cgroup: move cgroup->subsys[] assignment to online_css()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
8af01f56 84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
9871bf95 99static struct cgroup_subsys *cgroup_subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8 103/*
9871bf95
TH
104 * The dummy hierarchy, reserved for the subsystems that are otherwise
105 * unattached - it never has more than a single cgroup, and all tasks are
106 * part of that cgroup.
ddbcc7e8 107 */
9871bf95
TH
108static struct cgroupfs_root cgroup_dummy_root;
109
110/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
111static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8 112
05ef1d7c
TH
113/*
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
115 */
116struct cfent {
117 struct list_head node;
118 struct dentry *dentry;
119 struct cftype *type;
105347ba 120 struct cgroup_subsys_state *css;
712317ad
LZ
121
122 /* file xattrs */
123 struct simple_xattrs xattrs;
05ef1d7c
TH
124};
125
38460b48
KH
126/*
127 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
128 * cgroup_subsys->use_id != 0.
129 */
130#define CSS_ID_MAX (65535)
131struct css_id {
132 /*
133 * The css to which this ID points. This pointer is set to valid value
134 * after cgroup is populated. If cgroup is removed, this will be NULL.
135 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
136 * is called after synchronize_rcu(). But for safe use, css_tryget()
137 * should be used for avoiding race.
38460b48 138 */
2c392b8c 139 struct cgroup_subsys_state __rcu *css;
38460b48
KH
140 /*
141 * ID of this css.
142 */
143 unsigned short id;
144 /*
145 * Depth in hierarchy which this ID belongs to.
146 */
147 unsigned short depth;
148 /*
149 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 */
151 struct rcu_head rcu_head;
152 /*
153 * Hierarchy of CSS ID belongs to.
154 */
155 unsigned short stack[0]; /* Array of Length (depth+1) */
156};
157
0dea1168 158/*
25985edc 159 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
160 */
161struct cgroup_event {
162 /*
81eeaf04 163 * css which the event belongs to.
0dea1168 164 */
81eeaf04 165 struct cgroup_subsys_state *css;
0dea1168
KS
166 /*
167 * Control file which the event associated.
168 */
169 struct cftype *cft;
170 /*
171 * eventfd to signal userspace about the event.
172 */
173 struct eventfd_ctx *eventfd;
174 /*
175 * Each of these stored in a list by the cgroup.
176 */
177 struct list_head list;
178 /*
179 * All fields below needed to unregister event when
180 * userspace closes eventfd.
181 */
182 poll_table pt;
183 wait_queue_head_t *wqh;
184 wait_queue_t wait;
185 struct work_struct remove;
186};
38460b48 187
ddbcc7e8
PM
188/* The list of hierarchy roots */
189
9871bf95
TH
190static LIST_HEAD(cgroup_roots);
191static int cgroup_root_count;
ddbcc7e8 192
54e7b4eb
TH
193/*
194 * Hierarchy ID allocation and mapping. It follows the same exclusion
195 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
196 * writes, either for reads.
197 */
1a574231 198static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 199
65dff759
LZ
200static struct cgroup_name root_cgroup_name = { .name = "/" };
201
794611a1
LZ
202/*
203 * Assign a monotonically increasing serial number to cgroups. It
204 * guarantees cgroups with bigger numbers are newer than those with smaller
205 * numbers. Also, as cgroups are always appended to the parent's
206 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
207 * the ascending serial number order on the list. Protected by
208 * cgroup_mutex.
794611a1 209 */
00356bd5 210static u64 cgroup_serial_nr_next = 1;
794611a1 211
ddbcc7e8 212/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
213 * check for fork/exit handlers to call. This avoids us having to do
214 * extra work in the fork/exit path if none of the subsystems need to
215 * be called.
ddbcc7e8 216 */
8947f9d5 217static int need_forkexit_callback __read_mostly;
ddbcc7e8 218
628f7cd4
TH
219static struct cftype cgroup_base_files[];
220
ea15f8cc 221static void cgroup_offline_fn(struct work_struct *work);
42809dd4 222static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
223static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
224 bool is_add);
42809dd4 225
95109b62
TH
226/**
227 * cgroup_css - obtain a cgroup's css for the specified subsystem
228 * @cgrp: the cgroup of interest
229 * @subsys_id: the subsystem of interest
230 *
231 * Return @cgrp's css (cgroup_subsys_state) associated with @subsys_id.
73e80ed8
TH
232 * This function must be called either under cgroup_mutex or
233 * rcu_read_lock() and the caller is responsible for pinning the returned
234 * css if it wants to keep accessing it outside the said locks. This
235 * function may return %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
236 */
237static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
238 int subsys_id)
239{
73e80ed8
TH
240 return rcu_dereference_check(cgrp->subsys[subsys_id],
241 lockdep_is_held(&cgroup_mutex));
95109b62
TH
242}
243
ddbcc7e8 244/* convenient tests for these bits */
54766d4a 245static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 246{
54766d4a 247 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
248}
249
78574cf9
LZ
250/**
251 * cgroup_is_descendant - test ancestry
252 * @cgrp: the cgroup to be tested
253 * @ancestor: possible ancestor of @cgrp
254 *
255 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
256 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
257 * and @ancestor are accessible.
258 */
259bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
260{
261 while (cgrp) {
262 if (cgrp == ancestor)
263 return true;
264 cgrp = cgrp->parent;
265 }
266 return false;
267}
268EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 269
e9685a03 270static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
271{
272 const int bits =
bd89aabc
PM
273 (1 << CGRP_RELEASABLE) |
274 (1 << CGRP_NOTIFY_ON_RELEASE);
275 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
276}
277
e9685a03 278static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 279{
bd89aabc 280 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
281}
282
30159ec7
TH
283/**
284 * for_each_subsys - iterate all loaded cgroup subsystems
285 * @ss: the iteration cursor
286 * @i: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
287 *
288 * Should be called under cgroup_mutex.
289 */
290#define for_each_subsys(ss, i) \
291 for ((i) = 0; (i) < CGROUP_SUBSYS_COUNT; (i)++) \
292 if (({ lockdep_assert_held(&cgroup_mutex); \
293 !((ss) = cgroup_subsys[i]); })) { } \
294 else
295
296/**
297 * for_each_builtin_subsys - iterate all built-in cgroup subsystems
298 * @ss: the iteration cursor
299 * @i: the index of @ss, CGROUP_BUILTIN_SUBSYS_COUNT after reaching the end
300 *
301 * Bulit-in subsystems are always present and iteration itself doesn't
302 * require any synchronization.
303 */
304#define for_each_builtin_subsys(ss, i) \
305 for ((i) = 0; (i) < CGROUP_BUILTIN_SUBSYS_COUNT && \
306 (((ss) = cgroup_subsys[i]) || true); (i)++)
307
5549c497
TH
308/* iterate each subsystem attached to a hierarchy */
309#define for_each_root_subsys(root, ss) \
310 list_for_each_entry((ss), &(root)->subsys_list, sibling)
ddbcc7e8 311
5549c497
TH
312/* iterate across the active hierarchies */
313#define for_each_active_root(root) \
314 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 315
f6ea9372
TH
316static inline struct cgroup *__d_cgrp(struct dentry *dentry)
317{
318 return dentry->d_fsdata;
319}
320
05ef1d7c 321static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
322{
323 return dentry->d_fsdata;
324}
325
05ef1d7c
TH
326static inline struct cftype *__d_cft(struct dentry *dentry)
327{
328 return __d_cfe(dentry)->type;
329}
330
7ae1bad9
TH
331/**
332 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
333 * @cgrp: the cgroup to be checked for liveness
334 *
47cfcd09
TH
335 * On success, returns true; the mutex should be later unlocked. On
336 * failure returns false with no lock held.
7ae1bad9 337 */
b9777cf8 338static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
339{
340 mutex_lock(&cgroup_mutex);
54766d4a 341 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
342 mutex_unlock(&cgroup_mutex);
343 return false;
344 }
345 return true;
346}
7ae1bad9 347
81a6a5cd
PM
348/* the list of cgroups eligible for automatic release. Protected by
349 * release_list_lock */
350static LIST_HEAD(release_list);
cdcc136f 351static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
352static void cgroup_release_agent(struct work_struct *work);
353static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 354static void check_for_release(struct cgroup *cgrp);
81a6a5cd 355
69d0206c
TH
356/*
357 * A cgroup can be associated with multiple css_sets as different tasks may
358 * belong to different cgroups on different hierarchies. In the other
359 * direction, a css_set is naturally associated with multiple cgroups.
360 * This M:N relationship is represented by the following link structure
361 * which exists for each association and allows traversing the associations
362 * from both sides.
363 */
364struct cgrp_cset_link {
365 /* the cgroup and css_set this link associates */
366 struct cgroup *cgrp;
367 struct css_set *cset;
368
369 /* list of cgrp_cset_links anchored at cgrp->cset_links */
370 struct list_head cset_link;
371
372 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
373 struct list_head cgrp_link;
817929ec
PM
374};
375
376/* The default css_set - used by init and its children prior to any
377 * hierarchies being mounted. It contains a pointer to the root state
378 * for each subsystem. Also used to anchor the list of css_sets. Not
379 * reference-counted, to improve performance when child cgroups
380 * haven't been created.
381 */
382
383static struct css_set init_css_set;
69d0206c 384static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 385
e6a1105b
BB
386static int cgroup_init_idr(struct cgroup_subsys *ss,
387 struct cgroup_subsys_state *css);
38460b48 388
0942eeee
TH
389/*
390 * css_set_lock protects the list of css_set objects, and the chain of
391 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 392 * css_task_iter_start().
0942eeee 393 */
817929ec
PM
394static DEFINE_RWLOCK(css_set_lock);
395static int css_set_count;
396
7717f7ba
PM
397/*
398 * hash table for cgroup groups. This improves the performance to find
399 * an existing css_set. This hash doesn't (currently) take into
400 * account cgroups in empty hierarchies.
401 */
472b1053 402#define CSS_SET_HASH_BITS 7
0ac801fe 403static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 404
0ac801fe 405static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 406{
0ac801fe 407 unsigned long key = 0UL;
30159ec7
TH
408 struct cgroup_subsys *ss;
409 int i;
472b1053 410
30159ec7 411 for_each_subsys(ss, i)
0ac801fe
LZ
412 key += (unsigned long)css[i];
413 key = (key >> 16) ^ key;
472b1053 414
0ac801fe 415 return key;
472b1053
LZ
416}
417
0942eeee
TH
418/*
419 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
420 * until after the first call to css_task_iter_start(). This reduces the
421 * fork()/exit() overhead for people who have cgroups compiled into their
422 * kernel but not actually in use.
0942eeee 423 */
8947f9d5 424static int use_task_css_set_links __read_mostly;
817929ec 425
5abb8855 426static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 427{
69d0206c 428 struct cgrp_cset_link *link, *tmp_link;
5abb8855 429
146aa1bd
LJ
430 /*
431 * Ensure that the refcount doesn't hit zero while any readers
432 * can see it. Similar to atomic_dec_and_lock(), but for an
433 * rwlock
434 */
5abb8855 435 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
436 return;
437 write_lock(&css_set_lock);
5abb8855 438 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
439 write_unlock(&css_set_lock);
440 return;
441 }
81a6a5cd 442
2c6ab6d2 443 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 444 hash_del(&cset->hlist);
2c6ab6d2
PM
445 css_set_count--;
446
69d0206c 447 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 448 struct cgroup *cgrp = link->cgrp;
5abb8855 449
69d0206c
TH
450 list_del(&link->cset_link);
451 list_del(&link->cgrp_link);
71b5707e 452
ddd69148 453 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 454 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 455 if (taskexit)
bd89aabc
PM
456 set_bit(CGRP_RELEASABLE, &cgrp->flags);
457 check_for_release(cgrp);
81a6a5cd 458 }
2c6ab6d2
PM
459
460 kfree(link);
81a6a5cd 461 }
2c6ab6d2
PM
462
463 write_unlock(&css_set_lock);
5abb8855 464 kfree_rcu(cset, rcu_head);
b4f48b63
PM
465}
466
817929ec
PM
467/*
468 * refcounted get/put for css_set objects
469 */
5abb8855 470static inline void get_css_set(struct css_set *cset)
817929ec 471{
5abb8855 472 atomic_inc(&cset->refcount);
817929ec
PM
473}
474
5abb8855 475static inline void put_css_set(struct css_set *cset)
817929ec 476{
5abb8855 477 __put_css_set(cset, 0);
817929ec
PM
478}
479
5abb8855 480static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 481{
5abb8855 482 __put_css_set(cset, 1);
81a6a5cd
PM
483}
484
b326f9d0 485/**
7717f7ba 486 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
487 * @cset: candidate css_set being tested
488 * @old_cset: existing css_set for a task
7717f7ba
PM
489 * @new_cgrp: cgroup that's being entered by the task
490 * @template: desired set of css pointers in css_set (pre-calculated)
491 *
6f4b7e63 492 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
493 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
494 */
5abb8855
TH
495static bool compare_css_sets(struct css_set *cset,
496 struct css_set *old_cset,
7717f7ba
PM
497 struct cgroup *new_cgrp,
498 struct cgroup_subsys_state *template[])
499{
500 struct list_head *l1, *l2;
501
5abb8855 502 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
503 /* Not all subsystems matched */
504 return false;
505 }
506
507 /*
508 * Compare cgroup pointers in order to distinguish between
509 * different cgroups in heirarchies with no subsystems. We
510 * could get by with just this check alone (and skip the
511 * memcmp above) but on most setups the memcmp check will
512 * avoid the need for this more expensive check on almost all
513 * candidates.
514 */
515
69d0206c
TH
516 l1 = &cset->cgrp_links;
517 l2 = &old_cset->cgrp_links;
7717f7ba 518 while (1) {
69d0206c 519 struct cgrp_cset_link *link1, *link2;
5abb8855 520 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
521
522 l1 = l1->next;
523 l2 = l2->next;
524 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
525 if (l1 == &cset->cgrp_links) {
526 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
527 break;
528 } else {
69d0206c 529 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
530 }
531 /* Locate the cgroups associated with these links. */
69d0206c
TH
532 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
533 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
534 cgrp1 = link1->cgrp;
535 cgrp2 = link2->cgrp;
7717f7ba 536 /* Hierarchies should be linked in the same order. */
5abb8855 537 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
538
539 /*
540 * If this hierarchy is the hierarchy of the cgroup
541 * that's changing, then we need to check that this
542 * css_set points to the new cgroup; if it's any other
543 * hierarchy, then this css_set should point to the
544 * same cgroup as the old css_set.
545 */
5abb8855
TH
546 if (cgrp1->root == new_cgrp->root) {
547 if (cgrp1 != new_cgrp)
7717f7ba
PM
548 return false;
549 } else {
5abb8855 550 if (cgrp1 != cgrp2)
7717f7ba
PM
551 return false;
552 }
553 }
554 return true;
555}
556
b326f9d0
TH
557/**
558 * find_existing_css_set - init css array and find the matching css_set
559 * @old_cset: the css_set that we're using before the cgroup transition
560 * @cgrp: the cgroup that we're moving into
561 * @template: out param for the new set of csses, should be clear on entry
817929ec 562 */
5abb8855
TH
563static struct css_set *find_existing_css_set(struct css_set *old_cset,
564 struct cgroup *cgrp,
565 struct cgroup_subsys_state *template[])
b4f48b63 566{
bd89aabc 567 struct cgroupfs_root *root = cgrp->root;
30159ec7 568 struct cgroup_subsys *ss;
5abb8855 569 struct css_set *cset;
0ac801fe 570 unsigned long key;
b326f9d0 571 int i;
817929ec 572
aae8aab4
BB
573 /*
574 * Build the set of subsystem state objects that we want to see in the
575 * new css_set. while subsystems can change globally, the entries here
576 * won't change, so no need for locking.
577 */
30159ec7 578 for_each_subsys(ss, i) {
a1a71b45 579 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
580 /* Subsystem is in this hierarchy. So we want
581 * the subsystem state from the new
582 * cgroup */
40e93b39 583 template[i] = cgroup_css(cgrp, i);
817929ec
PM
584 } else {
585 /* Subsystem is not in this hierarchy, so we
586 * don't want to change the subsystem state */
5abb8855 587 template[i] = old_cset->subsys[i];
817929ec
PM
588 }
589 }
590
0ac801fe 591 key = css_set_hash(template);
5abb8855
TH
592 hash_for_each_possible(css_set_table, cset, hlist, key) {
593 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
594 continue;
595
596 /* This css_set matches what we need */
5abb8855 597 return cset;
472b1053 598 }
817929ec
PM
599
600 /* No existing cgroup group matched */
601 return NULL;
602}
603
69d0206c 604static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 605{
69d0206c 606 struct cgrp_cset_link *link, *tmp_link;
36553434 607
69d0206c
TH
608 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
609 list_del(&link->cset_link);
36553434
LZ
610 kfree(link);
611 }
612}
613
69d0206c
TH
614/**
615 * allocate_cgrp_cset_links - allocate cgrp_cset_links
616 * @count: the number of links to allocate
617 * @tmp_links: list_head the allocated links are put on
618 *
619 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
620 * through ->cset_link. Returns 0 on success or -errno.
817929ec 621 */
69d0206c 622static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 623{
69d0206c 624 struct cgrp_cset_link *link;
817929ec 625 int i;
69d0206c
TH
626
627 INIT_LIST_HEAD(tmp_links);
628
817929ec 629 for (i = 0; i < count; i++) {
f4f4be2b 630 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 631 if (!link) {
69d0206c 632 free_cgrp_cset_links(tmp_links);
817929ec
PM
633 return -ENOMEM;
634 }
69d0206c 635 list_add(&link->cset_link, tmp_links);
817929ec
PM
636 }
637 return 0;
638}
639
c12f65d4
LZ
640/**
641 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 642 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 643 * @cset: the css_set to be linked
c12f65d4
LZ
644 * @cgrp: the destination cgroup
645 */
69d0206c
TH
646static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
647 struct cgroup *cgrp)
c12f65d4 648{
69d0206c 649 struct cgrp_cset_link *link;
c12f65d4 650
69d0206c
TH
651 BUG_ON(list_empty(tmp_links));
652 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
653 link->cset = cset;
7717f7ba 654 link->cgrp = cgrp;
69d0206c 655 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
656 /*
657 * Always add links to the tail of the list so that the list
658 * is sorted by order of hierarchy creation
659 */
69d0206c 660 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
661}
662
b326f9d0
TH
663/**
664 * find_css_set - return a new css_set with one cgroup updated
665 * @old_cset: the baseline css_set
666 * @cgrp: the cgroup to be updated
667 *
668 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
669 * substituted into the appropriate hierarchy.
817929ec 670 */
5abb8855
TH
671static struct css_set *find_css_set(struct css_set *old_cset,
672 struct cgroup *cgrp)
817929ec 673{
b326f9d0 674 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 675 struct css_set *cset;
69d0206c
TH
676 struct list_head tmp_links;
677 struct cgrp_cset_link *link;
0ac801fe 678 unsigned long key;
472b1053 679
b326f9d0
TH
680 lockdep_assert_held(&cgroup_mutex);
681
817929ec
PM
682 /* First see if we already have a cgroup group that matches
683 * the desired set */
7e9abd89 684 read_lock(&css_set_lock);
5abb8855
TH
685 cset = find_existing_css_set(old_cset, cgrp, template);
686 if (cset)
687 get_css_set(cset);
7e9abd89 688 read_unlock(&css_set_lock);
817929ec 689
5abb8855
TH
690 if (cset)
691 return cset;
817929ec 692
f4f4be2b 693 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 694 if (!cset)
817929ec
PM
695 return NULL;
696
69d0206c 697 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 698 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 699 kfree(cset);
817929ec
PM
700 return NULL;
701 }
702
5abb8855 703 atomic_set(&cset->refcount, 1);
69d0206c 704 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
705 INIT_LIST_HEAD(&cset->tasks);
706 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
707
708 /* Copy the set of subsystem state objects generated in
709 * find_existing_css_set() */
5abb8855 710 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
711
712 write_lock(&css_set_lock);
713 /* Add reference counts and links from the new css_set. */
69d0206c 714 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 715 struct cgroup *c = link->cgrp;
69d0206c 716
7717f7ba
PM
717 if (c->root == cgrp->root)
718 c = cgrp;
69d0206c 719 link_css_set(&tmp_links, cset, c);
7717f7ba 720 }
817929ec 721
69d0206c 722 BUG_ON(!list_empty(&tmp_links));
817929ec 723
817929ec 724 css_set_count++;
472b1053
LZ
725
726 /* Add this cgroup group to the hash table */
5abb8855
TH
727 key = css_set_hash(cset->subsys);
728 hash_add(css_set_table, &cset->hlist, key);
472b1053 729
817929ec
PM
730 write_unlock(&css_set_lock);
731
5abb8855 732 return cset;
b4f48b63
PM
733}
734
7717f7ba
PM
735/*
736 * Return the cgroup for "task" from the given hierarchy. Must be
737 * called with cgroup_mutex held.
738 */
739static struct cgroup *task_cgroup_from_root(struct task_struct *task,
740 struct cgroupfs_root *root)
741{
5abb8855 742 struct css_set *cset;
7717f7ba
PM
743 struct cgroup *res = NULL;
744
745 BUG_ON(!mutex_is_locked(&cgroup_mutex));
746 read_lock(&css_set_lock);
747 /*
748 * No need to lock the task - since we hold cgroup_mutex the
749 * task can't change groups, so the only thing that can happen
750 * is that it exits and its css is set back to init_css_set.
751 */
a8ad805c 752 cset = task_css_set(task);
5abb8855 753 if (cset == &init_css_set) {
7717f7ba
PM
754 res = &root->top_cgroup;
755 } else {
69d0206c
TH
756 struct cgrp_cset_link *link;
757
758 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 759 struct cgroup *c = link->cgrp;
69d0206c 760
7717f7ba
PM
761 if (c->root == root) {
762 res = c;
763 break;
764 }
765 }
766 }
767 read_unlock(&css_set_lock);
768 BUG_ON(!res);
769 return res;
770}
771
ddbcc7e8
PM
772/*
773 * There is one global cgroup mutex. We also require taking
774 * task_lock() when dereferencing a task's cgroup subsys pointers.
775 * See "The task_lock() exception", at the end of this comment.
776 *
777 * A task must hold cgroup_mutex to modify cgroups.
778 *
779 * Any task can increment and decrement the count field without lock.
780 * So in general, code holding cgroup_mutex can't rely on the count
781 * field not changing. However, if the count goes to zero, then only
956db3ca 782 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
783 * means that no tasks are currently attached, therefore there is no
784 * way a task attached to that cgroup can fork (the other way to
785 * increment the count). So code holding cgroup_mutex can safely
786 * assume that if the count is zero, it will stay zero. Similarly, if
787 * a task holds cgroup_mutex on a cgroup with zero count, it
788 * knows that the cgroup won't be removed, as cgroup_rmdir()
789 * needs that mutex.
790 *
ddbcc7e8
PM
791 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
792 * (usually) take cgroup_mutex. These are the two most performance
793 * critical pieces of code here. The exception occurs on cgroup_exit(),
794 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
795 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
796 * to the release agent with the name of the cgroup (path relative to
797 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
798 *
799 * A cgroup can only be deleted if both its 'count' of using tasks
800 * is zero, and its list of 'children' cgroups is empty. Since all
801 * tasks in the system use _some_ cgroup, and since there is always at
802 * least one task in the system (init, pid == 1), therefore, top_cgroup
803 * always has either children cgroups and/or using tasks. So we don't
804 * need a special hack to ensure that top_cgroup cannot be deleted.
805 *
806 * The task_lock() exception
807 *
808 * The need for this exception arises from the action of
d0b2fdd2 809 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 810 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
811 * several performance critical places that need to reference
812 * task->cgroup without the expense of grabbing a system global
813 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 814 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
815 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
816 * the task_struct routinely used for such matters.
817 *
818 * P.S. One more locking exception. RCU is used to guard the
956db3ca 819 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
820 */
821
ddbcc7e8
PM
822/*
823 * A couple of forward declarations required, due to cyclic reference loop:
824 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
825 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
826 * -> cgroup_mkdir.
827 */
828
18bb1db3 829static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 830static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 831static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
628f7cd4 832static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
6e1d5dcc 833static const struct inode_operations cgroup_dir_inode_operations;
828c0950 834static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
835
836static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 837 .name = "cgroup",
e4ad08fe 838 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 839};
ddbcc7e8 840
623f926b 841static int alloc_css_id(struct cgroup_subsys_state *child_css);
38460b48 842
a5e7ed32 843static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
844{
845 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
846
847 if (inode) {
85fe4025 848 inode->i_ino = get_next_ino();
ddbcc7e8 849 inode->i_mode = mode;
76aac0e9
DH
850 inode->i_uid = current_fsuid();
851 inode->i_gid = current_fsgid();
ddbcc7e8
PM
852 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
853 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
854 }
855 return inode;
856}
857
65dff759
LZ
858static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
859{
860 struct cgroup_name *name;
861
862 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
863 if (!name)
864 return NULL;
865 strcpy(name->name, dentry->d_name.name);
866 return name;
867}
868
be445626
LZ
869static void cgroup_free_fn(struct work_struct *work)
870{
ea15f8cc 871 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
872 struct cgroup_subsys *ss;
873
874 mutex_lock(&cgroup_mutex);
875 /*
876 * Release the subsystem state objects.
877 */
eb95419b 878 for_each_root_subsys(cgrp->root, ss) {
40e93b39 879 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b
TH
880
881 ss->css_free(css);
882 }
be445626
LZ
883
884 cgrp->root->number_of_cgroups--;
885 mutex_unlock(&cgroup_mutex);
886
415cf07a
LZ
887 /*
888 * We get a ref to the parent's dentry, and put the ref when
889 * this cgroup is being freed, so it's guaranteed that the
890 * parent won't be destroyed before its children.
891 */
892 dput(cgrp->parent->dentry);
893
be445626
LZ
894 /*
895 * Drop the active superblock reference that we took when we
cc20e01c
LZ
896 * created the cgroup. This will free cgrp->root, if we are
897 * holding the last reference to @sb.
be445626
LZ
898 */
899 deactivate_super(cgrp->root->sb);
900
901 /*
902 * if we're getting rid of the cgroup, refcount should ensure
903 * that there are no pidlists left.
904 */
905 BUG_ON(!list_empty(&cgrp->pidlists));
906
907 simple_xattrs_free(&cgrp->xattrs);
908
65dff759 909 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
910 kfree(cgrp);
911}
912
913static void cgroup_free_rcu(struct rcu_head *head)
914{
915 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
916
ea15f8cc
TH
917 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
918 schedule_work(&cgrp->destroy_work);
be445626
LZ
919}
920
ddbcc7e8
PM
921static void cgroup_diput(struct dentry *dentry, struct inode *inode)
922{
923 /* is dentry a directory ? if so, kfree() associated cgroup */
924 if (S_ISDIR(inode->i_mode)) {
bd89aabc 925 struct cgroup *cgrp = dentry->d_fsdata;
be445626 926
54766d4a 927 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 928 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
929 } else {
930 struct cfent *cfe = __d_cfe(dentry);
931 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
932
933 WARN_ONCE(!list_empty(&cfe->node) &&
934 cgrp != &cgrp->root->top_cgroup,
935 "cfe still linked for %s\n", cfe->type->name);
712317ad 936 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 937 kfree(cfe);
ddbcc7e8
PM
938 }
939 iput(inode);
940}
941
c72a04e3
AV
942static int cgroup_delete(const struct dentry *d)
943{
944 return 1;
945}
946
ddbcc7e8
PM
947static void remove_dir(struct dentry *d)
948{
949 struct dentry *parent = dget(d->d_parent);
950
951 d_delete(d);
952 simple_rmdir(parent->d_inode, d);
953 dput(parent);
954}
955
2739d3cc 956static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
957{
958 struct cfent *cfe;
959
960 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
961 lockdep_assert_held(&cgroup_mutex);
962
2739d3cc
LZ
963 /*
964 * If we're doing cleanup due to failure of cgroup_create(),
965 * the corresponding @cfe may not exist.
966 */
05ef1d7c
TH
967 list_for_each_entry(cfe, &cgrp->files, node) {
968 struct dentry *d = cfe->dentry;
969
970 if (cft && cfe->type != cft)
971 continue;
972
973 dget(d);
974 d_delete(d);
ce27e317 975 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
976 list_del_init(&cfe->node);
977 dput(d);
978
2739d3cc 979 break;
ddbcc7e8 980 }
05ef1d7c
TH
981}
982
13af07df 983/**
628f7cd4 984 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 985 * @cgrp: target cgroup
13af07df
AR
986 * @subsys_mask: mask of the subsystem ids whose files should be removed
987 */
628f7cd4 988static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 989{
13af07df 990 struct cgroup_subsys *ss;
b420ba7d 991 int i;
05ef1d7c 992
b420ba7d 993 for_each_subsys(ss, i) {
13af07df 994 struct cftype_set *set;
b420ba7d
TH
995
996 if (!test_bit(i, &subsys_mask))
13af07df
AR
997 continue;
998 list_for_each_entry(set, &ss->cftsets, node)
2bb566cb 999 cgroup_addrm_files(cgrp, set->cfts, false);
13af07df 1000 }
ddbcc7e8
PM
1001}
1002
1003/*
1004 * NOTE : the dentry must have been dget()'ed
1005 */
1006static void cgroup_d_remove_dir(struct dentry *dentry)
1007{
2fd6b7f5 1008 struct dentry *parent;
ddbcc7e8 1009
2fd6b7f5
NP
1010 parent = dentry->d_parent;
1011 spin_lock(&parent->d_lock);
3ec762ad 1012 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1013 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1014 spin_unlock(&dentry->d_lock);
1015 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1016 remove_dir(dentry);
1017}
1018
aae8aab4 1019/*
cf5d5941
BB
1020 * Call with cgroup_mutex held. Drops reference counts on modules, including
1021 * any duplicate ones that parse_cgroupfs_options took. If this function
1022 * returns an error, no reference counts are touched.
aae8aab4 1023 */
ddbcc7e8 1024static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1025 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1026{
bd89aabc 1027 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1028 struct cgroup_subsys *ss;
1d5be6b2 1029 unsigned long pinned = 0;
3126121f 1030 int i, ret;
ddbcc7e8 1031
aae8aab4 1032 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1033 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1034
ddbcc7e8 1035 /* Check that any added subsystems are currently free */
30159ec7 1036 for_each_subsys(ss, i) {
1d5be6b2 1037 if (!(added_mask & (1 << i)))
ddbcc7e8 1038 continue;
30159ec7 1039
1d5be6b2 1040 /* is the subsystem mounted elsewhere? */
9871bf95 1041 if (ss->root != &cgroup_dummy_root) {
1d5be6b2
TH
1042 ret = -EBUSY;
1043 goto out_put;
1044 }
1045
1046 /* pin the module */
1047 if (!try_module_get(ss->module)) {
1048 ret = -ENOENT;
1049 goto out_put;
ddbcc7e8 1050 }
1d5be6b2
TH
1051 pinned |= 1 << i;
1052 }
1053
1054 /* subsys could be missing if unloaded between parsing and here */
1055 if (added_mask != pinned) {
1056 ret = -ENOENT;
1057 goto out_put;
ddbcc7e8
PM
1058 }
1059
3126121f
TH
1060 ret = cgroup_populate_dir(cgrp, added_mask);
1061 if (ret)
1d5be6b2 1062 goto out_put;
3126121f
TH
1063
1064 /*
1065 * Nothing can fail from this point on. Remove files for the
1066 * removed subsystems and rebind each subsystem.
1067 */
1068 cgroup_clear_dir(cgrp, removed_mask);
1069
30159ec7 1070 for_each_subsys(ss, i) {
ddbcc7e8 1071 unsigned long bit = 1UL << i;
30159ec7 1072
a1a71b45 1073 if (bit & added_mask) {
ddbcc7e8 1074 /* We're binding this subsystem to this hierarchy */
40e93b39
TH
1075 BUG_ON(cgroup_css(cgrp, i));
1076 BUG_ON(!cgroup_css(cgroup_dummy_top, i));
1077 BUG_ON(cgroup_css(cgroup_dummy_top, i)->cgroup != cgroup_dummy_top);
a8a648c4 1078
73e80ed8
TH
1079 rcu_assign_pointer(cgrp->subsys[i],
1080 cgroup_css(cgroup_dummy_top, i));
40e93b39 1081 cgroup_css(cgrp, i)->cgroup = cgrp;
73e80ed8 1082
33a68ac1 1083 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1084 ss->root = root;
ddbcc7e8 1085 if (ss->bind)
40e93b39 1086 ss->bind(cgroup_css(cgrp, i));
a8a648c4 1087
cf5d5941 1088 /* refcount was already taken, and we're keeping it */
a8a648c4 1089 root->subsys_mask |= bit;
a1a71b45 1090 } else if (bit & removed_mask) {
ddbcc7e8 1091 /* We're removing this subsystem */
40e93b39
TH
1092 BUG_ON(cgroup_css(cgrp, i) != cgroup_css(cgroup_dummy_top, i));
1093 BUG_ON(cgroup_css(cgrp, i)->cgroup != cgrp);
a8a648c4 1094
ddbcc7e8 1095 if (ss->bind)
40e93b39 1096 ss->bind(cgroup_css(cgroup_dummy_top, i));
73e80ed8 1097
40e93b39 1098 cgroup_css(cgroup_dummy_top, i)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1099 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1100
9871bf95
TH
1101 cgroup_subsys[i]->root = &cgroup_dummy_root;
1102 list_move(&ss->sibling, &cgroup_dummy_root.subsys_list);
a8a648c4 1103
cf5d5941
BB
1104 /* subsystem is now free - drop reference on module */
1105 module_put(ss->module);
a8a648c4 1106 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1107 }
1108 }
ddbcc7e8 1109
1672d040
TH
1110 /*
1111 * Mark @root has finished binding subsystems. @root->subsys_mask
1112 * now matches the bound subsystems.
1113 */
1114 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
1115
ddbcc7e8 1116 return 0;
1d5be6b2
TH
1117
1118out_put:
1119 for_each_subsys(ss, i)
1120 if (pinned & (1 << i))
1121 module_put(ss->module);
1122 return ret;
ddbcc7e8
PM
1123}
1124
34c80b1d 1125static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1126{
34c80b1d 1127 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1128 struct cgroup_subsys *ss;
1129
e25e2cbb 1130 mutex_lock(&cgroup_root_mutex);
5549c497 1131 for_each_root_subsys(root, ss)
ddbcc7e8 1132 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1133 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1134 seq_puts(seq, ",sane_behavior");
93438629 1135 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1136 seq_puts(seq, ",noprefix");
93438629 1137 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1138 seq_puts(seq, ",xattr");
81a6a5cd
PM
1139 if (strlen(root->release_agent_path))
1140 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1141 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1142 seq_puts(seq, ",clone_children");
c6d57f33
PM
1143 if (strlen(root->name))
1144 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1145 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1146 return 0;
1147}
1148
1149struct cgroup_sb_opts {
a1a71b45 1150 unsigned long subsys_mask;
ddbcc7e8 1151 unsigned long flags;
81a6a5cd 1152 char *release_agent;
2260e7fc 1153 bool cpuset_clone_children;
c6d57f33 1154 char *name;
2c6ab6d2
PM
1155 /* User explicitly requested empty subsystem */
1156 bool none;
c6d57f33
PM
1157
1158 struct cgroupfs_root *new_root;
2c6ab6d2 1159
ddbcc7e8
PM
1160};
1161
aae8aab4 1162/*
9871bf95
TH
1163 * Convert a hierarchy specifier into a bitmask of subsystems and
1164 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1165 * array. This function takes refcounts on subsystems to be used, unless it
1166 * returns error, in which case no refcounts are taken.
aae8aab4 1167 */
cf5d5941 1168static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1169{
32a8cf23
DL
1170 char *token, *o = data;
1171 bool all_ss = false, one_ss = false;
f9ab5b5b 1172 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1173 struct cgroup_subsys *ss;
1174 int i;
f9ab5b5b 1175
aae8aab4
BB
1176 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1177
f9ab5b5b
LZ
1178#ifdef CONFIG_CPUSETS
1179 mask = ~(1UL << cpuset_subsys_id);
1180#endif
ddbcc7e8 1181
c6d57f33 1182 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1183
1184 while ((token = strsep(&o, ",")) != NULL) {
1185 if (!*token)
1186 return -EINVAL;
32a8cf23 1187 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1188 /* Explicitly have no subsystems */
1189 opts->none = true;
32a8cf23
DL
1190 continue;
1191 }
1192 if (!strcmp(token, "all")) {
1193 /* Mutually exclusive option 'all' + subsystem name */
1194 if (one_ss)
1195 return -EINVAL;
1196 all_ss = true;
1197 continue;
1198 }
873fe09e
TH
1199 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1200 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1201 continue;
1202 }
32a8cf23 1203 if (!strcmp(token, "noprefix")) {
93438629 1204 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1205 continue;
1206 }
1207 if (!strcmp(token, "clone_children")) {
2260e7fc 1208 opts->cpuset_clone_children = true;
32a8cf23
DL
1209 continue;
1210 }
03b1cde6 1211 if (!strcmp(token, "xattr")) {
93438629 1212 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1213 continue;
1214 }
32a8cf23 1215 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1216 /* Specifying two release agents is forbidden */
1217 if (opts->release_agent)
1218 return -EINVAL;
c6d57f33 1219 opts->release_agent =
e400c285 1220 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1221 if (!opts->release_agent)
1222 return -ENOMEM;
32a8cf23
DL
1223 continue;
1224 }
1225 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1226 const char *name = token + 5;
1227 /* Can't specify an empty name */
1228 if (!strlen(name))
1229 return -EINVAL;
1230 /* Must match [\w.-]+ */
1231 for (i = 0; i < strlen(name); i++) {
1232 char c = name[i];
1233 if (isalnum(c))
1234 continue;
1235 if ((c == '.') || (c == '-') || (c == '_'))
1236 continue;
1237 return -EINVAL;
1238 }
1239 /* Specifying two names is forbidden */
1240 if (opts->name)
1241 return -EINVAL;
1242 opts->name = kstrndup(name,
e400c285 1243 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1244 GFP_KERNEL);
1245 if (!opts->name)
1246 return -ENOMEM;
32a8cf23
DL
1247
1248 continue;
1249 }
1250
30159ec7 1251 for_each_subsys(ss, i) {
32a8cf23
DL
1252 if (strcmp(token, ss->name))
1253 continue;
1254 if (ss->disabled)
1255 continue;
1256
1257 /* Mutually exclusive option 'all' + subsystem name */
1258 if (all_ss)
1259 return -EINVAL;
a1a71b45 1260 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1261 one_ss = true;
1262
1263 break;
1264 }
1265 if (i == CGROUP_SUBSYS_COUNT)
1266 return -ENOENT;
1267 }
1268
1269 /*
1270 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1271 * otherwise if 'none', 'name=' and a subsystem name options
1272 * were not specified, let's default to 'all'
32a8cf23 1273 */
30159ec7
TH
1274 if (all_ss || (!one_ss && !opts->none && !opts->name))
1275 for_each_subsys(ss, i)
1276 if (!ss->disabled)
1277 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1278
2c6ab6d2
PM
1279 /* Consistency checks */
1280
873fe09e
TH
1281 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1282 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1283
1284 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1285 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1286 return -EINVAL;
1287 }
1288
1289 if (opts->cpuset_clone_children) {
1290 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1291 return -EINVAL;
1292 }
1293 }
1294
f9ab5b5b
LZ
1295 /*
1296 * Option noprefix was introduced just for backward compatibility
1297 * with the old cpuset, so we allow noprefix only if mounting just
1298 * the cpuset subsystem.
1299 */
93438629 1300 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1301 return -EINVAL;
1302
2c6ab6d2
PM
1303
1304 /* Can't specify "none" and some subsystems */
a1a71b45 1305 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1306 return -EINVAL;
1307
1308 /*
1309 * We either have to specify by name or by subsystems. (So all
1310 * empty hierarchies must have a name).
1311 */
a1a71b45 1312 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1313 return -EINVAL;
1314
1315 return 0;
1316}
1317
1318static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1319{
1320 int ret = 0;
1321 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1322 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1323 struct cgroup_sb_opts opts;
a1a71b45 1324 unsigned long added_mask, removed_mask;
ddbcc7e8 1325
873fe09e
TH
1326 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1327 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1328 return -EINVAL;
1329 }
1330
bd89aabc 1331 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1332 mutex_lock(&cgroup_mutex);
e25e2cbb 1333 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1334
1335 /* See what subsystems are wanted */
1336 ret = parse_cgroupfs_options(data, &opts);
1337 if (ret)
1338 goto out_unlock;
1339
a8a648c4 1340 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1341 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1342 task_tgid_nr(current), current->comm);
1343
a1a71b45
AR
1344 added_mask = opts.subsys_mask & ~root->subsys_mask;
1345 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1346
cf5d5941 1347 /* Don't allow flags or name to change at remount */
0ce6cba3 1348 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1349 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1350 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1351 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1352 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1353 ret = -EINVAL;
1354 goto out_unlock;
1355 }
1356
f172e67c
TH
1357 /* remounting is not allowed for populated hierarchies */
1358 if (root->number_of_cgroups > 1) {
1359 ret = -EBUSY;
1360 goto out_unlock;
1361 }
1362
a8a648c4 1363 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1364 if (ret)
0670e08b 1365 goto out_unlock;
ddbcc7e8 1366
81a6a5cd
PM
1367 if (opts.release_agent)
1368 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1369 out_unlock:
66bdc9cf 1370 kfree(opts.release_agent);
c6d57f33 1371 kfree(opts.name);
e25e2cbb 1372 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1373 mutex_unlock(&cgroup_mutex);
bd89aabc 1374 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1375 return ret;
1376}
1377
b87221de 1378static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1379 .statfs = simple_statfs,
1380 .drop_inode = generic_delete_inode,
1381 .show_options = cgroup_show_options,
1382 .remount_fs = cgroup_remount,
1383};
1384
cc31edce
PM
1385static void init_cgroup_housekeeping(struct cgroup *cgrp)
1386{
1387 INIT_LIST_HEAD(&cgrp->sibling);
1388 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1389 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1390 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1391 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1392 INIT_LIST_HEAD(&cgrp->pidlists);
1393 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1394 cgrp->dummy_css.cgroup = cgrp;
0dea1168
KS
1395 INIT_LIST_HEAD(&cgrp->event_list);
1396 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1397 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1398}
c6d57f33 1399
ddbcc7e8
PM
1400static void init_cgroup_root(struct cgroupfs_root *root)
1401{
bd89aabc 1402 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1403
ddbcc7e8
PM
1404 INIT_LIST_HEAD(&root->subsys_list);
1405 INIT_LIST_HEAD(&root->root_list);
1406 root->number_of_cgroups = 1;
bd89aabc 1407 cgrp->root = root;
a4ea1cc9 1408 RCU_INIT_POINTER(cgrp->name, &root_cgroup_name);
cc31edce 1409 init_cgroup_housekeeping(cgrp);
4e96ee8e 1410 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1411}
1412
fc76df70 1413static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
2c6ab6d2 1414{
1a574231 1415 int id;
2c6ab6d2 1416
54e7b4eb
TH
1417 lockdep_assert_held(&cgroup_mutex);
1418 lockdep_assert_held(&cgroup_root_mutex);
1419
fc76df70
TH
1420 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
1421 GFP_KERNEL);
1a574231
TH
1422 if (id < 0)
1423 return id;
1424
1425 root->hierarchy_id = id;
fa3ca07e
TH
1426 return 0;
1427}
1428
1429static void cgroup_exit_root_id(struct cgroupfs_root *root)
1430{
54e7b4eb
TH
1431 lockdep_assert_held(&cgroup_mutex);
1432 lockdep_assert_held(&cgroup_root_mutex);
1433
fa3ca07e 1434 if (root->hierarchy_id) {
1a574231 1435 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1436 root->hierarchy_id = 0;
1437 }
2c6ab6d2
PM
1438}
1439
ddbcc7e8
PM
1440static int cgroup_test_super(struct super_block *sb, void *data)
1441{
c6d57f33 1442 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1443 struct cgroupfs_root *root = sb->s_fs_info;
1444
c6d57f33
PM
1445 /* If we asked for a name then it must match */
1446 if (opts->name && strcmp(opts->name, root->name))
1447 return 0;
ddbcc7e8 1448
2c6ab6d2
PM
1449 /*
1450 * If we asked for subsystems (or explicitly for no
1451 * subsystems) then they must match
1452 */
a1a71b45
AR
1453 if ((opts->subsys_mask || opts->none)
1454 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1455 return 0;
1456
1457 return 1;
1458}
1459
c6d57f33
PM
1460static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1461{
1462 struct cgroupfs_root *root;
1463
a1a71b45 1464 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1465 return NULL;
1466
1467 root = kzalloc(sizeof(*root), GFP_KERNEL);
1468 if (!root)
1469 return ERR_PTR(-ENOMEM);
1470
1471 init_cgroup_root(root);
2c6ab6d2 1472
1672d040
TH
1473 /*
1474 * We need to set @root->subsys_mask now so that @root can be
1475 * matched by cgroup_test_super() before it finishes
1476 * initialization; otherwise, competing mounts with the same
1477 * options may try to bind the same subsystems instead of waiting
1478 * for the first one leading to unexpected mount errors.
1479 * SUBSYS_BOUND will be set once actual binding is complete.
1480 */
a1a71b45 1481 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1482 root->flags = opts->flags;
1483 if (opts->release_agent)
1484 strcpy(root->release_agent_path, opts->release_agent);
1485 if (opts->name)
1486 strcpy(root->name, opts->name);
2260e7fc
TH
1487 if (opts->cpuset_clone_children)
1488 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1489 return root;
1490}
1491
fa3ca07e 1492static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1493{
fa3ca07e
TH
1494 if (root) {
1495 /* hierarhcy ID shoulid already have been released */
1496 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1497
4e96ee8e 1498 idr_destroy(&root->cgroup_idr);
fa3ca07e
TH
1499 kfree(root);
1500 }
2c6ab6d2
PM
1501}
1502
ddbcc7e8
PM
1503static int cgroup_set_super(struct super_block *sb, void *data)
1504{
1505 int ret;
c6d57f33
PM
1506 struct cgroup_sb_opts *opts = data;
1507
1508 /* If we don't have a new root, we can't set up a new sb */
1509 if (!opts->new_root)
1510 return -EINVAL;
1511
a1a71b45 1512 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1513
1514 ret = set_anon_super(sb, NULL);
1515 if (ret)
1516 return ret;
1517
c6d57f33
PM
1518 sb->s_fs_info = opts->new_root;
1519 opts->new_root->sb = sb;
ddbcc7e8
PM
1520
1521 sb->s_blocksize = PAGE_CACHE_SIZE;
1522 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1523 sb->s_magic = CGROUP_SUPER_MAGIC;
1524 sb->s_op = &cgroup_ops;
1525
1526 return 0;
1527}
1528
1529static int cgroup_get_rootdir(struct super_block *sb)
1530{
0df6a63f
AV
1531 static const struct dentry_operations cgroup_dops = {
1532 .d_iput = cgroup_diput,
c72a04e3 1533 .d_delete = cgroup_delete,
0df6a63f
AV
1534 };
1535
ddbcc7e8
PM
1536 struct inode *inode =
1537 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1538
1539 if (!inode)
1540 return -ENOMEM;
1541
ddbcc7e8
PM
1542 inode->i_fop = &simple_dir_operations;
1543 inode->i_op = &cgroup_dir_inode_operations;
1544 /* directories start off with i_nlink == 2 (for "." entry) */
1545 inc_nlink(inode);
48fde701
AV
1546 sb->s_root = d_make_root(inode);
1547 if (!sb->s_root)
ddbcc7e8 1548 return -ENOMEM;
0df6a63f
AV
1549 /* for everything else we want ->d_op set */
1550 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1551 return 0;
1552}
1553
f7e83571 1554static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1555 int flags, const char *unused_dev_name,
f7e83571 1556 void *data)
ddbcc7e8
PM
1557{
1558 struct cgroup_sb_opts opts;
c6d57f33 1559 struct cgroupfs_root *root;
ddbcc7e8
PM
1560 int ret = 0;
1561 struct super_block *sb;
c6d57f33 1562 struct cgroupfs_root *new_root;
3126121f 1563 struct list_head tmp_links;
e25e2cbb 1564 struct inode *inode;
3126121f 1565 const struct cred *cred;
ddbcc7e8
PM
1566
1567 /* First find the desired set of subsystems */
aae8aab4 1568 mutex_lock(&cgroup_mutex);
ddbcc7e8 1569 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1570 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1571 if (ret)
1572 goto out_err;
ddbcc7e8 1573
c6d57f33
PM
1574 /*
1575 * Allocate a new cgroup root. We may not need it if we're
1576 * reusing an existing hierarchy.
1577 */
1578 new_root = cgroup_root_from_opts(&opts);
1579 if (IS_ERR(new_root)) {
1580 ret = PTR_ERR(new_root);
1d5be6b2 1581 goto out_err;
81a6a5cd 1582 }
c6d57f33 1583 opts.new_root = new_root;
ddbcc7e8 1584
c6d57f33 1585 /* Locate an existing or new sb for this hierarchy */
9249e17f 1586 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1587 if (IS_ERR(sb)) {
c6d57f33 1588 ret = PTR_ERR(sb);
fa3ca07e 1589 cgroup_free_root(opts.new_root);
1d5be6b2 1590 goto out_err;
ddbcc7e8
PM
1591 }
1592
c6d57f33
PM
1593 root = sb->s_fs_info;
1594 BUG_ON(!root);
1595 if (root == opts.new_root) {
1596 /* We used the new root structure, so this is a new hierarchy */
c12f65d4 1597 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1598 struct cgroupfs_root *existing_root;
28fd5dfc 1599 int i;
5abb8855 1600 struct css_set *cset;
ddbcc7e8
PM
1601
1602 BUG_ON(sb->s_root != NULL);
1603
1604 ret = cgroup_get_rootdir(sb);
1605 if (ret)
1606 goto drop_new_super;
817929ec 1607 inode = sb->s_root->d_inode;
ddbcc7e8 1608
817929ec 1609 mutex_lock(&inode->i_mutex);
ddbcc7e8 1610 mutex_lock(&cgroup_mutex);
e25e2cbb 1611 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1612
4e96ee8e
LZ
1613 root_cgrp->id = idr_alloc(&root->cgroup_idr, root_cgrp,
1614 0, 1, GFP_KERNEL);
1615 if (root_cgrp->id < 0)
1616 goto unlock_drop;
1617
e25e2cbb
TH
1618 /* Check for name clashes with existing mounts */
1619 ret = -EBUSY;
1620 if (strlen(root->name))
1621 for_each_active_root(existing_root)
1622 if (!strcmp(existing_root->name, root->name))
1623 goto unlock_drop;
c6d57f33 1624
817929ec
PM
1625 /*
1626 * We're accessing css_set_count without locking
1627 * css_set_lock here, but that's OK - it can only be
1628 * increased by someone holding cgroup_lock, and
1629 * that's us. The worst that can happen is that we
1630 * have some link structures left over
1631 */
69d0206c 1632 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1633 if (ret)
1634 goto unlock_drop;
817929ec 1635
fc76df70
TH
1636 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1637 ret = cgroup_init_root_id(root, 2, 0);
fa3ca07e
TH
1638 if (ret)
1639 goto unlock_drop;
1640
3126121f
TH
1641 sb->s_root->d_fsdata = root_cgrp;
1642 root_cgrp->dentry = sb->s_root;
1643
1644 /*
1645 * We're inside get_sb() and will call lookup_one_len() to
1646 * create the root files, which doesn't work if SELinux is
1647 * in use. The following cred dancing somehow works around
1648 * it. See 2ce9738ba ("cgroupfs: use init_cred when
1649 * populating new cgroupfs mount") for more details.
1650 */
1651 cred = override_creds(&init_cred);
1652
2bb566cb 1653 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
3126121f
TH
1654 if (ret)
1655 goto rm_base_files;
1656
a8a648c4 1657 ret = rebind_subsystems(root, root->subsys_mask, 0);
3126121f
TH
1658 if (ret)
1659 goto rm_base_files;
1660
1661 revert_creds(cred);
1662
cf5d5941
BB
1663 /*
1664 * There must be no failure case after here, since rebinding
1665 * takes care of subsystems' refcounts, which are explicitly
1666 * dropped in the failure exit path.
1667 */
ddbcc7e8 1668
9871bf95
TH
1669 list_add(&root->root_list, &cgroup_roots);
1670 cgroup_root_count++;
ddbcc7e8 1671
817929ec
PM
1672 /* Link the top cgroup in this hierarchy into all
1673 * the css_set objects */
1674 write_lock(&css_set_lock);
5abb8855 1675 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1676 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1677 write_unlock(&css_set_lock);
1678
69d0206c 1679 free_cgrp_cset_links(&tmp_links);
817929ec 1680
c12f65d4 1681 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1682 BUG_ON(root->number_of_cgroups != 1);
1683
e25e2cbb 1684 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1685 mutex_unlock(&cgroup_mutex);
34f77a90 1686 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1687 } else {
1688 /*
1689 * We re-used an existing hierarchy - the new root (if
1690 * any) is not needed
1691 */
fa3ca07e 1692 cgroup_free_root(opts.new_root);
873fe09e 1693
c7ba8287 1694 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1695 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1696 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1697 ret = -EINVAL;
1698 goto drop_new_super;
1699 } else {
1700 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1701 }
873fe09e 1702 }
ddbcc7e8
PM
1703 }
1704
c6d57f33
PM
1705 kfree(opts.release_agent);
1706 kfree(opts.name);
f7e83571 1707 return dget(sb->s_root);
ddbcc7e8 1708
3126121f
TH
1709 rm_base_files:
1710 free_cgrp_cset_links(&tmp_links);
2bb566cb 1711 cgroup_addrm_files(&root->top_cgroup, cgroup_base_files, false);
3126121f 1712 revert_creds(cred);
e25e2cbb 1713 unlock_drop:
fa3ca07e 1714 cgroup_exit_root_id(root);
e25e2cbb
TH
1715 mutex_unlock(&cgroup_root_mutex);
1716 mutex_unlock(&cgroup_mutex);
1717 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1718 drop_new_super:
6f5bbff9 1719 deactivate_locked_super(sb);
c6d57f33
PM
1720 out_err:
1721 kfree(opts.release_agent);
1722 kfree(opts.name);
f7e83571 1723 return ERR_PTR(ret);
ddbcc7e8
PM
1724}
1725
1726static void cgroup_kill_sb(struct super_block *sb) {
1727 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1728 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1729 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1730 int ret;
1731
1732 BUG_ON(!root);
1733
1734 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1735 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8 1736
3126121f 1737 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1738 mutex_lock(&cgroup_mutex);
e25e2cbb 1739 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1740
1741 /* Rebind all subsystems back to the default hierarchy */
1672d040
TH
1742 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
1743 ret = rebind_subsystems(root, 0, root->subsys_mask);
1744 /* Shouldn't be able to fail ... */
1745 BUG_ON(ret);
1746 }
ddbcc7e8 1747
817929ec 1748 /*
69d0206c 1749 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1750 * root cgroup
1751 */
1752 write_lock(&css_set_lock);
71cbb949 1753
69d0206c
TH
1754 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1755 list_del(&link->cset_link);
1756 list_del(&link->cgrp_link);
817929ec
PM
1757 kfree(link);
1758 }
1759 write_unlock(&css_set_lock);
1760
839ec545
PM
1761 if (!list_empty(&root->root_list)) {
1762 list_del(&root->root_list);
9871bf95 1763 cgroup_root_count--;
839ec545 1764 }
e5f6a860 1765
fa3ca07e
TH
1766 cgroup_exit_root_id(root);
1767
e25e2cbb 1768 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1769 mutex_unlock(&cgroup_mutex);
3126121f 1770 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1771
03b1cde6
AR
1772 simple_xattrs_free(&cgrp->xattrs);
1773
ddbcc7e8 1774 kill_litter_super(sb);
fa3ca07e 1775 cgroup_free_root(root);
ddbcc7e8
PM
1776}
1777
1778static struct file_system_type cgroup_fs_type = {
1779 .name = "cgroup",
f7e83571 1780 .mount = cgroup_mount,
ddbcc7e8
PM
1781 .kill_sb = cgroup_kill_sb,
1782};
1783
676db4af
GK
1784static struct kobject *cgroup_kobj;
1785
a043e3b2
LZ
1786/**
1787 * cgroup_path - generate the path of a cgroup
1788 * @cgrp: the cgroup in question
1789 * @buf: the buffer to write the path into
1790 * @buflen: the length of the buffer
1791 *
65dff759
LZ
1792 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1793 *
1794 * We can't generate cgroup path using dentry->d_name, as accessing
1795 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1796 * inode's i_mutex, while on the other hand cgroup_path() can be called
1797 * with some irq-safe spinlocks held.
ddbcc7e8 1798 */
bd89aabc 1799int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1800{
65dff759 1801 int ret = -ENAMETOOLONG;
ddbcc7e8 1802 char *start;
febfcef6 1803
da1f296f
TH
1804 if (!cgrp->parent) {
1805 if (strlcpy(buf, "/", buflen) >= buflen)
1806 return -ENAMETOOLONG;
ddbcc7e8
PM
1807 return 0;
1808 }
1809
316eb661 1810 start = buf + buflen - 1;
316eb661 1811 *start = '\0';
9a9686b6 1812
65dff759 1813 rcu_read_lock();
da1f296f 1814 do {
65dff759
LZ
1815 const char *name = cgroup_name(cgrp);
1816 int len;
1817
1818 len = strlen(name);
ddbcc7e8 1819 if ((start -= len) < buf)
65dff759
LZ
1820 goto out;
1821 memcpy(start, name, len);
9a9686b6 1822
ddbcc7e8 1823 if (--start < buf)
65dff759 1824 goto out;
ddbcc7e8 1825 *start = '/';
65dff759
LZ
1826
1827 cgrp = cgrp->parent;
da1f296f 1828 } while (cgrp->parent);
65dff759 1829 ret = 0;
ddbcc7e8 1830 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1831out:
1832 rcu_read_unlock();
1833 return ret;
ddbcc7e8 1834}
67523c48 1835EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1836
857a2beb 1837/**
913ffdb5 1838 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1839 * @task: target task
857a2beb
TH
1840 * @buf: the buffer to write the path into
1841 * @buflen: the length of the buffer
1842 *
913ffdb5
TH
1843 * Determine @task's cgroup on the first (the one with the lowest non-zero
1844 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1845 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1846 * cgroup controller callbacks.
1847 *
1848 * Returns 0 on success, fails with -%ENAMETOOLONG if @buflen is too short.
857a2beb 1849 */
913ffdb5 1850int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1851{
1852 struct cgroupfs_root *root;
913ffdb5
TH
1853 struct cgroup *cgrp;
1854 int hierarchy_id = 1, ret = 0;
1855
1856 if (buflen < 2)
1857 return -ENAMETOOLONG;
857a2beb
TH
1858
1859 mutex_lock(&cgroup_mutex);
1860
913ffdb5
TH
1861 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1862
857a2beb
TH
1863 if (root) {
1864 cgrp = task_cgroup_from_root(task, root);
1865 ret = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1866 } else {
1867 /* if no hierarchy exists, everyone is in "/" */
1868 memcpy(buf, "/", 2);
857a2beb
TH
1869 }
1870
1871 mutex_unlock(&cgroup_mutex);
857a2beb
TH
1872 return ret;
1873}
913ffdb5 1874EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1875
2f7ee569
TH
1876/*
1877 * Control Group taskset
1878 */
134d3373
TH
1879struct task_and_cgroup {
1880 struct task_struct *task;
1881 struct cgroup *cgrp;
6f4b7e63 1882 struct css_set *cset;
134d3373
TH
1883};
1884
2f7ee569
TH
1885struct cgroup_taskset {
1886 struct task_and_cgroup single;
1887 struct flex_array *tc_array;
1888 int tc_array_len;
1889 int idx;
1890 struct cgroup *cur_cgrp;
1891};
1892
1893/**
1894 * cgroup_taskset_first - reset taskset and return the first task
1895 * @tset: taskset of interest
1896 *
1897 * @tset iteration is initialized and the first task is returned.
1898 */
1899struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1900{
1901 if (tset->tc_array) {
1902 tset->idx = 0;
1903 return cgroup_taskset_next(tset);
1904 } else {
1905 tset->cur_cgrp = tset->single.cgrp;
1906 return tset->single.task;
1907 }
1908}
1909EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1910
1911/**
1912 * cgroup_taskset_next - iterate to the next task in taskset
1913 * @tset: taskset of interest
1914 *
1915 * Return the next task in @tset. Iteration must have been initialized
1916 * with cgroup_taskset_first().
1917 */
1918struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1919{
1920 struct task_and_cgroup *tc;
1921
1922 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1923 return NULL;
1924
1925 tc = flex_array_get(tset->tc_array, tset->idx++);
1926 tset->cur_cgrp = tc->cgrp;
1927 return tc->task;
1928}
1929EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1930
1931/**
d99c8727 1932 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1933 * @tset: taskset of interest
d99c8727 1934 * @subsys_id: the ID of the target subsystem
2f7ee569 1935 *
d99c8727
TH
1936 * Return the css for the current (last returned) task of @tset for
1937 * subsystem specified by @subsys_id. This function must be preceded by
1938 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1939 */
d99c8727
TH
1940struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1941 int subsys_id)
2f7ee569 1942{
d99c8727 1943 return cgroup_css(tset->cur_cgrp, subsys_id);
2f7ee569 1944}
d99c8727 1945EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1946
1947/**
1948 * cgroup_taskset_size - return the number of tasks in taskset
1949 * @tset: taskset of interest
1950 */
1951int cgroup_taskset_size(struct cgroup_taskset *tset)
1952{
1953 return tset->tc_array ? tset->tc_array_len : 1;
1954}
1955EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1956
1957
74a1166d
BB
1958/*
1959 * cgroup_task_migrate - move a task from one cgroup to another.
1960 *
d0b2fdd2 1961 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1962 */
5abb8855
TH
1963static void cgroup_task_migrate(struct cgroup *old_cgrp,
1964 struct task_struct *tsk,
1965 struct css_set *new_cset)
74a1166d 1966{
5abb8855 1967 struct css_set *old_cset;
74a1166d
BB
1968
1969 /*
026085ef
MSB
1970 * We are synchronized through threadgroup_lock() against PF_EXITING
1971 * setting such that we can't race against cgroup_exit() changing the
1972 * css_set to init_css_set and dropping the old one.
74a1166d 1973 */
c84cdf75 1974 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1975 old_cset = task_css_set(tsk);
74a1166d 1976
74a1166d 1977 task_lock(tsk);
5abb8855 1978 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1979 task_unlock(tsk);
1980
1981 /* Update the css_set linked lists if we're using them */
1982 write_lock(&css_set_lock);
1983 if (!list_empty(&tsk->cg_list))
5abb8855 1984 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1985 write_unlock(&css_set_lock);
1986
1987 /*
5abb8855
TH
1988 * We just gained a reference on old_cset by taking it from the
1989 * task. As trading it for new_cset is protected by cgroup_mutex,
1990 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1991 */
5abb8855
TH
1992 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1993 put_css_set(old_cset);
74a1166d
BB
1994}
1995
a043e3b2 1996/**
081aa458 1997 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1998 * @cgrp: the cgroup to attach to
081aa458
LZ
1999 * @tsk: the task or the leader of the threadgroup to be attached
2000 * @threadgroup: attach the whole threadgroup?
74a1166d 2001 *
257058ae 2002 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 2003 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 2004 */
47cfcd09
TH
2005static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
2006 bool threadgroup)
74a1166d
BB
2007{
2008 int retval, i, group_size;
2009 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
2010 struct cgroupfs_root *root = cgrp->root;
2011 /* threadgroup list cursor and array */
081aa458 2012 struct task_struct *leader = tsk;
134d3373 2013 struct task_and_cgroup *tc;
d846687d 2014 struct flex_array *group;
2f7ee569 2015 struct cgroup_taskset tset = { };
74a1166d
BB
2016
2017 /*
2018 * step 0: in order to do expensive, possibly blocking operations for
2019 * every thread, we cannot iterate the thread group list, since it needs
2020 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2021 * group - group_rwsem prevents new threads from appearing, and if
2022 * threads exit, this will just be an over-estimate.
74a1166d 2023 */
081aa458
LZ
2024 if (threadgroup)
2025 group_size = get_nr_threads(tsk);
2026 else
2027 group_size = 1;
d846687d 2028 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2029 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2030 if (!group)
2031 return -ENOMEM;
d846687d 2032 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2033 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2034 if (retval)
2035 goto out_free_group_list;
74a1166d 2036
74a1166d 2037 i = 0;
fb5d2b4c
MSB
2038 /*
2039 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2040 * already PF_EXITING could be freed from underneath us unless we
2041 * take an rcu_read_lock.
2042 */
2043 rcu_read_lock();
74a1166d 2044 do {
134d3373
TH
2045 struct task_and_cgroup ent;
2046
cd3d0952
TH
2047 /* @tsk either already exited or can't exit until the end */
2048 if (tsk->flags & PF_EXITING)
2049 continue;
2050
74a1166d
BB
2051 /* as per above, nr_threads may decrease, but not increase. */
2052 BUG_ON(i >= group_size);
134d3373
TH
2053 ent.task = tsk;
2054 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2055 /* nothing to do if this task is already in the cgroup */
2056 if (ent.cgrp == cgrp)
2057 continue;
61d1d219
MSB
2058 /*
2059 * saying GFP_ATOMIC has no effect here because we did prealloc
2060 * earlier, but it's good form to communicate our expectations.
2061 */
134d3373 2062 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2063 BUG_ON(retval != 0);
74a1166d 2064 i++;
081aa458
LZ
2065
2066 if (!threadgroup)
2067 break;
74a1166d 2068 } while_each_thread(leader, tsk);
fb5d2b4c 2069 rcu_read_unlock();
74a1166d
BB
2070 /* remember the number of threads in the array for later. */
2071 group_size = i;
2f7ee569
TH
2072 tset.tc_array = group;
2073 tset.tc_array_len = group_size;
74a1166d 2074
134d3373
TH
2075 /* methods shouldn't be called if no task is actually migrating */
2076 retval = 0;
892a2b90 2077 if (!group_size)
b07ef774 2078 goto out_free_group_list;
134d3373 2079
74a1166d
BB
2080 /*
2081 * step 1: check that we can legitimately attach to the cgroup.
2082 */
5549c497 2083 for_each_root_subsys(root, ss) {
40e93b39 2084 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2085
74a1166d 2086 if (ss->can_attach) {
eb95419b 2087 retval = ss->can_attach(css, &tset);
74a1166d
BB
2088 if (retval) {
2089 failed_ss = ss;
2090 goto out_cancel_attach;
2091 }
2092 }
74a1166d
BB
2093 }
2094
2095 /*
2096 * step 2: make sure css_sets exist for all threads to be migrated.
2097 * we use find_css_set, which allocates a new one if necessary.
2098 */
74a1166d 2099 for (i = 0; i < group_size; i++) {
a8ad805c
TH
2100 struct css_set *old_cset;
2101
134d3373 2102 tc = flex_array_get(group, i);
a8ad805c 2103 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
2104 tc->cset = find_css_set(old_cset, cgrp);
2105 if (!tc->cset) {
61d1d219
MSB
2106 retval = -ENOMEM;
2107 goto out_put_css_set_refs;
74a1166d
BB
2108 }
2109 }
2110
2111 /*
494c167c
TH
2112 * step 3: now that we're guaranteed success wrt the css_sets,
2113 * proceed to move all tasks to the new cgroup. There are no
2114 * failure cases after here, so this is the commit point.
74a1166d 2115 */
74a1166d 2116 for (i = 0; i < group_size; i++) {
134d3373 2117 tc = flex_array_get(group, i);
6f4b7e63 2118 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
2119 }
2120 /* nothing is sensitive to fork() after this point. */
2121
2122 /*
494c167c 2123 * step 4: do subsystem attach callbacks.
74a1166d 2124 */
5549c497 2125 for_each_root_subsys(root, ss) {
40e93b39 2126 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2127
74a1166d 2128 if (ss->attach)
eb95419b 2129 ss->attach(css, &tset);
74a1166d
BB
2130 }
2131
2132 /*
2133 * step 5: success! and cleanup
2134 */
74a1166d 2135 retval = 0;
61d1d219
MSB
2136out_put_css_set_refs:
2137 if (retval) {
2138 for (i = 0; i < group_size; i++) {
2139 tc = flex_array_get(group, i);
6f4b7e63 2140 if (!tc->cset)
61d1d219 2141 break;
6f4b7e63 2142 put_css_set(tc->cset);
61d1d219 2143 }
74a1166d
BB
2144 }
2145out_cancel_attach:
74a1166d 2146 if (retval) {
5549c497 2147 for_each_root_subsys(root, ss) {
40e93b39 2148 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
eb95419b 2149
494c167c 2150 if (ss == failed_ss)
74a1166d 2151 break;
74a1166d 2152 if (ss->cancel_attach)
eb95419b 2153 ss->cancel_attach(css, &tset);
74a1166d
BB
2154 }
2155 }
74a1166d 2156out_free_group_list:
d846687d 2157 flex_array_free(group);
74a1166d
BB
2158 return retval;
2159}
2160
2161/*
2162 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2163 * function to attach either it or all tasks in its threadgroup. Will lock
2164 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2165 */
74a1166d 2166static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2167{
bbcb81d0 2168 struct task_struct *tsk;
c69e8d9c 2169 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2170 int ret;
2171
74a1166d
BB
2172 if (!cgroup_lock_live_group(cgrp))
2173 return -ENODEV;
2174
b78949eb
MSB
2175retry_find_task:
2176 rcu_read_lock();
bbcb81d0 2177 if (pid) {
73507f33 2178 tsk = find_task_by_vpid(pid);
74a1166d
BB
2179 if (!tsk) {
2180 rcu_read_unlock();
b78949eb
MSB
2181 ret= -ESRCH;
2182 goto out_unlock_cgroup;
bbcb81d0 2183 }
74a1166d
BB
2184 /*
2185 * even if we're attaching all tasks in the thread group, we
2186 * only need to check permissions on one of them.
2187 */
c69e8d9c 2188 tcred = __task_cred(tsk);
14a590c3
EB
2189 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2190 !uid_eq(cred->euid, tcred->uid) &&
2191 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2192 rcu_read_unlock();
b78949eb
MSB
2193 ret = -EACCES;
2194 goto out_unlock_cgroup;
bbcb81d0 2195 }
b78949eb
MSB
2196 } else
2197 tsk = current;
cd3d0952
TH
2198
2199 if (threadgroup)
b78949eb 2200 tsk = tsk->group_leader;
c4c27fbd
MG
2201
2202 /*
14a40ffc 2203 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2204 * trapped in a cpuset, or RT worker may be born in a cgroup
2205 * with no rt_runtime allocated. Just say no.
2206 */
14a40ffc 2207 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2208 ret = -EINVAL;
2209 rcu_read_unlock();
2210 goto out_unlock_cgroup;
2211 }
2212
b78949eb
MSB
2213 get_task_struct(tsk);
2214 rcu_read_unlock();
2215
2216 threadgroup_lock(tsk);
2217 if (threadgroup) {
2218 if (!thread_group_leader(tsk)) {
2219 /*
2220 * a race with de_thread from another thread's exec()
2221 * may strip us of our leadership, if this happens,
2222 * there is no choice but to throw this task away and
2223 * try again; this is
2224 * "double-double-toil-and-trouble-check locking".
2225 */
2226 threadgroup_unlock(tsk);
2227 put_task_struct(tsk);
2228 goto retry_find_task;
2229 }
081aa458
LZ
2230 }
2231
2232 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2233
cd3d0952
TH
2234 threadgroup_unlock(tsk);
2235
bbcb81d0 2236 put_task_struct(tsk);
b78949eb 2237out_unlock_cgroup:
47cfcd09 2238 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2239 return ret;
2240}
2241
7ae1bad9
TH
2242/**
2243 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2244 * @from: attach to all cgroups of a given task
2245 * @tsk: the task to be attached
2246 */
2247int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2248{
2249 struct cgroupfs_root *root;
2250 int retval = 0;
2251
47cfcd09 2252 mutex_lock(&cgroup_mutex);
7ae1bad9 2253 for_each_active_root(root) {
6f4b7e63 2254 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2255
6f4b7e63 2256 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2257 if (retval)
2258 break;
2259 }
47cfcd09 2260 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2261
2262 return retval;
2263}
2264EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2265
182446d0
TH
2266static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2267 struct cftype *cft, u64 pid)
74a1166d 2268{
182446d0 2269 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2270}
2271
182446d0
TH
2272static int cgroup_procs_write(struct cgroup_subsys_state *css,
2273 struct cftype *cft, u64 tgid)
af351026 2274{
182446d0 2275 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2276}
2277
182446d0
TH
2278static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2279 struct cftype *cft, const char *buffer)
e788e066 2280{
182446d0 2281 BUILD_BUG_ON(sizeof(css->cgroup->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2282 if (strlen(buffer) >= PATH_MAX)
2283 return -EINVAL;
182446d0 2284 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2285 return -ENODEV;
e25e2cbb 2286 mutex_lock(&cgroup_root_mutex);
182446d0 2287 strcpy(css->cgroup->root->release_agent_path, buffer);
e25e2cbb 2288 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2289 mutex_unlock(&cgroup_mutex);
e788e066
PM
2290 return 0;
2291}
2292
182446d0
TH
2293static int cgroup_release_agent_show(struct cgroup_subsys_state *css,
2294 struct cftype *cft, struct seq_file *seq)
e788e066 2295{
182446d0
TH
2296 struct cgroup *cgrp = css->cgroup;
2297
e788e066
PM
2298 if (!cgroup_lock_live_group(cgrp))
2299 return -ENODEV;
2300 seq_puts(seq, cgrp->root->release_agent_path);
2301 seq_putc(seq, '\n');
47cfcd09 2302 mutex_unlock(&cgroup_mutex);
e788e066
PM
2303 return 0;
2304}
2305
182446d0
TH
2306static int cgroup_sane_behavior_show(struct cgroup_subsys_state *css,
2307 struct cftype *cft, struct seq_file *seq)
873fe09e 2308{
182446d0 2309 seq_printf(seq, "%d\n", cgroup_sane_behavior(css->cgroup));
e788e066
PM
2310 return 0;
2311}
2312
84eea842
PM
2313/* A buffer size big enough for numbers or short strings */
2314#define CGROUP_LOCAL_BUFFER_SIZE 64
2315
182446d0
TH
2316static ssize_t cgroup_write_X64(struct cgroup_subsys_state *css,
2317 struct cftype *cft, struct file *file,
2318 const char __user *userbuf, size_t nbytes,
2319 loff_t *unused_ppos)
355e0c48 2320{
84eea842 2321 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2322 int retval = 0;
355e0c48
PM
2323 char *end;
2324
2325 if (!nbytes)
2326 return -EINVAL;
2327 if (nbytes >= sizeof(buffer))
2328 return -E2BIG;
2329 if (copy_from_user(buffer, userbuf, nbytes))
2330 return -EFAULT;
2331
2332 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2333 if (cft->write_u64) {
478988d3 2334 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2335 if (*end)
2336 return -EINVAL;
182446d0 2337 retval = cft->write_u64(css, cft, val);
e73d2c61 2338 } else {
478988d3 2339 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2340 if (*end)
2341 return -EINVAL;
182446d0 2342 retval = cft->write_s64(css, cft, val);
e73d2c61 2343 }
355e0c48
PM
2344 if (!retval)
2345 retval = nbytes;
2346 return retval;
2347}
2348
182446d0
TH
2349static ssize_t cgroup_write_string(struct cgroup_subsys_state *css,
2350 struct cftype *cft, struct file *file,
2351 const char __user *userbuf, size_t nbytes,
2352 loff_t *unused_ppos)
db3b1497 2353{
84eea842 2354 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2355 int retval = 0;
2356 size_t max_bytes = cft->max_write_len;
2357 char *buffer = local_buffer;
2358
2359 if (!max_bytes)
2360 max_bytes = sizeof(local_buffer) - 1;
2361 if (nbytes >= max_bytes)
2362 return -E2BIG;
2363 /* Allocate a dynamic buffer if we need one */
2364 if (nbytes >= sizeof(local_buffer)) {
2365 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2366 if (buffer == NULL)
2367 return -ENOMEM;
2368 }
5a3eb9f6
LZ
2369 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2370 retval = -EFAULT;
2371 goto out;
2372 }
db3b1497
PM
2373
2374 buffer[nbytes] = 0; /* nul-terminate */
182446d0 2375 retval = cft->write_string(css, cft, strstrip(buffer));
db3b1497
PM
2376 if (!retval)
2377 retval = nbytes;
5a3eb9f6 2378out:
db3b1497
PM
2379 if (buffer != local_buffer)
2380 kfree(buffer);
2381 return retval;
2382}
2383
ddbcc7e8 2384static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
182446d0 2385 size_t nbytes, loff_t *ppos)
ddbcc7e8 2386{
182446d0 2387 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2388 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2389 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2390
355e0c48 2391 if (cft->write)
182446d0 2392 return cft->write(css, cft, file, buf, nbytes, ppos);
e73d2c61 2393 if (cft->write_u64 || cft->write_s64)
182446d0 2394 return cgroup_write_X64(css, cft, file, buf, nbytes, ppos);
db3b1497 2395 if (cft->write_string)
182446d0 2396 return cgroup_write_string(css, cft, file, buf, nbytes, ppos);
d447ea2f 2397 if (cft->trigger) {
182446d0 2398 int ret = cft->trigger(css, (unsigned int)cft->private);
d447ea2f
PE
2399 return ret ? ret : nbytes;
2400 }
355e0c48 2401 return -EINVAL;
ddbcc7e8
PM
2402}
2403
182446d0
TH
2404static ssize_t cgroup_read_u64(struct cgroup_subsys_state *css,
2405 struct cftype *cft, struct file *file,
2406 char __user *buf, size_t nbytes, loff_t *ppos)
ddbcc7e8 2407{
84eea842 2408 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2409 u64 val = cft->read_u64(css, cft);
ddbcc7e8
PM
2410 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2411
2412 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2413}
2414
182446d0
TH
2415static ssize_t cgroup_read_s64(struct cgroup_subsys_state *css,
2416 struct cftype *cft, struct file *file,
2417 char __user *buf, size_t nbytes, loff_t *ppos)
e73d2c61 2418{
84eea842 2419 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
182446d0 2420 s64 val = cft->read_s64(css, cft);
e73d2c61
PM
2421 int len = sprintf(tmp, "%lld\n", (long long) val);
2422
2423 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2424}
2425
ddbcc7e8 2426static ssize_t cgroup_file_read(struct file *file, char __user *buf,
182446d0 2427 size_t nbytes, loff_t *ppos)
ddbcc7e8 2428{
182446d0 2429 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2430 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2431 struct cgroup_subsys_state *css = cfe->css;
ddbcc7e8 2432
ddbcc7e8 2433 if (cft->read)
182446d0 2434 return cft->read(css, cft, file, buf, nbytes, ppos);
f4c753b7 2435 if (cft->read_u64)
182446d0 2436 return cgroup_read_u64(css, cft, file, buf, nbytes, ppos);
e73d2c61 2437 if (cft->read_s64)
182446d0 2438 return cgroup_read_s64(css, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2439 return -EINVAL;
2440}
2441
91796569
PM
2442/*
2443 * seqfile ops/methods for returning structured data. Currently just
2444 * supports string->u64 maps, but can be extended in future.
2445 */
2446
91796569
PM
2447static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2448{
2449 struct seq_file *sf = cb->state;
2450 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2451}
2452
2453static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2454{
e0798ce2
LZ
2455 struct cfent *cfe = m->private;
2456 struct cftype *cft = cfe->type;
105347ba 2457 struct cgroup_subsys_state *css = cfe->css;
e0798ce2 2458
29486df3
SH
2459 if (cft->read_map) {
2460 struct cgroup_map_cb cb = {
2461 .fill = cgroup_map_add,
2462 .state = m,
2463 };
182446d0 2464 return cft->read_map(css, cft, &cb);
29486df3 2465 }
182446d0 2466 return cft->read_seq_string(css, cft, m);
91796569
PM
2467}
2468
828c0950 2469static const struct file_operations cgroup_seqfile_operations = {
91796569 2470 .read = seq_read,
e788e066 2471 .write = cgroup_file_write,
91796569 2472 .llseek = seq_lseek,
e0798ce2 2473 .release = single_release,
91796569
PM
2474};
2475
ddbcc7e8
PM
2476static int cgroup_file_open(struct inode *inode, struct file *file)
2477{
f7d58818
TH
2478 struct cfent *cfe = __d_cfe(file->f_dentry);
2479 struct cftype *cft = __d_cft(file->f_dentry);
105347ba
TH
2480 struct cgroup *cgrp = __d_cgrp(cfe->dentry->d_parent);
2481 struct cgroup_subsys_state *css;
ddbcc7e8 2482 int err;
ddbcc7e8
PM
2483
2484 err = generic_file_open(inode, file);
2485 if (err)
2486 return err;
f7d58818
TH
2487
2488 /*
2489 * If the file belongs to a subsystem, pin the css. Will be
2490 * unpinned either on open failure or release. This ensures that
2491 * @css stays alive for all file operations.
2492 */
105347ba
TH
2493 rcu_read_lock();
2494 if (cft->ss) {
2495 css = cgroup_css(cgrp, cft->ss->subsys_id);
2496 if (!css_tryget(css))
2497 css = NULL;
2498 } else {
2499 css = &cgrp->dummy_css;
2500 }
2501 rcu_read_unlock();
2502
2503 /* css should match @cfe->css, see cgroup_add_file() for details */
2504 if (!css || WARN_ON_ONCE(css != cfe->css))
f7d58818 2505 return -ENODEV;
75139b82 2506
29486df3 2507 if (cft->read_map || cft->read_seq_string) {
91796569 2508 file->f_op = &cgroup_seqfile_operations;
e0798ce2
LZ
2509 err = single_open(file, cgroup_seqfile_show, cfe);
2510 } else if (cft->open) {
ddbcc7e8 2511 err = cft->open(inode, file);
e0798ce2 2512 }
ddbcc7e8 2513
67f4c36f 2514 if (css->ss && err)
f7d58818 2515 css_put(css);
ddbcc7e8
PM
2516 return err;
2517}
2518
2519static int cgroup_file_release(struct inode *inode, struct file *file)
2520{
f7d58818 2521 struct cfent *cfe = __d_cfe(file->f_dentry);
ddbcc7e8 2522 struct cftype *cft = __d_cft(file->f_dentry);
105347ba 2523 struct cgroup_subsys_state *css = cfe->css;
f7d58818
TH
2524 int ret = 0;
2525
ddbcc7e8 2526 if (cft->release)
f7d58818 2527 ret = cft->release(inode, file);
67f4c36f 2528 if (css->ss)
f7d58818
TH
2529 css_put(css);
2530 return ret;
ddbcc7e8
PM
2531}
2532
2533/*
2534 * cgroup_rename - Only allow simple rename of directories in place.
2535 */
2536static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2537 struct inode *new_dir, struct dentry *new_dentry)
2538{
65dff759
LZ
2539 int ret;
2540 struct cgroup_name *name, *old_name;
2541 struct cgroup *cgrp;
2542
2543 /*
2544 * It's convinient to use parent dir's i_mutex to protected
2545 * cgrp->name.
2546 */
2547 lockdep_assert_held(&old_dir->i_mutex);
2548
ddbcc7e8
PM
2549 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2550 return -ENOTDIR;
2551 if (new_dentry->d_inode)
2552 return -EEXIST;
2553 if (old_dir != new_dir)
2554 return -EIO;
65dff759
LZ
2555
2556 cgrp = __d_cgrp(old_dentry);
2557
6db8e85c
TH
2558 /*
2559 * This isn't a proper migration and its usefulness is very
2560 * limited. Disallow if sane_behavior.
2561 */
2562 if (cgroup_sane_behavior(cgrp))
2563 return -EPERM;
2564
65dff759
LZ
2565 name = cgroup_alloc_name(new_dentry);
2566 if (!name)
2567 return -ENOMEM;
2568
2569 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2570 if (ret) {
2571 kfree(name);
2572 return ret;
2573 }
2574
a4ea1cc9 2575 old_name = rcu_dereference_protected(cgrp->name, true);
65dff759
LZ
2576 rcu_assign_pointer(cgrp->name, name);
2577
2578 kfree_rcu(old_name, rcu_head);
2579 return 0;
ddbcc7e8
PM
2580}
2581
03b1cde6
AR
2582static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2583{
2584 if (S_ISDIR(dentry->d_inode->i_mode))
2585 return &__d_cgrp(dentry)->xattrs;
2586 else
712317ad 2587 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2588}
2589
2590static inline int xattr_enabled(struct dentry *dentry)
2591{
2592 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2593 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2594}
2595
2596static bool is_valid_xattr(const char *name)
2597{
2598 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2599 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2600 return true;
2601 return false;
2602}
2603
2604static int cgroup_setxattr(struct dentry *dentry, const char *name,
2605 const void *val, size_t size, int flags)
2606{
2607 if (!xattr_enabled(dentry))
2608 return -EOPNOTSUPP;
2609 if (!is_valid_xattr(name))
2610 return -EINVAL;
2611 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2612}
2613
2614static int cgroup_removexattr(struct dentry *dentry, const char *name)
2615{
2616 if (!xattr_enabled(dentry))
2617 return -EOPNOTSUPP;
2618 if (!is_valid_xattr(name))
2619 return -EINVAL;
2620 return simple_xattr_remove(__d_xattrs(dentry), name);
2621}
2622
2623static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2624 void *buf, size_t size)
2625{
2626 if (!xattr_enabled(dentry))
2627 return -EOPNOTSUPP;
2628 if (!is_valid_xattr(name))
2629 return -EINVAL;
2630 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2631}
2632
2633static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2634{
2635 if (!xattr_enabled(dentry))
2636 return -EOPNOTSUPP;
2637 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2638}
2639
828c0950 2640static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2641 .read = cgroup_file_read,
2642 .write = cgroup_file_write,
2643 .llseek = generic_file_llseek,
2644 .open = cgroup_file_open,
2645 .release = cgroup_file_release,
2646};
2647
03b1cde6
AR
2648static const struct inode_operations cgroup_file_inode_operations = {
2649 .setxattr = cgroup_setxattr,
2650 .getxattr = cgroup_getxattr,
2651 .listxattr = cgroup_listxattr,
2652 .removexattr = cgroup_removexattr,
2653};
2654
6e1d5dcc 2655static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2656 .lookup = cgroup_lookup,
ddbcc7e8
PM
2657 .mkdir = cgroup_mkdir,
2658 .rmdir = cgroup_rmdir,
2659 .rename = cgroup_rename,
03b1cde6
AR
2660 .setxattr = cgroup_setxattr,
2661 .getxattr = cgroup_getxattr,
2662 .listxattr = cgroup_listxattr,
2663 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2664};
2665
00cd8dd3 2666static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2667{
2668 if (dentry->d_name.len > NAME_MAX)
2669 return ERR_PTR(-ENAMETOOLONG);
2670 d_add(dentry, NULL);
2671 return NULL;
2672}
2673
0dea1168
KS
2674/*
2675 * Check if a file is a control file
2676 */
2677static inline struct cftype *__file_cft(struct file *file)
2678{
496ad9aa 2679 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2680 return ERR_PTR(-EINVAL);
2681 return __d_cft(file->f_dentry);
2682}
2683
a5e7ed32 2684static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2685 struct super_block *sb)
2686{
ddbcc7e8
PM
2687 struct inode *inode;
2688
2689 if (!dentry)
2690 return -ENOENT;
2691 if (dentry->d_inode)
2692 return -EEXIST;
2693
2694 inode = cgroup_new_inode(mode, sb);
2695 if (!inode)
2696 return -ENOMEM;
2697
2698 if (S_ISDIR(mode)) {
2699 inode->i_op = &cgroup_dir_inode_operations;
2700 inode->i_fop = &simple_dir_operations;
2701
2702 /* start off with i_nlink == 2 (for "." entry) */
2703 inc_nlink(inode);
28fd6f30 2704 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2705
b8a2df6a
TH
2706 /*
2707 * Control reaches here with cgroup_mutex held.
2708 * @inode->i_mutex should nest outside cgroup_mutex but we
2709 * want to populate it immediately without releasing
2710 * cgroup_mutex. As @inode isn't visible to anyone else
2711 * yet, trylock will always succeed without affecting
2712 * lockdep checks.
2713 */
2714 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2715 } else if (S_ISREG(mode)) {
2716 inode->i_size = 0;
2717 inode->i_fop = &cgroup_file_operations;
03b1cde6 2718 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2719 }
ddbcc7e8
PM
2720 d_instantiate(dentry, inode);
2721 dget(dentry); /* Extra count - pin the dentry in core */
2722 return 0;
2723}
2724
099fca32
LZ
2725/**
2726 * cgroup_file_mode - deduce file mode of a control file
2727 * @cft: the control file in question
2728 *
2729 * returns cft->mode if ->mode is not 0
2730 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2731 * returns S_IRUGO if it has only a read handler
2732 * returns S_IWUSR if it has only a write hander
2733 */
a5e7ed32 2734static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2735{
a5e7ed32 2736 umode_t mode = 0;
099fca32
LZ
2737
2738 if (cft->mode)
2739 return cft->mode;
2740
2741 if (cft->read || cft->read_u64 || cft->read_s64 ||
2742 cft->read_map || cft->read_seq_string)
2743 mode |= S_IRUGO;
2744
2745 if (cft->write || cft->write_u64 || cft->write_s64 ||
2746 cft->write_string || cft->trigger)
2747 mode |= S_IWUSR;
2748
2749 return mode;
2750}
2751
2bb566cb 2752static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2753{
bd89aabc 2754 struct dentry *dir = cgrp->dentry;
05ef1d7c 2755 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2756 struct dentry *dentry;
05ef1d7c 2757 struct cfent *cfe;
ddbcc7e8 2758 int error;
a5e7ed32 2759 umode_t mode;
ddbcc7e8 2760 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2761
2bb566cb
TH
2762 if (cft->ss && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
2763 strcpy(name, cft->ss->name);
ddbcc7e8
PM
2764 strcat(name, ".");
2765 }
2766 strcat(name, cft->name);
05ef1d7c 2767
ddbcc7e8 2768 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2769
2770 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2771 if (!cfe)
2772 return -ENOMEM;
2773
ddbcc7e8 2774 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2775 if (IS_ERR(dentry)) {
ddbcc7e8 2776 error = PTR_ERR(dentry);
05ef1d7c
TH
2777 goto out;
2778 }
2779
d6cbf35d
LZ
2780 cfe->type = (void *)cft;
2781 cfe->dentry = dentry;
2782 dentry->d_fsdata = cfe;
2783 simple_xattrs_init(&cfe->xattrs);
2784
105347ba
TH
2785 /*
2786 * cfe->css is used by read/write/close to determine the associated
2787 * css. file->private_data would be a better place but that's
2788 * already used by seqfile. Note that open will use the usual
2789 * cgroup_css() and css_tryget() to acquire the css and this
2790 * caching doesn't affect css lifetime management.
2791 */
2792 if (cft->ss)
2793 cfe->css = cgroup_css(cgrp, cft->ss->subsys_id);
2794 else
2795 cfe->css = &cgrp->dummy_css;
2796
05ef1d7c
TH
2797 mode = cgroup_file_mode(cft);
2798 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2799 if (!error) {
05ef1d7c
TH
2800 list_add_tail(&cfe->node, &parent->files);
2801 cfe = NULL;
2802 }
2803 dput(dentry);
2804out:
2805 kfree(cfe);
ddbcc7e8
PM
2806 return error;
2807}
2808
b1f28d31
TH
2809/**
2810 * cgroup_addrm_files - add or remove files to a cgroup directory
2811 * @cgrp: the target cgroup
b1f28d31
TH
2812 * @cfts: array of cftypes to be added
2813 * @is_add: whether to add or remove
2814 *
2815 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2816 * For removals, this function never fails. If addition fails, this
2817 * function doesn't remove files already added. The caller is responsible
2818 * for cleaning up.
b1f28d31 2819 */
2bb566cb
TH
2820static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2821 bool is_add)
ddbcc7e8 2822{
03b1cde6 2823 struct cftype *cft;
b1f28d31
TH
2824 int ret;
2825
2826 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
2827 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2828
2829 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2830 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2831 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2832 continue;
f33fddc2
G
2833 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2834 continue;
2835 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2836 continue;
2837
2739d3cc 2838 if (is_add) {
2bb566cb 2839 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2840 if (ret) {
2739d3cc 2841 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2842 cft->name, ret);
2843 return ret;
2844 }
2739d3cc
LZ
2845 } else {
2846 cgroup_rm_file(cgrp, cft);
db0416b6 2847 }
ddbcc7e8 2848 }
b1f28d31 2849 return 0;
ddbcc7e8
PM
2850}
2851
8e3f6541 2852static void cgroup_cfts_prepare(void)
e8c82d20 2853 __acquires(&cgroup_mutex)
8e3f6541
TH
2854{
2855 /*
2856 * Thanks to the entanglement with vfs inode locking, we can't walk
2857 * the existing cgroups under cgroup_mutex and create files.
492eb21b
TH
2858 * Instead, we use css_for_each_descendant_pre() and drop RCU read
2859 * lock before calling cgroup_addrm_files().
8e3f6541 2860 */
8e3f6541
TH
2861 mutex_lock(&cgroup_mutex);
2862}
2863
2bb566cb 2864static int cgroup_cfts_commit(struct cftype *cfts, bool is_add)
e8c82d20 2865 __releases(&cgroup_mutex)
8e3f6541
TH
2866{
2867 LIST_HEAD(pending);
2bb566cb 2868 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2869 struct cgroup *root = &ss->root->top_cgroup;
084457f2 2870 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2871 struct dentry *prev = NULL;
2872 struct inode *inode;
492eb21b 2873 struct cgroup_subsys_state *css;
00356bd5 2874 u64 update_before;
9ccece80 2875 int ret = 0;
8e3f6541
TH
2876
2877 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
9871bf95 2878 if (!cfts || ss->root == &cgroup_dummy_root ||
e8c82d20
LZ
2879 !atomic_inc_not_zero(&sb->s_active)) {
2880 mutex_unlock(&cgroup_mutex);
9ccece80 2881 return 0;
8e3f6541
TH
2882 }
2883
8e3f6541 2884 /*
e8c82d20
LZ
2885 * All cgroups which are created after we drop cgroup_mutex will
2886 * have the updated set of files, so we only need to update the
00356bd5 2887 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2888 */
00356bd5 2889 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2890
2891 mutex_unlock(&cgroup_mutex);
2892
e8c82d20
LZ
2893 /* add/rm files for all cgroups created before */
2894 rcu_read_lock();
492eb21b
TH
2895 css_for_each_descendant_pre(css, cgroup_css(root, ss->subsys_id)) {
2896 struct cgroup *cgrp = css->cgroup;
2897
e8c82d20
LZ
2898 if (cgroup_is_dead(cgrp))
2899 continue;
2900
2901 inode = cgrp->dentry->d_inode;
2902 dget(cgrp->dentry);
2903 rcu_read_unlock();
2904
2905 dput(prev);
2906 prev = cgrp->dentry;
8e3f6541
TH
2907
2908 mutex_lock(&inode->i_mutex);
2909 mutex_lock(&cgroup_mutex);
00356bd5 2910 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
2bb566cb 2911 ret = cgroup_addrm_files(cgrp, cfts, is_add);
8e3f6541
TH
2912 mutex_unlock(&cgroup_mutex);
2913 mutex_unlock(&inode->i_mutex);
2914
e8c82d20 2915 rcu_read_lock();
9ccece80
TH
2916 if (ret)
2917 break;
8e3f6541 2918 }
e8c82d20
LZ
2919 rcu_read_unlock();
2920 dput(prev);
2921 deactivate_super(sb);
9ccece80 2922 return ret;
8e3f6541
TH
2923}
2924
2925/**
2926 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2927 * @ss: target cgroup subsystem
2928 * @cfts: zero-length name terminated array of cftypes
2929 *
2930 * Register @cfts to @ss. Files described by @cfts are created for all
2931 * existing cgroups to which @ss is attached and all future cgroups will
2932 * have them too. This function can be called anytime whether @ss is
2933 * attached or not.
2934 *
2935 * Returns 0 on successful registration, -errno on failure. Note that this
2936 * function currently returns 0 as long as @cfts registration is successful
2937 * even if some file creation attempts on existing cgroups fail.
2938 */
03b1cde6 2939int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2940{
2941 struct cftype_set *set;
2bb566cb 2942 struct cftype *cft;
9ccece80 2943 int ret;
8e3f6541
TH
2944
2945 set = kzalloc(sizeof(*set), GFP_KERNEL);
2946 if (!set)
2947 return -ENOMEM;
2948
2bb566cb
TH
2949 for (cft = cfts; cft->name[0] != '\0'; cft++)
2950 cft->ss = ss;
2951
8e3f6541
TH
2952 cgroup_cfts_prepare();
2953 set->cfts = cfts;
2954 list_add_tail(&set->node, &ss->cftsets);
2bb566cb 2955 ret = cgroup_cfts_commit(cfts, true);
9ccece80 2956 if (ret)
2bb566cb 2957 cgroup_rm_cftypes(cfts);
9ccece80 2958 return ret;
8e3f6541
TH
2959}
2960EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2961
79578621
TH
2962/**
2963 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
2964 * @cfts: zero-length name terminated array of cftypes
2965 *
2bb566cb
TH
2966 * Unregister @cfts. Files described by @cfts are removed from all
2967 * existing cgroups and all future cgroups won't have them either. This
2968 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
2969 *
2970 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 2971 * registered.
79578621 2972 */
2bb566cb 2973int cgroup_rm_cftypes(struct cftype *cfts)
79578621
TH
2974{
2975 struct cftype_set *set;
2976
2bb566cb
TH
2977 if (!cfts || !cfts[0].ss)
2978 return -ENOENT;
2979
79578621
TH
2980 cgroup_cfts_prepare();
2981
2bb566cb 2982 list_for_each_entry(set, &cfts[0].ss->cftsets, node) {
79578621 2983 if (set->cfts == cfts) {
f57947d2
LZ
2984 list_del(&set->node);
2985 kfree(set);
2bb566cb 2986 cgroup_cfts_commit(cfts, false);
79578621
TH
2987 return 0;
2988 }
2989 }
2990
2bb566cb 2991 cgroup_cfts_commit(NULL, false);
79578621
TH
2992 return -ENOENT;
2993}
2994
a043e3b2
LZ
2995/**
2996 * cgroup_task_count - count the number of tasks in a cgroup.
2997 * @cgrp: the cgroup in question
2998 *
2999 * Return the number of tasks in the cgroup.
3000 */
bd89aabc 3001int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3002{
3003 int count = 0;
69d0206c 3004 struct cgrp_cset_link *link;
817929ec
PM
3005
3006 read_lock(&css_set_lock);
69d0206c
TH
3007 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3008 count += atomic_read(&link->cset->refcount);
817929ec 3009 read_unlock(&css_set_lock);
bbcb81d0
PM
3010 return count;
3011}
3012
31a7df01 3013/*
0942eeee
TH
3014 * To reduce the fork() overhead for systems that are not actually using
3015 * their cgroups capability, we don't maintain the lists running through
3016 * each css_set to its tasks until we see the list actually used - in other
72ec7029 3017 * words after the first call to css_task_iter_start().
31a7df01 3018 */
3df91fe3 3019static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
3020{
3021 struct task_struct *p, *g;
3022 write_lock(&css_set_lock);
3023 use_task_css_set_links = 1;
3ce3230a
FW
3024 /*
3025 * We need tasklist_lock because RCU is not safe against
3026 * while_each_thread(). Besides, a forking task that has passed
3027 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3028 * is not guaranteed to have its child immediately visible in the
3029 * tasklist if we walk through it with RCU.
3030 */
3031 read_lock(&tasklist_lock);
31a7df01
CW
3032 do_each_thread(g, p) {
3033 task_lock(p);
0e04388f
LZ
3034 /*
3035 * We should check if the process is exiting, otherwise
3036 * it will race with cgroup_exit() in that the list
3037 * entry won't be deleted though the process has exited.
3038 */
3039 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 3040 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
3041 task_unlock(p);
3042 } while_each_thread(g, p);
3ce3230a 3043 read_unlock(&tasklist_lock);
31a7df01
CW
3044 write_unlock(&css_set_lock);
3045}
3046
53fa5261 3047/**
492eb21b
TH
3048 * css_next_child - find the next child of a given css
3049 * @pos_css: the current position (%NULL to initiate traversal)
3050 * @parent_css: css whose children to walk
53fa5261 3051 *
492eb21b
TH
3052 * This function returns the next child of @parent_css and should be called
3053 * under RCU read lock. The only requirement is that @parent_css and
3054 * @pos_css are accessible. The next sibling is guaranteed to be returned
3055 * regardless of their states.
53fa5261 3056 */
492eb21b
TH
3057struct cgroup_subsys_state *
3058css_next_child(struct cgroup_subsys_state *pos_css,
3059 struct cgroup_subsys_state *parent_css)
53fa5261 3060{
492eb21b
TH
3061 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
3062 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
3063 struct cgroup *next;
3064
3065 WARN_ON_ONCE(!rcu_read_lock_held());
3066
3067 /*
3068 * @pos could already have been removed. Once a cgroup is removed,
3069 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3070 * changes. As CGRP_DEAD assertion is serialized and happens
3071 * before the cgroup is taken off the ->sibling list, if we see it
3072 * unasserted, it's guaranteed that the next sibling hasn't
3073 * finished its grace period even if it's already removed, and thus
3074 * safe to dereference from this RCU critical section. If
3075 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3076 * to be visible as %true here.
3b287a50
TH
3077 *
3078 * If @pos is dead, its next pointer can't be dereferenced;
3079 * however, as each cgroup is given a monotonically increasing
3080 * unique serial number and always appended to the sibling list,
3081 * the next one can be found by walking the parent's children until
3082 * we see a cgroup with higher serial number than @pos's. While
3083 * this path can be slower, it's taken only when either the current
3084 * cgroup is removed or iteration and removal race.
53fa5261 3085 */
3b287a50
TH
3086 if (!pos) {
3087 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
3088 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 3089 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
3090 } else {
3091 list_for_each_entry_rcu(next, &cgrp->children, sibling)
3092 if (next->serial_nr > pos->serial_nr)
3093 break;
53fa5261
TH
3094 }
3095
492eb21b
TH
3096 if (&next->sibling == &cgrp->children)
3097 return NULL;
3098
3099 if (parent_css->ss)
3100 return cgroup_css(next, parent_css->ss->subsys_id);
3101 else
3102 return &next->dummy_css;
53fa5261 3103}
492eb21b 3104EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 3105
574bd9f7 3106/**
492eb21b 3107 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3108 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3109 * @root: css whose descendants to walk
574bd9f7 3110 *
492eb21b 3111 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3112 * to visit for pre-order traversal of @root's descendants. @root is
3113 * included in the iteration and the first node to be visited.
75501a6d
TH
3114 *
3115 * While this function requires RCU read locking, it doesn't require the
3116 * whole traversal to be contained in a single RCU critical section. This
3117 * function will return the correct next descendant as long as both @pos
492eb21b 3118 * and @root are accessible and @pos is a descendant of @root.
574bd9f7 3119 */
492eb21b
TH
3120struct cgroup_subsys_state *
3121css_next_descendant_pre(struct cgroup_subsys_state *pos,
3122 struct cgroup_subsys_state *root)
574bd9f7 3123{
492eb21b 3124 struct cgroup_subsys_state *next;
574bd9f7
TH
3125
3126 WARN_ON_ONCE(!rcu_read_lock_held());
3127
bd8815a6 3128 /* if first iteration, visit @root */
7805d000 3129 if (!pos)
bd8815a6 3130 return root;
574bd9f7
TH
3131
3132 /* visit the first child if exists */
492eb21b 3133 next = css_next_child(NULL, pos);
574bd9f7
TH
3134 if (next)
3135 return next;
3136
3137 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
3138 while (pos != root) {
3139 next = css_next_child(pos, css_parent(pos));
75501a6d 3140 if (next)
574bd9f7 3141 return next;
492eb21b 3142 pos = css_parent(pos);
7805d000 3143 }
574bd9f7
TH
3144
3145 return NULL;
3146}
492eb21b 3147EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 3148
12a9d2fe 3149/**
492eb21b
TH
3150 * css_rightmost_descendant - return the rightmost descendant of a css
3151 * @pos: css of interest
12a9d2fe 3152 *
492eb21b
TH
3153 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3154 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3155 * subtree of @pos.
75501a6d
TH
3156 *
3157 * While this function requires RCU read locking, it doesn't require the
3158 * whole traversal to be contained in a single RCU critical section. This
3159 * function will return the correct rightmost descendant as long as @pos is
3160 * accessible.
12a9d2fe 3161 */
492eb21b
TH
3162struct cgroup_subsys_state *
3163css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3164{
492eb21b 3165 struct cgroup_subsys_state *last, *tmp;
12a9d2fe
TH
3166
3167 WARN_ON_ONCE(!rcu_read_lock_held());
3168
3169 do {
3170 last = pos;
3171 /* ->prev isn't RCU safe, walk ->next till the end */
3172 pos = NULL;
492eb21b 3173 css_for_each_child(tmp, last)
12a9d2fe
TH
3174 pos = tmp;
3175 } while (pos);
3176
3177 return last;
3178}
492eb21b 3179EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 3180
492eb21b
TH
3181static struct cgroup_subsys_state *
3182css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3183{
492eb21b 3184 struct cgroup_subsys_state *last;
574bd9f7
TH
3185
3186 do {
3187 last = pos;
492eb21b 3188 pos = css_next_child(NULL, pos);
574bd9f7
TH
3189 } while (pos);
3190
3191 return last;
3192}
3193
3194/**
492eb21b 3195 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3196 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3197 * @root: css whose descendants to walk
574bd9f7 3198 *
492eb21b 3199 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3200 * to visit for post-order traversal of @root's descendants. @root is
3201 * included in the iteration and the last node to be visited.
75501a6d
TH
3202 *
3203 * While this function requires RCU read locking, it doesn't require the
3204 * whole traversal to be contained in a single RCU critical section. This
3205 * function will return the correct next descendant as long as both @pos
3206 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7 3207 */
492eb21b
TH
3208struct cgroup_subsys_state *
3209css_next_descendant_post(struct cgroup_subsys_state *pos,
3210 struct cgroup_subsys_state *root)
574bd9f7 3211{
492eb21b 3212 struct cgroup_subsys_state *next;
574bd9f7
TH
3213
3214 WARN_ON_ONCE(!rcu_read_lock_held());
3215
3216 /* if first iteration, visit the leftmost descendant */
3217 if (!pos) {
492eb21b
TH
3218 next = css_leftmost_descendant(root);
3219 return next != root ? next : NULL;
574bd9f7
TH
3220 }
3221
bd8815a6
TH
3222 /* if we visited @root, we're done */
3223 if (pos == root)
3224 return NULL;
3225
574bd9f7 3226 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 3227 next = css_next_child(pos, css_parent(pos));
75501a6d 3228 if (next)
492eb21b 3229 return css_leftmost_descendant(next);
574bd9f7
TH
3230
3231 /* no sibling left, visit parent */
bd8815a6 3232 return css_parent(pos);
574bd9f7 3233}
492eb21b 3234EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 3235
0942eeee 3236/**
72ec7029 3237 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3238 * @it: the iterator to advance
3239 *
3240 * Advance @it to the next css_set to walk.
d515876e 3241 */
72ec7029 3242static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
3243{
3244 struct list_head *l = it->cset_link;
3245 struct cgrp_cset_link *link;
3246 struct css_set *cset;
3247
3248 /* Advance to the next non-empty css_set */
3249 do {
3250 l = l->next;
72ec7029 3251 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
3252 it->cset_link = NULL;
3253 return;
3254 }
3255 link = list_entry(l, struct cgrp_cset_link, cset_link);
3256 cset = link->cset;
3257 } while (list_empty(&cset->tasks));
3258 it->cset_link = l;
3259 it->task = cset->tasks.next;
3260}
3261
0942eeee 3262/**
72ec7029
TH
3263 * css_task_iter_start - initiate task iteration
3264 * @css: the css to walk tasks of
0942eeee
TH
3265 * @it: the task iterator to use
3266 *
72ec7029
TH
3267 * Initiate iteration through the tasks of @css. The caller can call
3268 * css_task_iter_next() to walk through the tasks until the function
3269 * returns NULL. On completion of iteration, css_task_iter_end() must be
3270 * called.
0942eeee
TH
3271 *
3272 * Note that this function acquires a lock which is released when the
3273 * iteration finishes. The caller can't sleep while iteration is in
3274 * progress.
3275 */
72ec7029
TH
3276void css_task_iter_start(struct cgroup_subsys_state *css,
3277 struct css_task_iter *it)
c6ca5750 3278 __acquires(css_set_lock)
817929ec
PM
3279{
3280 /*
72ec7029
TH
3281 * The first time anyone tries to iterate across a css, we need to
3282 * enable the list linking each css_set to its tasks, and fix up
3283 * all existing tasks.
817929ec 3284 */
31a7df01
CW
3285 if (!use_task_css_set_links)
3286 cgroup_enable_task_cg_lists();
3287
817929ec 3288 read_lock(&css_set_lock);
c59cd3d8 3289
72ec7029
TH
3290 it->origin_css = css;
3291 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 3292
72ec7029 3293 css_advance_task_iter(it);
817929ec
PM
3294}
3295
0942eeee 3296/**
72ec7029 3297 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3298 * @it: the task iterator being iterated
3299 *
3300 * The "next" function for task iteration. @it should have been
72ec7029
TH
3301 * initialized via css_task_iter_start(). Returns NULL when the iteration
3302 * reaches the end.
0942eeee 3303 */
72ec7029 3304struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3305{
3306 struct task_struct *res;
3307 struct list_head *l = it->task;
69d0206c 3308 struct cgrp_cset_link *link;
817929ec
PM
3309
3310 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3311 if (!it->cset_link)
817929ec
PM
3312 return NULL;
3313 res = list_entry(l, struct task_struct, cg_list);
3314 /* Advance iterator to find next entry */
3315 l = l->next;
69d0206c
TH
3316 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3317 if (l == &link->cset->tasks) {
0942eeee
TH
3318 /*
3319 * We reached the end of this task list - move on to the
3320 * next cgrp_cset_link.
3321 */
72ec7029 3322 css_advance_task_iter(it);
817929ec
PM
3323 } else {
3324 it->task = l;
3325 }
3326 return res;
3327}
3328
0942eeee 3329/**
72ec7029 3330 * css_task_iter_end - finish task iteration
0942eeee
TH
3331 * @it: the task iterator to finish
3332 *
72ec7029 3333 * Finish task iteration started by css_task_iter_start().
0942eeee 3334 */
72ec7029 3335void css_task_iter_end(struct css_task_iter *it)
c6ca5750 3336 __releases(css_set_lock)
817929ec
PM
3337{
3338 read_unlock(&css_set_lock);
3339}
3340
31a7df01
CW
3341static inline int started_after_time(struct task_struct *t1,
3342 struct timespec *time,
3343 struct task_struct *t2)
3344{
3345 int start_diff = timespec_compare(&t1->start_time, time);
3346 if (start_diff > 0) {
3347 return 1;
3348 } else if (start_diff < 0) {
3349 return 0;
3350 } else {
3351 /*
3352 * Arbitrarily, if two processes started at the same
3353 * time, we'll say that the lower pointer value
3354 * started first. Note that t2 may have exited by now
3355 * so this may not be a valid pointer any longer, but
3356 * that's fine - it still serves to distinguish
3357 * between two tasks started (effectively) simultaneously.
3358 */
3359 return t1 > t2;
3360 }
3361}
3362
3363/*
3364 * This function is a callback from heap_insert() and is used to order
3365 * the heap.
3366 * In this case we order the heap in descending task start time.
3367 */
3368static inline int started_after(void *p1, void *p2)
3369{
3370 struct task_struct *t1 = p1;
3371 struct task_struct *t2 = p2;
3372 return started_after_time(t1, &t2->start_time, t2);
3373}
3374
3375/**
72ec7029
TH
3376 * css_scan_tasks - iterate though all the tasks in a css
3377 * @css: the css to iterate tasks of
e535837b
TH
3378 * @test: optional test callback
3379 * @process: process callback
3380 * @data: data passed to @test and @process
3381 * @heap: optional pre-allocated heap used for task iteration
31a7df01 3382 *
72ec7029
TH
3383 * Iterate through all the tasks in @css, calling @test for each, and if it
3384 * returns %true, call @process for it also.
31a7df01 3385 *
e535837b 3386 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 3387 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
3388 * lock css_set_lock for the call to @process.
3389 *
3390 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
3391 * of @css for the duration of this call. This function may or may not
3392 * call @process for tasks that exit or move to a different css during the
3393 * call, or are forked or move into the css during the call.
e535837b
TH
3394 *
3395 * Note that @test may be called with locks held, and may in some
3396 * situations be called multiple times for the same task, so it should be
3397 * cheap.
3398 *
3399 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
3400 * heap operations (and its "gt" member will be overwritten), else a
3401 * temporary heap will be used (allocation of which may cause this function
3402 * to fail).
31a7df01 3403 */
72ec7029
TH
3404int css_scan_tasks(struct cgroup_subsys_state *css,
3405 bool (*test)(struct task_struct *, void *),
3406 void (*process)(struct task_struct *, void *),
3407 void *data, struct ptr_heap *heap)
31a7df01
CW
3408{
3409 int retval, i;
72ec7029 3410 struct css_task_iter it;
31a7df01
CW
3411 struct task_struct *p, *dropped;
3412 /* Never dereference latest_task, since it's not refcounted */
3413 struct task_struct *latest_task = NULL;
3414 struct ptr_heap tmp_heap;
31a7df01
CW
3415 struct timespec latest_time = { 0, 0 };
3416
e535837b 3417 if (heap) {
31a7df01 3418 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
3419 heap->gt = &started_after;
3420 } else {
3421 /* We need to allocate our own heap memory */
3422 heap = &tmp_heap;
3423 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3424 if (retval)
3425 /* cannot allocate the heap */
3426 return retval;
3427 }
3428
3429 again:
3430 /*
72ec7029 3431 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
3432 * which are of interest, and invoking @process callback on the
3433 * ones which need an update. Since we don't want to hold any
3434 * locks during the task updates, gather tasks to be processed in a
3435 * heap structure. The heap is sorted by descending task start
3436 * time. If the statically-sized heap fills up, we overflow tasks
3437 * that started later, and in future iterations only consider tasks
3438 * that started after the latest task in the previous pass. This
31a7df01
CW
3439 * guarantees forward progress and that we don't miss any tasks.
3440 */
3441 heap->size = 0;
72ec7029
TH
3442 css_task_iter_start(css, &it);
3443 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
3444 /*
3445 * Only affect tasks that qualify per the caller's callback,
3446 * if he provided one
3447 */
e535837b 3448 if (test && !test(p, data))
31a7df01
CW
3449 continue;
3450 /*
3451 * Only process tasks that started after the last task
3452 * we processed
3453 */
3454 if (!started_after_time(p, &latest_time, latest_task))
3455 continue;
3456 dropped = heap_insert(heap, p);
3457 if (dropped == NULL) {
3458 /*
3459 * The new task was inserted; the heap wasn't
3460 * previously full
3461 */
3462 get_task_struct(p);
3463 } else if (dropped != p) {
3464 /*
3465 * The new task was inserted, and pushed out a
3466 * different task
3467 */
3468 get_task_struct(p);
3469 put_task_struct(dropped);
3470 }
3471 /*
3472 * Else the new task was newer than anything already in
3473 * the heap and wasn't inserted
3474 */
3475 }
72ec7029 3476 css_task_iter_end(&it);
31a7df01
CW
3477
3478 if (heap->size) {
3479 for (i = 0; i < heap->size; i++) {
4fe91d51 3480 struct task_struct *q = heap->ptrs[i];
31a7df01 3481 if (i == 0) {
4fe91d51
PJ
3482 latest_time = q->start_time;
3483 latest_task = q;
31a7df01
CW
3484 }
3485 /* Process the task per the caller's callback */
e535837b 3486 process(q, data);
4fe91d51 3487 put_task_struct(q);
31a7df01
CW
3488 }
3489 /*
3490 * If we had to process any tasks at all, scan again
3491 * in case some of them were in the middle of forking
3492 * children that didn't get processed.
3493 * Not the most efficient way to do it, but it avoids
3494 * having to take callback_mutex in the fork path
3495 */
3496 goto again;
3497 }
3498 if (heap == &tmp_heap)
3499 heap_free(&tmp_heap);
3500 return 0;
3501}
3502
e535837b 3503static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 3504{
e535837b 3505 struct cgroup *new_cgroup = data;
8cc99345 3506
47cfcd09 3507 mutex_lock(&cgroup_mutex);
8cc99345 3508 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3509 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3510}
3511
3512/**
3513 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3514 * @to: cgroup to which the tasks will be moved
3515 * @from: cgroup in which the tasks currently reside
3516 */
3517int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3518{
72ec7029
TH
3519 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
3520 to, NULL);
8cc99345
TH
3521}
3522
bbcb81d0 3523/*
102a775e 3524 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3525 *
3526 * Reading this file can return large amounts of data if a cgroup has
3527 * *lots* of attached tasks. So it may need several calls to read(),
3528 * but we cannot guarantee that the information we produce is correct
3529 * unless we produce it entirely atomically.
3530 *
bbcb81d0 3531 */
bbcb81d0 3532
24528255
LZ
3533/* which pidlist file are we talking about? */
3534enum cgroup_filetype {
3535 CGROUP_FILE_PROCS,
3536 CGROUP_FILE_TASKS,
3537};
3538
3539/*
3540 * A pidlist is a list of pids that virtually represents the contents of one
3541 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3542 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3543 * to the cgroup.
3544 */
3545struct cgroup_pidlist {
3546 /*
3547 * used to find which pidlist is wanted. doesn't change as long as
3548 * this particular list stays in the list.
3549 */
3550 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3551 /* array of xids */
3552 pid_t *list;
3553 /* how many elements the above list has */
3554 int length;
3555 /* how many files are using the current array */
3556 int use_count;
3557 /* each of these stored in a list by its cgroup */
3558 struct list_head links;
3559 /* pointer to the cgroup we belong to, for list removal purposes */
3560 struct cgroup *owner;
3561 /* protects the other fields */
b395890a 3562 struct rw_semaphore rwsem;
24528255
LZ
3563};
3564
d1d9fd33
BB
3565/*
3566 * The following two functions "fix" the issue where there are more pids
3567 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3568 * TODO: replace with a kernel-wide solution to this problem
3569 */
3570#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3571static void *pidlist_allocate(int count)
3572{
3573 if (PIDLIST_TOO_LARGE(count))
3574 return vmalloc(count * sizeof(pid_t));
3575 else
3576 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3577}
3578static void pidlist_free(void *p)
3579{
3580 if (is_vmalloc_addr(p))
3581 vfree(p);
3582 else
3583 kfree(p);
3584}
d1d9fd33 3585
bbcb81d0 3586/*
102a775e 3587 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3588 * Returns the number of unique elements.
bbcb81d0 3589 */
6ee211ad 3590static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3591{
102a775e 3592 int src, dest = 1;
102a775e
BB
3593
3594 /*
3595 * we presume the 0th element is unique, so i starts at 1. trivial
3596 * edge cases first; no work needs to be done for either
3597 */
3598 if (length == 0 || length == 1)
3599 return length;
3600 /* src and dest walk down the list; dest counts unique elements */
3601 for (src = 1; src < length; src++) {
3602 /* find next unique element */
3603 while (list[src] == list[src-1]) {
3604 src++;
3605 if (src == length)
3606 goto after;
3607 }
3608 /* dest always points to where the next unique element goes */
3609 list[dest] = list[src];
3610 dest++;
3611 }
3612after:
102a775e
BB
3613 return dest;
3614}
3615
3616static int cmppid(const void *a, const void *b)
3617{
3618 return *(pid_t *)a - *(pid_t *)b;
3619}
3620
72a8cb30
BB
3621/*
3622 * find the appropriate pidlist for our purpose (given procs vs tasks)
3623 * returns with the lock on that pidlist already held, and takes care
3624 * of the use count, or returns NULL with no locks held if we're out of
3625 * memory.
3626 */
3627static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3628 enum cgroup_filetype type)
3629{
3630 struct cgroup_pidlist *l;
3631 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3632 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3633
72a8cb30 3634 /*
b395890a 3635 * We can't drop the pidlist_mutex before taking the l->rwsem in case
72a8cb30
BB
3636 * the last ref-holder is trying to remove l from the list at the same
3637 * time. Holding the pidlist_mutex precludes somebody taking whichever
3638 * list we find out from under us - compare release_pid_array().
3639 */
3640 mutex_lock(&cgrp->pidlist_mutex);
3641 list_for_each_entry(l, &cgrp->pidlists, links) {
3642 if (l->key.type == type && l->key.ns == ns) {
72a8cb30 3643 /* make sure l doesn't vanish out from under us */
b395890a 3644 down_write(&l->rwsem);
72a8cb30 3645 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3646 return l;
3647 }
3648 }
3649 /* entry not found; create a new one */
f4f4be2b 3650 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3651 if (!l) {
3652 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3653 return l;
3654 }
b395890a
LZ
3655 init_rwsem(&l->rwsem);
3656 down_write(&l->rwsem);
72a8cb30 3657 l->key.type = type;
b70cc5fd 3658 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3659 l->owner = cgrp;
3660 list_add(&l->links, &cgrp->pidlists);
3661 mutex_unlock(&cgrp->pidlist_mutex);
3662 return l;
3663}
3664
102a775e
BB
3665/*
3666 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3667 */
72a8cb30
BB
3668static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3669 struct cgroup_pidlist **lp)
102a775e
BB
3670{
3671 pid_t *array;
3672 int length;
3673 int pid, n = 0; /* used for populating the array */
72ec7029 3674 struct css_task_iter it;
817929ec 3675 struct task_struct *tsk;
102a775e
BB
3676 struct cgroup_pidlist *l;
3677
3678 /*
3679 * If cgroup gets more users after we read count, we won't have
3680 * enough space - tough. This race is indistinguishable to the
3681 * caller from the case that the additional cgroup users didn't
3682 * show up until sometime later on.
3683 */
3684 length = cgroup_task_count(cgrp);
d1d9fd33 3685 array = pidlist_allocate(length);
102a775e
BB
3686 if (!array)
3687 return -ENOMEM;
3688 /* now, populate the array */
72ec7029
TH
3689 css_task_iter_start(&cgrp->dummy_css, &it);
3690 while ((tsk = css_task_iter_next(&it))) {
102a775e 3691 if (unlikely(n == length))
817929ec 3692 break;
102a775e 3693 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3694 if (type == CGROUP_FILE_PROCS)
3695 pid = task_tgid_vnr(tsk);
3696 else
3697 pid = task_pid_vnr(tsk);
102a775e
BB
3698 if (pid > 0) /* make sure to only use valid results */
3699 array[n++] = pid;
817929ec 3700 }
72ec7029 3701 css_task_iter_end(&it);
102a775e
BB
3702 length = n;
3703 /* now sort & (if procs) strip out duplicates */
3704 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3705 if (type == CGROUP_FILE_PROCS)
6ee211ad 3706 length = pidlist_uniq(array, length);
72a8cb30
BB
3707 l = cgroup_pidlist_find(cgrp, type);
3708 if (!l) {
d1d9fd33 3709 pidlist_free(array);
72a8cb30 3710 return -ENOMEM;
102a775e 3711 }
72a8cb30 3712 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3713 pidlist_free(l->list);
102a775e
BB
3714 l->list = array;
3715 l->length = length;
3716 l->use_count++;
b395890a 3717 up_write(&l->rwsem);
72a8cb30 3718 *lp = l;
102a775e 3719 return 0;
bbcb81d0
PM
3720}
3721
846c7bb0 3722/**
a043e3b2 3723 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3724 * @stats: cgroupstats to fill information into
3725 * @dentry: A dentry entry belonging to the cgroup for which stats have
3726 * been requested.
a043e3b2
LZ
3727 *
3728 * Build and fill cgroupstats so that taskstats can export it to user
3729 * space.
846c7bb0
BS
3730 */
3731int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3732{
3733 int ret = -EINVAL;
bd89aabc 3734 struct cgroup *cgrp;
72ec7029 3735 struct css_task_iter it;
846c7bb0 3736 struct task_struct *tsk;
33d283be 3737
846c7bb0 3738 /*
33d283be
LZ
3739 * Validate dentry by checking the superblock operations,
3740 * and make sure it's a directory.
846c7bb0 3741 */
33d283be
LZ
3742 if (dentry->d_sb->s_op != &cgroup_ops ||
3743 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3744 goto err;
3745
3746 ret = 0;
bd89aabc 3747 cgrp = dentry->d_fsdata;
846c7bb0 3748
72ec7029
TH
3749 css_task_iter_start(&cgrp->dummy_css, &it);
3750 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3751 switch (tsk->state) {
3752 case TASK_RUNNING:
3753 stats->nr_running++;
3754 break;
3755 case TASK_INTERRUPTIBLE:
3756 stats->nr_sleeping++;
3757 break;
3758 case TASK_UNINTERRUPTIBLE:
3759 stats->nr_uninterruptible++;
3760 break;
3761 case TASK_STOPPED:
3762 stats->nr_stopped++;
3763 break;
3764 default:
3765 if (delayacct_is_task_waiting_on_io(tsk))
3766 stats->nr_io_wait++;
3767 break;
3768 }
3769 }
72ec7029 3770 css_task_iter_end(&it);
846c7bb0 3771
846c7bb0
BS
3772err:
3773 return ret;
3774}
3775
8f3ff208 3776
bbcb81d0 3777/*
102a775e 3778 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3779 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3780 * in the cgroup->l->list array.
bbcb81d0 3781 */
cc31edce 3782
102a775e 3783static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3784{
cc31edce
PM
3785 /*
3786 * Initially we receive a position value that corresponds to
3787 * one more than the last pid shown (or 0 on the first call or
3788 * after a seek to the start). Use a binary-search to find the
3789 * next pid to display, if any
3790 */
102a775e 3791 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3792 int index = 0, pid = *pos;
3793 int *iter;
3794
b395890a 3795 down_read(&l->rwsem);
cc31edce 3796 if (pid) {
102a775e 3797 int end = l->length;
20777766 3798
cc31edce
PM
3799 while (index < end) {
3800 int mid = (index + end) / 2;
102a775e 3801 if (l->list[mid] == pid) {
cc31edce
PM
3802 index = mid;
3803 break;
102a775e 3804 } else if (l->list[mid] <= pid)
cc31edce
PM
3805 index = mid + 1;
3806 else
3807 end = mid;
3808 }
3809 }
3810 /* If we're off the end of the array, we're done */
102a775e 3811 if (index >= l->length)
cc31edce
PM
3812 return NULL;
3813 /* Update the abstract position to be the actual pid that we found */
102a775e 3814 iter = l->list + index;
cc31edce
PM
3815 *pos = *iter;
3816 return iter;
3817}
3818
102a775e 3819static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3820{
102a775e 3821 struct cgroup_pidlist *l = s->private;
b395890a 3822 up_read(&l->rwsem);
cc31edce
PM
3823}
3824
102a775e 3825static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3826{
102a775e
BB
3827 struct cgroup_pidlist *l = s->private;
3828 pid_t *p = v;
3829 pid_t *end = l->list + l->length;
cc31edce
PM
3830 /*
3831 * Advance to the next pid in the array. If this goes off the
3832 * end, we're done
3833 */
3834 p++;
3835 if (p >= end) {
3836 return NULL;
3837 } else {
3838 *pos = *p;
3839 return p;
3840 }
3841}
3842
102a775e 3843static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3844{
3845 return seq_printf(s, "%d\n", *(int *)v);
3846}
bbcb81d0 3847
102a775e
BB
3848/*
3849 * seq_operations functions for iterating on pidlists through seq_file -
3850 * independent of whether it's tasks or procs
3851 */
3852static const struct seq_operations cgroup_pidlist_seq_operations = {
3853 .start = cgroup_pidlist_start,
3854 .stop = cgroup_pidlist_stop,
3855 .next = cgroup_pidlist_next,
3856 .show = cgroup_pidlist_show,
cc31edce
PM
3857};
3858
102a775e 3859static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3860{
72a8cb30
BB
3861 /*
3862 * the case where we're the last user of this particular pidlist will
3863 * have us remove it from the cgroup's list, which entails taking the
3864 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3865 * pidlist_mutex, we have to take pidlist_mutex first.
3866 */
3867 mutex_lock(&l->owner->pidlist_mutex);
b395890a 3868 down_write(&l->rwsem);
102a775e
BB
3869 BUG_ON(!l->use_count);
3870 if (!--l->use_count) {
72a8cb30
BB
3871 /* we're the last user if refcount is 0; remove and free */
3872 list_del(&l->links);
3873 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3874 pidlist_free(l->list);
72a8cb30 3875 put_pid_ns(l->key.ns);
b395890a 3876 up_write(&l->rwsem);
72a8cb30
BB
3877 kfree(l);
3878 return;
cc31edce 3879 }
72a8cb30 3880 mutex_unlock(&l->owner->pidlist_mutex);
b395890a 3881 up_write(&l->rwsem);
bbcb81d0
PM
3882}
3883
102a775e 3884static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3885{
102a775e 3886 struct cgroup_pidlist *l;
cc31edce
PM
3887 if (!(file->f_mode & FMODE_READ))
3888 return 0;
102a775e
BB
3889 /*
3890 * the seq_file will only be initialized if the file was opened for
3891 * reading; hence we check if it's not null only in that case.
3892 */
3893 l = ((struct seq_file *)file->private_data)->private;
3894 cgroup_release_pid_array(l);
cc31edce
PM
3895 return seq_release(inode, file);
3896}
3897
102a775e 3898static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3899 .read = seq_read,
3900 .llseek = seq_lseek,
3901 .write = cgroup_file_write,
102a775e 3902 .release = cgroup_pidlist_release,
cc31edce
PM
3903};
3904
bbcb81d0 3905/*
102a775e
BB
3906 * The following functions handle opens on a file that displays a pidlist
3907 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3908 * in the cgroup.
bbcb81d0 3909 */
102a775e 3910/* helper function for the two below it */
72a8cb30 3911static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3912{
bd89aabc 3913 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3914 struct cgroup_pidlist *l;
cc31edce 3915 int retval;
bbcb81d0 3916
cc31edce 3917 /* Nothing to do for write-only files */
bbcb81d0
PM
3918 if (!(file->f_mode & FMODE_READ))
3919 return 0;
3920
102a775e 3921 /* have the array populated */
72a8cb30 3922 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3923 if (retval)
3924 return retval;
3925 /* configure file information */
3926 file->f_op = &cgroup_pidlist_operations;
cc31edce 3927
102a775e 3928 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3929 if (retval) {
102a775e 3930 cgroup_release_pid_array(l);
cc31edce 3931 return retval;
bbcb81d0 3932 }
102a775e 3933 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3934 return 0;
3935}
102a775e
BB
3936static int cgroup_tasks_open(struct inode *unused, struct file *file)
3937{
72a8cb30 3938 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3939}
3940static int cgroup_procs_open(struct inode *unused, struct file *file)
3941{
72a8cb30 3942 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3943}
bbcb81d0 3944
182446d0
TH
3945static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3946 struct cftype *cft)
81a6a5cd 3947{
182446d0 3948 return notify_on_release(css->cgroup);
81a6a5cd
PM
3949}
3950
182446d0
TH
3951static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3952 struct cftype *cft, u64 val)
6379c106 3953{
182446d0 3954 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3955 if (val)
182446d0 3956 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3957 else
182446d0 3958 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3959 return 0;
3960}
3961
1c8158ee
LZ
3962/*
3963 * When dput() is called asynchronously, if umount has been done and
3964 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3965 * there's a small window that vfs will see the root dentry with non-zero
3966 * refcnt and trigger BUG().
3967 *
3968 * That's why we hold a reference before dput() and drop it right after.
3969 */
3970static void cgroup_dput(struct cgroup *cgrp)
3971{
3972 struct super_block *sb = cgrp->root->sb;
3973
3974 atomic_inc(&sb->s_active);
3975 dput(cgrp->dentry);
3976 deactivate_super(sb);
3977}
3978
0dea1168
KS
3979/*
3980 * Unregister event and free resources.
3981 *
3982 * Gets called from workqueue.
3983 */
3984static void cgroup_event_remove(struct work_struct *work)
3985{
3986 struct cgroup_event *event = container_of(work, struct cgroup_event,
3987 remove);
81eeaf04
TH
3988 struct cgroup_subsys_state *css = event->css;
3989 struct cgroup *cgrp = css->cgroup;
0dea1168 3990
810cbee4
LZ
3991 remove_wait_queue(event->wqh, &event->wait);
3992
81eeaf04 3993 event->cft->unregister_event(css, event->cft, event->eventfd);
0dea1168 3994
810cbee4
LZ
3995 /* Notify userspace the event is going away. */
3996 eventfd_signal(event->eventfd, 1);
3997
0dea1168 3998 eventfd_ctx_put(event->eventfd);
0dea1168 3999 kfree(event);
1c8158ee 4000 cgroup_dput(cgrp);
0dea1168
KS
4001}
4002
4003/*
4004 * Gets called on POLLHUP on eventfd when user closes it.
4005 *
4006 * Called with wqh->lock held and interrupts disabled.
4007 */
4008static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
4009 int sync, void *key)
4010{
4011 struct cgroup_event *event = container_of(wait,
4012 struct cgroup_event, wait);
81eeaf04 4013 struct cgroup *cgrp = event->css->cgroup;
0dea1168
KS
4014 unsigned long flags = (unsigned long)key;
4015
4016 if (flags & POLLHUP) {
0dea1168 4017 /*
810cbee4
LZ
4018 * If the event has been detached at cgroup removal, we
4019 * can simply return knowing the other side will cleanup
4020 * for us.
4021 *
4022 * We can't race against event freeing since the other
4023 * side will require wqh->lock via remove_wait_queue(),
4024 * which we hold.
0dea1168 4025 */
810cbee4
LZ
4026 spin_lock(&cgrp->event_list_lock);
4027 if (!list_empty(&event->list)) {
4028 list_del_init(&event->list);
4029 /*
4030 * We are in atomic context, but cgroup_event_remove()
4031 * may sleep, so we have to call it in workqueue.
4032 */
4033 schedule_work(&event->remove);
4034 }
4035 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
4036 }
4037
4038 return 0;
4039}
4040
4041static void cgroup_event_ptable_queue_proc(struct file *file,
4042 wait_queue_head_t *wqh, poll_table *pt)
4043{
4044 struct cgroup_event *event = container_of(pt,
4045 struct cgroup_event, pt);
4046
4047 event->wqh = wqh;
4048 add_wait_queue(wqh, &event->wait);
4049}
4050
4051/*
4052 * Parse input and register new cgroup event handler.
4053 *
4054 * Input must be in format '<event_fd> <control_fd> <args>'.
4055 * Interpretation of args is defined by control file implementation.
4056 */
182446d0
TH
4057static int cgroup_write_event_control(struct cgroup_subsys_state *css,
4058 struct cftype *cft, const char *buffer)
0dea1168 4059{
182446d0 4060 struct cgroup *cgrp = css->cgroup;
876ede8b 4061 struct cgroup_event *event;
f169007b 4062 struct cgroup *cgrp_cfile;
0dea1168 4063 unsigned int efd, cfd;
876ede8b
LZ
4064 struct file *efile;
4065 struct file *cfile;
0dea1168
KS
4066 char *endp;
4067 int ret;
4068
4069 efd = simple_strtoul(buffer, &endp, 10);
4070 if (*endp != ' ')
4071 return -EINVAL;
4072 buffer = endp + 1;
4073
4074 cfd = simple_strtoul(buffer, &endp, 10);
4075 if ((*endp != ' ') && (*endp != '\0'))
4076 return -EINVAL;
4077 buffer = endp + 1;
4078
4079 event = kzalloc(sizeof(*event), GFP_KERNEL);
4080 if (!event)
4081 return -ENOMEM;
81eeaf04 4082 event->css = css;
0dea1168
KS
4083 INIT_LIST_HEAD(&event->list);
4084 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
4085 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
4086 INIT_WORK(&event->remove, cgroup_event_remove);
4087
4088 efile = eventfd_fget(efd);
4089 if (IS_ERR(efile)) {
4090 ret = PTR_ERR(efile);
876ede8b 4091 goto out_kfree;
0dea1168
KS
4092 }
4093
4094 event->eventfd = eventfd_ctx_fileget(efile);
4095 if (IS_ERR(event->eventfd)) {
4096 ret = PTR_ERR(event->eventfd);
876ede8b 4097 goto out_put_efile;
0dea1168
KS
4098 }
4099
4100 cfile = fget(cfd);
4101 if (!cfile) {
4102 ret = -EBADF;
876ede8b 4103 goto out_put_eventfd;
0dea1168
KS
4104 }
4105
4106 /* the process need read permission on control file */
3bfa784a 4107 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 4108 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168 4109 if (ret < 0)
876ede8b 4110 goto out_put_cfile;
0dea1168
KS
4111
4112 event->cft = __file_cft(cfile);
4113 if (IS_ERR(event->cft)) {
4114 ret = PTR_ERR(event->cft);
876ede8b 4115 goto out_put_cfile;
0dea1168
KS
4116 }
4117
f169007b
LZ
4118 /*
4119 * The file to be monitored must be in the same cgroup as
4120 * cgroup.event_control is.
4121 */
4122 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4123 if (cgrp_cfile != cgrp) {
4124 ret = -EINVAL;
876ede8b 4125 goto out_put_cfile;
f169007b
LZ
4126 }
4127
0dea1168
KS
4128 if (!event->cft->register_event || !event->cft->unregister_event) {
4129 ret = -EINVAL;
876ede8b 4130 goto out_put_cfile;
0dea1168
KS
4131 }
4132
81eeaf04 4133 ret = event->cft->register_event(css, event->cft,
0dea1168
KS
4134 event->eventfd, buffer);
4135 if (ret)
876ede8b 4136 goto out_put_cfile;
0dea1168 4137
7ef70e48 4138 efile->f_op->poll(efile, &event->pt);
0dea1168 4139
a0a4db54
KS
4140 /*
4141 * Events should be removed after rmdir of cgroup directory, but before
4142 * destroying subsystem state objects. Let's take reference to cgroup
4143 * directory dentry to do that.
4144 */
4145 dget(cgrp->dentry);
4146
0dea1168
KS
4147 spin_lock(&cgrp->event_list_lock);
4148 list_add(&event->list, &cgrp->event_list);
4149 spin_unlock(&cgrp->event_list_lock);
4150
4151 fput(cfile);
4152 fput(efile);
4153
4154 return 0;
4155
876ede8b
LZ
4156out_put_cfile:
4157 fput(cfile);
4158out_put_eventfd:
4159 eventfd_ctx_put(event->eventfd);
4160out_put_efile:
4161 fput(efile);
4162out_kfree:
0dea1168
KS
4163 kfree(event);
4164
4165 return ret;
4166}
4167
182446d0
TH
4168static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4169 struct cftype *cft)
97978e6d 4170{
182446d0 4171 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4172}
4173
182446d0
TH
4174static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4175 struct cftype *cft, u64 val)
97978e6d
DL
4176{
4177 if (val)
182446d0 4178 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4179 else
182446d0 4180 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4181 return 0;
4182}
4183
d5c56ced 4184static struct cftype cgroup_base_files[] = {
81a6a5cd 4185 {
d5c56ced 4186 .name = "cgroup.procs",
102a775e 4187 .open = cgroup_procs_open,
74a1166d 4188 .write_u64 = cgroup_procs_write,
102a775e 4189 .release = cgroup_pidlist_release,
74a1166d 4190 .mode = S_IRUGO | S_IWUSR,
102a775e 4191 },
81a6a5cd 4192 {
d5c56ced 4193 .name = "cgroup.event_control",
0dea1168
KS
4194 .write_string = cgroup_write_event_control,
4195 .mode = S_IWUGO,
4196 },
97978e6d
DL
4197 {
4198 .name = "cgroup.clone_children",
873fe09e 4199 .flags = CFTYPE_INSANE,
97978e6d
DL
4200 .read_u64 = cgroup_clone_children_read,
4201 .write_u64 = cgroup_clone_children_write,
4202 },
873fe09e
TH
4203 {
4204 .name = "cgroup.sane_behavior",
4205 .flags = CFTYPE_ONLY_ON_ROOT,
4206 .read_seq_string = cgroup_sane_behavior_show,
4207 },
d5c56ced
TH
4208
4209 /*
4210 * Historical crazy stuff. These don't have "cgroup." prefix and
4211 * don't exist if sane_behavior. If you're depending on these, be
4212 * prepared to be burned.
4213 */
4214 {
4215 .name = "tasks",
4216 .flags = CFTYPE_INSANE, /* use "procs" instead */
4217 .open = cgroup_tasks_open,
4218 .write_u64 = cgroup_tasks_write,
4219 .release = cgroup_pidlist_release,
4220 .mode = S_IRUGO | S_IWUSR,
4221 },
4222 {
4223 .name = "notify_on_release",
4224 .flags = CFTYPE_INSANE,
4225 .read_u64 = cgroup_read_notify_on_release,
4226 .write_u64 = cgroup_write_notify_on_release,
4227 },
6e6ff25b
TH
4228 {
4229 .name = "release_agent",
cc5943a7 4230 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4231 .read_seq_string = cgroup_release_agent_show,
4232 .write_string = cgroup_release_agent_write,
4233 .max_write_len = PATH_MAX,
4234 },
db0416b6 4235 { } /* terminate */
bbcb81d0
PM
4236};
4237
13af07df 4238/**
628f7cd4 4239 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4240 * @cgrp: target cgroup
13af07df 4241 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4242 *
4243 * On failure, no file is added.
13af07df 4244 */
628f7cd4 4245static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4246{
ddbcc7e8 4247 struct cgroup_subsys *ss;
b420ba7d 4248 int i, ret = 0;
ddbcc7e8 4249
8e3f6541 4250 /* process cftsets of each subsystem */
b420ba7d 4251 for_each_subsys(ss, i) {
8e3f6541 4252 struct cftype_set *set;
b420ba7d
TH
4253
4254 if (!test_bit(i, &subsys_mask))
13af07df 4255 continue;
8e3f6541 4256
bee55099 4257 list_for_each_entry(set, &ss->cftsets, node) {
2bb566cb 4258 ret = cgroup_addrm_files(cgrp, set->cfts, true);
bee55099
TH
4259 if (ret < 0)
4260 goto err;
4261 }
ddbcc7e8 4262 }
8e3f6541 4263
38460b48 4264 /* This cgroup is ready now */
5549c497 4265 for_each_root_subsys(cgrp->root, ss) {
40e93b39 4266 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
a4ea1cc9
TH
4267 struct css_id *id = rcu_dereference_protected(css->id, true);
4268
38460b48
KH
4269 /*
4270 * Update id->css pointer and make this css visible from
4271 * CSS ID functions. This pointer will be dereferened
4272 * from RCU-read-side without locks.
4273 */
a4ea1cc9
TH
4274 if (id)
4275 rcu_assign_pointer(id->css, css);
38460b48 4276 }
ddbcc7e8
PM
4277
4278 return 0;
bee55099
TH
4279err:
4280 cgroup_clear_dir(cgrp, subsys_mask);
4281 return ret;
ddbcc7e8
PM
4282}
4283
35ef10da 4284static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4285{
4286 struct cgroup_subsys_state *css =
35ef10da 4287 container_of(work, struct cgroup_subsys_state, destroy_work);
48ddbe19 4288
0ae78e0b
TH
4289 if (css->parent)
4290 css_put(css->parent);
4291
1c8158ee 4292 cgroup_dput(css->cgroup);
48ddbe19
TH
4293}
4294
d3daf28d
TH
4295static void css_release(struct percpu_ref *ref)
4296{
4297 struct cgroup_subsys_state *css =
4298 container_of(ref, struct cgroup_subsys_state, refcnt);
4299
35ef10da
TH
4300 /*
4301 * css holds an extra ref to @cgrp->dentry which is put on the last
4302 * css_put(). dput() requires process context, which css_put() may
4303 * be called without. @css->destroy_work will be used to invoke
4304 * dput() asynchronously from css_put().
4305 */
4306 INIT_WORK(&css->destroy_work, css_free_work_fn);
4307 schedule_work(&css->destroy_work);
d3daf28d
TH
4308}
4309
623f926b
TH
4310static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
4311 struct cgroup *cgrp)
ddbcc7e8 4312{
bd89aabc 4313 css->cgroup = cgrp;
72c97e54 4314 css->ss = ss;
ddbcc7e8 4315 css->flags = 0;
38460b48 4316 css->id = NULL;
0ae78e0b
TH
4317
4318 if (cgrp->parent)
4319 css->parent = cgroup_css(cgrp->parent, ss->subsys_id);
4320 else
38b53aba 4321 css->flags |= CSS_ROOT;
0ae78e0b 4322
40e93b39 4323 BUG_ON(cgroup_css(cgrp, ss->subsys_id));
ddbcc7e8
PM
4324}
4325
2a4ac633 4326/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4327static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4328{
623f926b 4329 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4330 int ret = 0;
4331
a31f2d3f
TH
4332 lockdep_assert_held(&cgroup_mutex);
4333
92fb9748 4334 if (ss->css_online)
eb95419b 4335 ret = ss->css_online(css);
ae7f164a 4336 if (!ret) {
eb95419b 4337 css->flags |= CSS_ONLINE;
ae7f164a
TH
4338 rcu_assign_pointer(css->cgroup->subsys[ss->subsys_id], css);
4339 }
b1929db4 4340 return ret;
a31f2d3f
TH
4341}
4342
2a4ac633 4343/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4344static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4345{
623f926b 4346 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4347
4348 lockdep_assert_held(&cgroup_mutex);
4349
4350 if (!(css->flags & CSS_ONLINE))
4351 return;
4352
d7eeac19 4353 if (ss->css_offline)
eb95419b 4354 ss->css_offline(css);
a31f2d3f 4355
eb95419b 4356 css->flags &= ~CSS_ONLINE;
a31f2d3f
TH
4357}
4358
ddbcc7e8 4359/*
a043e3b2
LZ
4360 * cgroup_create - create a cgroup
4361 * @parent: cgroup that will be parent of the new cgroup
4362 * @dentry: dentry of the new cgroup
4363 * @mode: mode to set on new inode
ddbcc7e8 4364 *
a043e3b2 4365 * Must be called with the mutex on the parent inode held
ddbcc7e8 4366 */
ddbcc7e8 4367static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4368 umode_t mode)
ddbcc7e8 4369{
ae7f164a 4370 struct cgroup_subsys_state *css_ar[CGROUP_SUBSYS_COUNT] = { };
bd89aabc 4371 struct cgroup *cgrp;
65dff759 4372 struct cgroup_name *name;
ddbcc7e8
PM
4373 struct cgroupfs_root *root = parent->root;
4374 int err = 0;
4375 struct cgroup_subsys *ss;
4376 struct super_block *sb = root->sb;
4377
0a950f65 4378 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4379 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4380 if (!cgrp)
ddbcc7e8
PM
4381 return -ENOMEM;
4382
65dff759
LZ
4383 name = cgroup_alloc_name(dentry);
4384 if (!name)
4385 goto err_free_cgrp;
4386 rcu_assign_pointer(cgrp->name, name);
4387
4e96ee8e
LZ
4388 /*
4389 * Temporarily set the pointer to NULL, so idr_find() won't return
4390 * a half-baked cgroup.
4391 */
4392 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
0a950f65 4393 if (cgrp->id < 0)
65dff759 4394 goto err_free_name;
0a950f65 4395
976c06bc
TH
4396 /*
4397 * Only live parents can have children. Note that the liveliness
4398 * check isn't strictly necessary because cgroup_mkdir() and
4399 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4400 * anyway so that locking is contained inside cgroup proper and we
4401 * don't get nasty surprises if we ever grow another caller.
4402 */
4403 if (!cgroup_lock_live_group(parent)) {
4404 err = -ENODEV;
0a950f65 4405 goto err_free_id;
976c06bc
TH
4406 }
4407
ddbcc7e8
PM
4408 /* Grab a reference on the superblock so the hierarchy doesn't
4409 * get deleted on unmount if there are child cgroups. This
4410 * can be done outside cgroup_mutex, since the sb can't
4411 * disappear while someone has an open control file on the
4412 * fs */
4413 atomic_inc(&sb->s_active);
4414
cc31edce 4415 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4416
fe1c06ca
LZ
4417 dentry->d_fsdata = cgrp;
4418 cgrp->dentry = dentry;
4419
bd89aabc 4420 cgrp->parent = parent;
0ae78e0b 4421 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 4422 cgrp->root = parent->root;
ddbcc7e8 4423
b6abdb0e
LZ
4424 if (notify_on_release(parent))
4425 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4426
2260e7fc
TH
4427 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4428 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4429
5549c497 4430 for_each_root_subsys(root, ss) {
8c7f6edb 4431 struct cgroup_subsys_state *css;
4528fd05 4432
40e93b39 4433 css = ss->css_alloc(cgroup_css(parent, ss->subsys_id));
ddbcc7e8
PM
4434 if (IS_ERR(css)) {
4435 err = PTR_ERR(css);
4b8b47eb 4436 goto err_free_all;
ddbcc7e8 4437 }
ae7f164a 4438 css_ar[ss->subsys_id] = css;
d3daf28d
TH
4439
4440 err = percpu_ref_init(&css->refcnt, css_release);
ae7f164a 4441 if (err)
d3daf28d
TH
4442 goto err_free_all;
4443
623f926b 4444 init_css(css, ss, cgrp);
d3daf28d 4445
4528fd05 4446 if (ss->use_id) {
623f926b 4447 err = alloc_css_id(css);
4528fd05 4448 if (err)
4b8b47eb 4449 goto err_free_all;
4528fd05 4450 }
ddbcc7e8
PM
4451 }
4452
4e139afc
TH
4453 /*
4454 * Create directory. cgroup_create_file() returns with the new
4455 * directory locked on success so that it can be populated without
4456 * dropping cgroup_mutex.
4457 */
28fd6f30 4458 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4459 if (err < 0)
4b8b47eb 4460 goto err_free_all;
4e139afc 4461 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4462
00356bd5 4463 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4464
4e139afc 4465 /* allocation complete, commit to creation */
4e139afc
TH
4466 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4467 root->number_of_cgroups++;
28fd6f30 4468
0ae78e0b
TH
4469 /* each css holds a ref to the cgroup's dentry and the parent css */
4470 for_each_root_subsys(root, ss) {
ae7f164a 4471 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
0ae78e0b 4472
ed957793 4473 dget(dentry);
0ae78e0b
TH
4474 percpu_ref_get(&css->parent->refcnt);
4475 }
48ddbe19 4476
415cf07a
LZ
4477 /* hold a ref to the parent's dentry */
4478 dget(parent->dentry);
4479
b1929db4 4480 /* creation succeeded, notify subsystems */
5549c497 4481 for_each_root_subsys(root, ss) {
ae7f164a 4482 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
623f926b
TH
4483
4484 err = online_css(css);
b1929db4
TH
4485 if (err)
4486 goto err_destroy;
1f869e87
GC
4487
4488 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4489 parent->parent) {
4490 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4491 current->comm, current->pid, ss->name);
4492 if (!strcmp(ss->name, "memory"))
4493 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4494 ss->warned_broken_hierarchy = true;
4495 }
a8638030
TH
4496 }
4497
4e96ee8e
LZ
4498 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4499
2bb566cb 4500 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
4501 if (err)
4502 goto err_destroy;
4503
4504 err = cgroup_populate_dir(cgrp, root->subsys_mask);
4b8b47eb
TH
4505 if (err)
4506 goto err_destroy;
ddbcc7e8
PM
4507
4508 mutex_unlock(&cgroup_mutex);
bd89aabc 4509 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4510
4511 return 0;
4512
4b8b47eb 4513err_free_all:
5549c497 4514 for_each_root_subsys(root, ss) {
ae7f164a 4515 struct cgroup_subsys_state *css = css_ar[ss->subsys_id];
d3daf28d
TH
4516
4517 if (css) {
4518 percpu_ref_cancel_init(&css->refcnt);
eb95419b 4519 ss->css_free(css);
d3daf28d 4520 }
ddbcc7e8 4521 }
ddbcc7e8 4522 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4523 /* Release the reference count that we took on the superblock */
4524 deactivate_super(sb);
0a950f65 4525err_free_id:
4e96ee8e 4526 idr_remove(&root->cgroup_idr, cgrp->id);
65dff759
LZ
4527err_free_name:
4528 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4529err_free_cgrp:
bd89aabc 4530 kfree(cgrp);
ddbcc7e8 4531 return err;
4b8b47eb
TH
4532
4533err_destroy:
4534 cgroup_destroy_locked(cgrp);
4535 mutex_unlock(&cgroup_mutex);
4536 mutex_unlock(&dentry->d_inode->i_mutex);
4537 return err;
ddbcc7e8
PM
4538}
4539
18bb1db3 4540static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4541{
4542 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4543
4544 /* the vfs holds inode->i_mutex already */
4545 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4546}
4547
d3daf28d
TH
4548static void cgroup_css_killed(struct cgroup *cgrp)
4549{
4550 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4551 return;
4552
4553 /* percpu ref's of all css's are killed, kick off the next step */
4554 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4555 schedule_work(&cgrp->destroy_work);
4556}
4557
4558static void css_ref_killed_fn(struct percpu_ref *ref)
4559{
4560 struct cgroup_subsys_state *css =
4561 container_of(ref, struct cgroup_subsys_state, refcnt);
4562
4563 cgroup_css_killed(css->cgroup);
4564}
4565
4566/**
4567 * cgroup_destroy_locked - the first stage of cgroup destruction
4568 * @cgrp: cgroup to be destroyed
4569 *
4570 * css's make use of percpu refcnts whose killing latency shouldn't be
4571 * exposed to userland and are RCU protected. Also, cgroup core needs to
4572 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4573 * invoked. To satisfy all the requirements, destruction is implemented in
4574 * the following two steps.
4575 *
4576 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4577 * userland visible parts and start killing the percpu refcnts of
4578 * css's. Set up so that the next stage will be kicked off once all
4579 * the percpu refcnts are confirmed to be killed.
4580 *
4581 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4582 * rest of destruction. Once all cgroup references are gone, the
4583 * cgroup is RCU-freed.
4584 *
4585 * This function implements s1. After this step, @cgrp is gone as far as
4586 * the userland is concerned and a new cgroup with the same name may be
4587 * created. As cgroup doesn't care about the names internally, this
4588 * doesn't cause any problem.
4589 */
42809dd4
TH
4590static int cgroup_destroy_locked(struct cgroup *cgrp)
4591 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4592{
42809dd4 4593 struct dentry *d = cgrp->dentry;
4ab78683 4594 struct cgroup_event *event, *tmp;
ed957793 4595 struct cgroup_subsys *ss;
ddd69148 4596 bool empty;
ddbcc7e8 4597
42809dd4
TH
4598 lockdep_assert_held(&d->d_inode->i_mutex);
4599 lockdep_assert_held(&cgroup_mutex);
4600
ddd69148 4601 /*
6f3d828f
TH
4602 * css_set_lock synchronizes access to ->cset_links and prevents
4603 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4604 */
4605 read_lock(&css_set_lock);
6f3d828f 4606 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4607 read_unlock(&css_set_lock);
4608 if (!empty)
ddbcc7e8 4609 return -EBUSY;
a043e3b2 4610
88703267 4611 /*
d3daf28d
TH
4612 * Block new css_tryget() by killing css refcnts. cgroup core
4613 * guarantees that, by the time ->css_offline() is invoked, no new
4614 * css reference will be given out via css_tryget(). We can't
4615 * simply call percpu_ref_kill() and proceed to offlining css's
4616 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4617 * as killed on all CPUs on return.
4618 *
4619 * Use percpu_ref_kill_and_confirm() to get notifications as each
4620 * css is confirmed to be seen as killed on all CPUs. The
4621 * notification callback keeps track of the number of css's to be
4622 * killed and schedules cgroup_offline_fn() to perform the rest of
4623 * destruction once the percpu refs of all css's are confirmed to
4624 * be killed.
88703267 4625 */
d3daf28d 4626 atomic_set(&cgrp->css_kill_cnt, 1);
5549c497 4627 for_each_root_subsys(cgrp->root, ss) {
40e93b39 4628 struct cgroup_subsys_state *css = cgroup_css(cgrp, ss->subsys_id);
88703267 4629
d3daf28d
TH
4630 /*
4631 * Killing would put the base ref, but we need to keep it
4632 * alive until after ->css_offline.
4633 */
4634 percpu_ref_get(&css->refcnt);
4635
4636 atomic_inc(&cgrp->css_kill_cnt);
4637 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4638 }
d3daf28d 4639 cgroup_css_killed(cgrp);
455050d2
TH
4640
4641 /*
4642 * Mark @cgrp dead. This prevents further task migration and child
4643 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 4644 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 4645 * resume iteration after dropping RCU read lock. See
492eb21b 4646 * css_next_child() for details.
455050d2 4647 */
54766d4a 4648 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4649
455050d2
TH
4650 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4651 raw_spin_lock(&release_list_lock);
4652 if (!list_empty(&cgrp->release_list))
4653 list_del_init(&cgrp->release_list);
4654 raw_spin_unlock(&release_list_lock);
4655
4656 /*
8f89140a
TH
4657 * Clear and remove @cgrp directory. The removal puts the base ref
4658 * but we aren't quite done with @cgrp yet, so hold onto it.
455050d2 4659 */
628f7cd4 4660 cgroup_clear_dir(cgrp, cgrp->root->subsys_mask);
2bb566cb 4661 cgroup_addrm_files(cgrp, cgroup_base_files, false);
455050d2
TH
4662 dget(d);
4663 cgroup_d_remove_dir(d);
4664
4665 /*
4666 * Unregister events and notify userspace.
4667 * Notify userspace about cgroup removing only after rmdir of cgroup
4668 * directory to avoid race between userspace and kernelspace.
4669 */
4670 spin_lock(&cgrp->event_list_lock);
4671 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4672 list_del_init(&event->list);
4673 schedule_work(&event->remove);
4674 }
4675 spin_unlock(&cgrp->event_list_lock);
4676
ea15f8cc
TH
4677 return 0;
4678};
4679
d3daf28d
TH
4680/**
4681 * cgroup_offline_fn - the second step of cgroup destruction
4682 * @work: cgroup->destroy_free_work
4683 *
4684 * This function is invoked from a work item for a cgroup which is being
4685 * destroyed after the percpu refcnts of all css's are guaranteed to be
4686 * seen as killed on all CPUs, and performs the rest of destruction. This
4687 * is the second step of destruction described in the comment above
4688 * cgroup_destroy_locked().
4689 */
ea15f8cc
TH
4690static void cgroup_offline_fn(struct work_struct *work)
4691{
4692 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4693 struct cgroup *parent = cgrp->parent;
4694 struct dentry *d = cgrp->dentry;
4695 struct cgroup_subsys *ss;
4696
4697 mutex_lock(&cgroup_mutex);
4698
d3daf28d
TH
4699 /*
4700 * css_tryget() is guaranteed to fail now. Tell subsystems to
4701 * initate destruction.
4702 */
5549c497 4703 for_each_root_subsys(cgrp->root, ss)
623f926b 4704 offline_css(cgroup_css(cgrp, ss->subsys_id));
ed957793
TH
4705
4706 /*
d3daf28d
TH
4707 * Put the css refs from cgroup_destroy_locked(). Each css holds
4708 * an extra reference to the cgroup's dentry and cgroup removal
4709 * proceeds regardless of css refs. On the last put of each css,
4710 * whenever that may be, the extra dentry ref is put so that dentry
4711 * destruction happens only after all css's are released.
ed957793 4712 */
5549c497 4713 for_each_root_subsys(cgrp->root, ss)
40e93b39 4714 css_put(cgroup_css(cgrp, ss->subsys_id));
ddbcc7e8 4715
999cd8a4 4716 /* delete this cgroup from parent->children */
eb6fd504 4717 list_del_rcu(&cgrp->sibling);
b0ca5a84 4718
4e96ee8e
LZ
4719 /*
4720 * We should remove the cgroup object from idr before its grace
4721 * period starts, so we won't be looking up a cgroup while the
4722 * cgroup is being freed.
4723 */
4724 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4725 cgrp->id = -1;
4726
ddbcc7e8 4727 dput(d);
ddbcc7e8 4728
bd89aabc 4729 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4730 check_for_release(parent);
4731
ea15f8cc 4732 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4733}
4734
42809dd4
TH
4735static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4736{
4737 int ret;
4738
4739 mutex_lock(&cgroup_mutex);
4740 ret = cgroup_destroy_locked(dentry->d_fsdata);
4741 mutex_unlock(&cgroup_mutex);
4742
4743 return ret;
4744}
4745
8e3f6541
TH
4746static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4747{
4748 INIT_LIST_HEAD(&ss->cftsets);
4749
4750 /*
4751 * base_cftset is embedded in subsys itself, no need to worry about
4752 * deregistration.
4753 */
4754 if (ss->base_cftypes) {
2bb566cb
TH
4755 struct cftype *cft;
4756
4757 for (cft = ss->base_cftypes; cft->name[0] != '\0'; cft++)
4758 cft->ss = ss;
4759
8e3f6541
TH
4760 ss->base_cftset.cfts = ss->base_cftypes;
4761 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4762 }
4763}
4764
06a11920 4765static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4766{
ddbcc7e8 4767 struct cgroup_subsys_state *css;
cfe36bde
DC
4768
4769 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4770
648bb56d
TH
4771 mutex_lock(&cgroup_mutex);
4772
8e3f6541
TH
4773 /* init base cftset */
4774 cgroup_init_cftsets(ss);
4775
ddbcc7e8 4776 /* Create the top cgroup state for this subsystem */
9871bf95
TH
4777 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4778 ss->root = &cgroup_dummy_root;
40e93b39 4779 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
ddbcc7e8
PM
4780 /* We don't handle early failures gracefully */
4781 BUG_ON(IS_ERR(css));
623f926b 4782 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4783
e8d55fde 4784 /* Update the init_css_set to contain a subsys
817929ec 4785 * pointer to this state - since the subsystem is
e8d55fde
LZ
4786 * newly registered, all tasks and hence the
4787 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4788 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4789
4790 need_forkexit_callback |= ss->fork || ss->exit;
4791
e8d55fde
LZ
4792 /* At system boot, before all subsystems have been
4793 * registered, no tasks have been forked, so we don't
4794 * need to invoke fork callbacks here. */
4795 BUG_ON(!list_empty(&init_task.tasks));
4796
ae7f164a 4797 BUG_ON(online_css(css));
a8638030 4798
648bb56d
TH
4799 mutex_unlock(&cgroup_mutex);
4800
e6a1105b
BB
4801 /* this function shouldn't be used with modular subsystems, since they
4802 * need to register a subsys_id, among other things */
4803 BUG_ON(ss->module);
4804}
4805
4806/**
4807 * cgroup_load_subsys: load and register a modular subsystem at runtime
4808 * @ss: the subsystem to load
4809 *
4810 * This function should be called in a modular subsystem's initcall. If the
88393161 4811 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4812 * up for use. If the subsystem is built-in anyway, work is delegated to the
4813 * simpler cgroup_init_subsys.
4814 */
4815int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4816{
e6a1105b 4817 struct cgroup_subsys_state *css;
d19e19de 4818 int i, ret;
b67bfe0d 4819 struct hlist_node *tmp;
5abb8855 4820 struct css_set *cset;
0ac801fe 4821 unsigned long key;
e6a1105b
BB
4822
4823 /* check name and function validity */
4824 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4825 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4826 return -EINVAL;
4827
4828 /*
4829 * we don't support callbacks in modular subsystems. this check is
4830 * before the ss->module check for consistency; a subsystem that could
4831 * be a module should still have no callbacks even if the user isn't
4832 * compiling it as one.
4833 */
4834 if (ss->fork || ss->exit)
4835 return -EINVAL;
4836
4837 /*
4838 * an optionally modular subsystem is built-in: we want to do nothing,
4839 * since cgroup_init_subsys will have already taken care of it.
4840 */
4841 if (ss->module == NULL) {
be45c900 4842 /* a sanity check */
9871bf95 4843 BUG_ON(cgroup_subsys[ss->subsys_id] != ss);
e6a1105b
BB
4844 return 0;
4845 }
4846
8e3f6541
TH
4847 /* init base cftset */
4848 cgroup_init_cftsets(ss);
4849
e6a1105b 4850 mutex_lock(&cgroup_mutex);
9871bf95 4851 cgroup_subsys[ss->subsys_id] = ss;
e6a1105b
BB
4852
4853 /*
92fb9748 4854 * no ss->css_alloc seems to need anything important in the ss
9871bf95 4855 * struct, so this can happen first (i.e. before the dummy root
92fb9748 4856 * attachment).
e6a1105b 4857 */
40e93b39 4858 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss->subsys_id));
e6a1105b 4859 if (IS_ERR(css)) {
9871bf95
TH
4860 /* failure case - need to deassign the cgroup_subsys[] slot. */
4861 cgroup_subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4862 mutex_unlock(&cgroup_mutex);
4863 return PTR_ERR(css);
4864 }
4865
9871bf95
TH
4866 list_add(&ss->sibling, &cgroup_dummy_root.subsys_list);
4867 ss->root = &cgroup_dummy_root;
e6a1105b
BB
4868
4869 /* our new subsystem will be attached to the dummy hierarchy. */
623f926b
TH
4870 init_css(css, ss, cgroup_dummy_top);
4871 /* init_idr must be after init_css() because it sets css->id. */
e6a1105b 4872 if (ss->use_id) {
d19e19de
TH
4873 ret = cgroup_init_idr(ss, css);
4874 if (ret)
4875 goto err_unload;
e6a1105b
BB
4876 }
4877
4878 /*
4879 * Now we need to entangle the css into the existing css_sets. unlike
4880 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4881 * will need a new pointer to it; done by iterating the css_set_table.
4882 * furthermore, modifying the existing css_sets will corrupt the hash
4883 * table state, so each changed css_set will need its hash recomputed.
4884 * this is all done under the css_set_lock.
4885 */
4886 write_lock(&css_set_lock);
5abb8855 4887 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4888 /* skip entries that we already rehashed */
5abb8855 4889 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4890 continue;
4891 /* remove existing entry */
5abb8855 4892 hash_del(&cset->hlist);
0ac801fe 4893 /* set new value */
5abb8855 4894 cset->subsys[ss->subsys_id] = css;
0ac801fe 4895 /* recompute hash and restore entry */
5abb8855
TH
4896 key = css_set_hash(cset->subsys);
4897 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4898 }
4899 write_unlock(&css_set_lock);
4900
ae7f164a 4901 ret = online_css(css);
b1929db4
TH
4902 if (ret)
4903 goto err_unload;
a8638030 4904
e6a1105b
BB
4905 /* success! */
4906 mutex_unlock(&cgroup_mutex);
4907 return 0;
d19e19de
TH
4908
4909err_unload:
4910 mutex_unlock(&cgroup_mutex);
4911 /* @ss can't be mounted here as try_module_get() would fail */
4912 cgroup_unload_subsys(ss);
4913 return ret;
ddbcc7e8 4914}
e6a1105b 4915EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4916
cf5d5941
BB
4917/**
4918 * cgroup_unload_subsys: unload a modular subsystem
4919 * @ss: the subsystem to unload
4920 *
4921 * This function should be called in a modular subsystem's exitcall. When this
4922 * function is invoked, the refcount on the subsystem's module will be 0, so
4923 * the subsystem will not be attached to any hierarchy.
4924 */
4925void cgroup_unload_subsys(struct cgroup_subsys *ss)
4926{
69d0206c 4927 struct cgrp_cset_link *link;
cf5d5941
BB
4928
4929 BUG_ON(ss->module == NULL);
4930
4931 /*
4932 * we shouldn't be called if the subsystem is in use, and the use of
1d5be6b2 4933 * try_module_get() in rebind_subsystems() should ensure that it
cf5d5941
BB
4934 * doesn't start being used while we're killing it off.
4935 */
9871bf95 4936 BUG_ON(ss->root != &cgroup_dummy_root);
cf5d5941
BB
4937
4938 mutex_lock(&cgroup_mutex);
02ae7486 4939
623f926b 4940 offline_css(cgroup_css(cgroup_dummy_top, ss->subsys_id));
02ae7486 4941
c897ff68 4942 if (ss->use_id)
02ae7486 4943 idr_destroy(&ss->idr);
02ae7486 4944
cf5d5941 4945 /* deassign the subsys_id */
9871bf95 4946 cgroup_subsys[ss->subsys_id] = NULL;
cf5d5941 4947
9871bf95 4948 /* remove subsystem from the dummy root's list of subsystems */
8d258797 4949 list_del_init(&ss->sibling);
cf5d5941
BB
4950
4951 /*
9871bf95
TH
4952 * disentangle the css from all css_sets attached to the dummy
4953 * top. as in loading, we need to pay our respects to the hashtable
4954 * gods.
cf5d5941
BB
4955 */
4956 write_lock(&css_set_lock);
9871bf95 4957 list_for_each_entry(link, &cgroup_dummy_top->cset_links, cset_link) {
69d0206c 4958 struct css_set *cset = link->cset;
0ac801fe 4959 unsigned long key;
cf5d5941 4960
5abb8855
TH
4961 hash_del(&cset->hlist);
4962 cset->subsys[ss->subsys_id] = NULL;
4963 key = css_set_hash(cset->subsys);
4964 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4965 }
4966 write_unlock(&css_set_lock);
4967
4968 /*
9871bf95
TH
4969 * remove subsystem's css from the cgroup_dummy_top and free it -
4970 * need to free before marking as null because ss->css_free needs
4971 * the cgrp->subsys pointer to find their state. note that this
4972 * also takes care of freeing the css_id.
cf5d5941 4973 */
40e93b39 4974 ss->css_free(cgroup_css(cgroup_dummy_top, ss->subsys_id));
73e80ed8 4975 RCU_INIT_POINTER(cgroup_dummy_top->subsys[ss->subsys_id], NULL);
cf5d5941
BB
4976
4977 mutex_unlock(&cgroup_mutex);
4978}
4979EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4980
ddbcc7e8 4981/**
a043e3b2
LZ
4982 * cgroup_init_early - cgroup initialization at system boot
4983 *
4984 * Initialize cgroups at system boot, and initialize any
4985 * subsystems that request early init.
ddbcc7e8
PM
4986 */
4987int __init cgroup_init_early(void)
4988{
30159ec7 4989 struct cgroup_subsys *ss;
ddbcc7e8 4990 int i;
30159ec7 4991
146aa1bd 4992 atomic_set(&init_css_set.refcount, 1);
69d0206c 4993 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4994 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4995 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4996 css_set_count = 1;
9871bf95
TH
4997 init_cgroup_root(&cgroup_dummy_root);
4998 cgroup_root_count = 1;
a4ea1cc9 4999 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5000
69d0206c 5001 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
5002 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
5003 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 5004 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 5005
30159ec7
TH
5006 /* at bootup time, we don't worry about modular subsystems */
5007 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5008 BUG_ON(!ss->name);
5009 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
5010 BUG_ON(!ss->css_alloc);
5011 BUG_ON(!ss->css_free);
ddbcc7e8 5012 if (ss->subsys_id != i) {
cfe36bde 5013 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
5014 ss->name, ss->subsys_id);
5015 BUG();
5016 }
5017
5018 if (ss->early_init)
5019 cgroup_init_subsys(ss);
5020 }
5021 return 0;
5022}
5023
5024/**
a043e3b2
LZ
5025 * cgroup_init - cgroup initialization
5026 *
5027 * Register cgroup filesystem and /proc file, and initialize
5028 * any subsystems that didn't request early init.
ddbcc7e8
PM
5029 */
5030int __init cgroup_init(void)
5031{
30159ec7 5032 struct cgroup_subsys *ss;
0ac801fe 5033 unsigned long key;
30159ec7 5034 int i, err;
a424316c
PM
5035
5036 err = bdi_init(&cgroup_backing_dev_info);
5037 if (err)
5038 return err;
ddbcc7e8 5039
30159ec7 5040 for_each_builtin_subsys(ss, i) {
ddbcc7e8
PM
5041 if (!ss->early_init)
5042 cgroup_init_subsys(ss);
38460b48 5043 if (ss->use_id)
e6a1105b 5044 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
5045 }
5046
fa3ca07e 5047 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
5048 mutex_lock(&cgroup_mutex);
5049 mutex_lock(&cgroup_root_mutex);
5050
82fe9b0d
TH
5051 /* Add init_css_set to the hash table */
5052 key = css_set_hash(init_css_set.subsys);
5053 hash_add(css_set_table, &init_css_set.hlist, key);
5054
fc76df70 5055 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 5056
4e96ee8e
LZ
5057 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
5058 0, 1, GFP_KERNEL);
5059 BUG_ON(err < 0);
5060
54e7b4eb
TH
5061 mutex_unlock(&cgroup_root_mutex);
5062 mutex_unlock(&cgroup_mutex);
5063
676db4af
GK
5064 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5065 if (!cgroup_kobj) {
5066 err = -ENOMEM;
5067 goto out;
5068 }
5069
ddbcc7e8 5070 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
5071 if (err < 0) {
5072 kobject_put(cgroup_kobj);
ddbcc7e8 5073 goto out;
676db4af 5074 }
ddbcc7e8 5075
46ae220b 5076 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 5077
ddbcc7e8 5078out:
a424316c
PM
5079 if (err)
5080 bdi_destroy(&cgroup_backing_dev_info);
5081
ddbcc7e8
PM
5082 return err;
5083}
b4f48b63 5084
a424316c
PM
5085/*
5086 * proc_cgroup_show()
5087 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5088 * - Used for /proc/<pid>/cgroup.
5089 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
5090 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 5091 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
5092 * anyway. No need to check that tsk->cgroup != NULL, thanks to
5093 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
5094 * cgroup to top_cgroup.
5095 */
5096
5097/* TODO: Use a proper seq_file iterator */
8d8b97ba 5098int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
5099{
5100 struct pid *pid;
5101 struct task_struct *tsk;
5102 char *buf;
5103 int retval;
5104 struct cgroupfs_root *root;
5105
5106 retval = -ENOMEM;
5107 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5108 if (!buf)
5109 goto out;
5110
5111 retval = -ESRCH;
5112 pid = m->private;
5113 tsk = get_pid_task(pid, PIDTYPE_PID);
5114 if (!tsk)
5115 goto out_free;
5116
5117 retval = 0;
5118
5119 mutex_lock(&cgroup_mutex);
5120
e5f6a860 5121 for_each_active_root(root) {
a424316c 5122 struct cgroup_subsys *ss;
bd89aabc 5123 struct cgroup *cgrp;
a424316c
PM
5124 int count = 0;
5125
2c6ab6d2 5126 seq_printf(m, "%d:", root->hierarchy_id);
5549c497 5127 for_each_root_subsys(root, ss)
a424316c 5128 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5129 if (strlen(root->name))
5130 seq_printf(m, "%sname=%s", count ? "," : "",
5131 root->name);
a424316c 5132 seq_putc(m, ':');
7717f7ba 5133 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 5134 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
5135 if (retval < 0)
5136 goto out_unlock;
5137 seq_puts(m, buf);
5138 seq_putc(m, '\n');
5139 }
5140
5141out_unlock:
5142 mutex_unlock(&cgroup_mutex);
5143 put_task_struct(tsk);
5144out_free:
5145 kfree(buf);
5146out:
5147 return retval;
5148}
5149
a424316c
PM
5150/* Display information about each subsystem and each hierarchy */
5151static int proc_cgroupstats_show(struct seq_file *m, void *v)
5152{
30159ec7 5153 struct cgroup_subsys *ss;
a424316c 5154 int i;
a424316c 5155
8bab8dde 5156 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5157 /*
5158 * ideally we don't want subsystems moving around while we do this.
5159 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5160 * subsys/hierarchy state.
5161 */
a424316c 5162 mutex_lock(&cgroup_mutex);
30159ec7
TH
5163
5164 for_each_subsys(ss, i)
2c6ab6d2
PM
5165 seq_printf(m, "%s\t%d\t%d\t%d\n",
5166 ss->name, ss->root->hierarchy_id,
8bab8dde 5167 ss->root->number_of_cgroups, !ss->disabled);
30159ec7 5168
a424316c
PM
5169 mutex_unlock(&cgroup_mutex);
5170 return 0;
5171}
5172
5173static int cgroupstats_open(struct inode *inode, struct file *file)
5174{
9dce07f1 5175 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5176}
5177
828c0950 5178static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5179 .open = cgroupstats_open,
5180 .read = seq_read,
5181 .llseek = seq_lseek,
5182 .release = single_release,
5183};
5184
b4f48b63
PM
5185/**
5186 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5187 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5188 *
5189 * Description: A task inherits its parent's cgroup at fork().
5190 *
5191 * A pointer to the shared css_set was automatically copied in
5192 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5193 * it was not made under the protection of RCU or cgroup_mutex, so
5194 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5195 * have already changed current->cgroups, allowing the previously
5196 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5197 *
5198 * At the point that cgroup_fork() is called, 'current' is the parent
5199 * task, and the passed argument 'child' points to the child task.
5200 */
5201void cgroup_fork(struct task_struct *child)
5202{
9bb71308 5203 task_lock(current);
a8ad805c 5204 get_css_set(task_css_set(current));
817929ec 5205 child->cgroups = current->cgroups;
9bb71308 5206 task_unlock(current);
817929ec 5207 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5208}
5209
817929ec 5210/**
a043e3b2
LZ
5211 * cgroup_post_fork - called on a new task after adding it to the task list
5212 * @child: the task in question
5213 *
5edee61e
TH
5214 * Adds the task to the list running through its css_set if necessary and
5215 * call the subsystem fork() callbacks. Has to be after the task is
5216 * visible on the task list in case we race with the first call to
0942eeee 5217 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5218 * list.
a043e3b2 5219 */
817929ec
PM
5220void cgroup_post_fork(struct task_struct *child)
5221{
30159ec7 5222 struct cgroup_subsys *ss;
5edee61e
TH
5223 int i;
5224
3ce3230a
FW
5225 /*
5226 * use_task_css_set_links is set to 1 before we walk the tasklist
5227 * under the tasklist_lock and we read it here after we added the child
5228 * to the tasklist under the tasklist_lock as well. If the child wasn't
5229 * yet in the tasklist when we walked through it from
5230 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5231 * should be visible now due to the paired locking and barriers implied
5232 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5233 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5234 * lock on fork.
5235 */
817929ec
PM
5236 if (use_task_css_set_links) {
5237 write_lock(&css_set_lock);
d8783832
TH
5238 task_lock(child);
5239 if (list_empty(&child->cg_list))
a8ad805c 5240 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 5241 task_unlock(child);
817929ec
PM
5242 write_unlock(&css_set_lock);
5243 }
5edee61e
TH
5244
5245 /*
5246 * Call ss->fork(). This must happen after @child is linked on
5247 * css_set; otherwise, @child might change state between ->fork()
5248 * and addition to css_set.
5249 */
5250 if (need_forkexit_callback) {
7d8e0bf5
LZ
5251 /*
5252 * fork/exit callbacks are supported only for builtin
5253 * subsystems, and the builtin section of the subsys
5254 * array is immutable, so we don't need to lock the
5255 * subsys array here. On the other hand, modular section
5256 * of the array can be freed at module unload, so we
5257 * can't touch that.
5258 */
30159ec7 5259 for_each_builtin_subsys(ss, i)
5edee61e
TH
5260 if (ss->fork)
5261 ss->fork(child);
5edee61e 5262 }
817929ec 5263}
5edee61e 5264
b4f48b63
PM
5265/**
5266 * cgroup_exit - detach cgroup from exiting task
5267 * @tsk: pointer to task_struct of exiting process
a043e3b2 5268 * @run_callback: run exit callbacks?
b4f48b63
PM
5269 *
5270 * Description: Detach cgroup from @tsk and release it.
5271 *
5272 * Note that cgroups marked notify_on_release force every task in
5273 * them to take the global cgroup_mutex mutex when exiting.
5274 * This could impact scaling on very large systems. Be reluctant to
5275 * use notify_on_release cgroups where very high task exit scaling
5276 * is required on large systems.
5277 *
5278 * the_top_cgroup_hack:
5279 *
5280 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5281 *
5282 * We call cgroup_exit() while the task is still competent to
5283 * handle notify_on_release(), then leave the task attached to the
5284 * root cgroup in each hierarchy for the remainder of its exit.
5285 *
5286 * To do this properly, we would increment the reference count on
5287 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5288 * code we would add a second cgroup function call, to drop that
5289 * reference. This would just create an unnecessary hot spot on
5290 * the top_cgroup reference count, to no avail.
5291 *
5292 * Normally, holding a reference to a cgroup without bumping its
5293 * count is unsafe. The cgroup could go away, or someone could
5294 * attach us to a different cgroup, decrementing the count on
5295 * the first cgroup that we never incremented. But in this case,
5296 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5297 * which wards off any cgroup_attach_task() attempts, or task is a failed
5298 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5299 */
5300void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5301{
30159ec7 5302 struct cgroup_subsys *ss;
5abb8855 5303 struct css_set *cset;
d41d5a01 5304 int i;
817929ec
PM
5305
5306 /*
5307 * Unlink from the css_set task list if necessary.
5308 * Optimistically check cg_list before taking
5309 * css_set_lock
5310 */
5311 if (!list_empty(&tsk->cg_list)) {
5312 write_lock(&css_set_lock);
5313 if (!list_empty(&tsk->cg_list))
8d258797 5314 list_del_init(&tsk->cg_list);
817929ec
PM
5315 write_unlock(&css_set_lock);
5316 }
5317
b4f48b63
PM
5318 /* Reassign the task to the init_css_set. */
5319 task_lock(tsk);
a8ad805c
TH
5320 cset = task_css_set(tsk);
5321 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
5322
5323 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5324 /*
5325 * fork/exit callbacks are supported only for builtin
5326 * subsystems, see cgroup_post_fork() for details.
5327 */
30159ec7 5328 for_each_builtin_subsys(ss, i) {
d41d5a01 5329 if (ss->exit) {
eb95419b
TH
5330 struct cgroup_subsys_state *old_css = cset->subsys[i];
5331 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5332
eb95419b 5333 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5334 }
5335 }
5336 }
b4f48b63 5337 task_unlock(tsk);
d41d5a01 5338
5abb8855 5339 put_css_set_taskexit(cset);
b4f48b63 5340}
697f4161 5341
bd89aabc 5342static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5343{
f50daa70 5344 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5345 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5346 /*
5347 * Control Group is currently removeable. If it's not
81a6a5cd 5348 * already queued for a userspace notification, queue
f50daa70
LZ
5349 * it now
5350 */
81a6a5cd 5351 int need_schedule_work = 0;
f50daa70 5352
cdcc136f 5353 raw_spin_lock(&release_list_lock);
54766d4a 5354 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5355 list_empty(&cgrp->release_list)) {
5356 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5357 need_schedule_work = 1;
5358 }
cdcc136f 5359 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5360 if (need_schedule_work)
5361 schedule_work(&release_agent_work);
5362 }
5363}
5364
81a6a5cd
PM
5365/*
5366 * Notify userspace when a cgroup is released, by running the
5367 * configured release agent with the name of the cgroup (path
5368 * relative to the root of cgroup file system) as the argument.
5369 *
5370 * Most likely, this user command will try to rmdir this cgroup.
5371 *
5372 * This races with the possibility that some other task will be
5373 * attached to this cgroup before it is removed, or that some other
5374 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5375 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5376 * unused, and this cgroup will be reprieved from its death sentence,
5377 * to continue to serve a useful existence. Next time it's released,
5378 * we will get notified again, if it still has 'notify_on_release' set.
5379 *
5380 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5381 * means only wait until the task is successfully execve()'d. The
5382 * separate release agent task is forked by call_usermodehelper(),
5383 * then control in this thread returns here, without waiting for the
5384 * release agent task. We don't bother to wait because the caller of
5385 * this routine has no use for the exit status of the release agent
5386 * task, so no sense holding our caller up for that.
81a6a5cd 5387 */
81a6a5cd
PM
5388static void cgroup_release_agent(struct work_struct *work)
5389{
5390 BUG_ON(work != &release_agent_work);
5391 mutex_lock(&cgroup_mutex);
cdcc136f 5392 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5393 while (!list_empty(&release_list)) {
5394 char *argv[3], *envp[3];
5395 int i;
e788e066 5396 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5397 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5398 struct cgroup,
5399 release_list);
bd89aabc 5400 list_del_init(&cgrp->release_list);
cdcc136f 5401 raw_spin_unlock(&release_list_lock);
81a6a5cd 5402 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5403 if (!pathbuf)
5404 goto continue_free;
5405 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5406 goto continue_free;
5407 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5408 if (!agentbuf)
5409 goto continue_free;
81a6a5cd
PM
5410
5411 i = 0;
e788e066
PM
5412 argv[i++] = agentbuf;
5413 argv[i++] = pathbuf;
81a6a5cd
PM
5414 argv[i] = NULL;
5415
5416 i = 0;
5417 /* minimal command environment */
5418 envp[i++] = "HOME=/";
5419 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5420 envp[i] = NULL;
5421
5422 /* Drop the lock while we invoke the usermode helper,
5423 * since the exec could involve hitting disk and hence
5424 * be a slow process */
5425 mutex_unlock(&cgroup_mutex);
5426 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5427 mutex_lock(&cgroup_mutex);
e788e066
PM
5428 continue_free:
5429 kfree(pathbuf);
5430 kfree(agentbuf);
cdcc136f 5431 raw_spin_lock(&release_list_lock);
81a6a5cd 5432 }
cdcc136f 5433 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5434 mutex_unlock(&cgroup_mutex);
5435}
8bab8dde
PM
5436
5437static int __init cgroup_disable(char *str)
5438{
30159ec7 5439 struct cgroup_subsys *ss;
8bab8dde 5440 char *token;
30159ec7 5441 int i;
8bab8dde
PM
5442
5443 while ((token = strsep(&str, ",")) != NULL) {
5444 if (!*token)
5445 continue;
be45c900 5446
30159ec7
TH
5447 /*
5448 * cgroup_disable, being at boot time, can't know about
5449 * module subsystems, so we don't worry about them.
5450 */
5451 for_each_builtin_subsys(ss, i) {
8bab8dde
PM
5452 if (!strcmp(token, ss->name)) {
5453 ss->disabled = 1;
5454 printk(KERN_INFO "Disabling %s control group"
5455 " subsystem\n", ss->name);
5456 break;
5457 }
5458 }
5459 }
5460 return 1;
5461}
5462__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5463
5464/*
5465 * Functons for CSS ID.
5466 */
5467
54766d4a 5468/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5469unsigned short css_id(struct cgroup_subsys_state *css)
5470{
7f0f1546
KH
5471 struct css_id *cssid;
5472
5473 /*
5474 * This css_id() can return correct value when somone has refcnt
5475 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5476 * it's unchanged until freed.
5477 */
d3daf28d 5478 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5479
5480 if (cssid)
5481 return cssid->id;
5482 return 0;
5483}
67523c48 5484EXPORT_SYMBOL_GPL(css_id);
38460b48 5485
747388d7
KH
5486/**
5487 * css_is_ancestor - test "root" css is an ancestor of "child"
5488 * @child: the css to be tested.
5489 * @root: the css supporsed to be an ancestor of the child.
5490 *
5491 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5492 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5493 * But, considering usual usage, the csses should be valid objects after test.
5494 * Assuming that the caller will do some action to the child if this returns
5495 * returns true, the caller must take "child";s reference count.
5496 * If "child" is valid object and this returns true, "root" is valid, too.
5497 */
5498
38460b48 5499bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5500 const struct cgroup_subsys_state *root)
38460b48 5501{
747388d7
KH
5502 struct css_id *child_id;
5503 struct css_id *root_id;
38460b48 5504
747388d7 5505 child_id = rcu_dereference(child->id);
91c63734
JW
5506 if (!child_id)
5507 return false;
747388d7 5508 root_id = rcu_dereference(root->id);
91c63734
JW
5509 if (!root_id)
5510 return false;
5511 if (child_id->depth < root_id->depth)
5512 return false;
5513 if (child_id->stack[root_id->depth] != root_id->id)
5514 return false;
5515 return true;
38460b48
KH
5516}
5517
38460b48
KH
5518void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5519{
a4ea1cc9
TH
5520 struct css_id *id = rcu_dereference_protected(css->id, true);
5521
38460b48
KH
5522 /* When this is called before css_id initialization, id can be NULL */
5523 if (!id)
5524 return;
5525
5526 BUG_ON(!ss->use_id);
5527
5528 rcu_assign_pointer(id->css, NULL);
5529 rcu_assign_pointer(css->id, NULL);
42aee6c4 5530 spin_lock(&ss->id_lock);
38460b48 5531 idr_remove(&ss->idr, id->id);
42aee6c4 5532 spin_unlock(&ss->id_lock);
025cea99 5533 kfree_rcu(id, rcu_head);
38460b48 5534}
67523c48 5535EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5536
5537/*
5538 * This is called by init or create(). Then, calls to this function are
5539 * always serialized (By cgroup_mutex() at create()).
5540 */
5541
5542static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5543{
5544 struct css_id *newid;
d228d9ec 5545 int ret, size;
38460b48
KH
5546
5547 BUG_ON(!ss->use_id);
5548
5549 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5550 newid = kzalloc(size, GFP_KERNEL);
5551 if (!newid)
5552 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5553
5554 idr_preload(GFP_KERNEL);
42aee6c4 5555 spin_lock(&ss->id_lock);
38460b48 5556 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5557 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5558 spin_unlock(&ss->id_lock);
d228d9ec 5559 idr_preload_end();
38460b48
KH
5560
5561 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5562 if (ret < 0)
38460b48 5563 goto err_out;
38460b48 5564
d228d9ec 5565 newid->id = ret;
38460b48
KH
5566 newid->depth = depth;
5567 return newid;
38460b48
KH
5568err_out:
5569 kfree(newid);
d228d9ec 5570 return ERR_PTR(ret);
38460b48
KH
5571
5572}
5573
e6a1105b
BB
5574static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5575 struct cgroup_subsys_state *rootcss)
38460b48
KH
5576{
5577 struct css_id *newid;
38460b48 5578
42aee6c4 5579 spin_lock_init(&ss->id_lock);
38460b48
KH
5580 idr_init(&ss->idr);
5581
38460b48
KH
5582 newid = get_new_cssid(ss, 0);
5583 if (IS_ERR(newid))
5584 return PTR_ERR(newid);
5585
5586 newid->stack[0] = newid->id;
a4ea1cc9
TH
5587 RCU_INIT_POINTER(newid->css, rootcss);
5588 RCU_INIT_POINTER(rootcss->id, newid);
38460b48
KH
5589 return 0;
5590}
5591
623f926b 5592static int alloc_css_id(struct cgroup_subsys_state *child_css)
38460b48 5593{
623f926b 5594 struct cgroup_subsys_state *parent_css = css_parent(child_css);
fae9c791 5595 struct css_id *child_id, *parent_id;
623f926b 5596 int i, depth;
38460b48 5597
a4ea1cc9 5598 parent_id = rcu_dereference_protected(parent_css->id, true);
94b3dd0f 5599 depth = parent_id->depth + 1;
38460b48 5600
623f926b 5601 child_id = get_new_cssid(child_css->ss, depth);
38460b48
KH
5602 if (IS_ERR(child_id))
5603 return PTR_ERR(child_id);
5604
5605 for (i = 0; i < depth; i++)
5606 child_id->stack[i] = parent_id->stack[i];
5607 child_id->stack[depth] = child_id->id;
5608 /*
5609 * child_id->css pointer will be set after this cgroup is available
5610 * see cgroup_populate_dir()
5611 */
5612 rcu_assign_pointer(child_css->id, child_id);
5613
5614 return 0;
5615}
5616
5617/**
5618 * css_lookup - lookup css by id
5619 * @ss: cgroup subsys to be looked into.
5620 * @id: the id
5621 *
5622 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5623 * NULL if not. Should be called under rcu_read_lock()
5624 */
5625struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5626{
5627 struct css_id *cssid = NULL;
5628
5629 BUG_ON(!ss->use_id);
5630 cssid = idr_find(&ss->idr, id);
5631
5632 if (unlikely(!cssid))
5633 return NULL;
5634
5635 return rcu_dereference(cssid->css);
5636}
67523c48 5637EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5638
b77d7b60
TH
5639/**
5640 * cgroup_css_from_dir - get corresponding css from file open on cgroup dir
5641 * @f: directory file of interest
5642 * @id: subsystem id of interest
5643 *
5644 * Must be called under RCU read lock. The caller is responsible for
5645 * pinning the returned css if it needs to be accessed outside the RCU
5646 * critical section.
e5d1367f
SE
5647 */
5648struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5649{
5650 struct cgroup *cgrp;
5651 struct inode *inode;
5652 struct cgroup_subsys_state *css;
5653
b77d7b60
TH
5654 WARN_ON_ONCE(!rcu_read_lock_held());
5655
496ad9aa 5656 inode = file_inode(f);
e5d1367f
SE
5657 /* check in cgroup filesystem dir */
5658 if (inode->i_op != &cgroup_dir_inode_operations)
5659 return ERR_PTR(-EBADF);
5660
5661 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5662 return ERR_PTR(-EINVAL);
5663
5664 /* get cgroup */
5665 cgrp = __d_cgrp(f->f_dentry);
40e93b39 5666 css = cgroup_css(cgrp, id);
e5d1367f
SE
5667 return css ? css : ERR_PTR(-ENOENT);
5668}
5669
fe693435 5670#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5671static struct cgroup_subsys_state *
5672debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5673{
5674 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5675
5676 if (!css)
5677 return ERR_PTR(-ENOMEM);
5678
5679 return css;
5680}
5681
eb95419b 5682static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5683{
eb95419b 5684 kfree(css);
fe693435
PM
5685}
5686
182446d0
TH
5687static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5688 struct cftype *cft)
fe693435 5689{
182446d0 5690 return cgroup_task_count(css->cgroup);
fe693435
PM
5691}
5692
182446d0
TH
5693static u64 current_css_set_read(struct cgroup_subsys_state *css,
5694 struct cftype *cft)
fe693435
PM
5695{
5696 return (u64)(unsigned long)current->cgroups;
5697}
5698
182446d0 5699static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5700 struct cftype *cft)
fe693435
PM
5701{
5702 u64 count;
5703
5704 rcu_read_lock();
a8ad805c 5705 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5706 rcu_read_unlock();
5707 return count;
5708}
5709
182446d0 5710static int current_css_set_cg_links_read(struct cgroup_subsys_state *css,
7717f7ba
PM
5711 struct cftype *cft,
5712 struct seq_file *seq)
5713{
69d0206c 5714 struct cgrp_cset_link *link;
5abb8855 5715 struct css_set *cset;
7717f7ba
PM
5716
5717 read_lock(&css_set_lock);
5718 rcu_read_lock();
5abb8855 5719 cset = rcu_dereference(current->cgroups);
69d0206c 5720 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5721 struct cgroup *c = link->cgrp;
5722 const char *name;
5723
5724 if (c->dentry)
5725 name = c->dentry->d_name.name;
5726 else
5727 name = "?";
2c6ab6d2
PM
5728 seq_printf(seq, "Root %d group %s\n",
5729 c->root->hierarchy_id, name);
7717f7ba
PM
5730 }
5731 rcu_read_unlock();
5732 read_unlock(&css_set_lock);
5733 return 0;
5734}
5735
5736#define MAX_TASKS_SHOWN_PER_CSS 25
182446d0
TH
5737static int cgroup_css_links_read(struct cgroup_subsys_state *css,
5738 struct cftype *cft, struct seq_file *seq)
7717f7ba 5739{
69d0206c 5740 struct cgrp_cset_link *link;
7717f7ba
PM
5741
5742 read_lock(&css_set_lock);
182446d0 5743 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5744 struct css_set *cset = link->cset;
7717f7ba
PM
5745 struct task_struct *task;
5746 int count = 0;
5abb8855
TH
5747 seq_printf(seq, "css_set %p\n", cset);
5748 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5749 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5750 seq_puts(seq, " ...\n");
5751 break;
5752 } else {
5753 seq_printf(seq, " task %d\n",
5754 task_pid_vnr(task));
5755 }
5756 }
5757 }
5758 read_unlock(&css_set_lock);
5759 return 0;
5760}
5761
182446d0 5762static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5763{
182446d0 5764 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5765}
5766
5767static struct cftype debug_files[] = {
fe693435
PM
5768 {
5769 .name = "taskcount",
5770 .read_u64 = debug_taskcount_read,
5771 },
5772
5773 {
5774 .name = "current_css_set",
5775 .read_u64 = current_css_set_read,
5776 },
5777
5778 {
5779 .name = "current_css_set_refcount",
5780 .read_u64 = current_css_set_refcount_read,
5781 },
5782
7717f7ba
PM
5783 {
5784 .name = "current_css_set_cg_links",
5785 .read_seq_string = current_css_set_cg_links_read,
5786 },
5787
5788 {
5789 .name = "cgroup_css_links",
5790 .read_seq_string = cgroup_css_links_read,
5791 },
5792
fe693435
PM
5793 {
5794 .name = "releasable",
5795 .read_u64 = releasable_read,
5796 },
fe693435 5797
4baf6e33
TH
5798 { } /* terminate */
5799};
fe693435
PM
5800
5801struct cgroup_subsys debug_subsys = {
5802 .name = "debug",
92fb9748
TH
5803 .css_alloc = debug_css_alloc,
5804 .css_free = debug_css_free,
fe693435 5805 .subsys_id = debug_subsys_id,
4baf6e33 5806 .base_cftypes = debug_files,
fe693435
PM
5807};
5808#endif /* CONFIG_CGROUP_DEBUG */