cgroup: make cgrp_dfl_root mountable
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
0e1d768f
TH
83 *
84 * css_set_rwsem protects task->cgroups pointer, the list of css_set
85 * objects, and the chain of tasks off each css_set.
86 *
87 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
88 * cgroup.h can use them for lockdep annotations.
e25e2cbb 89 */
2219449a
TH
90#ifdef CONFIG_PROVE_RCU
91DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
92DECLARE_RWSEM(css_set_rwsem);
93EXPORT_SYMBOL_GPL(cgroup_mutex);
94EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 95#else
81a6a5cd 96static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 97static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
98#endif
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
105
ace2bee8 106#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 107 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 108 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 109 lockdep_is_held(&cgroup_mutex), \
ace2bee8 110 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 111
e5fca243
TH
112/*
113 * cgroup destruction makes heavy use of work items and there can be a lot
114 * of concurrent destructions. Use a separate workqueue so that cgroup
115 * destruction work items don't end up filling up max_active of system_wq
116 * which may lead to deadlock.
117 */
118static struct workqueue_struct *cgroup_destroy_wq;
119
b1a21367
TH
120/*
121 * pidlist destructions need to be flushed on cgroup destruction. Use a
122 * separate workqueue as flush domain.
123 */
124static struct workqueue_struct *cgroup_pidlist_destroy_wq;
125
3ed80a62 126/* generate an array of cgroup subsystem pointers */
073219e9 127#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 128static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
129#include <linux/cgroup_subsys.h>
130};
073219e9
TH
131#undef SUBSYS
132
133/* array of cgroup subsystem names */
134#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
135static const char *cgroup_subsys_name[] = {
136#include <linux/cgroup_subsys.h>
137};
138#undef SUBSYS
ddbcc7e8 139
ddbcc7e8 140/*
3dd06ffa 141 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
142 * unattached - it never has more than a single cgroup, and all tasks are
143 * part of that cgroup.
ddbcc7e8 144 */
a2dd4247
TH
145struct cgroup_root cgrp_dfl_root;
146
147/*
148 * The default hierarchy always exists but is hidden until mounted for the
149 * first time. This is for backward compatibility.
150 */
151static bool cgrp_dfl_root_visible;
ddbcc7e8
PM
152
153/* The list of hierarchy roots */
154
9871bf95
TH
155static LIST_HEAD(cgroup_roots);
156static int cgroup_root_count;
ddbcc7e8 157
3417ae1f 158/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 159static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 160
794611a1
LZ
161/*
162 * Assign a monotonically increasing serial number to cgroups. It
163 * guarantees cgroups with bigger numbers are newer than those with smaller
164 * numbers. Also, as cgroups are always appended to the parent's
165 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
166 * the ascending serial number order on the list. Protected by
167 * cgroup_mutex.
794611a1 168 */
00356bd5 169static u64 cgroup_serial_nr_next = 1;
794611a1 170
ddbcc7e8 171/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
172 * check for fork/exit handlers to call. This avoids us having to do
173 * extra work in the fork/exit path if none of the subsystems need to
174 * be called.
ddbcc7e8 175 */
8947f9d5 176static int need_forkexit_callback __read_mostly;
ddbcc7e8 177
628f7cd4
TH
178static struct cftype cgroup_base_files[];
179
59f5296b 180static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 181static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 182 unsigned long ss_mask);
f20104de 183static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 184static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
185static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
186 bool is_add);
b1a21367 187static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 188
95109b62
TH
189/**
190 * cgroup_css - obtain a cgroup's css for the specified subsystem
191 * @cgrp: the cgroup of interest
ca8bdcaf 192 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 193 *
ca8bdcaf
TH
194 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
195 * function must be called either under cgroup_mutex or rcu_read_lock() and
196 * the caller is responsible for pinning the returned css if it wants to
197 * keep accessing it outside the said locks. This function may return
198 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
199 */
200static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 201 struct cgroup_subsys *ss)
95109b62 202{
ca8bdcaf 203 if (ss)
aec25020 204 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
205 lockdep_is_held(&cgroup_tree_mutex) ||
206 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
207 else
208 return &cgrp->dummy_css;
95109b62 209}
42809dd4 210
ddbcc7e8 211/* convenient tests for these bits */
54766d4a 212static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 213{
54766d4a 214 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
215}
216
59f5296b
TH
217struct cgroup_subsys_state *seq_css(struct seq_file *seq)
218{
2bd59d48
TH
219 struct kernfs_open_file *of = seq->private;
220 struct cgroup *cgrp = of->kn->parent->priv;
221 struct cftype *cft = seq_cft(seq);
222
223 /*
224 * This is open and unprotected implementation of cgroup_css().
225 * seq_css() is only called from a kernfs file operation which has
226 * an active reference on the file. Because all the subsystem
227 * files are drained before a css is disassociated with a cgroup,
228 * the matching css from the cgroup's subsys table is guaranteed to
229 * be and stay valid until the enclosing operation is complete.
230 */
231 if (cft->ss)
232 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
233 else
234 return &cgrp->dummy_css;
59f5296b
TH
235}
236EXPORT_SYMBOL_GPL(seq_css);
237
78574cf9
LZ
238/**
239 * cgroup_is_descendant - test ancestry
240 * @cgrp: the cgroup to be tested
241 * @ancestor: possible ancestor of @cgrp
242 *
243 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
244 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
245 * and @ancestor are accessible.
246 */
247bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
248{
249 while (cgrp) {
250 if (cgrp == ancestor)
251 return true;
252 cgrp = cgrp->parent;
253 }
254 return false;
255}
ddbcc7e8 256
e9685a03 257static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
258{
259 const int bits =
bd89aabc
PM
260 (1 << CGRP_RELEASABLE) |
261 (1 << CGRP_NOTIFY_ON_RELEASE);
262 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
263}
264
e9685a03 265static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 266{
bd89aabc 267 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
268}
269
1c6727af
TH
270/**
271 * for_each_css - iterate all css's of a cgroup
272 * @css: the iteration cursor
273 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
274 * @cgrp: the target cgroup to iterate css's of
275 *
276 * Should be called under cgroup_mutex.
277 */
278#define for_each_css(css, ssid, cgrp) \
279 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
280 if (!((css) = rcu_dereference_check( \
281 (cgrp)->subsys[(ssid)], \
ace2bee8 282 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
283 lockdep_is_held(&cgroup_mutex)))) { } \
284 else
285
30159ec7 286/**
3ed80a62 287 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 288 * @ss: the iteration cursor
780cd8b3 289 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 290 */
780cd8b3 291#define for_each_subsys(ss, ssid) \
3ed80a62
TH
292 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
293 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 294
985ed670
TH
295/* iterate across the hierarchies */
296#define for_each_root(root) \
5549c497 297 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 298
7ae1bad9
TH
299/**
300 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
301 * @cgrp: the cgroup to be checked for liveness
302 *
47cfcd09
TH
303 * On success, returns true; the mutex should be later unlocked. On
304 * failure returns false with no lock held.
7ae1bad9 305 */
b9777cf8 306static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
307{
308 mutex_lock(&cgroup_mutex);
54766d4a 309 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
310 mutex_unlock(&cgroup_mutex);
311 return false;
312 }
313 return true;
314}
7ae1bad9 315
81a6a5cd
PM
316/* the list of cgroups eligible for automatic release. Protected by
317 * release_list_lock */
318static LIST_HEAD(release_list);
cdcc136f 319static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
320static void cgroup_release_agent(struct work_struct *work);
321static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 322static void check_for_release(struct cgroup *cgrp);
81a6a5cd 323
69d0206c
TH
324/*
325 * A cgroup can be associated with multiple css_sets as different tasks may
326 * belong to different cgroups on different hierarchies. In the other
327 * direction, a css_set is naturally associated with multiple cgroups.
328 * This M:N relationship is represented by the following link structure
329 * which exists for each association and allows traversing the associations
330 * from both sides.
331 */
332struct cgrp_cset_link {
333 /* the cgroup and css_set this link associates */
334 struct cgroup *cgrp;
335 struct css_set *cset;
336
337 /* list of cgrp_cset_links anchored at cgrp->cset_links */
338 struct list_head cset_link;
339
340 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
341 struct list_head cgrp_link;
817929ec
PM
342};
343
172a2c06
TH
344/*
345 * The default css_set - used by init and its children prior to any
817929ec
PM
346 * hierarchies being mounted. It contains a pointer to the root state
347 * for each subsystem. Also used to anchor the list of css_sets. Not
348 * reference-counted, to improve performance when child cgroups
349 * haven't been created.
350 */
172a2c06
TH
351static struct css_set init_css_set = {
352 .refcount = ATOMIC_INIT(1),
353 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
354 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
355 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
356 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
357 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
358};
817929ec 359
172a2c06 360static int css_set_count = 1; /* 1 for init_css_set */
817929ec 361
7717f7ba
PM
362/*
363 * hash table for cgroup groups. This improves the performance to find
364 * an existing css_set. This hash doesn't (currently) take into
365 * account cgroups in empty hierarchies.
366 */
472b1053 367#define CSS_SET_HASH_BITS 7
0ac801fe 368static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 369
0ac801fe 370static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 371{
0ac801fe 372 unsigned long key = 0UL;
30159ec7
TH
373 struct cgroup_subsys *ss;
374 int i;
472b1053 375
30159ec7 376 for_each_subsys(ss, i)
0ac801fe
LZ
377 key += (unsigned long)css[i];
378 key = (key >> 16) ^ key;
472b1053 379
0ac801fe 380 return key;
472b1053
LZ
381}
382
89c5509b 383static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 384{
69d0206c 385 struct cgrp_cset_link *link, *tmp_link;
5abb8855 386
89c5509b
TH
387 lockdep_assert_held(&css_set_rwsem);
388
389 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 390 return;
81a6a5cd 391
2c6ab6d2 392 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 393 hash_del(&cset->hlist);
2c6ab6d2
PM
394 css_set_count--;
395
69d0206c 396 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 397 struct cgroup *cgrp = link->cgrp;
5abb8855 398
69d0206c
TH
399 list_del(&link->cset_link);
400 list_del(&link->cgrp_link);
71b5707e 401
96d365e0 402 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 403 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 404 if (taskexit)
bd89aabc
PM
405 set_bit(CGRP_RELEASABLE, &cgrp->flags);
406 check_for_release(cgrp);
81a6a5cd 407 }
2c6ab6d2
PM
408
409 kfree(link);
81a6a5cd 410 }
2c6ab6d2 411
5abb8855 412 kfree_rcu(cset, rcu_head);
b4f48b63
PM
413}
414
89c5509b
TH
415static void put_css_set(struct css_set *cset, bool taskexit)
416{
417 /*
418 * Ensure that the refcount doesn't hit zero while any readers
419 * can see it. Similar to atomic_dec_and_lock(), but for an
420 * rwlock
421 */
422 if (atomic_add_unless(&cset->refcount, -1, 1))
423 return;
424
425 down_write(&css_set_rwsem);
426 put_css_set_locked(cset, taskexit);
427 up_write(&css_set_rwsem);
428}
429
817929ec
PM
430/*
431 * refcounted get/put for css_set objects
432 */
5abb8855 433static inline void get_css_set(struct css_set *cset)
817929ec 434{
5abb8855 435 atomic_inc(&cset->refcount);
817929ec
PM
436}
437
b326f9d0 438/**
7717f7ba 439 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
440 * @cset: candidate css_set being tested
441 * @old_cset: existing css_set for a task
7717f7ba
PM
442 * @new_cgrp: cgroup that's being entered by the task
443 * @template: desired set of css pointers in css_set (pre-calculated)
444 *
6f4b7e63 445 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
446 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
447 */
5abb8855
TH
448static bool compare_css_sets(struct css_set *cset,
449 struct css_set *old_cset,
7717f7ba
PM
450 struct cgroup *new_cgrp,
451 struct cgroup_subsys_state *template[])
452{
453 struct list_head *l1, *l2;
454
5abb8855 455 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
456 /* Not all subsystems matched */
457 return false;
458 }
459
460 /*
461 * Compare cgroup pointers in order to distinguish between
462 * different cgroups in heirarchies with no subsystems. We
463 * could get by with just this check alone (and skip the
464 * memcmp above) but on most setups the memcmp check will
465 * avoid the need for this more expensive check on almost all
466 * candidates.
467 */
468
69d0206c
TH
469 l1 = &cset->cgrp_links;
470 l2 = &old_cset->cgrp_links;
7717f7ba 471 while (1) {
69d0206c 472 struct cgrp_cset_link *link1, *link2;
5abb8855 473 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
474
475 l1 = l1->next;
476 l2 = l2->next;
477 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
478 if (l1 == &cset->cgrp_links) {
479 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
480 break;
481 } else {
69d0206c 482 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
483 }
484 /* Locate the cgroups associated with these links. */
69d0206c
TH
485 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
486 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
487 cgrp1 = link1->cgrp;
488 cgrp2 = link2->cgrp;
7717f7ba 489 /* Hierarchies should be linked in the same order. */
5abb8855 490 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
491
492 /*
493 * If this hierarchy is the hierarchy of the cgroup
494 * that's changing, then we need to check that this
495 * css_set points to the new cgroup; if it's any other
496 * hierarchy, then this css_set should point to the
497 * same cgroup as the old css_set.
498 */
5abb8855
TH
499 if (cgrp1->root == new_cgrp->root) {
500 if (cgrp1 != new_cgrp)
7717f7ba
PM
501 return false;
502 } else {
5abb8855 503 if (cgrp1 != cgrp2)
7717f7ba
PM
504 return false;
505 }
506 }
507 return true;
508}
509
b326f9d0
TH
510/**
511 * find_existing_css_set - init css array and find the matching css_set
512 * @old_cset: the css_set that we're using before the cgroup transition
513 * @cgrp: the cgroup that we're moving into
514 * @template: out param for the new set of csses, should be clear on entry
817929ec 515 */
5abb8855
TH
516static struct css_set *find_existing_css_set(struct css_set *old_cset,
517 struct cgroup *cgrp,
518 struct cgroup_subsys_state *template[])
b4f48b63 519{
3dd06ffa 520 struct cgroup_root *root = cgrp->root;
30159ec7 521 struct cgroup_subsys *ss;
5abb8855 522 struct css_set *cset;
0ac801fe 523 unsigned long key;
b326f9d0 524 int i;
817929ec 525
aae8aab4
BB
526 /*
527 * Build the set of subsystem state objects that we want to see in the
528 * new css_set. while subsystems can change globally, the entries here
529 * won't change, so no need for locking.
530 */
30159ec7 531 for_each_subsys(ss, i) {
3dd06ffa 532 if (root->cgrp.subsys_mask & (1UL << i)) {
817929ec
PM
533 /* Subsystem is in this hierarchy. So we want
534 * the subsystem state from the new
535 * cgroup */
ca8bdcaf 536 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
537 } else {
538 /* Subsystem is not in this hierarchy, so we
539 * don't want to change the subsystem state */
5abb8855 540 template[i] = old_cset->subsys[i];
817929ec
PM
541 }
542 }
543
0ac801fe 544 key = css_set_hash(template);
5abb8855
TH
545 hash_for_each_possible(css_set_table, cset, hlist, key) {
546 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
547 continue;
548
549 /* This css_set matches what we need */
5abb8855 550 return cset;
472b1053 551 }
817929ec
PM
552
553 /* No existing cgroup group matched */
554 return NULL;
555}
556
69d0206c 557static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 558{
69d0206c 559 struct cgrp_cset_link *link, *tmp_link;
36553434 560
69d0206c
TH
561 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
562 list_del(&link->cset_link);
36553434
LZ
563 kfree(link);
564 }
565}
566
69d0206c
TH
567/**
568 * allocate_cgrp_cset_links - allocate cgrp_cset_links
569 * @count: the number of links to allocate
570 * @tmp_links: list_head the allocated links are put on
571 *
572 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
573 * through ->cset_link. Returns 0 on success or -errno.
817929ec 574 */
69d0206c 575static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 576{
69d0206c 577 struct cgrp_cset_link *link;
817929ec 578 int i;
69d0206c
TH
579
580 INIT_LIST_HEAD(tmp_links);
581
817929ec 582 for (i = 0; i < count; i++) {
f4f4be2b 583 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 584 if (!link) {
69d0206c 585 free_cgrp_cset_links(tmp_links);
817929ec
PM
586 return -ENOMEM;
587 }
69d0206c 588 list_add(&link->cset_link, tmp_links);
817929ec
PM
589 }
590 return 0;
591}
592
c12f65d4
LZ
593/**
594 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 595 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 596 * @cset: the css_set to be linked
c12f65d4
LZ
597 * @cgrp: the destination cgroup
598 */
69d0206c
TH
599static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
600 struct cgroup *cgrp)
c12f65d4 601{
69d0206c 602 struct cgrp_cset_link *link;
c12f65d4 603
69d0206c
TH
604 BUG_ON(list_empty(tmp_links));
605 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
606 link->cset = cset;
7717f7ba 607 link->cgrp = cgrp;
69d0206c 608 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
609 /*
610 * Always add links to the tail of the list so that the list
611 * is sorted by order of hierarchy creation
612 */
69d0206c 613 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
614}
615
b326f9d0
TH
616/**
617 * find_css_set - return a new css_set with one cgroup updated
618 * @old_cset: the baseline css_set
619 * @cgrp: the cgroup to be updated
620 *
621 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
622 * substituted into the appropriate hierarchy.
817929ec 623 */
5abb8855
TH
624static struct css_set *find_css_set(struct css_set *old_cset,
625 struct cgroup *cgrp)
817929ec 626{
b326f9d0 627 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 628 struct css_set *cset;
69d0206c
TH
629 struct list_head tmp_links;
630 struct cgrp_cset_link *link;
0ac801fe 631 unsigned long key;
472b1053 632
b326f9d0
TH
633 lockdep_assert_held(&cgroup_mutex);
634
817929ec
PM
635 /* First see if we already have a cgroup group that matches
636 * the desired set */
96d365e0 637 down_read(&css_set_rwsem);
5abb8855
TH
638 cset = find_existing_css_set(old_cset, cgrp, template);
639 if (cset)
640 get_css_set(cset);
96d365e0 641 up_read(&css_set_rwsem);
817929ec 642
5abb8855
TH
643 if (cset)
644 return cset;
817929ec 645
f4f4be2b 646 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 647 if (!cset)
817929ec
PM
648 return NULL;
649
69d0206c 650 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 651 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 652 kfree(cset);
817929ec
PM
653 return NULL;
654 }
655
5abb8855 656 atomic_set(&cset->refcount, 1);
69d0206c 657 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 658 INIT_LIST_HEAD(&cset->tasks);
c7561128 659 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 660 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 661 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 662 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
663
664 /* Copy the set of subsystem state objects generated in
665 * find_existing_css_set() */
5abb8855 666 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 667
96d365e0 668 down_write(&css_set_rwsem);
817929ec 669 /* Add reference counts and links from the new css_set. */
69d0206c 670 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 671 struct cgroup *c = link->cgrp;
69d0206c 672
7717f7ba
PM
673 if (c->root == cgrp->root)
674 c = cgrp;
69d0206c 675 link_css_set(&tmp_links, cset, c);
7717f7ba 676 }
817929ec 677
69d0206c 678 BUG_ON(!list_empty(&tmp_links));
817929ec 679
817929ec 680 css_set_count++;
472b1053
LZ
681
682 /* Add this cgroup group to the hash table */
5abb8855
TH
683 key = css_set_hash(cset->subsys);
684 hash_add(css_set_table, &cset->hlist, key);
472b1053 685
96d365e0 686 up_write(&css_set_rwsem);
817929ec 687
5abb8855 688 return cset;
b4f48b63
PM
689}
690
3dd06ffa 691static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
2bd59d48 692{
3dd06ffa 693 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 694
3dd06ffa 695 return root_cgrp->root;
2bd59d48
TH
696}
697
3dd06ffa 698static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
699{
700 int id;
701
702 lockdep_assert_held(&cgroup_mutex);
703
985ed670 704 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
705 if (id < 0)
706 return id;
707
708 root->hierarchy_id = id;
709 return 0;
710}
711
3dd06ffa 712static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
713{
714 lockdep_assert_held(&cgroup_mutex);
715
716 if (root->hierarchy_id) {
717 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
718 root->hierarchy_id = 0;
719 }
720}
721
3dd06ffa 722static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
723{
724 if (root) {
725 /* hierarhcy ID shoulid already have been released */
726 WARN_ON_ONCE(root->hierarchy_id);
727
728 idr_destroy(&root->cgroup_idr);
729 kfree(root);
730 }
731}
732
3dd06ffa 733static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 734{
3dd06ffa 735 struct cgroup *cgrp = &root->cgrp;
f2e85d57 736 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 737
2bd59d48 738 mutex_lock(&cgroup_tree_mutex);
2bd59d48 739 mutex_lock(&cgroup_mutex);
f2e85d57 740
776f02fa 741 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
742 BUG_ON(!list_empty(&cgrp->children));
743
f2e85d57 744 /* Rebind all subsystems back to the default hierarchy */
3dd06ffa 745 rebind_subsystems(&cgrp_dfl_root, cgrp->subsys_mask);
f2e85d57
TH
746
747 /*
748 * Release all the links from cset_links to this hierarchy's
749 * root cgroup
750 */
96d365e0 751 down_write(&css_set_rwsem);
f2e85d57
TH
752
753 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
754 list_del(&link->cset_link);
755 list_del(&link->cgrp_link);
756 kfree(link);
757 }
96d365e0 758 up_write(&css_set_rwsem);
f2e85d57
TH
759
760 if (!list_empty(&root->root_list)) {
761 list_del(&root->root_list);
762 cgroup_root_count--;
763 }
764
765 cgroup_exit_root_id(root);
766
767 mutex_unlock(&cgroup_mutex);
768 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 769
2bd59d48 770 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
771 cgroup_free_root(root);
772}
773
ceb6a081
TH
774/* look up cgroup associated with given css_set on the specified hierarchy */
775static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 776 struct cgroup_root *root)
7717f7ba 777{
7717f7ba
PM
778 struct cgroup *res = NULL;
779
96d365e0
TH
780 lockdep_assert_held(&cgroup_mutex);
781 lockdep_assert_held(&css_set_rwsem);
782
5abb8855 783 if (cset == &init_css_set) {
3dd06ffa 784 res = &root->cgrp;
7717f7ba 785 } else {
69d0206c
TH
786 struct cgrp_cset_link *link;
787
788 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 789 struct cgroup *c = link->cgrp;
69d0206c 790
7717f7ba
PM
791 if (c->root == root) {
792 res = c;
793 break;
794 }
795 }
796 }
96d365e0 797
7717f7ba
PM
798 BUG_ON(!res);
799 return res;
800}
801
ceb6a081
TH
802/*
803 * Return the cgroup for "task" from the given hierarchy. Must be
804 * called with cgroup_mutex and css_set_rwsem held.
805 */
806static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 807 struct cgroup_root *root)
ceb6a081
TH
808{
809 /*
810 * No need to lock the task - since we hold cgroup_mutex the
811 * task can't change groups, so the only thing that can happen
812 * is that it exits and its css is set back to init_css_set.
813 */
814 return cset_cgroup_from_root(task_css_set(task), root);
815}
816
ddbcc7e8 817/*
ddbcc7e8
PM
818 * A task must hold cgroup_mutex to modify cgroups.
819 *
820 * Any task can increment and decrement the count field without lock.
821 * So in general, code holding cgroup_mutex can't rely on the count
822 * field not changing. However, if the count goes to zero, then only
956db3ca 823 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
824 * means that no tasks are currently attached, therefore there is no
825 * way a task attached to that cgroup can fork (the other way to
826 * increment the count). So code holding cgroup_mutex can safely
827 * assume that if the count is zero, it will stay zero. Similarly, if
828 * a task holds cgroup_mutex on a cgroup with zero count, it
829 * knows that the cgroup won't be removed, as cgroup_rmdir()
830 * needs that mutex.
831 *
ddbcc7e8
PM
832 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
833 * (usually) take cgroup_mutex. These are the two most performance
834 * critical pieces of code here. The exception occurs on cgroup_exit(),
835 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
836 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
837 * to the release agent with the name of the cgroup (path relative to
838 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
839 *
840 * A cgroup can only be deleted if both its 'count' of using tasks
841 * is zero, and its list of 'children' cgroups is empty. Since all
842 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 843 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 844 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 845 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8 846 *
ddbcc7e8 847 * P.S. One more locking exception. RCU is used to guard the
956db3ca 848 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
849 */
850
628f7cd4 851static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 852static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 853static const struct file_operations proc_cgroupstats_operations;
a424316c 854
8d7e6fb0
TH
855static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
856 char *buf)
857{
858 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
859 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
860 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
861 cft->ss->name, cft->name);
862 else
863 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
864 return buf;
865}
866
f2e85d57
TH
867/**
868 * cgroup_file_mode - deduce file mode of a control file
869 * @cft: the control file in question
870 *
871 * returns cft->mode if ->mode is not 0
872 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
873 * returns S_IRUGO if it has only a read handler
874 * returns S_IWUSR if it has only a write hander
875 */
876static umode_t cgroup_file_mode(const struct cftype *cft)
877{
878 umode_t mode = 0;
879
880 if (cft->mode)
881 return cft->mode;
882
883 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
884 mode |= S_IRUGO;
885
886 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
887 cft->trigger)
888 mode |= S_IWUSR;
889
890 return mode;
891}
892
be445626
LZ
893static void cgroup_free_fn(struct work_struct *work)
894{
ea15f8cc 895 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 896
3c9c825b 897 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 898 cgroup_pidlist_destroy_all(cgrp);
be445626 899
776f02fa
TH
900 if (cgrp->parent) {
901 /*
902 * We get a ref to the parent, and put the ref when this
903 * cgroup is being freed, so it's guaranteed that the
904 * parent won't be destroyed before its children.
905 */
906 cgroup_put(cgrp->parent);
907 kernfs_put(cgrp->kn);
908 kfree(cgrp);
909 } else {
910 /*
3dd06ffa 911 * This is root cgroup's refcnt reaching zero, which
776f02fa
TH
912 * indicates that the root should be released.
913 */
914 cgroup_destroy_root(cgrp->root);
915 }
be445626
LZ
916}
917
918static void cgroup_free_rcu(struct rcu_head *head)
919{
920 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
921
ea15f8cc 922 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 923 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
924}
925
59f5296b
TH
926static void cgroup_get(struct cgroup *cgrp)
927{
2bd59d48
TH
928 WARN_ON_ONCE(cgroup_is_dead(cgrp));
929 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
930 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
931}
932
59f5296b
TH
933static void cgroup_put(struct cgroup *cgrp)
934{
2bd59d48
TH
935 if (!atomic_dec_and_test(&cgrp->refcnt))
936 return;
776f02fa 937 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 938 return;
59f5296b 939
2bd59d48
TH
940 /*
941 * XXX: cgrp->id is only used to look up css's. As cgroup and
942 * css's lifetimes will be decoupled, it should be made
943 * per-subsystem and moved to css->id so that lookups are
944 * successful until the target css is released.
945 */
946 mutex_lock(&cgroup_mutex);
947 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
948 mutex_unlock(&cgroup_mutex);
949 cgrp->id = -1;
ddbcc7e8 950
2bd59d48 951 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
952}
953
2739d3cc 954static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 955{
2bd59d48 956 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 957
ace2bee8 958 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 959 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
960}
961
13af07df 962/**
628f7cd4 963 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 964 * @cgrp: target cgroup
13af07df
AR
965 * @subsys_mask: mask of the subsystem ids whose files should be removed
966 */
628f7cd4 967static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 968{
13af07df 969 struct cgroup_subsys *ss;
b420ba7d 970 int i;
05ef1d7c 971
b420ba7d 972 for_each_subsys(ss, i) {
0adb0704 973 struct cftype *cfts;
b420ba7d
TH
974
975 if (!test_bit(i, &subsys_mask))
13af07df 976 continue;
0adb0704
TH
977 list_for_each_entry(cfts, &ss->cfts, node)
978 cgroup_addrm_files(cgrp, cfts, false);
13af07df 979 }
ddbcc7e8
PM
980}
981
3dd06ffa 982static int rebind_subsystems(struct cgroup_root *dst_root,
5df36032 983 unsigned long ss_mask)
ddbcc7e8 984{
30159ec7 985 struct cgroup_subsys *ss;
5df36032 986 int ssid, ret;
ddbcc7e8 987
ace2bee8
TH
988 lockdep_assert_held(&cgroup_tree_mutex);
989 lockdep_assert_held(&cgroup_mutex);
aae8aab4 990
5df36032
TH
991 for_each_subsys(ss, ssid) {
992 if (!(ss_mask & (1 << ssid)))
993 continue;
994
995 /* if @ss is on the dummy_root, we can always move it */
3dd06ffa 996 if (ss->root == &cgrp_dfl_root)
5df36032
TH
997 continue;
998
999 /* if @ss has non-root cgroups attached to it, can't move */
3dd06ffa 1000 if (!list_empty(&ss->root->cgrp.children))
3ed80a62 1001 return -EBUSY;
ddbcc7e8 1002
5df36032 1003 /* can't move between two non-dummy roots either */
3dd06ffa 1004 if (dst_root != &cgrp_dfl_root)
5df36032
TH
1005 return -EBUSY;
1006 }
1007
a2dd4247
TH
1008 ret = cgroup_populate_dir(&dst_root->cgrp, ss_mask);
1009 if (ret) {
1010 if (dst_root != &cgrp_dfl_root)
5df36032 1011 return ret;
a2dd4247
TH
1012
1013 /*
1014 * Rebinding back to the default root is not allowed to
1015 * fail. Using both default and non-default roots should
1016 * be rare. Moving subsystems back and forth even more so.
1017 * Just warn about it and continue.
1018 */
1019 if (cgrp_dfl_root_visible) {
1020 pr_warning("cgroup: failed to create files (%d) while rebinding 0x%lx to default root\n",
1021 ret, ss_mask);
1022 pr_warning("cgroup: you may retry by moving them to a different hierarchy and unbinding\n");
1023 }
5df36032 1024 }
3126121f
TH
1025
1026 /*
1027 * Nothing can fail from this point on. Remove files for the
1028 * removed subsystems and rebind each subsystem.
1029 */
4ac06017 1030 mutex_unlock(&cgroup_mutex);
5df36032 1031 for_each_subsys(ss, ssid)
a2dd4247 1032 if (ss_mask & (1 << ssid))
3dd06ffa 1033 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
4ac06017 1034 mutex_lock(&cgroup_mutex);
ddbcc7e8 1035
5df36032 1036 for_each_subsys(ss, ssid) {
3dd06ffa 1037 struct cgroup_root *src_root;
5df36032 1038 struct cgroup_subsys_state *css;
a8a648c4 1039
5df36032
TH
1040 if (!(ss_mask & (1 << ssid)))
1041 continue;
a8a648c4 1042
5df36032 1043 src_root = ss->root;
3dd06ffa 1044 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1045
3dd06ffa 1046 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
a8a648c4 1047
3dd06ffa
TH
1048 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1049 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1050 ss->root = dst_root;
3dd06ffa 1051 css->cgroup = &dst_root->cgrp;
73e80ed8 1052
3dd06ffa
TH
1053 src_root->cgrp.subsys_mask &= ~(1 << ssid);
1054 dst_root->cgrp.subsys_mask |= 1 << ssid;
73e80ed8 1055
5df36032
TH
1056 if (ss->bind)
1057 ss->bind(css);
ddbcc7e8 1058 }
ddbcc7e8 1059
a2dd4247 1060 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1061 return 0;
1062}
1063
2bd59d48
TH
1064static int cgroup_show_options(struct seq_file *seq,
1065 struct kernfs_root *kf_root)
ddbcc7e8 1066{
3dd06ffa 1067 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1068 struct cgroup_subsys *ss;
b85d2040 1069 int ssid;
ddbcc7e8 1070
b85d2040 1071 for_each_subsys(ss, ssid)
3dd06ffa 1072 if (root->cgrp.subsys_mask & (1 << ssid))
b85d2040 1073 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1074 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1075 seq_puts(seq, ",sane_behavior");
93438629 1076 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1077 seq_puts(seq, ",noprefix");
93438629 1078 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1079 seq_puts(seq, ",xattr");
69e943b7
TH
1080
1081 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1082 if (strlen(root->release_agent_path))
1083 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1084 spin_unlock(&release_agent_path_lock);
1085
3dd06ffa 1086 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1087 seq_puts(seq, ",clone_children");
c6d57f33
PM
1088 if (strlen(root->name))
1089 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1090 return 0;
1091}
1092
1093struct cgroup_sb_opts {
a1a71b45 1094 unsigned long subsys_mask;
ddbcc7e8 1095 unsigned long flags;
81a6a5cd 1096 char *release_agent;
2260e7fc 1097 bool cpuset_clone_children;
c6d57f33 1098 char *name;
2c6ab6d2
PM
1099 /* User explicitly requested empty subsystem */
1100 bool none;
ddbcc7e8
PM
1101};
1102
aae8aab4 1103/*
9871bf95
TH
1104 * Convert a hierarchy specifier into a bitmask of subsystems and
1105 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1106 * array. This function takes refcounts on subsystems to be used, unless it
1107 * returns error, in which case no refcounts are taken.
aae8aab4 1108 */
cf5d5941 1109static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1110{
32a8cf23
DL
1111 char *token, *o = data;
1112 bool all_ss = false, one_ss = false;
f9ab5b5b 1113 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1114 struct cgroup_subsys *ss;
1115 int i;
f9ab5b5b 1116
aae8aab4
BB
1117 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1118
f9ab5b5b 1119#ifdef CONFIG_CPUSETS
073219e9 1120 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1121#endif
ddbcc7e8 1122
c6d57f33 1123 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1124
1125 while ((token = strsep(&o, ",")) != NULL) {
1126 if (!*token)
1127 return -EINVAL;
32a8cf23 1128 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1129 /* Explicitly have no subsystems */
1130 opts->none = true;
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strcmp(token, "all")) {
1134 /* Mutually exclusive option 'all' + subsystem name */
1135 if (one_ss)
1136 return -EINVAL;
1137 all_ss = true;
1138 continue;
1139 }
873fe09e
TH
1140 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1141 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1142 continue;
1143 }
32a8cf23 1144 if (!strcmp(token, "noprefix")) {
93438629 1145 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1146 continue;
1147 }
1148 if (!strcmp(token, "clone_children")) {
2260e7fc 1149 opts->cpuset_clone_children = true;
32a8cf23
DL
1150 continue;
1151 }
03b1cde6 1152 if (!strcmp(token, "xattr")) {
93438629 1153 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1154 continue;
1155 }
32a8cf23 1156 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1157 /* Specifying two release agents is forbidden */
1158 if (opts->release_agent)
1159 return -EINVAL;
c6d57f33 1160 opts->release_agent =
e400c285 1161 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1162 if (!opts->release_agent)
1163 return -ENOMEM;
32a8cf23
DL
1164 continue;
1165 }
1166 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1167 const char *name = token + 5;
1168 /* Can't specify an empty name */
1169 if (!strlen(name))
1170 return -EINVAL;
1171 /* Must match [\w.-]+ */
1172 for (i = 0; i < strlen(name); i++) {
1173 char c = name[i];
1174 if (isalnum(c))
1175 continue;
1176 if ((c == '.') || (c == '-') || (c == '_'))
1177 continue;
1178 return -EINVAL;
1179 }
1180 /* Specifying two names is forbidden */
1181 if (opts->name)
1182 return -EINVAL;
1183 opts->name = kstrndup(name,
e400c285 1184 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1185 GFP_KERNEL);
1186 if (!opts->name)
1187 return -ENOMEM;
32a8cf23
DL
1188
1189 continue;
1190 }
1191
30159ec7 1192 for_each_subsys(ss, i) {
32a8cf23
DL
1193 if (strcmp(token, ss->name))
1194 continue;
1195 if (ss->disabled)
1196 continue;
1197
1198 /* Mutually exclusive option 'all' + subsystem name */
1199 if (all_ss)
1200 return -EINVAL;
a1a71b45 1201 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1202 one_ss = true;
1203
1204 break;
1205 }
1206 if (i == CGROUP_SUBSYS_COUNT)
1207 return -ENOENT;
1208 }
1209
2c6ab6d2
PM
1210 /* Consistency checks */
1211
873fe09e
TH
1212 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1213 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1214
d3ba07c3
TH
1215 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1216 opts->cpuset_clone_children || opts->release_agent ||
1217 opts->name) {
1218 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1219 return -EINVAL;
1220 }
a2dd4247
TH
1221 } else {
1222 /*
1223 * If the 'all' option was specified select all the
1224 * subsystems, otherwise if 'none', 'name=' and a subsystem
1225 * name options were not specified, let's default to 'all'
1226 */
1227 if (all_ss || (!one_ss && !opts->none && !opts->name))
1228 for_each_subsys(ss, i)
1229 if (!ss->disabled)
1230 set_bit(i, &opts->subsys_mask);
1231
1232 /*
1233 * We either have to specify by name or by subsystems. (So
1234 * all empty hierarchies must have a name).
1235 */
1236 if (!opts->subsys_mask && !opts->name)
1237 return -EINVAL;
873fe09e
TH
1238 }
1239
f9ab5b5b
LZ
1240 /*
1241 * Option noprefix was introduced just for backward compatibility
1242 * with the old cpuset, so we allow noprefix only if mounting just
1243 * the cpuset subsystem.
1244 */
93438629 1245 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1246 return -EINVAL;
1247
2c6ab6d2
PM
1248
1249 /* Can't specify "none" and some subsystems */
a1a71b45 1250 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1251 return -EINVAL;
1252
ddbcc7e8
PM
1253 return 0;
1254}
1255
2bd59d48 1256static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1257{
1258 int ret = 0;
3dd06ffa 1259 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1260 struct cgroup_sb_opts opts;
a1a71b45 1261 unsigned long added_mask, removed_mask;
ddbcc7e8 1262
873fe09e
TH
1263 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1264 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1265 return -EINVAL;
1266 }
1267
ace2bee8 1268 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1269 mutex_lock(&cgroup_mutex);
1270
1271 /* See what subsystems are wanted */
1272 ret = parse_cgroupfs_options(data, &opts);
1273 if (ret)
1274 goto out_unlock;
1275
3dd06ffa 1276 if (opts.subsys_mask != root->cgrp.subsys_mask || opts.release_agent)
8b5a5a9d
TH
1277 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1278 task_tgid_nr(current), current->comm);
1279
3dd06ffa
TH
1280 added_mask = opts.subsys_mask & ~root->cgrp.subsys_mask;
1281 removed_mask = root->cgrp.subsys_mask & ~opts.subsys_mask;
13af07df 1282
cf5d5941 1283 /* Don't allow flags or name to change at remount */
0ce6cba3 1284 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1285 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1286 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1287 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1288 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1289 ret = -EINVAL;
1290 goto out_unlock;
1291 }
1292
f172e67c 1293 /* remounting is not allowed for populated hierarchies */
3dd06ffa 1294 if (!list_empty(&root->cgrp.children)) {
f172e67c 1295 ret = -EBUSY;
0670e08b 1296 goto out_unlock;
cf5d5941 1297 }
ddbcc7e8 1298
5df36032 1299 ret = rebind_subsystems(root, added_mask);
3126121f 1300 if (ret)
0670e08b 1301 goto out_unlock;
ddbcc7e8 1302
3dd06ffa 1303 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1304
69e943b7
TH
1305 if (opts.release_agent) {
1306 spin_lock(&release_agent_path_lock);
81a6a5cd 1307 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1308 spin_unlock(&release_agent_path_lock);
1309 }
ddbcc7e8 1310 out_unlock:
66bdc9cf 1311 kfree(opts.release_agent);
c6d57f33 1312 kfree(opts.name);
ddbcc7e8 1313 mutex_unlock(&cgroup_mutex);
ace2bee8 1314 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1315 return ret;
1316}
1317
afeb0f9f
TH
1318/*
1319 * To reduce the fork() overhead for systems that are not actually using
1320 * their cgroups capability, we don't maintain the lists running through
1321 * each css_set to its tasks until we see the list actually used - in other
1322 * words after the first mount.
1323 */
1324static bool use_task_css_set_links __read_mostly;
1325
1326static void cgroup_enable_task_cg_lists(void)
1327{
1328 struct task_struct *p, *g;
1329
96d365e0 1330 down_write(&css_set_rwsem);
afeb0f9f
TH
1331
1332 if (use_task_css_set_links)
1333 goto out_unlock;
1334
1335 use_task_css_set_links = true;
1336
1337 /*
1338 * We need tasklist_lock because RCU is not safe against
1339 * while_each_thread(). Besides, a forking task that has passed
1340 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1341 * is not guaranteed to have its child immediately visible in the
1342 * tasklist if we walk through it with RCU.
1343 */
1344 read_lock(&tasklist_lock);
1345 do_each_thread(g, p) {
afeb0f9f
TH
1346 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1347 task_css_set(p) != &init_css_set);
1348
1349 /*
1350 * We should check if the process is exiting, otherwise
1351 * it will race with cgroup_exit() in that the list
1352 * entry won't be deleted though the process has exited.
f153ad11
TH
1353 * Do it while holding siglock so that we don't end up
1354 * racing against cgroup_exit().
afeb0f9f 1355 */
f153ad11 1356 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1357 if (!(p->flags & PF_EXITING)) {
1358 struct css_set *cset = task_css_set(p);
1359
1360 list_add(&p->cg_list, &cset->tasks);
1361 get_css_set(cset);
1362 }
f153ad11 1363 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1364 } while_each_thread(g, p);
1365 read_unlock(&tasklist_lock);
1366out_unlock:
96d365e0 1367 up_write(&css_set_rwsem);
afeb0f9f
TH
1368}
1369
cc31edce
PM
1370static void init_cgroup_housekeeping(struct cgroup *cgrp)
1371{
2bd59d48 1372 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1373 INIT_LIST_HEAD(&cgrp->sibling);
1374 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1375 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1376 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1377 INIT_LIST_HEAD(&cgrp->pidlists);
1378 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1379 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1380}
c6d57f33 1381
3dd06ffa 1382static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1383 struct cgroup_sb_opts *opts)
ddbcc7e8 1384{
3dd06ffa 1385 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1386
ddbcc7e8 1387 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1388 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1389 cgrp->root = root;
cc31edce 1390 init_cgroup_housekeeping(cgrp);
4e96ee8e 1391 idr_init(&root->cgroup_idr);
2c6ab6d2 1392
c6d57f33
PM
1393 root->flags = opts->flags;
1394 if (opts->release_agent)
1395 strcpy(root->release_agent_path, opts->release_agent);
1396 if (opts->name)
1397 strcpy(root->name, opts->name);
2260e7fc 1398 if (opts->cpuset_clone_children)
3dd06ffa 1399 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1400}
1401
3dd06ffa 1402static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
d427dfeb
TH
1403{
1404 LIST_HEAD(tmp_links);
3dd06ffa 1405 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1406 struct css_set *cset;
d427dfeb
TH
1407 int i, ret;
1408
1409 lockdep_assert_held(&cgroup_tree_mutex);
1410 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1411
1412 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1413 if (ret < 0)
2bd59d48 1414 goto out;
d427dfeb
TH
1415 root_cgrp->id = ret;
1416
d427dfeb 1417 /*
96d365e0 1418 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1419 * but that's OK - it can only be increased by someone holding
1420 * cgroup_lock, and that's us. The worst that can happen is that we
1421 * have some link structures left over
1422 */
1423 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1424 if (ret)
2bd59d48 1425 goto out;
d427dfeb 1426
985ed670 1427 ret = cgroup_init_root_id(root);
d427dfeb 1428 if (ret)
2bd59d48 1429 goto out;
d427dfeb 1430
2bd59d48
TH
1431 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1432 KERNFS_ROOT_CREATE_DEACTIVATED,
1433 root_cgrp);
1434 if (IS_ERR(root->kf_root)) {
1435 ret = PTR_ERR(root->kf_root);
1436 goto exit_root_id;
1437 }
1438 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1439
1440 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1441 if (ret)
2bd59d48 1442 goto destroy_root;
d427dfeb 1443
5df36032 1444 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1445 if (ret)
2bd59d48 1446 goto destroy_root;
d427dfeb
TH
1447
1448 /*
1449 * There must be no failure case after here, since rebinding takes
1450 * care of subsystems' refcounts, which are explicitly dropped in
1451 * the failure exit path.
1452 */
1453 list_add(&root->root_list, &cgroup_roots);
1454 cgroup_root_count++;
1455
1456 /*
3dd06ffa 1457 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1458 * objects.
1459 */
96d365e0 1460 down_write(&css_set_rwsem);
d427dfeb
TH
1461 hash_for_each(css_set_table, i, cset, hlist)
1462 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1463 up_write(&css_set_rwsem);
d427dfeb
TH
1464
1465 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1466 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1467
2bd59d48 1468 kernfs_activate(root_cgrp->kn);
d427dfeb 1469 ret = 0;
2bd59d48 1470 goto out;
d427dfeb 1471
2bd59d48
TH
1472destroy_root:
1473 kernfs_destroy_root(root->kf_root);
1474 root->kf_root = NULL;
1475exit_root_id:
d427dfeb 1476 cgroup_exit_root_id(root);
2bd59d48 1477out:
d427dfeb
TH
1478 free_cgrp_cset_links(&tmp_links);
1479 return ret;
1480}
1481
f7e83571 1482static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1483 int flags, const char *unused_dev_name,
f7e83571 1484 void *data)
ddbcc7e8 1485{
3dd06ffa 1486 struct cgroup_root *root;
ddbcc7e8 1487 struct cgroup_sb_opts opts;
2bd59d48 1488 struct dentry *dentry;
8e30e2b8 1489 int ret;
56fde9e0
TH
1490
1491 /*
1492 * The first time anyone tries to mount a cgroup, enable the list
1493 * linking each css_set to its tasks and fix up all existing tasks.
1494 */
1495 if (!use_task_css_set_links)
1496 cgroup_enable_task_cg_lists();
776f02fa 1497retry:
8e30e2b8 1498 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1499 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1500
1501 /* First find the desired set of subsystems */
ddbcc7e8 1502 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1503 if (ret)
8e30e2b8 1504 goto out_unlock;
ddbcc7e8 1505
2bd59d48 1506 /* look for a matching existing root */
a2dd4247
TH
1507 if (!opts.subsys_mask && !opts.none && !opts.name) {
1508 cgrp_dfl_root_visible = true;
1509 root = &cgrp_dfl_root;
1510 cgroup_get(&root->cgrp);
1511 ret = 0;
1512 goto out_unlock;
1513 }
1514
985ed670 1515 for_each_root(root) {
2bd59d48 1516 bool name_match = false;
ddbcc7e8 1517
3dd06ffa 1518 if (root == &cgrp_dfl_root)
985ed670
TH
1519 continue;
1520
2bd59d48
TH
1521 /*
1522 * If we asked for a name then it must match. Also, if
1523 * name matches but sybsys_mask doesn't, we should fail.
1524 * Remember whether name matched.
1525 */
1526 if (opts.name) {
1527 if (strcmp(opts.name, root->name))
1528 continue;
1529 name_match = true;
1530 }
ddbcc7e8 1531
c6d57f33 1532 /*
2bd59d48
TH
1533 * If we asked for subsystems (or explicitly for no
1534 * subsystems) then they must match.
c6d57f33 1535 */
2bd59d48 1536 if ((opts.subsys_mask || opts.none) &&
3dd06ffa 1537 (opts.subsys_mask != root->cgrp.subsys_mask)) {
2bd59d48
TH
1538 if (!name_match)
1539 continue;
1540 ret = -EBUSY;
1541 goto out_unlock;
1542 }
873fe09e 1543
c7ba8287 1544 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1545 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1546 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1547 ret = -EINVAL;
8e30e2b8 1548 goto out_unlock;
2a0ff3fb
JL
1549 } else {
1550 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1551 }
873fe09e 1552 }
2bd59d48 1553
776f02fa 1554 /*
3dd06ffa 1555 * A root's lifetime is governed by its root cgroup. Zero
776f02fa
TH
1556 * ref indicate that the root is being destroyed. Wait for
1557 * destruction to complete so that the subsystems are free.
1558 * We can use wait_queue for the wait but this path is
1559 * super cold. Let's just sleep for a bit and retry.
1560 */
3dd06ffa 1561 if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
776f02fa
TH
1562 mutex_unlock(&cgroup_mutex);
1563 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1564 kfree(opts.release_agent);
1565 kfree(opts.name);
776f02fa
TH
1566 msleep(10);
1567 goto retry;
1568 }
1569
1570 ret = 0;
2bd59d48 1571 goto out_unlock;
ddbcc7e8
PM
1572 }
1573
172a2c06
TH
1574 /*
1575 * No such thing, create a new one. name= matching without subsys
1576 * specification is allowed for already existing hierarchies but we
1577 * can't create new one without subsys specification.
1578 */
1579 if (!opts.subsys_mask && !opts.none) {
1580 ret = -EINVAL;
1581 goto out_unlock;
1582 }
1583
1584 root = kzalloc(sizeof(*root), GFP_KERNEL);
1585 if (!root) {
1586 ret = -ENOMEM;
2bd59d48
TH
1587 goto out_unlock;
1588 }
1589
172a2c06
TH
1590 init_cgroup_root(root, &opts);
1591
35585573 1592 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1593 if (ret)
1594 cgroup_free_root(root);
1595
8e30e2b8 1596out_unlock:
e25e2cbb 1597 mutex_unlock(&cgroup_mutex);
ace2bee8 1598 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1599
c6d57f33
PM
1600 kfree(opts.release_agent);
1601 kfree(opts.name);
8e30e2b8 1602
2bd59d48 1603 if (ret)
8e30e2b8 1604 return ERR_PTR(ret);
2bd59d48
TH
1605
1606 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1607 if (IS_ERR(dentry))
3dd06ffa 1608 cgroup_put(&root->cgrp);
2bd59d48
TH
1609 return dentry;
1610}
1611
1612static void cgroup_kill_sb(struct super_block *sb)
1613{
1614 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1615 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1616
3dd06ffa 1617 cgroup_put(&root->cgrp);
2bd59d48 1618 kernfs_kill_sb(sb);
ddbcc7e8
PM
1619}
1620
ddbcc7e8
PM
1621static struct file_system_type cgroup_fs_type = {
1622 .name = "cgroup",
f7e83571 1623 .mount = cgroup_mount,
ddbcc7e8
PM
1624 .kill_sb = cgroup_kill_sb,
1625};
1626
676db4af
GK
1627static struct kobject *cgroup_kobj;
1628
857a2beb 1629/**
913ffdb5 1630 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1631 * @task: target task
857a2beb
TH
1632 * @buf: the buffer to write the path into
1633 * @buflen: the length of the buffer
1634 *
913ffdb5
TH
1635 * Determine @task's cgroup on the first (the one with the lowest non-zero
1636 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1637 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1638 * cgroup controller callbacks.
1639 *
e61734c5 1640 * Return value is the same as kernfs_path().
857a2beb 1641 */
e61734c5 1642char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1643{
3dd06ffa 1644 struct cgroup_root *root;
913ffdb5 1645 struct cgroup *cgrp;
e61734c5
TH
1646 int hierarchy_id = 1;
1647 char *path = NULL;
857a2beb
TH
1648
1649 mutex_lock(&cgroup_mutex);
96d365e0 1650 down_read(&css_set_rwsem);
857a2beb 1651
913ffdb5
TH
1652 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1653
857a2beb
TH
1654 if (root) {
1655 cgrp = task_cgroup_from_root(task, root);
e61734c5 1656 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1657 } else {
1658 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1659 if (strlcpy(buf, "/", buflen) < buflen)
1660 path = buf;
857a2beb
TH
1661 }
1662
96d365e0 1663 up_read(&css_set_rwsem);
857a2beb 1664 mutex_unlock(&cgroup_mutex);
e61734c5 1665 return path;
857a2beb 1666}
913ffdb5 1667EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1668
b3dc094e 1669/* used to track tasks and other necessary states during migration */
2f7ee569 1670struct cgroup_taskset {
b3dc094e
TH
1671 /* the src and dst cset list running through cset->mg_node */
1672 struct list_head src_csets;
1673 struct list_head dst_csets;
1674
1675 /*
1676 * Fields for cgroup_taskset_*() iteration.
1677 *
1678 * Before migration is committed, the target migration tasks are on
1679 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1680 * the csets on ->dst_csets. ->csets point to either ->src_csets
1681 * or ->dst_csets depending on whether migration is committed.
1682 *
1683 * ->cur_csets and ->cur_task point to the current task position
1684 * during iteration.
1685 */
1686 struct list_head *csets;
1687 struct css_set *cur_cset;
1688 struct task_struct *cur_task;
2f7ee569
TH
1689};
1690
1691/**
1692 * cgroup_taskset_first - reset taskset and return the first task
1693 * @tset: taskset of interest
1694 *
1695 * @tset iteration is initialized and the first task is returned.
1696 */
1697struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1698{
b3dc094e
TH
1699 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1700 tset->cur_task = NULL;
1701
1702 return cgroup_taskset_next(tset);
2f7ee569 1703}
2f7ee569
TH
1704
1705/**
1706 * cgroup_taskset_next - iterate to the next task in taskset
1707 * @tset: taskset of interest
1708 *
1709 * Return the next task in @tset. Iteration must have been initialized
1710 * with cgroup_taskset_first().
1711 */
1712struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1713{
b3dc094e
TH
1714 struct css_set *cset = tset->cur_cset;
1715 struct task_struct *task = tset->cur_task;
2f7ee569 1716
b3dc094e
TH
1717 while (&cset->mg_node != tset->csets) {
1718 if (!task)
1719 task = list_first_entry(&cset->mg_tasks,
1720 struct task_struct, cg_list);
1721 else
1722 task = list_next_entry(task, cg_list);
2f7ee569 1723
b3dc094e
TH
1724 if (&task->cg_list != &cset->mg_tasks) {
1725 tset->cur_cset = cset;
1726 tset->cur_task = task;
1727 return task;
1728 }
1729
1730 cset = list_next_entry(cset, mg_node);
1731 task = NULL;
1732 }
1733
1734 return NULL;
2f7ee569 1735}
2f7ee569 1736
cb0f1fe9 1737/**
74a1166d 1738 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1739 * @old_cgrp; the cgroup @tsk is being migrated from
1740 * @tsk: the task being migrated
1741 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1742 *
cb0f1fe9 1743 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1744 */
5abb8855
TH
1745static void cgroup_task_migrate(struct cgroup *old_cgrp,
1746 struct task_struct *tsk,
1747 struct css_set *new_cset)
74a1166d 1748{
5abb8855 1749 struct css_set *old_cset;
74a1166d 1750
cb0f1fe9
TH
1751 lockdep_assert_held(&cgroup_mutex);
1752 lockdep_assert_held(&css_set_rwsem);
1753
74a1166d 1754 /*
026085ef
MSB
1755 * We are synchronized through threadgroup_lock() against PF_EXITING
1756 * setting such that we can't race against cgroup_exit() changing the
1757 * css_set to init_css_set and dropping the old one.
74a1166d 1758 */
c84cdf75 1759 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1760 old_cset = task_css_set(tsk);
74a1166d 1761
b3dc094e 1762 get_css_set(new_cset);
5abb8855 1763 rcu_assign_pointer(tsk->cgroups, new_cset);
b3dc094e 1764 list_move(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1765
1766 /*
5abb8855
TH
1767 * We just gained a reference on old_cset by taking it from the
1768 * task. As trading it for new_cset is protected by cgroup_mutex,
1769 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1770 */
5abb8855 1771 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1772 put_css_set_locked(old_cset, false);
74a1166d
BB
1773}
1774
a043e3b2 1775/**
1958d2d5
TH
1776 * cgroup_migrate_finish - cleanup after attach
1777 * @preloaded_csets: list of preloaded css_sets
74a1166d 1778 *
1958d2d5
TH
1779 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1780 * those functions for details.
74a1166d 1781 */
1958d2d5
TH
1782static void cgroup_migrate_finish(struct list_head *preloaded_csets)
1783{
1784 struct css_set *cset, *tmp_cset;
1785
1786 lockdep_assert_held(&cgroup_mutex);
1787
1788 down_write(&css_set_rwsem);
1789 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1790 cset->mg_src_cgrp = NULL;
1791 cset->mg_dst_cset = NULL;
1792 list_del_init(&cset->mg_preload_node);
1793 put_css_set_locked(cset, false);
1794 }
1795 up_write(&css_set_rwsem);
1796}
1797
1798/**
1799 * cgroup_migrate_add_src - add a migration source css_set
1800 * @src_cset: the source css_set to add
1801 * @dst_cgrp: the destination cgroup
1802 * @preloaded_csets: list of preloaded css_sets
1803 *
1804 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1805 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1806 * up by cgroup_migrate_finish().
1807 *
1808 * This function may be called without holding threadgroup_lock even if the
1809 * target is a process. Threads may be created and destroyed but as long
1810 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1811 * the preloaded css_sets are guaranteed to cover all migrations.
1812 */
1813static void cgroup_migrate_add_src(struct css_set *src_cset,
1814 struct cgroup *dst_cgrp,
1815 struct list_head *preloaded_csets)
1816{
1817 struct cgroup *src_cgrp;
1818
1819 lockdep_assert_held(&cgroup_mutex);
1820 lockdep_assert_held(&css_set_rwsem);
1821
1822 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
1823
1824 /* nothing to do if this cset already belongs to the cgroup */
1825 if (src_cgrp == dst_cgrp)
1826 return;
1827
1828 if (!list_empty(&src_cset->mg_preload_node))
1829 return;
1830
1831 WARN_ON(src_cset->mg_src_cgrp);
1832 WARN_ON(!list_empty(&src_cset->mg_tasks));
1833 WARN_ON(!list_empty(&src_cset->mg_node));
1834
1835 src_cset->mg_src_cgrp = src_cgrp;
1836 get_css_set(src_cset);
1837 list_add(&src_cset->mg_preload_node, preloaded_csets);
1838}
1839
1840/**
1841 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1842 * @dst_cgrp: the destination cgroup
1843 * @preloaded_csets: list of preloaded source css_sets
1844 *
1845 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
1846 * have been preloaded to @preloaded_csets. This function looks up and
1847 * pins all destination css_sets, links each to its source, and put them on
1848 * @preloaded_csets.
1849 *
1850 * This function must be called after cgroup_migrate_add_src() has been
1851 * called on each migration source css_set. After migration is performed
1852 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
1853 * @preloaded_csets.
1854 */
1855static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
1856 struct list_head *preloaded_csets)
1857{
1858 LIST_HEAD(csets);
1859 struct css_set *src_cset;
1860
1861 lockdep_assert_held(&cgroup_mutex);
1862
1863 /* look up the dst cset for each src cset and link it to src */
1864 list_for_each_entry(src_cset, preloaded_csets, mg_preload_node) {
1865 struct css_set *dst_cset;
1866
1867 dst_cset = find_css_set(src_cset, dst_cgrp);
1868 if (!dst_cset)
1869 goto err;
1870
1871 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
1872 src_cset->mg_dst_cset = dst_cset;
1873
1874 if (list_empty(&dst_cset->mg_preload_node))
1875 list_add(&dst_cset->mg_preload_node, &csets);
1876 else
1877 put_css_set(dst_cset, false);
1878 }
1879
1880 list_splice(&csets, preloaded_csets);
1881 return 0;
1882err:
1883 cgroup_migrate_finish(&csets);
1884 return -ENOMEM;
1885}
1886
1887/**
1888 * cgroup_migrate - migrate a process or task to a cgroup
1889 * @cgrp: the destination cgroup
1890 * @leader: the leader of the process or the task to migrate
1891 * @threadgroup: whether @leader points to the whole process or a single task
1892 *
1893 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1894 * process, the caller must be holding threadgroup_lock of @leader. The
1895 * caller is also responsible for invoking cgroup_migrate_add_src() and
1896 * cgroup_migrate_prepare_dst() on the targets before invoking this
1897 * function and following up with cgroup_migrate_finish().
1898 *
1899 * As long as a controller's ->can_attach() doesn't fail, this function is
1900 * guaranteed to succeed. This means that, excluding ->can_attach()
1901 * failure, when migrating multiple targets, the success or failure can be
1902 * decided for all targets by invoking group_migrate_prepare_dst() before
1903 * actually starting migrating.
1904 */
1905static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
1906 bool threadgroup)
74a1166d 1907{
b3dc094e
TH
1908 struct cgroup_taskset tset = {
1909 .src_csets = LIST_HEAD_INIT(tset.src_csets),
1910 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
1911 .csets = &tset.src_csets,
1912 };
1c6727af 1913 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
1914 struct css_set *cset, *tmp_cset;
1915 struct task_struct *task, *tmp_task;
1916 int i, ret;
74a1166d 1917
fb5d2b4c
MSB
1918 /*
1919 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1920 * already PF_EXITING could be freed from underneath us unless we
1921 * take an rcu_read_lock.
1922 */
b3dc094e 1923 down_write(&css_set_rwsem);
fb5d2b4c 1924 rcu_read_lock();
9db8de37 1925 task = leader;
74a1166d 1926 do {
9db8de37
TH
1927 /* @task either already exited or can't exit until the end */
1928 if (task->flags & PF_EXITING)
ea84753c 1929 goto next;
cd3d0952 1930
eaf797ab
TH
1931 /* leave @task alone if post_fork() hasn't linked it yet */
1932 if (list_empty(&task->cg_list))
1933 goto next;
1934
b3dc094e 1935 cset = task_css_set(task);
1958d2d5 1936 if (!cset->mg_src_cgrp)
ea84753c 1937 goto next;
b3dc094e 1938
b3dc094e 1939 list_move(&task->cg_list, &cset->mg_tasks);
1958d2d5
TH
1940 list_move(&cset->mg_node, &tset.src_csets);
1941 list_move(&cset->mg_dst_cset->mg_node, &tset.dst_csets);
ea84753c 1942 next:
081aa458
LZ
1943 if (!threadgroup)
1944 break;
9db8de37 1945 } while_each_thread(leader, task);
fb5d2b4c 1946 rcu_read_unlock();
b3dc094e 1947 up_write(&css_set_rwsem);
74a1166d 1948
134d3373 1949 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
1950 if (list_empty(&tset.src_csets))
1951 return 0;
134d3373 1952
1958d2d5 1953 /* check that we can legitimately attach to the cgroup */
1c6727af
TH
1954 for_each_css(css, i, cgrp) {
1955 if (css->ss->can_attach) {
9db8de37
TH
1956 ret = css->ss->can_attach(css, &tset);
1957 if (ret) {
1c6727af 1958 failed_css = css;
74a1166d
BB
1959 goto out_cancel_attach;
1960 }
1961 }
74a1166d
BB
1962 }
1963
1964 /*
1958d2d5
TH
1965 * Now that we're guaranteed success, proceed to move all tasks to
1966 * the new cgroup. There are no failure cases after here, so this
1967 * is the commit point.
74a1166d 1968 */
cb0f1fe9 1969 down_write(&css_set_rwsem);
b3dc094e
TH
1970 list_for_each_entry(cset, &tset.src_csets, mg_node) {
1971 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
1972 cgroup_task_migrate(cset->mg_src_cgrp, task,
1973 cset->mg_dst_cset);
74a1166d 1974 }
cb0f1fe9 1975 up_write(&css_set_rwsem);
b3dc094e 1976
74a1166d 1977 /*
1958d2d5
TH
1978 * Migration is committed, all target tasks are now on dst_csets.
1979 * Nothing is sensitive to fork() after this point. Notify
1980 * controllers that migration is complete.
74a1166d 1981 */
1958d2d5
TH
1982 tset.csets = &tset.dst_csets;
1983
1c6727af
TH
1984 for_each_css(css, i, cgrp)
1985 if (css->ss->attach)
1986 css->ss->attach(css, &tset);
74a1166d 1987
9db8de37 1988 ret = 0;
b3dc094e
TH
1989 goto out_release_tset;
1990
74a1166d 1991out_cancel_attach:
b3dc094e
TH
1992 for_each_css(css, i, cgrp) {
1993 if (css == failed_css)
1994 break;
1995 if (css->ss->cancel_attach)
1996 css->ss->cancel_attach(css, &tset);
74a1166d 1997 }
b3dc094e
TH
1998out_release_tset:
1999 down_write(&css_set_rwsem);
2000 list_splice_init(&tset.dst_csets, &tset.src_csets);
2001 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2002 list_splice_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2003 list_del_init(&cset->mg_node);
b3dc094e
TH
2004 }
2005 up_write(&css_set_rwsem);
9db8de37 2006 return ret;
74a1166d
BB
2007}
2008
1958d2d5
TH
2009/**
2010 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2011 * @dst_cgrp: the cgroup to attach to
2012 * @leader: the task or the leader of the threadgroup to be attached
2013 * @threadgroup: attach the whole threadgroup?
2014 *
0e1d768f 2015 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2016 */
2017static int cgroup_attach_task(struct cgroup *dst_cgrp,
2018 struct task_struct *leader, bool threadgroup)
2019{
2020 LIST_HEAD(preloaded_csets);
2021 struct task_struct *task;
2022 int ret;
2023
2024 /* look up all src csets */
2025 down_read(&css_set_rwsem);
2026 rcu_read_lock();
2027 task = leader;
2028 do {
2029 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2030 &preloaded_csets);
2031 if (!threadgroup)
2032 break;
2033 } while_each_thread(leader, task);
2034 rcu_read_unlock();
2035 up_read(&css_set_rwsem);
2036
2037 /* prepare dst csets and commit */
2038 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2039 if (!ret)
2040 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2041
2042 cgroup_migrate_finish(&preloaded_csets);
2043 return ret;
2044}
2045
74a1166d
BB
2046/*
2047 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2048 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2049 * cgroup_mutex and threadgroup.
bbcb81d0 2050 */
74a1166d 2051static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2052{
bbcb81d0 2053 struct task_struct *tsk;
c69e8d9c 2054 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2055 int ret;
2056
74a1166d
BB
2057 if (!cgroup_lock_live_group(cgrp))
2058 return -ENODEV;
2059
b78949eb
MSB
2060retry_find_task:
2061 rcu_read_lock();
bbcb81d0 2062 if (pid) {
73507f33 2063 tsk = find_task_by_vpid(pid);
74a1166d
BB
2064 if (!tsk) {
2065 rcu_read_unlock();
dd4b0a46 2066 ret = -ESRCH;
b78949eb 2067 goto out_unlock_cgroup;
bbcb81d0 2068 }
74a1166d
BB
2069 /*
2070 * even if we're attaching all tasks in the thread group, we
2071 * only need to check permissions on one of them.
2072 */
c69e8d9c 2073 tcred = __task_cred(tsk);
14a590c3
EB
2074 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2075 !uid_eq(cred->euid, tcred->uid) &&
2076 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2077 rcu_read_unlock();
b78949eb
MSB
2078 ret = -EACCES;
2079 goto out_unlock_cgroup;
bbcb81d0 2080 }
b78949eb
MSB
2081 } else
2082 tsk = current;
cd3d0952
TH
2083
2084 if (threadgroup)
b78949eb 2085 tsk = tsk->group_leader;
c4c27fbd
MG
2086
2087 /*
14a40ffc 2088 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2089 * trapped in a cpuset, or RT worker may be born in a cgroup
2090 * with no rt_runtime allocated. Just say no.
2091 */
14a40ffc 2092 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2093 ret = -EINVAL;
2094 rcu_read_unlock();
2095 goto out_unlock_cgroup;
2096 }
2097
b78949eb
MSB
2098 get_task_struct(tsk);
2099 rcu_read_unlock();
2100
2101 threadgroup_lock(tsk);
2102 if (threadgroup) {
2103 if (!thread_group_leader(tsk)) {
2104 /*
2105 * a race with de_thread from another thread's exec()
2106 * may strip us of our leadership, if this happens,
2107 * there is no choice but to throw this task away and
2108 * try again; this is
2109 * "double-double-toil-and-trouble-check locking".
2110 */
2111 threadgroup_unlock(tsk);
2112 put_task_struct(tsk);
2113 goto retry_find_task;
2114 }
081aa458
LZ
2115 }
2116
2117 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2118
cd3d0952
TH
2119 threadgroup_unlock(tsk);
2120
bbcb81d0 2121 put_task_struct(tsk);
b78949eb 2122out_unlock_cgroup:
47cfcd09 2123 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2124 return ret;
2125}
2126
7ae1bad9
TH
2127/**
2128 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2129 * @from: attach to all cgroups of a given task
2130 * @tsk: the task to be attached
2131 */
2132int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2133{
3dd06ffa 2134 struct cgroup_root *root;
7ae1bad9
TH
2135 int retval = 0;
2136
47cfcd09 2137 mutex_lock(&cgroup_mutex);
985ed670 2138 for_each_root(root) {
96d365e0
TH
2139 struct cgroup *from_cgrp;
2140
3dd06ffa 2141 if (root == &cgrp_dfl_root)
985ed670
TH
2142 continue;
2143
96d365e0
TH
2144 down_read(&css_set_rwsem);
2145 from_cgrp = task_cgroup_from_root(from, root);
2146 up_read(&css_set_rwsem);
7ae1bad9 2147
6f4b7e63 2148 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2149 if (retval)
2150 break;
2151 }
47cfcd09 2152 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2153
2154 return retval;
2155}
2156EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2157
182446d0
TH
2158static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2159 struct cftype *cft, u64 pid)
74a1166d 2160{
182446d0 2161 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2162}
2163
182446d0
TH
2164static int cgroup_procs_write(struct cgroup_subsys_state *css,
2165 struct cftype *cft, u64 tgid)
af351026 2166{
182446d0 2167 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2168}
2169
182446d0 2170static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
4d3bb511 2171 struct cftype *cft, char *buffer)
e788e066 2172{
3dd06ffa 2173 struct cgroup_root *root = css->cgroup->root;
5f469907
TH
2174
2175 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2176 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2177 return -ENODEV;
69e943b7 2178 spin_lock(&release_agent_path_lock);
5f469907
TH
2179 strlcpy(root->release_agent_path, buffer,
2180 sizeof(root->release_agent_path));
69e943b7 2181 spin_unlock(&release_agent_path_lock);
47cfcd09 2182 mutex_unlock(&cgroup_mutex);
e788e066
PM
2183 return 0;
2184}
2185
2da8ca82 2186static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2187{
2da8ca82 2188 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2189
e788e066
PM
2190 if (!cgroup_lock_live_group(cgrp))
2191 return -ENODEV;
2192 seq_puts(seq, cgrp->root->release_agent_path);
2193 seq_putc(seq, '\n');
47cfcd09 2194 mutex_unlock(&cgroup_mutex);
e788e066
PM
2195 return 0;
2196}
2197
2da8ca82 2198static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2199{
2da8ca82
TH
2200 struct cgroup *cgrp = seq_css(seq)->cgroup;
2201
2202 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2203 return 0;
2204}
2205
2bd59d48
TH
2206static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2207 size_t nbytes, loff_t off)
355e0c48 2208{
2bd59d48
TH
2209 struct cgroup *cgrp = of->kn->parent->priv;
2210 struct cftype *cft = of->kn->priv;
2211 struct cgroup_subsys_state *css;
a742c59d 2212 int ret;
355e0c48 2213
2bd59d48
TH
2214 /*
2215 * kernfs guarantees that a file isn't deleted with operations in
2216 * flight, which means that the matching css is and stays alive and
2217 * doesn't need to be pinned. The RCU locking is not necessary
2218 * either. It's just for the convenience of using cgroup_css().
2219 */
2220 rcu_read_lock();
2221 css = cgroup_css(cgrp, cft->ss);
2222 rcu_read_unlock();
a742c59d
TH
2223
2224 if (cft->write_string) {
2225 ret = cft->write_string(css, cft, strstrip(buf));
2226 } else if (cft->write_u64) {
2227 unsigned long long v;
2228 ret = kstrtoull(buf, 0, &v);
2229 if (!ret)
2230 ret = cft->write_u64(css, cft, v);
2231 } else if (cft->write_s64) {
2232 long long v;
2233 ret = kstrtoll(buf, 0, &v);
2234 if (!ret)
2235 ret = cft->write_s64(css, cft, v);
2236 } else if (cft->trigger) {
2237 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2238 } else {
a742c59d 2239 ret = -EINVAL;
e73d2c61 2240 }
2bd59d48 2241
a742c59d 2242 return ret ?: nbytes;
355e0c48
PM
2243}
2244
6612f05b 2245static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2246{
2bd59d48 2247 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2248}
2249
6612f05b 2250static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2251{
2bd59d48 2252 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2253}
2254
6612f05b 2255static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2256{
2bd59d48 2257 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2258}
2259
91796569 2260static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2261{
7da11279
TH
2262 struct cftype *cft = seq_cft(m);
2263 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2264
2da8ca82
TH
2265 if (cft->seq_show)
2266 return cft->seq_show(m, arg);
e73d2c61 2267
f4c753b7 2268 if (cft->read_u64)
896f5199
TH
2269 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2270 else if (cft->read_s64)
2271 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2272 else
2273 return -EINVAL;
2274 return 0;
91796569
PM
2275}
2276
2bd59d48
TH
2277static struct kernfs_ops cgroup_kf_single_ops = {
2278 .atomic_write_len = PAGE_SIZE,
2279 .write = cgroup_file_write,
2280 .seq_show = cgroup_seqfile_show,
91796569
PM
2281};
2282
2bd59d48
TH
2283static struct kernfs_ops cgroup_kf_ops = {
2284 .atomic_write_len = PAGE_SIZE,
2285 .write = cgroup_file_write,
2286 .seq_start = cgroup_seqfile_start,
2287 .seq_next = cgroup_seqfile_next,
2288 .seq_stop = cgroup_seqfile_stop,
2289 .seq_show = cgroup_seqfile_show,
2290};
ddbcc7e8
PM
2291
2292/*
2293 * cgroup_rename - Only allow simple rename of directories in place.
2294 */
2bd59d48
TH
2295static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2296 const char *new_name_str)
ddbcc7e8 2297{
2bd59d48 2298 struct cgroup *cgrp = kn->priv;
2bd59d48 2299 int ret;
65dff759 2300
2bd59d48 2301 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2302 return -ENOTDIR;
2bd59d48 2303 if (kn->parent != new_parent)
ddbcc7e8 2304 return -EIO;
65dff759 2305
6db8e85c
TH
2306 /*
2307 * This isn't a proper migration and its usefulness is very
2308 * limited. Disallow if sane_behavior.
2309 */
2310 if (cgroup_sane_behavior(cgrp))
2311 return -EPERM;
2312
2bd59d48
TH
2313 mutex_lock(&cgroup_tree_mutex);
2314 mutex_lock(&cgroup_mutex);
2315
2316 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2317
2bd59d48
TH
2318 mutex_unlock(&cgroup_mutex);
2319 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2320 return ret;
ddbcc7e8
PM
2321}
2322
2bb566cb 2323static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2324{
8d7e6fb0 2325 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2326 struct kernfs_node *kn;
2327 struct lock_class_key *key = NULL;
05ef1d7c 2328
2bd59d48
TH
2329#ifdef CONFIG_DEBUG_LOCK_ALLOC
2330 key = &cft->lockdep_key;
2331#endif
2332 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2333 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2334 NULL, false, key);
430af8ad 2335 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2336}
2337
b1f28d31
TH
2338/**
2339 * cgroup_addrm_files - add or remove files to a cgroup directory
2340 * @cgrp: the target cgroup
b1f28d31
TH
2341 * @cfts: array of cftypes to be added
2342 * @is_add: whether to add or remove
2343 *
2344 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2345 * For removals, this function never fails. If addition fails, this
2346 * function doesn't remove files already added. The caller is responsible
2347 * for cleaning up.
b1f28d31 2348 */
2bb566cb
TH
2349static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2350 bool is_add)
ddbcc7e8 2351{
03b1cde6 2352 struct cftype *cft;
b1f28d31
TH
2353 int ret;
2354
ace2bee8 2355 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2356
2357 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2358 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2359 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2360 continue;
f33fddc2
G
2361 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2362 continue;
2363 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2364 continue;
2365
2739d3cc 2366 if (is_add) {
2bb566cb 2367 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2368 if (ret) {
2739d3cc 2369 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2370 cft->name, ret);
2371 return ret;
2372 }
2739d3cc
LZ
2373 } else {
2374 cgroup_rm_file(cgrp, cft);
db0416b6 2375 }
ddbcc7e8 2376 }
b1f28d31 2377 return 0;
ddbcc7e8
PM
2378}
2379
21a2d343 2380static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2381{
2382 LIST_HEAD(pending);
2bb566cb 2383 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2384 struct cgroup *root = &ss->root->cgrp;
492eb21b 2385 struct cgroup_subsys_state *css;
9ccece80 2386 int ret = 0;
8e3f6541 2387
21a2d343 2388 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2389
21a2d343 2390 /* don't bother if @ss isn't attached */
3dd06ffa 2391 if (ss->root == &cgrp_dfl_root)
9ccece80 2392 return 0;
e8c82d20 2393
e8c82d20 2394 /* add/rm files for all cgroups created before */
ca8bdcaf 2395 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2396 struct cgroup *cgrp = css->cgroup;
2397
e8c82d20
LZ
2398 if (cgroup_is_dead(cgrp))
2399 continue;
2400
21a2d343 2401 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2402 if (ret)
2403 break;
8e3f6541 2404 }
21a2d343
TH
2405
2406 if (is_add && !ret)
2407 kernfs_activate(root->kn);
9ccece80 2408 return ret;
8e3f6541
TH
2409}
2410
2da440a2
TH
2411static void cgroup_exit_cftypes(struct cftype *cfts)
2412{
2413 struct cftype *cft;
2414
2bd59d48
TH
2415 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2416 /* free copy for custom atomic_write_len, see init_cftypes() */
2417 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2418 kfree(cft->kf_ops);
2419 cft->kf_ops = NULL;
2da440a2 2420 cft->ss = NULL;
2bd59d48 2421 }
2da440a2
TH
2422}
2423
2bd59d48 2424static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2425{
2426 struct cftype *cft;
2427
2bd59d48
TH
2428 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2429 struct kernfs_ops *kf_ops;
2430
0adb0704
TH
2431 WARN_ON(cft->ss || cft->kf_ops);
2432
2bd59d48
TH
2433 if (cft->seq_start)
2434 kf_ops = &cgroup_kf_ops;
2435 else
2436 kf_ops = &cgroup_kf_single_ops;
2437
2438 /*
2439 * Ugh... if @cft wants a custom max_write_len, we need to
2440 * make a copy of kf_ops to set its atomic_write_len.
2441 */
2442 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2443 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2444 if (!kf_ops) {
2445 cgroup_exit_cftypes(cfts);
2446 return -ENOMEM;
2447 }
2448 kf_ops->atomic_write_len = cft->max_write_len;
2449 }
2450
2451 cft->kf_ops = kf_ops;
2da440a2 2452 cft->ss = ss;
2bd59d48
TH
2453 }
2454
2455 return 0;
2da440a2
TH
2456}
2457
21a2d343
TH
2458static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2459{
2460 lockdep_assert_held(&cgroup_tree_mutex);
2461
2462 if (!cfts || !cfts[0].ss)
2463 return -ENOENT;
2464
2465 list_del(&cfts->node);
2466 cgroup_apply_cftypes(cfts, false);
2467 cgroup_exit_cftypes(cfts);
2468 return 0;
2469}
2470
80b13586
TH
2471/**
2472 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2473 * @cfts: zero-length name terminated array of cftypes
2474 *
2475 * Unregister @cfts. Files described by @cfts are removed from all
2476 * existing cgroups and all future cgroups won't have them either. This
2477 * function can be called anytime whether @cfts' subsys is attached or not.
2478 *
2479 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2480 * registered.
2481 */
2482int cgroup_rm_cftypes(struct cftype *cfts)
2483{
21a2d343 2484 int ret;
80b13586 2485
21a2d343
TH
2486 mutex_lock(&cgroup_tree_mutex);
2487 ret = cgroup_rm_cftypes_locked(cfts);
2488 mutex_unlock(&cgroup_tree_mutex);
2489 return ret;
80b13586
TH
2490}
2491
8e3f6541
TH
2492/**
2493 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2494 * @ss: target cgroup subsystem
2495 * @cfts: zero-length name terminated array of cftypes
2496 *
2497 * Register @cfts to @ss. Files described by @cfts are created for all
2498 * existing cgroups to which @ss is attached and all future cgroups will
2499 * have them too. This function can be called anytime whether @ss is
2500 * attached or not.
2501 *
2502 * Returns 0 on successful registration, -errno on failure. Note that this
2503 * function currently returns 0 as long as @cfts registration is successful
2504 * even if some file creation attempts on existing cgroups fail.
2505 */
03b1cde6 2506int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2507{
9ccece80 2508 int ret;
8e3f6541 2509
dc5736ed
LZ
2510 if (!cfts || cfts[0].name[0] == '\0')
2511 return 0;
2512
2bd59d48
TH
2513 ret = cgroup_init_cftypes(ss, cfts);
2514 if (ret)
2515 return ret;
2bb566cb 2516
21a2d343
TH
2517 mutex_lock(&cgroup_tree_mutex);
2518
0adb0704 2519 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2520 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2521 if (ret)
21a2d343
TH
2522 cgroup_rm_cftypes_locked(cfts);
2523
2524 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2525 return ret;
8e3f6541 2526}
8e3f6541 2527
a043e3b2
LZ
2528/**
2529 * cgroup_task_count - count the number of tasks in a cgroup.
2530 * @cgrp: the cgroup in question
2531 *
2532 * Return the number of tasks in the cgroup.
2533 */
07bc356e 2534static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2535{
2536 int count = 0;
69d0206c 2537 struct cgrp_cset_link *link;
817929ec 2538
96d365e0 2539 down_read(&css_set_rwsem);
69d0206c
TH
2540 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2541 count += atomic_read(&link->cset->refcount);
96d365e0 2542 up_read(&css_set_rwsem);
bbcb81d0
PM
2543 return count;
2544}
2545
53fa5261 2546/**
492eb21b
TH
2547 * css_next_child - find the next child of a given css
2548 * @pos_css: the current position (%NULL to initiate traversal)
2549 * @parent_css: css whose children to walk
53fa5261 2550 *
492eb21b 2551 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2552 * under either cgroup_mutex or RCU read lock. The only requirement is
2553 * that @parent_css and @pos_css are accessible. The next sibling is
2554 * guaranteed to be returned regardless of their states.
53fa5261 2555 */
492eb21b
TH
2556struct cgroup_subsys_state *
2557css_next_child(struct cgroup_subsys_state *pos_css,
2558 struct cgroup_subsys_state *parent_css)
53fa5261 2559{
492eb21b
TH
2560 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2561 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2562 struct cgroup *next;
2563
ace2bee8 2564 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2565
2566 /*
2567 * @pos could already have been removed. Once a cgroup is removed,
2568 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2569 * changes. As CGRP_DEAD assertion is serialized and happens
2570 * before the cgroup is taken off the ->sibling list, if we see it
2571 * unasserted, it's guaranteed that the next sibling hasn't
2572 * finished its grace period even if it's already removed, and thus
2573 * safe to dereference from this RCU critical section. If
2574 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2575 * to be visible as %true here.
3b287a50
TH
2576 *
2577 * If @pos is dead, its next pointer can't be dereferenced;
2578 * however, as each cgroup is given a monotonically increasing
2579 * unique serial number and always appended to the sibling list,
2580 * the next one can be found by walking the parent's children until
2581 * we see a cgroup with higher serial number than @pos's. While
2582 * this path can be slower, it's taken only when either the current
2583 * cgroup is removed or iteration and removal race.
53fa5261 2584 */
3b287a50
TH
2585 if (!pos) {
2586 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2587 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2588 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2589 } else {
2590 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2591 if (next->serial_nr > pos->serial_nr)
2592 break;
53fa5261
TH
2593 }
2594
492eb21b
TH
2595 if (&next->sibling == &cgrp->children)
2596 return NULL;
2597
ca8bdcaf 2598 return cgroup_css(next, parent_css->ss);
53fa5261 2599}
53fa5261 2600
574bd9f7 2601/**
492eb21b 2602 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2603 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2604 * @root: css whose descendants to walk
574bd9f7 2605 *
492eb21b 2606 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2607 * to visit for pre-order traversal of @root's descendants. @root is
2608 * included in the iteration and the first node to be visited.
75501a6d 2609 *
87fb54f1
TH
2610 * While this function requires cgroup_mutex or RCU read locking, it
2611 * doesn't require the whole traversal to be contained in a single critical
2612 * section. This function will return the correct next descendant as long
2613 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2614 */
492eb21b
TH
2615struct cgroup_subsys_state *
2616css_next_descendant_pre(struct cgroup_subsys_state *pos,
2617 struct cgroup_subsys_state *root)
574bd9f7 2618{
492eb21b 2619 struct cgroup_subsys_state *next;
574bd9f7 2620
ace2bee8 2621 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2622
bd8815a6 2623 /* if first iteration, visit @root */
7805d000 2624 if (!pos)
bd8815a6 2625 return root;
574bd9f7
TH
2626
2627 /* visit the first child if exists */
492eb21b 2628 next = css_next_child(NULL, pos);
574bd9f7
TH
2629 if (next)
2630 return next;
2631
2632 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2633 while (pos != root) {
2634 next = css_next_child(pos, css_parent(pos));
75501a6d 2635 if (next)
574bd9f7 2636 return next;
492eb21b 2637 pos = css_parent(pos);
7805d000 2638 }
574bd9f7
TH
2639
2640 return NULL;
2641}
574bd9f7 2642
12a9d2fe 2643/**
492eb21b
TH
2644 * css_rightmost_descendant - return the rightmost descendant of a css
2645 * @pos: css of interest
12a9d2fe 2646 *
492eb21b
TH
2647 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2648 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2649 * subtree of @pos.
75501a6d 2650 *
87fb54f1
TH
2651 * While this function requires cgroup_mutex or RCU read locking, it
2652 * doesn't require the whole traversal to be contained in a single critical
2653 * section. This function will return the correct rightmost descendant as
2654 * long as @pos is accessible.
12a9d2fe 2655 */
492eb21b
TH
2656struct cgroup_subsys_state *
2657css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2658{
492eb21b 2659 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2660
ace2bee8 2661 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2662
2663 do {
2664 last = pos;
2665 /* ->prev isn't RCU safe, walk ->next till the end */
2666 pos = NULL;
492eb21b 2667 css_for_each_child(tmp, last)
12a9d2fe
TH
2668 pos = tmp;
2669 } while (pos);
2670
2671 return last;
2672}
12a9d2fe 2673
492eb21b
TH
2674static struct cgroup_subsys_state *
2675css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2676{
492eb21b 2677 struct cgroup_subsys_state *last;
574bd9f7
TH
2678
2679 do {
2680 last = pos;
492eb21b 2681 pos = css_next_child(NULL, pos);
574bd9f7
TH
2682 } while (pos);
2683
2684 return last;
2685}
2686
2687/**
492eb21b 2688 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2689 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2690 * @root: css whose descendants to walk
574bd9f7 2691 *
492eb21b 2692 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2693 * to visit for post-order traversal of @root's descendants. @root is
2694 * included in the iteration and the last node to be visited.
75501a6d 2695 *
87fb54f1
TH
2696 * While this function requires cgroup_mutex or RCU read locking, it
2697 * doesn't require the whole traversal to be contained in a single critical
2698 * section. This function will return the correct next descendant as long
2699 * as both @pos and @cgroup are accessible and @pos is a descendant of
2700 * @cgroup.
574bd9f7 2701 */
492eb21b
TH
2702struct cgroup_subsys_state *
2703css_next_descendant_post(struct cgroup_subsys_state *pos,
2704 struct cgroup_subsys_state *root)
574bd9f7 2705{
492eb21b 2706 struct cgroup_subsys_state *next;
574bd9f7 2707
ace2bee8 2708 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2709
58b79a91
TH
2710 /* if first iteration, visit leftmost descendant which may be @root */
2711 if (!pos)
2712 return css_leftmost_descendant(root);
574bd9f7 2713
bd8815a6
TH
2714 /* if we visited @root, we're done */
2715 if (pos == root)
2716 return NULL;
2717
574bd9f7 2718 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2719 next = css_next_child(pos, css_parent(pos));
75501a6d 2720 if (next)
492eb21b 2721 return css_leftmost_descendant(next);
574bd9f7
TH
2722
2723 /* no sibling left, visit parent */
bd8815a6 2724 return css_parent(pos);
574bd9f7 2725}
574bd9f7 2726
0942eeee 2727/**
72ec7029 2728 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2729 * @it: the iterator to advance
2730 *
2731 * Advance @it to the next css_set to walk.
d515876e 2732 */
72ec7029 2733static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2734{
2735 struct list_head *l = it->cset_link;
2736 struct cgrp_cset_link *link;
2737 struct css_set *cset;
2738
2739 /* Advance to the next non-empty css_set */
2740 do {
2741 l = l->next;
72ec7029 2742 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2743 it->cset_link = NULL;
2744 return;
2745 }
2746 link = list_entry(l, struct cgrp_cset_link, cset_link);
2747 cset = link->cset;
c7561128
TH
2748 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
2749
d515876e 2750 it->cset_link = l;
c7561128
TH
2751
2752 if (!list_empty(&cset->tasks))
2753 it->task = cset->tasks.next;
2754 else
2755 it->task = cset->mg_tasks.next;
d515876e
TH
2756}
2757
0942eeee 2758/**
72ec7029
TH
2759 * css_task_iter_start - initiate task iteration
2760 * @css: the css to walk tasks of
0942eeee
TH
2761 * @it: the task iterator to use
2762 *
72ec7029
TH
2763 * Initiate iteration through the tasks of @css. The caller can call
2764 * css_task_iter_next() to walk through the tasks until the function
2765 * returns NULL. On completion of iteration, css_task_iter_end() must be
2766 * called.
0942eeee
TH
2767 *
2768 * Note that this function acquires a lock which is released when the
2769 * iteration finishes. The caller can't sleep while iteration is in
2770 * progress.
2771 */
72ec7029
TH
2772void css_task_iter_start(struct cgroup_subsys_state *css,
2773 struct css_task_iter *it)
96d365e0 2774 __acquires(css_set_rwsem)
817929ec 2775{
56fde9e0
TH
2776 /* no one should try to iterate before mounting cgroups */
2777 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2778
96d365e0 2779 down_read(&css_set_rwsem);
c59cd3d8 2780
72ec7029
TH
2781 it->origin_css = css;
2782 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2783
72ec7029 2784 css_advance_task_iter(it);
817929ec
PM
2785}
2786
0942eeee 2787/**
72ec7029 2788 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2789 * @it: the task iterator being iterated
2790 *
2791 * The "next" function for task iteration. @it should have been
72ec7029
TH
2792 * initialized via css_task_iter_start(). Returns NULL when the iteration
2793 * reaches the end.
0942eeee 2794 */
72ec7029 2795struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2796{
2797 struct task_struct *res;
2798 struct list_head *l = it->task;
c7561128
TH
2799 struct cgrp_cset_link *link = list_entry(it->cset_link,
2800 struct cgrp_cset_link, cset_link);
817929ec
PM
2801
2802 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2803 if (!it->cset_link)
817929ec
PM
2804 return NULL;
2805 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
2806
2807 /*
2808 * Advance iterator to find next entry. cset->tasks is consumed
2809 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
2810 * next cset.
2811 */
817929ec 2812 l = l->next;
c7561128
TH
2813
2814 if (l == &link->cset->tasks)
2815 l = link->cset->mg_tasks.next;
2816
2817 if (l == &link->cset->mg_tasks)
72ec7029 2818 css_advance_task_iter(it);
c7561128 2819 else
817929ec 2820 it->task = l;
c7561128 2821
817929ec
PM
2822 return res;
2823}
2824
0942eeee 2825/**
72ec7029 2826 * css_task_iter_end - finish task iteration
0942eeee
TH
2827 * @it: the task iterator to finish
2828 *
72ec7029 2829 * Finish task iteration started by css_task_iter_start().
0942eeee 2830 */
72ec7029 2831void css_task_iter_end(struct css_task_iter *it)
96d365e0 2832 __releases(css_set_rwsem)
817929ec 2833{
96d365e0 2834 up_read(&css_set_rwsem);
817929ec
PM
2835}
2836
8cc99345
TH
2837/**
2838 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2839 * @to: cgroup to which the tasks will be moved
2840 * @from: cgroup in which the tasks currently reside
eaf797ab
TH
2841 *
2842 * Locking rules between cgroup_post_fork() and the migration path
2843 * guarantee that, if a task is forking while being migrated, the new child
2844 * is guaranteed to be either visible in the source cgroup after the
2845 * parent's migration is complete or put into the target cgroup. No task
2846 * can slip out of migration through forking.
8cc99345
TH
2847 */
2848int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2849{
952aaa12
TH
2850 LIST_HEAD(preloaded_csets);
2851 struct cgrp_cset_link *link;
e406d1cf
TH
2852 struct css_task_iter it;
2853 struct task_struct *task;
952aaa12
TH
2854 int ret;
2855
2856 mutex_lock(&cgroup_mutex);
2857
2858 /* all tasks in @from are being moved, all csets are source */
2859 down_read(&css_set_rwsem);
2860 list_for_each_entry(link, &from->cset_links, cset_link)
2861 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
2862 up_read(&css_set_rwsem);
e406d1cf 2863
952aaa12
TH
2864 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
2865 if (ret)
2866 goto out_err;
2867
2868 /*
2869 * Migrate tasks one-by-one until @form is empty. This fails iff
2870 * ->can_attach() fails.
2871 */
e406d1cf
TH
2872 do {
2873 css_task_iter_start(&from->dummy_css, &it);
2874 task = css_task_iter_next(&it);
2875 if (task)
2876 get_task_struct(task);
2877 css_task_iter_end(&it);
2878
2879 if (task) {
952aaa12 2880 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
2881 put_task_struct(task);
2882 }
2883 } while (task && !ret);
952aaa12
TH
2884out_err:
2885 cgroup_migrate_finish(&preloaded_csets);
2886 mutex_unlock(&cgroup_mutex);
e406d1cf 2887 return ret;
8cc99345
TH
2888}
2889
bbcb81d0 2890/*
102a775e 2891 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2892 *
2893 * Reading this file can return large amounts of data if a cgroup has
2894 * *lots* of attached tasks. So it may need several calls to read(),
2895 * but we cannot guarantee that the information we produce is correct
2896 * unless we produce it entirely atomically.
2897 *
bbcb81d0 2898 */
bbcb81d0 2899
24528255
LZ
2900/* which pidlist file are we talking about? */
2901enum cgroup_filetype {
2902 CGROUP_FILE_PROCS,
2903 CGROUP_FILE_TASKS,
2904};
2905
2906/*
2907 * A pidlist is a list of pids that virtually represents the contents of one
2908 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2909 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2910 * to the cgroup.
2911 */
2912struct cgroup_pidlist {
2913 /*
2914 * used to find which pidlist is wanted. doesn't change as long as
2915 * this particular list stays in the list.
2916 */
2917 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2918 /* array of xids */
2919 pid_t *list;
2920 /* how many elements the above list has */
2921 int length;
24528255
LZ
2922 /* each of these stored in a list by its cgroup */
2923 struct list_head links;
2924 /* pointer to the cgroup we belong to, for list removal purposes */
2925 struct cgroup *owner;
b1a21367
TH
2926 /* for delayed destruction */
2927 struct delayed_work destroy_dwork;
24528255
LZ
2928};
2929
d1d9fd33
BB
2930/*
2931 * The following two functions "fix" the issue where there are more pids
2932 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2933 * TODO: replace with a kernel-wide solution to this problem
2934 */
2935#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2936static void *pidlist_allocate(int count)
2937{
2938 if (PIDLIST_TOO_LARGE(count))
2939 return vmalloc(count * sizeof(pid_t));
2940 else
2941 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2942}
b1a21367 2943
d1d9fd33
BB
2944static void pidlist_free(void *p)
2945{
2946 if (is_vmalloc_addr(p))
2947 vfree(p);
2948 else
2949 kfree(p);
2950}
d1d9fd33 2951
b1a21367
TH
2952/*
2953 * Used to destroy all pidlists lingering waiting for destroy timer. None
2954 * should be left afterwards.
2955 */
2956static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2957{
2958 struct cgroup_pidlist *l, *tmp_l;
2959
2960 mutex_lock(&cgrp->pidlist_mutex);
2961 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2962 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2963 mutex_unlock(&cgrp->pidlist_mutex);
2964
2965 flush_workqueue(cgroup_pidlist_destroy_wq);
2966 BUG_ON(!list_empty(&cgrp->pidlists));
2967}
2968
2969static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2970{
2971 struct delayed_work *dwork = to_delayed_work(work);
2972 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2973 destroy_dwork);
2974 struct cgroup_pidlist *tofree = NULL;
2975
2976 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2977
2978 /*
04502365
TH
2979 * Destroy iff we didn't get queued again. The state won't change
2980 * as destroy_dwork can only be queued while locked.
b1a21367 2981 */
04502365 2982 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2983 list_del(&l->links);
2984 pidlist_free(l->list);
2985 put_pid_ns(l->key.ns);
2986 tofree = l;
2987 }
2988
b1a21367
TH
2989 mutex_unlock(&l->owner->pidlist_mutex);
2990 kfree(tofree);
2991}
2992
bbcb81d0 2993/*
102a775e 2994 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2995 * Returns the number of unique elements.
bbcb81d0 2996 */
6ee211ad 2997static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2998{
102a775e 2999 int src, dest = 1;
102a775e
BB
3000
3001 /*
3002 * we presume the 0th element is unique, so i starts at 1. trivial
3003 * edge cases first; no work needs to be done for either
3004 */
3005 if (length == 0 || length == 1)
3006 return length;
3007 /* src and dest walk down the list; dest counts unique elements */
3008 for (src = 1; src < length; src++) {
3009 /* find next unique element */
3010 while (list[src] == list[src-1]) {
3011 src++;
3012 if (src == length)
3013 goto after;
3014 }
3015 /* dest always points to where the next unique element goes */
3016 list[dest] = list[src];
3017 dest++;
3018 }
3019after:
102a775e
BB
3020 return dest;
3021}
3022
afb2bc14
TH
3023/*
3024 * The two pid files - task and cgroup.procs - guaranteed that the result
3025 * is sorted, which forced this whole pidlist fiasco. As pid order is
3026 * different per namespace, each namespace needs differently sorted list,
3027 * making it impossible to use, for example, single rbtree of member tasks
3028 * sorted by task pointer. As pidlists can be fairly large, allocating one
3029 * per open file is dangerous, so cgroup had to implement shared pool of
3030 * pidlists keyed by cgroup and namespace.
3031 *
3032 * All this extra complexity was caused by the original implementation
3033 * committing to an entirely unnecessary property. In the long term, we
3034 * want to do away with it. Explicitly scramble sort order if
3035 * sane_behavior so that no such expectation exists in the new interface.
3036 *
3037 * Scrambling is done by swapping every two consecutive bits, which is
3038 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3039 */
3040static pid_t pid_fry(pid_t pid)
3041{
3042 unsigned a = pid & 0x55555555;
3043 unsigned b = pid & 0xAAAAAAAA;
3044
3045 return (a << 1) | (b >> 1);
3046}
3047
3048static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3049{
3050 if (cgroup_sane_behavior(cgrp))
3051 return pid_fry(pid);
3052 else
3053 return pid;
3054}
3055
102a775e
BB
3056static int cmppid(const void *a, const void *b)
3057{
3058 return *(pid_t *)a - *(pid_t *)b;
3059}
3060
afb2bc14
TH
3061static int fried_cmppid(const void *a, const void *b)
3062{
3063 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3064}
3065
e6b81710
TH
3066static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3067 enum cgroup_filetype type)
3068{
3069 struct cgroup_pidlist *l;
3070 /* don't need task_nsproxy() if we're looking at ourself */
3071 struct pid_namespace *ns = task_active_pid_ns(current);
3072
3073 lockdep_assert_held(&cgrp->pidlist_mutex);
3074
3075 list_for_each_entry(l, &cgrp->pidlists, links)
3076 if (l->key.type == type && l->key.ns == ns)
3077 return l;
3078 return NULL;
3079}
3080
72a8cb30
BB
3081/*
3082 * find the appropriate pidlist for our purpose (given procs vs tasks)
3083 * returns with the lock on that pidlist already held, and takes care
3084 * of the use count, or returns NULL with no locks held if we're out of
3085 * memory.
3086 */
e6b81710
TH
3087static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3088 enum cgroup_filetype type)
72a8cb30
BB
3089{
3090 struct cgroup_pidlist *l;
b70cc5fd 3091
e6b81710
TH
3092 lockdep_assert_held(&cgrp->pidlist_mutex);
3093
3094 l = cgroup_pidlist_find(cgrp, type);
3095 if (l)
3096 return l;
3097
72a8cb30 3098 /* entry not found; create a new one */
f4f4be2b 3099 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3100 if (!l)
72a8cb30 3101 return l;
e6b81710 3102
b1a21367 3103 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3104 l->key.type = type;
e6b81710
TH
3105 /* don't need task_nsproxy() if we're looking at ourself */
3106 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3107 l->owner = cgrp;
3108 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3109 return l;
3110}
3111
102a775e
BB
3112/*
3113 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3114 */
72a8cb30
BB
3115static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3116 struct cgroup_pidlist **lp)
102a775e
BB
3117{
3118 pid_t *array;
3119 int length;
3120 int pid, n = 0; /* used for populating the array */
72ec7029 3121 struct css_task_iter it;
817929ec 3122 struct task_struct *tsk;
102a775e
BB
3123 struct cgroup_pidlist *l;
3124
4bac00d1
TH
3125 lockdep_assert_held(&cgrp->pidlist_mutex);
3126
102a775e
BB
3127 /*
3128 * If cgroup gets more users after we read count, we won't have
3129 * enough space - tough. This race is indistinguishable to the
3130 * caller from the case that the additional cgroup users didn't
3131 * show up until sometime later on.
3132 */
3133 length = cgroup_task_count(cgrp);
d1d9fd33 3134 array = pidlist_allocate(length);
102a775e
BB
3135 if (!array)
3136 return -ENOMEM;
3137 /* now, populate the array */
72ec7029
TH
3138 css_task_iter_start(&cgrp->dummy_css, &it);
3139 while ((tsk = css_task_iter_next(&it))) {
102a775e 3140 if (unlikely(n == length))
817929ec 3141 break;
102a775e 3142 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3143 if (type == CGROUP_FILE_PROCS)
3144 pid = task_tgid_vnr(tsk);
3145 else
3146 pid = task_pid_vnr(tsk);
102a775e
BB
3147 if (pid > 0) /* make sure to only use valid results */
3148 array[n++] = pid;
817929ec 3149 }
72ec7029 3150 css_task_iter_end(&it);
102a775e
BB
3151 length = n;
3152 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3153 if (cgroup_sane_behavior(cgrp))
3154 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3155 else
3156 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3157 if (type == CGROUP_FILE_PROCS)
6ee211ad 3158 length = pidlist_uniq(array, length);
e6b81710 3159
e6b81710 3160 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3161 if (!l) {
e6b81710 3162 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3163 pidlist_free(array);
72a8cb30 3164 return -ENOMEM;
102a775e 3165 }
e6b81710
TH
3166
3167 /* store array, freeing old if necessary */
d1d9fd33 3168 pidlist_free(l->list);
102a775e
BB
3169 l->list = array;
3170 l->length = length;
72a8cb30 3171 *lp = l;
102a775e 3172 return 0;
bbcb81d0
PM
3173}
3174
846c7bb0 3175/**
a043e3b2 3176 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3177 * @stats: cgroupstats to fill information into
3178 * @dentry: A dentry entry belonging to the cgroup for which stats have
3179 * been requested.
a043e3b2
LZ
3180 *
3181 * Build and fill cgroupstats so that taskstats can export it to user
3182 * space.
846c7bb0
BS
3183 */
3184int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3185{
2bd59d48 3186 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3187 struct cgroup *cgrp;
72ec7029 3188 struct css_task_iter it;
846c7bb0 3189 struct task_struct *tsk;
33d283be 3190
2bd59d48
TH
3191 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3192 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3193 kernfs_type(kn) != KERNFS_DIR)
3194 return -EINVAL;
3195
bad34660
LZ
3196 mutex_lock(&cgroup_mutex);
3197
846c7bb0 3198 /*
2bd59d48
TH
3199 * We aren't being called from kernfs and there's no guarantee on
3200 * @kn->priv's validity. For this and css_tryget_from_dir(),
3201 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3202 */
2bd59d48
TH
3203 rcu_read_lock();
3204 cgrp = rcu_dereference(kn->priv);
bad34660 3205 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3206 rcu_read_unlock();
bad34660 3207 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3208 return -ENOENT;
3209 }
bad34660 3210 rcu_read_unlock();
846c7bb0 3211
72ec7029
TH
3212 css_task_iter_start(&cgrp->dummy_css, &it);
3213 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3214 switch (tsk->state) {
3215 case TASK_RUNNING:
3216 stats->nr_running++;
3217 break;
3218 case TASK_INTERRUPTIBLE:
3219 stats->nr_sleeping++;
3220 break;
3221 case TASK_UNINTERRUPTIBLE:
3222 stats->nr_uninterruptible++;
3223 break;
3224 case TASK_STOPPED:
3225 stats->nr_stopped++;
3226 break;
3227 default:
3228 if (delayacct_is_task_waiting_on_io(tsk))
3229 stats->nr_io_wait++;
3230 break;
3231 }
3232 }
72ec7029 3233 css_task_iter_end(&it);
846c7bb0 3234
bad34660 3235 mutex_unlock(&cgroup_mutex);
2bd59d48 3236 return 0;
846c7bb0
BS
3237}
3238
8f3ff208 3239
bbcb81d0 3240/*
102a775e 3241 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3242 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3243 * in the cgroup->l->list array.
bbcb81d0 3244 */
cc31edce 3245
102a775e 3246static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3247{
cc31edce
PM
3248 /*
3249 * Initially we receive a position value that corresponds to
3250 * one more than the last pid shown (or 0 on the first call or
3251 * after a seek to the start). Use a binary-search to find the
3252 * next pid to display, if any
3253 */
2bd59d48 3254 struct kernfs_open_file *of = s->private;
7da11279 3255 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3256 struct cgroup_pidlist *l;
7da11279 3257 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3258 int index = 0, pid = *pos;
4bac00d1
TH
3259 int *iter, ret;
3260
3261 mutex_lock(&cgrp->pidlist_mutex);
3262
3263 /*
5d22444f 3264 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3265 * after open. If the matching pidlist is around, we can use that.
5d22444f 3266 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3267 * could already have been destroyed.
3268 */
5d22444f
TH
3269 if (of->priv)
3270 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3271
3272 /*
3273 * Either this is the first start() after open or the matching
3274 * pidlist has been destroyed inbetween. Create a new one.
3275 */
5d22444f
TH
3276 if (!of->priv) {
3277 ret = pidlist_array_load(cgrp, type,
3278 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3279 if (ret)
3280 return ERR_PTR(ret);
3281 }
5d22444f 3282 l = of->priv;
cc31edce 3283
cc31edce 3284 if (pid) {
102a775e 3285 int end = l->length;
20777766 3286
cc31edce
PM
3287 while (index < end) {
3288 int mid = (index + end) / 2;
afb2bc14 3289 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3290 index = mid;
3291 break;
afb2bc14 3292 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3293 index = mid + 1;
3294 else
3295 end = mid;
3296 }
3297 }
3298 /* If we're off the end of the array, we're done */
102a775e 3299 if (index >= l->length)
cc31edce
PM
3300 return NULL;
3301 /* Update the abstract position to be the actual pid that we found */
102a775e 3302 iter = l->list + index;
afb2bc14 3303 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3304 return iter;
3305}
3306
102a775e 3307static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3308{
2bd59d48 3309 struct kernfs_open_file *of = s->private;
5d22444f 3310 struct cgroup_pidlist *l = of->priv;
62236858 3311
5d22444f
TH
3312 if (l)
3313 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3314 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3315 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3316}
3317
102a775e 3318static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3319{
2bd59d48 3320 struct kernfs_open_file *of = s->private;
5d22444f 3321 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3322 pid_t *p = v;
3323 pid_t *end = l->list + l->length;
cc31edce
PM
3324 /*
3325 * Advance to the next pid in the array. If this goes off the
3326 * end, we're done
3327 */
3328 p++;
3329 if (p >= end) {
3330 return NULL;
3331 } else {
7da11279 3332 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3333 return p;
3334 }
3335}
3336
102a775e 3337static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3338{
3339 return seq_printf(s, "%d\n", *(int *)v);
3340}
bbcb81d0 3341
102a775e
BB
3342/*
3343 * seq_operations functions for iterating on pidlists through seq_file -
3344 * independent of whether it's tasks or procs
3345 */
3346static const struct seq_operations cgroup_pidlist_seq_operations = {
3347 .start = cgroup_pidlist_start,
3348 .stop = cgroup_pidlist_stop,
3349 .next = cgroup_pidlist_next,
3350 .show = cgroup_pidlist_show,
cc31edce
PM
3351};
3352
182446d0
TH
3353static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3354 struct cftype *cft)
81a6a5cd 3355{
182446d0 3356 return notify_on_release(css->cgroup);
81a6a5cd
PM
3357}
3358
182446d0
TH
3359static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3360 struct cftype *cft, u64 val)
6379c106 3361{
182446d0 3362 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3363 if (val)
182446d0 3364 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3365 else
182446d0 3366 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3367 return 0;
3368}
3369
182446d0
TH
3370static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3371 struct cftype *cft)
97978e6d 3372{
182446d0 3373 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3374}
3375
182446d0
TH
3376static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3377 struct cftype *cft, u64 val)
97978e6d
DL
3378{
3379 if (val)
182446d0 3380 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3381 else
182446d0 3382 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3383 return 0;
3384}
3385
d5c56ced 3386static struct cftype cgroup_base_files[] = {
81a6a5cd 3387 {
d5c56ced 3388 .name = "cgroup.procs",
6612f05b
TH
3389 .seq_start = cgroup_pidlist_start,
3390 .seq_next = cgroup_pidlist_next,
3391 .seq_stop = cgroup_pidlist_stop,
3392 .seq_show = cgroup_pidlist_show,
5d22444f 3393 .private = CGROUP_FILE_PROCS,
74a1166d 3394 .write_u64 = cgroup_procs_write,
74a1166d 3395 .mode = S_IRUGO | S_IWUSR,
102a775e 3396 },
97978e6d
DL
3397 {
3398 .name = "cgroup.clone_children",
873fe09e 3399 .flags = CFTYPE_INSANE,
97978e6d
DL
3400 .read_u64 = cgroup_clone_children_read,
3401 .write_u64 = cgroup_clone_children_write,
3402 },
873fe09e
TH
3403 {
3404 .name = "cgroup.sane_behavior",
3405 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3406 .seq_show = cgroup_sane_behavior_show,
873fe09e 3407 },
d5c56ced
TH
3408
3409 /*
3410 * Historical crazy stuff. These don't have "cgroup." prefix and
3411 * don't exist if sane_behavior. If you're depending on these, be
3412 * prepared to be burned.
3413 */
3414 {
3415 .name = "tasks",
3416 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3417 .seq_start = cgroup_pidlist_start,
3418 .seq_next = cgroup_pidlist_next,
3419 .seq_stop = cgroup_pidlist_stop,
3420 .seq_show = cgroup_pidlist_show,
5d22444f 3421 .private = CGROUP_FILE_TASKS,
d5c56ced 3422 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3423 .mode = S_IRUGO | S_IWUSR,
3424 },
3425 {
3426 .name = "notify_on_release",
3427 .flags = CFTYPE_INSANE,
3428 .read_u64 = cgroup_read_notify_on_release,
3429 .write_u64 = cgroup_write_notify_on_release,
3430 },
6e6ff25b
TH
3431 {
3432 .name = "release_agent",
cc5943a7 3433 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3434 .seq_show = cgroup_release_agent_show,
6e6ff25b 3435 .write_string = cgroup_release_agent_write,
5f469907 3436 .max_write_len = PATH_MAX - 1,
6e6ff25b 3437 },
db0416b6 3438 { } /* terminate */
bbcb81d0
PM
3439};
3440
13af07df 3441/**
628f7cd4 3442 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3443 * @cgrp: target cgroup
13af07df 3444 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3445 *
3446 * On failure, no file is added.
13af07df 3447 */
628f7cd4 3448static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3449{
ddbcc7e8 3450 struct cgroup_subsys *ss;
b420ba7d 3451 int i, ret = 0;
bbcb81d0 3452
8e3f6541 3453 /* process cftsets of each subsystem */
b420ba7d 3454 for_each_subsys(ss, i) {
0adb0704 3455 struct cftype *cfts;
b420ba7d
TH
3456
3457 if (!test_bit(i, &subsys_mask))
13af07df 3458 continue;
8e3f6541 3459
0adb0704
TH
3460 list_for_each_entry(cfts, &ss->cfts, node) {
3461 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3462 if (ret < 0)
3463 goto err;
3464 }
ddbcc7e8 3465 }
ddbcc7e8 3466 return 0;
bee55099
TH
3467err:
3468 cgroup_clear_dir(cgrp, subsys_mask);
3469 return ret;
ddbcc7e8
PM
3470}
3471
0c21ead1
TH
3472/*
3473 * css destruction is four-stage process.
3474 *
3475 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3476 * Implemented in kill_css().
3477 *
3478 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3479 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3480 * by invoking offline_css(). After offlining, the base ref is put.
3481 * Implemented in css_killed_work_fn().
3482 *
3483 * 3. When the percpu_ref reaches zero, the only possible remaining
3484 * accessors are inside RCU read sections. css_release() schedules the
3485 * RCU callback.
3486 *
3487 * 4. After the grace period, the css can be freed. Implemented in
3488 * css_free_work_fn().
3489 *
3490 * It is actually hairier because both step 2 and 4 require process context
3491 * and thus involve punting to css->destroy_work adding two additional
3492 * steps to the already complex sequence.
3493 */
35ef10da 3494static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3495{
3496 struct cgroup_subsys_state *css =
35ef10da 3497 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3498 struct cgroup *cgrp = css->cgroup;
48ddbe19 3499
0ae78e0b
TH
3500 if (css->parent)
3501 css_put(css->parent);
3502
0c21ead1 3503 css->ss->css_free(css);
2bd59d48 3504 cgroup_put(cgrp);
48ddbe19
TH
3505}
3506
0c21ead1 3507static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3508{
3509 struct cgroup_subsys_state *css =
0c21ead1 3510 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3511
35ef10da 3512 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3513 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3514}
3515
d3daf28d
TH
3516static void css_release(struct percpu_ref *ref)
3517{
3518 struct cgroup_subsys_state *css =
3519 container_of(ref, struct cgroup_subsys_state, refcnt);
3520
aec25020 3521 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3522 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3523}
3524
623f926b
TH
3525static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3526 struct cgroup *cgrp)
ddbcc7e8 3527{
bd89aabc 3528 css->cgroup = cgrp;
72c97e54 3529 css->ss = ss;
ddbcc7e8 3530 css->flags = 0;
0ae78e0b
TH
3531
3532 if (cgrp->parent)
ca8bdcaf 3533 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3534 else
38b53aba 3535 css->flags |= CSS_ROOT;
48ddbe19 3536
ca8bdcaf 3537 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3538}
3539
2a4ac633 3540/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3541static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3542{
623f926b 3543 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3544 int ret = 0;
3545
ace2bee8 3546 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3547 lockdep_assert_held(&cgroup_mutex);
3548
92fb9748 3549 if (ss->css_online)
eb95419b 3550 ret = ss->css_online(css);
ae7f164a 3551 if (!ret) {
eb95419b 3552 css->flags |= CSS_ONLINE;
f20104de 3553 css->cgroup->nr_css++;
aec25020 3554 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3555 }
b1929db4 3556 return ret;
a31f2d3f
TH
3557}
3558
2a4ac633 3559/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3560static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3561{
623f926b 3562 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3563
ace2bee8 3564 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3565 lockdep_assert_held(&cgroup_mutex);
3566
3567 if (!(css->flags & CSS_ONLINE))
3568 return;
3569
d7eeac19 3570 if (ss->css_offline)
eb95419b 3571 ss->css_offline(css);
a31f2d3f 3572
eb95419b 3573 css->flags &= ~CSS_ONLINE;
09a503ea 3574 css->cgroup->nr_css--;
aec25020 3575 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3576}
3577
c81c925a
TH
3578/**
3579 * create_css - create a cgroup_subsys_state
3580 * @cgrp: the cgroup new css will be associated with
3581 * @ss: the subsys of new css
3582 *
3583 * Create a new css associated with @cgrp - @ss pair. On success, the new
3584 * css is online and installed in @cgrp with all interface files created.
3585 * Returns 0 on success, -errno on failure.
3586 */
3587static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3588{
3589 struct cgroup *parent = cgrp->parent;
3590 struct cgroup_subsys_state *css;
3591 int err;
3592
c81c925a
TH
3593 lockdep_assert_held(&cgroup_mutex);
3594
3595 css = ss->css_alloc(cgroup_css(parent, ss));
3596 if (IS_ERR(css))
3597 return PTR_ERR(css);
3598
3599 err = percpu_ref_init(&css->refcnt, css_release);
3600 if (err)
3601 goto err_free;
3602
3603 init_css(css, ss, cgrp);
3604
aec25020 3605 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3606 if (err)
3607 goto err_free;
3608
3609 err = online_css(css);
3610 if (err)
3611 goto err_free;
3612
59f5296b 3613 cgroup_get(cgrp);
c81c925a
TH
3614 css_get(css->parent);
3615
94419627
TH
3616 cgrp->subsys_mask |= 1 << ss->id;
3617
c81c925a
TH
3618 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3619 parent->parent) {
3620 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3621 current->comm, current->pid, ss->name);
3622 if (!strcmp(ss->name, "memory"))
3623 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3624 ss->warned_broken_hierarchy = true;
3625 }
3626
3627 return 0;
3628
3629err_free:
3630 percpu_ref_cancel_init(&css->refcnt);
3631 ss->css_free(css);
3632 return err;
3633}
3634
2bd59d48 3635/**
a043e3b2
LZ
3636 * cgroup_create - create a cgroup
3637 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3638 * @name: name of the new cgroup
2bd59d48 3639 * @mode: mode to set on new cgroup
ddbcc7e8 3640 */
e61734c5 3641static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3642 umode_t mode)
ddbcc7e8 3643{
bd89aabc 3644 struct cgroup *cgrp;
3dd06ffa 3645 struct cgroup_root *root = parent->root;
b58c8998 3646 int ssid, err;
ddbcc7e8 3647 struct cgroup_subsys *ss;
2bd59d48 3648 struct kernfs_node *kn;
ddbcc7e8 3649
a2dd4247
TH
3650 /*
3651 * XXX: The default hierarchy isn't fully implemented yet. Block
3652 * !root cgroup creation on it for now.
3653 */
3654 if (root == &cgrp_dfl_root)
3655 return -EINVAL;
3656
0a950f65 3657 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3658 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3659 if (!cgrp)
ddbcc7e8
PM
3660 return -ENOMEM;
3661
ace2bee8
TH
3662 mutex_lock(&cgroup_tree_mutex);
3663
976c06bc
TH
3664 /*
3665 * Only live parents can have children. Note that the liveliness
3666 * check isn't strictly necessary because cgroup_mkdir() and
3667 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3668 * anyway so that locking is contained inside cgroup proper and we
3669 * don't get nasty surprises if we ever grow another caller.
3670 */
3671 if (!cgroup_lock_live_group(parent)) {
3672 err = -ENODEV;
ace2bee8 3673 goto err_unlock_tree;
0ab02ca8
LZ
3674 }
3675
3676 /*
3677 * Temporarily set the pointer to NULL, so idr_find() won't return
3678 * a half-baked cgroup.
3679 */
3680 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3681 if (cgrp->id < 0) {
3682 err = -ENOMEM;
3683 goto err_unlock;
976c06bc
TH
3684 }
3685
cc31edce 3686 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3687
bd89aabc 3688 cgrp->parent = parent;
0ae78e0b 3689 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3690 cgrp->root = parent->root;
ddbcc7e8 3691
b6abdb0e
LZ
3692 if (notify_on_release(parent))
3693 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3694
2260e7fc
TH
3695 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3696 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3697
2bd59d48 3698 /* create the directory */
e61734c5 3699 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3700 if (IS_ERR(kn)) {
3701 err = PTR_ERR(kn);
0ab02ca8 3702 goto err_free_id;
2bd59d48
TH
3703 }
3704 cgrp->kn = kn;
ddbcc7e8 3705
6f30558f
TH
3706 /*
3707 * This extra ref will be put in cgroup_free_fn() and guarantees
3708 * that @cgrp->kn is always accessible.
3709 */
3710 kernfs_get(kn);
3711
00356bd5 3712 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3713
4e139afc 3714 /* allocation complete, commit to creation */
4e139afc 3715 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3716 atomic_inc(&root->nr_cgrps);
59f5296b 3717 cgroup_get(parent);
415cf07a 3718
0d80255e
TH
3719 /*
3720 * @cgrp is now fully operational. If something fails after this
3721 * point, it'll be released via the normal destruction path.
3722 */
4e96ee8e
LZ
3723 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3724
2bb566cb 3725 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3726 if (err)
3727 goto err_destroy;
3728
9d403e99 3729 /* let's create and online css's */
b85d2040 3730 for_each_subsys(ss, ssid) {
3dd06ffa 3731 if (root->cgrp.subsys_mask & (1 << ssid)) {
b85d2040
TH
3732 err = create_css(cgrp, ss);
3733 if (err)
3734 goto err_destroy;
3735 }
a8638030 3736 }
ddbcc7e8 3737
2bd59d48
TH
3738 kernfs_activate(kn);
3739
ddbcc7e8 3740 mutex_unlock(&cgroup_mutex);
ace2bee8 3741 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3742
3743 return 0;
3744
0a950f65 3745err_free_id:
4e96ee8e 3746 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3747err_unlock:
3748 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3749err_unlock_tree:
3750 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3751 kfree(cgrp);
ddbcc7e8 3752 return err;
4b8b47eb
TH
3753
3754err_destroy:
3755 cgroup_destroy_locked(cgrp);
3756 mutex_unlock(&cgroup_mutex);
ace2bee8 3757 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3758 return err;
ddbcc7e8
PM
3759}
3760
2bd59d48
TH
3761static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3762 umode_t mode)
ddbcc7e8 3763{
2bd59d48 3764 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3765
2bd59d48 3766 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3767}
3768
223dbc38
TH
3769/*
3770 * This is called when the refcnt of a css is confirmed to be killed.
3771 * css_tryget() is now guaranteed to fail.
3772 */
3773static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3774{
223dbc38
TH
3775 struct cgroup_subsys_state *css =
3776 container_of(work, struct cgroup_subsys_state, destroy_work);
3777 struct cgroup *cgrp = css->cgroup;
d3daf28d 3778
ace2bee8 3779 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3780 mutex_lock(&cgroup_mutex);
3781
09a503ea
TH
3782 /*
3783 * css_tryget() is guaranteed to fail now. Tell subsystems to
3784 * initate destruction.
3785 */
3786 offline_css(css);
3787
f20104de
TH
3788 /*
3789 * If @cgrp is marked dead, it's waiting for refs of all css's to
3790 * be disabled before proceeding to the second phase of cgroup
3791 * destruction. If we are the last one, kick it off.
3792 */
09a503ea 3793 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3794 cgroup_destroy_css_killed(cgrp);
3795
3796 mutex_unlock(&cgroup_mutex);
ace2bee8 3797 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3798
3799 /*
3800 * Put the css refs from kill_css(). Each css holds an extra
3801 * reference to the cgroup's dentry and cgroup removal proceeds
3802 * regardless of css refs. On the last put of each css, whenever
3803 * that may be, the extra dentry ref is put so that dentry
3804 * destruction happens only after all css's are released.
3805 */
3806 css_put(css);
d3daf28d
TH
3807}
3808
223dbc38
TH
3809/* css kill confirmation processing requires process context, bounce */
3810static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3811{
3812 struct cgroup_subsys_state *css =
3813 container_of(ref, struct cgroup_subsys_state, refcnt);
3814
223dbc38 3815 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3816 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3817}
3818
94419627 3819static void __kill_css(struct cgroup_subsys_state *css)
edae0c33 3820{
94419627
TH
3821 lockdep_assert_held(&cgroup_tree_mutex);
3822
2bd59d48
TH
3823 /*
3824 * This must happen before css is disassociated with its cgroup.
3825 * See seq_css() for details.
3826 */
aec25020 3827 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3828
edae0c33
TH
3829 /*
3830 * Killing would put the base ref, but we need to keep it alive
3831 * until after ->css_offline().
3832 */
3833 css_get(css);
3834
3835 /*
3836 * cgroup core guarantees that, by the time ->css_offline() is
3837 * invoked, no new css reference will be given out via
3838 * css_tryget(). We can't simply call percpu_ref_kill() and
3839 * proceed to offlining css's because percpu_ref_kill() doesn't
3840 * guarantee that the ref is seen as killed on all CPUs on return.
3841 *
3842 * Use percpu_ref_kill_and_confirm() to get notifications as each
3843 * css is confirmed to be seen as killed on all CPUs.
3844 */
3845 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3846}
3847
94419627
TH
3848/**
3849 * kill_css - destroy a css
3850 * @css: css to destroy
3851 *
3852 * This function initiates destruction of @css by removing cgroup interface
3853 * files and putting its base reference. ->css_offline() will be invoked
3854 * asynchronously once css_tryget() is guaranteed to fail and when the
3855 * reference count reaches zero, @css will be released.
3856 */
3857static void kill_css(struct cgroup_subsys_state *css)
3858{
3859 struct cgroup *cgrp = css->cgroup;
3860
3861 lockdep_assert_held(&cgroup_tree_mutex);
3862
3863 /* if already killed, noop */
3864 if (cgrp->subsys_mask & (1 << css->ss->id)) {
3865 cgrp->subsys_mask &= ~(1 << css->ss->id);
3866 __kill_css(css);
3867 }
3868}
3869
d3daf28d
TH
3870/**
3871 * cgroup_destroy_locked - the first stage of cgroup destruction
3872 * @cgrp: cgroup to be destroyed
3873 *
3874 * css's make use of percpu refcnts whose killing latency shouldn't be
3875 * exposed to userland and are RCU protected. Also, cgroup core needs to
3876 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3877 * invoked. To satisfy all the requirements, destruction is implemented in
3878 * the following two steps.
3879 *
3880 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3881 * userland visible parts and start killing the percpu refcnts of
3882 * css's. Set up so that the next stage will be kicked off once all
3883 * the percpu refcnts are confirmed to be killed.
3884 *
3885 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3886 * rest of destruction. Once all cgroup references are gone, the
3887 * cgroup is RCU-freed.
3888 *
3889 * This function implements s1. After this step, @cgrp is gone as far as
3890 * the userland is concerned and a new cgroup with the same name may be
3891 * created. As cgroup doesn't care about the names internally, this
3892 * doesn't cause any problem.
3893 */
42809dd4
TH
3894static int cgroup_destroy_locked(struct cgroup *cgrp)
3895 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3896{
bb78a92f 3897 struct cgroup *child;
2bd59d48 3898 struct cgroup_subsys_state *css;
ddd69148 3899 bool empty;
1c6727af 3900 int ssid;
ddbcc7e8 3901
ace2bee8 3902 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3903 lockdep_assert_held(&cgroup_mutex);
3904
ddd69148 3905 /*
96d365e0 3906 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3907 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3908 */
96d365e0 3909 down_read(&css_set_rwsem);
bb78a92f 3910 empty = list_empty(&cgrp->cset_links);
96d365e0 3911 up_read(&css_set_rwsem);
ddd69148 3912 if (!empty)
ddbcc7e8 3913 return -EBUSY;
a043e3b2 3914
bb78a92f
HD
3915 /*
3916 * Make sure there's no live children. We can't test ->children
3917 * emptiness as dead children linger on it while being destroyed;
3918 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3919 */
3920 empty = true;
3921 rcu_read_lock();
3922 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3923 empty = cgroup_is_dead(child);
3924 if (!empty)
3925 break;
3926 }
3927 rcu_read_unlock();
3928 if (!empty)
3929 return -EBUSY;
3930
5d77381f
TH
3931 /*
3932 * Mark @cgrp dead. This prevents further task migration and child
3933 * creation by disabling cgroup_lock_live_group(). Note that
3934 * CGRP_DEAD assertion is depended upon by css_next_child() to
3935 * resume iteration after dropping RCU read lock. See
3936 * css_next_child() for details.
3937 */
3938 set_bit(CGRP_DEAD, &cgrp->flags);
3939
88703267 3940 /*
edae0c33
TH
3941 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3942 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3943 * percpu refs of all css's are confirmed to be killed. This
3944 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3945 */
4ac06017 3946 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3947 for_each_css(css, ssid, cgrp)
3948 kill_css(css);
4ac06017 3949 mutex_lock(&cgroup_mutex);
455050d2 3950
455050d2
TH
3951 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3952 raw_spin_lock(&release_list_lock);
3953 if (!list_empty(&cgrp->release_list))
3954 list_del_init(&cgrp->release_list);
3955 raw_spin_unlock(&release_list_lock);
3956
3957 /*
f20104de
TH
3958 * If @cgrp has css's attached, the second stage of cgroup
3959 * destruction is kicked off from css_killed_work_fn() after the
3960 * refs of all attached css's are killed. If @cgrp doesn't have
3961 * any css, we kick it off here.
3962 */
3963 if (!cgrp->nr_css)
3964 cgroup_destroy_css_killed(cgrp);
3965
2bd59d48
TH
3966 /* remove @cgrp directory along with the base files */
3967 mutex_unlock(&cgroup_mutex);
3968
455050d2 3969 /*
2bd59d48
TH
3970 * There are two control paths which try to determine cgroup from
3971 * dentry without going through kernfs - cgroupstats_build() and
3972 * css_tryget_from_dir(). Those are supported by RCU protecting
3973 * clearing of cgrp->kn->priv backpointer, which should happen
3974 * after all files under it have been removed.
455050d2 3975 */
6f30558f 3976 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3977 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3978
4ac06017 3979 mutex_lock(&cgroup_mutex);
455050d2 3980
ea15f8cc
TH
3981 return 0;
3982};
3983
d3daf28d 3984/**
f20104de 3985 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3986 * @work: cgroup->destroy_free_work
3987 *
3988 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3989 * destroyed after all css's are offlined and performs the rest of
3990 * destruction. This is the second step of destruction described in the
3991 * comment above cgroup_destroy_locked().
d3daf28d 3992 */
f20104de 3993static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3994{
ea15f8cc 3995 struct cgroup *parent = cgrp->parent;
ea15f8cc 3996
ace2bee8 3997 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3998 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3999
999cd8a4 4000 /* delete this cgroup from parent->children */
eb6fd504 4001 list_del_rcu(&cgrp->sibling);
ed957793 4002
59f5296b 4003 cgroup_put(cgrp);
ddbcc7e8 4004
bd89aabc 4005 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 4006 check_for_release(parent);
ddbcc7e8
PM
4007}
4008
2bd59d48 4009static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4010{
2bd59d48
TH
4011 struct cgroup *cgrp = kn->priv;
4012 int ret = 0;
4013
4014 /*
4015 * This is self-destruction but @kn can't be removed while this
4016 * callback is in progress. Let's break active protection. Once
4017 * the protection is broken, @cgrp can be destroyed at any point.
4018 * Pin it so that it stays accessible.
4019 */
4020 cgroup_get(cgrp);
4021 kernfs_break_active_protection(kn);
42809dd4 4022
ace2bee8 4023 mutex_lock(&cgroup_tree_mutex);
42809dd4 4024 mutex_lock(&cgroup_mutex);
2bd59d48
TH
4025
4026 /*
4027 * @cgrp might already have been destroyed while we're trying to
4028 * grab the mutexes.
4029 */
4030 if (!cgroup_is_dead(cgrp))
4031 ret = cgroup_destroy_locked(cgrp);
4032
42809dd4 4033 mutex_unlock(&cgroup_mutex);
ace2bee8 4034 mutex_unlock(&cgroup_tree_mutex);
42809dd4 4035
2bd59d48
TH
4036 kernfs_unbreak_active_protection(kn);
4037 cgroup_put(cgrp);
42809dd4
TH
4038 return ret;
4039}
4040
2bd59d48
TH
4041static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4042 .remount_fs = cgroup_remount,
4043 .show_options = cgroup_show_options,
4044 .mkdir = cgroup_mkdir,
4045 .rmdir = cgroup_rmdir,
4046 .rename = cgroup_rename,
4047};
4048
06a11920 4049static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4050{
ddbcc7e8 4051 struct cgroup_subsys_state *css;
cfe36bde
DC
4052
4053 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4054
ace2bee8 4055 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4056 mutex_lock(&cgroup_mutex);
4057
0adb0704 4058 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4059
3dd06ffa
TH
4060 /* Create the root cgroup state for this subsystem */
4061 ss->root = &cgrp_dfl_root;
4062 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4063 /* We don't handle early failures gracefully */
4064 BUG_ON(IS_ERR(css));
3dd06ffa 4065 init_css(css, ss, &cgrp_dfl_root.cgrp);
ddbcc7e8 4066
e8d55fde 4067 /* Update the init_css_set to contain a subsys
817929ec 4068 * pointer to this state - since the subsystem is
e8d55fde 4069 * newly registered, all tasks and hence the
3dd06ffa 4070 * init_css_set is in the subsystem's root cgroup. */
aec25020 4071 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4072
4073 need_forkexit_callback |= ss->fork || ss->exit;
4074
e8d55fde
LZ
4075 /* At system boot, before all subsystems have been
4076 * registered, no tasks have been forked, so we don't
4077 * need to invoke fork callbacks here. */
4078 BUG_ON(!list_empty(&init_task.tasks));
4079
ae7f164a 4080 BUG_ON(online_css(css));
a8638030 4081
3dd06ffa 4082 cgrp_dfl_root.cgrp.subsys_mask |= 1 << ss->id;
5df36032 4083
648bb56d 4084 mutex_unlock(&cgroup_mutex);
ace2bee8 4085 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4086}
4087
ddbcc7e8 4088/**
a043e3b2
LZ
4089 * cgroup_init_early - cgroup initialization at system boot
4090 *
4091 * Initialize cgroups at system boot, and initialize any
4092 * subsystems that request early init.
ddbcc7e8
PM
4093 */
4094int __init cgroup_init_early(void)
4095{
a2dd4247
TH
4096 static struct cgroup_sb_opts __initdata opts =
4097 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4098 struct cgroup_subsys *ss;
ddbcc7e8 4099 int i;
30159ec7 4100
3dd06ffa 4101 init_cgroup_root(&cgrp_dfl_root, &opts);
a4ea1cc9 4102 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4103
3ed80a62 4104 for_each_subsys(ss, i) {
aec25020 4105 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4106 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4107 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4108 ss->id, ss->name);
073219e9
TH
4109 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4110 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4111
aec25020 4112 ss->id = i;
073219e9 4113 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4114
4115 if (ss->early_init)
4116 cgroup_init_subsys(ss);
4117 }
4118 return 0;
4119}
4120
4121/**
a043e3b2
LZ
4122 * cgroup_init - cgroup initialization
4123 *
4124 * Register cgroup filesystem and /proc file, and initialize
4125 * any subsystems that didn't request early init.
ddbcc7e8
PM
4126 */
4127int __init cgroup_init(void)
4128{
30159ec7 4129 struct cgroup_subsys *ss;
0ac801fe 4130 unsigned long key;
172a2c06 4131 int ssid, err;
a424316c 4132
2bd59d48 4133 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4134
985ed670 4135 mutex_lock(&cgroup_tree_mutex);
54e7b4eb 4136 mutex_lock(&cgroup_mutex);
54e7b4eb 4137
82fe9b0d
TH
4138 /* Add init_css_set to the hash table */
4139 key = css_set_hash(init_css_set.subsys);
4140 hash_add(css_set_table, &init_css_set.hlist, key);
4141
3dd06ffa 4142 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
172a2c06 4143
54e7b4eb 4144 mutex_unlock(&cgroup_mutex);
985ed670 4145 mutex_unlock(&cgroup_tree_mutex);
54e7b4eb 4146
172a2c06
TH
4147 for_each_subsys(ss, ssid) {
4148 if (!ss->early_init)
4149 cgroup_init_subsys(ss);
4150
4151 /*
4152 * cftype registration needs kmalloc and can't be done
4153 * during early_init. Register base cftypes separately.
4154 */
4155 if (ss->base_cftypes)
4156 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
4157 }
4158
676db4af 4159 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4160 if (!cgroup_kobj)
4161 return -ENOMEM;
676db4af 4162
ddbcc7e8 4163 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4164 if (err < 0) {
4165 kobject_put(cgroup_kobj);
2bd59d48 4166 return err;
676db4af 4167 }
ddbcc7e8 4168
46ae220b 4169 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4170 return 0;
ddbcc7e8 4171}
b4f48b63 4172
e5fca243
TH
4173static int __init cgroup_wq_init(void)
4174{
4175 /*
4176 * There isn't much point in executing destruction path in
4177 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4178 * Use 1 for @max_active.
e5fca243
TH
4179 *
4180 * We would prefer to do this in cgroup_init() above, but that
4181 * is called before init_workqueues(): so leave this until after.
4182 */
1a11533f 4183 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4184 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4185
4186 /*
4187 * Used to destroy pidlists and separate to serve as flush domain.
4188 * Cap @max_active to 1 too.
4189 */
4190 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4191 0, 1);
4192 BUG_ON(!cgroup_pidlist_destroy_wq);
4193
e5fca243
TH
4194 return 0;
4195}
4196core_initcall(cgroup_wq_init);
4197
a424316c
PM
4198/*
4199 * proc_cgroup_show()
4200 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4201 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4202 */
4203
4204/* TODO: Use a proper seq_file iterator */
8d8b97ba 4205int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4206{
4207 struct pid *pid;
4208 struct task_struct *tsk;
e61734c5 4209 char *buf, *path;
a424316c 4210 int retval;
3dd06ffa 4211 struct cgroup_root *root;
a424316c
PM
4212
4213 retval = -ENOMEM;
e61734c5 4214 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4215 if (!buf)
4216 goto out;
4217
4218 retval = -ESRCH;
4219 pid = m->private;
4220 tsk = get_pid_task(pid, PIDTYPE_PID);
4221 if (!tsk)
4222 goto out_free;
4223
4224 retval = 0;
4225
4226 mutex_lock(&cgroup_mutex);
96d365e0 4227 down_read(&css_set_rwsem);
a424316c 4228
985ed670 4229 for_each_root(root) {
a424316c 4230 struct cgroup_subsys *ss;
bd89aabc 4231 struct cgroup *cgrp;
b85d2040 4232 int ssid, count = 0;
a424316c 4233
a2dd4247 4234 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4235 continue;
4236
2c6ab6d2 4237 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4238 for_each_subsys(ss, ssid)
3dd06ffa 4239 if (root->cgrp.subsys_mask & (1 << ssid))
b85d2040 4240 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4241 if (strlen(root->name))
4242 seq_printf(m, "%sname=%s", count ? "," : "",
4243 root->name);
a424316c 4244 seq_putc(m, ':');
7717f7ba 4245 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4246 path = cgroup_path(cgrp, buf, PATH_MAX);
4247 if (!path) {
4248 retval = -ENAMETOOLONG;
a424316c 4249 goto out_unlock;
e61734c5
TH
4250 }
4251 seq_puts(m, path);
a424316c
PM
4252 seq_putc(m, '\n');
4253 }
4254
4255out_unlock:
96d365e0 4256 up_read(&css_set_rwsem);
a424316c
PM
4257 mutex_unlock(&cgroup_mutex);
4258 put_task_struct(tsk);
4259out_free:
4260 kfree(buf);
4261out:
4262 return retval;
4263}
4264
a424316c
PM
4265/* Display information about each subsystem and each hierarchy */
4266static int proc_cgroupstats_show(struct seq_file *m, void *v)
4267{
30159ec7 4268 struct cgroup_subsys *ss;
a424316c 4269 int i;
a424316c 4270
8bab8dde 4271 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4272 /*
4273 * ideally we don't want subsystems moving around while we do this.
4274 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4275 * subsys/hierarchy state.
4276 */
a424316c 4277 mutex_lock(&cgroup_mutex);
30159ec7
TH
4278
4279 for_each_subsys(ss, i)
2c6ab6d2
PM
4280 seq_printf(m, "%s\t%d\t%d\t%d\n",
4281 ss->name, ss->root->hierarchy_id,
3c9c825b 4282 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4283
a424316c
PM
4284 mutex_unlock(&cgroup_mutex);
4285 return 0;
4286}
4287
4288static int cgroupstats_open(struct inode *inode, struct file *file)
4289{
9dce07f1 4290 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4291}
4292
828c0950 4293static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4294 .open = cgroupstats_open,
4295 .read = seq_read,
4296 .llseek = seq_lseek,
4297 .release = single_release,
4298};
4299
b4f48b63 4300/**
eaf797ab 4301 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4302 * @child: pointer to task_struct of forking parent process.
b4f48b63 4303 *
eaf797ab
TH
4304 * A task is associated with the init_css_set until cgroup_post_fork()
4305 * attaches it to the parent's css_set. Empty cg_list indicates that
4306 * @child isn't holding reference to its css_set.
b4f48b63
PM
4307 */
4308void cgroup_fork(struct task_struct *child)
4309{
eaf797ab 4310 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4311 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4312}
4313
817929ec 4314/**
a043e3b2
LZ
4315 * cgroup_post_fork - called on a new task after adding it to the task list
4316 * @child: the task in question
4317 *
5edee61e
TH
4318 * Adds the task to the list running through its css_set if necessary and
4319 * call the subsystem fork() callbacks. Has to be after the task is
4320 * visible on the task list in case we race with the first call to
0942eeee 4321 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4322 * list.
a043e3b2 4323 */
817929ec
PM
4324void cgroup_post_fork(struct task_struct *child)
4325{
30159ec7 4326 struct cgroup_subsys *ss;
5edee61e
TH
4327 int i;
4328
3ce3230a 4329 /*
eaf797ab
TH
4330 * This may race against cgroup_enable_task_cg_links(). As that
4331 * function sets use_task_css_set_links before grabbing
4332 * tasklist_lock and we just went through tasklist_lock to add
4333 * @child, it's guaranteed that either we see the set
4334 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4335 * @child during its iteration.
4336 *
4337 * If we won the race, @child is associated with %current's
4338 * css_set. Grabbing css_set_rwsem guarantees both that the
4339 * association is stable, and, on completion of the parent's
4340 * migration, @child is visible in the source of migration or
4341 * already in the destination cgroup. This guarantee is necessary
4342 * when implementing operations which need to migrate all tasks of
4343 * a cgroup to another.
4344 *
4345 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4346 * will remain in init_css_set. This is safe because all tasks are
4347 * in the init_css_set before cg_links is enabled and there's no
4348 * operation which transfers all tasks out of init_css_set.
3ce3230a 4349 */
817929ec 4350 if (use_task_css_set_links) {
eaf797ab
TH
4351 struct css_set *cset;
4352
96d365e0 4353 down_write(&css_set_rwsem);
0e1d768f 4354 cset = task_css_set(current);
eaf797ab
TH
4355 if (list_empty(&child->cg_list)) {
4356 rcu_assign_pointer(child->cgroups, cset);
4357 list_add(&child->cg_list, &cset->tasks);
4358 get_css_set(cset);
4359 }
96d365e0 4360 up_write(&css_set_rwsem);
817929ec 4361 }
5edee61e
TH
4362
4363 /*
4364 * Call ss->fork(). This must happen after @child is linked on
4365 * css_set; otherwise, @child might change state between ->fork()
4366 * and addition to css_set.
4367 */
4368 if (need_forkexit_callback) {
3ed80a62 4369 for_each_subsys(ss, i)
5edee61e
TH
4370 if (ss->fork)
4371 ss->fork(child);
5edee61e 4372 }
817929ec 4373}
5edee61e 4374
b4f48b63
PM
4375/**
4376 * cgroup_exit - detach cgroup from exiting task
4377 * @tsk: pointer to task_struct of exiting process
a043e3b2 4378 * @run_callback: run exit callbacks?
b4f48b63
PM
4379 *
4380 * Description: Detach cgroup from @tsk and release it.
4381 *
4382 * Note that cgroups marked notify_on_release force every task in
4383 * them to take the global cgroup_mutex mutex when exiting.
4384 * This could impact scaling on very large systems. Be reluctant to
4385 * use notify_on_release cgroups where very high task exit scaling
4386 * is required on large systems.
4387 *
0e1d768f
TH
4388 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
4389 * call cgroup_exit() while the task is still competent to handle
4390 * notify_on_release(), then leave the task attached to the root cgroup in
4391 * each hierarchy for the remainder of its exit. No need to bother with
4392 * init_css_set refcnting. init_css_set never goes away and we can't race
4393 * with migration path - either PF_EXITING is visible to migration path or
4394 * @tsk never got on the tasklist.
b4f48b63
PM
4395 */
4396void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4397{
30159ec7 4398 struct cgroup_subsys *ss;
5abb8855 4399 struct css_set *cset;
eaf797ab 4400 bool put_cset = false;
d41d5a01 4401 int i;
817929ec
PM
4402
4403 /*
0e1d768f
TH
4404 * Unlink from @tsk from its css_set. As migration path can't race
4405 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
4406 */
4407 if (!list_empty(&tsk->cg_list)) {
96d365e0 4408 down_write(&css_set_rwsem);
0e1d768f 4409 list_del_init(&tsk->cg_list);
96d365e0 4410 up_write(&css_set_rwsem);
0e1d768f 4411 put_cset = true;
817929ec
PM
4412 }
4413
b4f48b63 4414 /* Reassign the task to the init_css_set. */
a8ad805c
TH
4415 cset = task_css_set(tsk);
4416 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4417
4418 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4419 /* see cgroup_post_fork() for details */
4420 for_each_subsys(ss, i) {
d41d5a01 4421 if (ss->exit) {
eb95419b
TH
4422 struct cgroup_subsys_state *old_css = cset->subsys[i];
4423 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4424
eb95419b 4425 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4426 }
4427 }
4428 }
d41d5a01 4429
eaf797ab
TH
4430 if (put_cset)
4431 put_css_set(cset, true);
b4f48b63 4432}
697f4161 4433
bd89aabc 4434static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4435{
f50daa70 4436 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4437 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4438 /*
4439 * Control Group is currently removeable. If it's not
81a6a5cd 4440 * already queued for a userspace notification, queue
f50daa70
LZ
4441 * it now
4442 */
81a6a5cd 4443 int need_schedule_work = 0;
f50daa70 4444
cdcc136f 4445 raw_spin_lock(&release_list_lock);
54766d4a 4446 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4447 list_empty(&cgrp->release_list)) {
4448 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4449 need_schedule_work = 1;
4450 }
cdcc136f 4451 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4452 if (need_schedule_work)
4453 schedule_work(&release_agent_work);
4454 }
4455}
4456
81a6a5cd
PM
4457/*
4458 * Notify userspace when a cgroup is released, by running the
4459 * configured release agent with the name of the cgroup (path
4460 * relative to the root of cgroup file system) as the argument.
4461 *
4462 * Most likely, this user command will try to rmdir this cgroup.
4463 *
4464 * This races with the possibility that some other task will be
4465 * attached to this cgroup before it is removed, or that some other
4466 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4467 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4468 * unused, and this cgroup will be reprieved from its death sentence,
4469 * to continue to serve a useful existence. Next time it's released,
4470 * we will get notified again, if it still has 'notify_on_release' set.
4471 *
4472 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4473 * means only wait until the task is successfully execve()'d. The
4474 * separate release agent task is forked by call_usermodehelper(),
4475 * then control in this thread returns here, without waiting for the
4476 * release agent task. We don't bother to wait because the caller of
4477 * this routine has no use for the exit status of the release agent
4478 * task, so no sense holding our caller up for that.
81a6a5cd 4479 */
81a6a5cd
PM
4480static void cgroup_release_agent(struct work_struct *work)
4481{
4482 BUG_ON(work != &release_agent_work);
4483 mutex_lock(&cgroup_mutex);
cdcc136f 4484 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4485 while (!list_empty(&release_list)) {
4486 char *argv[3], *envp[3];
4487 int i;
e61734c5 4488 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4489 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4490 struct cgroup,
4491 release_list);
bd89aabc 4492 list_del_init(&cgrp->release_list);
cdcc136f 4493 raw_spin_unlock(&release_list_lock);
e61734c5 4494 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4495 if (!pathbuf)
4496 goto continue_free;
e61734c5
TH
4497 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4498 if (!path)
e788e066
PM
4499 goto continue_free;
4500 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4501 if (!agentbuf)
4502 goto continue_free;
81a6a5cd
PM
4503
4504 i = 0;
e788e066 4505 argv[i++] = agentbuf;
e61734c5 4506 argv[i++] = path;
81a6a5cd
PM
4507 argv[i] = NULL;
4508
4509 i = 0;
4510 /* minimal command environment */
4511 envp[i++] = "HOME=/";
4512 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4513 envp[i] = NULL;
4514
4515 /* Drop the lock while we invoke the usermode helper,
4516 * since the exec could involve hitting disk and hence
4517 * be a slow process */
4518 mutex_unlock(&cgroup_mutex);
4519 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4520 mutex_lock(&cgroup_mutex);
e788e066
PM
4521 continue_free:
4522 kfree(pathbuf);
4523 kfree(agentbuf);
cdcc136f 4524 raw_spin_lock(&release_list_lock);
81a6a5cd 4525 }
cdcc136f 4526 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4527 mutex_unlock(&cgroup_mutex);
4528}
8bab8dde
PM
4529
4530static int __init cgroup_disable(char *str)
4531{
30159ec7 4532 struct cgroup_subsys *ss;
8bab8dde 4533 char *token;
30159ec7 4534 int i;
8bab8dde
PM
4535
4536 while ((token = strsep(&str, ",")) != NULL) {
4537 if (!*token)
4538 continue;
be45c900 4539
3ed80a62 4540 for_each_subsys(ss, i) {
8bab8dde
PM
4541 if (!strcmp(token, ss->name)) {
4542 ss->disabled = 1;
4543 printk(KERN_INFO "Disabling %s control group"
4544 " subsystem\n", ss->name);
4545 break;
4546 }
4547 }
4548 }
4549 return 1;
4550}
4551__setup("cgroup_disable=", cgroup_disable);
38460b48 4552
b77d7b60 4553/**
5a17f543 4554 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4555 * @dentry: directory dentry of interest
4556 * @ss: subsystem of interest
b77d7b60 4557 *
5a17f543
TH
4558 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4559 * to get the corresponding css and return it. If such css doesn't exist
4560 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4561 */
5a17f543
TH
4562struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4563 struct cgroup_subsys *ss)
e5d1367f 4564{
2bd59d48
TH
4565 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4566 struct cgroup_subsys_state *css = NULL;
e5d1367f 4567 struct cgroup *cgrp;
b77d7b60 4568
35cf0836 4569 /* is @dentry a cgroup dir? */
2bd59d48
TH
4570 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4571 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4572 return ERR_PTR(-EBADF);
4573
5a17f543
TH
4574 rcu_read_lock();
4575
2bd59d48
TH
4576 /*
4577 * This path doesn't originate from kernfs and @kn could already
4578 * have been or be removed at any point. @kn->priv is RCU
4579 * protected for this access. See destroy_locked() for details.
4580 */
4581 cgrp = rcu_dereference(kn->priv);
4582 if (cgrp)
4583 css = cgroup_css(cgrp, ss);
5a17f543
TH
4584
4585 if (!css || !css_tryget(css))
4586 css = ERR_PTR(-ENOENT);
4587
4588 rcu_read_unlock();
4589 return css;
e5d1367f 4590}
e5d1367f 4591
1cb650b9
LZ
4592/**
4593 * css_from_id - lookup css by id
4594 * @id: the cgroup id
4595 * @ss: cgroup subsys to be looked into
4596 *
4597 * Returns the css if there's valid one with @id, otherwise returns NULL.
4598 * Should be called under rcu_read_lock().
4599 */
4600struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4601{
4602 struct cgroup *cgrp;
4603
ace2bee8 4604 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4605
4606 cgrp = idr_find(&ss->root->cgroup_idr, id);
4607 if (cgrp)
d1625964 4608 return cgroup_css(cgrp, ss);
1cb650b9 4609 return NULL;
e5d1367f
SE
4610}
4611
fe693435 4612#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4613static struct cgroup_subsys_state *
4614debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4615{
4616 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4617
4618 if (!css)
4619 return ERR_PTR(-ENOMEM);
4620
4621 return css;
4622}
4623
eb95419b 4624static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4625{
eb95419b 4626 kfree(css);
fe693435
PM
4627}
4628
182446d0
TH
4629static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4630 struct cftype *cft)
fe693435 4631{
182446d0 4632 return cgroup_task_count(css->cgroup);
fe693435
PM
4633}
4634
182446d0
TH
4635static u64 current_css_set_read(struct cgroup_subsys_state *css,
4636 struct cftype *cft)
fe693435
PM
4637{
4638 return (u64)(unsigned long)current->cgroups;
4639}
4640
182446d0 4641static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4642 struct cftype *cft)
fe693435
PM
4643{
4644 u64 count;
4645
4646 rcu_read_lock();
a8ad805c 4647 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4648 rcu_read_unlock();
4649 return count;
4650}
4651
2da8ca82 4652static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4653{
69d0206c 4654 struct cgrp_cset_link *link;
5abb8855 4655 struct css_set *cset;
e61734c5
TH
4656 char *name_buf;
4657
4658 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4659 if (!name_buf)
4660 return -ENOMEM;
7717f7ba 4661
96d365e0 4662 down_read(&css_set_rwsem);
7717f7ba 4663 rcu_read_lock();
5abb8855 4664 cset = rcu_dereference(current->cgroups);
69d0206c 4665 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4666 struct cgroup *c = link->cgrp;
7717f7ba 4667
a2dd4247 4668 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 4669 seq_printf(seq, "Root %d group %s\n",
a2dd4247 4670 c->root->hierarchy_id, name_buf);
7717f7ba
PM
4671 }
4672 rcu_read_unlock();
96d365e0 4673 up_read(&css_set_rwsem);
e61734c5 4674 kfree(name_buf);
7717f7ba
PM
4675 return 0;
4676}
4677
4678#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4679static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4680{
2da8ca82 4681 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4682 struct cgrp_cset_link *link;
7717f7ba 4683
96d365e0 4684 down_read(&css_set_rwsem);
182446d0 4685 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4686 struct css_set *cset = link->cset;
7717f7ba
PM
4687 struct task_struct *task;
4688 int count = 0;
c7561128 4689
5abb8855 4690 seq_printf(seq, "css_set %p\n", cset);
c7561128 4691
5abb8855 4692 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
4693 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4694 goto overflow;
4695 seq_printf(seq, " task %d\n", task_pid_vnr(task));
4696 }
4697
4698 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
4699 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
4700 goto overflow;
4701 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 4702 }
c7561128
TH
4703 continue;
4704 overflow:
4705 seq_puts(seq, " ...\n");
7717f7ba 4706 }
96d365e0 4707 up_read(&css_set_rwsem);
7717f7ba
PM
4708 return 0;
4709}
4710
182446d0 4711static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4712{
182446d0 4713 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4714}
4715
4716static struct cftype debug_files[] = {
fe693435
PM
4717 {
4718 .name = "taskcount",
4719 .read_u64 = debug_taskcount_read,
4720 },
4721
4722 {
4723 .name = "current_css_set",
4724 .read_u64 = current_css_set_read,
4725 },
4726
4727 {
4728 .name = "current_css_set_refcount",
4729 .read_u64 = current_css_set_refcount_read,
4730 },
4731
7717f7ba
PM
4732 {
4733 .name = "current_css_set_cg_links",
2da8ca82 4734 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4735 },
4736
4737 {
4738 .name = "cgroup_css_links",
2da8ca82 4739 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4740 },
4741
fe693435
PM
4742 {
4743 .name = "releasable",
4744 .read_u64 = releasable_read,
4745 },
fe693435 4746
4baf6e33
TH
4747 { } /* terminate */
4748};
fe693435 4749
073219e9 4750struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4751 .css_alloc = debug_css_alloc,
4752 .css_free = debug_css_free,
4baf6e33 4753 .base_cftypes = debug_files,
fe693435
PM
4754};
4755#endif /* CONFIG_CGROUP_DEBUG */