG_ON(cgroup_css(cgrp, ss));
1013 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1014 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1015
73e80ed8 1016 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1017 cgroup_css(cgroup_dummy_top, ss));
1018 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1019
b2aa30f7 1020 ss->root = root;
ddbcc7e8 1021 if (ss->bind)
ca8bdcaf 1022 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1023
cf5d5941 1024 /* refcount was already taken, and we're keeping it */
a8a648c4 1025 root->subsys_mask |= bit;
a1a71b45 1026 } else if (bit & removed_mask) {
ddbcc7e8 1027 /* We're removing this subsystem */
ca8bdcaf
TH
1028 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1029 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1030
ddbcc7e8 1031 if (ss->bind)
ca8bdcaf 1032 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1033
ca8bdcaf 1034 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1035 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1036
9871bf95 1037 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1038 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1039 }
1040 }
ddbcc7e8 1041
2bd59d48 1042 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1043 return 0;
1044}
1045
2bd59d48
TH
1046static int cgroup_show_options(struct seq_file *seq,
1047 struct kernfs_root *kf_root)
ddbcc7e8 1048{
2bd59d48 1049 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1050 struct cgroup_subsys *ss;
b85d2040 1051 int ssid;
ddbcc7e8 1052
b85d2040
TH
1053 for_each_subsys(ss, ssid)
1054 if (root->subsys_mask & (1 << ssid))
1055 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1056 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1057 seq_puts(seq, ",sane_behavior");
93438629 1058 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1059 seq_puts(seq, ",noprefix");
93438629 1060 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1061 seq_puts(seq, ",xattr");
69e943b7
TH
1062
1063 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1064 if (strlen(root->release_agent_path))
1065 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1066 spin_unlock(&release_agent_path_lock);
1067
2260e7fc 1068 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1069 seq_puts(seq, ",clone_children");
c6d57f33
PM
1070 if (strlen(root->name))
1071 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1072 return 0;
1073}
1074
1075struct cgroup_sb_opts {
a1a71b45 1076 unsigned long subsys_mask;
ddbcc7e8 1077 unsigned long flags;
81a6a5cd 1078 char *release_agent;
2260e7fc 1079 bool cpuset_clone_children;
c6d57f33 1080 char *name;
2c6ab6d2
PM
1081 /* User explicitly requested empty subsystem */
1082 bool none;
ddbcc7e8
PM
1083};
1084
aae8aab4 1085/*
9871bf95
TH
1086 * Convert a hierarchy specifier into a bitmask of subsystems and
1087 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1088 * array. This function takes refcounts on subsystems to be used, unless it
1089 * returns error, in which case no refcounts are taken.
aae8aab4 1090 */
cf5d5941 1091static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1092{
32a8cf23
DL
1093 char *token, *o = data;
1094 bool all_ss = false, one_ss = false;
f9ab5b5b 1095 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1096 struct cgroup_subsys *ss;
1097 int i;
f9ab5b5b 1098
aae8aab4
BB
1099 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1100
f9ab5b5b 1101#ifdef CONFIG_CPUSETS
073219e9 1102 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1103#endif
ddbcc7e8 1104
c6d57f33 1105 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1106
1107 while ((token = strsep(&o, ",")) != NULL) {
1108 if (!*token)
1109 return -EINVAL;
32a8cf23 1110 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1111 /* Explicitly have no subsystems */
1112 opts->none = true;
32a8cf23
DL
1113 continue;
1114 }
1115 if (!strcmp(token, "all")) {
1116 /* Mutually exclusive option 'all' + subsystem name */
1117 if (one_ss)
1118 return -EINVAL;
1119 all_ss = true;
1120 continue;
1121 }
873fe09e
TH
1122 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1123 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1124 continue;
1125 }
32a8cf23 1126 if (!strcmp(token, "noprefix")) {
93438629 1127 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1128 continue;
1129 }
1130 if (!strcmp(token, "clone_children")) {
2260e7fc 1131 opts->cpuset_clone_children = true;
32a8cf23
DL
1132 continue;
1133 }
03b1cde6 1134 if (!strcmp(token, "xattr")) {
93438629 1135 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1136 continue;
1137 }
32a8cf23 1138 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1139 /* Specifying two release agents is forbidden */
1140 if (opts->release_agent)
1141 return -EINVAL;
c6d57f33 1142 opts->release_agent =
e400c285 1143 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1144 if (!opts->release_agent)
1145 return -ENOMEM;
32a8cf23
DL
1146 continue;
1147 }
1148 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1149 const char *name = token + 5;
1150 /* Can't specify an empty name */
1151 if (!strlen(name))
1152 return -EINVAL;
1153 /* Must match [\w.-]+ */
1154 for (i = 0; i < strlen(name); i++) {
1155 char c = name[i];
1156 if (isalnum(c))
1157 continue;
1158 if ((c == '.') || (c == '-') || (c == '_'))
1159 continue;
1160 return -EINVAL;
1161 }
1162 /* Specifying two names is forbidden */
1163 if (opts->name)
1164 return -EINVAL;
1165 opts->name = kstrndup(name,
e400c285 1166 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1167 GFP_KERNEL);
1168 if (!opts->name)
1169 return -ENOMEM;
32a8cf23
DL
1170
1171 continue;
1172 }
1173
30159ec7 1174 for_each_subsys(ss, i) {
32a8cf23
DL
1175 if (strcmp(token, ss->name))
1176 continue;
1177 if (ss->disabled)
1178 continue;
1179
1180 /* Mutually exclusive option 'all' + subsystem name */
1181 if (all_ss)
1182 return -EINVAL;
a1a71b45 1183 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1184 one_ss = true;
1185
1186 break;
1187 }
1188 if (i == CGROUP_SUBSYS_COUNT)
1189 return -ENOENT;
1190 }
1191
1192 /*
1193 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1194 * otherwise if 'none', 'name=' and a subsystem name options
1195 * were not specified, let's default to 'all'
32a8cf23 1196 */
30159ec7
TH
1197 if (all_ss || (!one_ss && !opts->none && !opts->name))
1198 for_each_subsys(ss, i)
1199 if (!ss->disabled)
1200 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1201
2c6ab6d2
PM
1202 /* Consistency checks */
1203
873fe09e
TH
1204 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1205 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1206
d3ba07c3
TH
1207 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1208 opts->cpuset_clone_children || opts->release_agent ||
1209 opts->name) {
1210 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1211 return -EINVAL;
1212 }
873fe09e
TH
1213 }
1214
f9ab5b5b
LZ
1215 /*
1216 * Option noprefix was introduced just for backward compatibility
1217 * with the old cpuset, so we allow noprefix only if mounting just
1218 * the cpuset subsystem.
1219 */
93438629 1220 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1221 return -EINVAL;
1222
2c6ab6d2
PM
1223
1224 /* Can't specify "none" and some subsystems */
a1a71b45 1225 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1226 return -EINVAL;
1227
1228 /*
1229 * We either have to specify by name or by subsystems. (So all
1230 * empty hierarchies must have a name).
1231 */
a1a71b45 1232 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1233 return -EINVAL;
1234
1235 return 0;
1236}
1237
2bd59d48 1238static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1239{
1240 int ret = 0;
2bd59d48 1241 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1242 struct cgroup_sb_opts opts;
a1a71b45 1243 unsigned long added_mask, removed_mask;
ddbcc7e8 1244
873fe09e
TH
1245 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1246 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1247 return -EINVAL;
1248 }
1249
ace2bee8 1250 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1251 mutex_lock(&cgroup_mutex);
1252
1253 /* See what subsystems are wanted */
1254 ret = parse_cgroupfs_options(data, &opts);
1255 if (ret)
1256 goto out_unlock;
1257
a8a648c4 1258 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1259 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1260 task_tgid_nr(current), current->comm);
1261
a1a71b45
AR
1262 added_mask = opts.subsys_mask & ~root->subsys_mask;
1263 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1264
cf5d5941 1265 /* Don't allow flags or name to change at remount */
0ce6cba3 1266 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1267 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1268 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1269 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1270 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1271 ret = -EINVAL;
1272 goto out_unlock;
1273 }
1274
f172e67c 1275 /* remounting is not allowed for populated hierarchies */
3c9c825b 1276 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1277 ret = -EBUSY;
0670e08b 1278 goto out_unlock;
cf5d5941 1279 }
ddbcc7e8 1280
a8a648c4 1281 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1282 if (ret)
0670e08b 1283 goto out_unlock;
ddbcc7e8 1284
69e943b7
TH
1285 if (opts.release_agent) {
1286 spin_lock(&release_agent_path_lock);
81a6a5cd 1287 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1288 spin_unlock(&release_agent_path_lock);
1289 }
ddbcc7e8 1290 out_unlock:
66bdc9cf 1291 kfree(opts.release_agent);
c6d57f33 1292 kfree(opts.name);
ddbcc7e8 1293 mutex_unlock(&cgroup_mutex);
ace2bee8 1294 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1295 return ret;
1296}
1297
afeb0f9f
TH
1298/*
1299 * To reduce the fork() overhead for systems that are not actually using
1300 * their cgroups capability, we don't maintain the lists running through
1301 * each css_set to its tasks until we see the list actually used - in other
1302 * words after the first mount.
1303 */
1304static bool use_task_css_set_links __read_mostly;
1305
1306static void cgroup_enable_task_cg_lists(void)
1307{
1308 struct task_struct *p, *g;
1309
96d365e0 1310 down_write(&css_set_rwsem);
afeb0f9f
TH
1311
1312 if (use_task_css_set_links)
1313 goto out_unlock;
1314
1315 use_task_css_set_links = true;
1316
1317 /*
1318 * We need tasklist_lock because RCU is not safe against
1319 * while_each_thread(). Besides, a forking task that has passed
1320 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1321 * is not guaranteed to have its child immediately visible in the
1322 * tasklist if we walk through it with RCU.
1323 */
1324 read_lock(&tasklist_lock);
1325 do_each_thread(g, p) {
1326 task_lock(p);
1327
1328 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1329 task_css_set(p) != &init_css_set);
1330
1331 /*
1332 * We should check if the process is exiting, otherwise
1333 * it will race with cgroup_exit() in that the list
1334 * entry won't be deleted though the process has exited.
f153ad11
TH
1335 * Do it while holding siglock so that we don't end up
1336 * racing against cgroup_exit().
afeb0f9f 1337 */
f153ad11 1338 spin_lock_irq(&p->sighand->siglock);
afeb0f9f
TH
1339 if (!(p->flags & PF_EXITING))
1340 list_add(&p->cg_list, &task_css_set(p)->tasks);
f153ad11 1341 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1342
1343 task_unlock(p);
1344 } while_each_thread(g, p);
1345 read_unlock(&tasklist_lock);
1346out_unlock:
96d365e0 1347 up_write(&css_set_rwsem);
afeb0f9f
TH
1348}
1349
cc31edce
PM
1350static void init_cgroup_housekeeping(struct cgroup *cgrp)
1351{
2bd59d48 1352 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1353 INIT_LIST_HEAD(&cgrp->sibling);
1354 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1355 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1356 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1357 INIT_LIST_HEAD(&cgrp->pidlists);
1358 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1359 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1360}
c6d57f33 1361
ddbcc7e8
PM
1362static void init_cgroup_root(struct cgroupfs_root *root)
1363{
bd89aabc 1364 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1365
ddbcc7e8 1366 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1367 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1368 cgrp->root = root;
cc31edce 1369 init_cgroup_housekeeping(cgrp);
4e96ee8e 1370 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1371}
1372
c6d57f33
PM
1373static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1374{
1375 struct cgroupfs_root *root;
1376
a1a71b45 1377 if (!opts->subsys_mask && !opts->none)
2bd59d48 1378 return ERR_PTR(-EINVAL);
c6d57f33
PM
1379
1380 root = kzalloc(sizeof(*root), GFP_KERNEL);
1381 if (!root)
1382 return ERR_PTR(-ENOMEM);
1383
1384 init_cgroup_root(root);
2c6ab6d2 1385
c6d57f33
PM
1386 root->flags = opts->flags;
1387 if (opts->release_agent)
1388 strcpy(root->release_agent_path, opts->release_agent);
1389 if (opts->name)
1390 strcpy(root->name, opts->name);
2260e7fc
TH
1391 if (opts->cpuset_clone_children)
1392 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1393 return root;
1394}
1395
35585573 1396static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1397{
1398 LIST_HEAD(tmp_links);
d427dfeb 1399 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1400 struct css_set *cset;
d427dfeb
TH
1401 int i, ret;
1402
1403 lockdep_assert_held(&cgroup_tree_mutex);
1404 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1405
1406 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1407 if (ret < 0)
2bd59d48 1408 goto out;
d427dfeb
TH
1409 root_cgrp->id = ret;
1410
d427dfeb 1411 /*
96d365e0 1412 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1413 * but that's OK - it can only be increased by someone holding
1414 * cgroup_lock, and that's us. The worst that can happen is that we
1415 * have some link structures left over
1416 */
1417 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1418 if (ret)
2bd59d48 1419 goto out;
d427dfeb
TH
1420
1421 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1422 ret = cgroup_init_root_id(root, 2, 0);
1423 if (ret)
2bd59d48 1424 goto out;
d427dfeb 1425
2bd59d48
TH
1426 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1427 KERNFS_ROOT_CREATE_DEACTIVATED,
1428 root_cgrp);
1429 if (IS_ERR(root->kf_root)) {
1430 ret = PTR_ERR(root->kf_root);
1431 goto exit_root_id;
1432 }
1433 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1434
1435 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1436 if (ret)
2bd59d48 1437 goto destroy_root;
d427dfeb 1438
35585573 1439 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1440 if (ret)
2bd59d48 1441 goto destroy_root;
d427dfeb
TH
1442
1443 /*
1444 * There must be no failure case after here, since rebinding takes
1445 * care of subsystems' refcounts, which are explicitly dropped in
1446 * the failure exit path.
1447 */
1448 list_add(&root->root_list, &cgroup_roots);
1449 cgroup_root_count++;
1450
1451 /*
1452 * Link the top cgroup in this hierarchy into all the css_set
1453 * objects.
1454 */
96d365e0 1455 down_write(&css_set_rwsem);
d427dfeb
TH
1456 hash_for_each(css_set_table, i, cset, hlist)
1457 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1458 up_write(&css_set_rwsem);
d427dfeb
TH
1459
1460 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1461 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1462
2bd59d48 1463 kernfs_activate(root_cgrp->kn);
d427dfeb 1464 ret = 0;
2bd59d48 1465 goto out;
d427dfeb 1466
2bd59d48
TH
1467destroy_root:
1468 kernfs_destroy_root(root->kf_root);
1469 root->kf_root = NULL;
1470exit_root_id:
d427dfeb 1471 cgroup_exit_root_id(root);
2bd59d48 1472out:
d427dfeb
TH
1473 free_cgrp_cset_links(&tmp_links);
1474 return ret;
1475}
1476
f7e83571 1477static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1478 int flags, const char *unused_dev_name,
f7e83571 1479 void *data)
ddbcc7e8 1480{
2bd59d48 1481 struct cgroupfs_root *root;
ddbcc7e8 1482 struct cgroup_sb_opts opts;
2bd59d48 1483 struct dentry *dentry;
8e30e2b8 1484 int ret;
56fde9e0
TH
1485
1486 /*
1487 * The first time anyone tries to mount a cgroup, enable the list
1488 * linking each css_set to its tasks and fix up all existing tasks.
1489 */
1490 if (!use_task_css_set_links)
1491 cgroup_enable_task_cg_lists();
776f02fa 1492retry:
8e30e2b8 1493 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1494 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1495
1496 /* First find the desired set of subsystems */
ddbcc7e8 1497 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1498 if (ret)
8e30e2b8 1499 goto out_unlock;
ddbcc7e8 1500
2bd59d48
TH
1501 /* look for a matching existing root */
1502 for_each_active_root(root) {
1503 bool name_match = false;
ddbcc7e8 1504
2bd59d48
TH
1505 /*
1506 * If we asked for a name then it must match. Also, if
1507 * name matches but sybsys_mask doesn't, we should fail.
1508 * Remember whether name matched.
1509 */
1510 if (opts.name) {
1511 if (strcmp(opts.name, root->name))
1512 continue;
1513 name_match = true;
1514 }
ddbcc7e8 1515
c6d57f33 1516 /*
2bd59d48
TH
1517 * If we asked for subsystems (or explicitly for no
1518 * subsystems) then they must match.
c6d57f33 1519 */
2bd59d48
TH
1520 if ((opts.subsys_mask || opts.none) &&
1521 (opts.subsys_mask != root->subsys_mask)) {
1522 if (!name_match)
1523 continue;
1524 ret = -EBUSY;
1525 goto out_unlock;
1526 }
873fe09e 1527
c7ba8287 1528 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1529 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1530 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1531 ret = -EINVAL;
8e30e2b8 1532 goto out_unlock;
2a0ff3fb
JL
1533 } else {
1534 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1535 }
873fe09e 1536 }
2bd59d48 1537
776f02fa
TH
1538 /*
1539 * A root's lifetime is governed by its top cgroup. Zero
1540 * ref indicate that the root is being destroyed. Wait for
1541 * destruction to complete so that the subsystems are free.
1542 * We can use wait_queue for the wait but this path is
1543 * super cold. Let's just sleep for a bit and retry.
1544 */
1545 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1546 mutex_unlock(&cgroup_mutex);
1547 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1548 kfree(opts.release_agent);
1549 kfree(opts.name);
776f02fa
TH
1550 msleep(10);
1551 goto retry;
1552 }
1553
1554 ret = 0;
2bd59d48 1555 goto out_unlock;
ddbcc7e8
PM
1556 }
1557
2bd59d48
TH
1558 /* no such thing, create a new one */
1559 root = cgroup_root_from_opts(&opts);
1560 if (IS_ERR(root)) {
1561 ret = PTR_ERR(root);
1562 goto out_unlock;
1563 }
1564
35585573 1565 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1566 if (ret)
1567 cgroup_free_root(root);
1568
8e30e2b8 1569out_unlock:
e25e2cbb 1570 mutex_unlock(&cgroup_mutex);
ace2bee8 1571 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1572
c6d57f33
PM
1573 kfree(opts.release_agent);
1574 kfree(opts.name);
8e30e2b8 1575
2bd59d48 1576 if (ret)
8e30e2b8 1577 return ERR_PTR(ret);
2bd59d48
TH
1578
1579 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1580 if (IS_ERR(dentry))
776f02fa 1581 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1582 return dentry;
1583}
1584
1585static void cgroup_kill_sb(struct super_block *sb)
1586{
1587 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1588 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1589
776f02fa 1590 cgroup_put(&root->top_cgroup);
2bd59d48 1591 kernfs_kill_sb(sb);
ddbcc7e8
PM
1592}
1593
ddbcc7e8
PM
1594static struct file_system_type cgroup_fs_type = {
1595 .name = "cgroup",
f7e83571 1596 .mount = cgroup_mount,
ddbcc7e8
PM
1597 .kill_sb = cgroup_kill_sb,
1598};
1599
676db4af
GK
1600static struct kobject *cgroup_kobj;
1601
857a2beb 1602/**
913ffdb5 1603 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1604 * @task: target task
857a2beb
TH
1605 * @buf: the buffer to write the path into
1606 * @buflen: the length of the buffer
1607 *
913ffdb5
TH
1608 * Determine @task's cgroup on the first (the one with the lowest non-zero
1609 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1610 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1611 * cgroup controller callbacks.
1612 *
e61734c5 1613 * Return value is the same as kernfs_path().
857a2beb 1614 */
e61734c5 1615char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1616{
1617 struct cgroupfs_root *root;
913ffdb5 1618 struct cgroup *cgrp;
e61734c5
TH
1619 int hierarchy_id = 1;
1620 char *path = NULL;
857a2beb
TH
1621
1622 mutex_lock(&cgroup_mutex);
96d365e0 1623 down_read(&css_set_rwsem);
857a2beb 1624
913ffdb5
TH
1625 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1626
857a2beb
TH
1627 if (root) {
1628 cgrp = task_cgroup_from_root(task, root);
e61734c5 1629 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1630 } else {
1631 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1632 if (strlcpy(buf, "/", buflen) < buflen)
1633 path = buf;
857a2beb
TH
1634 }
1635
96d365e0 1636 up_read(&css_set_rwsem);
857a2beb 1637 mutex_unlock(&cgroup_mutex);
e61734c5 1638 return path;
857a2beb 1639}
913ffdb5 1640EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1641
b3dc094e 1642/* used to track tasks and other necessary states during migration */
2f7ee569 1643struct cgroup_taskset {
b3dc094e
TH
1644 /* the src and dst cset list running through cset->mg_node */
1645 struct list_head src_csets;
1646 struct list_head dst_csets;
1647
1648 /*
1649 * Fields for cgroup_taskset_*() iteration.
1650 *
1651 * Before migration is committed, the target migration tasks are on
1652 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1653 * the csets on ->dst_csets. ->csets point to either ->src_csets
1654 * or ->dst_csets depending on whether migration is committed.
1655 *
1656 * ->cur_csets and ->cur_task point to the current task position
1657 * during iteration.
1658 */
1659 struct list_head *csets;
1660 struct css_set *cur_cset;
1661 struct task_struct *cur_task;
2f7ee569
TH
1662};
1663
1664/**
1665 * cgroup_taskset_first - reset taskset and return the first task
1666 * @tset: taskset of interest
1667 *
1668 * @tset iteration is initialized and the first task is returned.
1669 */
1670struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1671{
b3dc094e
TH
1672 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1673 tset->cur_task = NULL;
1674
1675 return cgroup_taskset_next(tset);
2f7ee569 1676}
2f7ee569
TH
1677
1678/**
1679 * cgroup_taskset_next - iterate to the next task in taskset
1680 * @tset: taskset of interest
1681 *
1682 * Return the next task in @tset. Iteration must have been initialized
1683 * with cgroup_taskset_first().
1684 */
1685struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1686{
b3dc094e
TH
1687 struct css_set *cset = tset->cur_cset;
1688 struct task_struct *task = tset->cur_task;
2f7ee569 1689
b3dc094e
TH
1690 while (&cset->mg_node != tset->csets) {
1691 if (!task)
1692 task = list_first_entry(&cset->mg_tasks,
1693 struct task_struct, cg_list);
1694 else
1695 task = list_next_entry(task, cg_list);
2f7ee569 1696
b3dc094e
TH
1697 if (&task->cg_list != &cset->mg_tasks) {
1698 tset->cur_cset = cset;
1699 tset->cur_task = task;
1700 return task;
1701 }
1702
1703 cset = list_next_entry(cset, mg_node);
1704 task = NULL;
1705 }
1706
1707 return NULL;
2f7ee569 1708}
2f7ee569 1709
cb0f1fe9 1710/**
74a1166d 1711 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1712 * @old_cgrp; the cgroup @tsk is being migrated from
1713 * @tsk: the task being migrated
1714 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1715 *
cb0f1fe9 1716 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1717 */
5abb8855
TH
1718static void cgroup_task_migrate(struct cgroup *old_cgrp,
1719 struct task_struct *tsk,
1720 struct css_set *new_cset)
74a1166d 1721{
5abb8855 1722 struct css_set *old_cset;
74a1166d 1723
cb0f1fe9
TH
1724 lockdep_assert_held(&cgroup_mutex);
1725 lockdep_assert_held(&css_set_rwsem);
1726
74a1166d 1727 /*
026085ef
MSB
1728 * We are synchronized through threadgroup_lock() against PF_EXITING
1729 * setting such that we can't race against cgroup_exit() changing the
1730 * css_set to init_css_set and dropping the old one.
74a1166d 1731 */
c84cdf75 1732 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1733 old_cset = task_css_set(tsk);
74a1166d 1734
b3dc094e
TH
1735 get_css_set(new_cset);
1736
74a1166d 1737 task_lock(tsk);
5abb8855 1738 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1739 task_unlock(tsk);
1740
b3dc094e 1741 list_move(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1742
1743 /*
5abb8855
TH
1744 * We just gained a reference on old_cset by taking it from the
1745 * task. As trading it for new_cset is protected by cgroup_mutex,
1746 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1747 */
5abb8855 1748 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1749 put_css_set_locked(old_cset, false);
74a1166d
BB
1750}
1751
a043e3b2 1752/**
081aa458 1753 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1754 * @cgrp: the cgroup to attach to
9db8de37 1755 * @leader: the task or the leader of the threadgroup to be attached
081aa458 1756 * @threadgroup: attach the whole threadgroup?
74a1166d 1757 *
257058ae 1758 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1759 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1760 */
9db8de37 1761static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *leader,
47cfcd09 1762 bool threadgroup)
74a1166d 1763{
b3dc094e
TH
1764 struct cgroup_taskset tset = {
1765 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1766 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1767 .csets = &tset.src_csets,
1768 };
1c6727af 1769 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1770 struct css_set *cset, *tmp_cset;
1771 struct task_struct *task, *tmp_task;
1772 int i, ret;
74a1166d 1773
fb5d2b4c
MSB
1774 /*
1775 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1776 * already PF_EXITING could be freed from underneath us unless we
1777 * take an rcu_read_lock.
1778 */
b3dc094e 1779 down_write(&css_set_rwsem);
fb5d2b4c 1780 rcu_read_lock();
9db8de37 1781 task = leader;
74a1166d 1782 do {
b3dc094e 1783 struct cgroup *src_cgrp;
134d3373 1784
9db8de37
TH
1785 /* @task either already exited or can't exit until the end */
1786 if (task->flags & PF_EXITING)
ea84753c 1787 goto next;
cd3d0952 1788
b3dc094e
TH
1789 cset = task_css_set(task);
1790 src_cgrp = task_cgroup_from_root(task, cgrp->root);
1791
892a2b90 1792 /* nothing to do if this task is already in the cgroup */
b3dc094e 1793 if (src_cgrp == cgrp)
ea84753c 1794 goto next;
b3dc094e
TH
1795
1796 if (!cset->mg_src_cgrp) {
1797 WARN_ON(!list_empty(&cset->mg_tasks));
1798 WARN_ON(!list_empty(&cset->mg_node));
1799
1800 cset->mg_src_cgrp = src_cgrp;
1801 list_add(&cset->mg_node, &tset.src_csets);
1802 get_css_set(cset);
1803 }
1804
1805 list_move(&task->cg_list, &cset->mg_tasks);
ea84753c 1806 next:
081aa458
LZ
1807 if (!threadgroup)
1808 break;
9db8de37 1809 } while_each_thread(leader, task);
fb5d2b4c 1810 rcu_read_unlock();
b3dc094e 1811 up_write(&css_set_rwsem);
74a1166d 1812
134d3373 1813 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
1814 if (list_empty(&tset.src_csets))
1815 return 0;
134d3373 1816
74a1166d
BB
1817 /*
1818 * step 1: check that we can legitimately attach to the cgroup.
1819 */
1c6727af
TH
1820 for_each_css(css, i, cgrp) {
1821 if (css->ss->can_attach) {
9db8de37
TH
1822 ret = css->ss->can_attach(css, &tset);
1823 if (ret) {
1c6727af 1824 failed_css = css;
74a1166d
BB
1825 goto out_cancel_attach;
1826 }
1827 }
74a1166d
BB
1828 }
1829
1830 /*
1831 * step 2: make sure css_sets exist for all threads to be migrated.
1832 * we use find_css_set, which allocates a new one if necessary.
1833 */
b3dc094e
TH
1834 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1835 struct css_set *dst_cset;
a8ad805c 1836
b3dc094e
TH
1837 dst_cset = find_css_set(cset, cgrp);
1838 if (!dst_cset) {
9db8de37 1839 ret = -ENOMEM;
b3dc094e 1840 goto out_release_tset;
74a1166d 1841 }
b3dc094e
TH
1842
1843 if (list_empty(&dst_cset->mg_node))
1844 list_add(&dst_cset->mg_node, &tset.dst_csets);
1845 else
1846 put_css_set(dst_cset, false);
1847
1848 cset->mg_dst_cset = dst_cset;
74a1166d
BB
1849 }
1850
1851 /*
494c167c
TH
1852 * step 3: now that we're guaranteed success wrt the css_sets,
1853 * proceed to move all tasks to the new cgroup. There are no
1854 * failure cases after here, so this is the commit point.
74a1166d 1855 */
cb0f1fe9 1856 down_write(&css_set_rwsem);
b3dc094e
TH
1857 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1858 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1859 cgroup_task_migrate(cset->mg_src_cgrp, task,
1860 cset->mg_dst_cset);
74a1166d 1861 }
cb0f1fe9 1862 up_write(&css_set_rwsem);
b3dc094e
TH
1863
1864 /* migration is committed, all target tasks are now on dst_csets */
1865 tset.csets = &tset.dst_csets;
1866
1867 /* nothing is sensitive to fork() after this point */
74a1166d
BB
1868
1869 /*
494c167c 1870 * step 4: do subsystem attach callbacks.
74a1166d 1871 */
1c6727af
TH
1872 for_each_css(css, i, cgrp)
1873 if (css->ss->attach)
1874 css->ss->attach(css, &tset);
74a1166d 1875
9db8de37 1876 ret = 0;
b3dc094e
TH
1877 goto out_release_tset;
1878
74a1166d 1879out_cancel_attach:
b3dc094e
TH
1880 for_each_css(css, i, cgrp) {
1881 if (css == failed_css)
1882 break;
1883 if (css->ss->cancel_attach)
1884 css->ss->cancel_attach(css, &tset);
74a1166d 1885 }
b3dc094e
TH
1886out_release_tset:
1887 down_write(&css_set_rwsem);
1888 list_splice_init(&tset.dst_csets, &tset.src_csets);
1889 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1890 list_splice_init(&cset->mg_tasks, &cset->tasks);
1891 cset->mg_dst_cset = NULL;
1892 cset->mg_src_cgrp = NULL;
1893 list_del_init(&cset->mg_node);
1894 put_css_set_locked(cset, false);
1895 }
1896 up_write(&css_set_rwsem);
9db8de37 1897 return ret;
74a1166d
BB
1898}
1899
1900/*
1901 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1902 * function to attach either it or all tasks in its threadgroup. Will lock
1903 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1904 */
74a1166d 1905static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1906{
bbcb81d0 1907 struct task_struct *tsk;
c69e8d9c 1908 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1909 int ret;
1910
74a1166d
BB
1911 if (!cgroup_lock_live_group(cgrp))
1912 return -ENODEV;
1913
b78949eb
MSB
1914retry_find_task:
1915 rcu_read_lock();
bbcb81d0 1916 if (pid) {
73507f33 1917 tsk = find_task_by_vpid(pid);
74a1166d
BB
1918 if (!tsk) {
1919 rcu_read_unlock();
dd4b0a46 1920 ret = -ESRCH;
b78949eb 1921 goto out_unlock_cgroup;
bbcb81d0 1922 }
74a1166d
BB
1923 /*
1924 * even if we're attaching all tasks in the thread group, we
1925 * only need to check permissions on one of them.
1926 */
c69e8d9c 1927 tcred = __task_cred(tsk);
14a590c3
EB
1928 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1929 !uid_eq(cred->euid, tcred->uid) &&
1930 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1931 rcu_read_unlock();
b78949eb
MSB
1932 ret = -EACCES;
1933 goto out_unlock_cgroup;
bbcb81d0 1934 }
b78949eb
MSB
1935 } else
1936 tsk = current;
cd3d0952
TH
1937
1938 if (threadgroup)
b78949eb 1939 tsk = tsk->group_leader;
c4c27fbd
MG
1940
1941 /*
14a40ffc 1942 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1943 * trapped in a cpuset, or RT worker may be born in a cgroup
1944 * with no rt_runtime allocated. Just say no.
1945 */
14a40ffc 1946 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1947 ret = -EINVAL;
1948 rcu_read_unlock();
1949 goto out_unlock_cgroup;
1950 }
1951
b78949eb
MSB
1952 get_task_struct(tsk);
1953 rcu_read_unlock();
1954
1955 threadgroup_lock(tsk);
1956 if (threadgroup) {
1957 if (!thread_group_leader(tsk)) {
1958 /*
1959 * a race with de_thread from another thread's exec()
1960 * may strip us of our leadership, if this happens,
1961 * there is no choice but to throw this task away and
1962 * try again; this is
1963 * "double-double-toil-and-trouble-check locking".
1964 */
1965 threadgroup_unlock(tsk);
1966 put_task_struct(tsk);
1967 goto retry_find_task;
1968 }
081aa458
LZ
1969 }
1970
1971 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1972
cd3d0952
TH
1973 threadgroup_unlock(tsk);
1974
bbcb81d0 1975 put_task_struct(tsk);
b78949eb 1976out_unlock_cgroup:
47cfcd09 1977 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1978 return ret;
1979}
1980
7ae1bad9
TH
1981/**
1982 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1983 * @from: attach to all cgroups of a given task
1984 * @tsk: the task to be attached
1985 */
1986int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1987{
1988 struct cgroupfs_root *root;
1989 int retval = 0;
1990
47cfcd09 1991 mutex_lock(&cgroup_mutex);
7ae1bad9 1992 for_each_active_root(root) {
96d365e0
TH
1993 struct cgroup *from_cgrp;
1994
1995 down_read(&css_set_rwsem);
1996 from_cgrp = task_cgroup_from_root(from, root);
1997 up_read(&css_set_rwsem);
7ae1bad9 1998
6f4b7e63 1999 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2000 if (retval)
2001 break;
2002 }
47cfcd09 2003 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2004
2005 return retval;
2006}
2007EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2008
182446d0
TH
2009static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2010 struct cftype *cft, u64 pid)
74a1166d 2011{
182446d0 2012 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2013}
2014
182446d0
TH
2015static int cgroup_procs_write(struct cgroup_subsys_state *css,
2016 struct cftype *cft, u64 tgid)
af351026 2017{
182446d0 2018 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2019}
2020
182446d0
TH
2021static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2022 struct cftype *cft, const char *buffer)
e788e066 2023{
5f469907
TH
2024 struct cgroupfs_root *root = css->cgroup->root;
2025
2026 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2027 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2028 return -ENODEV;
69e943b7 2029 spin_lock(&release_agent_path_lock);
5f469907
TH
2030 strlcpy(root->release_agent_path, buffer,
2031 sizeof(root->release_agent_path));
69e943b7 2032 spin_unlock(&release_agent_path_lock);
47cfcd09 2033 mutex_unlock(&cgroup_mutex);
e788e066
PM
2034 return 0;
2035}
2036
2da8ca82 2037static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2038{
2da8ca82 2039 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2040
e788e066
PM
2041 if (!cgroup_lock_live_group(cgrp))
2042 return -ENODEV;
2043 seq_puts(seq, cgrp->root->release_agent_path);
2044 seq_putc(seq, '\n');
47cfcd09 2045 mutex_unlock(&cgroup_mutex);
e788e066
PM
2046 return 0;
2047}
2048
2da8ca82 2049static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2050{
2da8ca82
TH
2051 struct cgroup *cgrp = seq_css(seq)->cgroup;
2052
2053 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2054 return 0;
2055}
2056
2bd59d48
TH
2057static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2058 size_t nbytes, loff_t off)
355e0c48 2059{
2bd59d48
TH
2060 struct cgroup *cgrp = of->kn->parent->priv;
2061 struct cftype *cft = of->kn->priv;
2062 struct cgroup_subsys_state *css;
a742c59d 2063 int ret;
355e0c48 2064
2bd59d48
TH
2065 /*
2066 * kernfs guarantees that a file isn't deleted with operations in
2067 * flight, which means that the matching css is and stays alive and
2068 * doesn't need to be pinned. The RCU locking is not necessary
2069 * either. It's just for the convenience of using cgroup_css().
2070 */
2071 rcu_read_lock();
2072 css = cgroup_css(cgrp, cft->ss);
2073 rcu_read_unlock();
a742c59d
TH
2074
2075 if (cft->write_string) {
2076 ret = cft->write_string(css, cft, strstrip(buf));
2077 } else if (cft->write_u64) {
2078 unsigned long long v;
2079 ret = kstrtoull(buf, 0, &v);
2080 if (!ret)
2081 ret = cft->write_u64(css, cft, v);
2082 } else if (cft->write_s64) {
2083 long long v;
2084 ret = kstrtoll(buf, 0, &v);
2085 if (!ret)
2086 ret = cft->write_s64(css, cft, v);
2087 } else if (cft->trigger) {
2088 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2089 } else {
a742c59d 2090 ret = -EINVAL;
e73d2c61 2091 }
2bd59d48 2092
a742c59d 2093 return ret ?: nbytes;
355e0c48
PM
2094}
2095
6612f05b 2096static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2097{
2bd59d48 2098 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2099}
2100
6612f05b 2101static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2102{
2bd59d48 2103 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2104}
2105
6612f05b 2106static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2107{
2bd59d48 2108 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2109}
2110
91796569 2111static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2112{
7da11279
TH
2113 struct cftype *cft = seq_cft(m);
2114 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2115
2da8ca82
TH
2116 if (cft->seq_show)
2117 return cft->seq_show(m, arg);
e73d2c61 2118
f4c753b7 2119 if (cft->read_u64)
896f5199
TH
2120 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2121 else if (cft->read_s64)
2122 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2123 else
2124 return -EINVAL;
2125 return 0;
91796569
PM
2126}
2127
2bd59d48
TH
2128static struct kernfs_ops cgroup_kf_single_ops = {
2129 .atomic_write_len = PAGE_SIZE,
2130 .write = cgroup_file_write,
2131 .seq_show = cgroup_seqfile_show,
91796569
PM
2132};
2133
2bd59d48
TH
2134static struct kernfs_ops cgroup_kf_ops = {
2135 .atomic_write_len = PAGE_SIZE,
2136 .write = cgroup_file_write,
2137 .seq_start = cgroup_seqfile_start,
2138 .seq_next = cgroup_seqfile_next,
2139 .seq_stop = cgroup_seqfile_stop,
2140 .seq_show = cgroup_seqfile_show,
2141};
ddbcc7e8
PM
2142
2143/*
2144 * cgroup_rename - Only allow simple rename of directories in place.
2145 */
2bd59d48
TH
2146static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2147 const char *new_name_str)
ddbcc7e8 2148{
2bd59d48 2149 struct cgroup *cgrp = kn->priv;
2bd59d48 2150 int ret;
65dff759 2151
2bd59d48 2152 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2153 return -ENOTDIR;
2bd59d48 2154 if (kn->parent != new_parent)
ddbcc7e8 2155 return -EIO;
65dff759 2156
6db8e85c
TH
2157 /*
2158 * This isn't a proper migration and its usefulness is very
2159 * limited. Disallow if sane_behavior.
2160 */
2161 if (cgroup_sane_behavior(cgrp))
2162 return -EPERM;
2163
2bd59d48
TH
2164 mutex_lock(&cgroup_tree_mutex);
2165 mutex_lock(&cgroup_mutex);
2166
2167 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2168
2bd59d48
TH
2169 mutex_unlock(&cgroup_mutex);
2170 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2171 return ret;
ddbcc7e8
PM
2172}
2173
2bb566cb 2174static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2175{
8d7e6fb0 2176 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2177 struct kernfs_node *kn;
2178 struct lock_class_key *key = NULL;
05ef1d7c 2179
2bd59d48
TH
2180#ifdef CONFIG_DEBUG_LOCK_ALLOC
2181 key = &cft->lockdep_key;
2182#endif
2183 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2184 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2185 NULL, false, key);
430af8ad 2186 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2187}
2188
b1f28d31
TH
2189/**
2190 * cgroup_addrm_files - add or remove files to a cgroup directory
2191 * @cgrp: the target cgroup
b1f28d31
TH
2192 * @cfts: array of cftypes to be added
2193 * @is_add: whether to add or remove
2194 *
2195 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2196 * For removals, this function never fails. If addition fails, this
2197 * function doesn't remove files already added. The caller is responsible
2198 * for cleaning up.
b1f28d31 2199 */
2bb566cb
TH
2200static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2201 bool is_add)
ddbcc7e8 2202{
03b1cde6 2203 struct cftype *cft;
b1f28d31
TH
2204 int ret;
2205
ace2bee8 2206 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2207
2208 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2209 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2210 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2211 continue;
f33fddc2
G
2212 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2213 continue;
2214 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2215 continue;
2216
2739d3cc 2217 if (is_add) {
2bb566cb 2218 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2219 if (ret) {
2739d3cc 2220 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2221 cft->name, ret);
2222 return ret;
2223 }
2739d3cc
LZ
2224 } else {
2225 cgroup_rm_file(cgrp, cft);
db0416b6 2226 }
ddbcc7e8 2227 }
b1f28d31 2228 return 0;
ddbcc7e8
PM
2229}
2230
21a2d343 2231static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2232{
2233 LIST_HEAD(pending);
2bb566cb 2234 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2235 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2236 struct cgroup_subsys_state *css;
9ccece80 2237 int ret = 0;
8e3f6541 2238
21a2d343 2239 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2240
21a2d343
TH
2241 /* don't bother if @ss isn't attached */
2242 if (ss->root == &cgroup_dummy_root)
9ccece80 2243 return 0;
e8c82d20 2244
e8c82d20 2245 /* add/rm files for all cgroups created before */
ca8bdcaf 2246 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2247 struct cgroup *cgrp = css->cgroup;
2248
e8c82d20
LZ
2249 if (cgroup_is_dead(cgrp))
2250 continue;
2251
21a2d343 2252 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2253 if (ret)
2254 break;
8e3f6541 2255 }
21a2d343
TH
2256
2257 if (is_add && !ret)
2258 kernfs_activate(root->kn);
9ccece80 2259 return ret;
8e3f6541
TH
2260}
2261
2da440a2
TH
2262static void cgroup_exit_cftypes(struct cftype *cfts)
2263{
2264 struct cftype *cft;
2265
2bd59d48
TH
2266 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2267 /* free copy for custom atomic_write_len, see init_cftypes() */
2268 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2269 kfree(cft->kf_ops);
2270 cft->kf_ops = NULL;
2da440a2 2271 cft->ss = NULL;
2bd59d48 2272 }
2da440a2
TH
2273}
2274
2bd59d48 2275static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2276{
2277 struct cftype *cft;
2278
2bd59d48
TH
2279 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2280 struct kernfs_ops *kf_ops;
2281
0adb0704
TH
2282 WARN_ON(cft->ss || cft->kf_ops);
2283
2bd59d48
TH
2284 if (cft->seq_start)
2285 kf_ops = &cgroup_kf_ops;
2286 else
2287 kf_ops = &cgroup_kf_single_ops;
2288
2289 /*
2290 * Ugh... if @cft wants a custom max_write_len, we need to
2291 * make a copy of kf_ops to set its atomic_write_len.
2292 */
2293 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2294 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2295 if (!kf_ops) {
2296 cgroup_exit_cftypes(cfts);
2297 return -ENOMEM;
2298 }
2299 kf_ops->atomic_write_len = cft->max_write_len;
2300 }
2301
2302 cft->kf_ops = kf_ops;
2da440a2 2303 cft->ss = ss;
2bd59d48
TH
2304 }
2305
2306 return 0;
2da440a2
TH
2307}
2308
21a2d343
TH
2309static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2310{
2311 lockdep_assert_held(&cgroup_tree_mutex);
2312
2313 if (!cfts || !cfts[0].ss)
2314 return -ENOENT;
2315
2316 list_del(&cfts->node);
2317 cgroup_apply_cftypes(cfts, false);
2318 cgroup_exit_cftypes(cfts);
2319 return 0;
2320}
2321
80b13586
TH
2322/**
2323 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2324 * @cfts: zero-length name terminated array of cftypes
2325 *
2326 * Unregister @cfts. Files described by @cfts are removed from all
2327 * existing cgroups and all future cgroups won't have them either. This
2328 * function can be called anytime whether @cfts' subsys is attached or not.
2329 *
2330 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2331 * registered.
2332 */
2333int cgroup_rm_cftypes(struct cftype *cfts)
2334{
21a2d343 2335 int ret;
80b13586 2336
21a2d343
TH
2337 mutex_lock(&cgroup_tree_mutex);
2338 ret = cgroup_rm_cftypes_locked(cfts);
2339 mutex_unlock(&cgroup_tree_mutex);
2340 return ret;
80b13586
TH
2341}
2342
8e3f6541
TH
2343/**
2344 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2345 * @ss: target cgroup subsystem
2346 * @cfts: zero-length name terminated array of cftypes
2347 *
2348 * Register @cfts to @ss. Files described by @cfts are created for all
2349 * existing cgroups to which @ss is attached and all future cgroups will
2350 * have them too. This function can be called anytime whether @ss is
2351 * attached or not.
2352 *
2353 * Returns 0 on successful registration, -errno on failure. Note that this
2354 * function currently returns 0 as long as @cfts registration is successful
2355 * even if some file creation attempts on existing cgroups fail.
2356 */
03b1cde6 2357int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2358{
9ccece80 2359 int ret;
8e3f6541 2360
dc5736ed
LZ
2361 if (!cfts || cfts[0].name[0] == '\0')
2362 return 0;
2363
2bd59d48
TH
2364 ret = cgroup_init_cftypes(ss, cfts);
2365 if (ret)
2366 return ret;
2bb566cb 2367
21a2d343
TH
2368 mutex_lock(&cgroup_tree_mutex);
2369
0adb0704 2370 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2371 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2372 if (ret)
21a2d343
TH
2373 cgroup_rm_cftypes_locked(cfts);
2374
2375 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2376 return ret;
8e3f6541 2377}
8e3f6541 2378
a043e3b2
LZ
2379/**
2380 * cgroup_task_count - count the number of tasks in a cgroup.
2381 * @cgrp: the cgroup in question
2382 *
2383 * Return the number of tasks in the cgroup.
2384 */
07bc356e 2385static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2386{
2387 int count = 0;
69d0206c 2388 struct cgrp_cset_link *link;
817929ec 2389
96d365e0 2390 down_read(&css_set_rwsem);
69d0206c
TH
2391 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2392 count += atomic_read(&link->cset->refcount);
96d365e0 2393 up_read(&css_set_rwsem);
bbcb81d0
PM
2394 return count;
2395}
2396
53fa5261 2397/**
492eb21b
TH
2398 * css_next_child - find the next child of a given css
2399 * @pos_css: the current position (%NULL to initiate traversal)
2400 * @parent_css: css whose children to walk
53fa5261 2401 *
492eb21b 2402 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2403 * under either cgroup_mutex or RCU read lock. The only requirement is
2404 * that @parent_css and @pos_css are accessible. The next sibling is
2405 * guaranteed to be returned regardless of their states.
53fa5261 2406 */
492eb21b
TH
2407struct cgroup_subsys_state *
2408css_next_child(struct cgroup_subsys_state *pos_css,
2409 struct cgroup_subsys_state *parent_css)
53fa5261 2410{
492eb21b
TH
2411 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2412 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2413 struct cgroup *next;
2414
ace2bee8 2415 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2416
2417 /*
2418 * @pos could already have been removed. Once a cgroup is removed,
2419 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2420 * changes. As CGRP_DEAD assertion is serialized and happens
2421 * before the cgroup is taken off the ->sibling list, if we see it
2422 * unasserted, it's guaranteed that the next sibling hasn't
2423 * finished its grace period even if it's already removed, and thus
2424 * safe to dereference from this RCU critical section. If
2425 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2426 * to be visible as %true here.
3b287a50
TH
2427 *
2428 * If @pos is dead, its next pointer can't be dereferenced;
2429 * however, as each cgroup is given a monotonically increasing
2430 * unique serial number and always appended to the sibling list,
2431 * the next one can be found by walking the parent's children until
2432 * we see a cgroup with higher serial number than @pos's. While
2433 * this path can be slower, it's taken only when either the current
2434 * cgroup is removed or iteration and removal race.
53fa5261 2435 */
3b287a50
TH
2436 if (!pos) {
2437 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2438 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2439 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2440 } else {
2441 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2442 if (next->serial_nr > pos->serial_nr)
2443 break;
53fa5261
TH
2444 }
2445
492eb21b
TH
2446 if (&next->sibling == &cgrp->children)
2447 return NULL;
2448
ca8bdcaf 2449 return cgroup_css(next, parent_css->ss);
53fa5261 2450}
53fa5261 2451
574bd9f7 2452/**
492eb21b 2453 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2454 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2455 * @root: css whose descendants to walk
574bd9f7 2456 *
492eb21b 2457 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2458 * to visit for pre-order traversal of @root's descendants. @root is
2459 * included in the iteration and the first node to be visited.
75501a6d 2460 *
87fb54f1
TH
2461 * While this function requires cgroup_mutex or RCU read locking, it
2462 * doesn't require the whole traversal to be contained in a single critical
2463 * section. This function will return the correct next descendant as long
2464 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2465 */
492eb21b
TH
2466struct cgroup_subsys_state *
2467css_next_descendant_pre(struct cgroup_subsys_state *pos,
2468 struct cgroup_subsys_state *root)
574bd9f7 2469{
492eb21b 2470 struct cgroup_subsys_state *next;
574bd9f7 2471
ace2bee8 2472 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2473
bd8815a6 2474 /* if first iteration, visit @root */
7805d000 2475 if (!pos)
bd8815a6 2476 return root;
574bd9f7
TH
2477
2478 /* visit the first child if exists */
492eb21b 2479 next = css_next_child(NULL, pos);
574bd9f7
TH
2480 if (next)
2481 return next;
2482
2483 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2484 while (pos != root) {
2485 next = css_next_child(pos, css_parent(pos));
75501a6d 2486 if (next)
574bd9f7 2487 return next;
492eb21b 2488 pos = css_parent(pos);
7805d000 2489 }
574bd9f7
TH
2490
2491 return NULL;
2492}
574bd9f7 2493
12a9d2fe 2494/**
492eb21b
TH
2495 * css_rightmost_descendant - return the rightmost descendant of a css
2496 * @pos: css of interest
12a9d2fe 2497 *
492eb21b
TH
2498 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2499 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2500 * subtree of @pos.
75501a6d 2501 *
87fb54f1
TH
2502 * While this function requires cgroup_mutex or RCU read locking, it
2503 * doesn't require the whole traversal to be contained in a single critical
2504 * section. This function will return the correct rightmost descendant as
2505 * long as @pos is accessible.
12a9d2fe 2506 */
492eb21b
TH
2507struct cgroup_subsys_state *
2508css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2509{
492eb21b 2510 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2511
ace2bee8 2512 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2513
2514 do {
2515 last = pos;
2516 /* ->prev isn't RCU safe, walk ->next till the end */
2517 pos = NULL;
492eb21b 2518 css_for_each_child(tmp, last)
12a9d2fe
TH
2519 pos = tmp;
2520 } while (pos);
2521
2522 return last;
2523}
12a9d2fe 2524
492eb21b
TH
2525static struct cgroup_subsys_state *
2526css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2527{
492eb21b 2528 struct cgroup_subsys_state *last;
574bd9f7
TH
2529
2530 do {
2531 last = pos;
492eb21b 2532 pos = css_next_child(NULL, pos);
574bd9f7
TH
2533 } while (pos);
2534
2535 return last;
2536}
2537
2538/**
492eb21b 2539 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2540 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2541 * @root: css whose descendants to walk
574bd9f7 2542 *
492eb21b 2543 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2544 * to visit for post-order traversal of @root's descendants. @root is
2545 * included in the iteration and the last node to be visited.
75501a6d 2546 *
87fb54f1
TH
2547 * While this function requires cgroup_mutex or RCU read locking, it
2548 * doesn't require the whole traversal to be contained in a single critical
2549 * section. This function will return the correct next descendant as long
2550 * as both @pos and @cgroup are accessible and @pos is a descendant of
2551 * @cgroup.
574bd9f7 2552 */
492eb21b
TH
2553struct cgroup_subsys_state *
2554css_next_descendant_post(struct cgroup_subsys_state *pos,
2555 struct cgroup_subsys_state *root)
574bd9f7 2556{
492eb21b 2557 struct cgroup_subsys_state *next;
574bd9f7 2558
ace2bee8 2559 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2560
58b79a91
TH
2561 /* if first iteration, visit leftmost descendant which may be @root */
2562 if (!pos)
2563 return css_leftmost_descendant(root);
574bd9f7 2564
bd8815a6
TH
2565 /* if we visited @root, we're done */
2566 if (pos == root)
2567 return NULL;
2568
574bd9f7 2569 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2570 next = css_next_child(pos, css_parent(pos));
75501a6d 2571 if (next)
492eb21b 2572 return css_leftmost_descendant(next);
574bd9f7
TH
2573
2574 /* no sibling left, visit parent */
bd8815a6 2575 return css_parent(pos);
574bd9f7 2576}
574bd9f7 2577
0942eeee 2578/**
72ec7029 2579 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2580 * @it: the iterator to advance
2581 *
2582 * Advance @it to the next css_set to walk.
d515876e 2583 */
72ec7029 2584static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2585{
2586 struct list_head *l = it->cset_link;
2587 struct cgrp_cset_link *link;
2588 struct css_set *cset;
2589
2590 /* Advance to the next non-empty css_set */
2591 do {
2592 l = l->next;
72ec7029 2593 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2594 it->cset_link = NULL;
2595 return;
2596 }
2597 link = list_entry(l, struct cgrp_cset_link, cset_link);
2598 cset = link->cset;
c7561128
TH
2599 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2600
d515876e 2601 it->cset_link = l;
c7561128
TH
2602
2603 if (!list_empty(&cset->tasks))
2604 it->task = cset->tasks.next;
2605 else
2606 it->task = cset->mg_tasks.next;
d515876e
TH
2607}
2608
0942eeee 2609/**
72ec7029
TH
2610 * css_task_iter_start - initiate task iteration
2611 * @css: the css to walk tasks of
0942eeee
TH
2612 * @it: the task iterator to use
2613 *
72ec7029
TH
2614 * Initiate iteration through the tasks of @css. The caller can call
2615 * css_task_iter_next() to walk through the tasks until the function
2616 * returns NULL. On completion of iteration, css_task_iter_end() must be
2617 * called.
0942eeee
TH
2618 *
2619 * Note that this function acquires a lock which is released when the
2620 * iteration finishes. The caller can't sleep while iteration is in
2621 * progress.
2622 */
72ec7029
TH
2623void css_task_iter_start(struct cgroup_subsys_state *css,
2624 struct css_task_iter *it)
96d365e0 2625 __acquires(css_set_rwsem)
817929ec 2626{
56fde9e0
TH
2627 /* no one should try to iterate before mounting cgroups */
2628 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2629
96d365e0 2630 down_read(&css_set_rwsem);
c59cd3d8 2631
72ec7029
TH
2632 it->origin_css = css;
2633 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2634
72ec7029 2635 css_advance_task_iter(it);
817929ec
PM
2636}
2637
0942eeee 2638/**
72ec7029 2639 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2640 * @it: the task iterator being iterated
2641 *
2642 * The "next" function for task iteration. @it should have been
72ec7029
TH
2643 * initialized via css_task_iter_start(). Returns NULL when the iteration
2644 * reaches the end.
0942eeee 2645 */
72ec7029 2646struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2647{
2648 struct task_struct *res;
2649 struct list_head *l = it->task;
c7561128
TH
2650 struct cgrp_cset_link *link = list_entry(it->cset_link,
2651 struct cgrp_cset_link, cset_link);
817929ec
PM
2652
2653 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2654 if (!it->cset_link)
817929ec
PM
2655 return NULL;
2656 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2657
2658 /*
2659 * Advance iterator to find next entry. cset->tasks is consumed
2660 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2661 * next cset.
2662 */
817929ec 2663 l = l->next;
c7561128
TH
2664
2665 if (l == &link->cset->tasks)
2666 l = link->cset->mg_tasks.next;
2667
2668 if (l == &link->cset->mg_tasks)
72ec7029 2669 css_advance_task_iter(it);
c7561128 2670 else
817929ec 2671 it->task = l;
c7561128 2672
817929ec
PM
2673 return res;
2674}
2675
0942eeee 2676/**
72ec7029 2677 * css_task_iter_end - finish task iteration
0942eeee
TH
2678 * @it: the task iterator to finish
2679 *
72ec7029 2680 * Finish task iteration started by css_task_iter_start().
0942eeee 2681 */
72ec7029 2682void css_task_iter_end(struct css_task_iter *it)
96d365e0 2683 __releases(css_set_rwsem)
817929ec 2684{
96d365e0 2685 up_read(&css_set_rwsem);
817929ec
PM
2686}
2687
8cc99345
TH
2688/**
2689 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2690 * @to: cgroup to which the tasks will be moved
2691 * @from: cgroup in which the tasks currently reside
2692 */
2693int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2694{
e406d1cf
TH
2695 struct css_task_iter it;
2696 struct task_struct *task;
2697 int ret = 0;
2698
2699 do {
2700 css_task_iter_start(&from->dummy_css, &it);
2701 task = css_task_iter_next(&it);
2702 if (task)
2703 get_task_struct(task);
2704 css_task_iter_end(&it);
2705
2706 if (task) {
2707 mutex_lock(&cgroup_mutex);
2708 ret = cgroup_attach_task(to, task, false);
2709 mutex_unlock(&cgroup_mutex);
2710 put_task_struct(task);
2711 }
2712 } while (task && !ret);
2713
2714 return ret;
8cc99345
TH
2715}
2716
bbcb81d0 2717/*
102a775e 2718 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2719 *
2720 * Reading this file can return large amounts of data if a cgroup has
2721 * *lots* of attached tasks. So it may need several calls to read(),
2722 * but we cannot guarantee that the information we produce is correct
2723 * unless we produce it entirely atomically.
2724 *
bbcb81d0 2725 */
bbcb81d0 2726
24528255
LZ
2727/* which pidlist file are we talking about? */
2728enum cgroup_filetype {
2729 CGROUP_FILE_PROCS,
2730 CGROUP_FILE_TASKS,
2731};
2732
2733/*
2734 * A pidlist is a list of pids that virtually represents the contents of one
2735 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2736 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2737 * to the cgroup.
2738 */
2739struct cgroup_pidlist {
2740 /*
2741 * used to find which pidlist is wanted. doesn't change as long as
2742 * this particular list stays in the list.
2743 */
2744 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2745 /* array of xids */
2746 pid_t *list;
2747 /* how many elements the above list has */
2748 int length;
24528255
LZ
2749 /* each of these stored in a list by its cgroup */
2750 struct list_head links;
2751 /* pointer to the cgroup we belong to, for list removal purposes */
2752 struct cgroup *owner;
b1a21367
TH
2753 /* for delayed destruction */
2754 struct delayed_work destroy_dwork;
24528255
LZ
2755};
2756
d1d9fd33
BB
2757/*
2758 * The following two functions "fix" the issue where there are more pids
2759 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2760 * TODO: replace with a kernel-wide solution to this problem
2761 */
2762#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2763static void *pidlist_allocate(int count)
2764{
2765 if (PIDLIST_TOO_LARGE(count))
2766 return vmalloc(count * sizeof(pid_t));
2767 else
2768 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2769}
b1a21367 2770
d1d9fd33
BB
2771static void pidlist_free(void *p)
2772{
2773 if (is_vmalloc_addr(p))
2774 vfree(p);
2775 else
2776 kfree(p);
2777}
d1d9fd33 2778
b1a21367
TH
2779/*
2780 * Used to destroy all pidlists lingering waiting for destroy timer. None
2781 * should be left afterwards.
2782 */
2783static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2784{
2785 struct cgroup_pidlist *l, *tmp_l;
2786
2787 mutex_lock(&cgrp->pidlist_mutex);
2788 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2789 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2790 mutex_unlock(&cgrp->pidlist_mutex);
2791
2792 flush_workqueue(cgroup_pidlist_destroy_wq);
2793 BUG_ON(!list_empty(&cgrp->pidlists));
2794}
2795
2796static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2797{
2798 struct delayed_work *dwork = to_delayed_work(work);
2799 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2800 destroy_dwork);
2801 struct cgroup_pidlist *tofree = NULL;
2802
2803 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2804
2805 /*
04502365
TH
2806 * Destroy iff we didn't get queued again. The state won't change
2807 * as destroy_dwork can only be queued while locked.
b1a21367 2808 */
04502365 2809 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2810 list_del(&l->links);
2811 pidlist_free(l->list);
2812 put_pid_ns(l->key.ns);
2813 tofree = l;
2814 }
2815
b1a21367
TH
2816 mutex_unlock(&l->owner->pidlist_mutex);
2817 kfree(tofree);
2818}
2819
bbcb81d0 2820/*
102a775e 2821 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2822 * Returns the number of unique elements.
bbcb81d0 2823 */
6ee211ad 2824static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2825{
102a775e 2826 int src, dest = 1;
102a775e
BB
2827
2828 /*
2829 * we presume the 0th element is unique, so i starts at 1. trivial
2830 * edge cases first; no work needs to be done for either
2831 */
2832 if (length == 0 || length == 1)
2833 return length;
2834 /* src and dest walk down the list; dest counts unique elements */
2835 for (src = 1; src < length; src++) {
2836 /* find next unique element */
2837 while (list[src] == list[src-1]) {
2838 src++;
2839 if (src == length)
2840 goto after;
2841 }
2842 /* dest always points to where the next unique element goes */
2843 list[dest] = list[src];
2844 dest++;
2845 }
2846after:
102a775e
BB
2847 return dest;
2848}
2849
afb2bc14
TH
2850/*
2851 * The two pid files - task and cgroup.procs - guaranteed that the result
2852 * is sorted, which forced this whole pidlist fiasco. As pid order is
2853 * different per namespace, each namespace needs differently sorted list,
2854 * making it impossible to use, for example, single rbtree of member tasks
2855 * sorted by task pointer. As pidlists can be fairly large, allocating one
2856 * per open file is dangerous, so cgroup had to implement shared pool of
2857 * pidlists keyed by cgroup and namespace.
2858 *
2859 * All this extra complexity was caused by the original implementation
2860 * committing to an entirely unnecessary property. In the long term, we
2861 * want to do away with it. Explicitly scramble sort order if
2862 * sane_behavior so that no such expectation exists in the new interface.
2863 *
2864 * Scrambling is done by swapping every two consecutive bits, which is
2865 * non-identity one-to-one mapping which disturbs sort order sufficiently.
2866 */
2867static pid_t pid_fry(pid_t pid)
2868{
2869 unsigned a = pid & 0x55555555;
2870 unsigned b = pid & 0xAAAAAAAA;
2871
2872 return (a << 1) | (b >> 1);
2873}
2874
2875static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
2876{
2877 if (cgroup_sane_behavior(cgrp))
2878 return pid_fry(pid);
2879 else
2880 return pid;
2881}
2882
102a775e
BB
2883static int cmppid(const void *a, const void *b)
2884{
2885 return *(pid_t *)a - *(pid_t *)b;
2886}
2887
afb2bc14
TH
2888static int fried_cmppid(const void *a, const void *b)
2889{
2890 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
2891}
2892
e6b81710
TH
2893static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2894 enum cgroup_filetype type)
2895{
2896 struct cgroup_pidlist *l;
2897 /* don't need task_nsproxy() if we're looking at ourself */
2898 struct pid_namespace *ns = task_active_pid_ns(current);
2899
2900 lockdep_assert_held(&cgrp->pidlist_mutex);
2901
2902 list_for_each_entry(l, &cgrp->pidlists, links)
2903 if (l->key.type == type && l->key.ns == ns)
2904 return l;
2905 return NULL;
2906}
2907
72a8cb30
BB
2908/*
2909 * find the appropriate pidlist for our purpose (given procs vs tasks)
2910 * returns with the lock on that pidlist already held, and takes care
2911 * of the use count, or returns NULL with no locks held if we're out of
2912 * memory.
2913 */
e6b81710
TH
2914static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
2915 enum cgroup_filetype type)
72a8cb30
BB
2916{
2917 struct cgroup_pidlist *l;
b70cc5fd 2918
e6b81710
TH
2919 lockdep_assert_held(&cgrp->pidlist_mutex);
2920
2921 l = cgroup_pidlist_find(cgrp, type);
2922 if (l)
2923 return l;
2924
72a8cb30 2925 /* entry not found; create a new one */
f4f4be2b 2926 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 2927 if (!l)
72a8cb30 2928 return l;
e6b81710 2929
b1a21367 2930 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 2931 l->key.type = type;
e6b81710
TH
2932 /* don't need task_nsproxy() if we're looking at ourself */
2933 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
2934 l->owner = cgrp;
2935 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
2936 return l;
2937}
2938
102a775e
BB
2939/*
2940 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2941 */
72a8cb30
BB
2942static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2943 struct cgroup_pidlist **lp)
102a775e
BB
2944{
2945 pid_t *array;
2946 int length;
2947 int pid, n = 0; /* used for populating the array */
72ec7029 2948 struct css_task_iter it;
817929ec 2949 struct task_struct *tsk;
102a775e
BB
2950 struct cgroup_pidlist *l;
2951
4bac00d1
TH
2952 lockdep_assert_held(&cgrp->pidlist_mutex);
2953
102a775e
BB
2954 /*
2955 * If cgroup gets more users after we read count, we won't have
2956 * enough space - tough. This race is indistinguishable to the
2957 * caller from the case that the additional cgroup users didn't
2958 * show up until sometime later on.
2959 */
2960 length = cgroup_task_count(cgrp);
d1d9fd33 2961 array = pidlist_allocate(length);
102a775e
BB
2962 if (!array)
2963 return -ENOMEM;
2964 /* now, populate the array */
72ec7029
TH
2965 css_task_iter_start(&cgrp->dummy_css, &it);
2966 while ((tsk = css_task_iter_next(&it))) {
102a775e 2967 if (unlikely(n == length))
817929ec 2968 break;
102a775e 2969 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2970 if (type == CGROUP_FILE_PROCS)
2971 pid = task_tgid_vnr(tsk);
2972 else
2973 pid = task_pid_vnr(tsk);
102a775e
BB
2974 if (pid > 0) /* make sure to only use valid results */
2975 array[n++] = pid;
817929ec 2976 }
72ec7029 2977 css_task_iter_end(&it);
102a775e
BB
2978 length = n;
2979 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
2980 if (cgroup_sane_behavior(cgrp))
2981 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
2982 else
2983 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2984 if (type == CGROUP_FILE_PROCS)
6ee211ad 2985 length = pidlist_uniq(array, length);
e6b81710 2986
e6b81710 2987 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 2988 if (!l) {
e6b81710 2989 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 2990 pidlist_free(array);
72a8cb30 2991 return -ENOMEM;
102a775e 2992 }
e6b81710
TH
2993
2994 /* store array, freeing old if necessary */
d1d9fd33 2995 pidlist_free(l->list);
102a775e
BB
2996 l->list = array;
2997 l->length = length;
72a8cb30 2998 *lp = l;
102a775e 2999 return 0;
bbcb81d0
PM
3000}
3001
846c7bb0 3002/**
a043e3b2 3003 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3004 * @stats: cgroupstats to fill information into
3005 * @dentry: A dentry entry belonging to the cgroup for which stats have
3006 * been requested.
a043e3b2
LZ
3007 *
3008 * Build and fill cgroupstats so that taskstats can export it to user
3009 * space.
846c7bb0
BS
3010 */
3011int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3012{
2bd59d48 3013 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3014 struct cgroup *cgrp;
72ec7029 3015 struct css_task_iter it;
846c7bb0 3016 struct task_struct *tsk;
33d283be 3017
2bd59d48
TH
3018 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3019 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3020 kernfs_type(kn) != KERNFS_DIR)
3021 return -EINVAL;
3022
bad34660
LZ
3023 mutex_lock(&cgroup_mutex);
3024
846c7bb0 3025 /*
2bd59d48
TH
3026 * We aren't being called from kernfs and there's no guarantee on
3027 * @kn->priv's validity. For this and css_tryget_from_dir(),
3028 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3029 */
2bd59d48
TH
3030 rcu_read_lock();
3031 cgrp = rcu_dereference(kn->priv);
bad34660 3032 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3033 rcu_read_unlock();
bad34660 3034 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3035 return -ENOENT;
3036 }
bad34660 3037 rcu_read_unlock();
846c7bb0 3038
72ec7029
TH
3039 css_task_iter_start(&cgrp->dummy_css, &it);
3040 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3041 switch (tsk->state) {
3042 case TASK_RUNNING:
3043 stats->nr_running++;
3044 break;
3045 case TASK_INTERRUPTIBLE:
3046 stats->nr_sleeping++;
3047 break;
3048 case TASK_UNINTERRUPTIBLE:
3049 stats->nr_uninterruptible++;
3050 break;
3051 case TASK_STOPPED:
3052 stats->nr_stopped++;
3053 break;
3054 default:
3055 if (delayacct_is_task_waiting_on_io(tsk))
3056 stats->nr_io_wait++;
3057 break;
3058 }
3059 }
72ec7029 3060 css_task_iter_end(&it);
846c7bb0 3061
bad34660 3062 mutex_unlock(&cgroup_mutex);
2bd59d48 3063 return 0;
846c7bb0
BS
3064}
3065
8f3ff208 3066
bbcb81d0 3067/*
102a775e 3068 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3069 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3070 * in the cgroup->l->list array.
bbcb81d0 3071 */
cc31edce 3072
102a775e 3073static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3074{
cc31edce
PM
3075 /*
3076 * Initially we receive a position value that corresponds to
3077 * one more than the last pid shown (or 0 on the first call or
3078 * after a seek to the start). Use a binary-search to find the
3079 * next pid to display, if any
3080 */
2bd59d48 3081 struct kernfs_open_file *of = s->private;
7da11279 3082 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3083 struct cgroup_pidlist *l;
7da11279 3084 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3085 int index = 0, pid = *pos;
4bac00d1
TH
3086 int *iter, ret;
3087
3088 mutex_lock(&cgrp->pidlist_mutex);
3089
3090 /*
5d22444f 3091 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3092 * after open. If the matching pidlist is around, we can use that.
5d22444f 3093 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3094 * could already have been destroyed.
3095 */
5d22444f
TH
3096 if (of->priv)
3097 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3098
3099 /*
3100 * Either this is the first start() after open or the matching
3101 * pidlist has been destroyed inbetween. Create a new one.
3102 */
5d22444f
TH
3103 if (!of->priv) {
3104 ret = pidlist_array_load(cgrp, type,
3105 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3106 if (ret)
3107 return ERR_PTR(ret);
3108 }
5d22444f 3109 l = of->priv;
cc31edce 3110
cc31edce 3111 if (pid) {
102a775e 3112 int end = l->length;
20777766 3113
cc31edce
PM
3114 while (index < end) {
3115 int mid = (index + end) / 2;
afb2bc14 3116 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3117 index = mid;
3118 break;
afb2bc14 3119 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3120 index = mid + 1;
3121 else
3122 end = mid;
3123 }
3124 }
3125 /* If we're off the end of the array, we're done */
102a775e 3126 if (index >= l->length)
cc31edce
PM
3127 return NULL;
3128 /* Update the abstract position to be the actual pid that we found */
102a775e 3129 iter = l->list + index;
afb2bc14 3130 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3131 return iter;
3132}
3133
102a775e 3134static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3135{
2bd59d48 3136 struct kernfs_open_file *of = s->private;
5d22444f 3137 struct cgroup_pidlist *l = of->priv;
62236858 3138
5d22444f
TH
3139 if (l)
3140 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3141 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3142 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3143}
3144
102a775e 3145static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3146{
2bd59d48 3147 struct kernfs_open_file *of = s->private;
5d22444f 3148 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3149 pid_t *p = v;
3150 pid_t *end = l->list + l->length;
cc31edce
PM
3151 /*
3152 * Advance to the next pid in the array. If this goes off the
3153 * end, we're done
3154 */
3155 p++;
3156 if (p >= end) {
3157 return NULL;
3158 } else {
7da11279 3159 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3160 return p;
3161 }
3162}
3163
102a775e 3164static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3165{
3166 return seq_printf(s, "%d\n", *(int *)v);
3167}
bbcb81d0 3168
102a775e
BB
3169/*
3170 * seq_operations functions for iterating on pidlists through seq_file -
3171 * independent of whether it's tasks or procs
3172 */
3173static const struct seq_operations cgroup_pidlist_seq_operations = {
3174 .start = cgroup_pidlist_start,
3175 .stop = cgroup_pidlist_stop,
3176 .next = cgroup_pidlist_next,
3177 .show = cgroup_pidlist_show,
cc31edce
PM
3178};
3179
182446d0
TH
3180static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3181 struct cftype *cft)
81a6a5cd 3182{
182446d0 3183 return notify_on_release(css->cgroup);
81a6a5cd
PM
3184}
3185
182446d0
TH
3186static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3187 struct cftype *cft, u64 val)
6379c106 3188{
182446d0 3189 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3190 if (val)
182446d0 3191 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3192 else
182446d0 3193 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3194 return 0;
3195}
3196
182446d0
TH
3197static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3198 struct cftype *cft)
97978e6d 3199{
182446d0 3200 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3201}
3202
182446d0
TH
3203static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3204 struct cftype *cft, u64 val)
97978e6d
DL
3205{
3206 if (val)
182446d0 3207 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3208 else
182446d0 3209 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3210 return 0;
3211}
3212
d5c56ced 3213static struct cftype cgroup_base_files[] = {
81a6a5cd 3214 {
d5c56ced 3215 .name = "cgroup.procs",
6612f05b
TH
3216 .seq_start = cgroup_pidlist_start,
3217 .seq_next = cgroup_pidlist_next,
3218 .seq_stop = cgroup_pidlist_stop,
3219 .seq_show = cgroup_pidlist_show,
5d22444f 3220 .private = CGROUP_FILE_PROCS,
74a1166d 3221 .write_u64 = cgroup_procs_write,
74a1166d 3222 .mode = S_IRUGO | S_IWUSR,
102a775e 3223 },
97978e6d
DL
3224 {
3225 .name = "cgroup.clone_children",
873fe09e 3226 .flags = CFTYPE_INSANE,
97978e6d
DL
3227 .read_u64 = cgroup_clone_children_read,
3228 .write_u64 = cgroup_clone_children_write,
3229 },
873fe09e
TH
3230 {
3231 .name = "cgroup.sane_behavior",
3232 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3233 .seq_show = cgroup_sane_behavior_show,
873fe09e 3234 },
d5c56ced
TH
3235
3236 /*
3237 * Historical crazy stuff. These don't have "cgroup." prefix and
3238 * don't exist if sane_behavior. If you're depending on these, be
3239 * prepared to be burned.
3240 */
3241 {
3242 .name = "tasks",
3243 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3244 .seq_start = cgroup_pidlist_start,
3245 .seq_next = cgroup_pidlist_next,
3246 .seq_stop = cgroup_pidlist_stop,
3247 .seq_show = cgroup_pidlist_show,
5d22444f 3248 .private = CGROUP_FILE_TASKS,
d5c56ced 3249 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3250 .mode = S_IRUGO | S_IWUSR,
3251 },
3252 {
3253 .name = "notify_on_release",
3254 .flags = CFTYPE_INSANE,
3255 .read_u64 = cgroup_read_notify_on_release,
3256 .write_u64 = cgroup_write_notify_on_release,
3257 },
6e6ff25b
TH
3258 {
3259 .name = "release_agent",
cc5943a7 3260 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3261 .seq_show = cgroup_release_agent_show,
6e6ff25b 3262 .write_string = cgroup_release_agent_write,
5f469907 3263 .max_write_len = PATH_MAX - 1,
6e6ff25b 3264 },
db0416b6 3265 { } /* terminate */
bbcb81d0
PM
3266};
3267
13af07df 3268/**
628f7cd4 3269 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3270 * @cgrp: target cgroup
13af07df 3271 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3272 *
3273 * On failure, no file is added.
13af07df 3274 */
628f7cd4 3275static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3276{
ddbcc7e8 3277 struct cgroup_subsys *ss;
b420ba7d 3278 int i, ret = 0;
bbcb81d0 3279
8e3f6541 3280 /* process cftsets of each subsystem */
b420ba7d 3281 for_each_subsys(ss, i) {
0adb0704 3282 struct cftype *cfts;
b420ba7d
TH
3283
3284 if (!test_bit(i, &subsys_mask))
13af07df 3285 continue;
8e3f6541 3286
0adb0704
TH
3287 list_for_each_entry(cfts, &ss->cfts, node) {
3288 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3289 if (ret < 0)
3290 goto err;
3291 }
ddbcc7e8 3292 }
ddbcc7e8 3293 return 0;
bee55099
TH
3294err:
3295 cgroup_clear_dir(cgrp, subsys_mask);
3296 return ret;
ddbcc7e8
PM
3297}
3298
0c21ead1
TH
3299/*
3300 * css destruction is four-stage process.
3301 *
3302 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3303 * Implemented in kill_css().
3304 *
3305 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3306 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3307 * by invoking offline_css(). After offlining, the base ref is put.
3308 * Implemented in css_killed_work_fn().
3309 *
3310 * 3. When the percpu_ref reaches zero, the only possible remaining
3311 * accessors are inside RCU read sections. css_release() schedules the
3312 * RCU callback.
3313 *
3314 * 4. After the grace period, the css can be freed. Implemented in
3315 * css_free_work_fn().
3316 *
3317 * It is actually hairier because both step 2 and 4 require process context
3318 * and thus involve punting to css->destroy_work adding two additional
3319 * steps to the already complex sequence.
3320 */
35ef10da 3321static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3322{
3323 struct cgroup_subsys_state *css =
35ef10da 3324 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3325 struct cgroup *cgrp = css->cgroup;
48ddbe19 3326
0ae78e0b
TH
3327 if (css->parent)
3328 css_put(css->parent);
3329
0c21ead1 3330 css->ss->css_free(css);
2bd59d48 3331 cgroup_put(cgrp);
48ddbe19
TH
3332}
3333
0c21ead1 3334static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3335{
3336 struct cgroup_subsys_state *css =
0c21ead1 3337 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3338
35ef10da 3339 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3340 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3341}
3342
d3daf28d
TH
3343static void css_release(struct percpu_ref *ref)
3344{
3345 struct cgroup_subsys_state *css =
3346 container_of(ref, struct cgroup_subsys_state, refcnt);
3347
aec25020 3348 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3349 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3350}
3351
623f926b
TH
3352static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3353 struct cgroup *cgrp)
ddbcc7e8 3354{
bd89aabc 3355 css->cgroup = cgrp;
72c97e54 3356 css->ss = ss;
ddbcc7e8 3357 css->flags = 0;
0ae78e0b
TH
3358
3359 if (cgrp->parent)
ca8bdcaf 3360 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3361 else
38b53aba 3362 css->flags |= CSS_ROOT;
48ddbe19 3363
ca8bdcaf 3364 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3365}
3366
2a4ac633 3367/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3368static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3369{
623f926b 3370 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3371 int ret = 0;
3372
ace2bee8 3373 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3374 lockdep_assert_held(&cgroup_mutex);
3375
92fb9748 3376 if (ss->css_online)
eb95419b 3377 ret = ss->css_online(css);
ae7f164a 3378 if (!ret) {
eb95419b 3379 css->flags |= CSS_ONLINE;
f20104de 3380 css->cgroup->nr_css++;
aec25020 3381 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3382 }
b1929db4 3383 return ret;
a31f2d3f
TH
3384}
3385
2a4ac633 3386/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3387static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3388{
623f926b 3389 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3390
ace2bee8 3391 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3392 lockdep_assert_held(&cgroup_mutex);
3393
3394 if (!(css->flags & CSS_ONLINE))
3395 return;
3396
d7eeac19 3397 if (ss->css_offline)
eb95419b 3398 ss->css_offline(css);
a31f2d3f 3399
eb95419b 3400 css->flags &= ~CSS_ONLINE;
09a503ea 3401 css->cgroup->nr_css--;
aec25020 3402 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3403}
3404
c81c925a
TH
3405/**
3406 * create_css - create a cgroup_subsys_state
3407 * @cgrp: the cgroup new css will be associated with
3408 * @ss: the subsys of new css
3409 *
3410 * Create a new css associated with @cgrp - @ss pair. On success, the new
3411 * css is online and installed in @cgrp with all interface files created.
3412 * Returns 0 on success, -errno on failure.
3413 */
3414static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3415{
3416 struct cgroup *parent = cgrp->parent;
3417 struct cgroup_subsys_state *css;
3418 int err;
3419
c81c925a
TH
3420 lockdep_assert_held(&cgroup_mutex);
3421
3422 css = ss->css_alloc(cgroup_css(parent, ss));
3423 if (IS_ERR(css))
3424 return PTR_ERR(css);
3425
3426 err = percpu_ref_init(&css->refcnt, css_release);
3427 if (err)
3428 goto err_free;
3429
3430 init_css(css, ss, cgrp);
3431
aec25020 3432 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3433 if (err)
3434 goto err_free;
3435
3436 err = online_css(css);
3437 if (err)
3438 goto err_free;
3439
59f5296b 3440 cgroup_get(cgrp);
c81c925a
TH
3441 css_get(css->parent);
3442
3443 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3444 parent->parent) {
3445 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3446 current->comm, current->pid, ss->name);
3447 if (!strcmp(ss->name, "memory"))
3448 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3449 ss->warned_broken_hierarchy = true;
3450 }
3451
3452 return 0;
3453
3454err_free:
3455 percpu_ref_cancel_init(&css->refcnt);
3456 ss->css_free(css);
3457 return err;
3458}
3459
2bd59d48 3460/**
a043e3b2
LZ
3461 * cgroup_create - create a cgroup
3462 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3463 * @name: name of the new cgroup
2bd59d48 3464 * @mode: mode to set on new cgroup
ddbcc7e8 3465 */
e61734c5 3466static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3467 umode_t mode)
ddbcc7e8 3468{
bd89aabc 3469 struct cgroup *cgrp;
ddbcc7e8 3470 struct cgroupfs_root *root = parent->root;
b58c8998 3471 int ssid, err;
ddbcc7e8 3472 struct cgroup_subsys *ss;
2bd59d48 3473 struct kernfs_node *kn;
ddbcc7e8 3474
0a950f65 3475 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3476 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3477 if (!cgrp)
ddbcc7e8
PM
3478 return -ENOMEM;
3479
ace2bee8
TH
3480 mutex_lock(&cgroup_tree_mutex);
3481
976c06bc
TH
3482 /*
3483 * Only live parents can have children. Note that the liveliness
3484 * check isn't strictly necessary because cgroup_mkdir() and
3485 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3486 * anyway so that locking is contained inside cgroup proper and we
3487 * don't get nasty surprises if we ever grow another caller.
3488 */
3489 if (!cgroup_lock_live_group(parent)) {
3490 err = -ENODEV;
ace2bee8 3491 goto err_unlock_tree;
0ab02ca8
LZ
3492 }
3493
3494 /*
3495 * Temporarily set the pointer to NULL, so idr_find() won't return
3496 * a half-baked cgroup.
3497 */
3498 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3499 if (cgrp->id < 0) {
3500 err = -ENOMEM;
3501 goto err_unlock;
976c06bc
TH
3502 }
3503
cc31edce 3504 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3505
bd89aabc 3506 cgrp->parent = parent;
0ae78e0b 3507 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3508 cgrp->root = parent->root;
ddbcc7e8 3509
b6abdb0e
LZ
3510 if (notify_on_release(parent))
3511 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3512
2260e7fc
TH
3513 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3514 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3515
2bd59d48 3516 /* create the directory */
e61734c5 3517 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3518 if (IS_ERR(kn)) {
3519 err = PTR_ERR(kn);
0ab02ca8 3520 goto err_free_id;
2bd59d48
TH
3521 }
3522 cgrp->kn = kn;
ddbcc7e8 3523
6f30558f
TH
3524 /*
3525 * This extra ref will be put in cgroup_free_fn() and guarantees
3526 * that @cgrp->kn is always accessible.
3527 */
3528 kernfs_get(kn);
3529
00356bd5 3530 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3531
4e139afc 3532 /* allocation complete, commit to creation */
4e139afc 3533 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3534 atomic_inc(&root->nr_cgrps);
59f5296b 3535 cgroup_get(parent);
415cf07a 3536
0d80255e
TH
3537 /*
3538 * @cgrp is now fully operational. If something fails after this
3539 * point, it'll be released via the normal destruction path.
3540 */
4e96ee8e
LZ
3541 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3542
2bb566cb 3543 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3544 if (err)
3545 goto err_destroy;
3546
9d403e99 3547 /* let's create and online css's */
b85d2040
TH
3548 for_each_subsys(ss, ssid) {
3549 if (root->subsys_mask & (1 << ssid)) {
3550 err = create_css(cgrp, ss);
3551 if (err)
3552 goto err_destroy;
3553 }
a8638030 3554 }
ddbcc7e8 3555
2bd59d48
TH
3556 kernfs_activate(kn);
3557
ddbcc7e8 3558 mutex_unlock(&cgroup_mutex);
ace2bee8 3559 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3560
3561 return 0;
3562
0a950f65 3563err_free_id:
4e96ee8e 3564 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3565err_unlock:
3566 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3567err_unlock_tree:
3568 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3569 kfree(cgrp);
ddbcc7e8 3570 return err;
4b8b47eb
TH
3571
3572err_destroy:
3573 cgroup_destroy_locked(cgrp);
3574 mutex_unlock(&cgroup_mutex);
ace2bee8 3575 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3576 return err;
ddbcc7e8
PM
3577}
3578
2bd59d48
TH
3579static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3580 umode_t mode)
ddbcc7e8 3581{
2bd59d48 3582 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3583
2bd59d48 3584 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3585}
3586
223dbc38
TH
3587/*
3588 * This is called when the refcnt of a css is confirmed to be killed.
3589 * css_tryget() is now guaranteed to fail.
3590 */
3591static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3592{
223dbc38
TH
3593 struct cgroup_subsys_state *css =
3594 container_of(work, struct cgroup_subsys_state, destroy_work);
3595 struct cgroup *cgrp = css->cgroup;
d3daf28d 3596
ace2bee8 3597 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3598 mutex_lock(&cgroup_mutex);
3599
09a503ea
TH
3600 /*
3601 * css_tryget() is guaranteed to fail now. Tell subsystems to
3602 * initate destruction.
3603 */
3604 offline_css(css);
3605
f20104de
TH
3606 /*
3607 * If @cgrp is marked dead, it's waiting for refs of all css's to
3608 * be disabled before proceeding to the second phase of cgroup
3609 * destruction. If we are the last one, kick it off.
3610 */
09a503ea 3611 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3612 cgroup_destroy_css_killed(cgrp);
3613
3614 mutex_unlock(&cgroup_mutex);
ace2bee8 3615 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3616
3617 /*
3618 * Put the css refs from kill_css(). Each css holds an extra
3619 * reference to the cgroup's dentry and cgroup removal proceeds
3620 * regardless of css refs. On the last put of each css, whenever
3621 * that may be, the extra dentry ref is put so that dentry
3622 * destruction happens only after all css's are released.
3623 */
3624 css_put(css);
d3daf28d
TH
3625}
3626
223dbc38
TH
3627/* css kill confirmation processing requires process context, bounce */
3628static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3629{
3630 struct cgroup_subsys_state *css =
3631 container_of(ref, struct cgroup_subsys_state, refcnt);
3632
223dbc38 3633 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3634 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3635}
3636
edae0c33
TH
3637/**
3638 * kill_css - destroy a css
3639 * @css: css to destroy
3640 *
3c14f8b4
TH
3641 * This function initiates destruction of @css by removing cgroup interface
3642 * files and putting its base reference. ->css_offline() will be invoked
3643 * asynchronously once css_tryget() is guaranteed to fail and when the
3644 * reference count reaches zero, @css will be released.
edae0c33
TH
3645 */
3646static void kill_css(struct cgroup_subsys_state *css)
3647{
2bd59d48
TH
3648 /*
3649 * This must happen before css is disassociated with its cgroup.
3650 * See seq_css() for details.
3651 */
aec25020 3652 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3653
edae0c33
TH
3654 /*
3655 * Killing would put the base ref, but we need to keep it alive
3656 * until after ->css_offline().
3657 */
3658 css_get(css);
3659
3660 /*
3661 * cgroup core guarantees that, by the time ->css_offline() is
3662 * invoked, no new css reference will be given out via
3663 * css_tryget(). We can't simply call percpu_ref_kill() and
3664 * proceed to offlining css's because percpu_ref_kill() doesn't
3665 * guarantee that the ref is seen as killed on all CPUs on return.
3666 *
3667 * Use percpu_ref_kill_and_confirm() to get notifications as each
3668 * css is confirmed to be seen as killed on all CPUs.
3669 */
3670 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3671}
3672
3673/**
3674 * cgroup_destroy_locked - the first stage of cgroup destruction
3675 * @cgrp: cgroup to be destroyed
3676 *
3677 * css's make use of percpu refcnts whose killing latency shouldn't be
3678 * exposed to userland and are RCU protected. Also, cgroup core needs to
3679 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3680 * invoked. To satisfy all the requirements, destruction is implemented in
3681 * the following two steps.
3682 *
3683 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3684 * userland visible parts and start killing the percpu refcnts of
3685 * css's. Set up so that the next stage will be kicked off once all
3686 * the percpu refcnts are confirmed to be killed.
3687 *
3688 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3689 * rest of destruction. Once all cgroup references are gone, the
3690 * cgroup is RCU-freed.
3691 *
3692 * This function implements s1. After this step, @cgrp is gone as far as
3693 * the userland is concerned and a new cgroup with the same name may be
3694 * created. As cgroup doesn't care about the names internally, this
3695 * doesn't cause any problem.
3696 */
42809dd4
TH
3697static int cgroup_destroy_locked(struct cgroup *cgrp)
3698 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3699{
bb78a92f 3700 struct cgroup *child;
2bd59d48 3701 struct cgroup_subsys_state *css;
ddd69148 3702 bool empty;
1c6727af 3703 int ssid;
ddbcc7e8 3704
ace2bee8 3705 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3706 lockdep_assert_held(&cgroup_mutex);
3707
ddd69148 3708 /*
96d365e0 3709 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3710 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3711 */
96d365e0 3712 down_read(&css_set_rwsem);
bb78a92f 3713 empty = list_empty(&cgrp->cset_links);
96d365e0 3714 up_read(&css_set_rwsem);
ddd69148 3715 if (!empty)
ddbcc7e8 3716 return -EBUSY;
a043e3b2 3717
bb78a92f
HD
3718 /*
3719 * Make sure there's no live children. We can't test ->children
3720 * emptiness as dead children linger on it while being destroyed;
3721 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3722 */
3723 empty = true;
3724 rcu_read_lock();
3725 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3726 empty = cgroup_is_dead(child);
3727 if (!empty)
3728 break;
3729 }
3730 rcu_read_unlock();
3731 if (!empty)
3732 return -EBUSY;
3733
88703267 3734 /*
edae0c33
TH
3735 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3736 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3737 * percpu refs of all css's are confirmed to be killed. This
3738 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3739 */
4ac06017 3740 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3741 for_each_css(css, ssid, cgrp)
3742 kill_css(css);
4ac06017 3743 mutex_lock(&cgroup_mutex);
455050d2
TH
3744
3745 /*
3746 * Mark @cgrp dead. This prevents further task migration and child
3747 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3748 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3749 * resume iteration after dropping RCU read lock. See
492eb21b 3750 * css_next_child() for details.
455050d2 3751 */
54766d4a 3752 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3753
455050d2
TH
3754 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3755 raw_spin_lock(&release_list_lock);
3756 if (!list_empty(&cgrp->release_list))
3757 list_del_init(&cgrp->release_list);
3758 raw_spin_unlock(&release_list_lock);
3759
3760 /*
f20104de
TH
3761 * If @cgrp has css's attached, the second stage of cgroup
3762 * destruction is kicked off from css_killed_work_fn() after the
3763 * refs of all attached css's are killed. If @cgrp doesn't have
3764 * any css, we kick it off here.
3765 */
3766 if (!cgrp->nr_css)
3767 cgroup_destroy_css_killed(cgrp);
3768
2bd59d48
TH
3769 /* remove @cgrp directory along with the base files */
3770 mutex_unlock(&cgroup_mutex);
3771
455050d2 3772 /*
2bd59d48
TH
3773 * There are two control paths which try to determine cgroup from
3774 * dentry without going through kernfs - cgroupstats_build() and
3775 * css_tryget_from_dir(). Those are supported by RCU protecting
3776 * clearing of cgrp->kn->priv backpointer, which should happen
3777 * after all files under it have been removed.
455050d2 3778 */
6f30558f 3779 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3780 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3781
4ac06017 3782 mutex_lock(&cgroup_mutex);
455050d2 3783
ea15f8cc
TH
3784 return 0;
3785};
3786
d3daf28d 3787/**
f20104de 3788 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3789 * @work: cgroup->destroy_free_work
3790 *
3791 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3792 * destroyed after all css's are offlined and performs the rest of
3793 * destruction. This is the second step of destruction described in the
3794 * comment above cgroup_destroy_locked().
d3daf28d 3795 */
f20104de 3796static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3797{
ea15f8cc 3798 struct cgroup *parent = cgrp->parent;
ea15f8cc 3799
ace2bee8 3800 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3801 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3802
999cd8a4 3803 /* delete this cgroup from parent->children */
eb6fd504 3804 list_del_rcu(&cgrp->sibling);
ed957793 3805
59f5296b 3806 cgroup_put(cgrp);
ddbcc7e8 3807
bd89aabc 3808 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3809 check_for_release(parent);
ddbcc7e8
PM
3810}
3811
2bd59d48 3812static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3813{
2bd59d48
TH
3814 struct cgroup *cgrp = kn->priv;
3815 int ret = 0;
3816
3817 /*
3818 * This is self-destruction but @kn can't be removed while this
3819 * callback is in progress. Let's break active protection. Once
3820 * the protection is broken, @cgrp can be destroyed at any point.
3821 * Pin it so that it stays accessible.
3822 */
3823 cgroup_get(cgrp);
3824 kernfs_break_active_protection(kn);
42809dd4 3825
ace2bee8 3826 mutex_lock(&cgroup_tree_mutex);
42809dd4 3827 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3828
3829 /*
3830 * @cgrp might already have been destroyed while we're trying to
3831 * grab the mutexes.
3832 */
3833 if (!cgroup_is_dead(cgrp))
3834 ret = cgroup_destroy_locked(cgrp);
3835
42809dd4 3836 mutex_unlock(&cgroup_mutex);
ace2bee8 3837 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3838
2bd59d48
TH
3839 kernfs_unbreak_active_protection(kn);
3840 cgroup_put(cgrp);
42809dd4
TH
3841 return ret;
3842}
3843
2bd59d48
TH
3844static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3845 .remount_fs = cgroup_remount,
3846 .show_options = cgroup_show_options,
3847 .mkdir = cgroup_mkdir,
3848 .rmdir = cgroup_rmdir,
3849 .rename = cgroup_rename,
3850};
3851
06a11920 3852static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3853{
ddbcc7e8 3854 struct cgroup_subsys_state *css;
cfe36bde
DC
3855
3856 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 3857
ace2bee8 3858 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
3859 mutex_lock(&cgroup_mutex);
3860
0adb0704 3861 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 3862
ddbcc7e8 3863 /* Create the top cgroup state for this subsystem */
9871bf95 3864 ss->root = &cgroup_dummy_root;
ca8bdcaf 3865 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
3866 /* We don't handle early failures gracefully */
3867 BUG_ON(IS_ERR(css));
623f926b 3868 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 3869
e8d55fde 3870 /* Update the init_css_set to contain a subsys
817929ec 3871 * pointer to this state - since the subsystem is
e8d55fde
LZ
3872 * newly registered, all tasks and hence the
3873 * init_css_set is in the subsystem's top cgroup. */
aec25020 3874 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
3875
3876 need_forkexit_callback |= ss->fork || ss->exit;
3877
e8d55fde
LZ
3878 /* At system boot, before all subsystems have been
3879 * registered, no tasks have been forked, so we don't
3880 * need to invoke fork callbacks here. */
3881 BUG_ON(!list_empty(&init_task.tasks));
3882
ae7f164a 3883 BUG_ON(online_css(css));
a8638030 3884
648bb56d 3885 mutex_unlock(&cgroup_mutex);
ace2bee8 3886 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
3887}
3888
ddbcc7e8 3889/**
a043e3b2
LZ
3890 * cgroup_init_early - cgroup initialization at system boot
3891 *
3892 * Initialize cgroups at system boot, and initialize any
3893 * subsystems that request early init.
ddbcc7e8
PM
3894 */
3895int __init cgroup_init_early(void)
3896{
30159ec7 3897 struct cgroup_subsys *ss;
ddbcc7e8 3898 int i;
30159ec7 3899
146aa1bd 3900 atomic_set(&init_css_set.refcount, 1);
69d0206c 3901 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 3902 INIT_LIST_HEAD(&init_css_set.tasks);
b3dc094e
TH
3903 INIT_LIST_HEAD(&init_css_set.mg_tasks);
3904 INIT_LIST_HEAD(&init_css_set.mg_node);
472b1053 3905 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3906 css_set_count = 1;
9871bf95
TH
3907 init_cgroup_root(&cgroup_dummy_root);
3908 cgroup_root_count = 1;
a4ea1cc9 3909 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 3910
69d0206c 3911 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
3912 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
3913 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 3914 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 3915
3ed80a62 3916 for_each_subsys(ss, i) {
aec25020 3917 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
3918 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
3919 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 3920 ss->id, ss->name);
073219e9
TH
3921 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
3922 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
3923
aec25020 3924 ss->id = i;
073219e9 3925 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
3926
3927 if (ss->early_init)
3928 cgroup_init_subsys(ss);
3929 }
3930 return 0;
3931}
3932
3933/**
a043e3b2
LZ
3934 * cgroup_init - cgroup initialization
3935 *
3936 * Register cgroup filesystem and /proc file, and initialize
3937 * any subsystems that didn't request early init.
ddbcc7e8
PM
3938 */
3939int __init cgroup_init(void)
3940{
30159ec7 3941 struct cgroup_subsys *ss;
0ac801fe 3942 unsigned long key;
30159ec7 3943 int i, err;
a424316c 3944
2bd59d48 3945 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 3946
3ed80a62 3947 for_each_subsys(ss, i) {
ddbcc7e8
PM
3948 if (!ss->early_init)
3949 cgroup_init_subsys(ss);
de00ffa5
TH
3950
3951 /*
3952 * cftype registration needs kmalloc and can't be done
3953 * during early_init. Register base cftypes separately.
3954 */
3955 if (ss->base_cftypes)
3956 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
3957 }
3958
fa3ca07e 3959 /* allocate id for the dummy hierarchy */
54e7b4eb 3960 mutex_lock(&cgroup_mutex);
54e7b4eb 3961
82fe9b0d
TH
3962 /* Add init_css_set to the hash table */
3963 key = css_set_hash(init_css_set.subsys);
3964 hash_add(css_set_table, &init_css_set.hlist, key);
3965
fc76df70 3966 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 3967
4e96ee8e
LZ
3968 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
3969 0, 1, GFP_KERNEL);
3970 BUG_ON(err < 0);
3971
54e7b4eb
TH
3972 mutex_unlock(&cgroup_mutex);
3973
676db4af 3974 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
3975 if (!cgroup_kobj)
3976 return -ENOMEM;
676db4af 3977
ddbcc7e8 3978 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
3979 if (err < 0) {
3980 kobject_put(cgroup_kobj);
2bd59d48 3981 return err;
676db4af 3982 }
ddbcc7e8 3983
46ae220b 3984 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 3985 return 0;
ddbcc7e8 3986}
b4f48b63 3987
e5fca243
TH
3988static int __init cgroup_wq_init(void)
3989{
3990 /*
3991 * There isn't much point in executing destruction path in
3992 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 3993 * Use 1 for @max_active.
e5fca243
TH
3994 *
3995 * We would prefer to do this in cgroup_init() above, but that
3996 * is called before init_workqueues(): so leave this until after.
3997 */
1a11533f 3998 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 3999 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4000
4001 /*
4002 * Used to destroy pidlists and separate to serve as flush domain.
4003 * Cap @max_active to 1 too.
4004 */
4005 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4006 0, 1);
4007 BUG_ON(!cgroup_pidlist_destroy_wq);
4008
e5fca243
TH
4009 return 0;
4010}
4011core_initcall(cgroup_wq_init);
4012
a424316c
PM
4013/*
4014 * proc_cgroup_show()
4015 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4016 * - Used for /proc/<pid>/cgroup.
4017 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4018 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4019 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4020 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4021 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4022 * cgroup to top_cgroup.
4023 */
4024
4025/* TODO: Use a proper seq_file iterator */
8d8b97ba 4026int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4027{
4028 struct pid *pid;
4029 struct task_struct *tsk;
e61734c5 4030 char *buf, *path;
a424316c
PM
4031 int retval;
4032 struct cgroupfs_root *root;
4033
4034 retval = -ENOMEM;
e61734c5 4035 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4036 if (!buf)
4037 goto out;
4038
4039 retval = -ESRCH;
4040 pid = m->private;
4041 tsk = get_pid_task(pid, PIDTYPE_PID);
4042 if (!tsk)
4043 goto out_free;
4044
4045 retval = 0;
4046
4047 mutex_lock(&cgroup_mutex);
96d365e0 4048 down_read(&css_set_rwsem);
a424316c 4049
e5f6a860 4050 for_each_active_root(root) {
a424316c 4051 struct cgroup_subsys *ss;
bd89aabc 4052 struct cgroup *cgrp;
b85d2040 4053 int ssid, count = 0;
a424316c 4054
2c6ab6d2 4055 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4056 for_each_subsys(ss, ssid)
4057 if (root->subsys_mask & (1 << ssid))
4058 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4059 if (strlen(root->name))
4060 seq_printf(m, "%sname=%s", count ? "," : "",
4061 root->name);
a424316c 4062 seq_putc(m, ':');
7717f7ba 4063 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4064 path = cgroup_path(cgrp, buf, PATH_MAX);
4065 if (!path) {
4066 retval = -ENAMETOOLONG;
a424316c 4067 goto out_unlock;
e61734c5
TH
4068 }
4069 seq_puts(m, path);
a424316c
PM
4070 seq_putc(m, '\n');
4071 }
4072
4073out_unlock:
96d365e0 4074 up_read(&css_set_rwsem);
a424316c
PM
4075 mutex_unlock(&cgroup_mutex);
4076 put_task_struct(tsk);
4077out_free:
4078 kfree(buf);
4079out:
4080 return retval;
4081}
4082
a424316c
PM
4083/* Display information about each subsystem and each hierarchy */
4084static int proc_cgroupstats_show(struct seq_file *m, void *v)
4085{
30159ec7 4086 struct cgroup_subsys *ss;
a424316c 4087 int i;
a424316c 4088
8bab8dde 4089 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4090 /*
4091 * ideally we don't want subsystems moving around while we do this.
4092 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4093 * subsys/hierarchy state.
4094 */
a424316c 4095 mutex_lock(&cgroup_mutex);
30159ec7
TH
4096
4097 for_each_subsys(ss, i)
2c6ab6d2
PM
4098 seq_printf(m, "%s\t%d\t%d\t%d\n",
4099 ss->name, ss->root->hierarchy_id,
3c9c825b 4100 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4101
a424316c
PM
4102 mutex_unlock(&cgroup_mutex);
4103 return 0;
4104}
4105
4106static int cgroupstats_open(struct inode *inode, struct file *file)
4107{
9dce07f1 4108 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4109}
4110
828c0950 4111static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4112 .open = cgroupstats_open,
4113 .read = seq_read,
4114 .llseek = seq_lseek,
4115 .release = single_release,
4116};
4117
b4f48b63
PM
4118/**
4119 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4120 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4121 *
4122 * Description: A task inherits its parent's cgroup at fork().
4123 *
4124 * A pointer to the shared css_set was automatically copied in
4125 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4126 * it was not made under the protection of RCU or cgroup_mutex, so
4127 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4128 * have already changed current->cgroups, allowing the previously
4129 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4130 *
4131 * At the point that cgroup_fork() is called, 'current' is the parent
4132 * task, and the passed argument 'child' points to the child task.
4133 */
4134void cgroup_fork(struct task_struct *child)
4135{
9bb71308 4136 task_lock(current);
a8ad805c 4137 get_css_set(task_css_set(current));
817929ec 4138 child->cgroups = current->cgroups;
9bb71308 4139 task_unlock(current);
817929ec 4140 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4141}
4142
817929ec 4143/**
a043e3b2
LZ
4144 * cgroup_post_fork - called on a new task after adding it to the task list
4145 * @child: the task in question
4146 *
5edee61e
TH
4147 * Adds the task to the list running through its css_set if necessary and
4148 * call the subsystem fork() callbacks. Has to be after the task is
4149 * visible on the task list in case we race with the first call to
0942eeee 4150 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4151 * list.
a043e3b2 4152 */
817929ec
PM
4153void cgroup_post_fork(struct task_struct *child)
4154{
30159ec7 4155 struct cgroup_subsys *ss;
5edee61e
TH
4156 int i;
4157
3ce3230a
FW
4158 /*
4159 * use_task_css_set_links is set to 1 before we walk the tasklist
4160 * under the tasklist_lock and we read it here after we added the child
4161 * to the tasklist under the tasklist_lock as well. If the child wasn't
4162 * yet in the tasklist when we walked through it from
4163 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4164 * should be visible now due to the paired locking and barriers implied
4165 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4166 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4167 * lock on fork.
4168 */
817929ec 4169 if (use_task_css_set_links) {
96d365e0 4170 down_write(&css_set_rwsem);
d8783832
TH
4171 task_lock(child);
4172 if (list_empty(&child->cg_list))
a8ad805c 4173 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4174 task_unlock(child);
96d365e0 4175 up_write(&css_set_rwsem);
817929ec 4176 }
5edee61e
TH
4177
4178 /*
4179 * Call ss->fork(). This must happen after @child is linked on
4180 * css_set; otherwise, @child might change state between ->fork()
4181 * and addition to css_set.
4182 */
4183 if (need_forkexit_callback) {
3ed80a62 4184 for_each_subsys(ss, i)
5edee61e
TH
4185 if (ss->fork)
4186 ss->fork(child);
5edee61e 4187 }
817929ec 4188}
5edee61e 4189
b4f48b63
PM
4190/**
4191 * cgroup_exit - detach cgroup from exiting task
4192 * @tsk: pointer to task_struct of exiting process
a043e3b2 4193 * @run_callback: run exit callbacks?
b4f48b63
PM
4194 *
4195 * Description: Detach cgroup from @tsk and release it.
4196 *
4197 * Note that cgroups marked notify_on_release force every task in
4198 * them to take the global cgroup_mutex mutex when exiting.
4199 * This could impact scaling on very large systems. Be reluctant to
4200 * use notify_on_release cgroups where very high task exit scaling
4201 * is required on large systems.
4202 *
4203 * the_top_cgroup_hack:
4204 *
4205 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4206 *
4207 * We call cgroup_exit() while the task is still competent to
4208 * handle notify_on_release(), then leave the task attached to the
4209 * root cgroup in each hierarchy for the remainder of its exit.
4210 *
4211 * To do this properly, we would increment the reference count on
4212 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4213 * code we would add a second cgroup function call, to drop that
4214 * reference. This would just create an unnecessary hot spot on
4215 * the top_cgroup reference count, to no avail.
4216 *
4217 * Normally, holding a reference to a cgroup without bumping its
4218 * count is unsafe. The cgroup could go away, or someone could
4219 * attach us to a different cgroup, decrementing the count on
4220 * the first cgroup that we never incremented. But in this case,
4221 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4222 * which wards off any cgroup_attach_task() attempts, or task is a failed
4223 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4224 */
4225void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4226{
30159ec7 4227 struct cgroup_subsys *ss;
5abb8855 4228 struct css_set *cset;
d41d5a01 4229 int i;
817929ec
PM
4230
4231 /*
96d365e0
TH
4232 * Unlink from the css_set task list if necessary. Optimistically
4233 * check cg_list before taking css_set_rwsem.
817929ec
PM
4234 */
4235 if (!list_empty(&tsk->cg_list)) {
96d365e0 4236 down_write(&css_set_rwsem);
817929ec 4237 if (!list_empty(&tsk->cg_list))
8d258797 4238 list_del_init(&tsk->cg_list);
96d365e0 4239 up_write(&css_set_rwsem);
817929ec
PM
4240 }
4241
b4f48b63
PM
4242 /* Reassign the task to the init_css_set. */
4243 task_lock(tsk);
a8ad805c
TH
4244 cset = task_css_set(tsk);
4245 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4246
4247 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4248 /* see cgroup_post_fork() for details */
4249 for_each_subsys(ss, i) {
d41d5a01 4250 if (ss->exit) {
eb95419b
TH
4251 struct cgroup_subsys_state *old_css = cset->subsys[i];
4252 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4253
eb95419b 4254 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4255 }
4256 }
4257 }
b4f48b63 4258 task_unlock(tsk);
d41d5a01 4259
89c5509b 4260 put_css_set(cset, true);
b4f48b63 4261}
697f4161 4262
bd89aabc 4263static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4264{
f50daa70 4265 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4266 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4267 /*
4268 * Control Group is currently removeable. If it's not
81a6a5cd 4269 * already queued for a userspace notification, queue
f50daa70
LZ
4270 * it now
4271 */
81a6a5cd 4272 int need_schedule_work = 0;
f50daa70 4273
cdcc136f 4274 raw_spin_lock(&release_list_lock);
54766d4a 4275 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4276 list_empty(&cgrp->release_list)) {
4277 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4278 need_schedule_work = 1;
4279 }
cdcc136f 4280 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4281 if (need_schedule_work)
4282 schedule_work(&release_agent_work);
4283 }
4284}
4285
81a6a5cd
PM
4286/*
4287 * Notify userspace when a cgroup is released, by running the
4288 * configured release agent with the name of the cgroup (path
4289 * relative to the root of cgroup file system) as the argument.
4290 *
4291 * Most likely, this user command will try to rmdir this cgroup.
4292 *
4293 * This races with the possibility that some other task will be
4294 * attached to this cgroup before it is removed, or that some other
4295 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4296 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4297 * unused, and this cgroup will be reprieved from its death sentence,
4298 * to continue to serve a useful existence. Next time it's released,
4299 * we will get notified again, if it still has 'notify_on_release' set.
4300 *
4301 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4302 * means only wait until the task is successfully execve()'d. The
4303 * separate release agent task is forked by call_usermodehelper(),
4304 * then control in this thread returns here, without waiting for the
4305 * release agent task. We don't bother to wait because the caller of
4306 * this routine has no use for the exit status of the release agent
4307 * task, so no sense holding our caller up for that.
81a6a5cd 4308 */
81a6a5cd
PM
4309static void cgroup_release_agent(struct work_struct *work)
4310{
4311 BUG_ON(work != &release_agent_work);
4312 mutex_lock(&cgroup_mutex);
cdcc136f 4313 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4314 while (!list_empty(&release_list)) {
4315 char *argv[3], *envp[3];
4316 int i;
e61734c5 4317 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4318 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4319 struct cgroup,
4320 release_list);
bd89aabc 4321 list_del_init(&cgrp->release_list);
cdcc136f 4322 raw_spin_unlock(&release_list_lock);
e61734c5 4323 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4324 if (!pathbuf)
4325 goto continue_free;
e61734c5
TH
4326 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4327 if (!path)
e788e066
PM
4328 goto continue_free;
4329 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4330 if (!agentbuf)
4331 goto continue_free;
81a6a5cd
PM
4332
4333 i = 0;
e788e066 4334 argv[i++] = agentbuf;
e61734c5 4335 argv[i++] = path;
81a6a5cd
PM
4336 argv[i] = NULL;
4337
4338 i = 0;
4339 /* minimal command environment */
4340 envp[i++] = "HOME=/";
4341 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4342 envp[i] = NULL;
4343
4344 /* Drop the lock while we invoke the usermode helper,
4345 * since the exec could involve hitting disk and hence
4346 * be a slow process */
4347 mutex_unlock(&cgroup_mutex);
4348 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4349 mutex_lock(&cgroup_mutex);
e788e066
PM
4350 continue_free:
4351 kfree(pathbuf);
4352 kfree(agentbuf);
cdcc136f 4353 raw_spin_lock(&release_list_lock);
81a6a5cd 4354 }
cdcc136f 4355 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4356 mutex_unlock(&cgroup_mutex);
4357}
8bab8dde
PM
4358
4359static int __init cgroup_disable(char *str)
4360{
30159ec7 4361 struct cgroup_subsys *ss;
8bab8dde 4362 char *token;
30159ec7 4363 int i;
8bab8dde
PM
4364
4365 while ((token = strsep(&str, ",")) != NULL) {
4366 if (!*token)
4367 continue;
be45c900 4368
3ed80a62 4369 for_each_subsys(ss, i) {
8bab8dde
PM
4370 if (!strcmp(token, ss->name)) {
4371 ss->disabled = 1;
4372 printk(KERN_INFO "Disabling %s control group"
4373 " subsystem\n", ss->name);
4374 break;
4375 }
4376 }
4377 }
4378 return 1;
4379}
4380__setup("cgroup_disable=", cgroup_disable);
38460b48 4381
b77d7b60 4382/**
5a17f543 4383 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4384 * @dentry: directory dentry of interest
4385 * @ss: subsystem of interest
b77d7b60 4386 *
5a17f543
TH
4387 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4388 * to get the corresponding css and return it. If such css doesn't exist
4389 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4390 */
5a17f543
TH
4391struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4392 struct cgroup_subsys *ss)
e5d1367f 4393{
2bd59d48
TH
4394 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4395 struct cgroup_subsys_state *css = NULL;
e5d1367f 4396 struct cgroup *cgrp;
b77d7b60 4397
35cf0836 4398 /* is @dentry a cgroup dir? */
2bd59d48
TH
4399 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4400 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4401 return ERR_PTR(-EBADF);
4402
5a17f543
TH
4403 rcu_read_lock();
4404
2bd59d48
TH
4405 /*
4406 * This path doesn't originate from kernfs and @kn could already
4407 * have been or be removed at any point. @kn->priv is RCU
4408 * protected for this access. See destroy_locked() for details.
4409 */
4410 cgrp = rcu_dereference(kn->priv);
4411 if (cgrp)
4412 css = cgroup_css(cgrp, ss);
5a17f543
TH
4413
4414 if (!css || !css_tryget(css))
4415 css = ERR_PTR(-ENOENT);
4416
4417 rcu_read_unlock();
4418 return css;
e5d1367f 4419}
e5d1367f 4420
1cb650b9
LZ
4421/**
4422 * css_from_id - lookup css by id
4423 * @id: the cgroup id
4424 * @ss: cgroup subsys to be looked into
4425 *
4426 * Returns the css if there's valid one with @id, otherwise returns NULL.
4427 * Should be called under rcu_read_lock().
4428 */
4429struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4430{
4431 struct cgroup *cgrp;
4432
ace2bee8 4433 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4434
4435 cgrp = idr_find(&ss->root->cgroup_idr, id);
4436 if (cgrp)
d1625964 4437 return cgroup_css(cgrp, ss);
1cb650b9 4438 return NULL;
e5d1367f
SE
4439}
4440
fe693435 4441#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4442static struct cgroup_subsys_state *
4443debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4444{
4445 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4446
4447 if (!css)
4448 return ERR_PTR(-ENOMEM);
4449
4450 return css;
4451}
4452
eb95419b 4453static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4454{
eb95419b 4455 kfree(css);
fe693435
PM
4456}
4457
182446d0
TH
4458static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4459 struct cftype *cft)
fe693435 4460{
182446d0 4461 return cgroup_task_count(css->cgroup);
fe693435
PM
4462}
4463
182446d0
TH
4464static u64 current_css_set_read(struct cgroup_subsys_state *css,
4465 struct cftype *cft)
fe693435
PM
4466{
4467 return (u64)(unsigned long)current->cgroups;
4468}
4469
182446d0 4470static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4471 struct cftype *cft)
fe693435
PM
4472{
4473 u64 count;
4474
4475 rcu_read_lock();
a8ad805c 4476 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4477 rcu_read_unlock();
4478 return count;
4479}
4480
2da8ca82 4481static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4482{
69d0206c 4483 struct cgrp_cset_link *link;
5abb8855 4484 struct css_set *cset;
e61734c5
TH
4485 char *name_buf;
4486
4487 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4488 if (!name_buf)
4489 return -ENOMEM;
7717f7ba 4490
96d365e0 4491 down_read(&css_set_rwsem);
7717f7ba 4492 rcu_read_lock();
5abb8855 4493 cset = rcu_dereference(current->cgroups);
69d0206c 4494 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4495 struct cgroup *c = link->cgrp;
59f5296b
TH
4496 const char *name = "?";
4497
e61734c5
TH
4498 if (c != cgroup_dummy_top) {
4499 cgroup_name(c, name_buf, NAME_MAX + 1);
4500 name = name_buf;
4501 }
7717f7ba 4502
2c6ab6d2
PM
4503 seq_printf(seq, "Root %d group %s\n",
4504 c->root->hierarchy_id, name);
7717f7ba
PM
4505 }
4506 rcu_read_unlock();
96d365e0 4507 up_read(&css_set_rwsem);
e61734c5 4508 kfree(name_buf);
7717f7ba
PM
4509 return 0;
4510}
4511
4512#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4513static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4514{
2da8ca82 4515 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4516 struct cgrp_cset_link *link;
7717f7ba 4517
96d365e0 4518 down_read(&css_set_rwsem);
182446d0 4519 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4520 struct css_set *cset = link->cset;
7717f7ba
PM
4521 struct task_struct *task;
4522 int count = 0;
c7561128 4523
5abb8855 4524 seq_printf(seq, "css_set %p\n", cset);
c7561128 4525
5abb8855 4526 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4527 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4528 goto overflow;
4529 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4530 }
4531
4532 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4533 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4534 goto overflow;
4535 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4536 }
c7561128
TH
4537 continue;
4538 overflow:
4539 seq_puts(seq, " ...\n");
7717f7ba 4540 }
96d365e0 4541 up_read(&css_set_rwsem);
7717f7ba
PM
4542 return 0;
4543}
4544
182446d0 4545static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4546{
182446d0 4547 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4548}
4549
4550static struct cftype debug_files[] = {
fe693435
PM
4551 {
4552 .name = "taskcount",
4553 .read_u64 = debug_taskcount_read,
4554 },
4555
4556 {
4557 .name = "current_css_set",
4558 .read_u64 = current_css_set_read,
4559 },
4560
4561 {
4562 .name = "current_css_set_refcount",
4563 .read_u64 = current_css_set_refcount_read,
4564 },
4565
7717f7ba
PM
4566 {
4567 .name = "current_css_set_cg_links",
2da8ca82 4568 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4569 },
4570
4571 {
4572 .name = "cgroup_css_links",
2da8ca82 4573 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4574 },
4575
fe693435
PM
4576 {
4577 .name = "releasable",
4578 .read_u64 = releasable_read,
4579 },
fe693435 4580
4baf6e33
TH
4581 { } /* terminate */
4582};
fe693435 4583
073219e9 4584struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4585 .css_alloc = debug_css_alloc,
4586 .css_free = debug_css_free,
4baf6e33 4587 .base_cftypes = debug_files,
fe693435
PM
4588};
4589#endif /* CONFIG_CGROUP_DEBUG */