cgroup: implement delayed destruction for cgroup_pidlist
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 59#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 60#include <linux/kthread.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
e25e2cbb
TH
72/*
73 * cgroup_mutex is the master lock. Any modification to cgroup or its
74 * hierarchy must be performed while holding it.
75 *
76 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
77 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
78 * release_agent_path and so on. Modifying requires both cgroup_mutex and
79 * cgroup_root_mutex. Readers can acquire either of the two. This is to
80 * break the following locking order cycle.
81 *
82 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
83 * B. namespace_sem -> cgroup_mutex
84 *
85 * B happens only through cgroup_show_options() and using cgroup_root_mutex
86 * breaks it.
87 */
2219449a
TH
88#ifdef CONFIG_PROVE_RCU
89DEFINE_MUTEX(cgroup_mutex);
8af01f56 90EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 91#else
81a6a5cd 92static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
93#endif
94
e25e2cbb 95static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 96
e5fca243
TH
97/*
98 * cgroup destruction makes heavy use of work items and there can be a lot
99 * of concurrent destructions. Use a separate workqueue so that cgroup
100 * destruction work items don't end up filling up max_active of system_wq
101 * which may lead to deadlock.
102 */
103static struct workqueue_struct *cgroup_destroy_wq;
104
b1a21367
TH
105/*
106 * pidlist destructions need to be flushed on cgroup destruction. Use a
107 * separate workqueue as flush domain.
108 */
109static struct workqueue_struct *cgroup_pidlist_destroy_wq;
110
aae8aab4
BB
111/*
112 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 113 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
114 * registered after that. The mutable section of this array is protected by
115 * cgroup_mutex.
116 */
80f4c877 117#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 118#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 119static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
120#include <linux/cgroup_subsys.h>
121};
122
ddbcc7e8 123/*
9871bf95
TH
124 * The dummy hierarchy, reserved for the subsystems that are otherwise
125 * unattached - it never has more than a single cgroup, and all tasks are
126 * part of that cgroup.
ddbcc7e8 127 */
9871bf95
TH
128static struct cgroupfs_root cgroup_dummy_root;
129
130/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
131static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 132
05ef1d7c
TH
133/*
134 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
135 */
136struct cfent {
137 struct list_head node;
138 struct dentry *dentry;
139 struct cftype *type;
105347ba 140 struct cgroup_subsys_state *css;
712317ad
LZ
141
142 /* file xattrs */
143 struct simple_xattrs xattrs;
05ef1d7c
TH
144};
145
ddbcc7e8
PM
146/* The list of hierarchy roots */
147
9871bf95
TH
148static LIST_HEAD(cgroup_roots);
149static int cgroup_root_count;
ddbcc7e8 150
54e7b4eb
TH
151/*
152 * Hierarchy ID allocation and mapping. It follows the same exclusion
153 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
154 * writes, either for reads.
155 */
1a574231 156static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 157
65dff759
LZ
158static struct cgroup_name root_cgroup_name = { .name = "/" };
159
794611a1
LZ
160/*
161 * Assign a monotonically increasing serial number to cgroups. It
162 * guarantees cgroups with bigger numbers are newer than those with smaller
163 * numbers. Also, as cgroups are always appended to the parent's
164 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
165 * the ascending serial number order on the list. Protected by
166 * cgroup_mutex.
794611a1 167 */
00356bd5 168static u64 cgroup_serial_nr_next = 1;
794611a1 169
ddbcc7e8 170/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
171 * check for fork/exit handlers to call. This avoids us having to do
172 * extra work in the fork/exit path if none of the subsystems need to
173 * be called.
ddbcc7e8 174 */
8947f9d5 175static int need_forkexit_callback __read_mostly;
ddbcc7e8 176
628f7cd4
TH
177static struct cftype cgroup_base_files[];
178
f20104de 179static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 180static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
181static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
182 bool is_add);
e605b365 183static int cgroup_file_release(struct inode *inode, struct file *file);
b1a21367 184static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 185
95109b62
TH
186/**
187 * cgroup_css - obtain a cgroup's css for the specified subsystem
188 * @cgrp: the cgroup of interest
ca8bdcaf 189 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 190 *
ca8bdcaf
TH
191 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
192 * function must be called either under cgroup_mutex or rcu_read_lock() and
193 * the caller is responsible for pinning the returned css if it wants to
194 * keep accessing it outside the said locks. This function may return
195 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
196 */
197static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 198 struct cgroup_subsys *ss)
95109b62 199{
ca8bdcaf
TH
200 if (ss)
201 return rcu_dereference_check(cgrp->subsys[ss->subsys_id],
202 lockdep_is_held(&cgroup_mutex));
203 else
204 return &cgrp->dummy_css;
95109b62 205}
42809dd4 206
ddbcc7e8 207/* convenient tests for these bits */
54766d4a 208static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 209{
54766d4a 210 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
211}
212
78574cf9
LZ
213/**
214 * cgroup_is_descendant - test ancestry
215 * @cgrp: the cgroup to be tested
216 * @ancestor: possible ancestor of @cgrp
217 *
218 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
219 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
220 * and @ancestor are accessible.
221 */
222bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
223{
224 while (cgrp) {
225 if (cgrp == ancestor)
226 return true;
227 cgrp = cgrp->parent;
228 }
229 return false;
230}
231EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 232
e9685a03 233static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
234{
235 const int bits =
bd89aabc
PM
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
239}
240
e9685a03 241static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 242{
bd89aabc 243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
244}
245
30159ec7
TH
246/**
247 * for_each_subsys - iterate all loaded cgroup subsystems
248 * @ss: the iteration cursor
249 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
250 *
251 * Should be called under cgroup_mutex.
252 */
253#define for_each_subsys(ss, i) \
254 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
255 if (({ lockdep_assert_held(&cgroup_mutex); \
256 !((ss) = cgroup_subsys[i]); })) { } \
257 else
258
259/**
260 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
261 * @ss: the iteration cursor
262 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
263 *
264 * Bulit-in subsystems are always present and iteration itself doesn't
265 * require any synchronization.
266 */
267#define for_each_builtin_subsys(ss, i) \
268 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
269 (((ss) = cgroup_subsys[i]) || true); (i)++)
270
5549c497
TH
271/* iterate each subsystem attached to a hierarchy */
272#define for_each_root_subsys(root, ss) \
273 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 274
5549c497
TH
275/* iterate across the active hierarchies */
276#define for_each_active_root(root) \
277 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 278
f6ea9372
TH
279static inline struct cgroup *__d_cgrp(struct dentry *dentry)
280{
281 return dentry->d_fsdata;
282}
283
05ef1d7c 284static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
285{
286 return dentry->d_fsdata;
287}
288
05ef1d7c
TH
289static inline struct cftype *__d_cft(struct dentry *dentry)
290{
291 return __d_cfe(dentry)->type;
292}
293
7ae1bad9
TH
294/**
295 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
296 * @cgrp: the cgroup to be checked for liveness
297 *
47cfcd09
TH
298 * On success, returns true; the mutex should be later unlocked. On
299 * failure returns false with no lock held.
7ae1bad9 300 */
b9777cf8 301static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
302{
303 mutex_lock(&cgroup_mutex);
54766d4a 304 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
305 mutex_unlock(&cgroup_mutex);
306 return false;
307 }
308 return true;
309}
7ae1bad9 310
81a6a5cd
PM
311/* the list of cgroups eligible for automatic release. Protected by
312 * release_list_lock */
313static LIST_HEAD(release_list);
cdcc136f 314static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
315static void cgroup_release_agent(struct work_struct *work);
316static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 317static void check_for_release(struct cgroup *cgrp);
81a6a5cd 318
69d0206c
TH
319/*
320 * A cgroup can be associated with multiple css_sets as different tasks may
321 * belong to different cgroups on different hierarchies. In the other
322 * direction, a css_set is naturally associated with multiple cgroups.
323 * This M:N relationship is represented by the following link structure
324 * which exists for each association and allows traversing the associations
325 * from both sides.
326 */
327struct cgrp_cset_link {
328 /* the cgroup and css_set this link associates */
329 struct cgroup *cgrp;
330 struct css_set *cset;
331
332 /* list of cgrp_cset_links anchored at cgrp->cset_links */
333 struct list_head cset_link;
334
335 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
336 struct list_head cgrp_link;
817929ec
PM
337};
338
339/* The default css_set - used by init and its children prior to any
340 * hierarchies being mounted. It contains a pointer to the root state
341 * for each subsystem. Also used to anchor the list of css_sets. Not
342 * reference-counted, to improve performance when child cgroups
343 * haven't been created.
344 */
345
346static struct css_set init_css_set;
69d0206c 347static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 348
0942eeee
TH
349/*
350 * css_set_lock protects the list of css_set objects, and the chain of
351 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 352 * css_task_iter_start().
0942eeee 353 */
817929ec
PM
354static DEFINE_RWLOCK(css_set_lock);
355static int css_set_count;
356
7717f7ba
PM
357/*
358 * hash table for cgroup groups. This improves the performance to find
359 * an existing css_set. This hash doesn't (currently) take into
360 * account cgroups in empty hierarchies.
361 */
472b1053 362#define CSS_SET_HASH_BITS 7
0ac801fe 363static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 364
0ac801fe 365static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 366{
0ac801fe 367 unsigned long key = 0UL;
30159ec7
TH
368 struct cgroup_subsys *ss;
369 int i;
472b1053 370
30159ec7 371 for_each_subsys(ss, i)
0ac801fe
LZ
372 key += (unsigned long)css[i];
373 key = (key >> 16) ^ key;
472b1053 374
0ac801fe 375 return key;
472b1053
LZ
376}
377
0942eeee
TH
378/*
379 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
380 * until after the first call to css_task_iter_start(). This reduces the
381 * fork()/exit() overhead for people who have cgroups compiled into their
382 * kernel but not actually in use.
0942eeee 383 */
8947f9d5 384static int use_task_css_set_links __read_mostly;
817929ec 385
5abb8855 386static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 387{
69d0206c 388 struct cgrp_cset_link *link, *tmp_link;
5abb8855 389
146aa1bd
LJ
390 /*
391 * Ensure that the refcount doesn't hit zero while any readers
392 * can see it. Similar to atomic_dec_and_lock(), but for an
393 * rwlock
394 */
5abb8855 395 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
396 return;
397 write_lock(&css_set_lock);
5abb8855 398 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
399 write_unlock(&css_set_lock);
400 return;
401 }
81a6a5cd 402
2c6ab6d2 403 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 404 hash_del(&cset->hlist);
2c6ab6d2
PM
405 css_set_count--;
406
69d0206c 407 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 408 struct cgroup *cgrp = link->cgrp;
5abb8855 409
69d0206c
TH
410 list_del(&link->cset_link);
411 list_del(&link->cgrp_link);
71b5707e 412
ddd69148 413 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 414 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 415 if (taskexit)
bd89aabc
PM
416 set_bit(CGRP_RELEASABLE, &cgrp->flags);
417 check_for_release(cgrp);
81a6a5cd 418 }
2c6ab6d2
PM
419
420 kfree(link);
81a6a5cd 421 }
2c6ab6d2
PM
422
423 write_unlock(&css_set_lock);
5abb8855 424 kfree_rcu(cset, rcu_head);
b4f48b63
PM
425}
426
817929ec
PM
427/*
428 * refcounted get/put for css_set objects
429 */
5abb8855 430static inline void get_css_set(struct css_set *cset)
817929ec 431{
5abb8855 432 atomic_inc(&cset->refcount);
817929ec
PM
433}
434
5abb8855 435static inline void put_css_set(struct css_set *cset)
817929ec 436{
5abb8855 437 __put_css_set(cset, 0);
817929ec
PM
438}
439
5abb8855 440static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 441{
5abb8855 442 __put_css_set(cset, 1);
81a6a5cd
PM
443}
444
b326f9d0 445/**
7717f7ba 446 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
447 * @cset: candidate css_set being tested
448 * @old_cset: existing css_set for a task
7717f7ba
PM
449 * @new_cgrp: cgroup that's being entered by the task
450 * @template: desired set of css pointers in css_set (pre-calculated)
451 *
6f4b7e63 452 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
453 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
454 */
5abb8855
TH
455static bool compare_css_sets(struct css_set *cset,
456 struct css_set *old_cset,
7717f7ba
PM
457 struct cgroup *new_cgrp,
458 struct cgroup_subsys_state *template[])
459{
460 struct list_head *l1, *l2;
461
5abb8855 462 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
463 /* Not all subsystems matched */
464 return false;
465 }
466
467 /*
468 * Compare cgroup pointers in order to distinguish between
469 * different cgroups in heirarchies with no subsystems. We
470 * could get by with just this check alone (and skip the
471 * memcmp above) but on most setups the memcmp check will
472 * avoid the need for this more expensive check on almost all
473 * candidates.
474 */
475
69d0206c
TH
476 l1 = &cset->cgrp_links;
477 l2 = &old_cset->cgrp_links;
7717f7ba 478 while (1) {
69d0206c 479 struct cgrp_cset_link *link1, *link2;
5abb8855 480 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
481
482 l1 = l1->next;
483 l2 = l2->next;
484 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
485 if (l1 == &cset->cgrp_links) {
486 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
487 break;
488 } else {
69d0206c 489 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
490 }
491 /* Locate the cgroups associated with these links. */
69d0206c
TH
492 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
493 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
494 cgrp1 = link1->cgrp;
495 cgrp2 = link2->cgrp;
7717f7ba 496 /* Hierarchies should be linked in the same order. */
5abb8855 497 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
498
499 /*
500 * If this hierarchy is the hierarchy of the cgroup
501 * that's changing, then we need to check that this
502 * css_set points to the new cgroup; if it's any other
503 * hierarchy, then this css_set should point to the
504 * same cgroup as the old css_set.
505 */
5abb8855
TH
506 if (cgrp1->root == new_cgrp->root) {
507 if (cgrp1 != new_cgrp)
7717f7ba
PM
508 return false;
509 } else {
5abb8855 510 if (cgrp1 != cgrp2)
7717f7ba
PM
511 return false;
512 }
513 }
514 return true;
515}
516
b326f9d0
TH
517/**
518 * find_existing_css_set - init css array and find the matching css_set
519 * @old_cset: the css_set that we're using before the cgroup transition
520 * @cgrp: the cgroup that we're moving into
521 * @template: out param for the new set of csses, should be clear on entry
817929ec 522 */
5abb8855
TH
523static struct css_set *find_existing_css_set(struct css_set *old_cset,
524 struct cgroup *cgrp,
525 struct cgroup_subsys_state *template[])
b4f48b63 526{
bd89aabc 527 struct cgroupfs_root *root = cgrp->root;
30159ec7 528 struct cgroup_subsys *ss;
5abb8855 529 struct css_set *cset;
0ac801fe 530 unsigned long key;
b326f9d0 531 int i;
817929ec 532
aae8aab4
BB
533 /*
534 * Build the set of subsystem state objects that we want to see in the
535 * new css_set. while subsystems can change globally, the entries here
536 * won't change, so no need for locking.
537 */
30159ec7 538 for_each_subsys(ss, i) {
a1a71b45 539 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
540 /* Subsystem is in this hierarchy. So we want
541 * the subsystem state from the new
542 * cgroup */
ca8bdcaf 543 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
544 } else {
545 /* Subsystem is not in this hierarchy, so we
546 * don't want to change the subsystem state */
5abb8855 547 template[i] = old_cset->subsys[i];
817929ec
PM
548 }
549 }
550
0ac801fe 551 key = css_set_hash(template);
5abb8855
TH
552 hash_for_each_possible(css_set_table, cset, hlist, key) {
553 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
554 continue;
555
556 /* This css_set matches what we need */
5abb8855 557 return cset;
472b1053 558 }
817929ec
PM
559
560 /* No existing cgroup group matched */
561 return NULL;
562}
563
69d0206c 564static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 565{
69d0206c 566 struct cgrp_cset_link *link, *tmp_link;
36553434 567
69d0206c
TH
568 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
569 list_del(&link->cset_link);
36553434
LZ
570 kfree(link);
571 }
572}
573
69d0206c
TH
574/**
575 * allocate_cgrp_cset_links - allocate cgrp_cset_links
576 * @count: the number of links to allocate
577 * @tmp_links: list_head the allocated links are put on
578 *
579 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
580 * through ->cset_link. Returns 0 on success or -errno.
817929ec 581 */
69d0206c 582static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 583{
69d0206c 584 struct cgrp_cset_link *link;
817929ec 585 int i;
69d0206c
TH
586
587 INIT_LIST_HEAD(tmp_links);
588
817929ec 589 for (i = 0; i < count; i++) {
f4f4be2b 590 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 591 if (!link) {
69d0206c 592 free_cgrp_cset_links(tmp_links);
817929ec
PM
593 return -ENOMEM;
594 }
69d0206c 595 list_add(&link->cset_link, tmp_links);
817929ec
PM
596 }
597 return 0;
598}
599
c12f65d4
LZ
600/**
601 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 602 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 603 * @cset: the css_set to be linked
c12f65d4
LZ
604 * @cgrp: the destination cgroup
605 */
69d0206c
TH
606static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
607 struct cgroup *cgrp)
c12f65d4 608{
69d0206c 609 struct cgrp_cset_link *link;
c12f65d4 610
69d0206c
TH
611 BUG_ON(list_empty(tmp_links));
612 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
613 link->cset = cset;
7717f7ba 614 link->cgrp = cgrp;
69d0206c 615 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
616 /*
617 * Always add links to the tail of the list so that the list
618 * is sorted by order of hierarchy creation
619 */
69d0206c 620 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
621}
622
b326f9d0
TH
623/**
624 * find_css_set - return a new css_set with one cgroup updated
625 * @old_cset: the baseline css_set
626 * @cgrp: the cgroup to be updated
627 *
628 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
629 * substituted into the appropriate hierarchy.
817929ec 630 */
5abb8855
TH
631static struct css_set *find_css_set(struct css_set *old_cset,
632 struct cgroup *cgrp)
817929ec 633{
b326f9d0 634 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 635 struct css_set *cset;
69d0206c
TH
636 struct list_head tmp_links;
637 struct cgrp_cset_link *link;
0ac801fe 638 unsigned long key;
472b1053 639
b326f9d0
TH
640 lockdep_assert_held(&cgroup_mutex);
641
817929ec
PM
642 /* First see if we already have a cgroup group that matches
643 * the desired set */
7e9abd89 644 read_lock(&css_set_lock);
5abb8855
TH
645 cset = find_existing_css_set(old_cset, cgrp, template);
646 if (cset)
647 get_css_set(cset);
7e9abd89 648 read_unlock(&css_set_lock);
817929ec 649
5abb8855
TH
650 if (cset)
651 return cset;
817929ec 652
f4f4be2b 653 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 654 if (!cset)
817929ec
PM
655 return NULL;
656
69d0206c 657 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 658 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 659 kfree(cset);
817929ec
PM
660 return NULL;
661 }
662
5abb8855 663 atomic_set(&cset->refcount, 1);
69d0206c 664 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
665 INIT_LIST_HEAD(&cset->tasks);
666 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
667
668 /* Copy the set of subsystem state objects generated in
669 * find_existing_css_set() */
5abb8855 670 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
671
672 write_lock(&css_set_lock);
673 /* Add reference counts and links from the new css_set. */
69d0206c 674 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 675 struct cgroup *c = link->cgrp;
69d0206c 676
7717f7ba
PM
677 if (c->root == cgrp->root)
678 c = cgrp;
69d0206c 679 link_css_set(&tmp_links, cset, c);
7717f7ba 680 }
817929ec 681
69d0206c 682 BUG_ON(!list_empty(&tmp_links));
817929ec 683
817929ec 684 css_set_count++;
472b1053
LZ
685
686 /* Add this cgroup group to the hash table */
5abb8855
TH
687 key = css_set_hash(cset->subsys);
688 hash_add(css_set_table, &cset->hlist, key);
472b1053 689
817929ec
PM
690 write_unlock(&css_set_lock);
691
5abb8855 692 return cset;
b4f48b63
PM
693}
694
7717f7ba
PM
695/*
696 * Return the cgroup for "task" from the given hierarchy. Must be
697 * called with cgroup_mutex held.
698 */
699static struct cgroup *task_cgroup_from_root(struct task_struct *task,
700 struct cgroupfs_root *root)
701{
5abb8855 702 struct css_set *cset;
7717f7ba
PM
703 struct cgroup *res = NULL;
704
705 BUG_ON(!mutex_is_locked(&cgroup_mutex));
706 read_lock(&css_set_lock);
707 /*
708 * No need to lock the task - since we hold cgroup_mutex the
709 * task can't change groups, so the only thing that can happen
710 * is that it exits and its css is set back to init_css_set.
711 */
a8ad805c 712 cset = task_css_set(task);
5abb8855 713 if (cset == &init_css_set) {
7717f7ba
PM
714 res = &root->top_cgroup;
715 } else {
69d0206c
TH
716 struct cgrp_cset_link *link;
717
718 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 719 struct cgroup *c = link->cgrp;
69d0206c 720
7717f7ba
PM
721 if (c->root == root) {
722 res = c;
723 break;
724 }
725 }
726 }
727 read_unlock(&css_set_lock);
728 BUG_ON(!res);
729 return res;
730}
731
ddbcc7e8
PM
732/*
733 * There is one global cgroup mutex. We also require taking
734 * task_lock() when dereferencing a task's cgroup subsys pointers.
735 * See "The task_lock() exception", at the end of this comment.
736 *
737 * A task must hold cgroup_mutex to modify cgroups.
738 *
739 * Any task can increment and decrement the count field without lock.
740 * So in general, code holding cgroup_mutex can't rely on the count
741 * field not changing. However, if the count goes to zero, then only
956db3ca 742 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
743 * means that no tasks are currently attached, therefore there is no
744 * way a task attached to that cgroup can fork (the other way to
745 * increment the count). So code holding cgroup_mutex can safely
746 * assume that if the count is zero, it will stay zero. Similarly, if
747 * a task holds cgroup_mutex on a cgroup with zero count, it
748 * knows that the cgroup won't be removed, as cgroup_rmdir()
749 * needs that mutex.
750 *
ddbcc7e8
PM
751 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
752 * (usually) take cgroup_mutex. These are the two most performance
753 * critical pieces of code here. The exception occurs on cgroup_exit(),
754 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
755 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
756 * to the release agent with the name of the cgroup (path relative to
757 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
758 *
759 * A cgroup can only be deleted if both its 'count' of using tasks
760 * is zero, and its list of 'children' cgroups is empty. Since all
761 * tasks in the system use _some_ cgroup, and since there is always at
762 * least one task in the system (init, pid == 1), therefore, top_cgroup
763 * always has either children cgroups and/or using tasks. So we don't
764 * need a special hack to ensure that top_cgroup cannot be deleted.
765 *
766 * The task_lock() exception
767 *
768 * The need for this exception arises from the action of
d0b2fdd2 769 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 770 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
771 * several performance critical places that need to reference
772 * task->cgroup without the expense of grabbing a system global
773 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 774 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
775 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
776 * the task_struct routinely used for such matters.
777 *
778 * P.S. One more locking exception. RCU is used to guard the
956db3ca 779 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
780 */
781
ddbcc7e8
PM
782/*
783 * A couple of forward declarations required, due to cyclic reference loop:
784 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
785 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
786 * -> cgroup_mkdir.
787 */
788
18bb1db3 789static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
ddbcc7e8 790static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 791static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 792static const struct inode_operations cgroup_dir_inode_operations;
828c0950 793static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
794
795static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 796 .name = "cgroup",
e4ad08fe 797 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 798};
ddbcc7e8 799
a5e7ed32 800static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
801{
802 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
803
804 if (inode) {
85fe4025 805 inode->i_ino = get_next_ino();
ddbcc7e8 806 inode->i_mode = mode;
76aac0e9
DH
807 inode->i_uid = current_fsuid();
808 inode->i_gid = current_fsgid();
ddbcc7e8
PM
809 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
810 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
811 }
812 return inode;
813}
814
65dff759
LZ
815static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
816{
817 struct cgroup_name *name;
818
819 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
820 if (!name)
821 return NULL;
822 strcpy(name->name, dentry->d_name.name);
823 return name;
824}
825
be445626
LZ
826static void cgroup_free_fn(struct work_struct *work)
827{
ea15f8cc 828 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
829
830 mutex_lock(&cgroup_mutex);
be445626
LZ
831 cgrp->root->number_of_cgroups--;
832 mutex_unlock(&cgroup_mutex);
833
415cf07a
LZ
834 /*
835 * We get a ref to the parent's dentry, and put the ref when
836 * this cgroup is being freed, so it's guaranteed that the
837 * parent won't be destroyed before its children.
838 */
839 dput(cgrp->parent->dentry);
840
be445626
LZ
841 /*
842 * Drop the active superblock reference that we took when we
cc20e01c
LZ
843 * created the cgroup. This will free cgrp->root, if we are
844 * holding the last reference to @sb.
be445626
LZ
845 */
846 deactivate_super(cgrp->root->sb);
847
b1a21367 848 cgroup_pidlist_destroy_all(cgrp);
be445626
LZ
849
850 simple_xattrs_free(&cgrp->xattrs);
851
65dff759 852 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
853 kfree(cgrp);
854}
855
856static void cgroup_free_rcu(struct rcu_head *head)
857{
858 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
859
ea15f8cc 860 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 861 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
862}
863
ddbcc7e8
PM
864static void cgroup_diput(struct dentry *dentry, struct inode *inode)
865{
866 /* is dentry a directory ? if so, kfree() associated cgroup */
867 if (S_ISDIR(inode->i_mode)) {
bd89aabc 868 struct cgroup *cgrp = dentry->d_fsdata;
be445626 869
54766d4a 870 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 871 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
872 } else {
873 struct cfent *cfe = __d_cfe(dentry);
874 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
875
876 WARN_ONCE(!list_empty(&cfe->node) &&
877 cgrp != &cgrp->root->top_cgroup,
878 "cfe still linked for %s\n", cfe->type->name);
712317ad 879 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 880 kfree(cfe);
ddbcc7e8
PM
881 }
882 iput(inode);
883}
884
885static void remove_dir(struct dentry *d)
886{
887 struct dentry *parent = dget(d->d_parent);
888
889 d_delete(d);
890 simple_rmdir(parent->d_inode, d);
891 dput(parent);
892}
893
2739d3cc 894static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
895{
896 struct cfent *cfe;
897
898 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
899 lockdep_assert_held(&cgroup_mutex);
900
2739d3cc
LZ
901 /*
902 * If we're doing cleanup due to failure of cgroup_create(),
903 * the corresponding @cfe may not exist.
904 */
05ef1d7c
TH
905 list_for_each_entry(cfe, &cgrp->files, node) {
906 struct dentry *d = cfe->dentry;
907
908 if (cft && cfe->type != cft)
909 continue;
910
911 dget(d);
912 d_delete(d);
ce27e317 913 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
914 list_del_init(&cfe->node);
915 dput(d);
916
2739d3cc 917 break;
ddbcc7e8 918 }
05ef1d7c
TH
919}
920
13af07df 921/**
628f7cd4 922 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 923 * @cgrp: target cgroup
13af07df
AR
924 * @subsys_mask: mask of the subsystem ids whose files should be removed
925 */
628f7cd4 926static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 927{
13af07df 928 struct cgroup_subsys *ss;
b420ba7d 929 int i;
05ef1d7c 930
b420ba7d 931 for_each_subsys(ss, i) {
13af07df 932 struct cftype_set *set;
b420ba7d
TH
933
934 if (!test_bit(i, &subsys_mask))
13af07df
AR
935 continue;
936 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 937 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 938 }
ddbcc7e8
PM
939}
940
941/*
942 * NOTE : the dentry must have been dget()'ed
943 */
944static void cgroup_d_remove_dir(struct dentry *dentry)
945{
2fd6b7f5 946 struct dentry *parent;
ddbcc7e8 947
2fd6b7f5
NP
948 parent = dentry->d_parent;
949 spin_lock(&parent->d_lock);
3ec762ad 950 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 951 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
952 spin_unlock(&dentry->d_lock);
953 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
954 remove_dir(dentry);
955}
956
aae8aab4 957/*
cf5d5941
BB
958 * Call with cgroup_mutex held. Drops reference counts on modules, including
959 * any duplicate ones that parse_cgroupfs_options took. If this function
960 * returns an error, no reference counts are touched.
aae8aab4 961 */
ddbcc7e8 962static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 963 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 964{
bd89aabc 965 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 966 struct cgroup_subsys *ss;
1d5be6b2 967 unsigned long pinned = 0;
3126121f 968 int i, ret;
ddbcc7e8 969
aae8aab4 970 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 971 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 972
ddbcc7e8 973 /* Check that any added subsystems are currently free */
30159ec7 974 for_each_subsys(ss, i) {
1d5be6b2 975 if (!(added_mask & (1 << i)))
ddbcc7e8 976 continue;
30159ec7 977
1d5be6b2 978 /* is the subsystem mounted elsewhere? */
9871bf95 979 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
980 ret = -EBUSY;
981 goto out_put;
982 }
983
984 /* pin the module */
985 if (!try_module_get(ss->module)) {
986 ret = -ENOENT;
987 goto out_put;
ddbcc7e8 988 }
1d5be6b2 989 pinned |= 1 << i;
ddbcc7e8
PM
990 }
991
1d5be6b2
TH
992 /* subsys could be missing if unloaded between parsing and here */
993 if (added_mask != pinned) {
994 ret = -ENOENT;
995 goto out_put;
ddbcc7e8
PM
996 }
997
3126121f
TH
998 ret = cgroup_populate_dir(cgrp, added_mask);
999 if (ret)
1d5be6b2 1000 goto out_put;
3126121f
TH
1001
1002 /*
1003 * Nothing can fail from this point on. Remove files for the
1004 * removed subsystems and rebind each subsystem.
1005 */
1006 cgroup_clear_dir(cgrp, removed_mask);
ddbcc7e8 1007
30159ec7 1008 for_each_subsys(ss, i) {
ddbcc7e8 1009 unsigned long bit = 1UL << i;
30159ec7 1010
a1a71b45 1011 if (bit & added_mask) {
ddbcc7e8 1012 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1013 BUG_ON(cgroup_css(cgrp, ss));
1014 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1015 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1016
73e80ed8 1017 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1018 cgroup_css(cgroup_dummy_top, ss));
1019 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1020
33a68ac1 1021 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1022 ss->root = root;
ddbcc7e8 1023 if (ss->bind)
ca8bdcaf 1024 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1025
cf5d5941 1026 /* refcount was already taken, and we're keeping it */
a8a648c4 1027 root->subsys_mask |= bit;
a1a71b45 1028 } else if (bit & removed_mask) {
ddbcc7e8 1029 /* We're removing this subsystem */
ca8bdcaf
TH
1030 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1031 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1032
ddbcc7e8 1033 if (ss->bind)
ca8bdcaf 1034 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1035
ca8bdcaf 1036 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1037 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1038
9871bf95
TH
1039 cgroup_subsys[i]->root = &cgroup_dummy_root;
1040 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1041
cf5d5941
BB
1042 /* subsystem is now free - drop reference on module */
1043 module_put(ss->module);
a8a648c4 1044 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1045 }
1046 }
ddbcc7e8 1047
1672d040
TH
1048 /*
1049 * Mark @root has finished binding subsystems. @root->subsys_mask
1050 * now matches the bound subsystems.
1051 */
1052 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1053
ddbcc7e8 1054 return 0;
1d5be6b2
TH
1055
1056out_put:
1057 for_each_subsys(ss, i)
1058 if (pinned & (1 << i))
1059 module_put(ss->module);
1060 return ret;
ddbcc7e8
PM
1061}
1062
34c80b1d 1063static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1064{
34c80b1d 1065 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1066 struct cgroup_subsys *ss;
1067
e25e2cbb 1068 mutex_lock(&cgroup_root_mutex);
5549c497 1069 for_each_root_subsys(root, ss)
ddbcc7e8 1070 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1071 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1072 seq_puts(seq, ",sane_behavior");
93438629 1073 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1074 seq_puts(seq, ",noprefix");
93438629 1075 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1076 seq_puts(seq, ",xattr");
81a6a5cd
PM
1077 if (strlen(root->release_agent_path))
1078 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1079 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1080 seq_puts(seq, ",clone_children");
c6d57f33
PM
1081 if (strlen(root->name))
1082 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1083 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1084 return 0;
1085}
1086
1087struct cgroup_sb_opts {
a1a71b45 1088 unsigned long subsys_mask;
ddbcc7e8 1089 unsigned long flags;
81a6a5cd 1090 char *release_agent;
2260e7fc 1091 bool cpuset_clone_children;
c6d57f33 1092 char *name;
2c6ab6d2
PM
1093 /* User explicitly requested empty subsystem */
1094 bool none;
c6d57f33
PM
1095
1096 struct cgroupfs_root *new_root;
2c6ab6d2 1097
ddbcc7e8
PM
1098};
1099
aae8aab4 1100/*
9871bf95
TH
1101 * Convert a hierarchy specifier into a bitmask of subsystems and
1102 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1103 * array. This function takes refcounts on subsystems to be used, unless it
1104 * returns error, in which case no refcounts are taken.
aae8aab4 1105 */
cf5d5941 1106static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1107{
32a8cf23
DL
1108 char *token, *o = data;
1109 bool all_ss = false, one_ss = false;
f9ab5b5b 1110 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1111 struct cgroup_subsys *ss;
1112 int i;
f9ab5b5b 1113
aae8aab4
BB
1114 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1115
f9ab5b5b
LZ
1116#ifdef CONFIG_CPUSETS
1117 mask = ~(1UL << cpuset_subsys_id);
1118#endif
ddbcc7e8 1119
c6d57f33 1120 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1121
1122 while ((token = strsep(&o, ",")) != NULL) {
1123 if (!*token)
1124 return -EINVAL;
32a8cf23 1125 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1126 /* Explicitly have no subsystems */
1127 opts->none = true;
32a8cf23
DL
1128 continue;
1129 }
1130 if (!strcmp(token, "all")) {
1131 /* Mutually exclusive option 'all' + subsystem name */
1132 if (one_ss)
1133 return -EINVAL;
1134 all_ss = true;
1135 continue;
1136 }
873fe09e
TH
1137 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1138 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1139 continue;
1140 }
32a8cf23 1141 if (!strcmp(token, "noprefix")) {
93438629 1142 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1143 continue;
1144 }
1145 if (!strcmp(token, "clone_children")) {
2260e7fc 1146 opts->cpuset_clone_children = true;
32a8cf23
DL
1147 continue;
1148 }
03b1cde6 1149 if (!strcmp(token, "xattr")) {
93438629 1150 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1151 continue;
1152 }
32a8cf23 1153 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1154 /* Specifying two release agents is forbidden */
1155 if (opts->release_agent)
1156 return -EINVAL;
c6d57f33 1157 opts->release_agent =
e400c285 1158 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1159 if (!opts->release_agent)
1160 return -ENOMEM;
32a8cf23
DL
1161 continue;
1162 }
1163 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1164 const char *name = token + 5;
1165 /* Can't specify an empty name */
1166 if (!strlen(name))
1167 return -EINVAL;
1168 /* Must match [\w.-]+ */
1169 for (i = 0; i < strlen(name); i++) {
1170 char c = name[i];
1171 if (isalnum(c))
1172 continue;
1173 if ((c == '.') || (c == '-') || (c == '_'))
1174 continue;
1175 return -EINVAL;
1176 }
1177 /* Specifying two names is forbidden */
1178 if (opts->name)
1179 return -EINVAL;
1180 opts->name = kstrndup(name,
e400c285 1181 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1182 GFP_KERNEL);
1183 if (!opts->name)
1184 return -ENOMEM;
32a8cf23
DL
1185
1186 continue;
1187 }
1188
30159ec7 1189 for_each_subsys(ss, i) {
32a8cf23
DL
1190 if (strcmp(token, ss->name))
1191 continue;
1192 if (ss->disabled)
1193 continue;
1194
1195 /* Mutually exclusive option 'all' + subsystem name */
1196 if (all_ss)
1197 return -EINVAL;
a1a71b45 1198 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1199 one_ss = true;
1200
1201 break;
1202 }
1203 if (i == CGROUP_SUBSYS_COUNT)
1204 return -ENOENT;
1205 }
1206
1207 /*
1208 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1209 * otherwise if 'none', 'name=' and a subsystem name options
1210 * were not specified, let's default to 'all'
32a8cf23 1211 */
30159ec7
TH
1212 if (all_ss || (!one_ss && !opts->none && !opts->name))
1213 for_each_subsys(ss, i)
1214 if (!ss->disabled)
1215 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1216
2c6ab6d2
PM
1217 /* Consistency checks */
1218
873fe09e
TH
1219 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1220 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1221
1222 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1223 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1224 return -EINVAL;
1225 }
1226
1227 if (opts->cpuset_clone_children) {
1228 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1229 return -EINVAL;
1230 }
1231 }
1232
f9ab5b5b
LZ
1233 /*
1234 * Option noprefix was introduced just for backward compatibility
1235 * with the old cpuset, so we allow noprefix only if mounting just
1236 * the cpuset subsystem.
1237 */
93438629 1238 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1239 return -EINVAL;
1240
2c6ab6d2
PM
1241
1242 /* Can't specify "none" and some subsystems */
a1a71b45 1243 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1244 return -EINVAL;
1245
1246 /*
1247 * We either have to specify by name or by subsystems. (So all
1248 * empty hierarchies must have a name).
1249 */
a1a71b45 1250 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1251 return -EINVAL;
1252
1253 return 0;
1254}
1255
1256static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1257{
1258 int ret = 0;
1259 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1260 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1261 struct cgroup_sb_opts opts;
a1a71b45 1262 unsigned long added_mask, removed_mask;
ddbcc7e8 1263
873fe09e
TH
1264 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1265 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1266 return -EINVAL;
1267 }
1268
bd89aabc 1269 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1270 mutex_lock(&cgroup_mutex);
e25e2cbb 1271 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1272
1273 /* See what subsystems are wanted */
1274 ret = parse_cgroupfs_options(data, &opts);
1275 if (ret)
1276 goto out_unlock;
1277
a8a648c4 1278 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1279 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1280 task_tgid_nr(current), current->comm);
1281
a1a71b45
AR
1282 added_mask = opts.subsys_mask & ~root->subsys_mask;
1283 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1284
cf5d5941 1285 /* Don't allow flags or name to change at remount */
0ce6cba3 1286 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1287 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1288 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1289 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1290 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1291 ret = -EINVAL;
1292 goto out_unlock;
1293 }
1294
f172e67c
TH
1295 /* remounting is not allowed for populated hierarchies */
1296 if (root->number_of_cgroups > 1) {
1297 ret = -EBUSY;
0670e08b 1298 goto out_unlock;
cf5d5941 1299 }
ddbcc7e8 1300
a8a648c4 1301 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1302 if (ret)
0670e08b 1303 goto out_unlock;
ddbcc7e8 1304
81a6a5cd
PM
1305 if (opts.release_agent)
1306 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1307 out_unlock:
66bdc9cf 1308 kfree(opts.release_agent);
c6d57f33 1309 kfree(opts.name);
e25e2cbb 1310 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1311 mutex_unlock(&cgroup_mutex);
bd89aabc 1312 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1313 return ret;
1314}
1315
b87221de 1316static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1317 .statfs = simple_statfs,
1318 .drop_inode = generic_delete_inode,
1319 .show_options = cgroup_show_options,
1320 .remount_fs = cgroup_remount,
1321};
1322
cc31edce
PM
1323static void init_cgroup_housekeeping(struct cgroup *cgrp)
1324{
1325 INIT_LIST_HEAD(&cgrp->sibling);
1326 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1327 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1328 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1329 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1330 INIT_LIST_HEAD(&cgrp->pidlists);
1331 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1332 cgrp->dummy_css.cgroup = cgrp;
03b1cde6 1333 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1334}
c6d57f33 1335
ddbcc7e8
PM
1336static void init_cgroup_root(struct cgroupfs_root *root)
1337{
bd89aabc 1338 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1339
ddbcc7e8
PM
1340 INIT_LIST_HEAD(&root->subsys_list);
1341 INIT_LIST_HEAD(&root->root_list);
1342 root->number_of_cgroups = 1;
bd89aabc 1343 cgrp->root = root;
a4ea1cc9 1344 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1345 init_cgroup_housekeeping(cgrp);
4e96ee8e 1346 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1347}
1348
fc76df70 1349static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1350{
1a574231 1351 int id;
2c6ab6d2 1352
54e7b4eb
TH
1353 lockdep_assert_held(&cgroup_mutex);
1354 lockdep_assert_held(&cgroup_root_mutex);
1355
fc76df70
TH
1356 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1357 GFP_KERNEL);
1a574231
TH
1358 if (id < 0)
1359 return id;
1360
1361 root->hierarchy_id = id;
fa3ca07e
TH
1362 return 0;
1363}
1364
1365static void cgroup_exit_root_id(struct cgroupfs_root *root)
1366{
54e7b4eb
TH
1367 lockdep_assert_held(&cgroup_mutex);
1368 lockdep_assert_held(&cgroup_root_mutex);
1369
fa3ca07e 1370 if (root->hierarchy_id) {
1a574231 1371 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1372 root->hierarchy_id = 0;
1373 }
2c6ab6d2
PM
1374}
1375
ddbcc7e8
PM
1376static int cgroup_test_super(struct super_block *sb, void *data)
1377{
c6d57f33 1378 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1379 struct cgroupfs_root *root = sb->s_fs_info;
1380
c6d57f33
PM
1381 /* If we asked for a name then it must match */
1382 if (opts->name && strcmp(opts->name, root->name))
1383 return 0;
ddbcc7e8 1384
2c6ab6d2
PM
1385 /*
1386 * If we asked for subsystems (or explicitly for no
1387 * subsystems) then they must match
1388 */
a1a71b45
AR
1389 if ((opts->subsys_mask || opts->none)
1390 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1391 return 0;
1392
1393 return 1;
1394}
1395
c6d57f33
PM
1396static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1397{
1398 struct cgroupfs_root *root;
1399
a1a71b45 1400 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1401 return NULL;
1402
1403 root = kzalloc(sizeof(*root), GFP_KERNEL);
1404 if (!root)
1405 return ERR_PTR(-ENOMEM);
1406
1407 init_cgroup_root(root);
2c6ab6d2 1408
1672d040
TH
1409 /*
1410 * We need to set @root->subsys_mask now so that @root can be
1411 * matched by cgroup_test_super() before it finishes
1412 * initialization; otherwise, competing mounts with the same
1413 * options may try to bind the same subsystems instead of waiting
1414 * for the first one leading to unexpected mount errors.
1415 * SUBSYS_BOUND will be set once actual binding is complete.
1416 */
a1a71b45 1417 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
2260e7fc
TH
1423 if (opts->cpuset_clone_children)
1424 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1425 return root;
1426}
1427
fa3ca07e 1428static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1429{
fa3ca07e
TH
1430 if (root) {
1431 /* hierarhcy ID shoulid already have been released */
1432 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1433
4e96ee8e 1434 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1435 kfree(root);
1436 }
2c6ab6d2
PM
1437}
1438
ddbcc7e8
PM
1439static int cgroup_set_super(struct super_block *sb, void *data)
1440{
1441 int ret;
c6d57f33
PM
1442 struct cgroup_sb_opts *opts = data;
1443
1444 /* If we don't have a new root, we can't set up a new sb */
1445 if (!opts->new_root)
1446 return -EINVAL;
1447
a1a71b45 1448 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1449
1450 ret = set_anon_super(sb, NULL);
1451 if (ret)
1452 return ret;
1453
c6d57f33
PM
1454 sb->s_fs_info = opts->new_root;
1455 opts->new_root->sb = sb;
ddbcc7e8
PM
1456
1457 sb->s_blocksize = PAGE_CACHE_SIZE;
1458 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1459 sb->s_magic = CGROUP_SUPER_MAGIC;
1460 sb->s_op = &cgroup_ops;
1461
1462 return 0;
1463}
1464
1465static int cgroup_get_rootdir(struct super_block *sb)
1466{
0df6a63f
AV
1467 static const struct dentry_operations cgroup_dops = {
1468 .d_iput = cgroup_diput,
b26d4cd3 1469 .d_delete = always_delete_dentry,
0df6a63f
AV
1470 };
1471
ddbcc7e8
PM
1472 struct inode *inode =
1473 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1474
1475 if (!inode)
1476 return -ENOMEM;
1477
ddbcc7e8
PM
1478 inode->i_fop = &simple_dir_operations;
1479 inode->i_op = &cgroup_dir_inode_operations;
1480 /* directories start off with i_nlink == 2 (for "." entry) */
1481 inc_nlink(inode);
48fde701
AV
1482 sb->s_root = d_make_root(inode);
1483 if (!sb->s_root)
ddbcc7e8 1484 return -ENOMEM;
0df6a63f
AV
1485 /* for everything else we want ->d_op set */
1486 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1487 return 0;
1488}
1489
f7e83571 1490static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1491 int flags, const char *unused_dev_name,
f7e83571 1492 void *data)
ddbcc7e8
PM
1493{
1494 struct cgroup_sb_opts opts;
c6d57f33 1495 struct cgroupfs_root *root;
ddbcc7e8
PM
1496 int ret = 0;
1497 struct super_block *sb;
c6d57f33 1498 struct cgroupfs_root *new_root;
3126121f 1499 struct list_head tmp_links;
e25e2cbb 1500 struct inode *inode;
3126121f 1501 const struct cred *cred;
ddbcc7e8
PM
1502
1503 /* First find the desired set of subsystems */
aae8aab4 1504 mutex_lock(&cgroup_mutex);
ddbcc7e8 1505 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1506 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1507 if (ret)
1508 goto out_err;
ddbcc7e8 1509
c6d57f33
PM
1510 /*
1511 * Allocate a new cgroup root. We may not need it if we're
1512 * reusing an existing hierarchy.
1513 */
1514 new_root = cgroup_root_from_opts(&opts);
1515 if (IS_ERR(new_root)) {
1516 ret = PTR_ERR(new_root);
1d5be6b2 1517 goto out_err;
81a6a5cd 1518 }
c6d57f33 1519 opts.new_root = new_root;
ddbcc7e8 1520
c6d57f33 1521 /* Locate an existing or new sb for this hierarchy */
9249e17f 1522 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1523 if (IS_ERR(sb)) {
c6d57f33 1524 ret = PTR_ERR(sb);
fa3ca07e 1525 cgroup_free_root(opts.new_root);
1d5be6b2 1526 goto out_err;
ddbcc7e8
PM
1527 }
1528
c6d57f33
PM
1529 root = sb->s_fs_info;
1530 BUG_ON(!root);
1531 if (root == opts.new_root) {
1532 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1533 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1534 struct cgroupfs_root *existing_root;
28fd5dfc 1535 int i;
5abb8855 1536 struct css_set *cset;
ddbcc7e8
PM
1537
1538 BUG_ON(sb->s_root != NULL);
1539
1540 ret = cgroup_get_rootdir(sb);
1541 if (ret)
1542 goto drop_new_super;
817929ec 1543 inode = sb->s_root->d_inode;
ddbcc7e8 1544
817929ec 1545 mutex_lock(&inode->i_mutex);
ddbcc7e8 1546 mutex_lock(&cgroup_mutex);
e25e2cbb 1547 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1548
4e96ee8e
LZ
1549 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1550 0, 1, GFP_KERNEL);
1551 if (root_cgrp->id < 0)
1552 goto unlock_drop;
1553
e25e2cbb
TH
1554 /* Check for name clashes with existing mounts */
1555 ret = -EBUSY;
1556 if (strlen(root->name))
1557 for_each_active_root(existing_root)
1558 if (!strcmp(existing_root->name, root->name))
1559 goto unlock_drop;
c6d57f33 1560
817929ec
PM
1561 /*
1562 * We're accessing css_set_count without locking
1563 * css_set_lock here, but that's OK - it can only be
1564 * increased by someone holding cgroup_lock, and
1565 * that's us. The worst that can happen is that we
1566 * have some link structures left over
1567 */
69d0206c 1568 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1569 if (ret)
1570 goto unlock_drop;
817929ec 1571
fc76df70
TH
1572 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1573 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1574 if (ret)
1575 goto unlock_drop;
1576
3126121f
TH
1577 sb->s_root->d_fsdata = root_cgrp;
1578 root_cgrp->dentry = sb->s_root;
1579
1580 /*
1581 * We're inside get_sb() and will call lookup_one_len() to
1582 * create the root files, which doesn't work if SELinux is
1583 * in use. The following cred dancing somehow works around
1584 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1585 * populating new cgroupfs mount") for more details.
1586 */
1587 cred = override_creds(&init_cred);
1588
2bb566cb 1589 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1590 if (ret)
1591 goto rm_base_files;
1592
a8a648c4 1593 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1594 if (ret)
1595 goto rm_base_files;
1596
1597 revert_creds(cred);
1598
cf5d5941
BB
1599 /*
1600 * There must be no failure case after here, since rebinding
1601 * takes care of subsystems' refcounts, which are explicitly
1602 * dropped in the failure exit path.
1603 */
ddbcc7e8 1604
9871bf95
TH
1605 list_add(&root->root_list, &cgroup_roots);
1606 cgroup_root_count++;
ddbcc7e8 1607
817929ec
PM
1608 /* Link the top cgroup in this hierarchy into all
1609 * the css_set objects */
1610 write_lock(&css_set_lock);
5abb8855 1611 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1612 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1613 write_unlock(&css_set_lock);
1614
69d0206c 1615 free_cgrp_cset_links(&tmp_links);
817929ec 1616
c12f65d4 1617 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1618 BUG_ON(root->number_of_cgroups != 1);
1619
e25e2cbb 1620 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1621 mutex_unlock(&cgroup_mutex);
34f77a90 1622 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1623 } else {
1624 /*
1625 * We re-used an existing hierarchy - the new root (if
1626 * any) is not needed
1627 */
fa3ca07e 1628 cgroup_free_root(opts.new_root);
873fe09e 1629
c7ba8287 1630 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1631 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1632 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1633 ret = -EINVAL;
1634 goto drop_new_super;
1635 } else {
1636 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1637 }
873fe09e 1638 }
ddbcc7e8
PM
1639 }
1640
c6d57f33
PM
1641 kfree(opts.release_agent);
1642 kfree(opts.name);
f7e83571 1643 return dget(sb->s_root);
ddbcc7e8 1644
3126121f
TH
1645 rm_base_files:
1646 free_cgrp_cset_links(&tmp_links);
2bb566cb 1647 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1648 revert_creds(cred);
e25e2cbb 1649 unlock_drop:
fa3ca07e 1650 cgroup_exit_root_id(root);
e25e2cbb
TH
1651 mutex_unlock(&cgroup_root_mutex);
1652 mutex_unlock(&cgroup_mutex);
1653 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1654 drop_new_super:
6f5bbff9 1655 deactivate_locked_super(sb);
c6d57f33
PM
1656 out_err:
1657 kfree(opts.release_agent);
1658 kfree(opts.name);
f7e83571 1659 return ERR_PTR(ret);
ddbcc7e8
PM
1660}
1661
1662static void cgroup_kill_sb(struct super_block *sb) {
1663 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1664 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1665 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1666 int ret;
1667
1668 BUG_ON(!root);
1669
1670 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1671 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1672
3126121f 1673 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1674 mutex_lock(&cgroup_mutex);
e25e2cbb 1675 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1676
1677 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1678 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1679 ret = rebind_subsystems(root, 0, root->subsys_mask);
1680 /* Shouldn't be able to fail ... */
1681 BUG_ON(ret);
1682 }
ddbcc7e8 1683
817929ec 1684 /*
69d0206c 1685 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1686 * root cgroup
1687 */
1688 write_lock(&css_set_lock);
71cbb949 1689
69d0206c
TH
1690 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1691 list_del(&link->cset_link);
1692 list_del(&link->cgrp_link);
817929ec
PM
1693 kfree(link);
1694 }
1695 write_unlock(&css_set_lock);
1696
839ec545
PM
1697 if (!list_empty(&root->root_list)) {
1698 list_del(&root->root_list);
9871bf95 1699 cgroup_root_count--;
839ec545 1700 }
e5f6a860 1701
fa3ca07e
TH
1702 cgroup_exit_root_id(root);
1703
e25e2cbb 1704 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1705 mutex_unlock(&cgroup_mutex);
3126121f 1706 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1707
03b1cde6
AR
1708 simple_xattrs_free(&cgrp->xattrs);
1709
ddbcc7e8 1710 kill_litter_super(sb);
fa3ca07e 1711 cgroup_free_root(root);
ddbcc7e8
PM
1712}
1713
1714static struct file_system_type cgroup_fs_type = {
1715 .name = "cgroup",
f7e83571 1716 .mount = cgroup_mount,
ddbcc7e8
PM
1717 .kill_sb = cgroup_kill_sb,
1718};
1719
676db4af
GK
1720static struct kobject *cgroup_kobj;
1721
a043e3b2
LZ
1722/**
1723 * cgroup_path - generate the path of a cgroup
1724 * @cgrp: the cgroup in question
1725 * @buf: the buffer to write the path into
1726 * @buflen: the length of the buffer
1727 *
65dff759
LZ
1728 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1729 *
1730 * We can't generate cgroup path using dentry->d_name, as accessing
1731 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1732 * inode's i_mutex, while on the other hand cgroup_path() can be called
1733 * with some irq-safe spinlocks held.
ddbcc7e8 1734 */
bd89aabc 1735int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1736{
65dff759 1737 int ret = -ENAMETOOLONG;
ddbcc7e8 1738 char *start;
febfcef6 1739
da1f296f
TH
1740 if (!cgrp->parent) {
1741 if (strlcpy(buf, "/", buflen) >= buflen)
1742 return -ENAMETOOLONG;
ddbcc7e8
PM
1743 return 0;
1744 }
1745
316eb661 1746 start = buf + buflen - 1;
316eb661 1747 *start = '\0';
9a9686b6 1748
65dff759 1749 rcu_read_lock();
da1f296f 1750 do {
65dff759
LZ
1751 const char *name = cgroup_name(cgrp);
1752 int len;
1753
1754 len = strlen(name);
ddbcc7e8 1755 if ((start -= len) < buf)
65dff759
LZ
1756 goto out;
1757 memcpy(start, name, len);
9a9686b6 1758
ddbcc7e8 1759 if (--start < buf)
65dff759 1760 goto out;
ddbcc7e8 1761 *start = '/';
65dff759
LZ
1762
1763 cgrp = cgrp->parent;
da1f296f 1764 } while (cgrp->parent);
65dff759 1765 ret = 0;
ddbcc7e8 1766 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1767out:
1768 rcu_read_unlock();
1769 return ret;
ddbcc7e8 1770}
67523c48 1771EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1772
857a2beb 1773/**
913ffdb5 1774 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1775 * @task: target task
857a2beb
TH
1776 * @buf: the buffer to write the path into
1777 * @buflen: the length of the buffer
1778 *
913ffdb5
TH
1779 * Determine @task's cgroup on the first (the one with the lowest non-zero
1780 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1781 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1782 * cgroup controller callbacks.
1783 *
1784 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1785 */
913ffdb5 1786int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1787{
1788 struct cgroupfs_root *root;
913ffdb5
TH
1789 struct cgroup *cgrp;
1790 int hierarchy_id = 1, ret = 0;
1791
1792 if (buflen < 2)
1793 return -ENAMETOOLONG;
857a2beb
TH
1794
1795 mutex_lock(&cgroup_mutex);
1796
913ffdb5
TH
1797 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1798
857a2beb
TH
1799 if (root) {
1800 cgrp = task_cgroup_from_root(task, root);
1801 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1802 } else {
1803 /* if no hierarchy exists, everyone is in "/" */
1804 memcpy(buf, "/", 2);
857a2beb
TH
1805 }
1806
1807 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1808 return ret;
1809}
913ffdb5 1810EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1811
2f7ee569
TH
1812/*
1813 * Control Group taskset
1814 */
134d3373
TH
1815struct task_and_cgroup {
1816 struct task_struct *task;
1817 struct cgroup *cgrp;
6f4b7e63 1818 struct css_set *cset;
134d3373
TH
1819};
1820
2f7ee569
TH
1821struct cgroup_taskset {
1822 struct task_and_cgroup single;
1823 struct flex_array *tc_array;
1824 int tc_array_len;
1825 int idx;
1826 struct cgroup *cur_cgrp;
1827};
1828
1829/**
1830 * cgroup_taskset_first - reset taskset and return the first task
1831 * @tset: taskset of interest
1832 *
1833 * @tset iteration is initialized and the first task is returned.
1834 */
1835struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1836{
1837 if (tset->tc_array) {
1838 tset->idx = 0;
1839 return cgroup_taskset_next(tset);
1840 } else {
1841 tset->cur_cgrp = tset->single.cgrp;
1842 return tset->single.task;
1843 }
1844}
1845EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1846
1847/**
1848 * cgroup_taskset_next - iterate to the next task in taskset
1849 * @tset: taskset of interest
1850 *
1851 * Return the next task in @tset. Iteration must have been initialized
1852 * with cgroup_taskset_first().
1853 */
1854struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1855{
1856 struct task_and_cgroup *tc;
1857
1858 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1859 return NULL;
1860
1861 tc = flex_array_get(tset->tc_array, tset->idx++);
1862 tset->cur_cgrp = tc->cgrp;
1863 return tc->task;
1864}
1865EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1866
1867/**
d99c8727 1868 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1869 * @tset: taskset of interest
d99c8727 1870 * @subsys_id: the ID of the target subsystem
2f7ee569 1871 *
d99c8727
TH
1872 * Return the css for the current (last returned) task of @tset for
1873 * subsystem specified by @subsys_id. This function must be preceded by
1874 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1875 */
d99c8727
TH
1876struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1877 int subsys_id)
2f7ee569 1878{
ca8bdcaf 1879 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1880}
d99c8727 1881EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1882
1883/**
1884 * cgroup_taskset_size - return the number of tasks in taskset
1885 * @tset: taskset of interest
1886 */
1887int cgroup_taskset_size(struct cgroup_taskset *tset)
1888{
1889 return tset->tc_array ? tset->tc_array_len : 1;
1890}
1891EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1892
1893
74a1166d
BB
1894/*
1895 * cgroup_task_migrate - move a task from one cgroup to another.
1896 *
d0b2fdd2 1897 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1898 */
5abb8855
TH
1899static void cgroup_task_migrate(struct cgroup *old_cgrp,
1900 struct task_struct *tsk,
1901 struct css_set *new_cset)
74a1166d 1902{
5abb8855 1903 struct css_set *old_cset;
74a1166d
BB
1904
1905 /*
026085ef
MSB
1906 * We are synchronized through threadgroup_lock() against PF_EXITING
1907 * setting such that we can't race against cgroup_exit() changing the
1908 * css_set to init_css_set and dropping the old one.
74a1166d 1909 */
c84cdf75 1910 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1911 old_cset = task_css_set(tsk);
74a1166d 1912
74a1166d 1913 task_lock(tsk);
5abb8855 1914 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1915 task_unlock(tsk);
1916
1917 /* Update the css_set linked lists if we're using them */
1918 write_lock(&css_set_lock);
1919 if (!list_empty(&tsk->cg_list))
5abb8855 1920 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1921 write_unlock(&css_set_lock);
1922
1923 /*
5abb8855
TH
1924 * We just gained a reference on old_cset by taking it from the
1925 * task. As trading it for new_cset is protected by cgroup_mutex,
1926 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1927 */
5abb8855
TH
1928 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1929 put_css_set(old_cset);
74a1166d
BB
1930}
1931
a043e3b2 1932/**
081aa458 1933 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1934 * @cgrp: the cgroup to attach to
081aa458
LZ
1935 * @tsk: the task or the leader of the threadgroup to be attached
1936 * @threadgroup: attach the whole threadgroup?
74a1166d 1937 *
257058ae 1938 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1939 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1940 */
47cfcd09
TH
1941static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1942 bool threadgroup)
74a1166d
BB
1943{
1944 int retval, i, group_size;
1945 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1946 struct cgroupfs_root *root = cgrp->root;
1947 /* threadgroup list cursor and array */
081aa458 1948 struct task_struct *leader = tsk;
134d3373 1949 struct task_and_cgroup *tc;
d846687d 1950 struct flex_array *group;
2f7ee569 1951 struct cgroup_taskset tset = { };
74a1166d
BB
1952
1953 /*
1954 * step 0: in order to do expensive, possibly blocking operations for
1955 * every thread, we cannot iterate the thread group list, since it needs
1956 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1957 * group - group_rwsem prevents new threads from appearing, and if
1958 * threads exit, this will just be an over-estimate.
74a1166d 1959 */
081aa458
LZ
1960 if (threadgroup)
1961 group_size = get_nr_threads(tsk);
1962 else
1963 group_size = 1;
d846687d 1964 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1965 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1966 if (!group)
1967 return -ENOMEM;
d846687d 1968 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1969 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1970 if (retval)
1971 goto out_free_group_list;
74a1166d 1972
74a1166d 1973 i = 0;
fb5d2b4c
MSB
1974 /*
1975 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1976 * already PF_EXITING could be freed from underneath us unless we
1977 * take an rcu_read_lock.
1978 */
1979 rcu_read_lock();
74a1166d 1980 do {
134d3373
TH
1981 struct task_and_cgroup ent;
1982
cd3d0952
TH
1983 /* @tsk either already exited or can't exit until the end */
1984 if (tsk->flags & PF_EXITING)
ea84753c 1985 goto next;
cd3d0952 1986
74a1166d
BB
1987 /* as per above, nr_threads may decrease, but not increase. */
1988 BUG_ON(i >= group_size);
134d3373
TH
1989 ent.task = tsk;
1990 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1991 /* nothing to do if this task is already in the cgroup */
1992 if (ent.cgrp == cgrp)
ea84753c 1993 goto next;
61d1d219
MSB
1994 /*
1995 * saying GFP_ATOMIC has no effect here because we did prealloc
1996 * earlier, but it's good form to communicate our expectations.
1997 */
134d3373 1998 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1999 BUG_ON(retval != 0);
74a1166d 2000 i++;
ea84753c 2001 next:
081aa458
LZ
2002 if (!threadgroup)
2003 break;
74a1166d 2004 } while_each_thread(leader, tsk);
fb5d2b4c 2005 rcu_read_unlock();
74a1166d
BB
2006 /* remember the number of threads in the array for later. */
2007 group_size = i;
2f7ee569
TH
2008 tset.tc_array = group;
2009 tset.tc_array_len = group_size;
74a1166d 2010
134d3373
TH
2011 /* methods shouldn't be called if no task is actually migrating */
2012 retval = 0;
892a2b90 2013 if (!group_size)
b07ef774 2014 goto out_free_group_list;
134d3373 2015
74a1166d
BB
2016 /*
2017 * step 1: check that we can legitimately attach to the cgroup.
2018 */
5549c497 2019 for_each_root_subsys(root, ss) {
ca8bdcaf 2020 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
eb95419b 2021
74a1166d 2022 if (ss->can_attach) {
eb95419b 2023 retval = ss->can_attach(css, &tset);
74a1166d
BB
2024 if (retval) {
2025 failed_ss = ss;
2026 goto out_cancel_attach;
2027 }
2028 }
74a1166d
BB
2029 }
2030
2031 /*
2032 * step 2: make sure css_sets exist for all threads to be migrated.
2033 * we use find_css_set, which allocates a new one if necessary.
2034 */
74a1166d 2035 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2036 struct css_set *old_cset;
2037
134d3373 2038 tc = flex_array_get(group, i);
a8ad805c 2039 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2040 tc->cset = find_css_set(old_cset, cgrp);
2041 if (!tc->cset) {
61d1d219
MSB
2042 retval = -ENOMEM;
2043 goto out_put_css_set_refs;
74a1166d
BB
2044 }
2045 }
2046
2047 /*
494c167c
TH
2048 * step 3: now that we're guaranteed success wrt the css_sets,
2049 * proceed to move all tasks to the new cgroup. There are no
2050 * failure cases after here, so this is the commit point.
74a1166d 2051 */
74a1166d 2052 for (i = 0; i < group_size; i++) {
134d3373 2053 tc = flex_array_get(group, i);
6f4b7e63 2054 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2055 }
2056 /* nothing is sensitive to fork() after this point. */
2057
2058 /*
494c167c 2059 * step 4: do subsystem attach callbacks.
74a1166d 2060 */
5549c497 2061 for_each_root_subsys(root, ss) {
ca8bdcaf 2062 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
eb95419b 2063
74a1166d 2064 if (ss->attach)
eb95419b 2065 ss->attach(css, &tset);
74a1166d
BB
2066 }
2067
2068 /*
2069 * step 5: success! and cleanup
2070 */
74a1166d 2071 retval = 0;
61d1d219
MSB
2072out_put_css_set_refs:
2073 if (retval) {
2074 for (i = 0; i < group_size; i++) {
2075 tc = flex_array_get(group, i);
6f4b7e63 2076 if (!tc->cset)
61d1d219 2077 break;
6f4b7e63 2078 put_css_set(tc->cset);
61d1d219 2079 }
74a1166d
BB
2080 }
2081out_cancel_attach:
74a1166d 2082 if (retval) {
5549c497 2083 for_each_root_subsys(root, ss) {
ca8bdcaf 2084 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss);
eb95419b 2085
494c167c 2086 if (ss == failed_ss)
74a1166d 2087 break;
74a1166d 2088 if (ss->cancel_attach)
eb95419b 2089 ss->cancel_attach(css, &tset);
74a1166d
BB
2090 }
2091 }
74a1166d 2092out_free_group_list:
d846687d 2093 flex_array_free(group);
74a1166d
BB
2094 return retval;
2095}
2096
2097/*
2098 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2099 * function to attach either it or all tasks in its threadgroup. Will lock
2100 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2101 */
74a1166d 2102static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2103{
bbcb81d0 2104 struct task_struct *tsk;
c69e8d9c 2105 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2106 int ret;
2107
74a1166d
BB
2108 if (!cgroup_lock_live_group(cgrp))
2109 return -ENODEV;
2110
b78949eb
MSB
2111retry_find_task:
2112 rcu_read_lock();
bbcb81d0 2113 if (pid) {
73507f33 2114 tsk = find_task_by_vpid(pid);
74a1166d
BB
2115 if (!tsk) {
2116 rcu_read_unlock();
b78949eb
MSB
2117 ret= -ESRCH;
2118 goto out_unlock_cgroup;
bbcb81d0 2119 }
74a1166d
BB
2120 /*
2121 * even if we're attaching all tasks in the thread group, we
2122 * only need to check permissions on one of them.
2123 */
c69e8d9c 2124 tcred = __task_cred(tsk);
14a590c3
EB
2125 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2126 !uid_eq(cred->euid, tcred->uid) &&
2127 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2128 rcu_read_unlock();
b78949eb
MSB
2129 ret = -EACCES;
2130 goto out_unlock_cgroup;
bbcb81d0 2131 }
b78949eb
MSB
2132 } else
2133 tsk = current;
cd3d0952
TH
2134
2135 if (threadgroup)
b78949eb 2136 tsk = tsk->group_leader;
c4c27fbd
MG
2137
2138 /*
14a40ffc 2139 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2140 * trapped in a cpuset, or RT worker may be born in a cgroup
2141 * with no rt_runtime allocated. Just say no.
2142 */
14a40ffc 2143 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2144 ret = -EINVAL;
2145 rcu_read_unlock();
2146 goto out_unlock_cgroup;
2147 }
2148
b78949eb
MSB
2149 get_task_struct(tsk);
2150 rcu_read_unlock();
2151
2152 threadgroup_lock(tsk);
2153 if (threadgroup) {
2154 if (!thread_group_leader(tsk)) {
2155 /*
2156 * a race with de_thread from another thread's exec()
2157 * may strip us of our leadership, if this happens,
2158 * there is no choice but to throw this task away and
2159 * try again; this is
2160 * "double-double-toil-and-trouble-check locking".
2161 */
2162 threadgroup_unlock(tsk);
2163 put_task_struct(tsk);
2164 goto retry_find_task;
2165 }
081aa458
LZ
2166 }
2167
2168 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2169
cd3d0952
TH
2170 threadgroup_unlock(tsk);
2171
bbcb81d0 2172 put_task_struct(tsk);
b78949eb 2173out_unlock_cgroup:
47cfcd09 2174 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2175 return ret;
2176}
2177
7ae1bad9
TH
2178/**
2179 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2180 * @from: attach to all cgroups of a given task
2181 * @tsk: the task to be attached
2182 */
2183int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2184{
2185 struct cgroupfs_root *root;
2186 int retval = 0;
2187
47cfcd09 2188 mutex_lock(&cgroup_mutex);
7ae1bad9 2189 for_each_active_root(root) {
6f4b7e63 2190 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2191
6f4b7e63 2192 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2193 if (retval)
2194 break;
2195 }
47cfcd09 2196 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2197
2198 return retval;
2199}
2200EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2201
182446d0
TH
2202static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2203 struct cftype *cft, u64 pid)
74a1166d 2204{
182446d0 2205 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2206}
2207
182446d0
TH
2208static int cgroup_procs_write(struct cgroup_subsys_state *css,
2209 struct cftype *cft, u64 tgid)
af351026 2210{
182446d0 2211 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2212}
2213
182446d0
TH
2214static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2215 struct cftype *cft, const char *buffer)
e788e066 2216{
182446d0 2217 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2218 if (strlen(buffer) >= PATH_MAX)
2219 return -EINVAL;
182446d0 2220 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2221 return -ENODEV;
e25e2cbb 2222 mutex_lock(&cgroup_root_mutex);
182446d0 2223 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2224 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2225 mutex_unlock(&cgroup_mutex);
e788e066
PM
2226 return 0;
2227}
2228
182446d0
TH
2229static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2230 struct cftype *cft, struct seq_file *seq)
e788e066 2231{
182446d0
TH
2232 struct cgroup *cgrp = css->cgroup;
2233
e788e066
PM
2234 if (!cgroup_lock_live_group(cgrp))
2235 return -ENODEV;
2236 seq_puts(seq, cgrp->root->release_agent_path);
2237 seq_putc(seq, '\n');
47cfcd09 2238 mutex_unlock(&cgroup_mutex);
e788e066
PM
2239 return 0;
2240}
2241
182446d0
TH
2242static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2243 struct cftype *cft, struct seq_file *seq)
873fe09e 2244{
182446d0 2245 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
e788e066
PM
2246 return 0;
2247}
2248
84eea842
PM
2249/* A buffer size big enough for numbers or short strings */
2250#define CGROUP_LOCAL_BUFFER_SIZE 64
2251
182446d0
TH
2252static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2253 struct cftype *cft, struct file *file,
2254 const char __user *userbuf, size_t nbytes,
2255 loff_t *unused_ppos)
355e0c48 2256{
84eea842 2257 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2258 int retval = 0;
355e0c48
PM
2259 char *end;
2260
2261 if (!nbytes)
2262 return -EINVAL;
2263 if (nbytes >= sizeof(buffer))
2264 return -E2BIG;
2265 if (copy_from_user(buffer, userbuf, nbytes))
2266 return -EFAULT;
2267
2268 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2269 if (cft->write_u64) {
478988d3 2270 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2271 if (*end)
2272 return -EINVAL;
182446d0 2273 retval = cft->write_u64(css, cft, val);
e73d2c61 2274 } else {
478988d3 2275 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2276 if (*end)
2277 return -EINVAL;
182446d0 2278 retval = cft->write_s64(css, cft, val);
e73d2c61 2279 }
355e0c48
PM
2280 if (!retval)
2281 retval = nbytes;
2282 return retval;
2283}
2284
182446d0
TH
2285static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2286 struct cftype *cft, struct file *file,
2287 const char __user *userbuf, size_t nbytes,
2288 loff_t *unused_ppos)
db3b1497 2289{
84eea842 2290 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2291 int retval = 0;
2292 size_t max_bytes = cft->max_write_len;
2293 char *buffer = local_buffer;
2294
2295 if (!max_bytes)
2296 max_bytes = sizeof(local_buffer) - 1;
2297 if (nbytes >= max_bytes)
2298 return -E2BIG;
2299 /* Allocate a dynamic buffer if we need one */
2300 if (nbytes >= sizeof(local_buffer)) {
2301 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2302 if (buffer == NULL)
2303 return -ENOMEM;
2304 }
5a3eb9f6
LZ
2305 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2306 retval = -EFAULT;
2307 goto out;
2308 }
db3b1497
PM
2309
2310 buffer[nbytes] = 0; /* nul-terminate */
182446d0 2311 retval = cft->write_string(css, cft, strstrip(buffer));
db3b1497
PM
2312 if (!retval)
2313 retval = nbytes;
5a3eb9f6 2314out:
db3b1497
PM
2315 if (buffer != local_buffer)
2316 kfree(buffer);
2317 return retval;
2318}
2319
ddbcc7e8 2320static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
182446d0 2321 size_t nbytes, loff_t *ppos)
ddbcc7e8 2322{
182446d0 2323 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2324 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2325 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2326
355e0c48 2327 if (cft->write)
182446d0 2328 return cft->write(css, cft, file, buf, nbytes, ppos);
e73d2c61 2329 if (cft->write_u64 || cft->write_s64)
182446d0 2330 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
db3b1497 2331 if (cft->write_string)
182446d0 2332 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
d447ea2f 2333 if (cft->trigger) {
182446d0 2334 int ret = cft->trigger(css, (unsigned int)cft->private);
d447ea2f
PE
2335 return ret ? ret : nbytes;
2336 }
355e0c48 2337 return -EINVAL;
ddbcc7e8
PM
2338}
2339
182446d0
TH
2340static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2341 struct cftype *cft, struct file *file,
2342 char __user *buf, size_t nbytes, loff_t *ppos)
ddbcc7e8 2343{
84eea842 2344 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2345 u64 val = cft->read_u64(css, cft);
ddbcc7e8
PM
2346 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2347
2348 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2349}
2350
182446d0
TH
2351static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2352 struct cftype *cft, struct file *file,
2353 char __user *buf, size_t nbytes, loff_t *ppos)
e73d2c61 2354{
84eea842 2355 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2356 s64 val = cft->read_s64(css, cft);
e73d2c61
PM
2357 int len = sprintf(tmp, "%lld\n", (long long) val);
2358
2359 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2360}
2361
ddbcc7e8 2362static ssize_t cgroup_file_read(struct file *file, char __user *buf,
182446d0 2363 size_t nbytes, loff_t *ppos)
ddbcc7e8 2364{
182446d0 2365 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2366 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2367 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8
PM
2368
2369 if (cft->read)
182446d0 2370 return cft->read(css, cft, file, buf, nbytes, ppos);
f4c753b7 2371 if (cft->read_u64)
182446d0 2372 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
e73d2c61 2373 if (cft->read_s64)
182446d0 2374 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2375 return -EINVAL;
2376}
2377
91796569
PM
2378/*
2379 * seqfile ops/methods for returning structured data. Currently just
2380 * supports string->u64 maps, but can be extended in future.
2381 */
2382
91796569
PM
2383static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2384{
2385 struct seq_file *sf = cb->state;
2386 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2387}
2388
2389static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2390{
e0798ce2
LZ
2391 struct cfent *cfe = m->private;
2392 struct cftype *cft = cfe->type;
105347ba 2393 struct cgroup_subsys_state *css = cfe->css;
e0798ce2 2394
29486df3
SH
2395 if (cft->read_map) {
2396 struct cgroup_map_cb cb = {
2397 .fill = cgroup_map_add,
2398 .state = m,
2399 };
182446d0 2400 return cft->read_map(css, cft, &cb);
29486df3 2401 }
182446d0 2402 return cft->read_seq_string(css, cft, m);
91796569
PM
2403}
2404
828c0950 2405static const struct file_operations cgroup_seqfile_operations = {
91796569 2406 .read = seq_read,
e788e066 2407 .write = cgroup_file_write,
91796569 2408 .llseek = seq_lseek,
e605b365 2409 .release = cgroup_file_release,
91796569
PM
2410};
2411
ddbcc7e8
PM
2412static int cgroup_file_open(struct inode *inode, struct file *file)
2413{
f7d58818
TH
2414 struct cfent *cfe = __d_cfe(file->f_dentry);
2415 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2416 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2417 struct cgroup_subsys_state *css;
ddbcc7e8 2418 int err;
ddbcc7e8
PM
2419
2420 err = generic_file_open(inode, file);
2421 if (err)
2422 return err;
75139b82 2423
f7d58818
TH
2424 /*
2425 * If the file belongs to a subsystem, pin the css. Will be
2426 * unpinned either on open failure or release. This ensures that
2427 * @css stays alive for all file operations.
2428 */
105347ba 2429 rcu_read_lock();
ca8bdcaf
TH
2430 css = cgroup_css(cgrp, cft->ss);
2431 if (cft->ss && !css_tryget(css))
2432 css = NULL;
105347ba 2433 rcu_read_unlock();
f4f4be2b 2434
0bfb4aa6 2435 if (!css)
f7d58818 2436 return -ENODEV;
75139b82 2437
0bfb4aa6
TH
2438 /*
2439 * @cfe->css is used by read/write/close to determine the
2440 * associated css. @file->private_data would be a better place but
2441 * that's already used by seqfile. Multiple accessors may use it
2442 * simultaneously which is okay as the association never changes.
2443 */
2444 WARN_ON_ONCE(cfe->css && cfe->css != css);
2445 cfe->css = css;
f4f4be2b 2446
29486df3 2447 if (cft->read_map || cft->read_seq_string) {
91796569 2448 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2449 err = single_open(file, cgroup_seqfile_show, cfe);
2450 } else if (cft->open) {
ddbcc7e8 2451 err = cft->open(inode, file);
e0798ce2 2452 }
ddbcc7e8 2453
67f4c36f 2454 if (css->ss && err)
f7d58818 2455 css_put(css);
ddbcc7e8
PM
2456 return err;
2457}
2458
2459static int cgroup_file_release(struct inode *inode, struct file *file)
2460{
f7d58818 2461 struct cfent *cfe = __d_cfe(file->f_dentry);
105347ba 2462 struct cgroup_subsys_state *css = cfe->css;
f7d58818 2463
67f4c36f 2464 if (css->ss)
f7d58818 2465 css_put(css);
e605b365
TH
2466 if (file->f_op == &cgroup_seqfile_operations)
2467 single_release(inode, file);
b1a21367 2468 return 0;
ddbcc7e8
PM
2469}
2470
2471/*
2472 * cgroup_rename - Only allow simple rename of directories in place.
2473 */
2474static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2475 struct inode *new_dir, struct dentry *new_dentry)
2476{
65dff759
LZ
2477 int ret;
2478 struct cgroup_name *name, *old_name;
2479 struct cgroup *cgrp;
2480
2481 /*
2482 * It's convinient to use parent dir's i_mutex to protected
2483 * cgrp->name.
2484 */
2485 lockdep_assert_held(&old_dir->i_mutex);
2486
ddbcc7e8
PM
2487 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2488 return -ENOTDIR;
2489 if (new_dentry->d_inode)
2490 return -EEXIST;
2491 if (old_dir != new_dir)
2492 return -EIO;
65dff759
LZ
2493
2494 cgrp = __d_cgrp(old_dentry);
2495
6db8e85c
TH
2496 /*
2497 * This isn't a proper migration and its usefulness is very
2498 * limited. Disallow if sane_behavior.
2499 */
2500 if (cgroup_sane_behavior(cgrp))
2501 return -EPERM;
2502
65dff759
LZ
2503 name = cgroup_alloc_name(new_dentry);
2504 if (!name)
2505 return -ENOMEM;
2506
2507 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2508 if (ret) {
2509 kfree(name);
2510 return ret;
2511 }
2512
a4ea1cc9 2513 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2514 rcu_assign_pointer(cgrp->name, name);
2515
2516 kfree_rcu(old_name, rcu_head);
2517 return 0;
ddbcc7e8
PM
2518}
2519
03b1cde6
AR
2520static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2521{
2522 if (S_ISDIR(dentry->d_inode->i_mode))
2523 return &__d_cgrp(dentry)->xattrs;
2524 else
712317ad 2525 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2526}
2527
2528static inline int xattr_enabled(struct dentry *dentry)
2529{
2530 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2531 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2532}
2533
2534static bool is_valid_xattr(const char *name)
2535{
2536 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2537 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2538 return true;
2539 return false;
2540}
2541
2542static int cgroup_setxattr(struct dentry *dentry, const char *name,
2543 const void *val, size_t size, int flags)
2544{
2545 if (!xattr_enabled(dentry))
2546 return -EOPNOTSUPP;
2547 if (!is_valid_xattr(name))
2548 return -EINVAL;
2549 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2550}
2551
2552static int cgroup_removexattr(struct dentry *dentry, const char *name)
2553{
2554 if (!xattr_enabled(dentry))
2555 return -EOPNOTSUPP;
2556 if (!is_valid_xattr(name))
2557 return -EINVAL;
2558 return simple_xattr_remove(__d_xattrs(dentry), name);
2559}
2560
2561static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2562 void *buf, size_t size)
2563{
2564 if (!xattr_enabled(dentry))
2565 return -EOPNOTSUPP;
2566 if (!is_valid_xattr(name))
2567 return -EINVAL;
2568 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2569}
2570
2571static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2572{
2573 if (!xattr_enabled(dentry))
2574 return -EOPNOTSUPP;
2575 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2576}
2577
828c0950 2578static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2579 .read = cgroup_file_read,
2580 .write = cgroup_file_write,
2581 .llseek = generic_file_llseek,
2582 .open = cgroup_file_open,
2583 .release = cgroup_file_release,
2584};
2585
03b1cde6
AR
2586static const struct inode_operations cgroup_file_inode_operations = {
2587 .setxattr = cgroup_setxattr,
2588 .getxattr = cgroup_getxattr,
2589 .listxattr = cgroup_listxattr,
2590 .removexattr = cgroup_removexattr,
2591};
2592
6e1d5dcc 2593static const struct inode_operations cgroup_dir_inode_operations = {
786e1448 2594 .lookup = simple_lookup,
ddbcc7e8
PM
2595 .mkdir = cgroup_mkdir,
2596 .rmdir = cgroup_rmdir,
2597 .rename = cgroup_rename,
03b1cde6
AR
2598 .setxattr = cgroup_setxattr,
2599 .getxattr = cgroup_getxattr,
2600 .listxattr = cgroup_listxattr,
2601 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2602};
2603
a5e7ed32 2604static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2605 struct super_block *sb)
2606{
ddbcc7e8
PM
2607 struct inode *inode;
2608
2609 if (!dentry)
2610 return -ENOENT;
2611 if (dentry->d_inode)
2612 return -EEXIST;
2613
2614 inode = cgroup_new_inode(mode, sb);
2615 if (!inode)
2616 return -ENOMEM;
2617
2618 if (S_ISDIR(mode)) {
2619 inode->i_op = &cgroup_dir_inode_operations;
2620 inode->i_fop = &simple_dir_operations;
2621
2622 /* start off with i_nlink == 2 (for "." entry) */
2623 inc_nlink(inode);
28fd6f30 2624 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2625
b8a2df6a
TH
2626 /*
2627 * Control reaches here with cgroup_mutex held.
2628 * @inode->i_mutex should nest outside cgroup_mutex but we
2629 * want to populate it immediately without releasing
2630 * cgroup_mutex. As @inode isn't visible to anyone else
2631 * yet, trylock will always succeed without affecting
2632 * lockdep checks.
2633 */
2634 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2635 } else if (S_ISREG(mode)) {
2636 inode->i_size = 0;
2637 inode->i_fop = &cgroup_file_operations;
03b1cde6 2638 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2639 }
ddbcc7e8
PM
2640 d_instantiate(dentry, inode);
2641 dget(dentry); /* Extra count - pin the dentry in core */
2642 return 0;
2643}
2644
099fca32
LZ
2645/**
2646 * cgroup_file_mode - deduce file mode of a control file
2647 * @cft: the control file in question
2648 *
2649 * returns cft->mode if ->mode is not 0
2650 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2651 * returns S_IRUGO if it has only a read handler
2652 * returns S_IWUSR if it has only a write hander
2653 */
a5e7ed32 2654static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2655{
a5e7ed32 2656 umode_t mode = 0;
099fca32
LZ
2657
2658 if (cft->mode)
2659 return cft->mode;
2660
2661 if (cft->read || cft->read_u64 || cft->read_s64 ||
2662 cft->read_map || cft->read_seq_string)
2663 mode |= S_IRUGO;
2664
2665 if (cft->write || cft->write_u64 || cft->write_s64 ||
2666 cft->write_string || cft->trigger)
2667 mode |= S_IWUSR;
2668
2669 return mode;
2670}
2671
2bb566cb 2672static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2673{
bd89aabc 2674 struct dentry *dir = cgrp->dentry;
05ef1d7c 2675 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2676 struct dentry *dentry;
05ef1d7c 2677 struct cfent *cfe;
ddbcc7e8 2678 int error;
a5e7ed32 2679 umode_t mode;
ddbcc7e8 2680 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2681
9fa4db33
TH
2682 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
2683 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2bb566cb 2684 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2685 strcat(name, ".");
2686 }
2687 strcat(name, cft->name);
05ef1d7c 2688
ddbcc7e8 2689 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2690
2691 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2692 if (!cfe)
2693 return -ENOMEM;
2694
ddbcc7e8 2695 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2696 if (IS_ERR(dentry)) {
ddbcc7e8 2697 error = PTR_ERR(dentry);
05ef1d7c
TH
2698 goto out;
2699 }
2700
d6cbf35d
LZ
2701 cfe->type = (void *)cft;
2702 cfe->dentry = dentry;
2703 dentry->d_fsdata = cfe;
2704 simple_xattrs_init(&cfe->xattrs);
2705
05ef1d7c
TH
2706 mode = cgroup_file_mode(cft);
2707 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2708 if (!error) {
05ef1d7c
TH
2709 list_add_tail(&cfe->node, &parent->files);
2710 cfe = NULL;
2711 }
2712 dput(dentry);
2713out:
2714 kfree(cfe);
ddbcc7e8
PM
2715 return error;
2716}
2717
b1f28d31
TH
2718/**
2719 * cgroup_addrm_files - add or remove files to a cgroup directory
2720 * @cgrp: the target cgroup
b1f28d31
TH
2721 * @cfts: array of cftypes to be added
2722 * @is_add: whether to add or remove
2723 *
2724 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2725 * For removals, this function never fails. If addition fails, this
2726 * function doesn't remove files already added. The caller is responsible
2727 * for cleaning up.
b1f28d31 2728 */
2bb566cb
TH
2729static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2730 bool is_add)
ddbcc7e8 2731{
03b1cde6 2732 struct cftype *cft;
b1f28d31
TH
2733 int ret;
2734
2735 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2736 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2737
2738 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2739 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2740 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2741 continue;
f33fddc2
G
2742 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2743 continue;
2744 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2745 continue;
2746
2739d3cc 2747 if (is_add) {
2bb566cb 2748 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2749 if (ret) {
2739d3cc 2750 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2751 cft->name, ret);
2752 return ret;
2753 }
2739d3cc
LZ
2754 } else {
2755 cgroup_rm_file(cgrp, cft);
db0416b6 2756 }
ddbcc7e8 2757 }
b1f28d31 2758 return 0;
ddbcc7e8
PM
2759}
2760
8e3f6541 2761static void cgroup_cfts_prepare(void)
e8c82d20 2762 __acquires(&cgroup_mutex)
8e3f6541
TH
2763{
2764 /*
2765 * Thanks to the entanglement with vfs inode locking, we can't walk
2766 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2767 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2768 * lock before calling cgroup_addrm_files().
8e3f6541 2769 */
8e3f6541
TH
2770 mutex_lock(&cgroup_mutex);
2771}
2772
2bb566cb 2773static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2774 __releases(&cgroup_mutex)
8e3f6541
TH
2775{
2776 LIST_HEAD(pending);
2bb566cb 2777 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2778 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2779 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2780 struct dentry *prev = NULL;
2781 struct inode *inode;
492eb21b 2782 struct cgroup_subsys_state *css;
00356bd5 2783 u64 update_before;
9ccece80 2784 int ret = 0;
8e3f6541
TH
2785
2786 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2787 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2788 !atomic_inc_not_zero(&sb->s_active)) {
2789 mutex_unlock(&cgroup_mutex);
9ccece80 2790 return 0;
8e3f6541
TH
2791 }
2792
8e3f6541 2793 /*
e8c82d20
LZ
2794 * All cgroups which are created after we drop cgroup_mutex will
2795 * have the updated set of files, so we only need to update the
00356bd5 2796 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2797 */
00356bd5 2798 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2799
2800 mutex_unlock(&cgroup_mutex);
2801
e8c82d20
LZ
2802 /* add/rm files for all cgroups created before */
2803 rcu_read_lock();
ca8bdcaf 2804 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2805 struct cgroup *cgrp = css->cgroup;
2806
e8c82d20
LZ
2807 if (cgroup_is_dead(cgrp))
2808 continue;
2809
2810 inode = cgrp->dentry->d_inode;
2811 dget(cgrp->dentry);
2812 rcu_read_unlock();
2813
2814 dput(prev);
2815 prev = cgrp->dentry;
8e3f6541
TH
2816
2817 mutex_lock(&inode->i_mutex);
2818 mutex_lock(&cgroup_mutex);
00356bd5 2819 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2820 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2821 mutex_unlock(&cgroup_mutex);
2822 mutex_unlock(&inode->i_mutex);
2823
e8c82d20 2824 rcu_read_lock();
9ccece80
TH
2825 if (ret)
2826 break;
8e3f6541 2827 }
e8c82d20
LZ
2828 rcu_read_unlock();
2829 dput(prev);
2830 deactivate_super(sb);
9ccece80 2831 return ret;
8e3f6541
TH
2832}
2833
2834/**
2835 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2836 * @ss: target cgroup subsystem
2837 * @cfts: zero-length name terminated array of cftypes
2838 *
2839 * Register @cfts to @ss. Files described by @cfts are created for all
2840 * existing cgroups to which @ss is attached and all future cgroups will
2841 * have them too. This function can be called anytime whether @ss is
2842 * attached or not.
2843 *
2844 * Returns 0 on successful registration, -errno on failure. Note that this
2845 * function currently returns 0 as long as @cfts registration is successful
2846 * even if some file creation attempts on existing cgroups fail.
2847 */
03b1cde6 2848int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2849{
2850 struct cftype_set *set;
2bb566cb 2851 struct cftype *cft;
9ccece80 2852 int ret;
8e3f6541
TH
2853
2854 set = kzalloc(sizeof(*set), GFP_KERNEL);
2855 if (!set)
2856 return -ENOMEM;
2857
2bb566cb
TH
2858 for (cft = cfts; cft->name[0] != '\0'; cft++)
2859 cft->ss = ss;
2860
8e3f6541
TH
2861 cgroup_cfts_prepare();
2862 set->cfts = cfts;
2863 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2864 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2865 if (ret)
2bb566cb 2866 cgroup_rm_cftypes(cfts);
9ccece80 2867 return ret;
8e3f6541
TH
2868}
2869EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2870
79578621
TH
2871/**
2872 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2873 * @cfts: zero-length name terminated array of cftypes
2874 *
2bb566cb
TH
2875 * Unregister @cfts. Files described by @cfts are removed from all
2876 * existing cgroups and all future cgroups won't have them either. This
2877 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2878 *
2879 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2880 * registered.
79578621 2881 */
2bb566cb 2882int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2883{
2884 struct cftype_set *set;
2885
2bb566cb
TH
2886 if (!cfts || !cfts[0].ss)
2887 return -ENOENT;
2888
79578621
TH
2889 cgroup_cfts_prepare();
2890
2bb566cb 2891 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2892 if (set->cfts == cfts) {
f57947d2
LZ
2893 list_del(&set->node);
2894 kfree(set);
2bb566cb 2895 cgroup_cfts_commit(cfts, false);
79578621
TH
2896 return 0;
2897 }
2898 }
2899
2bb566cb 2900 cgroup_cfts_commit(NULL, false);
79578621
TH
2901 return -ENOENT;
2902}
2903
a043e3b2
LZ
2904/**
2905 * cgroup_task_count - count the number of tasks in a cgroup.
2906 * @cgrp: the cgroup in question
2907 *
2908 * Return the number of tasks in the cgroup.
2909 */
bd89aabc 2910int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2911{
2912 int count = 0;
69d0206c 2913 struct cgrp_cset_link *link;
817929ec
PM
2914
2915 read_lock(&css_set_lock);
69d0206c
TH
2916 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2917 count += atomic_read(&link->cset->refcount);
817929ec 2918 read_unlock(&css_set_lock);
bbcb81d0
PM
2919 return count;
2920}
2921
817929ec 2922/*
0942eeee
TH
2923 * To reduce the fork() overhead for systems that are not actually using
2924 * their cgroups capability, we don't maintain the lists running through
2925 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2926 * words after the first call to css_task_iter_start().
31a7df01 2927 */
3df91fe3 2928static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2929{
2930 struct task_struct *p, *g;
2931 write_lock(&css_set_lock);
2932 use_task_css_set_links = 1;
3ce3230a
FW
2933 /*
2934 * We need tasklist_lock because RCU is not safe against
2935 * while_each_thread(). Besides, a forking task that has passed
2936 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2937 * is not guaranteed to have its child immediately visible in the
2938 * tasklist if we walk through it with RCU.
2939 */
2940 read_lock(&tasklist_lock);
31a7df01
CW
2941 do_each_thread(g, p) {
2942 task_lock(p);
0e04388f
LZ
2943 /*
2944 * We should check if the process is exiting, otherwise
2945 * it will race with cgroup_exit() in that the list
2946 * entry won't be deleted though the process has exited.
2947 */
2948 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2949 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2950 task_unlock(p);
2951 } while_each_thread(g, p);
3ce3230a 2952 read_unlock(&tasklist_lock);
31a7df01
CW
2953 write_unlock(&css_set_lock);
2954}
2955
53fa5261 2956/**
492eb21b
TH
2957 * css_next_child - find the next child of a given css
2958 * @pos_css: the current position (%NULL to initiate traversal)
2959 * @parent_css: css whose children to walk
53fa5261 2960 *
492eb21b
TH
2961 * This function returns the next child of @parent_css and should be called
2962 * under RCU read lock. The only requirement is that @parent_css and
2963 * @pos_css are accessible. The next sibling is guaranteed to be returned
2964 * regardless of their states.
53fa5261 2965 */
492eb21b
TH
2966struct cgroup_subsys_state *
2967css_next_child(struct cgroup_subsys_state *pos_css,
2968 struct cgroup_subsys_state *parent_css)
53fa5261 2969{
492eb21b
TH
2970 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2971 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2972 struct cgroup *next;
2973
2974 WARN_ON_ONCE(!rcu_read_lock_held());
2975
2976 /*
2977 * @pos could already have been removed. Once a cgroup is removed,
2978 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2979 * changes. As CGRP_DEAD assertion is serialized and happens
2980 * before the cgroup is taken off the ->sibling list, if we see it
2981 * unasserted, it's guaranteed that the next sibling hasn't
2982 * finished its grace period even if it's already removed, and thus
2983 * safe to dereference from this RCU critical section. If
2984 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2985 * to be visible as %true here.
3b287a50
TH
2986 *
2987 * If @pos is dead, its next pointer can't be dereferenced;
2988 * however, as each cgroup is given a monotonically increasing
2989 * unique serial number and always appended to the sibling list,
2990 * the next one can be found by walking the parent's children until
2991 * we see a cgroup with higher serial number than @pos's. While
2992 * this path can be slower, it's taken only when either the current
2993 * cgroup is removed or iteration and removal race.
53fa5261 2994 */
3b287a50
TH
2995 if (!pos) {
2996 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2997 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2998 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2999 } else {
3000 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3001 if (next->serial_nr > pos->serial_nr)
3002 break;
53fa5261
TH
3003 }
3004
492eb21b
TH
3005 if (&next->sibling == &cgrp->children)
3006 return NULL;
3007
ca8bdcaf 3008 return cgroup_css(next, parent_css->ss);
53fa5261 3009}
492eb21b 3010EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 3011
574bd9f7 3012/**
492eb21b 3013 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3014 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3015 * @root: css whose descendants to walk
574bd9f7 3016 *
492eb21b 3017 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3018 * to visit for pre-order traversal of @root's descendants. @root is
3019 * included in the iteration and the first node to be visited.
75501a6d
TH
3020 *
3021 * While this function requires RCU read locking, it doesn't require the
3022 * whole traversal to be contained in a single RCU critical section. This
3023 * function will return the correct next descendant as long as both @pos
492eb21b 3024 * and @root are accessible and @pos is a descendant of @root.
574bd9f7 3025 */
492eb21b
TH
3026struct cgroup_subsys_state *
3027css_next_descendant_pre(struct cgroup_subsys_state *pos,
3028 struct cgroup_subsys_state *root)
574bd9f7 3029{
492eb21b 3030 struct cgroup_subsys_state *next;
574bd9f7
TH
3031
3032 WARN_ON_ONCE(!rcu_read_lock_held());
3033
bd8815a6 3034 /* if first iteration, visit @root */
7805d000 3035 if (!pos)
bd8815a6 3036 return root;
574bd9f7
TH
3037
3038 /* visit the first child if exists */
492eb21b 3039 next = css_next_child(NULL, pos);
574bd9f7
TH
3040 if (next)
3041 return next;
3042
3043 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3044 while (pos != root) {
3045 next = css_next_child(pos, css_parent(pos));
75501a6d 3046 if (next)
574bd9f7 3047 return next;
492eb21b 3048 pos = css_parent(pos);
7805d000 3049 }
574bd9f7
TH
3050
3051 return NULL;
3052}
492eb21b 3053EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 3054
12a9d2fe 3055/**
492eb21b
TH
3056 * css_rightmost_descendant - return the rightmost descendant of a css
3057 * @pos: css of interest
12a9d2fe 3058 *
492eb21b
TH
3059 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3060 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3061 * subtree of @pos.
75501a6d
TH
3062 *
3063 * While this function requires RCU read locking, it doesn't require the
3064 * whole traversal to be contained in a single RCU critical section. This
3065 * function will return the correct rightmost descendant as long as @pos is
3066 * accessible.
12a9d2fe 3067 */
492eb21b
TH
3068struct cgroup_subsys_state *
3069css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3070{
492eb21b 3071 struct cgroup_subsys_state *last, *tmp;
12a9d2fe
TH
3072
3073 WARN_ON_ONCE(!rcu_read_lock_held());
3074
3075 do {
3076 last = pos;
3077 /* ->prev isn't RCU safe, walk ->next till the end */
3078 pos = NULL;
492eb21b 3079 css_for_each_child(tmp, last)
12a9d2fe
TH
3080 pos = tmp;
3081 } while (pos);
3082
3083 return last;
3084}
492eb21b 3085EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3086
492eb21b
TH
3087static struct cgroup_subsys_state *
3088css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3089{
492eb21b 3090 struct cgroup_subsys_state *last;
574bd9f7
TH
3091
3092 do {
3093 last = pos;
492eb21b 3094 pos = css_next_child(NULL, pos);
574bd9f7
TH
3095 } while (pos);
3096
3097 return last;
3098}
3099
3100/**
492eb21b 3101 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3102 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3103 * @root: css whose descendants to walk
574bd9f7 3104 *
492eb21b 3105 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3106 * to visit for post-order traversal of @root's descendants. @root is
3107 * included in the iteration and the last node to be visited.
75501a6d
TH
3108 *
3109 * While this function requires RCU read locking, it doesn't require the
3110 * whole traversal to be contained in a single RCU critical section. This
3111 * function will return the correct next descendant as long as both @pos
3112 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7 3113 */
492eb21b
TH
3114struct cgroup_subsys_state *
3115css_next_descendant_post(struct cgroup_subsys_state *pos,
3116 struct cgroup_subsys_state *root)
574bd9f7 3117{
492eb21b 3118 struct cgroup_subsys_state *next;
574bd9f7
TH
3119
3120 WARN_ON_ONCE(!rcu_read_lock_held());
3121
58b79a91
TH
3122 /* if first iteration, visit leftmost descendant which may be @root */
3123 if (!pos)
3124 return css_leftmost_descendant(root);
574bd9f7 3125
bd8815a6
TH
3126 /* if we visited @root, we're done */
3127 if (pos == root)
3128 return NULL;
3129
574bd9f7 3130 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3131 next = css_next_child(pos, css_parent(pos));
75501a6d 3132 if (next)
492eb21b 3133 return css_leftmost_descendant(next);
574bd9f7
TH
3134
3135 /* no sibling left, visit parent */
bd8815a6 3136 return css_parent(pos);
574bd9f7 3137}
492eb21b 3138EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3139
0942eeee 3140/**
72ec7029 3141 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3142 * @it: the iterator to advance
3143 *
3144 * Advance @it to the next css_set to walk.
d515876e 3145 */
72ec7029 3146static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3147{
3148 struct list_head *l = it->cset_link;
3149 struct cgrp_cset_link *link;
3150 struct css_set *cset;
3151
3152 /* Advance to the next non-empty css_set */
3153 do {
3154 l = l->next;
72ec7029 3155 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3156 it->cset_link = NULL;
3157 return;
3158 }
3159 link = list_entry(l, struct cgrp_cset_link, cset_link);
3160 cset = link->cset;
3161 } while (list_empty(&cset->tasks));
3162 it->cset_link = l;
3163 it->task = cset->tasks.next;
3164}
3165
0942eeee 3166/**
72ec7029
TH
3167 * css_task_iter_start - initiate task iteration
3168 * @css: the css to walk tasks of
0942eeee
TH
3169 * @it: the task iterator to use
3170 *
72ec7029
TH
3171 * Initiate iteration through the tasks of @css. The caller can call
3172 * css_task_iter_next() to walk through the tasks until the function
3173 * returns NULL. On completion of iteration, css_task_iter_end() must be
3174 * called.
0942eeee
TH
3175 *
3176 * Note that this function acquires a lock which is released when the
3177 * iteration finishes. The caller can't sleep while iteration is in
3178 * progress.
3179 */
72ec7029
TH
3180void css_task_iter_start(struct cgroup_subsys_state *css,
3181 struct css_task_iter *it)
c6ca5750 3182 __acquires(css_set_lock)
817929ec
PM
3183{
3184 /*
72ec7029
TH
3185 * The first time anyone tries to iterate across a css, we need to
3186 * enable the list linking each css_set to its tasks, and fix up
3187 * all existing tasks.
817929ec 3188 */
31a7df01
CW
3189 if (!use_task_css_set_links)
3190 cgroup_enable_task_cg_lists();
3191
817929ec 3192 read_lock(&css_set_lock);
c59cd3d8 3193
72ec7029
TH
3194 it->origin_css = css;
3195 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3196
72ec7029 3197 css_advance_task_iter(it);
817929ec
PM
3198}
3199
0942eeee 3200/**
72ec7029 3201 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3202 * @it: the task iterator being iterated
3203 *
3204 * The "next" function for task iteration. @it should have been
72ec7029
TH
3205 * initialized via css_task_iter_start(). Returns NULL when the iteration
3206 * reaches the end.
0942eeee 3207 */
72ec7029 3208struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3209{
3210 struct task_struct *res;
3211 struct list_head *l = it->task;
69d0206c 3212 struct cgrp_cset_link *link;
817929ec
PM
3213
3214 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3215 if (!it->cset_link)
817929ec
PM
3216 return NULL;
3217 res = list_entry(l, struct task_struct, cg_list);
3218 /* Advance iterator to find next entry */
3219 l = l->next;
69d0206c
TH
3220 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3221 if (l == &link->cset->tasks) {
0942eeee
TH
3222 /*
3223 * We reached the end of this task list - move on to the
3224 * next cgrp_cset_link.
3225 */
72ec7029 3226 css_advance_task_iter(it);
817929ec
PM
3227 } else {
3228 it->task = l;
3229 }
3230 return res;
3231}
3232
0942eeee 3233/**
72ec7029 3234 * css_task_iter_end - finish task iteration
0942eeee
TH
3235 * @it: the task iterator to finish
3236 *
72ec7029 3237 * Finish task iteration started by css_task_iter_start().
0942eeee 3238 */
72ec7029 3239void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3240 __releases(css_set_lock)
817929ec
PM
3241{
3242 read_unlock(&css_set_lock);
3243}
3244
31a7df01
CW
3245static inline int started_after_time(struct task_struct *t1,
3246 struct timespec *time,
3247 struct task_struct *t2)
3248{
3249 int start_diff = timespec_compare(&t1->start_time, time);
3250 if (start_diff > 0) {
3251 return 1;
3252 } else if (start_diff < 0) {
3253 return 0;
3254 } else {
3255 /*
3256 * Arbitrarily, if two processes started at the same
3257 * time, we'll say that the lower pointer value
3258 * started first. Note that t2 may have exited by now
3259 * so this may not be a valid pointer any longer, but
3260 * that's fine - it still serves to distinguish
3261 * between two tasks started (effectively) simultaneously.
3262 */
3263 return t1 > t2;
3264 }
3265}
3266
3267/*
3268 * This function is a callback from heap_insert() and is used to order
3269 * the heap.
3270 * In this case we order the heap in descending task start time.
3271 */
3272static inline int started_after(void *p1, void *p2)
3273{
3274 struct task_struct *t1 = p1;
3275 struct task_struct *t2 = p2;
3276 return started_after_time(t1, &t2->start_time, t2);
3277}
3278
3279/**
72ec7029
TH
3280 * css_scan_tasks - iterate though all the tasks in a css
3281 * @css: the css to iterate tasks of
e535837b
TH
3282 * @test: optional test callback
3283 * @process: process callback
3284 * @data: data passed to @test and @process
3285 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3286 *
72ec7029
TH
3287 * Iterate through all the tasks in @css, calling @test for each, and if it
3288 * returns %true, call @process for it also.
31a7df01 3289 *
e535837b 3290 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3291 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3292 * lock css_set_lock for the call to @process.
3293 *
3294 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3295 * of @css for the duration of this call. This function may or may not
3296 * call @process for tasks that exit or move to a different css during the
3297 * call, or are forked or move into the css during the call.
31a7df01 3298 *
e535837b
TH
3299 * Note that @test may be called with locks held, and may in some
3300 * situations be called multiple times for the same task, so it should be
3301 * cheap.
31a7df01 3302 *
e535837b
TH
3303 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3304 * heap operations (and its "gt" member will be overwritten), else a
3305 * temporary heap will be used (allocation of which may cause this function
3306 * to fail).
31a7df01 3307 */
72ec7029
TH
3308int css_scan_tasks(struct cgroup_subsys_state *css,
3309 bool (*test)(struct task_struct *, void *),
3310 void (*process)(struct task_struct *, void *),
3311 void *data, struct ptr_heap *heap)
31a7df01
CW
3312{
3313 int retval, i;
72ec7029 3314 struct css_task_iter it;
31a7df01
CW
3315 struct task_struct *p, *dropped;
3316 /* Never dereference latest_task, since it's not refcounted */
3317 struct task_struct *latest_task = NULL;
3318 struct ptr_heap tmp_heap;
31a7df01
CW
3319 struct timespec latest_time = { 0, 0 };
3320
e535837b 3321 if (heap) {
31a7df01 3322 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3323 heap->gt = &started_after;
3324 } else {
3325 /* We need to allocate our own heap memory */
3326 heap = &tmp_heap;
3327 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3328 if (retval)
3329 /* cannot allocate the heap */
3330 return retval;
3331 }
3332
3333 again:
3334 /*
72ec7029 3335 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3336 * which are of interest, and invoking @process callback on the
3337 * ones which need an update. Since we don't want to hold any
3338 * locks during the task updates, gather tasks to be processed in a
3339 * heap structure. The heap is sorted by descending task start
3340 * time. If the statically-sized heap fills up, we overflow tasks
3341 * that started later, and in future iterations only consider tasks
3342 * that started after the latest task in the previous pass. This
31a7df01
CW
3343 * guarantees forward progress and that we don't miss any tasks.
3344 */
3345 heap->size = 0;
72ec7029
TH
3346 css_task_iter_start(css, &it);
3347 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3348 /*
3349 * Only affect tasks that qualify per the caller's callback,
3350 * if he provided one
3351 */
e535837b 3352 if (test && !test(p, data))
31a7df01
CW
3353 continue;
3354 /*
3355 * Only process tasks that started after the last task
3356 * we processed
3357 */
3358 if (!started_after_time(p, &latest_time, latest_task))
3359 continue;
3360 dropped = heap_insert(heap, p);
3361 if (dropped == NULL) {
3362 /*
3363 * The new task was inserted; the heap wasn't
3364 * previously full
3365 */
3366 get_task_struct(p);
3367 } else if (dropped != p) {
3368 /*
3369 * The new task was inserted, and pushed out a
3370 * different task
3371 */
3372 get_task_struct(p);
3373 put_task_struct(dropped);
3374 }
3375 /*
3376 * Else the new task was newer than anything already in
3377 * the heap and wasn't inserted
3378 */
3379 }
72ec7029 3380 css_task_iter_end(&it);
31a7df01
CW
3381
3382 if (heap->size) {
3383 for (i = 0; i < heap->size; i++) {
4fe91d51 3384 struct task_struct *q = heap->ptrs[i];
31a7df01 3385 if (i == 0) {
4fe91d51
PJ
3386 latest_time = q->start_time;
3387 latest_task = q;
31a7df01
CW
3388 }
3389 /* Process the task per the caller's callback */
e535837b 3390 process(q, data);
4fe91d51 3391 put_task_struct(q);
31a7df01
CW
3392 }
3393 /*
3394 * If we had to process any tasks at all, scan again
3395 * in case some of them were in the middle of forking
3396 * children that didn't get processed.
3397 * Not the most efficient way to do it, but it avoids
3398 * having to take callback_mutex in the fork path
3399 */
3400 goto again;
3401 }
3402 if (heap == &tmp_heap)
3403 heap_free(&tmp_heap);
3404 return 0;
3405}
3406
e535837b 3407static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3408{
e535837b 3409 struct cgroup *new_cgroup = data;
8cc99345 3410
47cfcd09 3411 mutex_lock(&cgroup_mutex);
8cc99345 3412 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3413 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3414}
3415
3416/**
3417 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3418 * @to: cgroup to which the tasks will be moved
3419 * @from: cgroup in which the tasks currently reside
3420 */
3421int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3422{
72ec7029
TH
3423 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3424 to, NULL);
8cc99345
TH
3425}
3426
bbcb81d0 3427/*
102a775e 3428 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3429 *
3430 * Reading this file can return large amounts of data if a cgroup has
3431 * *lots* of attached tasks. So it may need several calls to read(),
3432 * but we cannot guarantee that the information we produce is correct
3433 * unless we produce it entirely atomically.
3434 *
bbcb81d0 3435 */
bbcb81d0 3436
24528255
LZ
3437/* which pidlist file are we talking about? */
3438enum cgroup_filetype {
3439 CGROUP_FILE_PROCS,
3440 CGROUP_FILE_TASKS,
3441};
3442
3443/*
3444 * A pidlist is a list of pids that virtually represents the contents of one
3445 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3446 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3447 * to the cgroup.
3448 */
3449struct cgroup_pidlist {
3450 /*
3451 * used to find which pidlist is wanted. doesn't change as long as
3452 * this particular list stays in the list.
3453 */
3454 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3455 /* array of xids */
3456 pid_t *list;
3457 /* how many elements the above list has */
3458 int length;
3459 /* how many files are using the current array */
3460 int use_count;
3461 /* each of these stored in a list by its cgroup */
3462 struct list_head links;
3463 /* pointer to the cgroup we belong to, for list removal purposes */
3464 struct cgroup *owner;
3465 /* protects the other fields */
b395890a 3466 struct rw_semaphore rwsem;
b1a21367
TH
3467 /* for delayed destruction */
3468 struct delayed_work destroy_dwork;
24528255
LZ
3469};
3470
d1d9fd33
BB
3471/*
3472 * The following two functions "fix" the issue where there are more pids
3473 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3474 * TODO: replace with a kernel-wide solution to this problem
3475 */
3476#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3477static void *pidlist_allocate(int count)
3478{
3479 if (PIDLIST_TOO_LARGE(count))
3480 return vmalloc(count * sizeof(pid_t));
3481 else
3482 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3483}
b1a21367 3484
d1d9fd33
BB
3485static void pidlist_free(void *p)
3486{
3487 if (is_vmalloc_addr(p))
3488 vfree(p);
3489 else
3490 kfree(p);
3491}
d1d9fd33 3492
b1a21367
TH
3493/*
3494 * Used to destroy all pidlists lingering waiting for destroy timer. None
3495 * should be left afterwards.
3496 */
3497static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3498{
3499 struct cgroup_pidlist *l, *tmp_l;
3500
3501 mutex_lock(&cgrp->pidlist_mutex);
3502 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3503 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3504 mutex_unlock(&cgrp->pidlist_mutex);
3505
3506 flush_workqueue(cgroup_pidlist_destroy_wq);
3507 BUG_ON(!list_empty(&cgrp->pidlists));
3508}
3509
3510static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3511{
3512 struct delayed_work *dwork = to_delayed_work(work);
3513 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3514 destroy_dwork);
3515 struct cgroup_pidlist *tofree = NULL;
3516
3517 mutex_lock(&l->owner->pidlist_mutex);
3518 down_write(&l->rwsem);
3519
3520 /*
3521 * Destroy iff we didn't race with a new user or get queued again.
3522 * Queued state won't change as it can only be queued while locked.
3523 */
3524 if (!l->use_count && !delayed_work_pending(dwork)) {
3525 list_del(&l->links);
3526 pidlist_free(l->list);
3527 put_pid_ns(l->key.ns);
3528 tofree = l;
3529 }
3530
3531 up_write(&l->rwsem);
3532 mutex_unlock(&l->owner->pidlist_mutex);
3533 kfree(tofree);
3534}
3535
bbcb81d0 3536/*
102a775e 3537 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3538 * Returns the number of unique elements.
bbcb81d0 3539 */
6ee211ad 3540static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3541{
102a775e 3542 int src, dest = 1;
102a775e
BB
3543
3544 /*
3545 * we presume the 0th element is unique, so i starts at 1. trivial
3546 * edge cases first; no work needs to be done for either
3547 */
3548 if (length == 0 || length == 1)
3549 return length;
3550 /* src and dest walk down the list; dest counts unique elements */
3551 for (src = 1; src < length; src++) {
3552 /* find next unique element */
3553 while (list[src] == list[src-1]) {
3554 src++;
3555 if (src == length)
3556 goto after;
3557 }
3558 /* dest always points to where the next unique element goes */
3559 list[dest] = list[src];
3560 dest++;
3561 }
3562after:
102a775e
BB
3563 return dest;
3564}
3565
3566static int cmppid(const void *a, const void *b)
3567{
3568 return *(pid_t *)a - *(pid_t *)b;
3569}
3570
72a8cb30
BB
3571/*
3572 * find the appropriate pidlist for our purpose (given procs vs tasks)
3573 * returns with the lock on that pidlist already held, and takes care
3574 * of the use count, or returns NULL with no locks held if we're out of
3575 * memory.
3576 */
3577static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3578 enum cgroup_filetype type)
3579{
3580 struct cgroup_pidlist *l;
3581 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3582 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3583
72a8cb30 3584 /*
b395890a 3585 * We can't drop the pidlist_mutex before taking the l->rwsem in case
72a8cb30
BB
3586 * the last ref-holder is trying to remove l from the list at the same
3587 * time. Holding the pidlist_mutex precludes somebody taking whichever
3588 * list we find out from under us - compare release_pid_array().
3589 */
3590 mutex_lock(&cgrp->pidlist_mutex);
3591 list_for_each_entry(l, &cgrp->pidlists, links) {
3592 if (l->key.type == type && l->key.ns == ns) {
72a8cb30 3593 /* make sure l doesn't vanish out from under us */
b395890a 3594 down_write(&l->rwsem);
72a8cb30 3595 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3596 return l;
3597 }
3598 }
3599 /* entry not found; create a new one */
f4f4be2b 3600 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3601 if (!l) {
3602 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3603 return l;
3604 }
b395890a 3605 init_rwsem(&l->rwsem);
b1a21367 3606 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
b395890a 3607 down_write(&l->rwsem);
72a8cb30 3608 l->key.type = type;
b70cc5fd 3609 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3610 l->owner = cgrp;
3611 list_add(&l->links, &cgrp->pidlists);
3612 mutex_unlock(&cgrp->pidlist_mutex);
3613 return l;
3614}
3615
102a775e
BB
3616/*
3617 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3618 */
72a8cb30
BB
3619static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3620 struct cgroup_pidlist **lp)
102a775e
BB
3621{
3622 pid_t *array;
3623 int length;
3624 int pid, n = 0; /* used for populating the array */
72ec7029 3625 struct css_task_iter it;
817929ec 3626 struct task_struct *tsk;
102a775e
BB
3627 struct cgroup_pidlist *l;
3628
3629 /*
3630 * If cgroup gets more users after we read count, we won't have
3631 * enough space - tough. This race is indistinguishable to the
3632 * caller from the case that the additional cgroup users didn't
3633 * show up until sometime later on.
3634 */
3635 length = cgroup_task_count(cgrp);
d1d9fd33 3636 array = pidlist_allocate(length);
102a775e
BB
3637 if (!array)
3638 return -ENOMEM;
3639 /* now, populate the array */
72ec7029
TH
3640 css_task_iter_start(&cgrp->dummy_css, &it);
3641 while ((tsk = css_task_iter_next(&it))) {
102a775e 3642 if (unlikely(n == length))
817929ec 3643 break;
102a775e 3644 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3645 if (type == CGROUP_FILE_PROCS)
3646 pid = task_tgid_vnr(tsk);
3647 else
3648 pid = task_pid_vnr(tsk);
102a775e
BB
3649 if (pid > 0) /* make sure to only use valid results */
3650 array[n++] = pid;
817929ec 3651 }
72ec7029 3652 css_task_iter_end(&it);
102a775e
BB
3653 length = n;
3654 /* now sort & (if procs) strip out duplicates */
3655 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3656 if (type == CGROUP_FILE_PROCS)
6ee211ad 3657 length = pidlist_uniq(array, length);
72a8cb30
BB
3658 l = cgroup_pidlist_find(cgrp, type);
3659 if (!l) {
d1d9fd33 3660 pidlist_free(array);
72a8cb30 3661 return -ENOMEM;
102a775e 3662 }
72a8cb30 3663 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3664 pidlist_free(l->list);
102a775e
BB
3665 l->list = array;
3666 l->length = length;
3667 l->use_count++;
b395890a 3668 up_write(&l->rwsem);
72a8cb30 3669 *lp = l;
102a775e 3670 return 0;
bbcb81d0
PM
3671}
3672
846c7bb0 3673/**
a043e3b2 3674 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3675 * @stats: cgroupstats to fill information into
3676 * @dentry: A dentry entry belonging to the cgroup for which stats have
3677 * been requested.
a043e3b2
LZ
3678 *
3679 * Build and fill cgroupstats so that taskstats can export it to user
3680 * space.
846c7bb0
BS
3681 */
3682int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3683{
3684 int ret = -EINVAL;
bd89aabc 3685 struct cgroup *cgrp;
72ec7029 3686 struct css_task_iter it;
846c7bb0 3687 struct task_struct *tsk;
33d283be 3688
846c7bb0 3689 /*
33d283be
LZ
3690 * Validate dentry by checking the superblock operations,
3691 * and make sure it's a directory.
846c7bb0 3692 */
33d283be
LZ
3693 if (dentry->d_sb->s_op != &cgroup_ops ||
3694 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3695 goto err;
3696
3697 ret = 0;
bd89aabc 3698 cgrp = dentry->d_fsdata;
846c7bb0 3699
72ec7029
TH
3700 css_task_iter_start(&cgrp->dummy_css, &it);
3701 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3702 switch (tsk->state) {
3703 case TASK_RUNNING:
3704 stats->nr_running++;
3705 break;
3706 case TASK_INTERRUPTIBLE:
3707 stats->nr_sleeping++;
3708 break;
3709 case TASK_UNINTERRUPTIBLE:
3710 stats->nr_uninterruptible++;
3711 break;
3712 case TASK_STOPPED:
3713 stats->nr_stopped++;
3714 break;
3715 default:
3716 if (delayacct_is_task_waiting_on_io(tsk))
3717 stats->nr_io_wait++;
3718 break;
3719 }
3720 }
72ec7029 3721 css_task_iter_end(&it);
846c7bb0 3722
846c7bb0
BS
3723err:
3724 return ret;
3725}
3726
8f3ff208 3727
bbcb81d0 3728/*
102a775e 3729 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3730 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3731 * in the cgroup->l->list array.
bbcb81d0 3732 */
cc31edce 3733
102a775e 3734static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3735{
cc31edce
PM
3736 /*
3737 * Initially we receive a position value that corresponds to
3738 * one more than the last pid shown (or 0 on the first call or
3739 * after a seek to the start). Use a binary-search to find the
3740 * next pid to display, if any
3741 */
102a775e 3742 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3743 int index = 0, pid = *pos;
3744 int *iter;
3745
b395890a 3746 down_read(&l->rwsem);
cc31edce 3747 if (pid) {
102a775e 3748 int end = l->length;
20777766 3749
cc31edce
PM
3750 while (index < end) {
3751 int mid = (index + end) / 2;
102a775e 3752 if (l->list[mid] == pid) {
cc31edce
PM
3753 index = mid;
3754 break;
102a775e 3755 } else if (l->list[mid] <= pid)
cc31edce
PM
3756 index = mid + 1;
3757 else
3758 end = mid;
3759 }
3760 }
3761 /* If we're off the end of the array, we're done */
102a775e 3762 if (index >= l->length)
cc31edce
PM
3763 return NULL;
3764 /* Update the abstract position to be the actual pid that we found */
102a775e 3765 iter = l->list + index;
cc31edce
PM
3766 *pos = *iter;
3767 return iter;
3768}
3769
102a775e 3770static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3771{
102a775e 3772 struct cgroup_pidlist *l = s->private;
b395890a 3773 up_read(&l->rwsem);
cc31edce
PM
3774}
3775
102a775e 3776static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3777{
102a775e
BB
3778 struct cgroup_pidlist *l = s->private;
3779 pid_t *p = v;
3780 pid_t *end = l->list + l->length;
cc31edce
PM
3781 /*
3782 * Advance to the next pid in the array. If this goes off the
3783 * end, we're done
3784 */
3785 p++;
3786 if (p >= end) {
3787 return NULL;
3788 } else {
3789 *pos = *p;
3790 return p;
3791 }
3792}
3793
102a775e 3794static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3795{
3796 return seq_printf(s, "%d\n", *(int *)v);
3797}
bbcb81d0 3798
102a775e
BB
3799/*
3800 * seq_operations functions for iterating on pidlists through seq_file -
3801 * independent of whether it's tasks or procs
3802 */
3803static const struct seq_operations cgroup_pidlist_seq_operations = {
3804 .start = cgroup_pidlist_start,
3805 .stop = cgroup_pidlist_stop,
3806 .next = cgroup_pidlist_next,
3807 .show = cgroup_pidlist_show,
cc31edce
PM
3808};
3809
102a775e 3810static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3811{
b395890a 3812 down_write(&l->rwsem);
102a775e 3813 BUG_ON(!l->use_count);
b1a21367
TH
3814 /* if the last user, arm the destroy work */
3815 if (!--l->use_count)
3816 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
3817 CGROUP_PIDLIST_DESTROY_DELAY);
b395890a 3818 up_write(&l->rwsem);
bbcb81d0
PM
3819}
3820
102a775e 3821static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3822{
102a775e 3823 struct cgroup_pidlist *l;
ac1e69aa 3824
102a775e
BB
3825 l = ((struct seq_file *)file->private_data)->private;
3826 cgroup_release_pid_array(l);
cc31edce
PM
3827 return seq_release(inode, file);
3828}
3829
102a775e 3830static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3831 .read = seq_read,
3832 .llseek = seq_lseek,
3833 .write = cgroup_file_write,
102a775e 3834 .release = cgroup_pidlist_release,
cc31edce
PM
3835};
3836
bbcb81d0 3837/*
102a775e
BB
3838 * The following functions handle opens on a file that displays a pidlist
3839 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3840 * in the cgroup.
bbcb81d0 3841 */
102a775e 3842/* helper function for the two below it */
72a8cb30 3843static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3844{
bd89aabc 3845 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3846 struct cgroup_pidlist *l;
cc31edce 3847 int retval;
bbcb81d0 3848
102a775e 3849 /* have the array populated */
72a8cb30 3850 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3851 if (retval)
3852 return retval;
3853 /* configure file information */
3854 file->f_op = &cgroup_pidlist_operations;
cc31edce 3855
102a775e 3856 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3857 if (retval) {
102a775e 3858 cgroup_release_pid_array(l);
cc31edce 3859 return retval;
bbcb81d0 3860 }
102a775e 3861 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3862 return 0;
3863}
102a775e
BB
3864static int cgroup_tasks_open(struct inode *unused, struct file *file)
3865{
72a8cb30 3866 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3867}
3868static int cgroup_procs_open(struct inode *unused, struct file *file)
3869{
72a8cb30 3870 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3871}
bbcb81d0 3872
182446d0
TH
3873static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3874 struct cftype *cft)
81a6a5cd 3875{
182446d0 3876 return notify_on_release(css->cgroup);
81a6a5cd
PM
3877}
3878
182446d0
TH
3879static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3880 struct cftype *cft, u64 val)
6379c106 3881{
182446d0 3882 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3883 if (val)
182446d0 3884 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3885 else
182446d0 3886 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3887 return 0;
3888}
3889
1c8158ee
LZ
3890/*
3891 * When dput() is called asynchronously, if umount has been done and
3892 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3893 * there's a small window that vfs will see the root dentry with non-zero
3894 * refcnt and trigger BUG().
3895 *
3896 * That's why we hold a reference before dput() and drop it right after.
3897 */
3898static void cgroup_dput(struct cgroup *cgrp)
3899{
3900 struct super_block *sb = cgrp->root->sb;
3901
3902 atomic_inc(&sb->s_active);
3903 dput(cgrp->dentry);
3904 deactivate_super(sb);
3905}
3906
182446d0
TH
3907static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3908 struct cftype *cft)
97978e6d 3909{
182446d0 3910 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3911}
3912
182446d0
TH
3913static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3914 struct cftype *cft, u64 val)
97978e6d
DL
3915{
3916 if (val)
182446d0 3917 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3918 else
182446d0 3919 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3920 return 0;
3921}
3922
d5c56ced 3923static struct cftype cgroup_base_files[] = {
81a6a5cd 3924 {
d5c56ced 3925 .name = "cgroup.procs",
102a775e 3926 .open = cgroup_procs_open,
74a1166d 3927 .write_u64 = cgroup_procs_write,
74a1166d 3928 .mode = S_IRUGO | S_IWUSR,
102a775e 3929 },
97978e6d
DL
3930 {
3931 .name = "cgroup.clone_children",
873fe09e 3932 .flags = CFTYPE_INSANE,
97978e6d
DL
3933 .read_u64 = cgroup_clone_children_read,
3934 .write_u64 = cgroup_clone_children_write,
3935 },
873fe09e
TH
3936 {
3937 .name = "cgroup.sane_behavior",
3938 .flags = CFTYPE_ONLY_ON_ROOT,
3939 .read_seq_string = cgroup_sane_behavior_show,
3940 },
d5c56ced
TH
3941
3942 /*
3943 * Historical crazy stuff. These don't have "cgroup." prefix and
3944 * don't exist if sane_behavior. If you're depending on these, be
3945 * prepared to be burned.
3946 */
3947 {
3948 .name = "tasks",
3949 .flags = CFTYPE_INSANE, /* use "procs" instead */
3950 .open = cgroup_tasks_open,
3951 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3952 .mode = S_IRUGO | S_IWUSR,
3953 },
3954 {
3955 .name = "notify_on_release",
3956 .flags = CFTYPE_INSANE,
3957 .read_u64 = cgroup_read_notify_on_release,
3958 .write_u64 = cgroup_write_notify_on_release,
3959 },
6e6ff25b
TH
3960 {
3961 .name = "release_agent",
cc5943a7 3962 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
3963 .read_seq_string = cgroup_release_agent_show,
3964 .write_string = cgroup_release_agent_write,
3965 .max_write_len = PATH_MAX,
3966 },
db0416b6 3967 { } /* terminate */
bbcb81d0
PM
3968};
3969
13af07df 3970/**
628f7cd4 3971 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3972 * @cgrp: target cgroup
13af07df 3973 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3974 *
3975 * On failure, no file is added.
13af07df 3976 */
628f7cd4 3977static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3978{
ddbcc7e8 3979 struct cgroup_subsys *ss;
b420ba7d 3980 int i, ret = 0;
bbcb81d0 3981
8e3f6541 3982 /* process cftsets of each subsystem */
b420ba7d 3983 for_each_subsys(ss, i) {
8e3f6541 3984 struct cftype_set *set;
b420ba7d
TH
3985
3986 if (!test_bit(i, &subsys_mask))
13af07df 3987 continue;
8e3f6541 3988
bee55099 3989 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 3990 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
3991 if (ret < 0)
3992 goto err;
3993 }
ddbcc7e8 3994 }
ddbcc7e8 3995 return 0;
bee55099
TH
3996err:
3997 cgroup_clear_dir(cgrp, subsys_mask);
3998 return ret;
ddbcc7e8
PM
3999}
4000
0c21ead1
TH
4001/*
4002 * css destruction is four-stage process.
4003 *
4004 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4005 * Implemented in kill_css().
4006 *
4007 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4008 * and thus css_tryget() is guaranteed to fail, the css can be offlined
4009 * by invoking offline_css(). After offlining, the base ref is put.
4010 * Implemented in css_killed_work_fn().
4011 *
4012 * 3. When the percpu_ref reaches zero, the only possible remaining
4013 * accessors are inside RCU read sections. css_release() schedules the
4014 * RCU callback.
4015 *
4016 * 4. After the grace period, the css can be freed. Implemented in
4017 * css_free_work_fn().
4018 *
4019 * It is actually hairier because both step 2 and 4 require process context
4020 * and thus involve punting to css->destroy_work adding two additional
4021 * steps to the already complex sequence.
4022 */
35ef10da 4023static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4024{
4025 struct cgroup_subsys_state *css =
35ef10da 4026 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4027 struct cgroup *cgrp = css->cgroup;
48ddbe19 4028
0ae78e0b
TH
4029 if (css->parent)
4030 css_put(css->parent);
4031
0c21ead1
TH
4032 css->ss->css_free(css);
4033 cgroup_dput(cgrp);
48ddbe19
TH
4034}
4035
0c21ead1 4036static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4037{
4038 struct cgroup_subsys_state *css =
0c21ead1 4039 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4040
35ef10da
TH
4041 /*
4042 * css holds an extra ref to @cgrp->dentry which is put on the last
0c21ead1 4043 * css_put(). dput() requires process context which we don't have.
35ef10da
TH
4044 */
4045 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4046 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4047}
4048
d3daf28d
TH
4049static void css_release(struct percpu_ref *ref)
4050{
4051 struct cgroup_subsys_state *css =
4052 container_of(ref, struct cgroup_subsys_state, refcnt);
4053
0c21ead1 4054 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4055}
4056
623f926b
TH
4057static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4058 struct cgroup *cgrp)
ddbcc7e8 4059{
bd89aabc 4060 css->cgroup = cgrp;
72c97e54 4061 css->ss = ss;
ddbcc7e8 4062 css->flags = 0;
0ae78e0b
TH
4063
4064 if (cgrp->parent)
ca8bdcaf 4065 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 4066 else
38b53aba 4067 css->flags |= CSS_ROOT;
48ddbe19 4068
ca8bdcaf 4069 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4070}
4071
2a4ac633 4072/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4073static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4074{
623f926b 4075 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4076 int ret = 0;
4077
a31f2d3f
TH
4078 lockdep_assert_held(&cgroup_mutex);
4079
92fb9748 4080 if (ss->css_online)
eb95419b 4081 ret = ss->css_online(css);
ae7f164a 4082 if (!ret) {
eb95419b 4083 css->flags |= CSS_ONLINE;
f20104de 4084 css->cgroup->nr_css++;
ae7f164a
TH
4085 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4086 }
b1929db4 4087 return ret;
a31f2d3f
TH
4088}
4089
2a4ac633 4090/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4091static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4092{
623f926b 4093 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4094
4095 lockdep_assert_held(&cgroup_mutex);
4096
4097 if (!(css->flags & CSS_ONLINE))
4098 return;
4099
d7eeac19 4100 if (ss->css_offline)
eb95419b 4101 ss->css_offline(css);
a31f2d3f 4102
eb95419b 4103 css->flags &= ~CSS_ONLINE;
09a503ea 4104 css->cgroup->nr_css--;
0c21ead1 4105 RCU_INIT_POINTER(css->cgroup->subsys[ss->subsys_id], css);
a31f2d3f
TH
4106}
4107
ddbcc7e8 4108/*
a043e3b2
LZ
4109 * cgroup_create - create a cgroup
4110 * @parent: cgroup that will be parent of the new cgroup
4111 * @dentry: dentry of the new cgroup
4112 * @mode: mode to set on new inode
ddbcc7e8 4113 *
a043e3b2 4114 * Must be called with the mutex on the parent inode held
ddbcc7e8 4115 */
ddbcc7e8 4116static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4117 umode_t mode)
ddbcc7e8 4118{
ae7f164a 4119 struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
bd89aabc 4120 struct cgroup *cgrp;
65dff759 4121 struct cgroup_name *name;
ddbcc7e8
PM
4122 struct cgroupfs_root *root = parent->root;
4123 int err = 0;
4124 struct cgroup_subsys *ss;
4125 struct super_block *sb = root->sb;
4126
0a950f65 4127 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4128 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4129 if (!cgrp)
ddbcc7e8
PM
4130 return -ENOMEM;
4131
65dff759
LZ
4132 name = cgroup_alloc_name(dentry);
4133 if (!name)
4134 goto err_free_cgrp;
4135 rcu_assign_pointer(cgrp->name, name);
4136
4e96ee8e
LZ
4137 /*
4138 * Temporarily set the pointer to NULL, so idr_find() won't return
4139 * a half-baked cgroup.
4140 */
4141 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4142 if (cgrp->id < 0)
65dff759 4143 goto err_free_name;
0a950f65 4144
976c06bc
TH
4145 /*
4146 * Only live parents can have children. Note that the liveliness
4147 * check isn't strictly necessary because cgroup_mkdir() and
4148 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4149 * anyway so that locking is contained inside cgroup proper and we
4150 * don't get nasty surprises if we ever grow another caller.
4151 */
4152 if (!cgroup_lock_live_group(parent)) {
4153 err = -ENODEV;
0a950f65 4154 goto err_free_id;
976c06bc
TH
4155 }
4156
ddbcc7e8
PM
4157 /* Grab a reference on the superblock so the hierarchy doesn't
4158 * get deleted on unmount if there are child cgroups. This
4159 * can be done outside cgroup_mutex, since the sb can't
4160 * disappear while someone has an open control file on the
4161 * fs */
4162 atomic_inc(&sb->s_active);
4163
cc31edce 4164 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4165
fe1c06ca
LZ
4166 dentry->d_fsdata = cgrp;
4167 cgrp->dentry = dentry;
4168
bd89aabc 4169 cgrp->parent = parent;
0ae78e0b 4170 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4171 cgrp->root = parent->root;
ddbcc7e8 4172
b6abdb0e
LZ
4173 if (notify_on_release(parent))
4174 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4175
2260e7fc
TH
4176 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4177 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4178
5549c497 4179 for_each_root_subsys(root, ss) {
8c7f6edb 4180 struct cgroup_subsys_state *css;
4528fd05 4181
ca8bdcaf 4182 css = ss->css_alloc(cgroup_css(parent, ss));
ddbcc7e8
PM
4183 if (IS_ERR(css)) {
4184 err = PTR_ERR(css);
4b8b47eb 4185 goto err_free_all;
ddbcc7e8 4186 }
ae7f164a 4187 css_ar[ss->subsys_id] = css;
d3daf28d
TH
4188
4189 err = percpu_ref_init(&css->refcnt, css_release);
ae7f164a 4190 if (err)
d3daf28d
TH
4191 goto err_free_all;
4192
623f926b 4193 init_css(css, ss, cgrp);
ddbcc7e8
PM
4194 }
4195
4e139afc
TH
4196 /*
4197 * Create directory. cgroup_create_file() returns with the new
4198 * directory locked on success so that it can be populated without
4199 * dropping cgroup_mutex.
4200 */
28fd6f30 4201 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4202 if (err < 0)
4b8b47eb 4203 goto err_free_all;
4e139afc 4204 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4205
00356bd5 4206 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4207
4e139afc 4208 /* allocation complete, commit to creation */
4e139afc
TH
4209 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4210 root->number_of_cgroups++;
28fd6f30 4211
0ae78e0b
TH
4212 /* each css holds a ref to the cgroup's dentry and the parent css */
4213 for_each_root_subsys(root, ss) {
ae7f164a 4214 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
0ae78e0b 4215
ed957793 4216 dget(dentry);
930913a3 4217 css_get(css->parent);
0ae78e0b 4218 }
48ddbe19 4219
415cf07a
LZ
4220 /* hold a ref to the parent's dentry */
4221 dget(parent->dentry);
4222
b1929db4 4223 /* creation succeeded, notify subsystems */
5549c497 4224 for_each_root_subsys(root, ss) {
ae7f164a 4225 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
623f926b
TH
4226
4227 err = online_css(css);
b1929db4
TH
4228 if (err)
4229 goto err_destroy;
1f869e87
GC
4230
4231 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4232 parent->parent) {
4233 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4234 current->comm, current->pid, ss->name);
4235 if (!strcmp(ss->name, "memory"))
4236 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4237 ss->warned_broken_hierarchy = true;
4238 }
a8638030
TH
4239 }
4240
4e96ee8e
LZ
4241 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4242
2bb566cb 4243 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4244 if (err)
4245 goto err_destroy;
4246
4247 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4248 if (err)
4249 goto err_destroy;
ddbcc7e8
PM
4250
4251 mutex_unlock(&cgroup_mutex);
bd89aabc 4252 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4253
4254 return 0;
4255
4b8b47eb 4256err_free_all:
5549c497 4257 for_each_root_subsys(root, ss) {
ae7f164a 4258 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
d3daf28d
TH
4259
4260 if (css) {
4261 percpu_ref_cancel_init(&css->refcnt);
eb95419b 4262 ss->css_free(css);
d3daf28d 4263 }
ddbcc7e8 4264 }
ddbcc7e8 4265 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4266 /* Release the reference count that we took on the superblock */
4267 deactivate_super(sb);
0a950f65 4268err_free_id:
4e96ee8e 4269 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4270err_free_name:
4271 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4272err_free_cgrp:
bd89aabc 4273 kfree(cgrp);
ddbcc7e8 4274 return err;
4b8b47eb
TH
4275
4276err_destroy:
4277 cgroup_destroy_locked(cgrp);
4278 mutex_unlock(&cgroup_mutex);
4279 mutex_unlock(&dentry->d_inode->i_mutex);
4280 return err;
ddbcc7e8
PM
4281}
4282
18bb1db3 4283static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4284{
4285 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4286
4287 /* the vfs holds inode->i_mutex already */
4288 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4289}
4290
223dbc38
TH
4291/*
4292 * This is called when the refcnt of a css is confirmed to be killed.
4293 * css_tryget() is now guaranteed to fail.
4294 */
4295static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4296{
223dbc38
TH
4297 struct cgroup_subsys_state *css =
4298 container_of(work, struct cgroup_subsys_state, destroy_work);
4299 struct cgroup *cgrp = css->cgroup;
d3daf28d 4300
f20104de
TH
4301 mutex_lock(&cgroup_mutex);
4302
09a503ea
TH
4303 /*
4304 * css_tryget() is guaranteed to fail now. Tell subsystems to
4305 * initate destruction.
4306 */
4307 offline_css(css);
4308
f20104de
TH
4309 /*
4310 * If @cgrp is marked dead, it's waiting for refs of all css's to
4311 * be disabled before proceeding to the second phase of cgroup
4312 * destruction. If we are the last one, kick it off.
4313 */
09a503ea 4314 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
4315 cgroup_destroy_css_killed(cgrp);
4316
4317 mutex_unlock(&cgroup_mutex);
09a503ea
TH
4318
4319 /*
4320 * Put the css refs from kill_css(). Each css holds an extra
4321 * reference to the cgroup's dentry and cgroup removal proceeds
4322 * regardless of css refs. On the last put of each css, whenever
4323 * that may be, the extra dentry ref is put so that dentry
4324 * destruction happens only after all css's are released.
4325 */
4326 css_put(css);
d3daf28d
TH
4327}
4328
223dbc38
TH
4329/* css kill confirmation processing requires process context, bounce */
4330static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4331{
4332 struct cgroup_subsys_state *css =
4333 container_of(ref, struct cgroup_subsys_state, refcnt);
4334
223dbc38 4335 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4336 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4337}
4338
edae0c33
TH
4339/**
4340 * kill_css - destroy a css
4341 * @css: css to destroy
4342 *
3c14f8b4
TH
4343 * This function initiates destruction of @css by removing cgroup interface
4344 * files and putting its base reference. ->css_offline() will be invoked
4345 * asynchronously once css_tryget() is guaranteed to fail and when the
4346 * reference count reaches zero, @css will be released.
edae0c33
TH
4347 */
4348static void kill_css(struct cgroup_subsys_state *css)
4349{
3c14f8b4
TH
4350 cgroup_clear_dir(css->cgroup, 1 << css->ss->subsys_id);
4351
edae0c33
TH
4352 /*
4353 * Killing would put the base ref, but we need to keep it alive
4354 * until after ->css_offline().
4355 */
4356 css_get(css);
4357
4358 /*
4359 * cgroup core guarantees that, by the time ->css_offline() is
4360 * invoked, no new css reference will be given out via
4361 * css_tryget(). We can't simply call percpu_ref_kill() and
4362 * proceed to offlining css's because percpu_ref_kill() doesn't
4363 * guarantee that the ref is seen as killed on all CPUs on return.
4364 *
4365 * Use percpu_ref_kill_and_confirm() to get notifications as each
4366 * css is confirmed to be seen as killed on all CPUs.
4367 */
4368 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4369}
4370
4371/**
4372 * cgroup_destroy_locked - the first stage of cgroup destruction
4373 * @cgrp: cgroup to be destroyed
4374 *
4375 * css's make use of percpu refcnts whose killing latency shouldn't be
4376 * exposed to userland and are RCU protected. Also, cgroup core needs to
4377 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4378 * invoked. To satisfy all the requirements, destruction is implemented in
4379 * the following two steps.
4380 *
4381 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4382 * userland visible parts and start killing the percpu refcnts of
4383 * css's. Set up so that the next stage will be kicked off once all
4384 * the percpu refcnts are confirmed to be killed.
4385 *
4386 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4387 * rest of destruction. Once all cgroup references are gone, the
4388 * cgroup is RCU-freed.
4389 *
4390 * This function implements s1. After this step, @cgrp is gone as far as
4391 * the userland is concerned and a new cgroup with the same name may be
4392 * created. As cgroup doesn't care about the names internally, this
4393 * doesn't cause any problem.
4394 */
42809dd4
TH
4395static int cgroup_destroy_locked(struct cgroup *cgrp)
4396 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4397{
42809dd4 4398 struct dentry *d = cgrp->dentry;
ed957793 4399 struct cgroup_subsys *ss;
bb78a92f 4400 struct cgroup *child;
ddd69148 4401 bool empty;
ddbcc7e8 4402
42809dd4
TH
4403 lockdep_assert_held(&d->d_inode->i_mutex);
4404 lockdep_assert_held(&cgroup_mutex);
4405
ddd69148 4406 /*
6f3d828f
TH
4407 * css_set_lock synchronizes access to ->cset_links and prevents
4408 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4409 */
4410 read_lock(&css_set_lock);
bb78a92f 4411 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
4412 read_unlock(&css_set_lock);
4413 if (!empty)
ddbcc7e8 4414 return -EBUSY;
a043e3b2 4415
bb78a92f
HD
4416 /*
4417 * Make sure there's no live children. We can't test ->children
4418 * emptiness as dead children linger on it while being destroyed;
4419 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
4420 */
4421 empty = true;
4422 rcu_read_lock();
4423 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
4424 empty = cgroup_is_dead(child);
4425 if (!empty)
4426 break;
4427 }
4428 rcu_read_unlock();
4429 if (!empty)
4430 return -EBUSY;
4431
88703267 4432 /*
edae0c33
TH
4433 * Initiate massacre of all css's. cgroup_destroy_css_killed()
4434 * will be invoked to perform the rest of destruction once the
4435 * percpu refs of all css's are confirmed to be killed.
88703267 4436 */
edae0c33 4437 for_each_root_subsys(cgrp->root, ss)
ca8bdcaf 4438 kill_css(cgroup_css(cgrp, ss));
455050d2
TH
4439
4440 /*
4441 * Mark @cgrp dead. This prevents further task migration and child
4442 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4443 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4444 * resume iteration after dropping RCU read lock. See
492eb21b 4445 * css_next_child() for details.
455050d2 4446 */
54766d4a 4447 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4448
455050d2
TH
4449 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4450 raw_spin_lock(&release_list_lock);
4451 if (!list_empty(&cgrp->release_list))
4452 list_del_init(&cgrp->release_list);
4453 raw_spin_unlock(&release_list_lock);
4454
4455 /*
f20104de
TH
4456 * If @cgrp has css's attached, the second stage of cgroup
4457 * destruction is kicked off from css_killed_work_fn() after the
4458 * refs of all attached css's are killed. If @cgrp doesn't have
4459 * any css, we kick it off here.
4460 */
4461 if (!cgrp->nr_css)
4462 cgroup_destroy_css_killed(cgrp);
4463
455050d2 4464 /*
3c14f8b4
TH
4465 * Clear the base files and remove @cgrp directory. The removal
4466 * puts the base ref but we aren't quite done with @cgrp yet, so
4467 * hold onto it.
455050d2 4468 */
2bb566cb 4469 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4470 dget(d);
4471 cgroup_d_remove_dir(d);
4472
ea15f8cc
TH
4473 return 0;
4474};
4475
d3daf28d 4476/**
f20104de 4477 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
4478 * @work: cgroup->destroy_free_work
4479 *
4480 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
4481 * destroyed after all css's are offlined and performs the rest of
4482 * destruction. This is the second step of destruction described in the
4483 * comment above cgroup_destroy_locked().
d3daf28d 4484 */
f20104de 4485static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 4486{
ea15f8cc
TH
4487 struct cgroup *parent = cgrp->parent;
4488 struct dentry *d = cgrp->dentry;
ea15f8cc 4489
f20104de 4490 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 4491
999cd8a4 4492 /* delete this cgroup from parent->children */
eb6fd504 4493 list_del_rcu(&cgrp->sibling);
ed957793
TH
4494
4495 /*
4e96ee8e
LZ
4496 * We should remove the cgroup object from idr before its grace
4497 * period starts, so we won't be looking up a cgroup while the
4498 * cgroup is being freed.
ed957793 4499 */
4e96ee8e
LZ
4500 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4501 cgrp->id = -1;
b0ca5a84 4502
ddbcc7e8 4503 dput(d);
ddbcc7e8 4504
bd89aabc 4505 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4506 check_for_release(parent);
ddbcc7e8
PM
4507}
4508
42809dd4
TH
4509static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4510{
4511 int ret;
4512
4513 mutex_lock(&cgroup_mutex);
4514 ret = cgroup_destroy_locked(dentry->d_fsdata);
4515 mutex_unlock(&cgroup_mutex);
4516
4517 return ret;
4518}
4519
8e3f6541
TH
4520static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4521{
4522 INIT_LIST_HEAD(&ss->cftsets);
4523
4524 /*
4525 * base_cftset is embedded in subsys itself, no need to worry about
4526 * deregistration.
4527 */
4528 if (ss->base_cftypes) {
2bb566cb
TH
4529 struct cftype *cft;
4530
4531 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4532 cft->ss = ss;
4533
8e3f6541
TH
4534 ss->base_cftset.cfts = ss->base_cftypes;
4535 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4536 }
4537}
4538
06a11920 4539static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4540{
ddbcc7e8 4541 struct cgroup_subsys_state *css;
cfe36bde
DC
4542
4543 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4544
648bb56d
TH
4545 mutex_lock(&cgroup_mutex);
4546
8e3f6541
TH
4547 /* init base cftset */
4548 cgroup_init_cftsets(ss);
4549
ddbcc7e8 4550 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4551 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4552 ss->root = &cgroup_dummy_root;
ca8bdcaf 4553 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4554 /* We don't handle early failures gracefully */
4555 BUG_ON(IS_ERR(css));
623f926b 4556 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4557
e8d55fde 4558 /* Update the init_css_set to contain a subsys
817929ec 4559 * pointer to this state - since the subsystem is
e8d55fde
LZ
4560 * newly registered, all tasks and hence the
4561 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4562 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4563
4564 need_forkexit_callback |= ss->fork || ss->exit;
4565
e8d55fde
LZ
4566 /* At system boot, before all subsystems have been
4567 * registered, no tasks have been forked, so we don't
4568 * need to invoke fork callbacks here. */
4569 BUG_ON(!list_empty(&init_task.tasks));
4570
ae7f164a 4571 BUG_ON(online_css(css));
a8638030 4572
648bb56d
TH
4573 mutex_unlock(&cgroup_mutex);
4574
e6a1105b
BB
4575 /* this function shouldn't be used with modular subsystems, since they
4576 * need to register a subsys_id, among other things */
4577 BUG_ON(ss->module);
4578}
4579
4580/**
4581 * cgroup_load_subsys: load and register a modular subsystem at runtime
4582 * @ss: the subsystem to load
4583 *
4584 * This function should be called in a modular subsystem's initcall. If the
88393161 4585 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4586 * up for use. If the subsystem is built-in anyway, work is delegated to the
4587 * simpler cgroup_init_subsys.
4588 */
4589int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4590{
e6a1105b 4591 struct cgroup_subsys_state *css;
d19e19de 4592 int i, ret;
b67bfe0d 4593 struct hlist_node *tmp;
5abb8855 4594 struct css_set *cset;
0ac801fe 4595 unsigned long key;
e6a1105b
BB
4596
4597 /* check name and function validity */
4598 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4599 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4600 return -EINVAL;
4601
4602 /*
4603 * we don't support callbacks in modular subsystems. this check is
4604 * before the ss->module check for consistency; a subsystem that could
4605 * be a module should still have no callbacks even if the user isn't
4606 * compiling it as one.
4607 */
4608 if (ss->fork || ss->exit)
4609 return -EINVAL;
4610
4611 /*
4612 * an optionally modular subsystem is built-in: we want to do nothing,
4613 * since cgroup_init_subsys will have already taken care of it.
4614 */
4615 if (ss->module == NULL) {
be45c900 4616 /* a sanity check */
9871bf95 4617 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4618 return 0;
4619 }
4620
8e3f6541
TH
4621 /* init base cftset */
4622 cgroup_init_cftsets(ss);
4623
e6a1105b 4624 mutex_lock(&cgroup_mutex);
9871bf95 4625 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4626
4627 /*
92fb9748 4628 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4629 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4630 * attachment).
e6a1105b 4631 */
ca8bdcaf 4632 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
e6a1105b 4633 if (IS_ERR(css)) {
9871bf95
TH
4634 /* failure case - need to deassign the cgroup_subsys[] slot. */
4635 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4636 mutex_unlock(&cgroup_mutex);
4637 return PTR_ERR(css);
4638 }
4639
9871bf95
TH
4640 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4641 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4642
4643 /* our new subsystem will be attached to the dummy hierarchy. */
623f926b 4644 init_css(css, ss, cgroup_dummy_top);
e6a1105b
BB
4645
4646 /*
4647 * Now we need to entangle the css into the existing css_sets. unlike
4648 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4649 * will need a new pointer to it; done by iterating the css_set_table.
4650 * furthermore, modifying the existing css_sets will corrupt the hash
4651 * table state, so each changed css_set will need its hash recomputed.
4652 * this is all done under the css_set_lock.
4653 */
4654 write_lock(&css_set_lock);
5abb8855 4655 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4656 /* skip entries that we already rehashed */
5abb8855 4657 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4658 continue;
4659 /* remove existing entry */
5abb8855 4660 hash_del(&cset->hlist);
0ac801fe 4661 /* set new value */
5abb8855 4662 cset->subsys[ss->subsys_id] = css;
0ac801fe 4663 /* recompute hash and restore entry */
5abb8855
TH
4664 key = css_set_hash(cset->subsys);
4665 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4666 }
4667 write_unlock(&css_set_lock);
4668
ae7f164a 4669 ret = online_css(css);
b1929db4
TH
4670 if (ret)
4671 goto err_unload;
a8638030 4672
e6a1105b
BB
4673 /* success! */
4674 mutex_unlock(&cgroup_mutex);
4675 return 0;
d19e19de
TH
4676
4677err_unload:
4678 mutex_unlock(&cgroup_mutex);
4679 /* @ss can't be mounted here as try_module_get() would fail */
4680 cgroup_unload_subsys(ss);
4681 return ret;
ddbcc7e8 4682}
e6a1105b 4683EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4684
cf5d5941
BB
4685/**
4686 * cgroup_unload_subsys: unload a modular subsystem
4687 * @ss: the subsystem to unload
4688 *
4689 * This function should be called in a modular subsystem's exitcall. When this
4690 * function is invoked, the refcount on the subsystem's module will be 0, so
4691 * the subsystem will not be attached to any hierarchy.
4692 */
4693void cgroup_unload_subsys(struct cgroup_subsys *ss)
4694{
69d0206c 4695 struct cgrp_cset_link *link;
cf5d5941
BB
4696
4697 BUG_ON(ss->module == NULL);
4698
4699 /*
4700 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4701 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4702 * doesn't start being used while we're killing it off.
4703 */
9871bf95 4704 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4705
4706 mutex_lock(&cgroup_mutex);
02ae7486 4707
ca8bdcaf 4708 offline_css(cgroup_css(cgroup_dummy_top, ss));
02ae7486 4709
cf5d5941 4710 /* deassign the subsys_id */
9871bf95 4711 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4712
9871bf95 4713 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4714 list_del_init(&ss->sibling);
cf5d5941
BB
4715
4716 /*
9871bf95
TH
4717 * disentangle the css from all css_sets attached to the dummy
4718 * top. as in loading, we need to pay our respects to the hashtable
4719 * gods.
cf5d5941
BB
4720 */
4721 write_lock(&css_set_lock);
9871bf95 4722 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4723 struct css_set *cset = link->cset;
0ac801fe 4724 unsigned long key;
cf5d5941 4725
5abb8855
TH
4726 hash_del(&cset->hlist);
4727 cset->subsys[ss->subsys_id] = NULL;
4728 key = css_set_hash(cset->subsys);
4729 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4730 }
4731 write_unlock(&css_set_lock);
4732
4733 /*
9871bf95
TH
4734 * remove subsystem's css from the cgroup_dummy_top and free it -
4735 * need to free before marking as null because ss->css_free needs
2ff2a7d0 4736 * the cgrp->subsys pointer to find their state.
cf5d5941 4737 */
ca8bdcaf 4738 ss->css_free(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 4739 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
cf5d5941
BB
4740
4741 mutex_unlock(&cgroup_mutex);
4742}
4743EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4744
ddbcc7e8 4745/**
a043e3b2
LZ
4746 * cgroup_init_early - cgroup initialization at system boot
4747 *
4748 * Initialize cgroups at system boot, and initialize any
4749 * subsystems that request early init.
ddbcc7e8
PM
4750 */
4751int __init cgroup_init_early(void)
4752{
30159ec7 4753 struct cgroup_subsys *ss;
ddbcc7e8 4754 int i;
30159ec7 4755
146aa1bd 4756 atomic_set(&init_css_set.refcount, 1);
69d0206c 4757 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4758 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4759 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4760 css_set_count = 1;
9871bf95
TH
4761 init_cgroup_root(&cgroup_dummy_root);
4762 cgroup_root_count = 1;
a4ea1cc9 4763 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4764
69d0206c 4765 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4766 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4767 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4768 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4769
30159ec7
TH
4770 /* at bootup time, we don't worry about modular subsystems */
4771 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4772 BUG_ON(!ss->name);
4773 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4774 BUG_ON(!ss->css_alloc);
4775 BUG_ON(!ss->css_free);
ddbcc7e8 4776 if (ss->subsys_id != i) {
cfe36bde 4777 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4778 ss->name, ss->subsys_id);
4779 BUG();
4780 }
4781
4782 if (ss->early_init)
4783 cgroup_init_subsys(ss);
4784 }
4785 return 0;
4786}
4787
4788/**
a043e3b2
LZ
4789 * cgroup_init - cgroup initialization
4790 *
4791 * Register cgroup filesystem and /proc file, and initialize
4792 * any subsystems that didn't request early init.
ddbcc7e8
PM
4793 */
4794int __init cgroup_init(void)
4795{
30159ec7 4796 struct cgroup_subsys *ss;
0ac801fe 4797 unsigned long key;
30159ec7 4798 int i, err;
a424316c
PM
4799
4800 err = bdi_init(&cgroup_backing_dev_info);
4801 if (err)
4802 return err;
ddbcc7e8 4803
30159ec7 4804 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
4805 if (!ss->early_init)
4806 cgroup_init_subsys(ss);
4807 }
4808
fa3ca07e 4809 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4810 mutex_lock(&cgroup_mutex);
4811 mutex_lock(&cgroup_root_mutex);
4812
82fe9b0d
TH
4813 /* Add init_css_set to the hash table */
4814 key = css_set_hash(init_css_set.subsys);
4815 hash_add(css_set_table, &init_css_set.hlist, key);
4816
fc76df70 4817 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4818
4e96ee8e
LZ
4819 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4820 0, 1, GFP_KERNEL);
4821 BUG_ON(err < 0);
4822
54e7b4eb
TH
4823 mutex_unlock(&cgroup_root_mutex);
4824 mutex_unlock(&cgroup_mutex);
4825
676db4af
GK
4826 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4827 if (!cgroup_kobj) {
4828 err = -ENOMEM;
4829 goto out;
4830 }
4831
ddbcc7e8 4832 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4833 if (err < 0) {
4834 kobject_put(cgroup_kobj);
ddbcc7e8 4835 goto out;
676db4af 4836 }
ddbcc7e8 4837
46ae220b 4838 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4839
ddbcc7e8 4840out:
a424316c
PM
4841 if (err)
4842 bdi_destroy(&cgroup_backing_dev_info);
4843
ddbcc7e8
PM
4844 return err;
4845}
b4f48b63 4846
e5fca243
TH
4847static int __init cgroup_wq_init(void)
4848{
4849 /*
4850 * There isn't much point in executing destruction path in
4851 * parallel. Good chunk is serialized with cgroup_mutex anyway.
4852 * Use 1 for @max_active.
4853 *
4854 * We would prefer to do this in cgroup_init() above, but that
4855 * is called before init_workqueues(): so leave this until after.
4856 */
4857 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
4858 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4859
4860 /*
4861 * Used to destroy pidlists and separate to serve as flush domain.
4862 * Cap @max_active to 1 too.
4863 */
4864 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4865 0, 1);
4866 BUG_ON(!cgroup_pidlist_destroy_wq);
4867
e5fca243
TH
4868 return 0;
4869}
4870core_initcall(cgroup_wq_init);
4871
a424316c
PM
4872/*
4873 * proc_cgroup_show()
4874 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4875 * - Used for /proc/<pid>/cgroup.
4876 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4877 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4878 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4879 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4880 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4881 * cgroup to top_cgroup.
4882 */
4883
4884/* TODO: Use a proper seq_file iterator */
8d8b97ba 4885int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4886{
4887 struct pid *pid;
4888 struct task_struct *tsk;
4889 char *buf;
4890 int retval;
4891 struct cgroupfs_root *root;
4892
4893 retval = -ENOMEM;
4894 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4895 if (!buf)
4896 goto out;
4897
4898 retval = -ESRCH;
4899 pid = m->private;
4900 tsk = get_pid_task(pid, PIDTYPE_PID);
4901 if (!tsk)
4902 goto out_free;
4903
4904 retval = 0;
4905
4906 mutex_lock(&cgroup_mutex);
4907
e5f6a860 4908 for_each_active_root(root) {
a424316c 4909 struct cgroup_subsys *ss;
bd89aabc 4910 struct cgroup *cgrp;
a424316c
PM
4911 int count = 0;
4912
2c6ab6d2 4913 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 4914 for_each_root_subsys(root, ss)
a424316c 4915 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4916 if (strlen(root->name))
4917 seq_printf(m, "%sname=%s", count ? "," : "",
4918 root->name);
a424316c 4919 seq_putc(m, ':');
7717f7ba 4920 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4921 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4922 if (retval < 0)
4923 goto out_unlock;
4924 seq_puts(m, buf);
4925 seq_putc(m, '\n');
4926 }
4927
4928out_unlock:
4929 mutex_unlock(&cgroup_mutex);
4930 put_task_struct(tsk);
4931out_free:
4932 kfree(buf);
4933out:
4934 return retval;
4935}
4936
a424316c
PM
4937/* Display information about each subsystem and each hierarchy */
4938static int proc_cgroupstats_show(struct seq_file *m, void *v)
4939{
30159ec7 4940 struct cgroup_subsys *ss;
a424316c 4941 int i;
a424316c 4942
8bab8dde 4943 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4944 /*
4945 * ideally we don't want subsystems moving around while we do this.
4946 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4947 * subsys/hierarchy state.
4948 */
a424316c 4949 mutex_lock(&cgroup_mutex);
30159ec7
TH
4950
4951 for_each_subsys(ss, i)
2c6ab6d2
PM
4952 seq_printf(m, "%s\t%d\t%d\t%d\n",
4953 ss->name, ss->root->hierarchy_id,
8bab8dde 4954 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 4955
a424316c
PM
4956 mutex_unlock(&cgroup_mutex);
4957 return 0;
4958}
4959
4960static int cgroupstats_open(struct inode *inode, struct file *file)
4961{
9dce07f1 4962 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4963}
4964
828c0950 4965static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4966 .open = cgroupstats_open,
4967 .read = seq_read,
4968 .llseek = seq_lseek,
4969 .release = single_release,
4970};
4971
b4f48b63
PM
4972/**
4973 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4974 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4975 *
4976 * Description: A task inherits its parent's cgroup at fork().
4977 *
4978 * A pointer to the shared css_set was automatically copied in
4979 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4980 * it was not made under the protection of RCU or cgroup_mutex, so
4981 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4982 * have already changed current->cgroups, allowing the previously
4983 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4984 *
4985 * At the point that cgroup_fork() is called, 'current' is the parent
4986 * task, and the passed argument 'child' points to the child task.
4987 */
4988void cgroup_fork(struct task_struct *child)
4989{
9bb71308 4990 task_lock(current);
a8ad805c 4991 get_css_set(task_css_set(current));
817929ec 4992 child->cgroups = current->cgroups;
9bb71308 4993 task_unlock(current);
817929ec 4994 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4995}
4996
817929ec 4997/**
a043e3b2
LZ
4998 * cgroup_post_fork - called on a new task after adding it to the task list
4999 * @child: the task in question
5000 *
5edee61e
TH
5001 * Adds the task to the list running through its css_set if necessary and
5002 * call the subsystem fork() callbacks. Has to be after the task is
5003 * visible on the task list in case we race with the first call to
0942eeee 5004 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5005 * list.
a043e3b2 5006 */
817929ec
PM
5007void cgroup_post_fork(struct task_struct *child)
5008{
30159ec7 5009 struct cgroup_subsys *ss;
5edee61e
TH
5010 int i;
5011
3ce3230a
FW
5012 /*
5013 * use_task_css_set_links is set to 1 before we walk the tasklist
5014 * under the tasklist_lock and we read it here after we added the child
5015 * to the tasklist under the tasklist_lock as well. If the child wasn't
5016 * yet in the tasklist when we walked through it from
5017 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5018 * should be visible now due to the paired locking and barriers implied
5019 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5020 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5021 * lock on fork.
5022 */
817929ec
PM
5023 if (use_task_css_set_links) {
5024 write_lock(&css_set_lock);
d8783832
TH
5025 task_lock(child);
5026 if (list_empty(&child->cg_list))
a8ad805c 5027 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5028 task_unlock(child);
817929ec
PM
5029 write_unlock(&css_set_lock);
5030 }
5edee61e
TH
5031
5032 /*
5033 * Call ss->fork(). This must happen after @child is linked on
5034 * css_set; otherwise, @child might change state between ->fork()
5035 * and addition to css_set.
5036 */
5037 if (need_forkexit_callback) {
7d8e0bf5
LZ
5038 /*
5039 * fork/exit callbacks are supported only for builtin
5040 * subsystems, and the builtin section of the subsys
5041 * array is immutable, so we don't need to lock the
5042 * subsys array here. On the other hand, modular section
5043 * of the array can be freed at module unload, so we
5044 * can't touch that.
5045 */
30159ec7 5046 for_each_builtin_subsys(ss, i)
5edee61e
TH
5047 if (ss->fork)
5048 ss->fork(child);
5edee61e 5049 }
817929ec 5050}
5edee61e 5051
b4f48b63
PM
5052/**
5053 * cgroup_exit - detach cgroup from exiting task
5054 * @tsk: pointer to task_struct of exiting process
a043e3b2 5055 * @run_callback: run exit callbacks?
b4f48b63
PM
5056 *
5057 * Description: Detach cgroup from @tsk and release it.
5058 *
5059 * Note that cgroups marked notify_on_release force every task in
5060 * them to take the global cgroup_mutex mutex when exiting.
5061 * This could impact scaling on very large systems. Be reluctant to
5062 * use notify_on_release cgroups where very high task exit scaling
5063 * is required on large systems.
5064 *
5065 * the_top_cgroup_hack:
5066 *
5067 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5068 *
5069 * We call cgroup_exit() while the task is still competent to
5070 * handle notify_on_release(), then leave the task attached to the
5071 * root cgroup in each hierarchy for the remainder of its exit.
5072 *
5073 * To do this properly, we would increment the reference count on
5074 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5075 * code we would add a second cgroup function call, to drop that
5076 * reference. This would just create an unnecessary hot spot on
5077 * the top_cgroup reference count, to no avail.
5078 *
5079 * Normally, holding a reference to a cgroup without bumping its
5080 * count is unsafe. The cgroup could go away, or someone could
5081 * attach us to a different cgroup, decrementing the count on
5082 * the first cgroup that we never incremented. But in this case,
5083 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5084 * which wards off any cgroup_attach_task() attempts, or task is a failed
5085 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5086 */
5087void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5088{
30159ec7 5089 struct cgroup_subsys *ss;
5abb8855 5090 struct css_set *cset;
d41d5a01 5091 int i;
817929ec
PM
5092
5093 /*
5094 * Unlink from the css_set task list if necessary.
5095 * Optimistically check cg_list before taking
5096 * css_set_lock
5097 */
5098 if (!list_empty(&tsk->cg_list)) {
5099 write_lock(&css_set_lock);
5100 if (!list_empty(&tsk->cg_list))
8d258797 5101 list_del_init(&tsk->cg_list);
817929ec
PM
5102 write_unlock(&css_set_lock);
5103 }
5104
b4f48b63
PM
5105 /* Reassign the task to the init_css_set. */
5106 task_lock(tsk);
a8ad805c
TH
5107 cset = task_css_set(tsk);
5108 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5109
5110 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5111 /*
5112 * fork/exit callbacks are supported only for builtin
5113 * subsystems, see cgroup_post_fork() for details.
5114 */
30159ec7 5115 for_each_builtin_subsys(ss, i) {
d41d5a01 5116 if (ss->exit) {
eb95419b
TH
5117 struct cgroup_subsys_state *old_css = cset->subsys[i];
5118 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5119
eb95419b 5120 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5121 }
5122 }
5123 }
b4f48b63 5124 task_unlock(tsk);
d41d5a01 5125
5abb8855 5126 put_css_set_taskexit(cset);
b4f48b63 5127}
697f4161 5128
bd89aabc 5129static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5130{
f50daa70 5131 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5132 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5133 /*
5134 * Control Group is currently removeable. If it's not
81a6a5cd 5135 * already queued for a userspace notification, queue
f50daa70
LZ
5136 * it now
5137 */
81a6a5cd 5138 int need_schedule_work = 0;
f50daa70 5139
cdcc136f 5140 raw_spin_lock(&release_list_lock);
54766d4a 5141 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5142 list_empty(&cgrp->release_list)) {
5143 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5144 need_schedule_work = 1;
5145 }
cdcc136f 5146 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5147 if (need_schedule_work)
5148 schedule_work(&release_agent_work);
5149 }
5150}
5151
81a6a5cd
PM
5152/*
5153 * Notify userspace when a cgroup is released, by running the
5154 * configured release agent with the name of the cgroup (path
5155 * relative to the root of cgroup file system) as the argument.
5156 *
5157 * Most likely, this user command will try to rmdir this cgroup.
5158 *
5159 * This races with the possibility that some other task will be
5160 * attached to this cgroup before it is removed, or that some other
5161 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5162 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5163 * unused, and this cgroup will be reprieved from its death sentence,
5164 * to continue to serve a useful existence. Next time it's released,
5165 * we will get notified again, if it still has 'notify_on_release' set.
5166 *
5167 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5168 * means only wait until the task is successfully execve()'d. The
5169 * separate release agent task is forked by call_usermodehelper(),
5170 * then control in this thread returns here, without waiting for the
5171 * release agent task. We don't bother to wait because the caller of
5172 * this routine has no use for the exit status of the release agent
5173 * task, so no sense holding our caller up for that.
81a6a5cd 5174 */
81a6a5cd
PM
5175static void cgroup_release_agent(struct work_struct *work)
5176{
5177 BUG_ON(work != &release_agent_work);
5178 mutex_lock(&cgroup_mutex);
cdcc136f 5179 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5180 while (!list_empty(&release_list)) {
5181 char *argv[3], *envp[3];
5182 int i;
e788e066 5183 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5184 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5185 struct cgroup,
5186 release_list);
bd89aabc 5187 list_del_init(&cgrp->release_list);
cdcc136f 5188 raw_spin_unlock(&release_list_lock);
81a6a5cd 5189 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5190 if (!pathbuf)
5191 goto continue_free;
5192 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5193 goto continue_free;
5194 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5195 if (!agentbuf)
5196 goto continue_free;
81a6a5cd
PM
5197
5198 i = 0;
e788e066
PM
5199 argv[i++] = agentbuf;
5200 argv[i++] = pathbuf;
81a6a5cd
PM
5201 argv[i] = NULL;
5202
5203 i = 0;
5204 /* minimal command environment */
5205 envp[i++] = "HOME=/";
5206 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5207 envp[i] = NULL;
5208
5209 /* Drop the lock while we invoke the usermode helper,
5210 * since the exec could involve hitting disk and hence
5211 * be a slow process */
5212 mutex_unlock(&cgroup_mutex);
5213 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5214 mutex_lock(&cgroup_mutex);
e788e066
PM
5215 continue_free:
5216 kfree(pathbuf);
5217 kfree(agentbuf);
cdcc136f 5218 raw_spin_lock(&release_list_lock);
81a6a5cd 5219 }
cdcc136f 5220 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5221 mutex_unlock(&cgroup_mutex);
5222}
8bab8dde
PM
5223
5224static int __init cgroup_disable(char *str)
5225{
30159ec7 5226 struct cgroup_subsys *ss;
8bab8dde 5227 char *token;
30159ec7 5228 int i;
8bab8dde
PM
5229
5230 while ((token = strsep(&str, ",")) != NULL) {
5231 if (!*token)
5232 continue;
be45c900 5233
30159ec7
TH
5234 /*
5235 * cgroup_disable, being at boot time, can't know about
5236 * module subsystems, so we don't worry about them.
5237 */
5238 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5239 if (!strcmp(token, ss->name)) {
5240 ss->disabled = 1;
5241 printk(KERN_INFO "Disabling %s control group"
5242 " subsystem\n", ss->name);
5243 break;
5244 }
5245 }
5246 }
5247 return 1;
5248}
5249__setup("cgroup_disable=", cgroup_disable);
38460b48 5250
b77d7b60 5251/**
35cf0836
TH
5252 * css_from_dir - get corresponding css from the dentry of a cgroup dir
5253 * @dentry: directory dentry of interest
5254 * @ss: subsystem of interest
b77d7b60
TH
5255 *
5256 * Must be called under RCU read lock. The caller is responsible for
5257 * pinning the returned css if it needs to be accessed outside the RCU
5258 * critical section.
e5d1367f 5259 */
35cf0836
TH
5260struct cgroup_subsys_state *css_from_dir(struct dentry *dentry,
5261 struct cgroup_subsys *ss)
e5d1367f
SE
5262{
5263 struct cgroup *cgrp;
e5d1367f 5264
b77d7b60
TH
5265 WARN_ON_ONCE(!rcu_read_lock_held());
5266
35cf0836
TH
5267 /* is @dentry a cgroup dir? */
5268 if (!dentry->d_inode ||
5269 dentry->d_inode->i_op != &cgroup_dir_inode_operations)
e5d1367f
SE
5270 return ERR_PTR(-EBADF);
5271
35cf0836 5272 cgrp = __d_cgrp(dentry);
ca8bdcaf 5273 return cgroup_css(cgrp, ss) ?: ERR_PTR(-ENOENT);
e5d1367f 5274}
e5d1367f 5275
1cb650b9
LZ
5276/**
5277 * css_from_id - lookup css by id
5278 * @id: the cgroup id
5279 * @ss: cgroup subsys to be looked into
5280 *
5281 * Returns the css if there's valid one with @id, otherwise returns NULL.
5282 * Should be called under rcu_read_lock().
5283 */
5284struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5285{
5286 struct cgroup *cgrp;
5287
5288 rcu_lockdep_assert(rcu_read_lock_held() ||
5289 lockdep_is_held(&cgroup_mutex),
5290 "css_from_id() needs proper protection");
5291
5292 cgrp = idr_find(&ss->root->cgroup_idr, id);
5293 if (cgrp)
d1625964 5294 return cgroup_css(cgrp, ss);
1cb650b9 5295 return NULL;
e5d1367f
SE
5296}
5297
fe693435 5298#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5299static struct cgroup_subsys_state *
5300debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5301{
5302 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5303
5304 if (!css)
5305 return ERR_PTR(-ENOMEM);
5306
5307 return css;
5308}
5309
eb95419b 5310static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5311{
eb95419b 5312 kfree(css);
fe693435
PM
5313}
5314
182446d0
TH
5315static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5316 struct cftype *cft)
fe693435 5317{
182446d0 5318 return cgroup_task_count(css->cgroup);
fe693435
PM
5319}
5320
182446d0
TH
5321static u64 current_css_set_read(struct cgroup_subsys_state *css,
5322 struct cftype *cft)
fe693435
PM
5323{
5324 return (u64)(unsigned long)current->cgroups;
5325}
5326
182446d0 5327static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5328 struct cftype *cft)
fe693435
PM
5329{
5330 u64 count;
5331
5332 rcu_read_lock();
a8ad805c 5333 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5334 rcu_read_unlock();
5335 return count;
5336}
5337
182446d0 5338static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
7717f7ba
PM
5339 struct cftype *cft,
5340 struct seq_file *seq)
5341{
69d0206c 5342 struct cgrp_cset_link *link;
5abb8855 5343 struct css_set *cset;
7717f7ba
PM
5344
5345 read_lock(&css_set_lock);
5346 rcu_read_lock();
5abb8855 5347 cset = rcu_dereference(current->cgroups);
69d0206c 5348 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5349 struct cgroup *c = link->cgrp;
5350 const char *name;
5351
5352 if (c->dentry)
5353 name = c->dentry->d_name.name;
5354 else
5355 name = "?";
2c6ab6d2
PM
5356 seq_printf(seq, "Root %d group %s\n",
5357 c->root->hierarchy_id, name);
7717f7ba
PM
5358 }
5359 rcu_read_unlock();
5360 read_unlock(&css_set_lock);
5361 return 0;
5362}
5363
5364#define MAX_TASKS_SHOWN_PER_CSS 25
182446d0
TH
5365static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5366 struct cftype *cft, struct seq_file *seq)
7717f7ba 5367{
69d0206c 5368 struct cgrp_cset_link *link;
7717f7ba
PM
5369
5370 read_lock(&css_set_lock);
182446d0 5371 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5372 struct css_set *cset = link->cset;
7717f7ba
PM
5373 struct task_struct *task;
5374 int count = 0;
5abb8855
TH
5375 seq_printf(seq, "css_set %p\n", cset);
5376 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5377 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5378 seq_puts(seq, " ...\n");
5379 break;
5380 } else {
5381 seq_printf(seq, " task %d\n",
5382 task_pid_vnr(task));
5383 }
5384 }
5385 }
5386 read_unlock(&css_set_lock);
5387 return 0;
5388}
5389
182446d0 5390static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5391{
182446d0 5392 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5393}
5394
5395static struct cftype debug_files[] = {
fe693435
PM
5396 {
5397 .name = "taskcount",
5398 .read_u64 = debug_taskcount_read,
5399 },
5400
5401 {
5402 .name = "current_css_set",
5403 .read_u64 = current_css_set_read,
5404 },
5405
5406 {
5407 .name = "current_css_set_refcount",
5408 .read_u64 = current_css_set_refcount_read,
5409 },
5410
7717f7ba
PM
5411 {
5412 .name = "current_css_set_cg_links",
5413 .read_seq_string = current_css_set_cg_links_read,
5414 },
5415
5416 {
5417 .name = "cgroup_css_links",
5418 .read_seq_string = cgroup_css_links_read,
5419 },
5420
fe693435
PM
5421 {
5422 .name = "releasable",
5423 .read_u64 = releasable_read,
5424 },
fe693435 5425
4baf6e33
TH
5426 { } /* terminate */
5427};
fe693435
PM
5428
5429struct cgroup_subsys debug_subsys = {
5430 .name = "debug",
92fb9748
TH
5431 .css_alloc = debug_css_alloc,
5432 .css_free = debug_css_free,
fe693435 5433 .subsys_id = debug_subsys_id,
4baf6e33 5434 .base_cftypes = debug_files,
fe693435
PM
5435};
5436#endif /* CONFIG_CGROUP_DEBUG */