cgroup: add clone_children control file
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
c6d57f33 30#include <linux/ctype.h>
ddbcc7e8
PM
31#include <linux/errno.h>
32#include <linux/fs.h>
33#include <linux/kernel.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/mutex.h>
37#include <linux/mount.h>
38#include <linux/pagemap.h>
a424316c 39#include <linux/proc_fs.h>
ddbcc7e8
PM
40#include <linux/rcupdate.h>
41#include <linux/sched.h>
817929ec 42#include <linux/backing-dev.h>
ddbcc7e8
PM
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
bbcb81d0 48#include <linux/sort.h>
81a6a5cd 49#include <linux/kmod.h>
e6a1105b 50#include <linux/module.h>
846c7bb0
BS
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
472b1053 53#include <linux/hash.h>
3f8206d4 54#include <linux/namei.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
58#include <linux/eventfd.h>
59#include <linux/poll.h>
846c7bb0 60
ddbcc7e8
PM
61#include <asm/atomic.h>
62
81a6a5cd
PM
63static DEFINE_MUTEX(cgroup_mutex);
64
aae8aab4
BB
65/*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
ddbcc7e8 71#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 72static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
73#include <linux/cgroup_subsys.h>
74};
75
c6d57f33
PM
76#define MAX_CGROUP_ROOT_NAMELEN 64
77
ddbcc7e8
PM
78/*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
2c6ab6d2
PM
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
ddbcc7e8
PM
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
e5f6a860 107 /* A list running through the active hierarchies */
ddbcc7e8
PM
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
81a6a5cd 112
e788e066 113 /* The path to use for release notifications. */
81a6a5cd 114 char release_agent_path[PATH_MAX];
c6d57f33
PM
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
118};
119
ddbcc7e8
PM
120/*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125static struct cgroupfs_root rootnode;
126
38460b48
KH
127/*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131#define CSS_ID_MAX (65535)
132struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
2c392b8c 140 struct cgroup_subsys_state __rcu *css;
38460b48
KH
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157};
158
0dea1168
KS
159/*
160 * cgroup_event represents events which userspace want to recieve.
161 */
162struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187};
38460b48 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
191static LIST_HEAD(roots);
817929ec 192static int root_count;
ddbcc7e8 193
2c6ab6d2
PM
194static DEFINE_IDA(hierarchy_ida);
195static int next_hierarchy_id;
196static DEFINE_SPINLOCK(hierarchy_id_lock);
197
ddbcc7e8
PM
198/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199#define dummytop (&rootnode.top_cgroup)
200
201/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
ddbcc7e8 205 */
8947f9d5 206static int need_forkexit_callback __read_mostly;
ddbcc7e8 207
d11c563d
PM
208#ifdef CONFIG_PROVE_LOCKING
209int cgroup_lock_is_held(void)
210{
211 return lockdep_is_held(&cgroup_mutex);
212}
213#else /* #ifdef CONFIG_PROVE_LOCKING */
214int cgroup_lock_is_held(void)
215{
216 return mutex_is_locked(&cgroup_mutex);
217}
218#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
ddbcc7e8 222/* convenient tests for these bits */
bd89aabc 223inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 224{
bd89aabc 225 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
226}
227
228/* bits in struct cgroupfs_root flags field */
229enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231};
232
e9685a03 233static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
234{
235 const int bits =
bd89aabc
PM
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
239}
240
e9685a03 241static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 242{
bd89aabc 243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
244}
245
97978e6d
DL
246static int clone_children(const struct cgroup *cgrp)
247{
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249}
250
ddbcc7e8
PM
251/*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255#define for_each_subsys(_root, _ss) \
256list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
e5f6a860
LZ
258/* for_each_active_root() allows you to iterate across the active hierarchies */
259#define for_each_active_root(_root) \
ddbcc7e8
PM
260list_for_each_entry(_root, &roots, root_list)
261
81a6a5cd
PM
262/* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264static LIST_HEAD(release_list);
265static DEFINE_SPINLOCK(release_list_lock);
266static void cgroup_release_agent(struct work_struct *work);
267static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 268static void check_for_release(struct cgroup *cgrp);
81a6a5cd 269
817929ec
PM
270/* Link structure for associating css_set objects with cgroups */
271struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
bd89aabc 276 struct list_head cgrp_link_list;
7717f7ba 277 struct cgroup *cgrp;
817929ec
PM
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284};
285
286/* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293static struct css_set init_css_set;
294static struct cg_cgroup_link init_css_set_link;
295
e6a1105b
BB
296static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
38460b48 298
817929ec
PM
299/* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302static DEFINE_RWLOCK(css_set_lock);
303static int css_set_count;
304
7717f7ba
PM
305/*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
472b1053
LZ
310#define CSS_SET_HASH_BITS 7
311#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
314static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315{
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327}
328
c378369d
BB
329static void free_css_set_rcu(struct rcu_head *obj)
330{
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
333}
334
817929ec
PM
335/* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
8947f9d5 339static int use_task_css_set_links __read_mostly;
817929ec 340
2c6ab6d2 341static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 342{
71cbb949
KM
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
345 /*
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
349 */
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
356 }
81a6a5cd 357
2c6ab6d2
PM
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
361
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
bd89aabc
PM
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
81a6a5cd 369 if (taskexit)
bd89aabc
PM
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
81a6a5cd 372 }
2c6ab6d2
PM
373
374 kfree(link);
81a6a5cd 375 }
2c6ab6d2
PM
376
377 write_unlock(&css_set_lock);
c378369d 378 call_rcu(&cg->rcu_head, free_css_set_rcu);
b4f48b63
PM
379}
380
817929ec
PM
381/*
382 * refcounted get/put for css_set objects
383 */
384static inline void get_css_set(struct css_set *cg)
385{
146aa1bd 386 atomic_inc(&cg->refcount);
817929ec
PM
387}
388
389static inline void put_css_set(struct css_set *cg)
390{
146aa1bd 391 __put_css_set(cg, 0);
817929ec
PM
392}
393
81a6a5cd
PM
394static inline void put_css_set_taskexit(struct css_set *cg)
395{
146aa1bd 396 __put_css_set(cg, 1);
81a6a5cd
PM
397}
398
7717f7ba
PM
399/*
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
405 *
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
408 */
409static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
413{
414 struct list_head *l1, *l2;
415
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
419 }
420
421 /*
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
428 */
429
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
435
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
444 }
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
452
453 /*
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
459 */
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
466 }
467 }
468 return true;
469}
470
817929ec
PM
471/*
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
472b1053 474 * css_set is suitable.
817929ec
PM
475 *
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
478 *
bd89aabc 479 * cgrp: the cgroup that we're moving into
817929ec
PM
480 *
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
483 */
817929ec
PM
484static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
bd89aabc 486 struct cgroup *cgrp,
817929ec 487 struct cgroup_subsys_state *template[])
b4f48b63
PM
488{
489 int i;
bd89aabc 490 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
817929ec 494
aae8aab4
BB
495 /*
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
499 */
817929ec 500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 501 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
bd89aabc 505 template[i] = cgrp->subsys[i];
817929ec
PM
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
510 }
511 }
512
472b1053
LZ
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
517
518 /* This css_set matches what we need */
519 return cg;
472b1053 520 }
817929ec
PM
521
522 /* No existing cgroup group matched */
523 return NULL;
524}
525
36553434
LZ
526static void free_cg_links(struct list_head *tmp)
527{
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
530
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
534 }
535}
536
817929ec
PM
537/*
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
540 * success or a negative error
541 */
817929ec
PM
542static int allocate_cg_links(int count, struct list_head *tmp)
543{
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
36553434 550 free_cg_links(tmp);
817929ec
PM
551 return -ENOMEM;
552 }
bd89aabc 553 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
554 }
555 return 0;
556}
557
c12f65d4
LZ
558/**
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
563 */
564static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
566{
567 struct cg_cgroup_link *link;
568
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
7717f7ba 573 link->cgrp = cgrp;
2c6ab6d2 574 atomic_inc(&cgrp->count);
c12f65d4 575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
576 /*
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
579 */
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
581}
582
817929ec
PM
583/*
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
589 */
817929ec 590static struct css_set *find_css_set(
bd89aabc 591 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
592{
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
595
596 struct list_head tmp_cg_links;
817929ec 597
472b1053 598 struct hlist_head *hhead;
7717f7ba 599 struct cg_cgroup_link *link;
472b1053 600
817929ec
PM
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
7e9abd89 603 read_lock(&css_set_lock);
bd89aabc 604 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
605 if (res)
606 get_css_set(res);
7e9abd89 607 read_unlock(&css_set_lock);
817929ec
PM
608
609 if (res)
610 return res;
611
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
615
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
620 }
621
146aa1bd 622 atomic_set(&res->refcount, 1);
817929ec
PM
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
472b1053 625 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
626
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
630
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
638 }
817929ec
PM
639
640 BUG_ON(!list_empty(&tmp_cg_links));
641
817929ec 642 css_set_count++;
472b1053
LZ
643
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
647
817929ec
PM
648 write_unlock(&css_set_lock);
649
650 return res;
b4f48b63
PM
651}
652
7717f7ba
PM
653/*
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
656 */
657static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
659{
660 struct css_set *css;
661 struct cgroup *res = NULL;
662
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
665 /*
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
669 */
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
680 }
681 }
682 }
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
686}
687
ddbcc7e8
PM
688/*
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
692 *
693 * A task must hold cgroup_mutex to modify cgroups.
694 *
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
956db3ca 698 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
706 *
ddbcc7e8
PM
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
714 *
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
721 *
722 * The task_lock() exception
723 *
724 * The need for this exception arises from the action of
956db3ca 725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 726 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
733 *
734 * P.S. One more locking exception. RCU is used to guard the
956db3ca 735 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
736 */
737
ddbcc7e8
PM
738/**
739 * cgroup_lock - lock out any changes to cgroup structures
740 *
741 */
ddbcc7e8
PM
742void cgroup_lock(void)
743{
744 mutex_lock(&cgroup_mutex);
745}
67523c48 746EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
747
748/**
749 * cgroup_unlock - release lock on cgroup changes
750 *
751 * Undo the lock taken in a previous cgroup_lock() call.
752 */
ddbcc7e8
PM
753void cgroup_unlock(void)
754{
755 mutex_unlock(&cgroup_mutex);
756}
67523c48 757EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
758
759/*
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
764 */
765
766static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 768static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 769static const struct inode_operations cgroup_dir_inode_operations;
828c0950 770static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
771
772static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 773 .name = "cgroup",
e4ad08fe 774 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 775};
ddbcc7e8 776
38460b48
KH
777static int alloc_css_id(struct cgroup_subsys *ss,
778 struct cgroup *parent, struct cgroup *child);
779
ddbcc7e8
PM
780static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
781{
782 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
783
784 if (inode) {
85fe4025 785 inode->i_ino = get_next_ino();
ddbcc7e8 786 inode->i_mode = mode;
76aac0e9
DH
787 inode->i_uid = current_fsuid();
788 inode->i_gid = current_fsgid();
ddbcc7e8
PM
789 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
790 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
791 }
792 return inode;
793}
794
4fca88c8
KH
795/*
796 * Call subsys's pre_destroy handler.
797 * This is called before css refcnt check.
798 */
ec64f515 799static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
800{
801 struct cgroup_subsys *ss;
ec64f515
KH
802 int ret = 0;
803
4fca88c8 804 for_each_subsys(cgrp->root, ss)
ec64f515
KH
805 if (ss->pre_destroy) {
806 ret = ss->pre_destroy(ss, cgrp);
807 if (ret)
4ab78683 808 break;
ec64f515 809 }
0dea1168 810
ec64f515 811 return ret;
4fca88c8
KH
812}
813
a47295e6
PM
814static void free_cgroup_rcu(struct rcu_head *obj)
815{
816 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
817
818 kfree(cgrp);
819}
820
ddbcc7e8
PM
821static void cgroup_diput(struct dentry *dentry, struct inode *inode)
822{
823 /* is dentry a directory ? if so, kfree() associated cgroup */
824 if (S_ISDIR(inode->i_mode)) {
bd89aabc 825 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 826 struct cgroup_subsys *ss;
bd89aabc 827 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
828 /* It's possible for external users to be holding css
829 * reference counts on a cgroup; css_put() needs to
830 * be able to access the cgroup after decrementing
831 * the reference count in order to know if it needs to
832 * queue the cgroup to be handled by the release
833 * agent */
834 synchronize_rcu();
8dc4f3e1
PM
835
836 mutex_lock(&cgroup_mutex);
837 /*
838 * Release the subsystem state objects.
839 */
75139b82
LZ
840 for_each_subsys(cgrp->root, ss)
841 ss->destroy(ss, cgrp);
8dc4f3e1
PM
842
843 cgrp->root->number_of_cgroups--;
844 mutex_unlock(&cgroup_mutex);
845
a47295e6
PM
846 /*
847 * Drop the active superblock reference that we took when we
848 * created the cgroup
849 */
8dc4f3e1
PM
850 deactivate_super(cgrp->root->sb);
851
72a8cb30
BB
852 /*
853 * if we're getting rid of the cgroup, refcount should ensure
854 * that there are no pidlists left.
855 */
856 BUG_ON(!list_empty(&cgrp->pidlists));
857
a47295e6 858 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
ddbcc7e8
PM
859 }
860 iput(inode);
861}
862
863static void remove_dir(struct dentry *d)
864{
865 struct dentry *parent = dget(d->d_parent);
866
867 d_delete(d);
868 simple_rmdir(parent->d_inode, d);
869 dput(parent);
870}
871
872static void cgroup_clear_directory(struct dentry *dentry)
873{
874 struct list_head *node;
875
876 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
877 spin_lock(&dcache_lock);
878 node = dentry->d_subdirs.next;
879 while (node != &dentry->d_subdirs) {
880 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
881 list_del_init(node);
882 if (d->d_inode) {
883 /* This should never be called on a cgroup
884 * directory with child cgroups */
885 BUG_ON(d->d_inode->i_mode & S_IFDIR);
886 d = dget_locked(d);
887 spin_unlock(&dcache_lock);
888 d_delete(d);
889 simple_unlink(dentry->d_inode, d);
890 dput(d);
891 spin_lock(&dcache_lock);
892 }
893 node = dentry->d_subdirs.next;
894 }
895 spin_unlock(&dcache_lock);
896}
897
898/*
899 * NOTE : the dentry must have been dget()'ed
900 */
901static void cgroup_d_remove_dir(struct dentry *dentry)
902{
903 cgroup_clear_directory(dentry);
904
905 spin_lock(&dcache_lock);
906 list_del_init(&dentry->d_u.d_child);
907 spin_unlock(&dcache_lock);
908 remove_dir(dentry);
909}
910
ec64f515
KH
911/*
912 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
913 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
914 * reference to css->refcnt. In general, this refcnt is expected to goes down
915 * to zero, soon.
916 *
88703267 917 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515
KH
918 */
919DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
920
88703267 921static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 922{
88703267 923 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
924 wake_up_all(&cgroup_rmdir_waitq);
925}
926
88703267
KH
927void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
928{
929 css_get(css);
930}
931
932void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
933{
934 cgroup_wakeup_rmdir_waiter(css->cgroup);
935 css_put(css);
936}
937
aae8aab4 938/*
cf5d5941
BB
939 * Call with cgroup_mutex held. Drops reference counts on modules, including
940 * any duplicate ones that parse_cgroupfs_options took. If this function
941 * returns an error, no reference counts are touched.
aae8aab4 942 */
ddbcc7e8
PM
943static int rebind_subsystems(struct cgroupfs_root *root,
944 unsigned long final_bits)
945{
946 unsigned long added_bits, removed_bits;
bd89aabc 947 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
948 int i;
949
aae8aab4
BB
950 BUG_ON(!mutex_is_locked(&cgroup_mutex));
951
ddbcc7e8
PM
952 removed_bits = root->actual_subsys_bits & ~final_bits;
953 added_bits = final_bits & ~root->actual_subsys_bits;
954 /* Check that any added subsystems are currently free */
955 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 956 unsigned long bit = 1UL << i;
ddbcc7e8
PM
957 struct cgroup_subsys *ss = subsys[i];
958 if (!(bit & added_bits))
959 continue;
aae8aab4
BB
960 /*
961 * Nobody should tell us to do a subsys that doesn't exist:
962 * parse_cgroupfs_options should catch that case and refcounts
963 * ensure that subsystems won't disappear once selected.
964 */
965 BUG_ON(ss == NULL);
ddbcc7e8
PM
966 if (ss->root != &rootnode) {
967 /* Subsystem isn't free */
968 return -EBUSY;
969 }
970 }
971
972 /* Currently we don't handle adding/removing subsystems when
973 * any child cgroups exist. This is theoretically supportable
974 * but involves complex error handling, so it's being left until
975 * later */
307257cf 976 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
977 return -EBUSY;
978
979 /* Process each subsystem */
980 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
981 struct cgroup_subsys *ss = subsys[i];
982 unsigned long bit = 1UL << i;
983 if (bit & added_bits) {
984 /* We're binding this subsystem to this hierarchy */
aae8aab4 985 BUG_ON(ss == NULL);
bd89aabc 986 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
987 BUG_ON(!dummytop->subsys[i]);
988 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 989 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
990 cgrp->subsys[i] = dummytop->subsys[i];
991 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 992 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 993 ss->root = root;
ddbcc7e8 994 if (ss->bind)
bd89aabc 995 ss->bind(ss, cgrp);
999cd8a4 996 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 997 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
998 } else if (bit & removed_bits) {
999 /* We're removing this subsystem */
aae8aab4 1000 BUG_ON(ss == NULL);
bd89aabc
PM
1001 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1002 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1003 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
1004 if (ss->bind)
1005 ss->bind(ss, dummytop);
1006 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1007 cgrp->subsys[i] = NULL;
b2aa30f7 1008 subsys[i]->root = &rootnode;
33a68ac1 1009 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1010 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1011 /* subsystem is now free - drop reference on module */
1012 module_put(ss->module);
ddbcc7e8
PM
1013 } else if (bit & final_bits) {
1014 /* Subsystem state should already exist */
aae8aab4 1015 BUG_ON(ss == NULL);
bd89aabc 1016 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1017 /*
1018 * a refcount was taken, but we already had one, so
1019 * drop the extra reference.
1020 */
1021 module_put(ss->module);
1022#ifdef CONFIG_MODULE_UNLOAD
1023 BUG_ON(ss->module && !module_refcount(ss->module));
1024#endif
ddbcc7e8
PM
1025 } else {
1026 /* Subsystem state shouldn't exist */
bd89aabc 1027 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1028 }
1029 }
1030 root->subsys_bits = root->actual_subsys_bits = final_bits;
1031 synchronize_rcu();
1032
1033 return 0;
1034}
1035
1036static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1037{
1038 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1039 struct cgroup_subsys *ss;
1040
1041 mutex_lock(&cgroup_mutex);
1042 for_each_subsys(root, ss)
1043 seq_printf(seq, ",%s", ss->name);
1044 if (test_bit(ROOT_NOPREFIX, &root->flags))
1045 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1046 if (strlen(root->release_agent_path))
1047 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1048 if (clone_children(&root->top_cgroup))
1049 seq_puts(seq, ",clone_children");
c6d57f33
PM
1050 if (strlen(root->name))
1051 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1052 mutex_unlock(&cgroup_mutex);
1053 return 0;
1054}
1055
1056struct cgroup_sb_opts {
1057 unsigned long subsys_bits;
1058 unsigned long flags;
81a6a5cd 1059 char *release_agent;
97978e6d 1060 bool clone_children;
c6d57f33 1061 char *name;
2c6ab6d2
PM
1062 /* User explicitly requested empty subsystem */
1063 bool none;
c6d57f33
PM
1064
1065 struct cgroupfs_root *new_root;
2c6ab6d2 1066
ddbcc7e8
PM
1067};
1068
aae8aab4
BB
1069/*
1070 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1071 * with cgroup_mutex held to protect the subsys[] array. This function takes
1072 * refcounts on subsystems to be used, unless it returns error, in which case
1073 * no refcounts are taken.
aae8aab4 1074 */
cf5d5941 1075static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8
PM
1076{
1077 char *token, *o = data ?: "all";
f9ab5b5b 1078 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1079 int i;
1080 bool module_pin_failed = false;
f9ab5b5b 1081
aae8aab4
BB
1082 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1083
f9ab5b5b
LZ
1084#ifdef CONFIG_CPUSETS
1085 mask = ~(1UL << cpuset_subsys_id);
1086#endif
ddbcc7e8 1087
c6d57f33 1088 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1089
1090 while ((token = strsep(&o, ",")) != NULL) {
1091 if (!*token)
1092 return -EINVAL;
1093 if (!strcmp(token, "all")) {
8bab8dde 1094 /* Add all non-disabled subsystems */
8bab8dde
PM
1095 opts->subsys_bits = 0;
1096 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1097 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
1098 if (ss == NULL)
1099 continue;
8bab8dde
PM
1100 if (!ss->disabled)
1101 opts->subsys_bits |= 1ul << i;
1102 }
2c6ab6d2
PM
1103 } else if (!strcmp(token, "none")) {
1104 /* Explicitly have no subsystems */
1105 opts->none = true;
ddbcc7e8
PM
1106 } else if (!strcmp(token, "noprefix")) {
1107 set_bit(ROOT_NOPREFIX, &opts->flags);
97978e6d
DL
1108 } else if (!strcmp(token, "clone_children")) {
1109 opts->clone_children = true;
81a6a5cd
PM
1110 } else if (!strncmp(token, "release_agent=", 14)) {
1111 /* Specifying two release agents is forbidden */
1112 if (opts->release_agent)
1113 return -EINVAL;
c6d57f33 1114 opts->release_agent =
e400c285 1115 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1116 if (!opts->release_agent)
1117 return -ENOMEM;
c6d57f33 1118 } else if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1119 const char *name = token + 5;
1120 /* Can't specify an empty name */
1121 if (!strlen(name))
1122 return -EINVAL;
1123 /* Must match [\w.-]+ */
1124 for (i = 0; i < strlen(name); i++) {
1125 char c = name[i];
1126 if (isalnum(c))
1127 continue;
1128 if ((c == '.') || (c == '-') || (c == '_'))
1129 continue;
1130 return -EINVAL;
1131 }
1132 /* Specifying two names is forbidden */
1133 if (opts->name)
1134 return -EINVAL;
1135 opts->name = kstrndup(name,
e400c285 1136 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1137 GFP_KERNEL);
1138 if (!opts->name)
1139 return -ENOMEM;
ddbcc7e8
PM
1140 } else {
1141 struct cgroup_subsys *ss;
ddbcc7e8
PM
1142 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1143 ss = subsys[i];
aae8aab4
BB
1144 if (ss == NULL)
1145 continue;
ddbcc7e8 1146 if (!strcmp(token, ss->name)) {
8bab8dde
PM
1147 if (!ss->disabled)
1148 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1149 break;
1150 }
1151 }
1152 if (i == CGROUP_SUBSYS_COUNT)
1153 return -ENOENT;
1154 }
1155 }
1156
2c6ab6d2
PM
1157 /* Consistency checks */
1158
f9ab5b5b
LZ
1159 /*
1160 * Option noprefix was introduced just for backward compatibility
1161 * with the old cpuset, so we allow noprefix only if mounting just
1162 * the cpuset subsystem.
1163 */
1164 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1165 (opts->subsys_bits & mask))
1166 return -EINVAL;
1167
2c6ab6d2
PM
1168
1169 /* Can't specify "none" and some subsystems */
1170 if (opts->subsys_bits && opts->none)
1171 return -EINVAL;
1172
1173 /*
1174 * We either have to specify by name or by subsystems. (So all
1175 * empty hierarchies must have a name).
1176 */
c6d57f33 1177 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1178 return -EINVAL;
1179
cf5d5941
BB
1180 /*
1181 * Grab references on all the modules we'll need, so the subsystems
1182 * don't dance around before rebind_subsystems attaches them. This may
1183 * take duplicate reference counts on a subsystem that's already used,
1184 * but rebind_subsystems handles this case.
1185 */
1186 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1187 unsigned long bit = 1UL << i;
1188
1189 if (!(bit & opts->subsys_bits))
1190 continue;
1191 if (!try_module_get(subsys[i]->module)) {
1192 module_pin_failed = true;
1193 break;
1194 }
1195 }
1196 if (module_pin_failed) {
1197 /*
1198 * oops, one of the modules was going away. this means that we
1199 * raced with a module_delete call, and to the user this is
1200 * essentially a "subsystem doesn't exist" case.
1201 */
1202 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1203 /* drop refcounts only on the ones we took */
1204 unsigned long bit = 1UL << i;
1205
1206 if (!(bit & opts->subsys_bits))
1207 continue;
1208 module_put(subsys[i]->module);
1209 }
1210 return -ENOENT;
1211 }
1212
ddbcc7e8
PM
1213 return 0;
1214}
1215
cf5d5941
BB
1216static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1217{
1218 int i;
1219 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1220 unsigned long bit = 1UL << i;
1221
1222 if (!(bit & subsys_bits))
1223 continue;
1224 module_put(subsys[i]->module);
1225 }
1226}
1227
ddbcc7e8
PM
1228static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1229{
1230 int ret = 0;
1231 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1232 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1233 struct cgroup_sb_opts opts;
1234
bd89aabc 1235 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1236 mutex_lock(&cgroup_mutex);
1237
1238 /* See what subsystems are wanted */
1239 ret = parse_cgroupfs_options(data, &opts);
1240 if (ret)
1241 goto out_unlock;
1242
cf5d5941
BB
1243 /* Don't allow flags or name to change at remount */
1244 if (opts.flags != root->flags ||
1245 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1246 ret = -EINVAL;
cf5d5941 1247 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1248 goto out_unlock;
1249 }
1250
ddbcc7e8 1251 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1252 if (ret) {
1253 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1254 goto out_unlock;
cf5d5941 1255 }
ddbcc7e8
PM
1256
1257 /* (re)populate subsystem files */
0670e08b 1258 cgroup_populate_dir(cgrp);
ddbcc7e8 1259
81a6a5cd
PM
1260 if (opts.release_agent)
1261 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1262 out_unlock:
66bdc9cf 1263 kfree(opts.release_agent);
c6d57f33 1264 kfree(opts.name);
ddbcc7e8 1265 mutex_unlock(&cgroup_mutex);
bd89aabc 1266 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1267 return ret;
1268}
1269
b87221de 1270static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1271 .statfs = simple_statfs,
1272 .drop_inode = generic_delete_inode,
1273 .show_options = cgroup_show_options,
1274 .remount_fs = cgroup_remount,
1275};
1276
cc31edce
PM
1277static void init_cgroup_housekeeping(struct cgroup *cgrp)
1278{
1279 INIT_LIST_HEAD(&cgrp->sibling);
1280 INIT_LIST_HEAD(&cgrp->children);
1281 INIT_LIST_HEAD(&cgrp->css_sets);
1282 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1283 INIT_LIST_HEAD(&cgrp->pidlists);
1284 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1285 INIT_LIST_HEAD(&cgrp->event_list);
1286 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1287}
c6d57f33 1288
ddbcc7e8
PM
1289static void init_cgroup_root(struct cgroupfs_root *root)
1290{
bd89aabc 1291 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1292 INIT_LIST_HEAD(&root->subsys_list);
1293 INIT_LIST_HEAD(&root->root_list);
1294 root->number_of_cgroups = 1;
bd89aabc
PM
1295 cgrp->root = root;
1296 cgrp->top_cgroup = cgrp;
cc31edce 1297 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1298}
1299
2c6ab6d2
PM
1300static bool init_root_id(struct cgroupfs_root *root)
1301{
1302 int ret = 0;
1303
1304 do {
1305 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1306 return false;
1307 spin_lock(&hierarchy_id_lock);
1308 /* Try to allocate the next unused ID */
1309 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1310 &root->hierarchy_id);
1311 if (ret == -ENOSPC)
1312 /* Try again starting from 0 */
1313 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1314 if (!ret) {
1315 next_hierarchy_id = root->hierarchy_id + 1;
1316 } else if (ret != -EAGAIN) {
1317 /* Can only get here if the 31-bit IDR is full ... */
1318 BUG_ON(ret);
1319 }
1320 spin_unlock(&hierarchy_id_lock);
1321 } while (ret);
1322 return true;
1323}
1324
ddbcc7e8
PM
1325static int cgroup_test_super(struct super_block *sb, void *data)
1326{
c6d57f33 1327 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1328 struct cgroupfs_root *root = sb->s_fs_info;
1329
c6d57f33
PM
1330 /* If we asked for a name then it must match */
1331 if (opts->name && strcmp(opts->name, root->name))
1332 return 0;
ddbcc7e8 1333
2c6ab6d2
PM
1334 /*
1335 * If we asked for subsystems (or explicitly for no
1336 * subsystems) then they must match
1337 */
1338 if ((opts->subsys_bits || opts->none)
1339 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1340 return 0;
1341
1342 return 1;
1343}
1344
c6d57f33
PM
1345static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1346{
1347 struct cgroupfs_root *root;
1348
2c6ab6d2 1349 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1350 return NULL;
1351
1352 root = kzalloc(sizeof(*root), GFP_KERNEL);
1353 if (!root)
1354 return ERR_PTR(-ENOMEM);
1355
2c6ab6d2
PM
1356 if (!init_root_id(root)) {
1357 kfree(root);
1358 return ERR_PTR(-ENOMEM);
1359 }
c6d57f33 1360 init_cgroup_root(root);
2c6ab6d2 1361
c6d57f33
PM
1362 root->subsys_bits = opts->subsys_bits;
1363 root->flags = opts->flags;
1364 if (opts->release_agent)
1365 strcpy(root->release_agent_path, opts->release_agent);
1366 if (opts->name)
1367 strcpy(root->name, opts->name);
97978e6d
DL
1368 if (opts->clone_children)
1369 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1370 return root;
1371}
1372
2c6ab6d2
PM
1373static void cgroup_drop_root(struct cgroupfs_root *root)
1374{
1375 if (!root)
1376 return;
1377
1378 BUG_ON(!root->hierarchy_id);
1379 spin_lock(&hierarchy_id_lock);
1380 ida_remove(&hierarchy_ida, root->hierarchy_id);
1381 spin_unlock(&hierarchy_id_lock);
1382 kfree(root);
1383}
1384
ddbcc7e8
PM
1385static int cgroup_set_super(struct super_block *sb, void *data)
1386{
1387 int ret;
c6d57f33
PM
1388 struct cgroup_sb_opts *opts = data;
1389
1390 /* If we don't have a new root, we can't set up a new sb */
1391 if (!opts->new_root)
1392 return -EINVAL;
1393
2c6ab6d2 1394 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1395
1396 ret = set_anon_super(sb, NULL);
1397 if (ret)
1398 return ret;
1399
c6d57f33
PM
1400 sb->s_fs_info = opts->new_root;
1401 opts->new_root->sb = sb;
ddbcc7e8
PM
1402
1403 sb->s_blocksize = PAGE_CACHE_SIZE;
1404 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1405 sb->s_magic = CGROUP_SUPER_MAGIC;
1406 sb->s_op = &cgroup_ops;
1407
1408 return 0;
1409}
1410
1411static int cgroup_get_rootdir(struct super_block *sb)
1412{
1413 struct inode *inode =
1414 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1415 struct dentry *dentry;
1416
1417 if (!inode)
1418 return -ENOMEM;
1419
ddbcc7e8
PM
1420 inode->i_fop = &simple_dir_operations;
1421 inode->i_op = &cgroup_dir_inode_operations;
1422 /* directories start off with i_nlink == 2 (for "." entry) */
1423 inc_nlink(inode);
1424 dentry = d_alloc_root(inode);
1425 if (!dentry) {
1426 iput(inode);
1427 return -ENOMEM;
1428 }
1429 sb->s_root = dentry;
1430 return 0;
1431}
1432
1433static int cgroup_get_sb(struct file_system_type *fs_type,
1434 int flags, const char *unused_dev_name,
1435 void *data, struct vfsmount *mnt)
1436{
1437 struct cgroup_sb_opts opts;
c6d57f33 1438 struct cgroupfs_root *root;
ddbcc7e8
PM
1439 int ret = 0;
1440 struct super_block *sb;
c6d57f33 1441 struct cgroupfs_root *new_root;
ddbcc7e8
PM
1442
1443 /* First find the desired set of subsystems */
aae8aab4 1444 mutex_lock(&cgroup_mutex);
ddbcc7e8 1445 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1446 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1447 if (ret)
1448 goto out_err;
ddbcc7e8 1449
c6d57f33
PM
1450 /*
1451 * Allocate a new cgroup root. We may not need it if we're
1452 * reusing an existing hierarchy.
1453 */
1454 new_root = cgroup_root_from_opts(&opts);
1455 if (IS_ERR(new_root)) {
1456 ret = PTR_ERR(new_root);
cf5d5941 1457 goto drop_modules;
81a6a5cd 1458 }
c6d57f33 1459 opts.new_root = new_root;
ddbcc7e8 1460
c6d57f33
PM
1461 /* Locate an existing or new sb for this hierarchy */
1462 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1463 if (IS_ERR(sb)) {
c6d57f33 1464 ret = PTR_ERR(sb);
2c6ab6d2 1465 cgroup_drop_root(opts.new_root);
cf5d5941 1466 goto drop_modules;
ddbcc7e8
PM
1467 }
1468
c6d57f33
PM
1469 root = sb->s_fs_info;
1470 BUG_ON(!root);
1471 if (root == opts.new_root) {
1472 /* We used the new root structure, so this is a new hierarchy */
1473 struct list_head tmp_cg_links;
c12f65d4 1474 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1475 struct inode *inode;
c6d57f33 1476 struct cgroupfs_root *existing_root;
28fd5dfc 1477 int i;
ddbcc7e8
PM
1478
1479 BUG_ON(sb->s_root != NULL);
1480
1481 ret = cgroup_get_rootdir(sb);
1482 if (ret)
1483 goto drop_new_super;
817929ec 1484 inode = sb->s_root->d_inode;
ddbcc7e8 1485
817929ec 1486 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1487 mutex_lock(&cgroup_mutex);
1488
c6d57f33
PM
1489 if (strlen(root->name)) {
1490 /* Check for name clashes with existing mounts */
1491 for_each_active_root(existing_root) {
1492 if (!strcmp(existing_root->name, root->name)) {
1493 ret = -EBUSY;
1494 mutex_unlock(&cgroup_mutex);
1495 mutex_unlock(&inode->i_mutex);
1496 goto drop_new_super;
1497 }
1498 }
1499 }
1500
817929ec
PM
1501 /*
1502 * We're accessing css_set_count without locking
1503 * css_set_lock here, but that's OK - it can only be
1504 * increased by someone holding cgroup_lock, and
1505 * that's us. The worst that can happen is that we
1506 * have some link structures left over
1507 */
1508 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1509 if (ret) {
1510 mutex_unlock(&cgroup_mutex);
1511 mutex_unlock(&inode->i_mutex);
1512 goto drop_new_super;
1513 }
1514
ddbcc7e8
PM
1515 ret = rebind_subsystems(root, root->subsys_bits);
1516 if (ret == -EBUSY) {
1517 mutex_unlock(&cgroup_mutex);
817929ec 1518 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1519 free_cg_links(&tmp_cg_links);
1520 goto drop_new_super;
ddbcc7e8 1521 }
cf5d5941
BB
1522 /*
1523 * There must be no failure case after here, since rebinding
1524 * takes care of subsystems' refcounts, which are explicitly
1525 * dropped in the failure exit path.
1526 */
ddbcc7e8
PM
1527
1528 /* EBUSY should be the only error here */
1529 BUG_ON(ret);
1530
1531 list_add(&root->root_list, &roots);
817929ec 1532 root_count++;
ddbcc7e8 1533
c12f65d4 1534 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1535 root->top_cgroup.dentry = sb->s_root;
1536
817929ec
PM
1537 /* Link the top cgroup in this hierarchy into all
1538 * the css_set objects */
1539 write_lock(&css_set_lock);
28fd5dfc
LZ
1540 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1541 struct hlist_head *hhead = &css_set_table[i];
1542 struct hlist_node *node;
817929ec 1543 struct css_set *cg;
28fd5dfc 1544
c12f65d4
LZ
1545 hlist_for_each_entry(cg, node, hhead, hlist)
1546 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1547 }
817929ec
PM
1548 write_unlock(&css_set_lock);
1549
1550 free_cg_links(&tmp_cg_links);
1551
c12f65d4
LZ
1552 BUG_ON(!list_empty(&root_cgrp->sibling));
1553 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1554 BUG_ON(root->number_of_cgroups != 1);
1555
c12f65d4 1556 cgroup_populate_dir(root_cgrp);
ddbcc7e8 1557 mutex_unlock(&cgroup_mutex);
34f77a90 1558 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1559 } else {
1560 /*
1561 * We re-used an existing hierarchy - the new root (if
1562 * any) is not needed
1563 */
2c6ab6d2 1564 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1565 /* no subsys rebinding, so refcounts don't change */
1566 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1567 }
1568
a3ec947c 1569 simple_set_mnt(mnt, sb);
c6d57f33
PM
1570 kfree(opts.release_agent);
1571 kfree(opts.name);
a3ec947c 1572 return 0;
ddbcc7e8
PM
1573
1574 drop_new_super:
6f5bbff9 1575 deactivate_locked_super(sb);
cf5d5941
BB
1576 drop_modules:
1577 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1578 out_err:
1579 kfree(opts.release_agent);
1580 kfree(opts.name);
ddbcc7e8
PM
1581 return ret;
1582}
1583
1584static void cgroup_kill_sb(struct super_block *sb) {
1585 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1586 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1587 int ret;
71cbb949
KM
1588 struct cg_cgroup_link *link;
1589 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1590
1591 BUG_ON(!root);
1592
1593 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1594 BUG_ON(!list_empty(&cgrp->children));
1595 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1596
1597 mutex_lock(&cgroup_mutex);
1598
1599 /* Rebind all subsystems back to the default hierarchy */
1600 ret = rebind_subsystems(root, 0);
1601 /* Shouldn't be able to fail ... */
1602 BUG_ON(ret);
1603
817929ec
PM
1604 /*
1605 * Release all the links from css_sets to this hierarchy's
1606 * root cgroup
1607 */
1608 write_lock(&css_set_lock);
71cbb949
KM
1609
1610 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1611 cgrp_link_list) {
817929ec 1612 list_del(&link->cg_link_list);
bd89aabc 1613 list_del(&link->cgrp_link_list);
817929ec
PM
1614 kfree(link);
1615 }
1616 write_unlock(&css_set_lock);
1617
839ec545
PM
1618 if (!list_empty(&root->root_list)) {
1619 list_del(&root->root_list);
1620 root_count--;
1621 }
e5f6a860 1622
ddbcc7e8
PM
1623 mutex_unlock(&cgroup_mutex);
1624
ddbcc7e8 1625 kill_litter_super(sb);
2c6ab6d2 1626 cgroup_drop_root(root);
ddbcc7e8
PM
1627}
1628
1629static struct file_system_type cgroup_fs_type = {
1630 .name = "cgroup",
1631 .get_sb = cgroup_get_sb,
1632 .kill_sb = cgroup_kill_sb,
1633};
1634
676db4af
GK
1635static struct kobject *cgroup_kobj;
1636
bd89aabc 1637static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1638{
1639 return dentry->d_fsdata;
1640}
1641
1642static inline struct cftype *__d_cft(struct dentry *dentry)
1643{
1644 return dentry->d_fsdata;
1645}
1646
a043e3b2
LZ
1647/**
1648 * cgroup_path - generate the path of a cgroup
1649 * @cgrp: the cgroup in question
1650 * @buf: the buffer to write the path into
1651 * @buflen: the length of the buffer
1652 *
a47295e6
PM
1653 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1654 * reference. Writes path of cgroup into buf. Returns 0 on success,
1655 * -errno on error.
ddbcc7e8 1656 */
bd89aabc 1657int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1658{
1659 char *start;
9a9686b6
LZ
1660 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1661 rcu_read_lock_held() ||
1662 cgroup_lock_is_held());
ddbcc7e8 1663
a47295e6 1664 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1665 /*
1666 * Inactive subsystems have no dentry for their root
1667 * cgroup
1668 */
1669 strcpy(buf, "/");
1670 return 0;
1671 }
1672
1673 start = buf + buflen;
1674
1675 *--start = '\0';
1676 for (;;) {
a47295e6 1677 int len = dentry->d_name.len;
9a9686b6 1678
ddbcc7e8
PM
1679 if ((start -= len) < buf)
1680 return -ENAMETOOLONG;
9a9686b6 1681 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1682 cgrp = cgrp->parent;
1683 if (!cgrp)
ddbcc7e8 1684 break;
9a9686b6
LZ
1685
1686 dentry = rcu_dereference_check(cgrp->dentry,
1687 rcu_read_lock_held() ||
1688 cgroup_lock_is_held());
bd89aabc 1689 if (!cgrp->parent)
ddbcc7e8
PM
1690 continue;
1691 if (--start < buf)
1692 return -ENAMETOOLONG;
1693 *start = '/';
1694 }
1695 memmove(buf, start, buf + buflen - start);
1696 return 0;
1697}
67523c48 1698EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1699
a043e3b2
LZ
1700/**
1701 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1702 * @cgrp: the cgroup the task is attaching to
1703 * @tsk: the task to be attached
bbcb81d0 1704 *
a043e3b2
LZ
1705 * Call holding cgroup_mutex. May take task_lock of
1706 * the task 'tsk' during call.
bbcb81d0 1707 */
956db3ca 1708int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1709{
1710 int retval = 0;
2468c723 1711 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1712 struct cgroup *oldcgrp;
77efecd9 1713 struct css_set *cg;
817929ec 1714 struct css_set *newcg;
bd89aabc 1715 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1716
1717 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1718 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1719 if (cgrp == oldcgrp)
bbcb81d0
PM
1720 return 0;
1721
1722 for_each_subsys(root, ss) {
1723 if (ss->can_attach) {
be367d09 1724 retval = ss->can_attach(ss, cgrp, tsk, false);
2468c723
DN
1725 if (retval) {
1726 /*
1727 * Remember on which subsystem the can_attach()
1728 * failed, so that we only call cancel_attach()
1729 * against the subsystems whose can_attach()
1730 * succeeded. (See below)
1731 */
1732 failed_ss = ss;
1733 goto out;
1734 }
bbcb81d0
PM
1735 }
1736 }
1737
77efecd9
LJ
1738 task_lock(tsk);
1739 cg = tsk->cgroups;
1740 get_css_set(cg);
1741 task_unlock(tsk);
817929ec
PM
1742 /*
1743 * Locate or allocate a new css_set for this task,
1744 * based on its final set of cgroups
1745 */
bd89aabc 1746 newcg = find_css_set(cg, cgrp);
77efecd9 1747 put_css_set(cg);
2468c723
DN
1748 if (!newcg) {
1749 retval = -ENOMEM;
1750 goto out;
1751 }
817929ec 1752
bbcb81d0
PM
1753 task_lock(tsk);
1754 if (tsk->flags & PF_EXITING) {
1755 task_unlock(tsk);
817929ec 1756 put_css_set(newcg);
2468c723
DN
1757 retval = -ESRCH;
1758 goto out;
bbcb81d0 1759 }
817929ec 1760 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1761 task_unlock(tsk);
1762
817929ec
PM
1763 /* Update the css_set linked lists if we're using them */
1764 write_lock(&css_set_lock);
1765 if (!list_empty(&tsk->cg_list)) {
1766 list_del(&tsk->cg_list);
1767 list_add(&tsk->cg_list, &newcg->tasks);
1768 }
1769 write_unlock(&css_set_lock);
1770
bbcb81d0 1771 for_each_subsys(root, ss) {
e18f6318 1772 if (ss->attach)
be367d09 1773 ss->attach(ss, cgrp, oldcgrp, tsk, false);
bbcb81d0 1774 }
bd89aabc 1775 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1776 synchronize_rcu();
817929ec 1777 put_css_set(cg);
ec64f515
KH
1778
1779 /*
1780 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1781 * is no longer empty.
1782 */
88703267 1783 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1784out:
1785 if (retval) {
1786 for_each_subsys(root, ss) {
1787 if (ss == failed_ss)
1788 /*
1789 * This subsystem was the one that failed the
1790 * can_attach() check earlier, so we don't need
1791 * to call cancel_attach() against it or any
1792 * remaining subsystems.
1793 */
1794 break;
1795 if (ss->cancel_attach)
1796 ss->cancel_attach(ss, cgrp, tsk, false);
1797 }
1798 }
1799 return retval;
bbcb81d0
PM
1800}
1801
d7926ee3 1802/**
31583bb0
MT
1803 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1804 * @from: attach to all cgroups of a given task
d7926ee3
SS
1805 * @tsk: the task to be attached
1806 */
31583bb0 1807int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1808{
1809 struct cgroupfs_root *root;
d7926ee3
SS
1810 int retval = 0;
1811
1812 cgroup_lock();
1813 for_each_active_root(root) {
31583bb0
MT
1814 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1815
1816 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1817 if (retval)
1818 break;
1819 }
1820 cgroup_unlock();
1821
1822 return retval;
1823}
31583bb0 1824EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1825
bbcb81d0 1826/*
af351026
PM
1827 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1828 * held. May take task_lock of task
bbcb81d0 1829 */
af351026 1830static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1831{
bbcb81d0 1832 struct task_struct *tsk;
c69e8d9c 1833 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1834 int ret;
1835
bbcb81d0
PM
1836 if (pid) {
1837 rcu_read_lock();
73507f33 1838 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1839 if (!tsk || tsk->flags & PF_EXITING) {
1840 rcu_read_unlock();
1841 return -ESRCH;
1842 }
bbcb81d0 1843
c69e8d9c
DH
1844 tcred = __task_cred(tsk);
1845 if (cred->euid &&
1846 cred->euid != tcred->uid &&
1847 cred->euid != tcred->suid) {
1848 rcu_read_unlock();
bbcb81d0
PM
1849 return -EACCES;
1850 }
c69e8d9c
DH
1851 get_task_struct(tsk);
1852 rcu_read_unlock();
bbcb81d0
PM
1853 } else {
1854 tsk = current;
1855 get_task_struct(tsk);
1856 }
1857
956db3ca 1858 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1859 put_task_struct(tsk);
1860 return ret;
1861}
1862
af351026
PM
1863static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1864{
1865 int ret;
1866 if (!cgroup_lock_live_group(cgrp))
1867 return -ENODEV;
1868 ret = attach_task_by_pid(cgrp, pid);
1869 cgroup_unlock();
1870 return ret;
1871}
1872
e788e066
PM
1873/**
1874 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1875 * @cgrp: the cgroup to be checked for liveness
1876 *
84eea842
PM
1877 * On success, returns true; the lock should be later released with
1878 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1879 */
84eea842 1880bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1881{
1882 mutex_lock(&cgroup_mutex);
1883 if (cgroup_is_removed(cgrp)) {
1884 mutex_unlock(&cgroup_mutex);
1885 return false;
1886 }
1887 return true;
1888}
67523c48 1889EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
1890
1891static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1892 const char *buffer)
1893{
1894 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1895 if (!cgroup_lock_live_group(cgrp))
1896 return -ENODEV;
1897 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1898 cgroup_unlock();
e788e066
PM
1899 return 0;
1900}
1901
1902static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1903 struct seq_file *seq)
1904{
1905 if (!cgroup_lock_live_group(cgrp))
1906 return -ENODEV;
1907 seq_puts(seq, cgrp->root->release_agent_path);
1908 seq_putc(seq, '\n');
84eea842 1909 cgroup_unlock();
e788e066
PM
1910 return 0;
1911}
1912
84eea842
PM
1913/* A buffer size big enough for numbers or short strings */
1914#define CGROUP_LOCAL_BUFFER_SIZE 64
1915
e73d2c61 1916static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1917 struct file *file,
1918 const char __user *userbuf,
1919 size_t nbytes, loff_t *unused_ppos)
355e0c48 1920{
84eea842 1921 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1922 int retval = 0;
355e0c48
PM
1923 char *end;
1924
1925 if (!nbytes)
1926 return -EINVAL;
1927 if (nbytes >= sizeof(buffer))
1928 return -E2BIG;
1929 if (copy_from_user(buffer, userbuf, nbytes))
1930 return -EFAULT;
1931
1932 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 1933 if (cft->write_u64) {
478988d3 1934 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
1935 if (*end)
1936 return -EINVAL;
1937 retval = cft->write_u64(cgrp, cft, val);
1938 } else {
478988d3 1939 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
1940 if (*end)
1941 return -EINVAL;
1942 retval = cft->write_s64(cgrp, cft, val);
1943 }
355e0c48
PM
1944 if (!retval)
1945 retval = nbytes;
1946 return retval;
1947}
1948
db3b1497
PM
1949static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1950 struct file *file,
1951 const char __user *userbuf,
1952 size_t nbytes, loff_t *unused_ppos)
1953{
84eea842 1954 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1955 int retval = 0;
1956 size_t max_bytes = cft->max_write_len;
1957 char *buffer = local_buffer;
1958
1959 if (!max_bytes)
1960 max_bytes = sizeof(local_buffer) - 1;
1961 if (nbytes >= max_bytes)
1962 return -E2BIG;
1963 /* Allocate a dynamic buffer if we need one */
1964 if (nbytes >= sizeof(local_buffer)) {
1965 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1966 if (buffer == NULL)
1967 return -ENOMEM;
1968 }
5a3eb9f6
LZ
1969 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1970 retval = -EFAULT;
1971 goto out;
1972 }
db3b1497
PM
1973
1974 buffer[nbytes] = 0; /* nul-terminate */
478988d3 1975 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
1976 if (!retval)
1977 retval = nbytes;
5a3eb9f6 1978out:
db3b1497
PM
1979 if (buffer != local_buffer)
1980 kfree(buffer);
1981 return retval;
1982}
1983
ddbcc7e8
PM
1984static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1985 size_t nbytes, loff_t *ppos)
1986{
1987 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1988 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1989
75139b82 1990 if (cgroup_is_removed(cgrp))
ddbcc7e8 1991 return -ENODEV;
355e0c48 1992 if (cft->write)
bd89aabc 1993 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1994 if (cft->write_u64 || cft->write_s64)
1995 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1996 if (cft->write_string)
1997 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1998 if (cft->trigger) {
1999 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2000 return ret ? ret : nbytes;
2001 }
355e0c48 2002 return -EINVAL;
ddbcc7e8
PM
2003}
2004
f4c753b7
PM
2005static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2006 struct file *file,
2007 char __user *buf, size_t nbytes,
2008 loff_t *ppos)
ddbcc7e8 2009{
84eea842 2010 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2011 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2012 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2013
2014 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2015}
2016
e73d2c61
PM
2017static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2018 struct file *file,
2019 char __user *buf, size_t nbytes,
2020 loff_t *ppos)
2021{
84eea842 2022 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2023 s64 val = cft->read_s64(cgrp, cft);
2024 int len = sprintf(tmp, "%lld\n", (long long) val);
2025
2026 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2027}
2028
ddbcc7e8
PM
2029static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2030 size_t nbytes, loff_t *ppos)
2031{
2032 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2033 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2034
75139b82 2035 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2036 return -ENODEV;
2037
2038 if (cft->read)
bd89aabc 2039 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2040 if (cft->read_u64)
2041 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2042 if (cft->read_s64)
2043 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2044 return -EINVAL;
2045}
2046
91796569
PM
2047/*
2048 * seqfile ops/methods for returning structured data. Currently just
2049 * supports string->u64 maps, but can be extended in future.
2050 */
2051
2052struct cgroup_seqfile_state {
2053 struct cftype *cft;
2054 struct cgroup *cgroup;
2055};
2056
2057static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2058{
2059 struct seq_file *sf = cb->state;
2060 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2061}
2062
2063static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2064{
2065 struct cgroup_seqfile_state *state = m->private;
2066 struct cftype *cft = state->cft;
29486df3
SH
2067 if (cft->read_map) {
2068 struct cgroup_map_cb cb = {
2069 .fill = cgroup_map_add,
2070 .state = m,
2071 };
2072 return cft->read_map(state->cgroup, cft, &cb);
2073 }
2074 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2075}
2076
96930a63 2077static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2078{
2079 struct seq_file *seq = file->private_data;
2080 kfree(seq->private);
2081 return single_release(inode, file);
2082}
2083
828c0950 2084static const struct file_operations cgroup_seqfile_operations = {
91796569 2085 .read = seq_read,
e788e066 2086 .write = cgroup_file_write,
91796569
PM
2087 .llseek = seq_lseek,
2088 .release = cgroup_seqfile_release,
2089};
2090
ddbcc7e8
PM
2091static int cgroup_file_open(struct inode *inode, struct file *file)
2092{
2093 int err;
2094 struct cftype *cft;
2095
2096 err = generic_file_open(inode, file);
2097 if (err)
2098 return err;
ddbcc7e8 2099 cft = __d_cft(file->f_dentry);
75139b82 2100
29486df3 2101 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2102 struct cgroup_seqfile_state *state =
2103 kzalloc(sizeof(*state), GFP_USER);
2104 if (!state)
2105 return -ENOMEM;
2106 state->cft = cft;
2107 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2108 file->f_op = &cgroup_seqfile_operations;
2109 err = single_open(file, cgroup_seqfile_show, state);
2110 if (err < 0)
2111 kfree(state);
2112 } else if (cft->open)
ddbcc7e8
PM
2113 err = cft->open(inode, file);
2114 else
2115 err = 0;
2116
2117 return err;
2118}
2119
2120static int cgroup_file_release(struct inode *inode, struct file *file)
2121{
2122 struct cftype *cft = __d_cft(file->f_dentry);
2123 if (cft->release)
2124 return cft->release(inode, file);
2125 return 0;
2126}
2127
2128/*
2129 * cgroup_rename - Only allow simple rename of directories in place.
2130 */
2131static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2132 struct inode *new_dir, struct dentry *new_dentry)
2133{
2134 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2135 return -ENOTDIR;
2136 if (new_dentry->d_inode)
2137 return -EEXIST;
2138 if (old_dir != new_dir)
2139 return -EIO;
2140 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2141}
2142
828c0950 2143static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2144 .read = cgroup_file_read,
2145 .write = cgroup_file_write,
2146 .llseek = generic_file_llseek,
2147 .open = cgroup_file_open,
2148 .release = cgroup_file_release,
2149};
2150
6e1d5dcc 2151static const struct inode_operations cgroup_dir_inode_operations = {
ddbcc7e8
PM
2152 .lookup = simple_lookup,
2153 .mkdir = cgroup_mkdir,
2154 .rmdir = cgroup_rmdir,
2155 .rename = cgroup_rename,
2156};
2157
0dea1168
KS
2158/*
2159 * Check if a file is a control file
2160 */
2161static inline struct cftype *__file_cft(struct file *file)
2162{
2163 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2164 return ERR_PTR(-EINVAL);
2165 return __d_cft(file->f_dentry);
2166}
2167
099fca32 2168static int cgroup_create_file(struct dentry *dentry, mode_t mode,
ddbcc7e8
PM
2169 struct super_block *sb)
2170{
3ba13d17 2171 static const struct dentry_operations cgroup_dops = {
ddbcc7e8
PM
2172 .d_iput = cgroup_diput,
2173 };
2174
2175 struct inode *inode;
2176
2177 if (!dentry)
2178 return -ENOENT;
2179 if (dentry->d_inode)
2180 return -EEXIST;
2181
2182 inode = cgroup_new_inode(mode, sb);
2183 if (!inode)
2184 return -ENOMEM;
2185
2186 if (S_ISDIR(mode)) {
2187 inode->i_op = &cgroup_dir_inode_operations;
2188 inode->i_fop = &simple_dir_operations;
2189
2190 /* start off with i_nlink == 2 (for "." entry) */
2191 inc_nlink(inode);
2192
2193 /* start with the directory inode held, so that we can
2194 * populate it without racing with another mkdir */
817929ec 2195 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2196 } else if (S_ISREG(mode)) {
2197 inode->i_size = 0;
2198 inode->i_fop = &cgroup_file_operations;
2199 }
2200 dentry->d_op = &cgroup_dops;
2201 d_instantiate(dentry, inode);
2202 dget(dentry); /* Extra count - pin the dentry in core */
2203 return 0;
2204}
2205
2206/*
a043e3b2
LZ
2207 * cgroup_create_dir - create a directory for an object.
2208 * @cgrp: the cgroup we create the directory for. It must have a valid
2209 * ->parent field. And we are going to fill its ->dentry field.
2210 * @dentry: dentry of the new cgroup
2211 * @mode: mode to set on new directory.
ddbcc7e8 2212 */
bd89aabc 2213static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 2214 mode_t mode)
ddbcc7e8
PM
2215{
2216 struct dentry *parent;
2217 int error = 0;
2218
bd89aabc
PM
2219 parent = cgrp->parent->dentry;
2220 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2221 if (!error) {
bd89aabc 2222 dentry->d_fsdata = cgrp;
ddbcc7e8 2223 inc_nlink(parent->d_inode);
a47295e6 2224 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2225 dget(dentry);
2226 }
2227 dput(dentry);
2228
2229 return error;
2230}
2231
099fca32
LZ
2232/**
2233 * cgroup_file_mode - deduce file mode of a control file
2234 * @cft: the control file in question
2235 *
2236 * returns cft->mode if ->mode is not 0
2237 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2238 * returns S_IRUGO if it has only a read handler
2239 * returns S_IWUSR if it has only a write hander
2240 */
2241static mode_t cgroup_file_mode(const struct cftype *cft)
2242{
2243 mode_t mode = 0;
2244
2245 if (cft->mode)
2246 return cft->mode;
2247
2248 if (cft->read || cft->read_u64 || cft->read_s64 ||
2249 cft->read_map || cft->read_seq_string)
2250 mode |= S_IRUGO;
2251
2252 if (cft->write || cft->write_u64 || cft->write_s64 ||
2253 cft->write_string || cft->trigger)
2254 mode |= S_IWUSR;
2255
2256 return mode;
2257}
2258
bd89aabc 2259int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2260 struct cgroup_subsys *subsys,
2261 const struct cftype *cft)
2262{
bd89aabc 2263 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2264 struct dentry *dentry;
2265 int error;
099fca32 2266 mode_t mode;
ddbcc7e8
PM
2267
2268 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2269 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2270 strcpy(name, subsys->name);
2271 strcat(name, ".");
2272 }
2273 strcat(name, cft->name);
2274 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2275 dentry = lookup_one_len(name, dir, strlen(name));
2276 if (!IS_ERR(dentry)) {
099fca32
LZ
2277 mode = cgroup_file_mode(cft);
2278 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2279 cgrp->root->sb);
ddbcc7e8
PM
2280 if (!error)
2281 dentry->d_fsdata = (void *)cft;
2282 dput(dentry);
2283 } else
2284 error = PTR_ERR(dentry);
2285 return error;
2286}
e6a1105b 2287EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2288
bd89aabc 2289int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2290 struct cgroup_subsys *subsys,
2291 const struct cftype cft[],
2292 int count)
2293{
2294 int i, err;
2295 for (i = 0; i < count; i++) {
bd89aabc 2296 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2297 if (err)
2298 return err;
2299 }
2300 return 0;
2301}
e6a1105b 2302EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2303
a043e3b2
LZ
2304/**
2305 * cgroup_task_count - count the number of tasks in a cgroup.
2306 * @cgrp: the cgroup in question
2307 *
2308 * Return the number of tasks in the cgroup.
2309 */
bd89aabc 2310int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2311{
2312 int count = 0;
71cbb949 2313 struct cg_cgroup_link *link;
817929ec
PM
2314
2315 read_lock(&css_set_lock);
71cbb949 2316 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2317 count += atomic_read(&link->cg->refcount);
817929ec
PM
2318 }
2319 read_unlock(&css_set_lock);
bbcb81d0
PM
2320 return count;
2321}
2322
817929ec
PM
2323/*
2324 * Advance a list_head iterator. The iterator should be positioned at
2325 * the start of a css_set
2326 */
bd89aabc 2327static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2328 struct cgroup_iter *it)
817929ec
PM
2329{
2330 struct list_head *l = it->cg_link;
2331 struct cg_cgroup_link *link;
2332 struct css_set *cg;
2333
2334 /* Advance to the next non-empty css_set */
2335 do {
2336 l = l->next;
bd89aabc 2337 if (l == &cgrp->css_sets) {
817929ec
PM
2338 it->cg_link = NULL;
2339 return;
2340 }
bd89aabc 2341 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2342 cg = link->cg;
2343 } while (list_empty(&cg->tasks));
2344 it->cg_link = l;
2345 it->task = cg->tasks.next;
2346}
2347
31a7df01
CW
2348/*
2349 * To reduce the fork() overhead for systems that are not actually
2350 * using their cgroups capability, we don't maintain the lists running
2351 * through each css_set to its tasks until we see the list actually
2352 * used - in other words after the first call to cgroup_iter_start().
2353 *
2354 * The tasklist_lock is not held here, as do_each_thread() and
2355 * while_each_thread() are protected by RCU.
2356 */
3df91fe3 2357static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2358{
2359 struct task_struct *p, *g;
2360 write_lock(&css_set_lock);
2361 use_task_css_set_links = 1;
2362 do_each_thread(g, p) {
2363 task_lock(p);
0e04388f
LZ
2364 /*
2365 * We should check if the process is exiting, otherwise
2366 * it will race with cgroup_exit() in that the list
2367 * entry won't be deleted though the process has exited.
2368 */
2369 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2370 list_add(&p->cg_list, &p->cgroups->tasks);
2371 task_unlock(p);
2372 } while_each_thread(g, p);
2373 write_unlock(&css_set_lock);
2374}
2375
bd89aabc 2376void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2377{
2378 /*
2379 * The first time anyone tries to iterate across a cgroup,
2380 * we need to enable the list linking each css_set to its
2381 * tasks, and fix up all existing tasks.
2382 */
31a7df01
CW
2383 if (!use_task_css_set_links)
2384 cgroup_enable_task_cg_lists();
2385
817929ec 2386 read_lock(&css_set_lock);
bd89aabc
PM
2387 it->cg_link = &cgrp->css_sets;
2388 cgroup_advance_iter(cgrp, it);
817929ec
PM
2389}
2390
bd89aabc 2391struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2392 struct cgroup_iter *it)
2393{
2394 struct task_struct *res;
2395 struct list_head *l = it->task;
2019f634 2396 struct cg_cgroup_link *link;
817929ec
PM
2397
2398 /* If the iterator cg is NULL, we have no tasks */
2399 if (!it->cg_link)
2400 return NULL;
2401 res = list_entry(l, struct task_struct, cg_list);
2402 /* Advance iterator to find next entry */
2403 l = l->next;
2019f634
LJ
2404 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2405 if (l == &link->cg->tasks) {
817929ec
PM
2406 /* We reached the end of this task list - move on to
2407 * the next cg_cgroup_link */
bd89aabc 2408 cgroup_advance_iter(cgrp, it);
817929ec
PM
2409 } else {
2410 it->task = l;
2411 }
2412 return res;
2413}
2414
bd89aabc 2415void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2416{
2417 read_unlock(&css_set_lock);
2418}
2419
31a7df01
CW
2420static inline int started_after_time(struct task_struct *t1,
2421 struct timespec *time,
2422 struct task_struct *t2)
2423{
2424 int start_diff = timespec_compare(&t1->start_time, time);
2425 if (start_diff > 0) {
2426 return 1;
2427 } else if (start_diff < 0) {
2428 return 0;
2429 } else {
2430 /*
2431 * Arbitrarily, if two processes started at the same
2432 * time, we'll say that the lower pointer value
2433 * started first. Note that t2 may have exited by now
2434 * so this may not be a valid pointer any longer, but
2435 * that's fine - it still serves to distinguish
2436 * between two tasks started (effectively) simultaneously.
2437 */
2438 return t1 > t2;
2439 }
2440}
2441
2442/*
2443 * This function is a callback from heap_insert() and is used to order
2444 * the heap.
2445 * In this case we order the heap in descending task start time.
2446 */
2447static inline int started_after(void *p1, void *p2)
2448{
2449 struct task_struct *t1 = p1;
2450 struct task_struct *t2 = p2;
2451 return started_after_time(t1, &t2->start_time, t2);
2452}
2453
2454/**
2455 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2456 * @scan: struct cgroup_scanner containing arguments for the scan
2457 *
2458 * Arguments include pointers to callback functions test_task() and
2459 * process_task().
2460 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2461 * and if it returns true, call process_task() for it also.
2462 * The test_task pointer may be NULL, meaning always true (select all tasks).
2463 * Effectively duplicates cgroup_iter_{start,next,end}()
2464 * but does not lock css_set_lock for the call to process_task().
2465 * The struct cgroup_scanner may be embedded in any structure of the caller's
2466 * creation.
2467 * It is guaranteed that process_task() will act on every task that
2468 * is a member of the cgroup for the duration of this call. This
2469 * function may or may not call process_task() for tasks that exit
2470 * or move to a different cgroup during the call, or are forked or
2471 * move into the cgroup during the call.
2472 *
2473 * Note that test_task() may be called with locks held, and may in some
2474 * situations be called multiple times for the same task, so it should
2475 * be cheap.
2476 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2477 * pre-allocated and will be used for heap operations (and its "gt" member will
2478 * be overwritten), else a temporary heap will be used (allocation of which
2479 * may cause this function to fail).
2480 */
2481int cgroup_scan_tasks(struct cgroup_scanner *scan)
2482{
2483 int retval, i;
2484 struct cgroup_iter it;
2485 struct task_struct *p, *dropped;
2486 /* Never dereference latest_task, since it's not refcounted */
2487 struct task_struct *latest_task = NULL;
2488 struct ptr_heap tmp_heap;
2489 struct ptr_heap *heap;
2490 struct timespec latest_time = { 0, 0 };
2491
2492 if (scan->heap) {
2493 /* The caller supplied our heap and pre-allocated its memory */
2494 heap = scan->heap;
2495 heap->gt = &started_after;
2496 } else {
2497 /* We need to allocate our own heap memory */
2498 heap = &tmp_heap;
2499 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2500 if (retval)
2501 /* cannot allocate the heap */
2502 return retval;
2503 }
2504
2505 again:
2506 /*
2507 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2508 * to determine which are of interest, and using the scanner's
2509 * "process_task" callback to process any of them that need an update.
2510 * Since we don't want to hold any locks during the task updates,
2511 * gather tasks to be processed in a heap structure.
2512 * The heap is sorted by descending task start time.
2513 * If the statically-sized heap fills up, we overflow tasks that
2514 * started later, and in future iterations only consider tasks that
2515 * started after the latest task in the previous pass. This
2516 * guarantees forward progress and that we don't miss any tasks.
2517 */
2518 heap->size = 0;
2519 cgroup_iter_start(scan->cg, &it);
2520 while ((p = cgroup_iter_next(scan->cg, &it))) {
2521 /*
2522 * Only affect tasks that qualify per the caller's callback,
2523 * if he provided one
2524 */
2525 if (scan->test_task && !scan->test_task(p, scan))
2526 continue;
2527 /*
2528 * Only process tasks that started after the last task
2529 * we processed
2530 */
2531 if (!started_after_time(p, &latest_time, latest_task))
2532 continue;
2533 dropped = heap_insert(heap, p);
2534 if (dropped == NULL) {
2535 /*
2536 * The new task was inserted; the heap wasn't
2537 * previously full
2538 */
2539 get_task_struct(p);
2540 } else if (dropped != p) {
2541 /*
2542 * The new task was inserted, and pushed out a
2543 * different task
2544 */
2545 get_task_struct(p);
2546 put_task_struct(dropped);
2547 }
2548 /*
2549 * Else the new task was newer than anything already in
2550 * the heap and wasn't inserted
2551 */
2552 }
2553 cgroup_iter_end(scan->cg, &it);
2554
2555 if (heap->size) {
2556 for (i = 0; i < heap->size; i++) {
4fe91d51 2557 struct task_struct *q = heap->ptrs[i];
31a7df01 2558 if (i == 0) {
4fe91d51
PJ
2559 latest_time = q->start_time;
2560 latest_task = q;
31a7df01
CW
2561 }
2562 /* Process the task per the caller's callback */
4fe91d51
PJ
2563 scan->process_task(q, scan);
2564 put_task_struct(q);
31a7df01
CW
2565 }
2566 /*
2567 * If we had to process any tasks at all, scan again
2568 * in case some of them were in the middle of forking
2569 * children that didn't get processed.
2570 * Not the most efficient way to do it, but it avoids
2571 * having to take callback_mutex in the fork path
2572 */
2573 goto again;
2574 }
2575 if (heap == &tmp_heap)
2576 heap_free(&tmp_heap);
2577 return 0;
2578}
2579
bbcb81d0 2580/*
102a775e 2581 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2582 *
2583 * Reading this file can return large amounts of data if a cgroup has
2584 * *lots* of attached tasks. So it may need several calls to read(),
2585 * but we cannot guarantee that the information we produce is correct
2586 * unless we produce it entirely atomically.
2587 *
bbcb81d0 2588 */
bbcb81d0 2589
d1d9fd33
BB
2590/*
2591 * The following two functions "fix" the issue where there are more pids
2592 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2593 * TODO: replace with a kernel-wide solution to this problem
2594 */
2595#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2596static void *pidlist_allocate(int count)
2597{
2598 if (PIDLIST_TOO_LARGE(count))
2599 return vmalloc(count * sizeof(pid_t));
2600 else
2601 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2602}
2603static void pidlist_free(void *p)
2604{
2605 if (is_vmalloc_addr(p))
2606 vfree(p);
2607 else
2608 kfree(p);
2609}
2610static void *pidlist_resize(void *p, int newcount)
2611{
2612 void *newlist;
2613 /* note: if new alloc fails, old p will still be valid either way */
2614 if (is_vmalloc_addr(p)) {
2615 newlist = vmalloc(newcount * sizeof(pid_t));
2616 if (!newlist)
2617 return NULL;
2618 memcpy(newlist, p, newcount * sizeof(pid_t));
2619 vfree(p);
2620 } else {
2621 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2622 }
2623 return newlist;
2624}
2625
bbcb81d0 2626/*
102a775e
BB
2627 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2628 * If the new stripped list is sufficiently smaller and there's enough memory
2629 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2630 * number of unique elements.
bbcb81d0 2631 */
102a775e
BB
2632/* is the size difference enough that we should re-allocate the array? */
2633#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2634static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 2635{
102a775e
BB
2636 int src, dest = 1;
2637 pid_t *list = *p;
2638 pid_t *newlist;
2639
2640 /*
2641 * we presume the 0th element is unique, so i starts at 1. trivial
2642 * edge cases first; no work needs to be done for either
2643 */
2644 if (length == 0 || length == 1)
2645 return length;
2646 /* src and dest walk down the list; dest counts unique elements */
2647 for (src = 1; src < length; src++) {
2648 /* find next unique element */
2649 while (list[src] == list[src-1]) {
2650 src++;
2651 if (src == length)
2652 goto after;
2653 }
2654 /* dest always points to where the next unique element goes */
2655 list[dest] = list[src];
2656 dest++;
2657 }
2658after:
2659 /*
2660 * if the length difference is large enough, we want to allocate a
2661 * smaller buffer to save memory. if this fails due to out of memory,
2662 * we'll just stay with what we've got.
2663 */
2664 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 2665 newlist = pidlist_resize(list, dest);
102a775e
BB
2666 if (newlist)
2667 *p = newlist;
2668 }
2669 return dest;
2670}
2671
2672static int cmppid(const void *a, const void *b)
2673{
2674 return *(pid_t *)a - *(pid_t *)b;
2675}
2676
72a8cb30
BB
2677/*
2678 * find the appropriate pidlist for our purpose (given procs vs tasks)
2679 * returns with the lock on that pidlist already held, and takes care
2680 * of the use count, or returns NULL with no locks held if we're out of
2681 * memory.
2682 */
2683static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2684 enum cgroup_filetype type)
2685{
2686 struct cgroup_pidlist *l;
2687 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
2688 struct pid_namespace *ns = current->nsproxy->pid_ns;
2689
72a8cb30
BB
2690 /*
2691 * We can't drop the pidlist_mutex before taking the l->mutex in case
2692 * the last ref-holder is trying to remove l from the list at the same
2693 * time. Holding the pidlist_mutex precludes somebody taking whichever
2694 * list we find out from under us - compare release_pid_array().
2695 */
2696 mutex_lock(&cgrp->pidlist_mutex);
2697 list_for_each_entry(l, &cgrp->pidlists, links) {
2698 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
2699 /* make sure l doesn't vanish out from under us */
2700 down_write(&l->mutex);
2701 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
2702 return l;
2703 }
2704 }
2705 /* entry not found; create a new one */
2706 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2707 if (!l) {
2708 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
2709 return l;
2710 }
2711 init_rwsem(&l->mutex);
2712 down_write(&l->mutex);
2713 l->key.type = type;
b70cc5fd 2714 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
2715 l->use_count = 0; /* don't increment here */
2716 l->list = NULL;
2717 l->owner = cgrp;
2718 list_add(&l->links, &cgrp->pidlists);
2719 mutex_unlock(&cgrp->pidlist_mutex);
2720 return l;
2721}
2722
102a775e
BB
2723/*
2724 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2725 */
72a8cb30
BB
2726static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2727 struct cgroup_pidlist **lp)
102a775e
BB
2728{
2729 pid_t *array;
2730 int length;
2731 int pid, n = 0; /* used for populating the array */
817929ec
PM
2732 struct cgroup_iter it;
2733 struct task_struct *tsk;
102a775e
BB
2734 struct cgroup_pidlist *l;
2735
2736 /*
2737 * If cgroup gets more users after we read count, we won't have
2738 * enough space - tough. This race is indistinguishable to the
2739 * caller from the case that the additional cgroup users didn't
2740 * show up until sometime later on.
2741 */
2742 length = cgroup_task_count(cgrp);
d1d9fd33 2743 array = pidlist_allocate(length);
102a775e
BB
2744 if (!array)
2745 return -ENOMEM;
2746 /* now, populate the array */
bd89aabc
PM
2747 cgroup_iter_start(cgrp, &it);
2748 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 2749 if (unlikely(n == length))
817929ec 2750 break;
102a775e 2751 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2752 if (type == CGROUP_FILE_PROCS)
2753 pid = task_tgid_vnr(tsk);
2754 else
2755 pid = task_pid_vnr(tsk);
102a775e
BB
2756 if (pid > 0) /* make sure to only use valid results */
2757 array[n++] = pid;
817929ec 2758 }
bd89aabc 2759 cgroup_iter_end(cgrp, &it);
102a775e
BB
2760 length = n;
2761 /* now sort & (if procs) strip out duplicates */
2762 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2763 if (type == CGROUP_FILE_PROCS)
102a775e 2764 length = pidlist_uniq(&array, length);
72a8cb30
BB
2765 l = cgroup_pidlist_find(cgrp, type);
2766 if (!l) {
d1d9fd33 2767 pidlist_free(array);
72a8cb30 2768 return -ENOMEM;
102a775e 2769 }
72a8cb30 2770 /* store array, freeing old if necessary - lock already held */
d1d9fd33 2771 pidlist_free(l->list);
102a775e
BB
2772 l->list = array;
2773 l->length = length;
2774 l->use_count++;
2775 up_write(&l->mutex);
72a8cb30 2776 *lp = l;
102a775e 2777 return 0;
bbcb81d0
PM
2778}
2779
846c7bb0 2780/**
a043e3b2 2781 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2782 * @stats: cgroupstats to fill information into
2783 * @dentry: A dentry entry belonging to the cgroup for which stats have
2784 * been requested.
a043e3b2
LZ
2785 *
2786 * Build and fill cgroupstats so that taskstats can export it to user
2787 * space.
846c7bb0
BS
2788 */
2789int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2790{
2791 int ret = -EINVAL;
bd89aabc 2792 struct cgroup *cgrp;
846c7bb0
BS
2793 struct cgroup_iter it;
2794 struct task_struct *tsk;
33d283be 2795
846c7bb0 2796 /*
33d283be
LZ
2797 * Validate dentry by checking the superblock operations,
2798 * and make sure it's a directory.
846c7bb0 2799 */
33d283be
LZ
2800 if (dentry->d_sb->s_op != &cgroup_ops ||
2801 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2802 goto err;
2803
2804 ret = 0;
bd89aabc 2805 cgrp = dentry->d_fsdata;
846c7bb0 2806
bd89aabc
PM
2807 cgroup_iter_start(cgrp, &it);
2808 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2809 switch (tsk->state) {
2810 case TASK_RUNNING:
2811 stats->nr_running++;
2812 break;
2813 case TASK_INTERRUPTIBLE:
2814 stats->nr_sleeping++;
2815 break;
2816 case TASK_UNINTERRUPTIBLE:
2817 stats->nr_uninterruptible++;
2818 break;
2819 case TASK_STOPPED:
2820 stats->nr_stopped++;
2821 break;
2822 default:
2823 if (delayacct_is_task_waiting_on_io(tsk))
2824 stats->nr_io_wait++;
2825 break;
2826 }
2827 }
bd89aabc 2828 cgroup_iter_end(cgrp, &it);
846c7bb0 2829
846c7bb0
BS
2830err:
2831 return ret;
2832}
2833
8f3ff208 2834
bbcb81d0 2835/*
102a775e 2836 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 2837 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 2838 * in the cgroup->l->list array.
bbcb81d0 2839 */
cc31edce 2840
102a775e 2841static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2842{
cc31edce
PM
2843 /*
2844 * Initially we receive a position value that corresponds to
2845 * one more than the last pid shown (or 0 on the first call or
2846 * after a seek to the start). Use a binary-search to find the
2847 * next pid to display, if any
2848 */
102a775e 2849 struct cgroup_pidlist *l = s->private;
cc31edce
PM
2850 int index = 0, pid = *pos;
2851 int *iter;
2852
102a775e 2853 down_read(&l->mutex);
cc31edce 2854 if (pid) {
102a775e 2855 int end = l->length;
20777766 2856
cc31edce
PM
2857 while (index < end) {
2858 int mid = (index + end) / 2;
102a775e 2859 if (l->list[mid] == pid) {
cc31edce
PM
2860 index = mid;
2861 break;
102a775e 2862 } else if (l->list[mid] <= pid)
cc31edce
PM
2863 index = mid + 1;
2864 else
2865 end = mid;
2866 }
2867 }
2868 /* If we're off the end of the array, we're done */
102a775e 2869 if (index >= l->length)
cc31edce
PM
2870 return NULL;
2871 /* Update the abstract position to be the actual pid that we found */
102a775e 2872 iter = l->list + index;
cc31edce
PM
2873 *pos = *iter;
2874 return iter;
2875}
2876
102a775e 2877static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 2878{
102a775e
BB
2879 struct cgroup_pidlist *l = s->private;
2880 up_read(&l->mutex);
cc31edce
PM
2881}
2882
102a775e 2883static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 2884{
102a775e
BB
2885 struct cgroup_pidlist *l = s->private;
2886 pid_t *p = v;
2887 pid_t *end = l->list + l->length;
cc31edce
PM
2888 /*
2889 * Advance to the next pid in the array. If this goes off the
2890 * end, we're done
2891 */
2892 p++;
2893 if (p >= end) {
2894 return NULL;
2895 } else {
2896 *pos = *p;
2897 return p;
2898 }
2899}
2900
102a775e 2901static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
2902{
2903 return seq_printf(s, "%d\n", *(int *)v);
2904}
bbcb81d0 2905
102a775e
BB
2906/*
2907 * seq_operations functions for iterating on pidlists through seq_file -
2908 * independent of whether it's tasks or procs
2909 */
2910static const struct seq_operations cgroup_pidlist_seq_operations = {
2911 .start = cgroup_pidlist_start,
2912 .stop = cgroup_pidlist_stop,
2913 .next = cgroup_pidlist_next,
2914 .show = cgroup_pidlist_show,
cc31edce
PM
2915};
2916
102a775e 2917static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 2918{
72a8cb30
BB
2919 /*
2920 * the case where we're the last user of this particular pidlist will
2921 * have us remove it from the cgroup's list, which entails taking the
2922 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2923 * pidlist_mutex, we have to take pidlist_mutex first.
2924 */
2925 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
2926 down_write(&l->mutex);
2927 BUG_ON(!l->use_count);
2928 if (!--l->use_count) {
72a8cb30
BB
2929 /* we're the last user if refcount is 0; remove and free */
2930 list_del(&l->links);
2931 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 2932 pidlist_free(l->list);
72a8cb30
BB
2933 put_pid_ns(l->key.ns);
2934 up_write(&l->mutex);
2935 kfree(l);
2936 return;
cc31edce 2937 }
72a8cb30 2938 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 2939 up_write(&l->mutex);
bbcb81d0
PM
2940}
2941
102a775e 2942static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 2943{
102a775e 2944 struct cgroup_pidlist *l;
cc31edce
PM
2945 if (!(file->f_mode & FMODE_READ))
2946 return 0;
102a775e
BB
2947 /*
2948 * the seq_file will only be initialized if the file was opened for
2949 * reading; hence we check if it's not null only in that case.
2950 */
2951 l = ((struct seq_file *)file->private_data)->private;
2952 cgroup_release_pid_array(l);
cc31edce
PM
2953 return seq_release(inode, file);
2954}
2955
102a775e 2956static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
2957 .read = seq_read,
2958 .llseek = seq_lseek,
2959 .write = cgroup_file_write,
102a775e 2960 .release = cgroup_pidlist_release,
cc31edce
PM
2961};
2962
bbcb81d0 2963/*
102a775e
BB
2964 * The following functions handle opens on a file that displays a pidlist
2965 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2966 * in the cgroup.
bbcb81d0 2967 */
102a775e 2968/* helper function for the two below it */
72a8cb30 2969static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 2970{
bd89aabc 2971 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 2972 struct cgroup_pidlist *l;
cc31edce 2973 int retval;
bbcb81d0 2974
cc31edce 2975 /* Nothing to do for write-only files */
bbcb81d0
PM
2976 if (!(file->f_mode & FMODE_READ))
2977 return 0;
2978
102a775e 2979 /* have the array populated */
72a8cb30 2980 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
2981 if (retval)
2982 return retval;
2983 /* configure file information */
2984 file->f_op = &cgroup_pidlist_operations;
cc31edce 2985
102a775e 2986 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 2987 if (retval) {
102a775e 2988 cgroup_release_pid_array(l);
cc31edce 2989 return retval;
bbcb81d0 2990 }
102a775e 2991 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
2992 return 0;
2993}
102a775e
BB
2994static int cgroup_tasks_open(struct inode *unused, struct file *file)
2995{
72a8cb30 2996 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
2997}
2998static int cgroup_procs_open(struct inode *unused, struct file *file)
2999{
72a8cb30 3000 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3001}
bbcb81d0 3002
bd89aabc 3003static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3004 struct cftype *cft)
3005{
bd89aabc 3006 return notify_on_release(cgrp);
81a6a5cd
PM
3007}
3008
6379c106
PM
3009static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3010 struct cftype *cft,
3011 u64 val)
3012{
3013 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3014 if (val)
3015 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3016 else
3017 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3018 return 0;
3019}
3020
0dea1168
KS
3021/*
3022 * Unregister event and free resources.
3023 *
3024 * Gets called from workqueue.
3025 */
3026static void cgroup_event_remove(struct work_struct *work)
3027{
3028 struct cgroup_event *event = container_of(work, struct cgroup_event,
3029 remove);
3030 struct cgroup *cgrp = event->cgrp;
3031
0dea1168
KS
3032 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3033
3034 eventfd_ctx_put(event->eventfd);
0dea1168 3035 kfree(event);
a0a4db54 3036 dput(cgrp->dentry);
0dea1168
KS
3037}
3038
3039/*
3040 * Gets called on POLLHUP on eventfd when user closes it.
3041 *
3042 * Called with wqh->lock held and interrupts disabled.
3043 */
3044static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3045 int sync, void *key)
3046{
3047 struct cgroup_event *event = container_of(wait,
3048 struct cgroup_event, wait);
3049 struct cgroup *cgrp = event->cgrp;
3050 unsigned long flags = (unsigned long)key;
3051
3052 if (flags & POLLHUP) {
a93d2f17 3053 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3054 spin_lock(&cgrp->event_list_lock);
3055 list_del(&event->list);
3056 spin_unlock(&cgrp->event_list_lock);
3057 /*
3058 * We are in atomic context, but cgroup_event_remove() may
3059 * sleep, so we have to call it in workqueue.
3060 */
3061 schedule_work(&event->remove);
3062 }
3063
3064 return 0;
3065}
3066
3067static void cgroup_event_ptable_queue_proc(struct file *file,
3068 wait_queue_head_t *wqh, poll_table *pt)
3069{
3070 struct cgroup_event *event = container_of(pt,
3071 struct cgroup_event, pt);
3072
3073 event->wqh = wqh;
3074 add_wait_queue(wqh, &event->wait);
3075}
3076
3077/*
3078 * Parse input and register new cgroup event handler.
3079 *
3080 * Input must be in format '<event_fd> <control_fd> <args>'.
3081 * Interpretation of args is defined by control file implementation.
3082 */
3083static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3084 const char *buffer)
3085{
3086 struct cgroup_event *event = NULL;
3087 unsigned int efd, cfd;
3088 struct file *efile = NULL;
3089 struct file *cfile = NULL;
3090 char *endp;
3091 int ret;
3092
3093 efd = simple_strtoul(buffer, &endp, 10);
3094 if (*endp != ' ')
3095 return -EINVAL;
3096 buffer = endp + 1;
3097
3098 cfd = simple_strtoul(buffer, &endp, 10);
3099 if ((*endp != ' ') && (*endp != '\0'))
3100 return -EINVAL;
3101 buffer = endp + 1;
3102
3103 event = kzalloc(sizeof(*event), GFP_KERNEL);
3104 if (!event)
3105 return -ENOMEM;
3106 event->cgrp = cgrp;
3107 INIT_LIST_HEAD(&event->list);
3108 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3109 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3110 INIT_WORK(&event->remove, cgroup_event_remove);
3111
3112 efile = eventfd_fget(efd);
3113 if (IS_ERR(efile)) {
3114 ret = PTR_ERR(efile);
3115 goto fail;
3116 }
3117
3118 event->eventfd = eventfd_ctx_fileget(efile);
3119 if (IS_ERR(event->eventfd)) {
3120 ret = PTR_ERR(event->eventfd);
3121 goto fail;
3122 }
3123
3124 cfile = fget(cfd);
3125 if (!cfile) {
3126 ret = -EBADF;
3127 goto fail;
3128 }
3129
3130 /* the process need read permission on control file */
3131 ret = file_permission(cfile, MAY_READ);
3132 if (ret < 0)
3133 goto fail;
3134
3135 event->cft = __file_cft(cfile);
3136 if (IS_ERR(event->cft)) {
3137 ret = PTR_ERR(event->cft);
3138 goto fail;
3139 }
3140
3141 if (!event->cft->register_event || !event->cft->unregister_event) {
3142 ret = -EINVAL;
3143 goto fail;
3144 }
3145
3146 ret = event->cft->register_event(cgrp, event->cft,
3147 event->eventfd, buffer);
3148 if (ret)
3149 goto fail;
3150
3151 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3152 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3153 ret = 0;
3154 goto fail;
3155 }
3156
a0a4db54
KS
3157 /*
3158 * Events should be removed after rmdir of cgroup directory, but before
3159 * destroying subsystem state objects. Let's take reference to cgroup
3160 * directory dentry to do that.
3161 */
3162 dget(cgrp->dentry);
3163
0dea1168
KS
3164 spin_lock(&cgrp->event_list_lock);
3165 list_add(&event->list, &cgrp->event_list);
3166 spin_unlock(&cgrp->event_list_lock);
3167
3168 fput(cfile);
3169 fput(efile);
3170
3171 return 0;
3172
3173fail:
3174 if (cfile)
3175 fput(cfile);
3176
3177 if (event && event->eventfd && !IS_ERR(event->eventfd))
3178 eventfd_ctx_put(event->eventfd);
3179
3180 if (!IS_ERR_OR_NULL(efile))
3181 fput(efile);
3182
3183 kfree(event);
3184
3185 return ret;
3186}
3187
97978e6d
DL
3188static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3189 struct cftype *cft)
3190{
3191 return clone_children(cgrp);
3192}
3193
3194static int cgroup_clone_children_write(struct cgroup *cgrp,
3195 struct cftype *cft,
3196 u64 val)
3197{
3198 if (val)
3199 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3200 else
3201 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3202 return 0;
3203}
3204
bbcb81d0
PM
3205/*
3206 * for the common functions, 'private' gives the type of file
3207 */
102a775e
BB
3208/* for hysterical raisins, we can't put this on the older files */
3209#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3210static struct cftype files[] = {
3211 {
3212 .name = "tasks",
3213 .open = cgroup_tasks_open,
af351026 3214 .write_u64 = cgroup_tasks_write,
102a775e 3215 .release = cgroup_pidlist_release,
099fca32 3216 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3217 },
102a775e
BB
3218 {
3219 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3220 .open = cgroup_procs_open,
3221 /* .write_u64 = cgroup_procs_write, TODO */
3222 .release = cgroup_pidlist_release,
3223 .mode = S_IRUGO,
3224 },
81a6a5cd
PM
3225 {
3226 .name = "notify_on_release",
f4c753b7 3227 .read_u64 = cgroup_read_notify_on_release,
6379c106 3228 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3229 },
0dea1168
KS
3230 {
3231 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3232 .write_string = cgroup_write_event_control,
3233 .mode = S_IWUGO,
3234 },
97978e6d
DL
3235 {
3236 .name = "cgroup.clone_children",
3237 .read_u64 = cgroup_clone_children_read,
3238 .write_u64 = cgroup_clone_children_write,
3239 },
81a6a5cd
PM
3240};
3241
3242static struct cftype cft_release_agent = {
3243 .name = "release_agent",
e788e066
PM
3244 .read_seq_string = cgroup_release_agent_show,
3245 .write_string = cgroup_release_agent_write,
3246 .max_write_len = PATH_MAX,
bbcb81d0
PM
3247};
3248
bd89aabc 3249static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3250{
3251 int err;
3252 struct cgroup_subsys *ss;
3253
3254 /* First clear out any existing files */
bd89aabc 3255 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 3256
bd89aabc 3257 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3258 if (err < 0)
3259 return err;
3260
bd89aabc
PM
3261 if (cgrp == cgrp->top_cgroup) {
3262 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3263 return err;
3264 }
3265
bd89aabc
PM
3266 for_each_subsys(cgrp->root, ss) {
3267 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3268 return err;
3269 }
38460b48
KH
3270 /* This cgroup is ready now */
3271 for_each_subsys(cgrp->root, ss) {
3272 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3273 /*
3274 * Update id->css pointer and make this css visible from
3275 * CSS ID functions. This pointer will be dereferened
3276 * from RCU-read-side without locks.
3277 */
3278 if (css->id)
3279 rcu_assign_pointer(css->id->css, css);
3280 }
ddbcc7e8
PM
3281
3282 return 0;
3283}
3284
3285static void init_cgroup_css(struct cgroup_subsys_state *css,
3286 struct cgroup_subsys *ss,
bd89aabc 3287 struct cgroup *cgrp)
ddbcc7e8 3288{
bd89aabc 3289 css->cgroup = cgrp;
e7c5ec91 3290 atomic_set(&css->refcnt, 1);
ddbcc7e8 3291 css->flags = 0;
38460b48 3292 css->id = NULL;
bd89aabc 3293 if (cgrp == dummytop)
ddbcc7e8 3294 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3295 BUG_ON(cgrp->subsys[ss->subsys_id]);
3296 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3297}
3298
999cd8a4
PM
3299static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3300{
3301 /* We need to take each hierarchy_mutex in a consistent order */
3302 int i;
3303
aae8aab4
BB
3304 /*
3305 * No worry about a race with rebind_subsystems that might mess up the
3306 * locking order, since both parties are under cgroup_mutex.
3307 */
999cd8a4
PM
3308 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3309 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3310 if (ss == NULL)
3311 continue;
999cd8a4 3312 if (ss->root == root)
cfebe563 3313 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3314 }
3315}
3316
3317static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3318{
3319 int i;
3320
3321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3322 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3323 if (ss == NULL)
3324 continue;
999cd8a4
PM
3325 if (ss->root == root)
3326 mutex_unlock(&ss->hierarchy_mutex);
3327 }
3328}
3329
ddbcc7e8 3330/*
a043e3b2
LZ
3331 * cgroup_create - create a cgroup
3332 * @parent: cgroup that will be parent of the new cgroup
3333 * @dentry: dentry of the new cgroup
3334 * @mode: mode to set on new inode
ddbcc7e8 3335 *
a043e3b2 3336 * Must be called with the mutex on the parent inode held
ddbcc7e8 3337 */
ddbcc7e8 3338static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 3339 mode_t mode)
ddbcc7e8 3340{
bd89aabc 3341 struct cgroup *cgrp;
ddbcc7e8
PM
3342 struct cgroupfs_root *root = parent->root;
3343 int err = 0;
3344 struct cgroup_subsys *ss;
3345 struct super_block *sb = root->sb;
3346
bd89aabc
PM
3347 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3348 if (!cgrp)
ddbcc7e8
PM
3349 return -ENOMEM;
3350
3351 /* Grab a reference on the superblock so the hierarchy doesn't
3352 * get deleted on unmount if there are child cgroups. This
3353 * can be done outside cgroup_mutex, since the sb can't
3354 * disappear while someone has an open control file on the
3355 * fs */
3356 atomic_inc(&sb->s_active);
3357
3358 mutex_lock(&cgroup_mutex);
3359
cc31edce 3360 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3361
bd89aabc
PM
3362 cgrp->parent = parent;
3363 cgrp->root = parent->root;
3364 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3365
b6abdb0e
LZ
3366 if (notify_on_release(parent))
3367 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3368
97978e6d
DL
3369 if (clone_children(parent))
3370 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3371
ddbcc7e8 3372 for_each_subsys(root, ss) {
bd89aabc 3373 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
4528fd05 3374
ddbcc7e8
PM
3375 if (IS_ERR(css)) {
3376 err = PTR_ERR(css);
3377 goto err_destroy;
3378 }
bd89aabc 3379 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3380 if (ss->use_id) {
3381 err = alloc_css_id(ss, parent, cgrp);
3382 if (err)
38460b48 3383 goto err_destroy;
4528fd05 3384 }
38460b48 3385 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d
DL
3386 if (clone_children(parent) && ss->post_clone)
3387 ss->post_clone(ss, cgrp);
ddbcc7e8
PM
3388 }
3389
999cd8a4 3390 cgroup_lock_hierarchy(root);
bd89aabc 3391 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3392 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3393 root->number_of_cgroups++;
3394
bd89aabc 3395 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3396 if (err < 0)
3397 goto err_remove;
3398
3399 /* The cgroup directory was pre-locked for us */
bd89aabc 3400 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3401
bd89aabc 3402 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3403 /* If err < 0, we have a half-filled directory - oh well ;) */
3404
3405 mutex_unlock(&cgroup_mutex);
bd89aabc 3406 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3407
3408 return 0;
3409
3410 err_remove:
3411
baef99a0 3412 cgroup_lock_hierarchy(root);
bd89aabc 3413 list_del(&cgrp->sibling);
baef99a0 3414 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3415 root->number_of_cgroups--;
3416
3417 err_destroy:
3418
3419 for_each_subsys(root, ss) {
bd89aabc
PM
3420 if (cgrp->subsys[ss->subsys_id])
3421 ss->destroy(ss, cgrp);
ddbcc7e8
PM
3422 }
3423
3424 mutex_unlock(&cgroup_mutex);
3425
3426 /* Release the reference count that we took on the superblock */
3427 deactivate_super(sb);
3428
bd89aabc 3429 kfree(cgrp);
ddbcc7e8
PM
3430 return err;
3431}
3432
3433static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3434{
3435 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3436
3437 /* the vfs holds inode->i_mutex already */
3438 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3439}
3440
55b6fd01 3441static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3442{
3443 /* Check the reference count on each subsystem. Since we
3444 * already established that there are no tasks in the
e7c5ec91 3445 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3446 * be no outstanding references, so the subsystem is safe to
3447 * destroy. We scan across all subsystems rather than using
3448 * the per-hierarchy linked list of mounted subsystems since
3449 * we can be called via check_for_release() with no
3450 * synchronization other than RCU, and the subsystem linked
3451 * list isn't RCU-safe */
3452 int i;
aae8aab4
BB
3453 /*
3454 * We won't need to lock the subsys array, because the subsystems
3455 * we're concerned about aren't going anywhere since our cgroup root
3456 * has a reference on them.
3457 */
81a6a5cd
PM
3458 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3459 struct cgroup_subsys *ss = subsys[i];
3460 struct cgroup_subsys_state *css;
aae8aab4
BB
3461 /* Skip subsystems not present or not in this hierarchy */
3462 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3463 continue;
bd89aabc 3464 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3465 /* When called from check_for_release() it's possible
3466 * that by this point the cgroup has been removed
3467 * and the css deleted. But a false-positive doesn't
3468 * matter, since it can only happen if the cgroup
3469 * has been deleted and hence no longer needs the
3470 * release agent to be called anyway. */
e7c5ec91 3471 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3472 return 1;
81a6a5cd
PM
3473 }
3474 return 0;
3475}
3476
e7c5ec91
PM
3477/*
3478 * Atomically mark all (or else none) of the cgroup's CSS objects as
3479 * CSS_REMOVED. Return true on success, or false if the cgroup has
3480 * busy subsystems. Call with cgroup_mutex held
3481 */
3482
3483static int cgroup_clear_css_refs(struct cgroup *cgrp)
3484{
3485 struct cgroup_subsys *ss;
3486 unsigned long flags;
3487 bool failed = false;
3488 local_irq_save(flags);
3489 for_each_subsys(cgrp->root, ss) {
3490 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3491 int refcnt;
804b3c28 3492 while (1) {
e7c5ec91
PM
3493 /* We can only remove a CSS with a refcnt==1 */
3494 refcnt = atomic_read(&css->refcnt);
3495 if (refcnt > 1) {
3496 failed = true;
3497 goto done;
3498 }
3499 BUG_ON(!refcnt);
3500 /*
3501 * Drop the refcnt to 0 while we check other
3502 * subsystems. This will cause any racing
3503 * css_tryget() to spin until we set the
3504 * CSS_REMOVED bits or abort
3505 */
804b3c28
PM
3506 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3507 break;
3508 cpu_relax();
3509 }
e7c5ec91
PM
3510 }
3511 done:
3512 for_each_subsys(cgrp->root, ss) {
3513 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3514 if (failed) {
3515 /*
3516 * Restore old refcnt if we previously managed
3517 * to clear it from 1 to 0
3518 */
3519 if (!atomic_read(&css->refcnt))
3520 atomic_set(&css->refcnt, 1);
3521 } else {
3522 /* Commit the fact that the CSS is removed */
3523 set_bit(CSS_REMOVED, &css->flags);
3524 }
3525 }
3526 local_irq_restore(flags);
3527 return !failed;
3528}
3529
ddbcc7e8
PM
3530static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3531{
bd89aabc 3532 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3533 struct dentry *d;
3534 struct cgroup *parent;
ec64f515 3535 DEFINE_WAIT(wait);
4ab78683 3536 struct cgroup_event *event, *tmp;
ec64f515 3537 int ret;
ddbcc7e8
PM
3538
3539 /* the vfs holds both inode->i_mutex already */
ec64f515 3540again:
ddbcc7e8 3541 mutex_lock(&cgroup_mutex);
bd89aabc 3542 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3543 mutex_unlock(&cgroup_mutex);
3544 return -EBUSY;
3545 }
bd89aabc 3546 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3547 mutex_unlock(&cgroup_mutex);
3548 return -EBUSY;
3549 }
3fa59dfb 3550 mutex_unlock(&cgroup_mutex);
a043e3b2 3551
88703267
KH
3552 /*
3553 * In general, subsystem has no css->refcnt after pre_destroy(). But
3554 * in racy cases, subsystem may have to get css->refcnt after
3555 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3556 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3557 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3558 * and subsystem's reference count handling. Please see css_get/put
3559 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3560 */
3561 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3562
4fca88c8 3563 /*
a043e3b2
LZ
3564 * Call pre_destroy handlers of subsys. Notify subsystems
3565 * that rmdir() request comes.
4fca88c8 3566 */
ec64f515 3567 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
3568 if (ret) {
3569 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 3570 return ret;
88703267 3571 }
ddbcc7e8 3572
3fa59dfb
KH
3573 mutex_lock(&cgroup_mutex);
3574 parent = cgrp->parent;
ec64f515 3575 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 3576 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
3577 mutex_unlock(&cgroup_mutex);
3578 return -EBUSY;
3579 }
ec64f515 3580 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
3581 if (!cgroup_clear_css_refs(cgrp)) {
3582 mutex_unlock(&cgroup_mutex);
88703267
KH
3583 /*
3584 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3585 * prepare_to_wait(), we need to check this flag.
3586 */
3587 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3588 schedule();
ec64f515
KH
3589 finish_wait(&cgroup_rmdir_waitq, &wait);
3590 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3591 if (signal_pending(current))
3592 return -EINTR;
3593 goto again;
3594 }
3595 /* NO css_tryget() can success after here. */
3596 finish_wait(&cgroup_rmdir_waitq, &wait);
3597 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 3598
81a6a5cd 3599 spin_lock(&release_list_lock);
bd89aabc
PM
3600 set_bit(CGRP_REMOVED, &cgrp->flags);
3601 if (!list_empty(&cgrp->release_list))
3602 list_del(&cgrp->release_list);
81a6a5cd 3603 spin_unlock(&release_list_lock);
999cd8a4
PM
3604
3605 cgroup_lock_hierarchy(cgrp->root);
3606 /* delete this cgroup from parent->children */
bd89aabc 3607 list_del(&cgrp->sibling);
999cd8a4
PM
3608 cgroup_unlock_hierarchy(cgrp->root);
3609
bd89aabc
PM
3610 spin_lock(&cgrp->dentry->d_lock);
3611 d = dget(cgrp->dentry);
ddbcc7e8
PM
3612 spin_unlock(&d->d_lock);
3613
3614 cgroup_d_remove_dir(d);
3615 dput(d);
ddbcc7e8 3616
bd89aabc 3617 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
3618 check_for_release(parent);
3619
4ab78683
KS
3620 /*
3621 * Unregister events and notify userspace.
3622 * Notify userspace about cgroup removing only after rmdir of cgroup
3623 * directory to avoid race between userspace and kernelspace
3624 */
3625 spin_lock(&cgrp->event_list_lock);
3626 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3627 list_del(&event->list);
3628 remove_wait_queue(event->wqh, &event->wait);
3629 eventfd_signal(event->eventfd, 1);
3630 schedule_work(&event->remove);
3631 }
3632 spin_unlock(&cgrp->event_list_lock);
3633
ddbcc7e8 3634 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
3635 return 0;
3636}
3637
06a11920 3638static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3639{
ddbcc7e8 3640 struct cgroup_subsys_state *css;
cfe36bde
DC
3641
3642 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
3643
3644 /* Create the top cgroup state for this subsystem */
33a68ac1 3645 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
3646 ss->root = &rootnode;
3647 css = ss->create(ss, dummytop);
3648 /* We don't handle early failures gracefully */
3649 BUG_ON(IS_ERR(css));
3650 init_cgroup_css(css, ss, dummytop);
3651
e8d55fde 3652 /* Update the init_css_set to contain a subsys
817929ec 3653 * pointer to this state - since the subsystem is
e8d55fde
LZ
3654 * newly registered, all tasks and hence the
3655 * init_css_set is in the subsystem's top cgroup. */
3656 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
3657
3658 need_forkexit_callback |= ss->fork || ss->exit;
3659
e8d55fde
LZ
3660 /* At system boot, before all subsystems have been
3661 * registered, no tasks have been forked, so we don't
3662 * need to invoke fork callbacks here. */
3663 BUG_ON(!list_empty(&init_task.tasks));
3664
999cd8a4 3665 mutex_init(&ss->hierarchy_mutex);
cfebe563 3666 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 3667 ss->active = 1;
e6a1105b
BB
3668
3669 /* this function shouldn't be used with modular subsystems, since they
3670 * need to register a subsys_id, among other things */
3671 BUG_ON(ss->module);
3672}
3673
3674/**
3675 * cgroup_load_subsys: load and register a modular subsystem at runtime
3676 * @ss: the subsystem to load
3677 *
3678 * This function should be called in a modular subsystem's initcall. If the
88393161 3679 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
3680 * up for use. If the subsystem is built-in anyway, work is delegated to the
3681 * simpler cgroup_init_subsys.
3682 */
3683int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3684{
3685 int i;
3686 struct cgroup_subsys_state *css;
3687
3688 /* check name and function validity */
3689 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3690 ss->create == NULL || ss->destroy == NULL)
3691 return -EINVAL;
3692
3693 /*
3694 * we don't support callbacks in modular subsystems. this check is
3695 * before the ss->module check for consistency; a subsystem that could
3696 * be a module should still have no callbacks even if the user isn't
3697 * compiling it as one.
3698 */
3699 if (ss->fork || ss->exit)
3700 return -EINVAL;
3701
3702 /*
3703 * an optionally modular subsystem is built-in: we want to do nothing,
3704 * since cgroup_init_subsys will have already taken care of it.
3705 */
3706 if (ss->module == NULL) {
3707 /* a few sanity checks */
3708 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3709 BUG_ON(subsys[ss->subsys_id] != ss);
3710 return 0;
3711 }
3712
3713 /*
3714 * need to register a subsys id before anything else - for example,
3715 * init_cgroup_css needs it.
3716 */
3717 mutex_lock(&cgroup_mutex);
3718 /* find the first empty slot in the array */
3719 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3720 if (subsys[i] == NULL)
3721 break;
3722 }
3723 if (i == CGROUP_SUBSYS_COUNT) {
3724 /* maximum number of subsystems already registered! */
3725 mutex_unlock(&cgroup_mutex);
3726 return -EBUSY;
3727 }
3728 /* assign ourselves the subsys_id */
3729 ss->subsys_id = i;
3730 subsys[i] = ss;
3731
3732 /*
3733 * no ss->create seems to need anything important in the ss struct, so
3734 * this can happen first (i.e. before the rootnode attachment).
3735 */
3736 css = ss->create(ss, dummytop);
3737 if (IS_ERR(css)) {
3738 /* failure case - need to deassign the subsys[] slot. */
3739 subsys[i] = NULL;
3740 mutex_unlock(&cgroup_mutex);
3741 return PTR_ERR(css);
3742 }
3743
3744 list_add(&ss->sibling, &rootnode.subsys_list);
3745 ss->root = &rootnode;
3746
3747 /* our new subsystem will be attached to the dummy hierarchy. */
3748 init_cgroup_css(css, ss, dummytop);
3749 /* init_idr must be after init_cgroup_css because it sets css->id. */
3750 if (ss->use_id) {
3751 int ret = cgroup_init_idr(ss, css);
3752 if (ret) {
3753 dummytop->subsys[ss->subsys_id] = NULL;
3754 ss->destroy(ss, dummytop);
3755 subsys[i] = NULL;
3756 mutex_unlock(&cgroup_mutex);
3757 return ret;
3758 }
3759 }
3760
3761 /*
3762 * Now we need to entangle the css into the existing css_sets. unlike
3763 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3764 * will need a new pointer to it; done by iterating the css_set_table.
3765 * furthermore, modifying the existing css_sets will corrupt the hash
3766 * table state, so each changed css_set will need its hash recomputed.
3767 * this is all done under the css_set_lock.
3768 */
3769 write_lock(&css_set_lock);
3770 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3771 struct css_set *cg;
3772 struct hlist_node *node, *tmp;
3773 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3774
3775 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3776 /* skip entries that we already rehashed */
3777 if (cg->subsys[ss->subsys_id])
3778 continue;
3779 /* remove existing entry */
3780 hlist_del(&cg->hlist);
3781 /* set new value */
3782 cg->subsys[ss->subsys_id] = css;
3783 /* recompute hash and restore entry */
3784 new_bucket = css_set_hash(cg->subsys);
3785 hlist_add_head(&cg->hlist, new_bucket);
3786 }
3787 }
3788 write_unlock(&css_set_lock);
3789
3790 mutex_init(&ss->hierarchy_mutex);
3791 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3792 ss->active = 1;
3793
e6a1105b
BB
3794 /* success! */
3795 mutex_unlock(&cgroup_mutex);
3796 return 0;
ddbcc7e8 3797}
e6a1105b 3798EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 3799
cf5d5941
BB
3800/**
3801 * cgroup_unload_subsys: unload a modular subsystem
3802 * @ss: the subsystem to unload
3803 *
3804 * This function should be called in a modular subsystem's exitcall. When this
3805 * function is invoked, the refcount on the subsystem's module will be 0, so
3806 * the subsystem will not be attached to any hierarchy.
3807 */
3808void cgroup_unload_subsys(struct cgroup_subsys *ss)
3809{
3810 struct cg_cgroup_link *link;
3811 struct hlist_head *hhead;
3812
3813 BUG_ON(ss->module == NULL);
3814
3815 /*
3816 * we shouldn't be called if the subsystem is in use, and the use of
3817 * try_module_get in parse_cgroupfs_options should ensure that it
3818 * doesn't start being used while we're killing it off.
3819 */
3820 BUG_ON(ss->root != &rootnode);
3821
3822 mutex_lock(&cgroup_mutex);
3823 /* deassign the subsys_id */
3824 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3825 subsys[ss->subsys_id] = NULL;
3826
3827 /* remove subsystem from rootnode's list of subsystems */
3828 list_del(&ss->sibling);
3829
3830 /*
3831 * disentangle the css from all css_sets attached to the dummytop. as
3832 * in loading, we need to pay our respects to the hashtable gods.
3833 */
3834 write_lock(&css_set_lock);
3835 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3836 struct css_set *cg = link->cg;
3837
3838 hlist_del(&cg->hlist);
3839 BUG_ON(!cg->subsys[ss->subsys_id]);
3840 cg->subsys[ss->subsys_id] = NULL;
3841 hhead = css_set_hash(cg->subsys);
3842 hlist_add_head(&cg->hlist, hhead);
3843 }
3844 write_unlock(&css_set_lock);
3845
3846 /*
3847 * remove subsystem's css from the dummytop and free it - need to free
3848 * before marking as null because ss->destroy needs the cgrp->subsys
3849 * pointer to find their state. note that this also takes care of
3850 * freeing the css_id.
3851 */
3852 ss->destroy(ss, dummytop);
3853 dummytop->subsys[ss->subsys_id] = NULL;
3854
3855 mutex_unlock(&cgroup_mutex);
3856}
3857EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3858
ddbcc7e8 3859/**
a043e3b2
LZ
3860 * cgroup_init_early - cgroup initialization at system boot
3861 *
3862 * Initialize cgroups at system boot, and initialize any
3863 * subsystems that request early init.
ddbcc7e8
PM
3864 */
3865int __init cgroup_init_early(void)
3866{
3867 int i;
146aa1bd 3868 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
3869 INIT_LIST_HEAD(&init_css_set.cg_links);
3870 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3871 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3872 css_set_count = 1;
ddbcc7e8 3873 init_cgroup_root(&rootnode);
817929ec
PM
3874 root_count = 1;
3875 init_task.cgroups = &init_css_set;
3876
3877 init_css_set_link.cg = &init_css_set;
7717f7ba 3878 init_css_set_link.cgrp = dummytop;
bd89aabc 3879 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
3880 &rootnode.top_cgroup.css_sets);
3881 list_add(&init_css_set_link.cg_link_list,
3882 &init_css_set.cg_links);
ddbcc7e8 3883
472b1053
LZ
3884 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3885 INIT_HLIST_HEAD(&css_set_table[i]);
3886
aae8aab4
BB
3887 /* at bootup time, we don't worry about modular subsystems */
3888 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
3889 struct cgroup_subsys *ss = subsys[i];
3890
3891 BUG_ON(!ss->name);
3892 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3893 BUG_ON(!ss->create);
3894 BUG_ON(!ss->destroy);
3895 if (ss->subsys_id != i) {
cfe36bde 3896 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
3897 ss->name, ss->subsys_id);
3898 BUG();
3899 }
3900
3901 if (ss->early_init)
3902 cgroup_init_subsys(ss);
3903 }
3904 return 0;
3905}
3906
3907/**
a043e3b2
LZ
3908 * cgroup_init - cgroup initialization
3909 *
3910 * Register cgroup filesystem and /proc file, and initialize
3911 * any subsystems that didn't request early init.
ddbcc7e8
PM
3912 */
3913int __init cgroup_init(void)
3914{
3915 int err;
3916 int i;
472b1053 3917 struct hlist_head *hhead;
a424316c
PM
3918
3919 err = bdi_init(&cgroup_backing_dev_info);
3920 if (err)
3921 return err;
ddbcc7e8 3922
aae8aab4
BB
3923 /* at bootup time, we don't worry about modular subsystems */
3924 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
3925 struct cgroup_subsys *ss = subsys[i];
3926 if (!ss->early_init)
3927 cgroup_init_subsys(ss);
38460b48 3928 if (ss->use_id)
e6a1105b 3929 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
3930 }
3931
472b1053
LZ
3932 /* Add init_css_set to the hash table */
3933 hhead = css_set_hash(init_css_set.subsys);
3934 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 3935 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
3936
3937 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3938 if (!cgroup_kobj) {
3939 err = -ENOMEM;
3940 goto out;
3941 }
3942
ddbcc7e8 3943 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
3944 if (err < 0) {
3945 kobject_put(cgroup_kobj);
ddbcc7e8 3946 goto out;
676db4af 3947 }
ddbcc7e8 3948
46ae220b 3949 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 3950
ddbcc7e8 3951out:
a424316c
PM
3952 if (err)
3953 bdi_destroy(&cgroup_backing_dev_info);
3954
ddbcc7e8
PM
3955 return err;
3956}
b4f48b63 3957
a424316c
PM
3958/*
3959 * proc_cgroup_show()
3960 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3961 * - Used for /proc/<pid>/cgroup.
3962 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3963 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 3964 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
3965 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3966 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3967 * cgroup to top_cgroup.
3968 */
3969
3970/* TODO: Use a proper seq_file iterator */
3971static int proc_cgroup_show(struct seq_file *m, void *v)
3972{
3973 struct pid *pid;
3974 struct task_struct *tsk;
3975 char *buf;
3976 int retval;
3977 struct cgroupfs_root *root;
3978
3979 retval = -ENOMEM;
3980 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3981 if (!buf)
3982 goto out;
3983
3984 retval = -ESRCH;
3985 pid = m->private;
3986 tsk = get_pid_task(pid, PIDTYPE_PID);
3987 if (!tsk)
3988 goto out_free;
3989
3990 retval = 0;
3991
3992 mutex_lock(&cgroup_mutex);
3993
e5f6a860 3994 for_each_active_root(root) {
a424316c 3995 struct cgroup_subsys *ss;
bd89aabc 3996 struct cgroup *cgrp;
a424316c
PM
3997 int count = 0;
3998
2c6ab6d2 3999 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4000 for_each_subsys(root, ss)
4001 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4002 if (strlen(root->name))
4003 seq_printf(m, "%sname=%s", count ? "," : "",
4004 root->name);
a424316c 4005 seq_putc(m, ':');
7717f7ba 4006 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4007 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4008 if (retval < 0)
4009 goto out_unlock;
4010 seq_puts(m, buf);
4011 seq_putc(m, '\n');
4012 }
4013
4014out_unlock:
4015 mutex_unlock(&cgroup_mutex);
4016 put_task_struct(tsk);
4017out_free:
4018 kfree(buf);
4019out:
4020 return retval;
4021}
4022
4023static int cgroup_open(struct inode *inode, struct file *file)
4024{
4025 struct pid *pid = PROC_I(inode)->pid;
4026 return single_open(file, proc_cgroup_show, pid);
4027}
4028
828c0950 4029const struct file_operations proc_cgroup_operations = {
a424316c
PM
4030 .open = cgroup_open,
4031 .read = seq_read,
4032 .llseek = seq_lseek,
4033 .release = single_release,
4034};
4035
4036/* Display information about each subsystem and each hierarchy */
4037static int proc_cgroupstats_show(struct seq_file *m, void *v)
4038{
4039 int i;
a424316c 4040
8bab8dde 4041 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4042 /*
4043 * ideally we don't want subsystems moving around while we do this.
4044 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4045 * subsys/hierarchy state.
4046 */
a424316c 4047 mutex_lock(&cgroup_mutex);
a424316c
PM
4048 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4049 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4050 if (ss == NULL)
4051 continue;
2c6ab6d2
PM
4052 seq_printf(m, "%s\t%d\t%d\t%d\n",
4053 ss->name, ss->root->hierarchy_id,
8bab8dde 4054 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4055 }
4056 mutex_unlock(&cgroup_mutex);
4057 return 0;
4058}
4059
4060static int cgroupstats_open(struct inode *inode, struct file *file)
4061{
9dce07f1 4062 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4063}
4064
828c0950 4065static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4066 .open = cgroupstats_open,
4067 .read = seq_read,
4068 .llseek = seq_lseek,
4069 .release = single_release,
4070};
4071
b4f48b63
PM
4072/**
4073 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4074 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4075 *
4076 * Description: A task inherits its parent's cgroup at fork().
4077 *
4078 * A pointer to the shared css_set was automatically copied in
4079 * fork.c by dup_task_struct(). However, we ignore that copy, since
4080 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 4081 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
4082 * have already changed current->cgroups, allowing the previously
4083 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4084 *
4085 * At the point that cgroup_fork() is called, 'current' is the parent
4086 * task, and the passed argument 'child' points to the child task.
4087 */
4088void cgroup_fork(struct task_struct *child)
4089{
817929ec
PM
4090 task_lock(current);
4091 child->cgroups = current->cgroups;
4092 get_css_set(child->cgroups);
4093 task_unlock(current);
4094 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4095}
4096
4097/**
a043e3b2
LZ
4098 * cgroup_fork_callbacks - run fork callbacks
4099 * @child: the new task
4100 *
4101 * Called on a new task very soon before adding it to the
4102 * tasklist. No need to take any locks since no-one can
4103 * be operating on this task.
b4f48b63
PM
4104 */
4105void cgroup_fork_callbacks(struct task_struct *child)
4106{
4107 if (need_forkexit_callback) {
4108 int i;
aae8aab4
BB
4109 /*
4110 * forkexit callbacks are only supported for builtin
4111 * subsystems, and the builtin section of the subsys array is
4112 * immutable, so we don't need to lock the subsys array here.
4113 */
4114 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4115 struct cgroup_subsys *ss = subsys[i];
4116 if (ss->fork)
4117 ss->fork(ss, child);
4118 }
4119 }
4120}
4121
817929ec 4122/**
a043e3b2
LZ
4123 * cgroup_post_fork - called on a new task after adding it to the task list
4124 * @child: the task in question
4125 *
4126 * Adds the task to the list running through its css_set if necessary.
4127 * Has to be after the task is visible on the task list in case we race
4128 * with the first call to cgroup_iter_start() - to guarantee that the
4129 * new task ends up on its list.
4130 */
817929ec
PM
4131void cgroup_post_fork(struct task_struct *child)
4132{
4133 if (use_task_css_set_links) {
4134 write_lock(&css_set_lock);
b12b533f 4135 task_lock(child);
817929ec
PM
4136 if (list_empty(&child->cg_list))
4137 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 4138 task_unlock(child);
817929ec
PM
4139 write_unlock(&css_set_lock);
4140 }
4141}
b4f48b63
PM
4142/**
4143 * cgroup_exit - detach cgroup from exiting task
4144 * @tsk: pointer to task_struct of exiting process
a043e3b2 4145 * @run_callback: run exit callbacks?
b4f48b63
PM
4146 *
4147 * Description: Detach cgroup from @tsk and release it.
4148 *
4149 * Note that cgroups marked notify_on_release force every task in
4150 * them to take the global cgroup_mutex mutex when exiting.
4151 * This could impact scaling on very large systems. Be reluctant to
4152 * use notify_on_release cgroups where very high task exit scaling
4153 * is required on large systems.
4154 *
4155 * the_top_cgroup_hack:
4156 *
4157 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4158 *
4159 * We call cgroup_exit() while the task is still competent to
4160 * handle notify_on_release(), then leave the task attached to the
4161 * root cgroup in each hierarchy for the remainder of its exit.
4162 *
4163 * To do this properly, we would increment the reference count on
4164 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4165 * code we would add a second cgroup function call, to drop that
4166 * reference. This would just create an unnecessary hot spot on
4167 * the top_cgroup reference count, to no avail.
4168 *
4169 * Normally, holding a reference to a cgroup without bumping its
4170 * count is unsafe. The cgroup could go away, or someone could
4171 * attach us to a different cgroup, decrementing the count on
4172 * the first cgroup that we never incremented. But in this case,
4173 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4174 * which wards off any cgroup_attach_task() attempts, or task is a failed
4175 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4176 */
4177void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4178{
4179 int i;
817929ec 4180 struct css_set *cg;
b4f48b63
PM
4181
4182 if (run_callbacks && need_forkexit_callback) {
aae8aab4
BB
4183 /*
4184 * modular subsystems can't use callbacks, so no need to lock
4185 * the subsys array
4186 */
4187 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4188 struct cgroup_subsys *ss = subsys[i];
4189 if (ss->exit)
4190 ss->exit(ss, tsk);
4191 }
4192 }
817929ec
PM
4193
4194 /*
4195 * Unlink from the css_set task list if necessary.
4196 * Optimistically check cg_list before taking
4197 * css_set_lock
4198 */
4199 if (!list_empty(&tsk->cg_list)) {
4200 write_lock(&css_set_lock);
4201 if (!list_empty(&tsk->cg_list))
4202 list_del(&tsk->cg_list);
4203 write_unlock(&css_set_lock);
4204 }
4205
b4f48b63
PM
4206 /* Reassign the task to the init_css_set. */
4207 task_lock(tsk);
817929ec
PM
4208 cg = tsk->cgroups;
4209 tsk->cgroups = &init_css_set;
b4f48b63 4210 task_unlock(tsk);
817929ec 4211 if (cg)
81a6a5cd 4212 put_css_set_taskexit(cg);
b4f48b63 4213}
697f4161
PM
4214
4215/**
a043e3b2
LZ
4216 * cgroup_clone - clone the cgroup the given subsystem is attached to
4217 * @tsk: the task to be moved
4218 * @subsys: the given subsystem
e885dcde 4219 * @nodename: the name for the new cgroup
a043e3b2
LZ
4220 *
4221 * Duplicate the current cgroup in the hierarchy that the given
4222 * subsystem is attached to, and move this task into the new
4223 * child.
697f4161 4224 */
e885dcde
SH
4225int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4226 char *nodename)
697f4161
PM
4227{
4228 struct dentry *dentry;
4229 int ret = 0;
697f4161
PM
4230 struct cgroup *parent, *child;
4231 struct inode *inode;
4232 struct css_set *cg;
4233 struct cgroupfs_root *root;
4234 struct cgroup_subsys *ss;
4235
4236 /* We shouldn't be called by an unregistered subsystem */
4237 BUG_ON(!subsys->active);
4238
4239 /* First figure out what hierarchy and cgroup we're dealing
4240 * with, and pin them so we can drop cgroup_mutex */
4241 mutex_lock(&cgroup_mutex);
4242 again:
4243 root = subsys->root;
4244 if (root == &rootnode) {
697f4161
PM
4245 mutex_unlock(&cgroup_mutex);
4246 return 0;
4247 }
697f4161 4248
697f4161 4249 /* Pin the hierarchy */
1404f065 4250 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
4251 /* We race with the final deactivate_super() */
4252 mutex_unlock(&cgroup_mutex);
4253 return 0;
4254 }
697f4161 4255
817929ec 4256 /* Keep the cgroup alive */
1404f065
LZ
4257 task_lock(tsk);
4258 parent = task_cgroup(tsk, subsys->subsys_id);
4259 cg = tsk->cgroups;
817929ec 4260 get_css_set(cg);
104cbd55 4261 task_unlock(tsk);
1404f065 4262
697f4161
PM
4263 mutex_unlock(&cgroup_mutex);
4264
4265 /* Now do the VFS work to create a cgroup */
4266 inode = parent->dentry->d_inode;
4267
4268 /* Hold the parent directory mutex across this operation to
4269 * stop anyone else deleting the new cgroup */
4270 mutex_lock(&inode->i_mutex);
4271 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4272 if (IS_ERR(dentry)) {
4273 printk(KERN_INFO
cfe36bde 4274 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
4275 PTR_ERR(dentry));
4276 ret = PTR_ERR(dentry);
4277 goto out_release;
4278 }
4279
4280 /* Create the cgroup directory, which also creates the cgroup */
75139b82 4281 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 4282 child = __d_cgrp(dentry);
697f4161
PM
4283 dput(dentry);
4284 if (ret) {
4285 printk(KERN_INFO
4286 "Failed to create cgroup %s: %d\n", nodename,
4287 ret);
4288 goto out_release;
4289 }
4290
697f4161
PM
4291 /* The cgroup now exists. Retake cgroup_mutex and check
4292 * that we're still in the same state that we thought we
4293 * were. */
4294 mutex_lock(&cgroup_mutex);
4295 if ((root != subsys->root) ||
4296 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4297 /* Aargh, we raced ... */
4298 mutex_unlock(&inode->i_mutex);
817929ec 4299 put_css_set(cg);
697f4161 4300
1404f065 4301 deactivate_super(root->sb);
697f4161
PM
4302 /* The cgroup is still accessible in the VFS, but
4303 * we're not going to try to rmdir() it at this
4304 * point. */
4305 printk(KERN_INFO
4306 "Race in cgroup_clone() - leaking cgroup %s\n",
4307 nodename);
4308 goto again;
4309 }
4310
4311 /* do any required auto-setup */
4312 for_each_subsys(root, ss) {
4313 if (ss->post_clone)
4314 ss->post_clone(ss, child);
4315 }
4316
4317 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 4318 ret = cgroup_attach_task(child, tsk);
697f4161
PM
4319 mutex_unlock(&cgroup_mutex);
4320
4321 out_release:
4322 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
4323
4324 mutex_lock(&cgroup_mutex);
817929ec 4325 put_css_set(cg);
81a6a5cd 4326 mutex_unlock(&cgroup_mutex);
1404f065 4327 deactivate_super(root->sb);
697f4161
PM
4328 return ret;
4329}
4330
a043e3b2 4331/**
313e924c 4332 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4333 * @cgrp: the cgroup in question
313e924c 4334 * @task: the task in question
a043e3b2 4335 *
313e924c
GN
4336 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4337 * hierarchy.
697f4161
PM
4338 *
4339 * If we are sending in dummytop, then presumably we are creating
4340 * the top cgroup in the subsystem.
4341 *
4342 * Called only by the ns (nsproxy) cgroup.
4343 */
313e924c 4344int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4345{
4346 int ret;
4347 struct cgroup *target;
697f4161 4348
bd89aabc 4349 if (cgrp == dummytop)
697f4161
PM
4350 return 1;
4351
7717f7ba 4352 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4353 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4354 cgrp = cgrp->parent;
4355 ret = (cgrp == target);
697f4161
PM
4356 return ret;
4357}
81a6a5cd 4358
bd89aabc 4359static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4360{
4361 /* All of these checks rely on RCU to keep the cgroup
4362 * structure alive */
bd89aabc
PM
4363 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4364 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4365 /* Control Group is currently removeable. If it's not
4366 * already queued for a userspace notification, queue
4367 * it now */
4368 int need_schedule_work = 0;
4369 spin_lock(&release_list_lock);
bd89aabc
PM
4370 if (!cgroup_is_removed(cgrp) &&
4371 list_empty(&cgrp->release_list)) {
4372 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4373 need_schedule_work = 1;
4374 }
4375 spin_unlock(&release_list_lock);
4376 if (need_schedule_work)
4377 schedule_work(&release_agent_work);
4378 }
4379}
4380
d7b9fff7
DN
4381/* Caller must verify that the css is not for root cgroup */
4382void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4383{
bd89aabc 4384 struct cgroup *cgrp = css->cgroup;
3dece834 4385 int val;
81a6a5cd 4386 rcu_read_lock();
d7b9fff7 4387 val = atomic_sub_return(count, &css->refcnt);
3dece834 4388 if (val == 1) {
ec64f515
KH
4389 if (notify_on_release(cgrp)) {
4390 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4391 check_for_release(cgrp);
4392 }
88703267 4393 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4394 }
4395 rcu_read_unlock();
3dece834 4396 WARN_ON_ONCE(val < 1);
81a6a5cd 4397}
67523c48 4398EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4399
4400/*
4401 * Notify userspace when a cgroup is released, by running the
4402 * configured release agent with the name of the cgroup (path
4403 * relative to the root of cgroup file system) as the argument.
4404 *
4405 * Most likely, this user command will try to rmdir this cgroup.
4406 *
4407 * This races with the possibility that some other task will be
4408 * attached to this cgroup before it is removed, or that some other
4409 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4410 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4411 * unused, and this cgroup will be reprieved from its death sentence,
4412 * to continue to serve a useful existence. Next time it's released,
4413 * we will get notified again, if it still has 'notify_on_release' set.
4414 *
4415 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4416 * means only wait until the task is successfully execve()'d. The
4417 * separate release agent task is forked by call_usermodehelper(),
4418 * then control in this thread returns here, without waiting for the
4419 * release agent task. We don't bother to wait because the caller of
4420 * this routine has no use for the exit status of the release agent
4421 * task, so no sense holding our caller up for that.
81a6a5cd 4422 */
81a6a5cd
PM
4423static void cgroup_release_agent(struct work_struct *work)
4424{
4425 BUG_ON(work != &release_agent_work);
4426 mutex_lock(&cgroup_mutex);
4427 spin_lock(&release_list_lock);
4428 while (!list_empty(&release_list)) {
4429 char *argv[3], *envp[3];
4430 int i;
e788e066 4431 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4432 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4433 struct cgroup,
4434 release_list);
bd89aabc 4435 list_del_init(&cgrp->release_list);
81a6a5cd
PM
4436 spin_unlock(&release_list_lock);
4437 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4438 if (!pathbuf)
4439 goto continue_free;
4440 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4441 goto continue_free;
4442 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4443 if (!agentbuf)
4444 goto continue_free;
81a6a5cd
PM
4445
4446 i = 0;
e788e066
PM
4447 argv[i++] = agentbuf;
4448 argv[i++] = pathbuf;
81a6a5cd
PM
4449 argv[i] = NULL;
4450
4451 i = 0;
4452 /* minimal command environment */
4453 envp[i++] = "HOME=/";
4454 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4455 envp[i] = NULL;
4456
4457 /* Drop the lock while we invoke the usermode helper,
4458 * since the exec could involve hitting disk and hence
4459 * be a slow process */
4460 mutex_unlock(&cgroup_mutex);
4461 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4462 mutex_lock(&cgroup_mutex);
e788e066
PM
4463 continue_free:
4464 kfree(pathbuf);
4465 kfree(agentbuf);
81a6a5cd
PM
4466 spin_lock(&release_list_lock);
4467 }
4468 spin_unlock(&release_list_lock);
4469 mutex_unlock(&cgroup_mutex);
4470}
8bab8dde
PM
4471
4472static int __init cgroup_disable(char *str)
4473{
4474 int i;
4475 char *token;
4476
4477 while ((token = strsep(&str, ",")) != NULL) {
4478 if (!*token)
4479 continue;
aae8aab4
BB
4480 /*
4481 * cgroup_disable, being at boot time, can't know about module
4482 * subsystems, so we don't worry about them.
4483 */
4484 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4485 struct cgroup_subsys *ss = subsys[i];
4486
4487 if (!strcmp(token, ss->name)) {
4488 ss->disabled = 1;
4489 printk(KERN_INFO "Disabling %s control group"
4490 " subsystem\n", ss->name);
4491 break;
4492 }
4493 }
4494 }
4495 return 1;
4496}
4497__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4498
4499/*
4500 * Functons for CSS ID.
4501 */
4502
4503/*
4504 *To get ID other than 0, this should be called when !cgroup_is_removed().
4505 */
4506unsigned short css_id(struct cgroup_subsys_state *css)
4507{
7f0f1546
KH
4508 struct css_id *cssid;
4509
4510 /*
4511 * This css_id() can return correct value when somone has refcnt
4512 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4513 * it's unchanged until freed.
4514 */
4515 cssid = rcu_dereference_check(css->id,
4516 rcu_read_lock_held() || atomic_read(&css->refcnt));
38460b48
KH
4517
4518 if (cssid)
4519 return cssid->id;
4520 return 0;
4521}
67523c48 4522EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4523
4524unsigned short css_depth(struct cgroup_subsys_state *css)
4525{
7f0f1546
KH
4526 struct css_id *cssid;
4527
4528 cssid = rcu_dereference_check(css->id,
4529 rcu_read_lock_held() || atomic_read(&css->refcnt));
38460b48
KH
4530
4531 if (cssid)
4532 return cssid->depth;
4533 return 0;
4534}
67523c48 4535EXPORT_SYMBOL_GPL(css_depth);
38460b48 4536
747388d7
KH
4537/**
4538 * css_is_ancestor - test "root" css is an ancestor of "child"
4539 * @child: the css to be tested.
4540 * @root: the css supporsed to be an ancestor of the child.
4541 *
4542 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4543 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4544 * But, considering usual usage, the csses should be valid objects after test.
4545 * Assuming that the caller will do some action to the child if this returns
4546 * returns true, the caller must take "child";s reference count.
4547 * If "child" is valid object and this returns true, "root" is valid, too.
4548 */
4549
38460b48 4550bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4551 const struct cgroup_subsys_state *root)
38460b48 4552{
747388d7
KH
4553 struct css_id *child_id;
4554 struct css_id *root_id;
4555 bool ret = true;
38460b48 4556
747388d7
KH
4557 rcu_read_lock();
4558 child_id = rcu_dereference(child->id);
4559 root_id = rcu_dereference(root->id);
4560 if (!child_id
4561 || !root_id
4562 || (child_id->depth < root_id->depth)
4563 || (child_id->stack[root_id->depth] != root_id->id))
4564 ret = false;
4565 rcu_read_unlock();
4566 return ret;
38460b48
KH
4567}
4568
4569static void __free_css_id_cb(struct rcu_head *head)
4570{
4571 struct css_id *id;
4572
4573 id = container_of(head, struct css_id, rcu_head);
4574 kfree(id);
4575}
4576
4577void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4578{
4579 struct css_id *id = css->id;
4580 /* When this is called before css_id initialization, id can be NULL */
4581 if (!id)
4582 return;
4583
4584 BUG_ON(!ss->use_id);
4585
4586 rcu_assign_pointer(id->css, NULL);
4587 rcu_assign_pointer(css->id, NULL);
4588 spin_lock(&ss->id_lock);
4589 idr_remove(&ss->idr, id->id);
4590 spin_unlock(&ss->id_lock);
4591 call_rcu(&id->rcu_head, __free_css_id_cb);
4592}
67523c48 4593EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4594
4595/*
4596 * This is called by init or create(). Then, calls to this function are
4597 * always serialized (By cgroup_mutex() at create()).
4598 */
4599
4600static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4601{
4602 struct css_id *newid;
4603 int myid, error, size;
4604
4605 BUG_ON(!ss->use_id);
4606
4607 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4608 newid = kzalloc(size, GFP_KERNEL);
4609 if (!newid)
4610 return ERR_PTR(-ENOMEM);
4611 /* get id */
4612 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4613 error = -ENOMEM;
4614 goto err_out;
4615 }
4616 spin_lock(&ss->id_lock);
4617 /* Don't use 0. allocates an ID of 1-65535 */
4618 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4619 spin_unlock(&ss->id_lock);
4620
4621 /* Returns error when there are no free spaces for new ID.*/
4622 if (error) {
4623 error = -ENOSPC;
4624 goto err_out;
4625 }
4626 if (myid > CSS_ID_MAX)
4627 goto remove_idr;
4628
4629 newid->id = myid;
4630 newid->depth = depth;
4631 return newid;
4632remove_idr:
4633 error = -ENOSPC;
4634 spin_lock(&ss->id_lock);
4635 idr_remove(&ss->idr, myid);
4636 spin_unlock(&ss->id_lock);
4637err_out:
4638 kfree(newid);
4639 return ERR_PTR(error);
4640
4641}
4642
e6a1105b
BB
4643static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4644 struct cgroup_subsys_state *rootcss)
38460b48
KH
4645{
4646 struct css_id *newid;
38460b48
KH
4647
4648 spin_lock_init(&ss->id_lock);
4649 idr_init(&ss->idr);
4650
38460b48
KH
4651 newid = get_new_cssid(ss, 0);
4652 if (IS_ERR(newid))
4653 return PTR_ERR(newid);
4654
4655 newid->stack[0] = newid->id;
4656 newid->css = rootcss;
4657 rootcss->id = newid;
4658 return 0;
4659}
4660
4661static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4662 struct cgroup *child)
4663{
4664 int subsys_id, i, depth = 0;
4665 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 4666 struct css_id *child_id, *parent_id;
38460b48
KH
4667
4668 subsys_id = ss->subsys_id;
4669 parent_css = parent->subsys[subsys_id];
4670 child_css = child->subsys[subsys_id];
38460b48 4671 parent_id = parent_css->id;
94b3dd0f 4672 depth = parent_id->depth + 1;
38460b48
KH
4673
4674 child_id = get_new_cssid(ss, depth);
4675 if (IS_ERR(child_id))
4676 return PTR_ERR(child_id);
4677
4678 for (i = 0; i < depth; i++)
4679 child_id->stack[i] = parent_id->stack[i];
4680 child_id->stack[depth] = child_id->id;
4681 /*
4682 * child_id->css pointer will be set after this cgroup is available
4683 * see cgroup_populate_dir()
4684 */
4685 rcu_assign_pointer(child_css->id, child_id);
4686
4687 return 0;
4688}
4689
4690/**
4691 * css_lookup - lookup css by id
4692 * @ss: cgroup subsys to be looked into.
4693 * @id: the id
4694 *
4695 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4696 * NULL if not. Should be called under rcu_read_lock()
4697 */
4698struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4699{
4700 struct css_id *cssid = NULL;
4701
4702 BUG_ON(!ss->use_id);
4703 cssid = idr_find(&ss->idr, id);
4704
4705 if (unlikely(!cssid))
4706 return NULL;
4707
4708 return rcu_dereference(cssid->css);
4709}
67523c48 4710EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
4711
4712/**
4713 * css_get_next - lookup next cgroup under specified hierarchy.
4714 * @ss: pointer to subsystem
4715 * @id: current position of iteration.
4716 * @root: pointer to css. search tree under this.
4717 * @foundid: position of found object.
4718 *
4719 * Search next css under the specified hierarchy of rootid. Calling under
4720 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4721 */
4722struct cgroup_subsys_state *
4723css_get_next(struct cgroup_subsys *ss, int id,
4724 struct cgroup_subsys_state *root, int *foundid)
4725{
4726 struct cgroup_subsys_state *ret = NULL;
4727 struct css_id *tmp;
4728 int tmpid;
4729 int rootid = css_id(root);
4730 int depth = css_depth(root);
4731
4732 if (!rootid)
4733 return NULL;
4734
4735 BUG_ON(!ss->use_id);
4736 /* fill start point for scan */
4737 tmpid = id;
4738 while (1) {
4739 /*
4740 * scan next entry from bitmap(tree), tmpid is updated after
4741 * idr_get_next().
4742 */
4743 spin_lock(&ss->id_lock);
4744 tmp = idr_get_next(&ss->idr, &tmpid);
4745 spin_unlock(&ss->id_lock);
4746
4747 if (!tmp)
4748 break;
4749 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4750 ret = rcu_dereference(tmp->css);
4751 if (ret) {
4752 *foundid = tmpid;
4753 break;
4754 }
4755 }
4756 /* continue to scan from next id */
4757 tmpid = tmpid + 1;
4758 }
4759 return ret;
4760}
4761
fe693435
PM
4762#ifdef CONFIG_CGROUP_DEBUG
4763static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4764 struct cgroup *cont)
4765{
4766 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4767
4768 if (!css)
4769 return ERR_PTR(-ENOMEM);
4770
4771 return css;
4772}
4773
4774static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4775{
4776 kfree(cont->subsys[debug_subsys_id]);
4777}
4778
4779static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4780{
4781 return atomic_read(&cont->count);
4782}
4783
4784static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4785{
4786 return cgroup_task_count(cont);
4787}
4788
4789static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4790{
4791 return (u64)(unsigned long)current->cgroups;
4792}
4793
4794static u64 current_css_set_refcount_read(struct cgroup *cont,
4795 struct cftype *cft)
4796{
4797 u64 count;
4798
4799 rcu_read_lock();
4800 count = atomic_read(&current->cgroups->refcount);
4801 rcu_read_unlock();
4802 return count;
4803}
4804
7717f7ba
PM
4805static int current_css_set_cg_links_read(struct cgroup *cont,
4806 struct cftype *cft,
4807 struct seq_file *seq)
4808{
4809 struct cg_cgroup_link *link;
4810 struct css_set *cg;
4811
4812 read_lock(&css_set_lock);
4813 rcu_read_lock();
4814 cg = rcu_dereference(current->cgroups);
4815 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4816 struct cgroup *c = link->cgrp;
4817 const char *name;
4818
4819 if (c->dentry)
4820 name = c->dentry->d_name.name;
4821 else
4822 name = "?";
2c6ab6d2
PM
4823 seq_printf(seq, "Root %d group %s\n",
4824 c->root->hierarchy_id, name);
7717f7ba
PM
4825 }
4826 rcu_read_unlock();
4827 read_unlock(&css_set_lock);
4828 return 0;
4829}
4830
4831#define MAX_TASKS_SHOWN_PER_CSS 25
4832static int cgroup_css_links_read(struct cgroup *cont,
4833 struct cftype *cft,
4834 struct seq_file *seq)
4835{
4836 struct cg_cgroup_link *link;
4837
4838 read_lock(&css_set_lock);
4839 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4840 struct css_set *cg = link->cg;
4841 struct task_struct *task;
4842 int count = 0;
4843 seq_printf(seq, "css_set %p\n", cg);
4844 list_for_each_entry(task, &cg->tasks, cg_list) {
4845 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4846 seq_puts(seq, " ...\n");
4847 break;
4848 } else {
4849 seq_printf(seq, " task %d\n",
4850 task_pid_vnr(task));
4851 }
4852 }
4853 }
4854 read_unlock(&css_set_lock);
4855 return 0;
4856}
4857
fe693435
PM
4858static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4859{
4860 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4861}
4862
4863static struct cftype debug_files[] = {
4864 {
4865 .name = "cgroup_refcount",
4866 .read_u64 = cgroup_refcount_read,
4867 },
4868 {
4869 .name = "taskcount",
4870 .read_u64 = debug_taskcount_read,
4871 },
4872
4873 {
4874 .name = "current_css_set",
4875 .read_u64 = current_css_set_read,
4876 },
4877
4878 {
4879 .name = "current_css_set_refcount",
4880 .read_u64 = current_css_set_refcount_read,
4881 },
4882
7717f7ba
PM
4883 {
4884 .name = "current_css_set_cg_links",
4885 .read_seq_string = current_css_set_cg_links_read,
4886 },
4887
4888 {
4889 .name = "cgroup_css_links",
4890 .read_seq_string = cgroup_css_links_read,
4891 },
4892
fe693435
PM
4893 {
4894 .name = "releasable",
4895 .read_u64 = releasable_read,
4896 },
4897};
4898
4899static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4900{
4901 return cgroup_add_files(cont, ss, debug_files,
4902 ARRAY_SIZE(debug_files));
4903}
4904
4905struct cgroup_subsys debug_subsys = {
4906 .name = "debug",
4907 .create = debug_create,
4908 .destroy = debug_destroy,
4909 .populate = debug_populate,
4910 .subsys_id = debug_subsys_id,
4911};
4912#endif /* CONFIG_CGROUP_DEBUG */