cgroups: misc cleanups to write_string patchset
[linux-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
472b1053 47#include <linux/hash.h>
846c7bb0 48
ddbcc7e8
PM
49#include <asm/atomic.h>
50
81a6a5cd
PM
51static DEFINE_MUTEX(cgroup_mutex);
52
ddbcc7e8
PM
53/* Generate an array of cgroup subsystem pointers */
54#define SUBSYS(_x) &_x ## _subsys,
55
56static struct cgroup_subsys *subsys[] = {
57#include <linux/cgroup_subsys.h>
58};
59
60/*
61 * A cgroupfs_root represents the root of a cgroup hierarchy,
62 * and may be associated with a superblock to form an active
63 * hierarchy
64 */
65struct cgroupfs_root {
66 struct super_block *sb;
67
68 /*
69 * The bitmask of subsystems intended to be attached to this
70 * hierarchy
71 */
72 unsigned long subsys_bits;
73
74 /* The bitmask of subsystems currently attached to this hierarchy */
75 unsigned long actual_subsys_bits;
76
77 /* A list running through the attached subsystems */
78 struct list_head subsys_list;
79
80 /* The root cgroup for this hierarchy */
81 struct cgroup top_cgroup;
82
83 /* Tracks how many cgroups are currently defined in hierarchy.*/
84 int number_of_cgroups;
85
86 /* A list running through the mounted hierarchies */
87 struct list_head root_list;
88
89 /* Hierarchy-specific flags */
90 unsigned long flags;
81a6a5cd 91
e788e066 92 /* The path to use for release notifications. */
81a6a5cd 93 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
94};
95
96
97/*
98 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
99 * subsystems that are otherwise unattached - it never has more than a
100 * single cgroup, and all tasks are part of that cgroup.
101 */
102static struct cgroupfs_root rootnode;
103
104/* The list of hierarchy roots */
105
106static LIST_HEAD(roots);
817929ec 107static int root_count;
ddbcc7e8
PM
108
109/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
110#define dummytop (&rootnode.top_cgroup)
111
112/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
113 * check for fork/exit handlers to call. This avoids us having to do
114 * extra work in the fork/exit path if none of the subsystems need to
115 * be called.
ddbcc7e8 116 */
8947f9d5 117static int need_forkexit_callback __read_mostly;
cf475ad2 118static int need_mm_owner_callback __read_mostly;
ddbcc7e8 119
ddbcc7e8 120/* convenient tests for these bits */
bd89aabc 121inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 122{
bd89aabc 123 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
124}
125
126/* bits in struct cgroupfs_root flags field */
127enum {
128 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
129};
130
e9685a03 131static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
132{
133 const int bits =
bd89aabc
PM
134 (1 << CGRP_RELEASABLE) |
135 (1 << CGRP_NOTIFY_ON_RELEASE);
136 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
137}
138
e9685a03 139static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 140{
bd89aabc 141 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
142}
143
ddbcc7e8
PM
144/*
145 * for_each_subsys() allows you to iterate on each subsystem attached to
146 * an active hierarchy
147 */
148#define for_each_subsys(_root, _ss) \
149list_for_each_entry(_ss, &_root->subsys_list, sibling)
150
151/* for_each_root() allows you to iterate across the active hierarchies */
152#define for_each_root(_root) \
153list_for_each_entry(_root, &roots, root_list)
154
81a6a5cd
PM
155/* the list of cgroups eligible for automatic release. Protected by
156 * release_list_lock */
157static LIST_HEAD(release_list);
158static DEFINE_SPINLOCK(release_list_lock);
159static void cgroup_release_agent(struct work_struct *work);
160static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 161static void check_for_release(struct cgroup *cgrp);
81a6a5cd 162
817929ec
PM
163/* Link structure for associating css_set objects with cgroups */
164struct cg_cgroup_link {
165 /*
166 * List running through cg_cgroup_links associated with a
167 * cgroup, anchored on cgroup->css_sets
168 */
bd89aabc 169 struct list_head cgrp_link_list;
817929ec
PM
170 /*
171 * List running through cg_cgroup_links pointing at a
172 * single css_set object, anchored on css_set->cg_links
173 */
174 struct list_head cg_link_list;
175 struct css_set *cg;
176};
177
178/* The default css_set - used by init and its children prior to any
179 * hierarchies being mounted. It contains a pointer to the root state
180 * for each subsystem. Also used to anchor the list of css_sets. Not
181 * reference-counted, to improve performance when child cgroups
182 * haven't been created.
183 */
184
185static struct css_set init_css_set;
186static struct cg_cgroup_link init_css_set_link;
187
188/* css_set_lock protects the list of css_set objects, and the
189 * chain of tasks off each css_set. Nests outside task->alloc_lock
190 * due to cgroup_iter_start() */
191static DEFINE_RWLOCK(css_set_lock);
192static int css_set_count;
193
472b1053
LZ
194/* hash table for cgroup groups. This improves the performance to
195 * find an existing css_set */
196#define CSS_SET_HASH_BITS 7
197#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
198static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
199
200static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
201{
202 int i;
203 int index;
204 unsigned long tmp = 0UL;
205
206 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
207 tmp += (unsigned long)css[i];
208 tmp = (tmp >> 16) ^ tmp;
209
210 index = hash_long(tmp, CSS_SET_HASH_BITS);
211
212 return &css_set_table[index];
213}
214
817929ec
PM
215/* We don't maintain the lists running through each css_set to its
216 * task until after the first call to cgroup_iter_start(). This
217 * reduces the fork()/exit() overhead for people who have cgroups
218 * compiled into their kernel but not actually in use */
8947f9d5 219static int use_task_css_set_links __read_mostly;
817929ec
PM
220
221/* When we create or destroy a css_set, the operation simply
222 * takes/releases a reference count on all the cgroups referenced
223 * by subsystems in this css_set. This can end up multiple-counting
224 * some cgroups, but that's OK - the ref-count is just a
225 * busy/not-busy indicator; ensuring that we only count each cgroup
226 * once would require taking a global lock to ensure that no
b4f48b63
PM
227 * subsystems moved between hierarchies while we were doing so.
228 *
229 * Possible TODO: decide at boot time based on the number of
230 * registered subsystems and the number of CPUs or NUMA nodes whether
231 * it's better for performance to ref-count every subsystem, or to
232 * take a global lock and only add one ref count to each hierarchy.
233 */
817929ec
PM
234
235/*
236 * unlink a css_set from the list and free it
237 */
81a6a5cd 238static void unlink_css_set(struct css_set *cg)
b4f48b63 239{
71cbb949
KM
240 struct cg_cgroup_link *link;
241 struct cg_cgroup_link *saved_link;
242
817929ec 243 write_lock(&css_set_lock);
472b1053 244 hlist_del(&cg->hlist);
817929ec 245 css_set_count--;
71cbb949
KM
246
247 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
248 cg_link_list) {
817929ec 249 list_del(&link->cg_link_list);
bd89aabc 250 list_del(&link->cgrp_link_list);
817929ec
PM
251 kfree(link);
252 }
71cbb949 253
817929ec 254 write_unlock(&css_set_lock);
81a6a5cd
PM
255}
256
257static void __release_css_set(struct kref *k, int taskexit)
258{
259 int i;
260 struct css_set *cg = container_of(k, struct css_set, ref);
261
262 unlink_css_set(cg);
263
264 rcu_read_lock();
265 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc
PM
266 struct cgroup *cgrp = cg->subsys[i]->cgroup;
267 if (atomic_dec_and_test(&cgrp->count) &&
268 notify_on_release(cgrp)) {
81a6a5cd 269 if (taskexit)
bd89aabc
PM
270 set_bit(CGRP_RELEASABLE, &cgrp->flags);
271 check_for_release(cgrp);
81a6a5cd
PM
272 }
273 }
274 rcu_read_unlock();
817929ec 275 kfree(cg);
b4f48b63
PM
276}
277
81a6a5cd
PM
278static void release_css_set(struct kref *k)
279{
280 __release_css_set(k, 0);
281}
282
283static void release_css_set_taskexit(struct kref *k)
284{
285 __release_css_set(k, 1);
286}
287
817929ec
PM
288/*
289 * refcounted get/put for css_set objects
290 */
291static inline void get_css_set(struct css_set *cg)
292{
293 kref_get(&cg->ref);
294}
295
296static inline void put_css_set(struct css_set *cg)
297{
298 kref_put(&cg->ref, release_css_set);
299}
300
81a6a5cd
PM
301static inline void put_css_set_taskexit(struct css_set *cg)
302{
303 kref_put(&cg->ref, release_css_set_taskexit);
304}
305
817929ec
PM
306/*
307 * find_existing_css_set() is a helper for
308 * find_css_set(), and checks to see whether an existing
472b1053 309 * css_set is suitable.
817929ec
PM
310 *
311 * oldcg: the cgroup group that we're using before the cgroup
312 * transition
313 *
bd89aabc 314 * cgrp: the cgroup that we're moving into
817929ec
PM
315 *
316 * template: location in which to build the desired set of subsystem
317 * state objects for the new cgroup group
318 */
817929ec
PM
319static struct css_set *find_existing_css_set(
320 struct css_set *oldcg,
bd89aabc 321 struct cgroup *cgrp,
817929ec 322 struct cgroup_subsys_state *template[])
b4f48b63
PM
323{
324 int i;
bd89aabc 325 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
326 struct hlist_head *hhead;
327 struct hlist_node *node;
328 struct css_set *cg;
817929ec
PM
329
330 /* Built the set of subsystem state objects that we want to
331 * see in the new css_set */
332 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 333 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
334 /* Subsystem is in this hierarchy. So we want
335 * the subsystem state from the new
336 * cgroup */
bd89aabc 337 template[i] = cgrp->subsys[i];
817929ec
PM
338 } else {
339 /* Subsystem is not in this hierarchy, so we
340 * don't want to change the subsystem state */
341 template[i] = oldcg->subsys[i];
342 }
343 }
344
472b1053
LZ
345 hhead = css_set_hash(template);
346 hlist_for_each_entry(cg, node, hhead, hlist) {
817929ec
PM
347 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
348 /* All subsystems matched */
349 return cg;
350 }
472b1053 351 }
817929ec
PM
352
353 /* No existing cgroup group matched */
354 return NULL;
355}
356
357/*
358 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 359 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
360 * success or a negative error
361 */
817929ec
PM
362static int allocate_cg_links(int count, struct list_head *tmp)
363{
364 struct cg_cgroup_link *link;
71cbb949 365 struct cg_cgroup_link *saved_link;
817929ec
PM
366 int i;
367 INIT_LIST_HEAD(tmp);
368 for (i = 0; i < count; i++) {
369 link = kmalloc(sizeof(*link), GFP_KERNEL);
370 if (!link) {
71cbb949
KM
371 list_for_each_entry_safe(link, saved_link, tmp,
372 cgrp_link_list) {
bd89aabc 373 list_del(&link->cgrp_link_list);
817929ec
PM
374 kfree(link);
375 }
376 return -ENOMEM;
377 }
bd89aabc 378 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
379 }
380 return 0;
381}
382
383static void free_cg_links(struct list_head *tmp)
384{
71cbb949
KM
385 struct cg_cgroup_link *link;
386 struct cg_cgroup_link *saved_link;
387
388 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
bd89aabc 389 list_del(&link->cgrp_link_list);
817929ec
PM
390 kfree(link);
391 }
392}
393
394/*
395 * find_css_set() takes an existing cgroup group and a
396 * cgroup object, and returns a css_set object that's
397 * equivalent to the old group, but with the given cgroup
398 * substituted into the appropriate hierarchy. Must be called with
399 * cgroup_mutex held
400 */
817929ec 401static struct css_set *find_css_set(
bd89aabc 402 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
403{
404 struct css_set *res;
405 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
406 int i;
407
408 struct list_head tmp_cg_links;
409 struct cg_cgroup_link *link;
410
472b1053
LZ
411 struct hlist_head *hhead;
412
817929ec
PM
413 /* First see if we already have a cgroup group that matches
414 * the desired set */
7e9abd89 415 read_lock(&css_set_lock);
bd89aabc 416 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
417 if (res)
418 get_css_set(res);
7e9abd89 419 read_unlock(&css_set_lock);
817929ec
PM
420
421 if (res)
422 return res;
423
424 res = kmalloc(sizeof(*res), GFP_KERNEL);
425 if (!res)
426 return NULL;
427
428 /* Allocate all the cg_cgroup_link objects that we'll need */
429 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
430 kfree(res);
431 return NULL;
432 }
433
434 kref_init(&res->ref);
435 INIT_LIST_HEAD(&res->cg_links);
436 INIT_LIST_HEAD(&res->tasks);
472b1053 437 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
438
439 /* Copy the set of subsystem state objects generated in
440 * find_existing_css_set() */
441 memcpy(res->subsys, template, sizeof(res->subsys));
442
443 write_lock(&css_set_lock);
444 /* Add reference counts and links from the new css_set. */
445 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 446 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 447 struct cgroup_subsys *ss = subsys[i];
bd89aabc 448 atomic_inc(&cgrp->count);
817929ec
PM
449 /*
450 * We want to add a link once per cgroup, so we
451 * only do it for the first subsystem in each
452 * hierarchy
453 */
454 if (ss->root->subsys_list.next == &ss->sibling) {
455 BUG_ON(list_empty(&tmp_cg_links));
456 link = list_entry(tmp_cg_links.next,
457 struct cg_cgroup_link,
bd89aabc
PM
458 cgrp_link_list);
459 list_del(&link->cgrp_link_list);
460 list_add(&link->cgrp_link_list, &cgrp->css_sets);
817929ec
PM
461 link->cg = res;
462 list_add(&link->cg_link_list, &res->cg_links);
463 }
464 }
465 if (list_empty(&rootnode.subsys_list)) {
466 link = list_entry(tmp_cg_links.next,
467 struct cg_cgroup_link,
bd89aabc
PM
468 cgrp_link_list);
469 list_del(&link->cgrp_link_list);
470 list_add(&link->cgrp_link_list, &dummytop->css_sets);
817929ec
PM
471 link->cg = res;
472 list_add(&link->cg_link_list, &res->cg_links);
473 }
474
475 BUG_ON(!list_empty(&tmp_cg_links));
476
817929ec 477 css_set_count++;
472b1053
LZ
478
479 /* Add this cgroup group to the hash table */
480 hhead = css_set_hash(res->subsys);
481 hlist_add_head(&res->hlist, hhead);
482
817929ec
PM
483 write_unlock(&css_set_lock);
484
485 return res;
b4f48b63
PM
486}
487
ddbcc7e8
PM
488/*
489 * There is one global cgroup mutex. We also require taking
490 * task_lock() when dereferencing a task's cgroup subsys pointers.
491 * See "The task_lock() exception", at the end of this comment.
492 *
493 * A task must hold cgroup_mutex to modify cgroups.
494 *
495 * Any task can increment and decrement the count field without lock.
496 * So in general, code holding cgroup_mutex can't rely on the count
497 * field not changing. However, if the count goes to zero, then only
956db3ca 498 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
499 * means that no tasks are currently attached, therefore there is no
500 * way a task attached to that cgroup can fork (the other way to
501 * increment the count). So code holding cgroup_mutex can safely
502 * assume that if the count is zero, it will stay zero. Similarly, if
503 * a task holds cgroup_mutex on a cgroup with zero count, it
504 * knows that the cgroup won't be removed, as cgroup_rmdir()
505 * needs that mutex.
506 *
507 * The cgroup_common_file_write handler for operations that modify
508 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
509 * single threading all such cgroup modifications across the system.
510 *
511 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
512 * (usually) take cgroup_mutex. These are the two most performance
513 * critical pieces of code here. The exception occurs on cgroup_exit(),
514 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
515 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
516 * to the release agent with the name of the cgroup (path relative to
517 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
518 *
519 * A cgroup can only be deleted if both its 'count' of using tasks
520 * is zero, and its list of 'children' cgroups is empty. Since all
521 * tasks in the system use _some_ cgroup, and since there is always at
522 * least one task in the system (init, pid == 1), therefore, top_cgroup
523 * always has either children cgroups and/or using tasks. So we don't
524 * need a special hack to ensure that top_cgroup cannot be deleted.
525 *
526 * The task_lock() exception
527 *
528 * The need for this exception arises from the action of
956db3ca 529 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 530 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
531 * several performance critical places that need to reference
532 * task->cgroup without the expense of grabbing a system global
533 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 534 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
535 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
536 * the task_struct routinely used for such matters.
537 *
538 * P.S. One more locking exception. RCU is used to guard the
956db3ca 539 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
540 */
541
ddbcc7e8
PM
542/**
543 * cgroup_lock - lock out any changes to cgroup structures
544 *
545 */
ddbcc7e8
PM
546void cgroup_lock(void)
547{
548 mutex_lock(&cgroup_mutex);
549}
550
551/**
552 * cgroup_unlock - release lock on cgroup changes
553 *
554 * Undo the lock taken in a previous cgroup_lock() call.
555 */
ddbcc7e8
PM
556void cgroup_unlock(void)
557{
558 mutex_unlock(&cgroup_mutex);
559}
560
561/*
562 * A couple of forward declarations required, due to cyclic reference loop:
563 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
564 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
565 * -> cgroup_mkdir.
566 */
567
568static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
569static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 570static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 571static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
572static struct file_operations proc_cgroupstats_operations;
573
574static struct backing_dev_info cgroup_backing_dev_info = {
e4ad08fe 575 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 576};
ddbcc7e8
PM
577
578static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
579{
580 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
581
582 if (inode) {
583 inode->i_mode = mode;
584 inode->i_uid = current->fsuid;
585 inode->i_gid = current->fsgid;
586 inode->i_blocks = 0;
587 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
588 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
589 }
590 return inode;
591}
592
4fca88c8
KH
593/*
594 * Call subsys's pre_destroy handler.
595 * This is called before css refcnt check.
596 */
4fca88c8
KH
597static void cgroup_call_pre_destroy(struct cgroup *cgrp)
598{
599 struct cgroup_subsys *ss;
600 for_each_subsys(cgrp->root, ss)
601 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
602 ss->pre_destroy(ss, cgrp);
603 return;
604}
605
ddbcc7e8
PM
606static void cgroup_diput(struct dentry *dentry, struct inode *inode)
607{
608 /* is dentry a directory ? if so, kfree() associated cgroup */
609 if (S_ISDIR(inode->i_mode)) {
bd89aabc 610 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 611 struct cgroup_subsys *ss;
bd89aabc 612 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
613 /* It's possible for external users to be holding css
614 * reference counts on a cgroup; css_put() needs to
615 * be able to access the cgroup after decrementing
616 * the reference count in order to know if it needs to
617 * queue the cgroup to be handled by the release
618 * agent */
619 synchronize_rcu();
8dc4f3e1
PM
620
621 mutex_lock(&cgroup_mutex);
622 /*
623 * Release the subsystem state objects.
624 */
625 for_each_subsys(cgrp->root, ss) {
626 if (cgrp->subsys[ss->subsys_id])
627 ss->destroy(ss, cgrp);
628 }
629
630 cgrp->root->number_of_cgroups--;
631 mutex_unlock(&cgroup_mutex);
632
633 /* Drop the active superblock reference that we took when we
634 * created the cgroup */
635 deactivate_super(cgrp->root->sb);
636
bd89aabc 637 kfree(cgrp);
ddbcc7e8
PM
638 }
639 iput(inode);
640}
641
642static void remove_dir(struct dentry *d)
643{
644 struct dentry *parent = dget(d->d_parent);
645
646 d_delete(d);
647 simple_rmdir(parent->d_inode, d);
648 dput(parent);
649}
650
651static void cgroup_clear_directory(struct dentry *dentry)
652{
653 struct list_head *node;
654
655 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
656 spin_lock(&dcache_lock);
657 node = dentry->d_subdirs.next;
658 while (node != &dentry->d_subdirs) {
659 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
660 list_del_init(node);
661 if (d->d_inode) {
662 /* This should never be called on a cgroup
663 * directory with child cgroups */
664 BUG_ON(d->d_inode->i_mode & S_IFDIR);
665 d = dget_locked(d);
666 spin_unlock(&dcache_lock);
667 d_delete(d);
668 simple_unlink(dentry->d_inode, d);
669 dput(d);
670 spin_lock(&dcache_lock);
671 }
672 node = dentry->d_subdirs.next;
673 }
674 spin_unlock(&dcache_lock);
675}
676
677/*
678 * NOTE : the dentry must have been dget()'ed
679 */
680static void cgroup_d_remove_dir(struct dentry *dentry)
681{
682 cgroup_clear_directory(dentry);
683
684 spin_lock(&dcache_lock);
685 list_del_init(&dentry->d_u.d_child);
686 spin_unlock(&dcache_lock);
687 remove_dir(dentry);
688}
689
690static int rebind_subsystems(struct cgroupfs_root *root,
691 unsigned long final_bits)
692{
693 unsigned long added_bits, removed_bits;
bd89aabc 694 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
695 int i;
696
697 removed_bits = root->actual_subsys_bits & ~final_bits;
698 added_bits = final_bits & ~root->actual_subsys_bits;
699 /* Check that any added subsystems are currently free */
700 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 701 unsigned long bit = 1UL << i;
ddbcc7e8
PM
702 struct cgroup_subsys *ss = subsys[i];
703 if (!(bit & added_bits))
704 continue;
705 if (ss->root != &rootnode) {
706 /* Subsystem isn't free */
707 return -EBUSY;
708 }
709 }
710
711 /* Currently we don't handle adding/removing subsystems when
712 * any child cgroups exist. This is theoretically supportable
713 * but involves complex error handling, so it's being left until
714 * later */
bd89aabc 715 if (!list_empty(&cgrp->children))
ddbcc7e8
PM
716 return -EBUSY;
717
718 /* Process each subsystem */
719 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
720 struct cgroup_subsys *ss = subsys[i];
721 unsigned long bit = 1UL << i;
722 if (bit & added_bits) {
723 /* We're binding this subsystem to this hierarchy */
bd89aabc 724 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
725 BUG_ON(!dummytop->subsys[i]);
726 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
727 cgrp->subsys[i] = dummytop->subsys[i];
728 cgrp->subsys[i]->cgroup = cgrp;
ddbcc7e8
PM
729 list_add(&ss->sibling, &root->subsys_list);
730 rcu_assign_pointer(ss->root, root);
731 if (ss->bind)
bd89aabc 732 ss->bind(ss, cgrp);
ddbcc7e8
PM
733
734 } else if (bit & removed_bits) {
735 /* We're removing this subsystem */
bd89aabc
PM
736 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
737 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8
PM
738 if (ss->bind)
739 ss->bind(ss, dummytop);
740 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 741 cgrp->subsys[i] = NULL;
ddbcc7e8
PM
742 rcu_assign_pointer(subsys[i]->root, &rootnode);
743 list_del(&ss->sibling);
744 } else if (bit & final_bits) {
745 /* Subsystem state should already exist */
bd89aabc 746 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
747 } else {
748 /* Subsystem state shouldn't exist */
bd89aabc 749 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
750 }
751 }
752 root->subsys_bits = root->actual_subsys_bits = final_bits;
753 synchronize_rcu();
754
755 return 0;
756}
757
758static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
759{
760 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
761 struct cgroup_subsys *ss;
762
763 mutex_lock(&cgroup_mutex);
764 for_each_subsys(root, ss)
765 seq_printf(seq, ",%s", ss->name);
766 if (test_bit(ROOT_NOPREFIX, &root->flags))
767 seq_puts(seq, ",noprefix");
81a6a5cd
PM
768 if (strlen(root->release_agent_path))
769 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
770 mutex_unlock(&cgroup_mutex);
771 return 0;
772}
773
774struct cgroup_sb_opts {
775 unsigned long subsys_bits;
776 unsigned long flags;
81a6a5cd 777 char *release_agent;
ddbcc7e8
PM
778};
779
780/* Convert a hierarchy specifier into a bitmask of subsystems and
781 * flags. */
782static int parse_cgroupfs_options(char *data,
783 struct cgroup_sb_opts *opts)
784{
785 char *token, *o = data ?: "all";
786
787 opts->subsys_bits = 0;
788 opts->flags = 0;
81a6a5cd 789 opts->release_agent = NULL;
ddbcc7e8
PM
790
791 while ((token = strsep(&o, ",")) != NULL) {
792 if (!*token)
793 return -EINVAL;
794 if (!strcmp(token, "all")) {
8bab8dde
PM
795 /* Add all non-disabled subsystems */
796 int i;
797 opts->subsys_bits = 0;
798 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
799 struct cgroup_subsys *ss = subsys[i];
800 if (!ss->disabled)
801 opts->subsys_bits |= 1ul << i;
802 }
ddbcc7e8
PM
803 } else if (!strcmp(token, "noprefix")) {
804 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
805 } else if (!strncmp(token, "release_agent=", 14)) {
806 /* Specifying two release agents is forbidden */
807 if (opts->release_agent)
808 return -EINVAL;
809 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
810 if (!opts->release_agent)
811 return -ENOMEM;
812 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
813 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
814 } else {
815 struct cgroup_subsys *ss;
816 int i;
817 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
818 ss = subsys[i];
819 if (!strcmp(token, ss->name)) {
8bab8dde
PM
820 if (!ss->disabled)
821 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
822 break;
823 }
824 }
825 if (i == CGROUP_SUBSYS_COUNT)
826 return -ENOENT;
827 }
828 }
829
830 /* We can't have an empty hierarchy */
831 if (!opts->subsys_bits)
832 return -EINVAL;
833
834 return 0;
835}
836
837static int cgroup_remount(struct super_block *sb, int *flags, char *data)
838{
839 int ret = 0;
840 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 841 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
842 struct cgroup_sb_opts opts;
843
bd89aabc 844 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
845 mutex_lock(&cgroup_mutex);
846
847 /* See what subsystems are wanted */
848 ret = parse_cgroupfs_options(data, &opts);
849 if (ret)
850 goto out_unlock;
851
852 /* Don't allow flags to change at remount */
853 if (opts.flags != root->flags) {
854 ret = -EINVAL;
855 goto out_unlock;
856 }
857
858 ret = rebind_subsystems(root, opts.subsys_bits);
859
860 /* (re)populate subsystem files */
861 if (!ret)
bd89aabc 862 cgroup_populate_dir(cgrp);
ddbcc7e8 863
81a6a5cd
PM
864 if (opts.release_agent)
865 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 866 out_unlock:
81a6a5cd
PM
867 if (opts.release_agent)
868 kfree(opts.release_agent);
ddbcc7e8 869 mutex_unlock(&cgroup_mutex);
bd89aabc 870 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
871 return ret;
872}
873
874static struct super_operations cgroup_ops = {
875 .statfs = simple_statfs,
876 .drop_inode = generic_delete_inode,
877 .show_options = cgroup_show_options,
878 .remount_fs = cgroup_remount,
879};
880
881static void init_cgroup_root(struct cgroupfs_root *root)
882{
bd89aabc 883 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
884 INIT_LIST_HEAD(&root->subsys_list);
885 INIT_LIST_HEAD(&root->root_list);
886 root->number_of_cgroups = 1;
bd89aabc
PM
887 cgrp->root = root;
888 cgrp->top_cgroup = cgrp;
889 INIT_LIST_HEAD(&cgrp->sibling);
890 INIT_LIST_HEAD(&cgrp->children);
891 INIT_LIST_HEAD(&cgrp->css_sets);
892 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8
PM
893}
894
895static int cgroup_test_super(struct super_block *sb, void *data)
896{
897 struct cgroupfs_root *new = data;
898 struct cgroupfs_root *root = sb->s_fs_info;
899
900 /* First check subsystems */
901 if (new->subsys_bits != root->subsys_bits)
902 return 0;
903
904 /* Next check flags */
905 if (new->flags != root->flags)
906 return 0;
907
908 return 1;
909}
910
911static int cgroup_set_super(struct super_block *sb, void *data)
912{
913 int ret;
914 struct cgroupfs_root *root = data;
915
916 ret = set_anon_super(sb, NULL);
917 if (ret)
918 return ret;
919
920 sb->s_fs_info = root;
921 root->sb = sb;
922
923 sb->s_blocksize = PAGE_CACHE_SIZE;
924 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
925 sb->s_magic = CGROUP_SUPER_MAGIC;
926 sb->s_op = &cgroup_ops;
927
928 return 0;
929}
930
931static int cgroup_get_rootdir(struct super_block *sb)
932{
933 struct inode *inode =
934 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
935 struct dentry *dentry;
936
937 if (!inode)
938 return -ENOMEM;
939
ddbcc7e8
PM
940 inode->i_fop = &simple_dir_operations;
941 inode->i_op = &cgroup_dir_inode_operations;
942 /* directories start off with i_nlink == 2 (for "." entry) */
943 inc_nlink(inode);
944 dentry = d_alloc_root(inode);
945 if (!dentry) {
946 iput(inode);
947 return -ENOMEM;
948 }
949 sb->s_root = dentry;
950 return 0;
951}
952
953static int cgroup_get_sb(struct file_system_type *fs_type,
954 int flags, const char *unused_dev_name,
955 void *data, struct vfsmount *mnt)
956{
957 struct cgroup_sb_opts opts;
958 int ret = 0;
959 struct super_block *sb;
960 struct cgroupfs_root *root;
28fd5dfc 961 struct list_head tmp_cg_links;
817929ec 962 INIT_LIST_HEAD(&tmp_cg_links);
ddbcc7e8
PM
963
964 /* First find the desired set of subsystems */
965 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
966 if (ret) {
967 if (opts.release_agent)
968 kfree(opts.release_agent);
ddbcc7e8 969 return ret;
81a6a5cd 970 }
ddbcc7e8
PM
971
972 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738
LZ
973 if (!root) {
974 if (opts.release_agent)
975 kfree(opts.release_agent);
ddbcc7e8 976 return -ENOMEM;
f7770738 977 }
ddbcc7e8
PM
978
979 init_cgroup_root(root);
980 root->subsys_bits = opts.subsys_bits;
981 root->flags = opts.flags;
81a6a5cd
PM
982 if (opts.release_agent) {
983 strcpy(root->release_agent_path, opts.release_agent);
984 kfree(opts.release_agent);
985 }
ddbcc7e8
PM
986
987 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
988
989 if (IS_ERR(sb)) {
990 kfree(root);
991 return PTR_ERR(sb);
992 }
993
994 if (sb->s_fs_info != root) {
995 /* Reusing an existing superblock */
996 BUG_ON(sb->s_root == NULL);
997 kfree(root);
998 root = NULL;
999 } else {
1000 /* New superblock */
bd89aabc 1001 struct cgroup *cgrp = &root->top_cgroup;
817929ec 1002 struct inode *inode;
28fd5dfc 1003 int i;
ddbcc7e8
PM
1004
1005 BUG_ON(sb->s_root != NULL);
1006
1007 ret = cgroup_get_rootdir(sb);
1008 if (ret)
1009 goto drop_new_super;
817929ec 1010 inode = sb->s_root->d_inode;
ddbcc7e8 1011
817929ec 1012 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1013 mutex_lock(&cgroup_mutex);
1014
817929ec
PM
1015 /*
1016 * We're accessing css_set_count without locking
1017 * css_set_lock here, but that's OK - it can only be
1018 * increased by someone holding cgroup_lock, and
1019 * that's us. The worst that can happen is that we
1020 * have some link structures left over
1021 */
1022 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1023 if (ret) {
1024 mutex_unlock(&cgroup_mutex);
1025 mutex_unlock(&inode->i_mutex);
1026 goto drop_new_super;
1027 }
1028
ddbcc7e8
PM
1029 ret = rebind_subsystems(root, root->subsys_bits);
1030 if (ret == -EBUSY) {
1031 mutex_unlock(&cgroup_mutex);
817929ec 1032 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1033 goto drop_new_super;
1034 }
1035
1036 /* EBUSY should be the only error here */
1037 BUG_ON(ret);
1038
1039 list_add(&root->root_list, &roots);
817929ec 1040 root_count++;
ddbcc7e8
PM
1041
1042 sb->s_root->d_fsdata = &root->top_cgroup;
1043 root->top_cgroup.dentry = sb->s_root;
1044
817929ec
PM
1045 /* Link the top cgroup in this hierarchy into all
1046 * the css_set objects */
1047 write_lock(&css_set_lock);
28fd5dfc
LZ
1048 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1049 struct hlist_head *hhead = &css_set_table[i];
1050 struct hlist_node *node;
817929ec 1051 struct css_set *cg;
28fd5dfc
LZ
1052
1053 hlist_for_each_entry(cg, node, hhead, hlist) {
1054 struct cg_cgroup_link *link;
1055
1056 BUG_ON(list_empty(&tmp_cg_links));
1057 link = list_entry(tmp_cg_links.next,
1058 struct cg_cgroup_link,
1059 cgrp_link_list);
1060 list_del(&link->cgrp_link_list);
1061 link->cg = cg;
1062 list_add(&link->cgrp_link_list,
1063 &root->top_cgroup.css_sets);
1064 list_add(&link->cg_link_list, &cg->cg_links);
1065 }
1066 }
817929ec
PM
1067 write_unlock(&css_set_lock);
1068
1069 free_cg_links(&tmp_cg_links);
1070
bd89aabc
PM
1071 BUG_ON(!list_empty(&cgrp->sibling));
1072 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1073 BUG_ON(root->number_of_cgroups != 1);
1074
bd89aabc 1075 cgroup_populate_dir(cgrp);
817929ec 1076 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1077 mutex_unlock(&cgroup_mutex);
1078 }
1079
1080 return simple_set_mnt(mnt, sb);
1081
1082 drop_new_super:
1083 up_write(&sb->s_umount);
1084 deactivate_super(sb);
817929ec 1085 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1086 return ret;
1087}
1088
1089static void cgroup_kill_sb(struct super_block *sb) {
1090 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1091 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1092 int ret;
71cbb949
KM
1093 struct cg_cgroup_link *link;
1094 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1095
1096 BUG_ON(!root);
1097
1098 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1099 BUG_ON(!list_empty(&cgrp->children));
1100 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1101
1102 mutex_lock(&cgroup_mutex);
1103
1104 /* Rebind all subsystems back to the default hierarchy */
1105 ret = rebind_subsystems(root, 0);
1106 /* Shouldn't be able to fail ... */
1107 BUG_ON(ret);
1108
817929ec
PM
1109 /*
1110 * Release all the links from css_sets to this hierarchy's
1111 * root cgroup
1112 */
1113 write_lock(&css_set_lock);
71cbb949
KM
1114
1115 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1116 cgrp_link_list) {
817929ec 1117 list_del(&link->cg_link_list);
bd89aabc 1118 list_del(&link->cgrp_link_list);
817929ec
PM
1119 kfree(link);
1120 }
1121 write_unlock(&css_set_lock);
1122
1123 if (!list_empty(&root->root_list)) {
ddbcc7e8 1124 list_del(&root->root_list);
817929ec
PM
1125 root_count--;
1126 }
ddbcc7e8
PM
1127 mutex_unlock(&cgroup_mutex);
1128
1129 kfree(root);
1130 kill_litter_super(sb);
1131}
1132
1133static struct file_system_type cgroup_fs_type = {
1134 .name = "cgroup",
1135 .get_sb = cgroup_get_sb,
1136 .kill_sb = cgroup_kill_sb,
1137};
1138
bd89aabc 1139static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1140{
1141 return dentry->d_fsdata;
1142}
1143
1144static inline struct cftype *__d_cft(struct dentry *dentry)
1145{
1146 return dentry->d_fsdata;
1147}
1148
a043e3b2
LZ
1149/**
1150 * cgroup_path - generate the path of a cgroup
1151 * @cgrp: the cgroup in question
1152 * @buf: the buffer to write the path into
1153 * @buflen: the length of the buffer
1154 *
1155 * Called with cgroup_mutex held. Writes path of cgroup into buf.
ddbcc7e8
PM
1156 * Returns 0 on success, -errno on error.
1157 */
bd89aabc 1158int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1159{
1160 char *start;
1161
bd89aabc 1162 if (cgrp == dummytop) {
ddbcc7e8
PM
1163 /*
1164 * Inactive subsystems have no dentry for their root
1165 * cgroup
1166 */
1167 strcpy(buf, "/");
1168 return 0;
1169 }
1170
1171 start = buf + buflen;
1172
1173 *--start = '\0';
1174 for (;;) {
bd89aabc 1175 int len = cgrp->dentry->d_name.len;
ddbcc7e8
PM
1176 if ((start -= len) < buf)
1177 return -ENAMETOOLONG;
bd89aabc
PM
1178 memcpy(start, cgrp->dentry->d_name.name, len);
1179 cgrp = cgrp->parent;
1180 if (!cgrp)
ddbcc7e8 1181 break;
bd89aabc 1182 if (!cgrp->parent)
ddbcc7e8
PM
1183 continue;
1184 if (--start < buf)
1185 return -ENAMETOOLONG;
1186 *start = '/';
1187 }
1188 memmove(buf, start, buf + buflen - start);
1189 return 0;
1190}
1191
bbcb81d0
PM
1192/*
1193 * Return the first subsystem attached to a cgroup's hierarchy, and
1194 * its subsystem id.
1195 */
1196
bd89aabc 1197static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1198 struct cgroup_subsys_state **css, int *subsys_id)
1199{
bd89aabc 1200 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1201 const struct cgroup_subsys *test_ss;
1202 BUG_ON(list_empty(&root->subsys_list));
1203 test_ss = list_entry(root->subsys_list.next,
1204 struct cgroup_subsys, sibling);
1205 if (css) {
bd89aabc 1206 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1207 BUG_ON(!*css);
1208 }
1209 if (subsys_id)
1210 *subsys_id = test_ss->subsys_id;
1211}
1212
a043e3b2
LZ
1213/**
1214 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1215 * @cgrp: the cgroup the task is attaching to
1216 * @tsk: the task to be attached
bbcb81d0 1217 *
a043e3b2
LZ
1218 * Call holding cgroup_mutex. May take task_lock of
1219 * the task 'tsk' during call.
bbcb81d0 1220 */
956db3ca 1221int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1222{
1223 int retval = 0;
1224 struct cgroup_subsys *ss;
bd89aabc 1225 struct cgroup *oldcgrp;
817929ec
PM
1226 struct css_set *cg = tsk->cgroups;
1227 struct css_set *newcg;
bd89aabc 1228 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1229 int subsys_id;
1230
bd89aabc 1231 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1232
1233 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1234 oldcgrp = task_cgroup(tsk, subsys_id);
1235 if (cgrp == oldcgrp)
bbcb81d0
PM
1236 return 0;
1237
1238 for_each_subsys(root, ss) {
1239 if (ss->can_attach) {
bd89aabc 1240 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1241 if (retval)
bbcb81d0 1242 return retval;
bbcb81d0
PM
1243 }
1244 }
1245
817929ec
PM
1246 /*
1247 * Locate or allocate a new css_set for this task,
1248 * based on its final set of cgroups
1249 */
bd89aabc 1250 newcg = find_css_set(cg, cgrp);
e18f6318 1251 if (!newcg)
817929ec 1252 return -ENOMEM;
817929ec 1253
bbcb81d0
PM
1254 task_lock(tsk);
1255 if (tsk->flags & PF_EXITING) {
1256 task_unlock(tsk);
817929ec 1257 put_css_set(newcg);
bbcb81d0
PM
1258 return -ESRCH;
1259 }
817929ec 1260 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1261 task_unlock(tsk);
1262
817929ec
PM
1263 /* Update the css_set linked lists if we're using them */
1264 write_lock(&css_set_lock);
1265 if (!list_empty(&tsk->cg_list)) {
1266 list_del(&tsk->cg_list);
1267 list_add(&tsk->cg_list, &newcg->tasks);
1268 }
1269 write_unlock(&css_set_lock);
1270
bbcb81d0 1271 for_each_subsys(root, ss) {
e18f6318 1272 if (ss->attach)
bd89aabc 1273 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1274 }
bd89aabc 1275 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1276 synchronize_rcu();
817929ec 1277 put_css_set(cg);
bbcb81d0
PM
1278 return 0;
1279}
1280
1281/*
bd89aabc 1282 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
bbcb81d0
PM
1283 * cgroup_mutex, may take task_lock of task
1284 */
bd89aabc 1285static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
bbcb81d0
PM
1286{
1287 pid_t pid;
1288 struct task_struct *tsk;
1289 int ret;
1290
1291 if (sscanf(pidbuf, "%d", &pid) != 1)
1292 return -EIO;
1293
1294 if (pid) {
1295 rcu_read_lock();
73507f33 1296 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1297 if (!tsk || tsk->flags & PF_EXITING) {
1298 rcu_read_unlock();
1299 return -ESRCH;
1300 }
1301 get_task_struct(tsk);
1302 rcu_read_unlock();
1303
1304 if ((current->euid) && (current->euid != tsk->uid)
1305 && (current->euid != tsk->suid)) {
1306 put_task_struct(tsk);
1307 return -EACCES;
1308 }
1309 } else {
1310 tsk = current;
1311 get_task_struct(tsk);
1312 }
1313
956db3ca 1314 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1315 put_task_struct(tsk);
1316 return ret;
1317}
1318
ddbcc7e8 1319/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1320enum cgroup_filetype {
1321 FILE_ROOT,
1322 FILE_DIR,
1323 FILE_TASKLIST,
81a6a5cd 1324 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1325 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1326};
1327
e788e066
PM
1328/**
1329 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1330 * @cgrp: the cgroup to be checked for liveness
1331 *
84eea842
PM
1332 * On success, returns true; the lock should be later released with
1333 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1334 */
84eea842 1335bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1336{
1337 mutex_lock(&cgroup_mutex);
1338 if (cgroup_is_removed(cgrp)) {
1339 mutex_unlock(&cgroup_mutex);
1340 return false;
1341 }
1342 return true;
1343}
1344
1345static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1346 const char *buffer)
1347{
1348 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1349 if (!cgroup_lock_live_group(cgrp))
1350 return -ENODEV;
1351 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1352 cgroup_unlock();
e788e066
PM
1353 return 0;
1354}
1355
1356static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1357 struct seq_file *seq)
1358{
1359 if (!cgroup_lock_live_group(cgrp))
1360 return -ENODEV;
1361 seq_puts(seq, cgrp->root->release_agent_path);
1362 seq_putc(seq, '\n');
84eea842 1363 cgroup_unlock();
e788e066
PM
1364 return 0;
1365}
1366
84eea842
PM
1367/* A buffer size big enough for numbers or short strings */
1368#define CGROUP_LOCAL_BUFFER_SIZE 64
1369
e73d2c61 1370static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1371 struct file *file,
1372 const char __user *userbuf,
1373 size_t nbytes, loff_t *unused_ppos)
355e0c48 1374{
84eea842 1375 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1376 int retval = 0;
355e0c48
PM
1377 char *end;
1378
1379 if (!nbytes)
1380 return -EINVAL;
1381 if (nbytes >= sizeof(buffer))
1382 return -E2BIG;
1383 if (copy_from_user(buffer, userbuf, nbytes))
1384 return -EFAULT;
1385
1386 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1387 strstrip(buffer);
e73d2c61
PM
1388 if (cft->write_u64) {
1389 u64 val = simple_strtoull(buffer, &end, 0);
1390 if (*end)
1391 return -EINVAL;
1392 retval = cft->write_u64(cgrp, cft, val);
1393 } else {
1394 s64 val = simple_strtoll(buffer, &end, 0);
1395 if (*end)
1396 return -EINVAL;
1397 retval = cft->write_s64(cgrp, cft, val);
1398 }
355e0c48
PM
1399 if (!retval)
1400 retval = nbytes;
1401 return retval;
1402}
1403
db3b1497
PM
1404static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1405 struct file *file,
1406 const char __user *userbuf,
1407 size_t nbytes, loff_t *unused_ppos)
1408{
84eea842 1409 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1410 int retval = 0;
1411 size_t max_bytes = cft->max_write_len;
1412 char *buffer = local_buffer;
1413
1414 if (!max_bytes)
1415 max_bytes = sizeof(local_buffer) - 1;
1416 if (nbytes >= max_bytes)
1417 return -E2BIG;
1418 /* Allocate a dynamic buffer if we need one */
1419 if (nbytes >= sizeof(local_buffer)) {
1420 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1421 if (buffer == NULL)
1422 return -ENOMEM;
1423 }
1424 if (nbytes && copy_from_user(buffer, userbuf, nbytes))
1425 return -EFAULT;
1426
1427 buffer[nbytes] = 0; /* nul-terminate */
1428 strstrip(buffer);
1429 retval = cft->write_string(cgrp, cft, buffer);
1430 if (!retval)
1431 retval = nbytes;
1432 if (buffer != local_buffer)
1433 kfree(buffer);
1434 return retval;
1435}
1436
bd89aabc 1437static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
bbcb81d0
PM
1438 struct cftype *cft,
1439 struct file *file,
1440 const char __user *userbuf,
1441 size_t nbytes, loff_t *unused_ppos)
1442{
1443 enum cgroup_filetype type = cft->private;
1444 char *buffer;
1445 int retval = 0;
1446
1447 if (nbytes >= PATH_MAX)
1448 return -E2BIG;
1449
1450 /* +1 for nul-terminator */
1451 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1452 if (buffer == NULL)
1453 return -ENOMEM;
1454
1455 if (copy_from_user(buffer, userbuf, nbytes)) {
1456 retval = -EFAULT;
1457 goto out1;
1458 }
1459 buffer[nbytes] = 0; /* nul-terminate */
622d42ca 1460 strstrip(buffer); /* strip -just- trailing whitespace */
bbcb81d0
PM
1461
1462 mutex_lock(&cgroup_mutex);
1463
8dc4f3e1
PM
1464 /*
1465 * This was already checked for in cgroup_file_write(), but
1466 * check again now we're holding cgroup_mutex.
1467 */
bd89aabc 1468 if (cgroup_is_removed(cgrp)) {
bbcb81d0
PM
1469 retval = -ENODEV;
1470 goto out2;
1471 }
1472
1473 switch (type) {
1474 case FILE_TASKLIST:
bd89aabc 1475 retval = attach_task_by_pid(cgrp, buffer);
bbcb81d0 1476 break;
81a6a5cd 1477 case FILE_NOTIFY_ON_RELEASE:
bd89aabc 1478 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
81a6a5cd 1479 if (simple_strtoul(buffer, NULL, 10) != 0)
bd89aabc 1480 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd 1481 else
bd89aabc 1482 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd 1483 break;
bbcb81d0
PM
1484 default:
1485 retval = -EINVAL;
1486 goto out2;
1487 }
1488
1489 if (retval == 0)
1490 retval = nbytes;
1491out2:
1492 mutex_unlock(&cgroup_mutex);
1493out1:
1494 kfree(buffer);
1495 return retval;
1496}
1497
ddbcc7e8
PM
1498static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1499 size_t nbytes, loff_t *ppos)
1500{
1501 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1502 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1503
8dc4f3e1 1504 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8 1505 return -ENODEV;
355e0c48 1506 if (cft->write)
bd89aabc 1507 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1508 if (cft->write_u64 || cft->write_s64)
1509 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1510 if (cft->write_string)
1511 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1512 if (cft->trigger) {
1513 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1514 return ret ? ret : nbytes;
1515 }
355e0c48 1516 return -EINVAL;
ddbcc7e8
PM
1517}
1518
f4c753b7
PM
1519static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1520 struct file *file,
1521 char __user *buf, size_t nbytes,
1522 loff_t *ppos)
ddbcc7e8 1523{
84eea842 1524 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1525 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1526 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1527
1528 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1529}
1530
e73d2c61
PM
1531static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1532 struct file *file,
1533 char __user *buf, size_t nbytes,
1534 loff_t *ppos)
1535{
84eea842 1536 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1537 s64 val = cft->read_s64(cgrp, cft);
1538 int len = sprintf(tmp, "%lld\n", (long long) val);
1539
1540 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1541}
1542
ddbcc7e8
PM
1543static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1544 size_t nbytes, loff_t *ppos)
1545{
1546 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1547 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1548
8dc4f3e1 1549 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8
PM
1550 return -ENODEV;
1551
1552 if (cft->read)
bd89aabc 1553 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1554 if (cft->read_u64)
1555 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1556 if (cft->read_s64)
1557 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1558 return -EINVAL;
1559}
1560
91796569
PM
1561/*
1562 * seqfile ops/methods for returning structured data. Currently just
1563 * supports string->u64 maps, but can be extended in future.
1564 */
1565
1566struct cgroup_seqfile_state {
1567 struct cftype *cft;
1568 struct cgroup *cgroup;
1569};
1570
1571static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1572{
1573 struct seq_file *sf = cb->state;
1574 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1575}
1576
1577static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1578{
1579 struct cgroup_seqfile_state *state = m->private;
1580 struct cftype *cft = state->cft;
29486df3
SH
1581 if (cft->read_map) {
1582 struct cgroup_map_cb cb = {
1583 .fill = cgroup_map_add,
1584 .state = m,
1585 };
1586 return cft->read_map(state->cgroup, cft, &cb);
1587 }
1588 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1589}
1590
1591int cgroup_seqfile_release(struct inode *inode, struct file *file)
1592{
1593 struct seq_file *seq = file->private_data;
1594 kfree(seq->private);
1595 return single_release(inode, file);
1596}
1597
1598static struct file_operations cgroup_seqfile_operations = {
1599 .read = seq_read,
e788e066 1600 .write = cgroup_file_write,
91796569
PM
1601 .llseek = seq_lseek,
1602 .release = cgroup_seqfile_release,
1603};
1604
ddbcc7e8
PM
1605static int cgroup_file_open(struct inode *inode, struct file *file)
1606{
1607 int err;
1608 struct cftype *cft;
1609
1610 err = generic_file_open(inode, file);
1611 if (err)
1612 return err;
1613
1614 cft = __d_cft(file->f_dentry);
1615 if (!cft)
1616 return -ENODEV;
29486df3 1617 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1618 struct cgroup_seqfile_state *state =
1619 kzalloc(sizeof(*state), GFP_USER);
1620 if (!state)
1621 return -ENOMEM;
1622 state->cft = cft;
1623 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1624 file->f_op = &cgroup_seqfile_operations;
1625 err = single_open(file, cgroup_seqfile_show, state);
1626 if (err < 0)
1627 kfree(state);
1628 } else if (cft->open)
ddbcc7e8
PM
1629 err = cft->open(inode, file);
1630 else
1631 err = 0;
1632
1633 return err;
1634}
1635
1636static int cgroup_file_release(struct inode *inode, struct file *file)
1637{
1638 struct cftype *cft = __d_cft(file->f_dentry);
1639 if (cft->release)
1640 return cft->release(inode, file);
1641 return 0;
1642}
1643
1644/*
1645 * cgroup_rename - Only allow simple rename of directories in place.
1646 */
1647static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1648 struct inode *new_dir, struct dentry *new_dentry)
1649{
1650 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1651 return -ENOTDIR;
1652 if (new_dentry->d_inode)
1653 return -EEXIST;
1654 if (old_dir != new_dir)
1655 return -EIO;
1656 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1657}
1658
1659static struct file_operations cgroup_file_operations = {
1660 .read = cgroup_file_read,
1661 .write = cgroup_file_write,
1662 .llseek = generic_file_llseek,
1663 .open = cgroup_file_open,
1664 .release = cgroup_file_release,
1665};
1666
1667static struct inode_operations cgroup_dir_inode_operations = {
1668 .lookup = simple_lookup,
1669 .mkdir = cgroup_mkdir,
1670 .rmdir = cgroup_rmdir,
1671 .rename = cgroup_rename,
1672};
1673
1674static int cgroup_create_file(struct dentry *dentry, int mode,
1675 struct super_block *sb)
1676{
1677 static struct dentry_operations cgroup_dops = {
1678 .d_iput = cgroup_diput,
1679 };
1680
1681 struct inode *inode;
1682
1683 if (!dentry)
1684 return -ENOENT;
1685 if (dentry->d_inode)
1686 return -EEXIST;
1687
1688 inode = cgroup_new_inode(mode, sb);
1689 if (!inode)
1690 return -ENOMEM;
1691
1692 if (S_ISDIR(mode)) {
1693 inode->i_op = &cgroup_dir_inode_operations;
1694 inode->i_fop = &simple_dir_operations;
1695
1696 /* start off with i_nlink == 2 (for "." entry) */
1697 inc_nlink(inode);
1698
1699 /* start with the directory inode held, so that we can
1700 * populate it without racing with another mkdir */
817929ec 1701 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1702 } else if (S_ISREG(mode)) {
1703 inode->i_size = 0;
1704 inode->i_fop = &cgroup_file_operations;
1705 }
1706 dentry->d_op = &cgroup_dops;
1707 d_instantiate(dentry, inode);
1708 dget(dentry); /* Extra count - pin the dentry in core */
1709 return 0;
1710}
1711
1712/*
a043e3b2
LZ
1713 * cgroup_create_dir - create a directory for an object.
1714 * @cgrp: the cgroup we create the directory for. It must have a valid
1715 * ->parent field. And we are going to fill its ->dentry field.
1716 * @dentry: dentry of the new cgroup
1717 * @mode: mode to set on new directory.
ddbcc7e8 1718 */
bd89aabc 1719static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1720 int mode)
1721{
1722 struct dentry *parent;
1723 int error = 0;
1724
bd89aabc
PM
1725 parent = cgrp->parent->dentry;
1726 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1727 if (!error) {
bd89aabc 1728 dentry->d_fsdata = cgrp;
ddbcc7e8 1729 inc_nlink(parent->d_inode);
bd89aabc 1730 cgrp->dentry = dentry;
ddbcc7e8
PM
1731 dget(dentry);
1732 }
1733 dput(dentry);
1734
1735 return error;
1736}
1737
bd89aabc 1738int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1739 struct cgroup_subsys *subsys,
1740 const struct cftype *cft)
1741{
bd89aabc 1742 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1743 struct dentry *dentry;
1744 int error;
1745
1746 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1747 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1748 strcpy(name, subsys->name);
1749 strcat(name, ".");
1750 }
1751 strcat(name, cft->name);
1752 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1753 dentry = lookup_one_len(name, dir, strlen(name));
1754 if (!IS_ERR(dentry)) {
1755 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1756 cgrp->root->sb);
ddbcc7e8
PM
1757 if (!error)
1758 dentry->d_fsdata = (void *)cft;
1759 dput(dentry);
1760 } else
1761 error = PTR_ERR(dentry);
1762 return error;
1763}
1764
bd89aabc 1765int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1766 struct cgroup_subsys *subsys,
1767 const struct cftype cft[],
1768 int count)
1769{
1770 int i, err;
1771 for (i = 0; i < count; i++) {
bd89aabc 1772 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1773 if (err)
1774 return err;
1775 }
1776 return 0;
1777}
1778
a043e3b2
LZ
1779/**
1780 * cgroup_task_count - count the number of tasks in a cgroup.
1781 * @cgrp: the cgroup in question
1782 *
1783 * Return the number of tasks in the cgroup.
1784 */
bd89aabc 1785int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1786{
1787 int count = 0;
71cbb949 1788 struct cg_cgroup_link *link;
817929ec
PM
1789
1790 read_lock(&css_set_lock);
71cbb949 1791 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
817929ec 1792 count += atomic_read(&link->cg->ref.refcount);
817929ec
PM
1793 }
1794 read_unlock(&css_set_lock);
bbcb81d0
PM
1795 return count;
1796}
1797
817929ec
PM
1798/*
1799 * Advance a list_head iterator. The iterator should be positioned at
1800 * the start of a css_set
1801 */
bd89aabc 1802static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1803 struct cgroup_iter *it)
1804{
1805 struct list_head *l = it->cg_link;
1806 struct cg_cgroup_link *link;
1807 struct css_set *cg;
1808
1809 /* Advance to the next non-empty css_set */
1810 do {
1811 l = l->next;
bd89aabc 1812 if (l == &cgrp->css_sets) {
817929ec
PM
1813 it->cg_link = NULL;
1814 return;
1815 }
bd89aabc 1816 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1817 cg = link->cg;
1818 } while (list_empty(&cg->tasks));
1819 it->cg_link = l;
1820 it->task = cg->tasks.next;
1821}
1822
31a7df01
CW
1823/*
1824 * To reduce the fork() overhead for systems that are not actually
1825 * using their cgroups capability, we don't maintain the lists running
1826 * through each css_set to its tasks until we see the list actually
1827 * used - in other words after the first call to cgroup_iter_start().
1828 *
1829 * The tasklist_lock is not held here, as do_each_thread() and
1830 * while_each_thread() are protected by RCU.
1831 */
3df91fe3 1832static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1833{
1834 struct task_struct *p, *g;
1835 write_lock(&css_set_lock);
1836 use_task_css_set_links = 1;
1837 do_each_thread(g, p) {
1838 task_lock(p);
0e04388f
LZ
1839 /*
1840 * We should check if the process is exiting, otherwise
1841 * it will race with cgroup_exit() in that the list
1842 * entry won't be deleted though the process has exited.
1843 */
1844 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1845 list_add(&p->cg_list, &p->cgroups->tasks);
1846 task_unlock(p);
1847 } while_each_thread(g, p);
1848 write_unlock(&css_set_lock);
1849}
1850
bd89aabc 1851void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1852{
1853 /*
1854 * The first time anyone tries to iterate across a cgroup,
1855 * we need to enable the list linking each css_set to its
1856 * tasks, and fix up all existing tasks.
1857 */
31a7df01
CW
1858 if (!use_task_css_set_links)
1859 cgroup_enable_task_cg_lists();
1860
817929ec 1861 read_lock(&css_set_lock);
bd89aabc
PM
1862 it->cg_link = &cgrp->css_sets;
1863 cgroup_advance_iter(cgrp, it);
817929ec
PM
1864}
1865
bd89aabc 1866struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1867 struct cgroup_iter *it)
1868{
1869 struct task_struct *res;
1870 struct list_head *l = it->task;
1871
1872 /* If the iterator cg is NULL, we have no tasks */
1873 if (!it->cg_link)
1874 return NULL;
1875 res = list_entry(l, struct task_struct, cg_list);
1876 /* Advance iterator to find next entry */
1877 l = l->next;
1878 if (l == &res->cgroups->tasks) {
1879 /* We reached the end of this task list - move on to
1880 * the next cg_cgroup_link */
bd89aabc 1881 cgroup_advance_iter(cgrp, it);
817929ec
PM
1882 } else {
1883 it->task = l;
1884 }
1885 return res;
1886}
1887
bd89aabc 1888void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1889{
1890 read_unlock(&css_set_lock);
1891}
1892
31a7df01
CW
1893static inline int started_after_time(struct task_struct *t1,
1894 struct timespec *time,
1895 struct task_struct *t2)
1896{
1897 int start_diff = timespec_compare(&t1->start_time, time);
1898 if (start_diff > 0) {
1899 return 1;
1900 } else if (start_diff < 0) {
1901 return 0;
1902 } else {
1903 /*
1904 * Arbitrarily, if two processes started at the same
1905 * time, we'll say that the lower pointer value
1906 * started first. Note that t2 may have exited by now
1907 * so this may not be a valid pointer any longer, but
1908 * that's fine - it still serves to distinguish
1909 * between two tasks started (effectively) simultaneously.
1910 */
1911 return t1 > t2;
1912 }
1913}
1914
1915/*
1916 * This function is a callback from heap_insert() and is used to order
1917 * the heap.
1918 * In this case we order the heap in descending task start time.
1919 */
1920static inline int started_after(void *p1, void *p2)
1921{
1922 struct task_struct *t1 = p1;
1923 struct task_struct *t2 = p2;
1924 return started_after_time(t1, &t2->start_time, t2);
1925}
1926
1927/**
1928 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1929 * @scan: struct cgroup_scanner containing arguments for the scan
1930 *
1931 * Arguments include pointers to callback functions test_task() and
1932 * process_task().
1933 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1934 * and if it returns true, call process_task() for it also.
1935 * The test_task pointer may be NULL, meaning always true (select all tasks).
1936 * Effectively duplicates cgroup_iter_{start,next,end}()
1937 * but does not lock css_set_lock for the call to process_task().
1938 * The struct cgroup_scanner may be embedded in any structure of the caller's
1939 * creation.
1940 * It is guaranteed that process_task() will act on every task that
1941 * is a member of the cgroup for the duration of this call. This
1942 * function may or may not call process_task() for tasks that exit
1943 * or move to a different cgroup during the call, or are forked or
1944 * move into the cgroup during the call.
1945 *
1946 * Note that test_task() may be called with locks held, and may in some
1947 * situations be called multiple times for the same task, so it should
1948 * be cheap.
1949 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1950 * pre-allocated and will be used for heap operations (and its "gt" member will
1951 * be overwritten), else a temporary heap will be used (allocation of which
1952 * may cause this function to fail).
1953 */
1954int cgroup_scan_tasks(struct cgroup_scanner *scan)
1955{
1956 int retval, i;
1957 struct cgroup_iter it;
1958 struct task_struct *p, *dropped;
1959 /* Never dereference latest_task, since it's not refcounted */
1960 struct task_struct *latest_task = NULL;
1961 struct ptr_heap tmp_heap;
1962 struct ptr_heap *heap;
1963 struct timespec latest_time = { 0, 0 };
1964
1965 if (scan->heap) {
1966 /* The caller supplied our heap and pre-allocated its memory */
1967 heap = scan->heap;
1968 heap->gt = &started_after;
1969 } else {
1970 /* We need to allocate our own heap memory */
1971 heap = &tmp_heap;
1972 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1973 if (retval)
1974 /* cannot allocate the heap */
1975 return retval;
1976 }
1977
1978 again:
1979 /*
1980 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1981 * to determine which are of interest, and using the scanner's
1982 * "process_task" callback to process any of them that need an update.
1983 * Since we don't want to hold any locks during the task updates,
1984 * gather tasks to be processed in a heap structure.
1985 * The heap is sorted by descending task start time.
1986 * If the statically-sized heap fills up, we overflow tasks that
1987 * started later, and in future iterations only consider tasks that
1988 * started after the latest task in the previous pass. This
1989 * guarantees forward progress and that we don't miss any tasks.
1990 */
1991 heap->size = 0;
1992 cgroup_iter_start(scan->cg, &it);
1993 while ((p = cgroup_iter_next(scan->cg, &it))) {
1994 /*
1995 * Only affect tasks that qualify per the caller's callback,
1996 * if he provided one
1997 */
1998 if (scan->test_task && !scan->test_task(p, scan))
1999 continue;
2000 /*
2001 * Only process tasks that started after the last task
2002 * we processed
2003 */
2004 if (!started_after_time(p, &latest_time, latest_task))
2005 continue;
2006 dropped = heap_insert(heap, p);
2007 if (dropped == NULL) {
2008 /*
2009 * The new task was inserted; the heap wasn't
2010 * previously full
2011 */
2012 get_task_struct(p);
2013 } else if (dropped != p) {
2014 /*
2015 * The new task was inserted, and pushed out a
2016 * different task
2017 */
2018 get_task_struct(p);
2019 put_task_struct(dropped);
2020 }
2021 /*
2022 * Else the new task was newer than anything already in
2023 * the heap and wasn't inserted
2024 */
2025 }
2026 cgroup_iter_end(scan->cg, &it);
2027
2028 if (heap->size) {
2029 for (i = 0; i < heap->size; i++) {
4fe91d51 2030 struct task_struct *q = heap->ptrs[i];
31a7df01 2031 if (i == 0) {
4fe91d51
PJ
2032 latest_time = q->start_time;
2033 latest_task = q;
31a7df01
CW
2034 }
2035 /* Process the task per the caller's callback */
4fe91d51
PJ
2036 scan->process_task(q, scan);
2037 put_task_struct(q);
31a7df01
CW
2038 }
2039 /*
2040 * If we had to process any tasks at all, scan again
2041 * in case some of them were in the middle of forking
2042 * children that didn't get processed.
2043 * Not the most efficient way to do it, but it avoids
2044 * having to take callback_mutex in the fork path
2045 */
2046 goto again;
2047 }
2048 if (heap == &tmp_heap)
2049 heap_free(&tmp_heap);
2050 return 0;
2051}
2052
bbcb81d0
PM
2053/*
2054 * Stuff for reading the 'tasks' file.
2055 *
2056 * Reading this file can return large amounts of data if a cgroup has
2057 * *lots* of attached tasks. So it may need several calls to read(),
2058 * but we cannot guarantee that the information we produce is correct
2059 * unless we produce it entirely atomically.
2060 *
2061 * Upon tasks file open(), a struct ctr_struct is allocated, that
2062 * will have a pointer to an array (also allocated here). The struct
2063 * ctr_struct * is stored in file->private_data. Its resources will
2064 * be freed by release() when the file is closed. The array is used
2065 * to sprintf the PIDs and then used by read().
2066 */
2067struct ctr_struct {
2068 char *buf;
2069 int bufsz;
2070};
2071
2072/*
2073 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2074 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2075 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2076 * read section, so the css_set can't go away, and is
2077 * immutable after creation.
2078 */
bd89aabc 2079static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0
PM
2080{
2081 int n = 0;
817929ec
PM
2082 struct cgroup_iter it;
2083 struct task_struct *tsk;
bd89aabc
PM
2084 cgroup_iter_start(cgrp, &it);
2085 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2086 if (unlikely(n == npids))
2087 break;
73507f33 2088 pidarray[n++] = task_pid_vnr(tsk);
817929ec 2089 }
bd89aabc 2090 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2091 return n;
2092}
2093
846c7bb0 2094/**
a043e3b2 2095 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2096 * @stats: cgroupstats to fill information into
2097 * @dentry: A dentry entry belonging to the cgroup for which stats have
2098 * been requested.
a043e3b2
LZ
2099 *
2100 * Build and fill cgroupstats so that taskstats can export it to user
2101 * space.
846c7bb0
BS
2102 */
2103int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2104{
2105 int ret = -EINVAL;
bd89aabc 2106 struct cgroup *cgrp;
846c7bb0
BS
2107 struct cgroup_iter it;
2108 struct task_struct *tsk;
2109 /*
2110 * Validate dentry by checking the superblock operations
2111 */
2112 if (dentry->d_sb->s_op != &cgroup_ops)
2113 goto err;
2114
2115 ret = 0;
bd89aabc 2116 cgrp = dentry->d_fsdata;
846c7bb0
BS
2117 rcu_read_lock();
2118
bd89aabc
PM
2119 cgroup_iter_start(cgrp, &it);
2120 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2121 switch (tsk->state) {
2122 case TASK_RUNNING:
2123 stats->nr_running++;
2124 break;
2125 case TASK_INTERRUPTIBLE:
2126 stats->nr_sleeping++;
2127 break;
2128 case TASK_UNINTERRUPTIBLE:
2129 stats->nr_uninterruptible++;
2130 break;
2131 case TASK_STOPPED:
2132 stats->nr_stopped++;
2133 break;
2134 default:
2135 if (delayacct_is_task_waiting_on_io(tsk))
2136 stats->nr_io_wait++;
2137 break;
2138 }
2139 }
bd89aabc 2140 cgroup_iter_end(cgrp, &it);
846c7bb0
BS
2141
2142 rcu_read_unlock();
2143err:
2144 return ret;
2145}
2146
bbcb81d0
PM
2147static int cmppid(const void *a, const void *b)
2148{
2149 return *(pid_t *)a - *(pid_t *)b;
2150}
2151
2152/*
2153 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2154 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2155 * count 'cnt' of how many chars would be written if buf were large enough.
2156 */
2157static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2158{
2159 int cnt = 0;
2160 int i;
2161
2162 for (i = 0; i < npids; i++)
2163 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2164 return cnt;
2165}
2166
2167/*
2168 * Handle an open on 'tasks' file. Prepare a buffer listing the
2169 * process id's of tasks currently attached to the cgroup being opened.
2170 *
2171 * Does not require any specific cgroup mutexes, and does not take any.
2172 */
2173static int cgroup_tasks_open(struct inode *unused, struct file *file)
2174{
bd89aabc 2175 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2176 struct ctr_struct *ctr;
2177 pid_t *pidarray;
2178 int npids;
2179 char c;
2180
2181 if (!(file->f_mode & FMODE_READ))
2182 return 0;
2183
2184 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2185 if (!ctr)
2186 goto err0;
2187
2188 /*
2189 * If cgroup gets more users after we read count, we won't have
2190 * enough space - tough. This race is indistinguishable to the
2191 * caller from the case that the additional cgroup users didn't
2192 * show up until sometime later on.
2193 */
bd89aabc 2194 npids = cgroup_task_count(cgrp);
bbcb81d0
PM
2195 if (npids) {
2196 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2197 if (!pidarray)
2198 goto err1;
2199
bd89aabc 2200 npids = pid_array_load(pidarray, npids, cgrp);
bbcb81d0
PM
2201 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2202
2203 /* Call pid_array_to_buf() twice, first just to get bufsz */
2204 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2205 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2206 if (!ctr->buf)
2207 goto err2;
2208 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2209
2210 kfree(pidarray);
2211 } else {
9dce07f1 2212 ctr->buf = NULL;
bbcb81d0
PM
2213 ctr->bufsz = 0;
2214 }
2215 file->private_data = ctr;
2216 return 0;
2217
2218err2:
2219 kfree(pidarray);
2220err1:
2221 kfree(ctr);
2222err0:
2223 return -ENOMEM;
2224}
2225
bd89aabc 2226static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
bbcb81d0
PM
2227 struct cftype *cft,
2228 struct file *file, char __user *buf,
2229 size_t nbytes, loff_t *ppos)
2230{
2231 struct ctr_struct *ctr = file->private_data;
2232
2233 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2234}
2235
2236static int cgroup_tasks_release(struct inode *unused_inode,
2237 struct file *file)
2238{
2239 struct ctr_struct *ctr;
2240
2241 if (file->f_mode & FMODE_READ) {
2242 ctr = file->private_data;
2243 kfree(ctr->buf);
2244 kfree(ctr);
2245 }
2246 return 0;
2247}
2248
bd89aabc 2249static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2250 struct cftype *cft)
2251{
bd89aabc 2252 return notify_on_release(cgrp);
81a6a5cd
PM
2253}
2254
bbcb81d0
PM
2255/*
2256 * for the common functions, 'private' gives the type of file
2257 */
81a6a5cd
PM
2258static struct cftype files[] = {
2259 {
2260 .name = "tasks",
2261 .open = cgroup_tasks_open,
2262 .read = cgroup_tasks_read,
2263 .write = cgroup_common_file_write,
2264 .release = cgroup_tasks_release,
2265 .private = FILE_TASKLIST,
2266 },
2267
2268 {
2269 .name = "notify_on_release",
f4c753b7 2270 .read_u64 = cgroup_read_notify_on_release,
81a6a5cd
PM
2271 .write = cgroup_common_file_write,
2272 .private = FILE_NOTIFY_ON_RELEASE,
2273 },
81a6a5cd
PM
2274};
2275
2276static struct cftype cft_release_agent = {
2277 .name = "release_agent",
e788e066
PM
2278 .read_seq_string = cgroup_release_agent_show,
2279 .write_string = cgroup_release_agent_write,
2280 .max_write_len = PATH_MAX,
81a6a5cd 2281 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2282};
2283
bd89aabc 2284static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2285{
2286 int err;
2287 struct cgroup_subsys *ss;
2288
2289 /* First clear out any existing files */
bd89aabc 2290 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2291
bd89aabc 2292 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2293 if (err < 0)
2294 return err;
2295
bd89aabc
PM
2296 if (cgrp == cgrp->top_cgroup) {
2297 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2298 return err;
2299 }
2300
bd89aabc
PM
2301 for_each_subsys(cgrp->root, ss) {
2302 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2303 return err;
2304 }
2305
2306 return 0;
2307}
2308
2309static void init_cgroup_css(struct cgroup_subsys_state *css,
2310 struct cgroup_subsys *ss,
bd89aabc 2311 struct cgroup *cgrp)
ddbcc7e8 2312{
bd89aabc 2313 css->cgroup = cgrp;
ddbcc7e8
PM
2314 atomic_set(&css->refcnt, 0);
2315 css->flags = 0;
bd89aabc 2316 if (cgrp == dummytop)
ddbcc7e8 2317 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2318 BUG_ON(cgrp->subsys[ss->subsys_id]);
2319 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2320}
2321
2322/*
a043e3b2
LZ
2323 * cgroup_create - create a cgroup
2324 * @parent: cgroup that will be parent of the new cgroup
2325 * @dentry: dentry of the new cgroup
2326 * @mode: mode to set on new inode
ddbcc7e8 2327 *
a043e3b2 2328 * Must be called with the mutex on the parent inode held
ddbcc7e8 2329 */
ddbcc7e8
PM
2330static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2331 int mode)
2332{
bd89aabc 2333 struct cgroup *cgrp;
ddbcc7e8
PM
2334 struct cgroupfs_root *root = parent->root;
2335 int err = 0;
2336 struct cgroup_subsys *ss;
2337 struct super_block *sb = root->sb;
2338
bd89aabc
PM
2339 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2340 if (!cgrp)
ddbcc7e8
PM
2341 return -ENOMEM;
2342
2343 /* Grab a reference on the superblock so the hierarchy doesn't
2344 * get deleted on unmount if there are child cgroups. This
2345 * can be done outside cgroup_mutex, since the sb can't
2346 * disappear while someone has an open control file on the
2347 * fs */
2348 atomic_inc(&sb->s_active);
2349
2350 mutex_lock(&cgroup_mutex);
2351
bd89aabc
PM
2352 INIT_LIST_HEAD(&cgrp->sibling);
2353 INIT_LIST_HEAD(&cgrp->children);
2354 INIT_LIST_HEAD(&cgrp->css_sets);
2355 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8 2356
bd89aabc
PM
2357 cgrp->parent = parent;
2358 cgrp->root = parent->root;
2359 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2360
b6abdb0e
LZ
2361 if (notify_on_release(parent))
2362 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2363
ddbcc7e8 2364 for_each_subsys(root, ss) {
bd89aabc 2365 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2366 if (IS_ERR(css)) {
2367 err = PTR_ERR(css);
2368 goto err_destroy;
2369 }
bd89aabc 2370 init_cgroup_css(css, ss, cgrp);
ddbcc7e8
PM
2371 }
2372
bd89aabc 2373 list_add(&cgrp->sibling, &cgrp->parent->children);
ddbcc7e8
PM
2374 root->number_of_cgroups++;
2375
bd89aabc 2376 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2377 if (err < 0)
2378 goto err_remove;
2379
2380 /* The cgroup directory was pre-locked for us */
bd89aabc 2381 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2382
bd89aabc 2383 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2384 /* If err < 0, we have a half-filled directory - oh well ;) */
2385
2386 mutex_unlock(&cgroup_mutex);
bd89aabc 2387 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2388
2389 return 0;
2390
2391 err_remove:
2392
bd89aabc 2393 list_del(&cgrp->sibling);
ddbcc7e8
PM
2394 root->number_of_cgroups--;
2395
2396 err_destroy:
2397
2398 for_each_subsys(root, ss) {
bd89aabc
PM
2399 if (cgrp->subsys[ss->subsys_id])
2400 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2401 }
2402
2403 mutex_unlock(&cgroup_mutex);
2404
2405 /* Release the reference count that we took on the superblock */
2406 deactivate_super(sb);
2407
bd89aabc 2408 kfree(cgrp);
ddbcc7e8
PM
2409 return err;
2410}
2411
2412static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2413{
2414 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2415
2416 /* the vfs holds inode->i_mutex already */
2417 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2418}
2419
bd89aabc 2420static inline int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2421{
2422 /* Check the reference count on each subsystem. Since we
2423 * already established that there are no tasks in the
2424 * cgroup, if the css refcount is also 0, then there should
2425 * be no outstanding references, so the subsystem is safe to
2426 * destroy. We scan across all subsystems rather than using
2427 * the per-hierarchy linked list of mounted subsystems since
2428 * we can be called via check_for_release() with no
2429 * synchronization other than RCU, and the subsystem linked
2430 * list isn't RCU-safe */
2431 int i;
2432 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2433 struct cgroup_subsys *ss = subsys[i];
2434 struct cgroup_subsys_state *css;
2435 /* Skip subsystems not in this hierarchy */
bd89aabc 2436 if (ss->root != cgrp->root)
81a6a5cd 2437 continue;
bd89aabc 2438 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2439 /* When called from check_for_release() it's possible
2440 * that by this point the cgroup has been removed
2441 * and the css deleted. But a false-positive doesn't
2442 * matter, since it can only happen if the cgroup
2443 * has been deleted and hence no longer needs the
2444 * release agent to be called anyway. */
e18f6318 2445 if (css && atomic_read(&css->refcnt))
81a6a5cd 2446 return 1;
81a6a5cd
PM
2447 }
2448 return 0;
2449}
2450
ddbcc7e8
PM
2451static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2452{
bd89aabc 2453 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2454 struct dentry *d;
2455 struct cgroup *parent;
ddbcc7e8
PM
2456 struct super_block *sb;
2457 struct cgroupfs_root *root;
ddbcc7e8
PM
2458
2459 /* the vfs holds both inode->i_mutex already */
2460
2461 mutex_lock(&cgroup_mutex);
bd89aabc 2462 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2463 mutex_unlock(&cgroup_mutex);
2464 return -EBUSY;
2465 }
bd89aabc 2466 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2467 mutex_unlock(&cgroup_mutex);
2468 return -EBUSY;
2469 }
2470
bd89aabc
PM
2471 parent = cgrp->parent;
2472 root = cgrp->root;
ddbcc7e8 2473 sb = root->sb;
a043e3b2 2474
4fca88c8 2475 /*
a043e3b2
LZ
2476 * Call pre_destroy handlers of subsys. Notify subsystems
2477 * that rmdir() request comes.
4fca88c8
KH
2478 */
2479 cgroup_call_pre_destroy(cgrp);
ddbcc7e8 2480
bd89aabc 2481 if (cgroup_has_css_refs(cgrp)) {
ddbcc7e8
PM
2482 mutex_unlock(&cgroup_mutex);
2483 return -EBUSY;
2484 }
2485
81a6a5cd 2486 spin_lock(&release_list_lock);
bd89aabc
PM
2487 set_bit(CGRP_REMOVED, &cgrp->flags);
2488 if (!list_empty(&cgrp->release_list))
2489 list_del(&cgrp->release_list);
81a6a5cd 2490 spin_unlock(&release_list_lock);
ddbcc7e8 2491 /* delete my sibling from parent->children */
bd89aabc
PM
2492 list_del(&cgrp->sibling);
2493 spin_lock(&cgrp->dentry->d_lock);
2494 d = dget(cgrp->dentry);
2495 cgrp->dentry = NULL;
ddbcc7e8
PM
2496 spin_unlock(&d->d_lock);
2497
2498 cgroup_d_remove_dir(d);
2499 dput(d);
ddbcc7e8 2500
bd89aabc 2501 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2502 check_for_release(parent);
2503
ddbcc7e8 2504 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2505 return 0;
2506}
2507
06a11920 2508static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 2509{
ddbcc7e8 2510 struct cgroup_subsys_state *css;
cfe36bde
DC
2511
2512 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2513
2514 /* Create the top cgroup state for this subsystem */
2515 ss->root = &rootnode;
2516 css = ss->create(ss, dummytop);
2517 /* We don't handle early failures gracefully */
2518 BUG_ON(IS_ERR(css));
2519 init_cgroup_css(css, ss, dummytop);
2520
e8d55fde 2521 /* Update the init_css_set to contain a subsys
817929ec 2522 * pointer to this state - since the subsystem is
e8d55fde
LZ
2523 * newly registered, all tasks and hence the
2524 * init_css_set is in the subsystem's top cgroup. */
2525 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
2526
2527 need_forkexit_callback |= ss->fork || ss->exit;
cf475ad2 2528 need_mm_owner_callback |= !!ss->mm_owner_changed;
ddbcc7e8 2529
e8d55fde
LZ
2530 /* At system boot, before all subsystems have been
2531 * registered, no tasks have been forked, so we don't
2532 * need to invoke fork callbacks here. */
2533 BUG_ON(!list_empty(&init_task.tasks));
2534
ddbcc7e8
PM
2535 ss->active = 1;
2536}
2537
2538/**
a043e3b2
LZ
2539 * cgroup_init_early - cgroup initialization at system boot
2540 *
2541 * Initialize cgroups at system boot, and initialize any
2542 * subsystems that request early init.
ddbcc7e8
PM
2543 */
2544int __init cgroup_init_early(void)
2545{
2546 int i;
817929ec
PM
2547 kref_init(&init_css_set.ref);
2548 kref_get(&init_css_set.ref);
817929ec
PM
2549 INIT_LIST_HEAD(&init_css_set.cg_links);
2550 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 2551 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 2552 css_set_count = 1;
ddbcc7e8
PM
2553 init_cgroup_root(&rootnode);
2554 list_add(&rootnode.root_list, &roots);
817929ec
PM
2555 root_count = 1;
2556 init_task.cgroups = &init_css_set;
2557
2558 init_css_set_link.cg = &init_css_set;
bd89aabc 2559 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2560 &rootnode.top_cgroup.css_sets);
2561 list_add(&init_css_set_link.cg_link_list,
2562 &init_css_set.cg_links);
ddbcc7e8 2563
472b1053
LZ
2564 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2565 INIT_HLIST_HEAD(&css_set_table[i]);
2566
ddbcc7e8
PM
2567 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2568 struct cgroup_subsys *ss = subsys[i];
2569
2570 BUG_ON(!ss->name);
2571 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2572 BUG_ON(!ss->create);
2573 BUG_ON(!ss->destroy);
2574 if (ss->subsys_id != i) {
cfe36bde 2575 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2576 ss->name, ss->subsys_id);
2577 BUG();
2578 }
2579
2580 if (ss->early_init)
2581 cgroup_init_subsys(ss);
2582 }
2583 return 0;
2584}
2585
2586/**
a043e3b2
LZ
2587 * cgroup_init - cgroup initialization
2588 *
2589 * Register cgroup filesystem and /proc file, and initialize
2590 * any subsystems that didn't request early init.
ddbcc7e8
PM
2591 */
2592int __init cgroup_init(void)
2593{
2594 int err;
2595 int i;
472b1053 2596 struct hlist_head *hhead;
a424316c
PM
2597
2598 err = bdi_init(&cgroup_backing_dev_info);
2599 if (err)
2600 return err;
ddbcc7e8
PM
2601
2602 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2603 struct cgroup_subsys *ss = subsys[i];
2604 if (!ss->early_init)
2605 cgroup_init_subsys(ss);
2606 }
2607
472b1053
LZ
2608 /* Add init_css_set to the hash table */
2609 hhead = css_set_hash(init_css_set.subsys);
2610 hlist_add_head(&init_css_set.hlist, hhead);
2611
ddbcc7e8
PM
2612 err = register_filesystem(&cgroup_fs_type);
2613 if (err < 0)
2614 goto out;
2615
46ae220b 2616 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 2617
ddbcc7e8 2618out:
a424316c
PM
2619 if (err)
2620 bdi_destroy(&cgroup_backing_dev_info);
2621
ddbcc7e8
PM
2622 return err;
2623}
b4f48b63 2624
a424316c
PM
2625/*
2626 * proc_cgroup_show()
2627 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2628 * - Used for /proc/<pid>/cgroup.
2629 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2630 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2631 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2632 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2633 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2634 * cgroup to top_cgroup.
2635 */
2636
2637/* TODO: Use a proper seq_file iterator */
2638static int proc_cgroup_show(struct seq_file *m, void *v)
2639{
2640 struct pid *pid;
2641 struct task_struct *tsk;
2642 char *buf;
2643 int retval;
2644 struct cgroupfs_root *root;
2645
2646 retval = -ENOMEM;
2647 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2648 if (!buf)
2649 goto out;
2650
2651 retval = -ESRCH;
2652 pid = m->private;
2653 tsk = get_pid_task(pid, PIDTYPE_PID);
2654 if (!tsk)
2655 goto out_free;
2656
2657 retval = 0;
2658
2659 mutex_lock(&cgroup_mutex);
2660
2661 for_each_root(root) {
2662 struct cgroup_subsys *ss;
bd89aabc 2663 struct cgroup *cgrp;
a424316c
PM
2664 int subsys_id;
2665 int count = 0;
2666
2667 /* Skip this hierarchy if it has no active subsystems */
2668 if (!root->actual_subsys_bits)
2669 continue;
b6c3006d 2670 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2671 for_each_subsys(root, ss)
2672 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2673 seq_putc(m, ':');
2674 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2675 cgrp = task_cgroup(tsk, subsys_id);
2676 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2677 if (retval < 0)
2678 goto out_unlock;
2679 seq_puts(m, buf);
2680 seq_putc(m, '\n');
2681 }
2682
2683out_unlock:
2684 mutex_unlock(&cgroup_mutex);
2685 put_task_struct(tsk);
2686out_free:
2687 kfree(buf);
2688out:
2689 return retval;
2690}
2691
2692static int cgroup_open(struct inode *inode, struct file *file)
2693{
2694 struct pid *pid = PROC_I(inode)->pid;
2695 return single_open(file, proc_cgroup_show, pid);
2696}
2697
2698struct file_operations proc_cgroup_operations = {
2699 .open = cgroup_open,
2700 .read = seq_read,
2701 .llseek = seq_lseek,
2702 .release = single_release,
2703};
2704
2705/* Display information about each subsystem and each hierarchy */
2706static int proc_cgroupstats_show(struct seq_file *m, void *v)
2707{
2708 int i;
a424316c 2709
8bab8dde 2710 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2711 mutex_lock(&cgroup_mutex);
a424316c
PM
2712 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2713 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2714 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2715 ss->name, ss->root->subsys_bits,
8bab8dde 2716 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2717 }
2718 mutex_unlock(&cgroup_mutex);
2719 return 0;
2720}
2721
2722static int cgroupstats_open(struct inode *inode, struct file *file)
2723{
9dce07f1 2724 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2725}
2726
2727static struct file_operations proc_cgroupstats_operations = {
2728 .open = cgroupstats_open,
2729 .read = seq_read,
2730 .llseek = seq_lseek,
2731 .release = single_release,
2732};
2733
b4f48b63
PM
2734/**
2735 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2736 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2737 *
2738 * Description: A task inherits its parent's cgroup at fork().
2739 *
2740 * A pointer to the shared css_set was automatically copied in
2741 * fork.c by dup_task_struct(). However, we ignore that copy, since
2742 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2743 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2744 * have already changed current->cgroups, allowing the previously
2745 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2746 *
2747 * At the point that cgroup_fork() is called, 'current' is the parent
2748 * task, and the passed argument 'child' points to the child task.
2749 */
2750void cgroup_fork(struct task_struct *child)
2751{
817929ec
PM
2752 task_lock(current);
2753 child->cgroups = current->cgroups;
2754 get_css_set(child->cgroups);
2755 task_unlock(current);
2756 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2757}
2758
2759/**
a043e3b2
LZ
2760 * cgroup_fork_callbacks - run fork callbacks
2761 * @child: the new task
2762 *
2763 * Called on a new task very soon before adding it to the
2764 * tasklist. No need to take any locks since no-one can
2765 * be operating on this task.
b4f48b63
PM
2766 */
2767void cgroup_fork_callbacks(struct task_struct *child)
2768{
2769 if (need_forkexit_callback) {
2770 int i;
2771 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2772 struct cgroup_subsys *ss = subsys[i];
2773 if (ss->fork)
2774 ss->fork(ss, child);
2775 }
2776 }
2777}
2778
cf475ad2
BS
2779#ifdef CONFIG_MM_OWNER
2780/**
2781 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2782 * @p: the new owner
2783 *
2784 * Called on every change to mm->owner. mm_init_owner() does not
2785 * invoke this routine, since it assigns the mm->owner the first time
2786 * and does not change it.
2787 */
2788void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2789{
2790 struct cgroup *oldcgrp, *newcgrp;
2791
2792 if (need_mm_owner_callback) {
2793 int i;
2794 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2795 struct cgroup_subsys *ss = subsys[i];
2796 oldcgrp = task_cgroup(old, ss->subsys_id);
2797 newcgrp = task_cgroup(new, ss->subsys_id);
2798 if (oldcgrp == newcgrp)
2799 continue;
2800 if (ss->mm_owner_changed)
2801 ss->mm_owner_changed(ss, oldcgrp, newcgrp);
2802 }
2803 }
2804}
2805#endif /* CONFIG_MM_OWNER */
2806
817929ec 2807/**
a043e3b2
LZ
2808 * cgroup_post_fork - called on a new task after adding it to the task list
2809 * @child: the task in question
2810 *
2811 * Adds the task to the list running through its css_set if necessary.
2812 * Has to be after the task is visible on the task list in case we race
2813 * with the first call to cgroup_iter_start() - to guarantee that the
2814 * new task ends up on its list.
2815 */
817929ec
PM
2816void cgroup_post_fork(struct task_struct *child)
2817{
2818 if (use_task_css_set_links) {
2819 write_lock(&css_set_lock);
2820 if (list_empty(&child->cg_list))
2821 list_add(&child->cg_list, &child->cgroups->tasks);
2822 write_unlock(&css_set_lock);
2823 }
2824}
b4f48b63
PM
2825/**
2826 * cgroup_exit - detach cgroup from exiting task
2827 * @tsk: pointer to task_struct of exiting process
a043e3b2 2828 * @run_callback: run exit callbacks?
b4f48b63
PM
2829 *
2830 * Description: Detach cgroup from @tsk and release it.
2831 *
2832 * Note that cgroups marked notify_on_release force every task in
2833 * them to take the global cgroup_mutex mutex when exiting.
2834 * This could impact scaling on very large systems. Be reluctant to
2835 * use notify_on_release cgroups where very high task exit scaling
2836 * is required on large systems.
2837 *
2838 * the_top_cgroup_hack:
2839 *
2840 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2841 *
2842 * We call cgroup_exit() while the task is still competent to
2843 * handle notify_on_release(), then leave the task attached to the
2844 * root cgroup in each hierarchy for the remainder of its exit.
2845 *
2846 * To do this properly, we would increment the reference count on
2847 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2848 * code we would add a second cgroup function call, to drop that
2849 * reference. This would just create an unnecessary hot spot on
2850 * the top_cgroup reference count, to no avail.
2851 *
2852 * Normally, holding a reference to a cgroup without bumping its
2853 * count is unsafe. The cgroup could go away, or someone could
2854 * attach us to a different cgroup, decrementing the count on
2855 * the first cgroup that we never incremented. But in this case,
2856 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
2857 * which wards off any cgroup_attach_task() attempts, or task is a failed
2858 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
2859 */
2860void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2861{
2862 int i;
817929ec 2863 struct css_set *cg;
b4f48b63
PM
2864
2865 if (run_callbacks && need_forkexit_callback) {
2866 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2867 struct cgroup_subsys *ss = subsys[i];
2868 if (ss->exit)
2869 ss->exit(ss, tsk);
2870 }
2871 }
817929ec
PM
2872
2873 /*
2874 * Unlink from the css_set task list if necessary.
2875 * Optimistically check cg_list before taking
2876 * css_set_lock
2877 */
2878 if (!list_empty(&tsk->cg_list)) {
2879 write_lock(&css_set_lock);
2880 if (!list_empty(&tsk->cg_list))
2881 list_del(&tsk->cg_list);
2882 write_unlock(&css_set_lock);
2883 }
2884
b4f48b63
PM
2885 /* Reassign the task to the init_css_set. */
2886 task_lock(tsk);
817929ec
PM
2887 cg = tsk->cgroups;
2888 tsk->cgroups = &init_css_set;
b4f48b63 2889 task_unlock(tsk);
817929ec 2890 if (cg)
81a6a5cd 2891 put_css_set_taskexit(cg);
b4f48b63 2892}
697f4161
PM
2893
2894/**
a043e3b2
LZ
2895 * cgroup_clone - clone the cgroup the given subsystem is attached to
2896 * @tsk: the task to be moved
2897 * @subsys: the given subsystem
2898 *
2899 * Duplicate the current cgroup in the hierarchy that the given
2900 * subsystem is attached to, and move this task into the new
2901 * child.
697f4161
PM
2902 */
2903int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2904{
2905 struct dentry *dentry;
2906 int ret = 0;
2907 char nodename[MAX_CGROUP_TYPE_NAMELEN];
2908 struct cgroup *parent, *child;
2909 struct inode *inode;
2910 struct css_set *cg;
2911 struct cgroupfs_root *root;
2912 struct cgroup_subsys *ss;
2913
2914 /* We shouldn't be called by an unregistered subsystem */
2915 BUG_ON(!subsys->active);
2916
2917 /* First figure out what hierarchy and cgroup we're dealing
2918 * with, and pin them so we can drop cgroup_mutex */
2919 mutex_lock(&cgroup_mutex);
2920 again:
2921 root = subsys->root;
2922 if (root == &rootnode) {
2923 printk(KERN_INFO
2924 "Not cloning cgroup for unused subsystem %s\n",
2925 subsys->name);
2926 mutex_unlock(&cgroup_mutex);
2927 return 0;
2928 }
817929ec 2929 cg = tsk->cgroups;
697f4161
PM
2930 parent = task_cgroup(tsk, subsys->subsys_id);
2931
5c02b575 2932 snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);
697f4161
PM
2933
2934 /* Pin the hierarchy */
2935 atomic_inc(&parent->root->sb->s_active);
2936
817929ec
PM
2937 /* Keep the cgroup alive */
2938 get_css_set(cg);
697f4161
PM
2939 mutex_unlock(&cgroup_mutex);
2940
2941 /* Now do the VFS work to create a cgroup */
2942 inode = parent->dentry->d_inode;
2943
2944 /* Hold the parent directory mutex across this operation to
2945 * stop anyone else deleting the new cgroup */
2946 mutex_lock(&inode->i_mutex);
2947 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2948 if (IS_ERR(dentry)) {
2949 printk(KERN_INFO
cfe36bde 2950 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
2951 PTR_ERR(dentry));
2952 ret = PTR_ERR(dentry);
2953 goto out_release;
2954 }
2955
2956 /* Create the cgroup directory, which also creates the cgroup */
2957 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
bd89aabc 2958 child = __d_cgrp(dentry);
697f4161
PM
2959 dput(dentry);
2960 if (ret) {
2961 printk(KERN_INFO
2962 "Failed to create cgroup %s: %d\n", nodename,
2963 ret);
2964 goto out_release;
2965 }
2966
2967 if (!child) {
2968 printk(KERN_INFO
2969 "Couldn't find new cgroup %s\n", nodename);
2970 ret = -ENOMEM;
2971 goto out_release;
2972 }
2973
2974 /* The cgroup now exists. Retake cgroup_mutex and check
2975 * that we're still in the same state that we thought we
2976 * were. */
2977 mutex_lock(&cgroup_mutex);
2978 if ((root != subsys->root) ||
2979 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2980 /* Aargh, we raced ... */
2981 mutex_unlock(&inode->i_mutex);
817929ec 2982 put_css_set(cg);
697f4161
PM
2983
2984 deactivate_super(parent->root->sb);
2985 /* The cgroup is still accessible in the VFS, but
2986 * we're not going to try to rmdir() it at this
2987 * point. */
2988 printk(KERN_INFO
2989 "Race in cgroup_clone() - leaking cgroup %s\n",
2990 nodename);
2991 goto again;
2992 }
2993
2994 /* do any required auto-setup */
2995 for_each_subsys(root, ss) {
2996 if (ss->post_clone)
2997 ss->post_clone(ss, child);
2998 }
2999
3000 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 3001 ret = cgroup_attach_task(child, tsk);
697f4161
PM
3002 mutex_unlock(&cgroup_mutex);
3003
3004 out_release:
3005 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
3006
3007 mutex_lock(&cgroup_mutex);
817929ec 3008 put_css_set(cg);
81a6a5cd 3009 mutex_unlock(&cgroup_mutex);
697f4161
PM
3010 deactivate_super(parent->root->sb);
3011 return ret;
3012}
3013
a043e3b2
LZ
3014/**
3015 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
3016 * @cgrp: the cgroup in question
3017 *
3018 * See if @cgrp is a descendant of the current task's cgroup in
3019 * the appropriate hierarchy.
697f4161
PM
3020 *
3021 * If we are sending in dummytop, then presumably we are creating
3022 * the top cgroup in the subsystem.
3023 *
3024 * Called only by the ns (nsproxy) cgroup.
3025 */
bd89aabc 3026int cgroup_is_descendant(const struct cgroup *cgrp)
697f4161
PM
3027{
3028 int ret;
3029 struct cgroup *target;
3030 int subsys_id;
3031
bd89aabc 3032 if (cgrp == dummytop)
697f4161
PM
3033 return 1;
3034
bd89aabc 3035 get_first_subsys(cgrp, NULL, &subsys_id);
697f4161 3036 target = task_cgroup(current, subsys_id);
bd89aabc
PM
3037 while (cgrp != target && cgrp!= cgrp->top_cgroup)
3038 cgrp = cgrp->parent;
3039 ret = (cgrp == target);
697f4161
PM
3040 return ret;
3041}
81a6a5cd 3042
bd89aabc 3043static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
3044{
3045 /* All of these checks rely on RCU to keep the cgroup
3046 * structure alive */
bd89aabc
PM
3047 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
3048 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
3049 /* Control Group is currently removeable. If it's not
3050 * already queued for a userspace notification, queue
3051 * it now */
3052 int need_schedule_work = 0;
3053 spin_lock(&release_list_lock);
bd89aabc
PM
3054 if (!cgroup_is_removed(cgrp) &&
3055 list_empty(&cgrp->release_list)) {
3056 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3057 need_schedule_work = 1;
3058 }
3059 spin_unlock(&release_list_lock);
3060 if (need_schedule_work)
3061 schedule_work(&release_agent_work);
3062 }
3063}
3064
3065void __css_put(struct cgroup_subsys_state *css)
3066{
bd89aabc 3067 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3068 rcu_read_lock();
bd89aabc
PM
3069 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3070 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3071 check_for_release(cgrp);
81a6a5cd
PM
3072 }
3073 rcu_read_unlock();
3074}
3075
3076/*
3077 * Notify userspace when a cgroup is released, by running the
3078 * configured release agent with the name of the cgroup (path
3079 * relative to the root of cgroup file system) as the argument.
3080 *
3081 * Most likely, this user command will try to rmdir this cgroup.
3082 *
3083 * This races with the possibility that some other task will be
3084 * attached to this cgroup before it is removed, or that some other
3085 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3086 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3087 * unused, and this cgroup will be reprieved from its death sentence,
3088 * to continue to serve a useful existence. Next time it's released,
3089 * we will get notified again, if it still has 'notify_on_release' set.
3090 *
3091 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3092 * means only wait until the task is successfully execve()'d. The
3093 * separate release agent task is forked by call_usermodehelper(),
3094 * then control in this thread returns here, without waiting for the
3095 * release agent task. We don't bother to wait because the caller of
3096 * this routine has no use for the exit status of the release agent
3097 * task, so no sense holding our caller up for that.
81a6a5cd 3098 */
81a6a5cd
PM
3099static void cgroup_release_agent(struct work_struct *work)
3100{
3101 BUG_ON(work != &release_agent_work);
3102 mutex_lock(&cgroup_mutex);
3103 spin_lock(&release_list_lock);
3104 while (!list_empty(&release_list)) {
3105 char *argv[3], *envp[3];
3106 int i;
e788e066 3107 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3108 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3109 struct cgroup,
3110 release_list);
bd89aabc 3111 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3112 spin_unlock(&release_list_lock);
3113 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3114 if (!pathbuf)
3115 goto continue_free;
3116 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3117 goto continue_free;
3118 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3119 if (!agentbuf)
3120 goto continue_free;
81a6a5cd
PM
3121
3122 i = 0;
e788e066
PM
3123 argv[i++] = agentbuf;
3124 argv[i++] = pathbuf;
81a6a5cd
PM
3125 argv[i] = NULL;
3126
3127 i = 0;
3128 /* minimal command environment */
3129 envp[i++] = "HOME=/";
3130 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3131 envp[i] = NULL;
3132
3133 /* Drop the lock while we invoke the usermode helper,
3134 * since the exec could involve hitting disk and hence
3135 * be a slow process */
3136 mutex_unlock(&cgroup_mutex);
3137 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3138 mutex_lock(&cgroup_mutex);
e788e066
PM
3139 continue_free:
3140 kfree(pathbuf);
3141 kfree(agentbuf);
81a6a5cd
PM
3142 spin_lock(&release_list_lock);
3143 }
3144 spin_unlock(&release_list_lock);
3145 mutex_unlock(&cgroup_mutex);
3146}
8bab8dde
PM
3147
3148static int __init cgroup_disable(char *str)
3149{
3150 int i;
3151 char *token;
3152
3153 while ((token = strsep(&str, ",")) != NULL) {
3154 if (!*token)
3155 continue;
3156
3157 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3158 struct cgroup_subsys *ss = subsys[i];
3159
3160 if (!strcmp(token, ss->name)) {
3161 ss->disabled = 1;
3162 printk(KERN_INFO "Disabling %s control group"
3163 " subsystem\n", ss->name);
3164 break;
3165 }
3166 }
3167 }
3168 return 1;
3169}
3170__setup("cgroup_disable=", cgroup_disable);