cgroup: Trivial correction to reflect controller.
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
bd1060a1 62#include <net/sock.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
f0d9a5f1 79 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 87DEFINE_SPINLOCK(css_set_lock);
0e1d768f 88EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 89EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 92static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
34c06254
TH
101/*
102 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
103 * against file removal/re-creation across css hiding.
104 */
105static DEFINE_SPINLOCK(cgroup_file_kn_lock);
106
69e943b7
TH
107/*
108 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
109 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 */
111static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 112
1ed13287
TH
113struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114
8353da1f 115#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
116 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
117 !lockdep_is_held(&cgroup_mutex), \
8353da1f 118 "cgroup_mutex or RCU read lock required");
780cd8b3 119
e5fca243
TH
120/*
121 * cgroup destruction makes heavy use of work items and there can be a lot
122 * of concurrent destructions. Use a separate workqueue so that cgroup
123 * destruction work items don't end up filling up max_active of system_wq
124 * which may lead to deadlock.
125 */
126static struct workqueue_struct *cgroup_destroy_wq;
127
b1a21367
TH
128/*
129 * pidlist destructions need to be flushed on cgroup destruction. Use a
130 * separate workqueue as flush domain.
131 */
132static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133
3ed80a62 134/* generate an array of cgroup subsystem pointers */
073219e9 135#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 136static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9
TH
139#undef SUBSYS
140
141/* array of cgroup subsystem names */
142#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
143static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
144#include <linux/cgroup_subsys.h>
145};
073219e9 146#undef SUBSYS
ddbcc7e8 147
49d1dc4b
TH
148/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149#define SUBSYS(_x) \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
151 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
153 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
154#include <linux/cgroup_subsys.h>
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
158static struct static_key_true *cgroup_subsys_enabled_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
163#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
164static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
165#include <linux/cgroup_subsys.h>
166};
167#undef SUBSYS
168
ddbcc7e8 169/*
3dd06ffa 170 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
171 * unattached - it never has more than a single cgroup, and all tasks are
172 * part of that cgroup.
ddbcc7e8 173 */
a2dd4247 174struct cgroup_root cgrp_dfl_root;
d0ec4230 175EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 176
a2dd4247
TH
177/*
178 * The default hierarchy always exists but is hidden until mounted for the
179 * first time. This is for backward compatibility.
180 */
a7165264 181static bool cgrp_dfl_visible;
ddbcc7e8 182
223ffb29 183/* Controllers blocked by the commandline in v1 */
6e5c8307 184static u16 cgroup_no_v1_mask;
223ffb29 185
5533e011 186/* some controllers are not supported in the default hierarchy */
a7165264 187static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
9871bf95
TH
191static LIST_HEAD(cgroup_roots);
192static int cgroup_root_count;
ddbcc7e8 193
3417ae1f 194/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 195static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 196
794611a1 197/*
0cb51d71
TH
198 * Assign a monotonically increasing serial number to csses. It guarantees
199 * cgroups with bigger numbers are newer than those with smaller numbers.
200 * Also, as csses are always appended to the parent's ->children list, it
201 * guarantees that sibling csses are always sorted in the ascending serial
202 * number order on the list. Protected by cgroup_mutex.
794611a1 203 */
0cb51d71 204static u64 css_serial_nr_next = 1;
794611a1 205
cb4a3167
AS
206/*
207 * These bitmask flags indicate whether tasks in the fork and exit paths have
208 * fork/exit handlers to call. This avoids us having to do extra work in the
209 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 210 */
6e5c8307
TH
211static u16 have_fork_callback __read_mostly;
212static u16 have_exit_callback __read_mostly;
213static u16 have_free_callback __read_mostly;
ddbcc7e8 214
7e47682e 215/* Ditto for the can_fork callback. */
6e5c8307 216static u16 have_canfork_callback __read_mostly;
7e47682e 217
67e9c74b 218static struct file_system_type cgroup2_fs_type;
a14c6874
TH
219static struct cftype cgroup_dfl_base_files[];
220static struct cftype cgroup_legacy_base_files[];
628f7cd4 221
6e5c8307 222static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 223static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
224static int cgroup_apply_control(struct cgroup *cgrp);
225static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 226static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 227static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
228static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
229 struct cgroup_subsys *ss);
9d755d33 230static void css_release(struct percpu_ref *ref);
f8f22e53 231static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
232static int cgroup_addrm_files(struct cgroup_subsys_state *css,
233 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 234 bool is_add);
42809dd4 235
fc5ed1e9
TH
236/**
237 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
238 * @ssid: subsys ID of interest
239 *
240 * cgroup_subsys_enabled() can only be used with literal subsys names which
241 * is fine for individual subsystems but unsuitable for cgroup core. This
242 * is slower static_key_enabled() based test indexed by @ssid.
243 */
244static bool cgroup_ssid_enabled(int ssid)
245{
246 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
247}
248
223ffb29
JW
249static bool cgroup_ssid_no_v1(int ssid)
250{
251 return cgroup_no_v1_mask & (1 << ssid);
252}
253
9e10a130
TH
254/**
255 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
256 * @cgrp: the cgroup of interest
257 *
258 * The default hierarchy is the v2 interface of cgroup and this function
259 * can be used to test whether a cgroup is on the default hierarchy for
260 * cases where a subsystem should behave differnetly depending on the
261 * interface version.
262 *
263 * The set of behaviors which change on the default hierarchy are still
264 * being determined and the mount option is prefixed with __DEVEL__.
265 *
266 * List of changed behaviors:
267 *
268 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
269 * and "name" are disallowed.
270 *
271 * - When mounting an existing superblock, mount options should match.
272 *
273 * - Remount is disallowed.
274 *
275 * - rename(2) is disallowed.
276 *
277 * - "tasks" is removed. Everything should be at process granularity. Use
278 * "cgroup.procs" instead.
279 *
280 * - "cgroup.procs" is not sorted. pids will be unique unless they got
281 * recycled inbetween reads.
282 *
283 * - "release_agent" and "notify_on_release" are removed. Replacement
284 * notification mechanism will be implemented.
285 *
286 * - "cgroup.clone_children" is removed.
287 *
288 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
289 * and its descendants contain no task; otherwise, 1. The file also
290 * generates kernfs notification which can be monitored through poll and
291 * [di]notify when the value of the file changes.
292 *
293 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
294 * take masks of ancestors with non-empty cpus/mems, instead of being
295 * moved to an ancestor.
296 *
297 * - cpuset: a task can be moved into an empty cpuset, and again it takes
298 * masks of ancestors.
299 *
300 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
301 * is not created.
302 *
303 * - blkcg: blk-throttle becomes properly hierarchical.
304 *
305 * - debug: disallowed on the default hierarchy.
306 */
307static bool cgroup_on_dfl(const struct cgroup *cgrp)
308{
309 return cgrp->root == &cgrp_dfl_root;
310}
311
6fa4918d
TH
312/* IDR wrappers which synchronize using cgroup_idr_lock */
313static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
314 gfp_t gfp_mask)
315{
316 int ret;
317
318 idr_preload(gfp_mask);
54504e97 319 spin_lock_bh(&cgroup_idr_lock);
d0164adc 320 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 321 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
322 idr_preload_end();
323 return ret;
324}
325
326static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
327{
328 void *ret;
329
54504e97 330 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 331 ret = idr_replace(idr, ptr, id);
54504e97 332 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
333 return ret;
334}
335
336static void cgroup_idr_remove(struct idr *idr, int id)
337{
54504e97 338 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 339 idr_remove(idr, id);
54504e97 340 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
341}
342
d51f39b0
TH
343static struct cgroup *cgroup_parent(struct cgroup *cgrp)
344{
345 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
346
347 if (parent_css)
348 return container_of(parent_css, struct cgroup, self);
349 return NULL;
350}
351
5531dc91
TH
352/* subsystems visibly enabled on a cgroup */
353static u16 cgroup_control(struct cgroup *cgrp)
354{
355 struct cgroup *parent = cgroup_parent(cgrp);
356 u16 root_ss_mask = cgrp->root->subsys_mask;
357
358 if (parent)
359 return parent->subtree_control;
360
361 if (cgroup_on_dfl(cgrp))
362 root_ss_mask &= ~cgrp_dfl_inhibit_ss_mask;
363
364 return root_ss_mask;
365}
366
367/* subsystems enabled on a cgroup */
368static u16 cgroup_ss_mask(struct cgroup *cgrp)
369{
370 struct cgroup *parent = cgroup_parent(cgrp);
371
372 if (parent)
373 return parent->subtree_ss_mask;
374
375 return cgrp->root->subsys_mask;
376}
377
95109b62
TH
378/**
379 * cgroup_css - obtain a cgroup's css for the specified subsystem
380 * @cgrp: the cgroup of interest
9d800df1 381 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 382 *
ca8bdcaf
TH
383 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
384 * function must be called either under cgroup_mutex or rcu_read_lock() and
385 * the caller is responsible for pinning the returned css if it wants to
386 * keep accessing it outside the said locks. This function may return
387 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
388 */
389static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 390 struct cgroup_subsys *ss)
95109b62 391{
ca8bdcaf 392 if (ss)
aec25020 393 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 394 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 395 else
9d800df1 396 return &cgrp->self;
95109b62 397}
42809dd4 398
aec3dfcb
TH
399/**
400 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
401 * @cgrp: the cgroup of interest
9d800df1 402 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 403 *
d0f702e6 404 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
405 * as the matching css of the nearest ancestor including self which has @ss
406 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
407 * function is guaranteed to return non-NULL css.
408 */
409static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
410 struct cgroup_subsys *ss)
411{
412 lockdep_assert_held(&cgroup_mutex);
413
414 if (!ss)
9d800df1 415 return &cgrp->self;
aec3dfcb 416
eeecbd19
TH
417 /*
418 * This function is used while updating css associations and thus
5531dc91 419 * can't test the csses directly. Test ss_mask.
eeecbd19 420 */
5531dc91 421 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 422 cgrp = cgroup_parent(cgrp);
5531dc91
TH
423 if (!cgrp)
424 return NULL;
425 }
aec3dfcb
TH
426
427 return cgroup_css(cgrp, ss);
95109b62 428}
42809dd4 429
eeecbd19
TH
430/**
431 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
432 * @cgrp: the cgroup of interest
433 * @ss: the subsystem of interest
434 *
435 * Find and get the effective css of @cgrp for @ss. The effective css is
436 * defined as the matching css of the nearest ancestor including self which
437 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
438 * the root css is returned, so this function always returns a valid css.
439 * The returned css must be put using css_put().
440 */
441struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
442 struct cgroup_subsys *ss)
443{
444 struct cgroup_subsys_state *css;
445
446 rcu_read_lock();
447
448 do {
449 css = cgroup_css(cgrp, ss);
450
451 if (css && css_tryget_online(css))
452 goto out_unlock;
453 cgrp = cgroup_parent(cgrp);
454 } while (cgrp);
455
456 css = init_css_set.subsys[ss->id];
457 css_get(css);
458out_unlock:
459 rcu_read_unlock();
460 return css;
461}
462
ddbcc7e8 463/* convenient tests for these bits */
54766d4a 464static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 465{
184faf32 466 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
467}
468
052c3f3a
TH
469static void cgroup_get(struct cgroup *cgrp)
470{
471 WARN_ON_ONCE(cgroup_is_dead(cgrp));
472 css_get(&cgrp->self);
473}
474
475static bool cgroup_tryget(struct cgroup *cgrp)
476{
477 return css_tryget(&cgrp->self);
478}
479
b4168640 480struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 481{
2bd59d48 482 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 483 struct cftype *cft = of_cft(of);
2bd59d48
TH
484
485 /*
486 * This is open and unprotected implementation of cgroup_css().
487 * seq_css() is only called from a kernfs file operation which has
488 * an active reference on the file. Because all the subsystem
489 * files are drained before a css is disassociated with a cgroup,
490 * the matching css from the cgroup's subsys table is guaranteed to
491 * be and stay valid until the enclosing operation is complete.
492 */
493 if (cft->ss)
494 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
495 else
9d800df1 496 return &cgrp->self;
59f5296b 497}
b4168640 498EXPORT_SYMBOL_GPL(of_css);
59f5296b 499
e9685a03 500static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 501{
bd89aabc 502 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
503}
504
1c6727af
TH
505/**
506 * for_each_css - iterate all css's of a cgroup
507 * @css: the iteration cursor
508 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
509 * @cgrp: the target cgroup to iterate css's of
510 *
aec3dfcb 511 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
512 */
513#define for_each_css(css, ssid, cgrp) \
514 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
515 if (!((css) = rcu_dereference_check( \
516 (cgrp)->subsys[(ssid)], \
517 lockdep_is_held(&cgroup_mutex)))) { } \
518 else
519
aec3dfcb
TH
520/**
521 * for_each_e_css - iterate all effective css's of a cgroup
522 * @css: the iteration cursor
523 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
524 * @cgrp: the target cgroup to iterate css's of
525 *
526 * Should be called under cgroup_[tree_]mutex.
527 */
528#define for_each_e_css(css, ssid, cgrp) \
529 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
530 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
531 ; \
532 else
533
30159ec7 534/**
3ed80a62 535 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 536 * @ss: the iteration cursor
780cd8b3 537 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 538 */
780cd8b3 539#define for_each_subsys(ss, ssid) \
3ed80a62
TH
540 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
541 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 542
cb4a3167 543/**
b4e0eeaf 544 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
545 * @ss: the iteration cursor
546 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 547 * @ss_mask: the bitmask
cb4a3167
AS
548 *
549 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 550 * @ss_mask is set.
cb4a3167 551 */
b4e0eeaf
TH
552#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
553 unsigned long __ss_mask = (ss_mask); \
554 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 555 (ssid) = 0; \
b4e0eeaf
TH
556 break; \
557 } \
558 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
559 (ss) = cgroup_subsys[ssid]; \
560 {
561
562#define while_each_subsys_mask() \
563 } \
564 } \
565} while (false)
cb4a3167 566
985ed670
TH
567/* iterate across the hierarchies */
568#define for_each_root(root) \
5549c497 569 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 570
f8f22e53
TH
571/* iterate over child cgrps, lock should be held throughout iteration */
572#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 573 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 574 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
575 cgroup_is_dead(child); })) \
576 ; \
577 else
7ae1bad9 578
ce3f1d9d
TH
579/* walk live descendants in preorder */
580#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
581 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
582 if (({ lockdep_assert_held(&cgroup_mutex); \
583 (dsct) = (d_css)->cgroup; \
584 cgroup_is_dead(dsct); })) \
585 ; \
586 else
587
588/* walk live descendants in postorder */
589#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
590 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
591 if (({ lockdep_assert_held(&cgroup_mutex); \
592 (dsct) = (d_css)->cgroup; \
593 cgroup_is_dead(dsct); })) \
594 ; \
595 else
596
81a6a5cd 597static void cgroup_release_agent(struct work_struct *work);
bd89aabc 598static void check_for_release(struct cgroup *cgrp);
81a6a5cd 599
69d0206c
TH
600/*
601 * A cgroup can be associated with multiple css_sets as different tasks may
602 * belong to different cgroups on different hierarchies. In the other
603 * direction, a css_set is naturally associated with multiple cgroups.
604 * This M:N relationship is represented by the following link structure
605 * which exists for each association and allows traversing the associations
606 * from both sides.
607 */
608struct cgrp_cset_link {
609 /* the cgroup and css_set this link associates */
610 struct cgroup *cgrp;
611 struct css_set *cset;
612
613 /* list of cgrp_cset_links anchored at cgrp->cset_links */
614 struct list_head cset_link;
615
616 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
617 struct list_head cgrp_link;
817929ec
PM
618};
619
172a2c06
TH
620/*
621 * The default css_set - used by init and its children prior to any
817929ec
PM
622 * hierarchies being mounted. It contains a pointer to the root state
623 * for each subsystem. Also used to anchor the list of css_sets. Not
624 * reference-counted, to improve performance when child cgroups
625 * haven't been created.
626 */
5024ae29 627struct css_set init_css_set = {
172a2c06
TH
628 .refcount = ATOMIC_INIT(1),
629 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
630 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
631 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
632 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
633 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 634 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 635};
817929ec 636
172a2c06 637static int css_set_count = 1; /* 1 for init_css_set */
817929ec 638
0de0942d
TH
639/**
640 * css_set_populated - does a css_set contain any tasks?
641 * @cset: target css_set
642 */
643static bool css_set_populated(struct css_set *cset)
644{
f0d9a5f1 645 lockdep_assert_held(&css_set_lock);
0de0942d
TH
646
647 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
648}
649
842b597e
TH
650/**
651 * cgroup_update_populated - updated populated count of a cgroup
652 * @cgrp: the target cgroup
653 * @populated: inc or dec populated count
654 *
0de0942d
TH
655 * One of the css_sets associated with @cgrp is either getting its first
656 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
657 * count is propagated towards root so that a given cgroup's populated_cnt
658 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
659 *
660 * @cgrp's interface file "cgroup.populated" is zero if
661 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
662 * changes from or to zero, userland is notified that the content of the
663 * interface file has changed. This can be used to detect when @cgrp and
664 * its descendants become populated or empty.
665 */
666static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
667{
f0d9a5f1 668 lockdep_assert_held(&css_set_lock);
842b597e
TH
669
670 do {
671 bool trigger;
672
673 if (populated)
674 trigger = !cgrp->populated_cnt++;
675 else
676 trigger = !--cgrp->populated_cnt;
677
678 if (!trigger)
679 break;
680
ad2ed2b3 681 check_for_release(cgrp);
6f60eade
TH
682 cgroup_file_notify(&cgrp->events_file);
683
d51f39b0 684 cgrp = cgroup_parent(cgrp);
842b597e
TH
685 } while (cgrp);
686}
687
0de0942d
TH
688/**
689 * css_set_update_populated - update populated state of a css_set
690 * @cset: target css_set
691 * @populated: whether @cset is populated or depopulated
692 *
693 * @cset is either getting the first task or losing the last. Update the
694 * ->populated_cnt of all associated cgroups accordingly.
695 */
696static void css_set_update_populated(struct css_set *cset, bool populated)
697{
698 struct cgrp_cset_link *link;
699
f0d9a5f1 700 lockdep_assert_held(&css_set_lock);
0de0942d
TH
701
702 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
703 cgroup_update_populated(link->cgrp, populated);
704}
705
f6d7d049
TH
706/**
707 * css_set_move_task - move a task from one css_set to another
708 * @task: task being moved
709 * @from_cset: css_set @task currently belongs to (may be NULL)
710 * @to_cset: new css_set @task is being moved to (may be NULL)
711 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
712 *
713 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
714 * css_set, @from_cset can be NULL. If @task is being disassociated
715 * instead of moved, @to_cset can be NULL.
716 *
ed27b9f7
TH
717 * This function automatically handles populated_cnt updates and
718 * css_task_iter adjustments but the caller is responsible for managing
719 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
720 */
721static void css_set_move_task(struct task_struct *task,
722 struct css_set *from_cset, struct css_set *to_cset,
723 bool use_mg_tasks)
724{
f0d9a5f1 725 lockdep_assert_held(&css_set_lock);
f6d7d049 726
20b454a6
TH
727 if (to_cset && !css_set_populated(to_cset))
728 css_set_update_populated(to_cset, true);
729
f6d7d049 730 if (from_cset) {
ed27b9f7
TH
731 struct css_task_iter *it, *pos;
732
f6d7d049 733 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
734
735 /*
736 * @task is leaving, advance task iterators which are
737 * pointing to it so that they can resume at the next
738 * position. Advancing an iterator might remove it from
739 * the list, use safe walk. See css_task_iter_advance*()
740 * for details.
741 */
742 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
743 iters_node)
744 if (it->task_pos == &task->cg_list)
745 css_task_iter_advance(it);
746
f6d7d049
TH
747 list_del_init(&task->cg_list);
748 if (!css_set_populated(from_cset))
749 css_set_update_populated(from_cset, false);
750 } else {
751 WARN_ON_ONCE(!list_empty(&task->cg_list));
752 }
753
754 if (to_cset) {
755 /*
756 * We are synchronized through cgroup_threadgroup_rwsem
757 * against PF_EXITING setting such that we can't race
758 * against cgroup_exit() changing the css_set to
759 * init_css_set and dropping the old one.
760 */
761 WARN_ON_ONCE(task->flags & PF_EXITING);
762
f6d7d049
TH
763 rcu_assign_pointer(task->cgroups, to_cset);
764 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
765 &to_cset->tasks);
766 }
767}
768
7717f7ba
PM
769/*
770 * hash table for cgroup groups. This improves the performance to find
771 * an existing css_set. This hash doesn't (currently) take into
772 * account cgroups in empty hierarchies.
773 */
472b1053 774#define CSS_SET_HASH_BITS 7
0ac801fe 775static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 776
0ac801fe 777static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 778{
0ac801fe 779 unsigned long key = 0UL;
30159ec7
TH
780 struct cgroup_subsys *ss;
781 int i;
472b1053 782
30159ec7 783 for_each_subsys(ss, i)
0ac801fe
LZ
784 key += (unsigned long)css[i];
785 key = (key >> 16) ^ key;
472b1053 786
0ac801fe 787 return key;
472b1053
LZ
788}
789
a25eb52e 790static void put_css_set_locked(struct css_set *cset)
b4f48b63 791{
69d0206c 792 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
793 struct cgroup_subsys *ss;
794 int ssid;
5abb8855 795
f0d9a5f1 796 lockdep_assert_held(&css_set_lock);
89c5509b
TH
797
798 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 799 return;
81a6a5cd 800
53254f90
TH
801 /* This css_set is dead. unlink it and release cgroup and css refs */
802 for_each_subsys(ss, ssid) {
2d8f243a 803 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
804 css_put(cset->subsys[ssid]);
805 }
5abb8855 806 hash_del(&cset->hlist);
2c6ab6d2
PM
807 css_set_count--;
808
69d0206c 809 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
810 list_del(&link->cset_link);
811 list_del(&link->cgrp_link);
2ceb231b
TH
812 if (cgroup_parent(link->cgrp))
813 cgroup_put(link->cgrp);
2c6ab6d2 814 kfree(link);
81a6a5cd 815 }
2c6ab6d2 816
5abb8855 817 kfree_rcu(cset, rcu_head);
b4f48b63
PM
818}
819
a25eb52e 820static void put_css_set(struct css_set *cset)
89c5509b
TH
821{
822 /*
823 * Ensure that the refcount doesn't hit zero while any readers
824 * can see it. Similar to atomic_dec_and_lock(), but for an
825 * rwlock
826 */
827 if (atomic_add_unless(&cset->refcount, -1, 1))
828 return;
829
f0d9a5f1 830 spin_lock_bh(&css_set_lock);
a25eb52e 831 put_css_set_locked(cset);
f0d9a5f1 832 spin_unlock_bh(&css_set_lock);
89c5509b
TH
833}
834
817929ec
PM
835/*
836 * refcounted get/put for css_set objects
837 */
5abb8855 838static inline void get_css_set(struct css_set *cset)
817929ec 839{
5abb8855 840 atomic_inc(&cset->refcount);
817929ec
PM
841}
842
b326f9d0 843/**
7717f7ba 844 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
845 * @cset: candidate css_set being tested
846 * @old_cset: existing css_set for a task
7717f7ba
PM
847 * @new_cgrp: cgroup that's being entered by the task
848 * @template: desired set of css pointers in css_set (pre-calculated)
849 *
6f4b7e63 850 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
851 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
852 */
5abb8855
TH
853static bool compare_css_sets(struct css_set *cset,
854 struct css_set *old_cset,
7717f7ba
PM
855 struct cgroup *new_cgrp,
856 struct cgroup_subsys_state *template[])
857{
858 struct list_head *l1, *l2;
859
aec3dfcb
TH
860 /*
861 * On the default hierarchy, there can be csets which are
862 * associated with the same set of cgroups but different csses.
863 * Let's first ensure that csses match.
864 */
865 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 866 return false;
7717f7ba
PM
867
868 /*
869 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
870 * different cgroups in hierarchies. As different cgroups may
871 * share the same effective css, this comparison is always
872 * necessary.
7717f7ba 873 */
69d0206c
TH
874 l1 = &cset->cgrp_links;
875 l2 = &old_cset->cgrp_links;
7717f7ba 876 while (1) {
69d0206c 877 struct cgrp_cset_link *link1, *link2;
5abb8855 878 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
879
880 l1 = l1->next;
881 l2 = l2->next;
882 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
883 if (l1 == &cset->cgrp_links) {
884 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
885 break;
886 } else {
69d0206c 887 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
888 }
889 /* Locate the cgroups associated with these links. */
69d0206c
TH
890 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
891 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
892 cgrp1 = link1->cgrp;
893 cgrp2 = link2->cgrp;
7717f7ba 894 /* Hierarchies should be linked in the same order. */
5abb8855 895 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
896
897 /*
898 * If this hierarchy is the hierarchy of the cgroup
899 * that's changing, then we need to check that this
900 * css_set points to the new cgroup; if it's any other
901 * hierarchy, then this css_set should point to the
902 * same cgroup as the old css_set.
903 */
5abb8855
TH
904 if (cgrp1->root == new_cgrp->root) {
905 if (cgrp1 != new_cgrp)
7717f7ba
PM
906 return false;
907 } else {
5abb8855 908 if (cgrp1 != cgrp2)
7717f7ba
PM
909 return false;
910 }
911 }
912 return true;
913}
914
b326f9d0
TH
915/**
916 * find_existing_css_set - init css array and find the matching css_set
917 * @old_cset: the css_set that we're using before the cgroup transition
918 * @cgrp: the cgroup that we're moving into
919 * @template: out param for the new set of csses, should be clear on entry
817929ec 920 */
5abb8855
TH
921static struct css_set *find_existing_css_set(struct css_set *old_cset,
922 struct cgroup *cgrp,
923 struct cgroup_subsys_state *template[])
b4f48b63 924{
3dd06ffa 925 struct cgroup_root *root = cgrp->root;
30159ec7 926 struct cgroup_subsys *ss;
5abb8855 927 struct css_set *cset;
0ac801fe 928 unsigned long key;
b326f9d0 929 int i;
817929ec 930
aae8aab4
BB
931 /*
932 * Build the set of subsystem state objects that we want to see in the
933 * new css_set. while subsystems can change globally, the entries here
934 * won't change, so no need for locking.
935 */
30159ec7 936 for_each_subsys(ss, i) {
f392e51c 937 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
938 /*
939 * @ss is in this hierarchy, so we want the
940 * effective css from @cgrp.
941 */
942 template[i] = cgroup_e_css(cgrp, ss);
817929ec 943 } else {
aec3dfcb
TH
944 /*
945 * @ss is not in this hierarchy, so we don't want
946 * to change the css.
947 */
5abb8855 948 template[i] = old_cset->subsys[i];
817929ec
PM
949 }
950 }
951
0ac801fe 952 key = css_set_hash(template);
5abb8855
TH
953 hash_for_each_possible(css_set_table, cset, hlist, key) {
954 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
955 continue;
956
957 /* This css_set matches what we need */
5abb8855 958 return cset;
472b1053 959 }
817929ec
PM
960
961 /* No existing cgroup group matched */
962 return NULL;
963}
964
69d0206c 965static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 966{
69d0206c 967 struct cgrp_cset_link *link, *tmp_link;
36553434 968
69d0206c
TH
969 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
970 list_del(&link->cset_link);
36553434
LZ
971 kfree(link);
972 }
973}
974
69d0206c
TH
975/**
976 * allocate_cgrp_cset_links - allocate cgrp_cset_links
977 * @count: the number of links to allocate
978 * @tmp_links: list_head the allocated links are put on
979 *
980 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
981 * through ->cset_link. Returns 0 on success or -errno.
817929ec 982 */
69d0206c 983static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 984{
69d0206c 985 struct cgrp_cset_link *link;
817929ec 986 int i;
69d0206c
TH
987
988 INIT_LIST_HEAD(tmp_links);
989
817929ec 990 for (i = 0; i < count; i++) {
f4f4be2b 991 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 992 if (!link) {
69d0206c 993 free_cgrp_cset_links(tmp_links);
817929ec
PM
994 return -ENOMEM;
995 }
69d0206c 996 list_add(&link->cset_link, tmp_links);
817929ec
PM
997 }
998 return 0;
999}
1000
c12f65d4
LZ
1001/**
1002 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1003 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1004 * @cset: the css_set to be linked
c12f65d4
LZ
1005 * @cgrp: the destination cgroup
1006 */
69d0206c
TH
1007static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1008 struct cgroup *cgrp)
c12f65d4 1009{
69d0206c 1010 struct cgrp_cset_link *link;
c12f65d4 1011
69d0206c 1012 BUG_ON(list_empty(tmp_links));
6803c006
TH
1013
1014 if (cgroup_on_dfl(cgrp))
1015 cset->dfl_cgrp = cgrp;
1016
69d0206c
TH
1017 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1018 link->cset = cset;
7717f7ba 1019 link->cgrp = cgrp;
842b597e 1020
7717f7ba 1021 /*
389b9c1b
TH
1022 * Always add links to the tail of the lists so that the lists are
1023 * in choronological order.
7717f7ba 1024 */
389b9c1b 1025 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1026 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1027
1028 if (cgroup_parent(cgrp))
1029 cgroup_get(cgrp);
c12f65d4
LZ
1030}
1031
b326f9d0
TH
1032/**
1033 * find_css_set - return a new css_set with one cgroup updated
1034 * @old_cset: the baseline css_set
1035 * @cgrp: the cgroup to be updated
1036 *
1037 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1038 * substituted into the appropriate hierarchy.
817929ec 1039 */
5abb8855
TH
1040static struct css_set *find_css_set(struct css_set *old_cset,
1041 struct cgroup *cgrp)
817929ec 1042{
b326f9d0 1043 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1044 struct css_set *cset;
69d0206c
TH
1045 struct list_head tmp_links;
1046 struct cgrp_cset_link *link;
2d8f243a 1047 struct cgroup_subsys *ss;
0ac801fe 1048 unsigned long key;
2d8f243a 1049 int ssid;
472b1053 1050
b326f9d0
TH
1051 lockdep_assert_held(&cgroup_mutex);
1052
817929ec
PM
1053 /* First see if we already have a cgroup group that matches
1054 * the desired set */
f0d9a5f1 1055 spin_lock_bh(&css_set_lock);
5abb8855
TH
1056 cset = find_existing_css_set(old_cset, cgrp, template);
1057 if (cset)
1058 get_css_set(cset);
f0d9a5f1 1059 spin_unlock_bh(&css_set_lock);
817929ec 1060
5abb8855
TH
1061 if (cset)
1062 return cset;
817929ec 1063
f4f4be2b 1064 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1065 if (!cset)
817929ec
PM
1066 return NULL;
1067
69d0206c 1068 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1069 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1070 kfree(cset);
817929ec
PM
1071 return NULL;
1072 }
1073
5abb8855 1074 atomic_set(&cset->refcount, 1);
69d0206c 1075 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1076 INIT_LIST_HEAD(&cset->tasks);
c7561128 1077 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1078 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1079 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1080 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1081 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1082
1083 /* Copy the set of subsystem state objects generated in
1084 * find_existing_css_set() */
5abb8855 1085 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1086
f0d9a5f1 1087 spin_lock_bh(&css_set_lock);
817929ec 1088 /* Add reference counts and links from the new css_set. */
69d0206c 1089 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1090 struct cgroup *c = link->cgrp;
69d0206c 1091
7717f7ba
PM
1092 if (c->root == cgrp->root)
1093 c = cgrp;
69d0206c 1094 link_css_set(&tmp_links, cset, c);
7717f7ba 1095 }
817929ec 1096
69d0206c 1097 BUG_ON(!list_empty(&tmp_links));
817929ec 1098
817929ec 1099 css_set_count++;
472b1053 1100
2d8f243a 1101 /* Add @cset to the hash table */
5abb8855
TH
1102 key = css_set_hash(cset->subsys);
1103 hash_add(css_set_table, &cset->hlist, key);
472b1053 1104
53254f90
TH
1105 for_each_subsys(ss, ssid) {
1106 struct cgroup_subsys_state *css = cset->subsys[ssid];
1107
2d8f243a 1108 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1109 &css->cgroup->e_csets[ssid]);
1110 css_get(css);
1111 }
2d8f243a 1112
f0d9a5f1 1113 spin_unlock_bh(&css_set_lock);
817929ec 1114
5abb8855 1115 return cset;
b4f48b63
PM
1116}
1117
3dd06ffa 1118static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1119{
3dd06ffa 1120 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1121
3dd06ffa 1122 return root_cgrp->root;
2bd59d48
TH
1123}
1124
3dd06ffa 1125static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1126{
1127 int id;
1128
1129 lockdep_assert_held(&cgroup_mutex);
1130
985ed670 1131 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1132 if (id < 0)
1133 return id;
1134
1135 root->hierarchy_id = id;
1136 return 0;
1137}
1138
3dd06ffa 1139static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1140{
1141 lockdep_assert_held(&cgroup_mutex);
1142
1143 if (root->hierarchy_id) {
1144 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1145 root->hierarchy_id = 0;
1146 }
1147}
1148
3dd06ffa 1149static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1150{
1151 if (root) {
d0f702e6 1152 /* hierarchy ID should already have been released */
f2e85d57
TH
1153 WARN_ON_ONCE(root->hierarchy_id);
1154
1155 idr_destroy(&root->cgroup_idr);
1156 kfree(root);
1157 }
1158}
1159
3dd06ffa 1160static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1161{
3dd06ffa 1162 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1163 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1164
334c3679 1165 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1166
776f02fa 1167 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1168 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1169
f2e85d57 1170 /* Rebind all subsystems back to the default hierarchy */
334c3679 1171 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1172
7717f7ba 1173 /*
f2e85d57
TH
1174 * Release all the links from cset_links to this hierarchy's
1175 * root cgroup
7717f7ba 1176 */
f0d9a5f1 1177 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1178
1179 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1180 list_del(&link->cset_link);
1181 list_del(&link->cgrp_link);
1182 kfree(link);
1183 }
f0d9a5f1
TH
1184
1185 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1186
1187 if (!list_empty(&root->root_list)) {
1188 list_del(&root->root_list);
1189 cgroup_root_count--;
1190 }
1191
1192 cgroup_exit_root_id(root);
1193
1194 mutex_unlock(&cgroup_mutex);
f2e85d57 1195
2bd59d48 1196 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1197 cgroup_free_root(root);
1198}
1199
ceb6a081
TH
1200/* look up cgroup associated with given css_set on the specified hierarchy */
1201static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1202 struct cgroup_root *root)
7717f7ba 1203{
7717f7ba
PM
1204 struct cgroup *res = NULL;
1205
96d365e0 1206 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1207 lockdep_assert_held(&css_set_lock);
96d365e0 1208
5abb8855 1209 if (cset == &init_css_set) {
3dd06ffa 1210 res = &root->cgrp;
7717f7ba 1211 } else {
69d0206c
TH
1212 struct cgrp_cset_link *link;
1213
1214 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1215 struct cgroup *c = link->cgrp;
69d0206c 1216
7717f7ba
PM
1217 if (c->root == root) {
1218 res = c;
1219 break;
1220 }
1221 }
1222 }
96d365e0 1223
7717f7ba
PM
1224 BUG_ON(!res);
1225 return res;
1226}
1227
ddbcc7e8 1228/*
ceb6a081 1229 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1230 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1231 */
1232static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1233 struct cgroup_root *root)
ceb6a081
TH
1234{
1235 /*
1236 * No need to lock the task - since we hold cgroup_mutex the
1237 * task can't change groups, so the only thing that can happen
1238 * is that it exits and its css is set back to init_css_set.
1239 */
1240 return cset_cgroup_from_root(task_css_set(task), root);
1241}
1242
ddbcc7e8 1243/*
ddbcc7e8
PM
1244 * A task must hold cgroup_mutex to modify cgroups.
1245 *
1246 * Any task can increment and decrement the count field without lock.
1247 * So in general, code holding cgroup_mutex can't rely on the count
1248 * field not changing. However, if the count goes to zero, then only
956db3ca 1249 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1250 * means that no tasks are currently attached, therefore there is no
1251 * way a task attached to that cgroup can fork (the other way to
1252 * increment the count). So code holding cgroup_mutex can safely
1253 * assume that if the count is zero, it will stay zero. Similarly, if
1254 * a task holds cgroup_mutex on a cgroup with zero count, it
1255 * knows that the cgroup won't be removed, as cgroup_rmdir()
1256 * needs that mutex.
1257 *
ddbcc7e8
PM
1258 * A cgroup can only be deleted if both its 'count' of using tasks
1259 * is zero, and its list of 'children' cgroups is empty. Since all
1260 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1261 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1262 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1263 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1264 *
1265 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1266 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1267 */
1268
2bd59d48 1269static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1270static const struct file_operations proc_cgroupstats_operations;
a424316c 1271
8d7e6fb0
TH
1272static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1273 char *buf)
ddbcc7e8 1274{
3e1d2eed
TH
1275 struct cgroup_subsys *ss = cft->ss;
1276
8d7e6fb0
TH
1277 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1278 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1279 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1280 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1281 cft->name);
8d7e6fb0
TH
1282 else
1283 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1284 return buf;
ddbcc7e8
PM
1285}
1286
f2e85d57
TH
1287/**
1288 * cgroup_file_mode - deduce file mode of a control file
1289 * @cft: the control file in question
1290 *
7dbdb199 1291 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1292 */
1293static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1294{
f2e85d57 1295 umode_t mode = 0;
65dff759 1296
f2e85d57
TH
1297 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1298 mode |= S_IRUGO;
1299
7dbdb199
TH
1300 if (cft->write_u64 || cft->write_s64 || cft->write) {
1301 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1302 mode |= S_IWUGO;
1303 else
1304 mode |= S_IWUSR;
1305 }
f2e85d57
TH
1306
1307 return mode;
65dff759
LZ
1308}
1309
af0ba678 1310/**
8699b776 1311 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1312 * @subtree_control: the new subtree_control mask to consider
5ced2518 1313 * @this_ss_mask: available subsystems
af0ba678
TH
1314 *
1315 * On the default hierarchy, a subsystem may request other subsystems to be
1316 * enabled together through its ->depends_on mask. In such cases, more
1317 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1318 *
0f060deb 1319 * This function calculates which subsystems need to be enabled if
5ced2518 1320 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1321 */
5ced2518 1322static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1323{
6e5c8307 1324 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1325 struct cgroup_subsys *ss;
1326 int ssid;
1327
1328 lockdep_assert_held(&cgroup_mutex);
1329
af0ba678 1330 while (true) {
6e5c8307 1331 u16 new_ss_mask = cur_ss_mask;
af0ba678 1332
b4e0eeaf 1333 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1334 new_ss_mask |= ss->depends_on;
b4e0eeaf 1335 } while_each_subsys_mask();
af0ba678
TH
1336
1337 /*
1338 * Mask out subsystems which aren't available. This can
1339 * happen only if some depended-upon subsystems were bound
1340 * to non-default hierarchies.
1341 */
5ced2518 1342 new_ss_mask &= this_ss_mask;
af0ba678
TH
1343
1344 if (new_ss_mask == cur_ss_mask)
1345 break;
1346 cur_ss_mask = new_ss_mask;
1347 }
1348
0f060deb
TH
1349 return cur_ss_mask;
1350}
1351
a9746d8d
TH
1352/**
1353 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1354 * @kn: the kernfs_node being serviced
1355 *
1356 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1357 * the method finishes if locking succeeded. Note that once this function
1358 * returns the cgroup returned by cgroup_kn_lock_live() may become
1359 * inaccessible any time. If the caller intends to continue to access the
1360 * cgroup, it should pin it before invoking this function.
1361 */
1362static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1363{
a9746d8d
TH
1364 struct cgroup *cgrp;
1365
1366 if (kernfs_type(kn) == KERNFS_DIR)
1367 cgrp = kn->priv;
1368 else
1369 cgrp = kn->parent->priv;
1370
1371 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1372
1373 kernfs_unbreak_active_protection(kn);
1374 cgroup_put(cgrp);
ddbcc7e8
PM
1375}
1376
a9746d8d
TH
1377/**
1378 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1379 * @kn: the kernfs_node being serviced
945ba199 1380 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1381 *
1382 * This helper is to be used by a cgroup kernfs method currently servicing
1383 * @kn. It breaks the active protection, performs cgroup locking and
1384 * verifies that the associated cgroup is alive. Returns the cgroup if
1385 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1386 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1387 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1388 *
1389 * Any cgroup kernfs method implementation which requires locking the
1390 * associated cgroup should use this helper. It avoids nesting cgroup
1391 * locking under kernfs active protection and allows all kernfs operations
1392 * including self-removal.
1393 */
945ba199
TH
1394static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1395 bool drain_offline)
05ef1d7c 1396{
a9746d8d
TH
1397 struct cgroup *cgrp;
1398
1399 if (kernfs_type(kn) == KERNFS_DIR)
1400 cgrp = kn->priv;
1401 else
1402 cgrp = kn->parent->priv;
05ef1d7c 1403
2739d3cc 1404 /*
01f6474c 1405 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1406 * active_ref. cgroup liveliness check alone provides enough
1407 * protection against removal. Ensure @cgrp stays accessible and
1408 * break the active_ref protection.
2739d3cc 1409 */
aa32362f
LZ
1410 if (!cgroup_tryget(cgrp))
1411 return NULL;
a9746d8d
TH
1412 kernfs_break_active_protection(kn);
1413
945ba199
TH
1414 if (drain_offline)
1415 cgroup_lock_and_drain_offline(cgrp);
1416 else
1417 mutex_lock(&cgroup_mutex);
05ef1d7c 1418
a9746d8d
TH
1419 if (!cgroup_is_dead(cgrp))
1420 return cgrp;
1421
1422 cgroup_kn_unlock(kn);
1423 return NULL;
ddbcc7e8 1424}
05ef1d7c 1425
2739d3cc 1426static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1427{
2bd59d48 1428 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1429
01f6474c 1430 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1431
1432 if (cft->file_offset) {
1433 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1434 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1435
1436 spin_lock_irq(&cgroup_file_kn_lock);
1437 cfile->kn = NULL;
1438 spin_unlock_irq(&cgroup_file_kn_lock);
1439 }
1440
2bd59d48 1441 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1442}
1443
13af07df 1444/**
4df8dc90
TH
1445 * css_clear_dir - remove subsys files in a cgroup directory
1446 * @css: taget css
13af07df 1447 */
334c3679 1448static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1449{
334c3679 1450 struct cgroup *cgrp = css->cgroup;
4df8dc90 1451 struct cftype *cfts;
05ef1d7c 1452
88cb04b9
TH
1453 if (!(css->flags & CSS_VISIBLE))
1454 return;
1455
1456 css->flags &= ~CSS_VISIBLE;
1457
4df8dc90
TH
1458 list_for_each_entry(cfts, &css->ss->cfts, node)
1459 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1460}
1461
ccdca218 1462/**
4df8dc90
TH
1463 * css_populate_dir - create subsys files in a cgroup directory
1464 * @css: target css
ccdca218
TH
1465 *
1466 * On failure, no file is added.
1467 */
334c3679 1468static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1469{
334c3679 1470 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1471 struct cftype *cfts, *failed_cfts;
1472 int ret;
ccdca218 1473
03970d3c 1474 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1475 return 0;
1476
4df8dc90
TH
1477 if (!css->ss) {
1478 if (cgroup_on_dfl(cgrp))
1479 cfts = cgroup_dfl_base_files;
1480 else
1481 cfts = cgroup_legacy_base_files;
ccdca218 1482
4df8dc90
TH
1483 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1484 }
ccdca218 1485
4df8dc90
TH
1486 list_for_each_entry(cfts, &css->ss->cfts, node) {
1487 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1488 if (ret < 0) {
1489 failed_cfts = cfts;
1490 goto err;
ccdca218
TH
1491 }
1492 }
88cb04b9
TH
1493
1494 css->flags |= CSS_VISIBLE;
1495
ccdca218
TH
1496 return 0;
1497err:
4df8dc90
TH
1498 list_for_each_entry(cfts, &css->ss->cfts, node) {
1499 if (cfts == failed_cfts)
1500 break;
1501 cgroup_addrm_files(css, cgrp, cfts, false);
1502 }
ccdca218
TH
1503 return ret;
1504}
1505
6e5c8307 1506static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1507{
1ada4838 1508 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1509 struct cgroup_subsys *ss;
2d8f243a 1510 int ssid, i, ret;
ddbcc7e8 1511
ace2bee8 1512 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1513
b4e0eeaf 1514 do_each_subsys_mask(ss, ssid, ss_mask) {
7fd8c565
TH
1515 /* if @ss has non-root csses attached to it, can't move */
1516 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1517 return -EBUSY;
1d5be6b2 1518
5df36032 1519 /* can't move between two non-dummy roots either */
7fd8c565 1520 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1521 return -EBUSY;
b4e0eeaf 1522 } while_each_subsys_mask();
ddbcc7e8 1523
b4e0eeaf 1524 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1525 struct cgroup_root *src_root = ss->root;
1526 struct cgroup *scgrp = &src_root->cgrp;
1527 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1528 struct css_set *cset;
a8a648c4 1529
1ada4838 1530 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1531
334c3679
TH
1532 /* disable from the source */
1533 src_root->subsys_mask &= ~(1 << ssid);
1534 WARN_ON(cgroup_apply_control(scgrp));
1535 cgroup_finalize_control(scgrp, 0);
4df8dc90 1536
334c3679 1537 /* rebind */
1ada4838
TH
1538 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1539 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1540 ss->root = dst_root;
1ada4838 1541 css->cgroup = dcgrp;
73e80ed8 1542
f0d9a5f1 1543 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1544 hash_for_each(css_set_table, i, cset, hlist)
1545 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1546 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1547 spin_unlock_bh(&css_set_lock);
2d8f243a 1548
bd53d617 1549 /* default hierarchy doesn't enable controllers by default */
f392e51c 1550 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1551 if (dst_root == &cgrp_dfl_root) {
1552 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1553 } else {
1ada4838 1554 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1555 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1556 }
a8a648c4 1557
334c3679
TH
1558 ret = cgroup_apply_control(dcgrp);
1559 if (ret)
1560 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1561 ss->name, ret);
1562
5df36032
TH
1563 if (ss->bind)
1564 ss->bind(css);
b4e0eeaf 1565 } while_each_subsys_mask();
ddbcc7e8 1566
1ada4838 1567 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1568 return 0;
1569}
1570
2bd59d48
TH
1571static int cgroup_show_options(struct seq_file *seq,
1572 struct kernfs_root *kf_root)
ddbcc7e8 1573{
3dd06ffa 1574 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1575 struct cgroup_subsys *ss;
b85d2040 1576 int ssid;
ddbcc7e8 1577
d98817d4
TH
1578 if (root != &cgrp_dfl_root)
1579 for_each_subsys(ss, ssid)
1580 if (root->subsys_mask & (1 << ssid))
61e57c0c 1581 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1582 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1583 seq_puts(seq, ",noprefix");
93438629 1584 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1585 seq_puts(seq, ",xattr");
69e943b7
TH
1586
1587 spin_lock(&release_agent_path_lock);
81a6a5cd 1588 if (strlen(root->release_agent_path))
a068acf2
KC
1589 seq_show_option(seq, "release_agent",
1590 root->release_agent_path);
69e943b7
TH
1591 spin_unlock(&release_agent_path_lock);
1592
3dd06ffa 1593 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1594 seq_puts(seq, ",clone_children");
c6d57f33 1595 if (strlen(root->name))
a068acf2 1596 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1597 return 0;
1598}
1599
1600struct cgroup_sb_opts {
6e5c8307 1601 u16 subsys_mask;
69dfa00c 1602 unsigned int flags;
81a6a5cd 1603 char *release_agent;
2260e7fc 1604 bool cpuset_clone_children;
c6d57f33 1605 char *name;
2c6ab6d2
PM
1606 /* User explicitly requested empty subsystem */
1607 bool none;
ddbcc7e8
PM
1608};
1609
cf5d5941 1610static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1611{
32a8cf23
DL
1612 char *token, *o = data;
1613 bool all_ss = false, one_ss = false;
6e5c8307 1614 u16 mask = U16_MAX;
30159ec7 1615 struct cgroup_subsys *ss;
7b9a6ba5 1616 int nr_opts = 0;
30159ec7 1617 int i;
f9ab5b5b
LZ
1618
1619#ifdef CONFIG_CPUSETS
6e5c8307 1620 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1621#endif
ddbcc7e8 1622
c6d57f33 1623 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1624
1625 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1626 nr_opts++;
1627
ddbcc7e8
PM
1628 if (!*token)
1629 return -EINVAL;
32a8cf23 1630 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1631 /* Explicitly have no subsystems */
1632 opts->none = true;
32a8cf23
DL
1633 continue;
1634 }
1635 if (!strcmp(token, "all")) {
1636 /* Mutually exclusive option 'all' + subsystem name */
1637 if (one_ss)
1638 return -EINVAL;
1639 all_ss = true;
1640 continue;
1641 }
1642 if (!strcmp(token, "noprefix")) {
93438629 1643 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1644 continue;
1645 }
1646 if (!strcmp(token, "clone_children")) {
2260e7fc 1647 opts->cpuset_clone_children = true;
32a8cf23
DL
1648 continue;
1649 }
03b1cde6 1650 if (!strcmp(token, "xattr")) {
93438629 1651 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1652 continue;
1653 }
32a8cf23 1654 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1655 /* Specifying two release agents is forbidden */
1656 if (opts->release_agent)
1657 return -EINVAL;
c6d57f33 1658 opts->release_agent =
e400c285 1659 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1660 if (!opts->release_agent)
1661 return -ENOMEM;
32a8cf23
DL
1662 continue;
1663 }
1664 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1665 const char *name = token + 5;
1666 /* Can't specify an empty name */
1667 if (!strlen(name))
1668 return -EINVAL;
1669 /* Must match [\w.-]+ */
1670 for (i = 0; i < strlen(name); i++) {
1671 char c = name[i];
1672 if (isalnum(c))
1673 continue;
1674 if ((c == '.') || (c == '-') || (c == '_'))
1675 continue;
1676 return -EINVAL;
1677 }
1678 /* Specifying two names is forbidden */
1679 if (opts->name)
1680 return -EINVAL;
1681 opts->name = kstrndup(name,
e400c285 1682 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1683 GFP_KERNEL);
1684 if (!opts->name)
1685 return -ENOMEM;
32a8cf23
DL
1686
1687 continue;
1688 }
1689
30159ec7 1690 for_each_subsys(ss, i) {
3e1d2eed 1691 if (strcmp(token, ss->legacy_name))
32a8cf23 1692 continue;
fc5ed1e9 1693 if (!cgroup_ssid_enabled(i))
32a8cf23 1694 continue;
223ffb29
JW
1695 if (cgroup_ssid_no_v1(i))
1696 continue;
32a8cf23
DL
1697
1698 /* Mutually exclusive option 'all' + subsystem name */
1699 if (all_ss)
1700 return -EINVAL;
69dfa00c 1701 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1702 one_ss = true;
1703
1704 break;
1705 }
1706 if (i == CGROUP_SUBSYS_COUNT)
1707 return -ENOENT;
1708 }
1709
7b9a6ba5
TH
1710 /*
1711 * If the 'all' option was specified select all the subsystems,
1712 * otherwise if 'none', 'name=' and a subsystem name options were
1713 * not specified, let's default to 'all'
1714 */
1715 if (all_ss || (!one_ss && !opts->none && !opts->name))
1716 for_each_subsys(ss, i)
223ffb29 1717 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1718 opts->subsys_mask |= (1 << i);
1719
1720 /*
1721 * We either have to specify by name or by subsystems. (So all
1722 * empty hierarchies must have a name).
1723 */
1724 if (!opts->subsys_mask && !opts->name)
1725 return -EINVAL;
1726
f9ab5b5b
LZ
1727 /*
1728 * Option noprefix was introduced just for backward compatibility
1729 * with the old cpuset, so we allow noprefix only if mounting just
1730 * the cpuset subsystem.
1731 */
93438629 1732 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1733 return -EINVAL;
1734
2c6ab6d2 1735 /* Can't specify "none" and some subsystems */
a1a71b45 1736 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1737 return -EINVAL;
1738
ddbcc7e8
PM
1739 return 0;
1740}
1741
2bd59d48 1742static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1743{
1744 int ret = 0;
3dd06ffa 1745 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1746 struct cgroup_sb_opts opts;
6e5c8307 1747 u16 added_mask, removed_mask;
ddbcc7e8 1748
aa6ec29b
TH
1749 if (root == &cgrp_dfl_root) {
1750 pr_err("remount is not allowed\n");
873fe09e
TH
1751 return -EINVAL;
1752 }
1753
334c3679 1754 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1755
1756 /* See what subsystems are wanted */
1757 ret = parse_cgroupfs_options(data, &opts);
1758 if (ret)
1759 goto out_unlock;
1760
f392e51c 1761 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1762 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1763 task_tgid_nr(current), current->comm);
8b5a5a9d 1764
f392e51c
TH
1765 added_mask = opts.subsys_mask & ~root->subsys_mask;
1766 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1767
cf5d5941 1768 /* Don't allow flags or name to change at remount */
7450e90b 1769 if ((opts.flags ^ root->flags) ||
cf5d5941 1770 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1771 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1772 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1773 ret = -EINVAL;
1774 goto out_unlock;
1775 }
1776
f172e67c 1777 /* remounting is not allowed for populated hierarchies */
d5c419b6 1778 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1779 ret = -EBUSY;
0670e08b 1780 goto out_unlock;
cf5d5941 1781 }
ddbcc7e8 1782
5df36032 1783 ret = rebind_subsystems(root, added_mask);
3126121f 1784 if (ret)
0670e08b 1785 goto out_unlock;
ddbcc7e8 1786
334c3679 1787 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1788
69e943b7
TH
1789 if (opts.release_agent) {
1790 spin_lock(&release_agent_path_lock);
81a6a5cd 1791 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1792 spin_unlock(&release_agent_path_lock);
1793 }
ddbcc7e8 1794 out_unlock:
66bdc9cf 1795 kfree(opts.release_agent);
c6d57f33 1796 kfree(opts.name);
ddbcc7e8 1797 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1798 return ret;
1799}
1800
afeb0f9f
TH
1801/*
1802 * To reduce the fork() overhead for systems that are not actually using
1803 * their cgroups capability, we don't maintain the lists running through
1804 * each css_set to its tasks until we see the list actually used - in other
1805 * words after the first mount.
1806 */
1807static bool use_task_css_set_links __read_mostly;
1808
1809static void cgroup_enable_task_cg_lists(void)
1810{
1811 struct task_struct *p, *g;
1812
f0d9a5f1 1813 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1814
1815 if (use_task_css_set_links)
1816 goto out_unlock;
1817
1818 use_task_css_set_links = true;
1819
1820 /*
1821 * We need tasklist_lock because RCU is not safe against
1822 * while_each_thread(). Besides, a forking task that has passed
1823 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1824 * is not guaranteed to have its child immediately visible in the
1825 * tasklist if we walk through it with RCU.
1826 */
1827 read_lock(&tasklist_lock);
1828 do_each_thread(g, p) {
afeb0f9f
TH
1829 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1830 task_css_set(p) != &init_css_set);
1831
1832 /*
1833 * We should check if the process is exiting, otherwise
1834 * it will race with cgroup_exit() in that the list
1835 * entry won't be deleted though the process has exited.
f153ad11
TH
1836 * Do it while holding siglock so that we don't end up
1837 * racing against cgroup_exit().
afeb0f9f 1838 */
f153ad11 1839 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1840 if (!(p->flags & PF_EXITING)) {
1841 struct css_set *cset = task_css_set(p);
1842
0de0942d
TH
1843 if (!css_set_populated(cset))
1844 css_set_update_populated(cset, true);
389b9c1b 1845 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1846 get_css_set(cset);
1847 }
f153ad11 1848 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1849 } while_each_thread(g, p);
1850 read_unlock(&tasklist_lock);
1851out_unlock:
f0d9a5f1 1852 spin_unlock_bh(&css_set_lock);
afeb0f9f 1853}
ddbcc7e8 1854
cc31edce
PM
1855static void init_cgroup_housekeeping(struct cgroup *cgrp)
1856{
2d8f243a
TH
1857 struct cgroup_subsys *ss;
1858 int ssid;
1859
d5c419b6
TH
1860 INIT_LIST_HEAD(&cgrp->self.sibling);
1861 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1862 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1863 INIT_LIST_HEAD(&cgrp->pidlists);
1864 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1865 cgrp->self.cgroup = cgrp;
184faf32 1866 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1867
1868 for_each_subsys(ss, ssid)
1869 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1870
1871 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1872 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1873}
c6d57f33 1874
3dd06ffa 1875static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1876 struct cgroup_sb_opts *opts)
ddbcc7e8 1877{
3dd06ffa 1878 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1879
ddbcc7e8 1880 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1881 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1882 cgrp->root = root;
cc31edce 1883 init_cgroup_housekeeping(cgrp);
4e96ee8e 1884 idr_init(&root->cgroup_idr);
c6d57f33 1885
c6d57f33
PM
1886 root->flags = opts->flags;
1887 if (opts->release_agent)
1888 strcpy(root->release_agent_path, opts->release_agent);
1889 if (opts->name)
1890 strcpy(root->name, opts->name);
2260e7fc 1891 if (opts->cpuset_clone_children)
3dd06ffa 1892 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1893}
1894
6e5c8307 1895static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1896{
d427dfeb 1897 LIST_HEAD(tmp_links);
3dd06ffa 1898 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1899 struct css_set *cset;
d427dfeb 1900 int i, ret;
2c6ab6d2 1901
d427dfeb 1902 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1903
cf780b7d 1904 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1905 if (ret < 0)
2bd59d48 1906 goto out;
d427dfeb 1907 root_cgrp->id = ret;
b11cfb58 1908 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1909
2aad2a86
TH
1910 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1911 GFP_KERNEL);
9d755d33
TH
1912 if (ret)
1913 goto out;
1914
d427dfeb 1915 /*
f0d9a5f1 1916 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 1917 * but that's OK - it can only be increased by someone holding
04313591
TH
1918 * cgroup_lock, and that's us. Later rebinding may disable
1919 * controllers on the default hierarchy and thus create new csets,
1920 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 1921 */
04313591 1922 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 1923 if (ret)
9d755d33 1924 goto cancel_ref;
ddbcc7e8 1925
985ed670 1926 ret = cgroup_init_root_id(root);
ddbcc7e8 1927 if (ret)
9d755d33 1928 goto cancel_ref;
ddbcc7e8 1929
2bd59d48
TH
1930 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1931 KERNFS_ROOT_CREATE_DEACTIVATED,
1932 root_cgrp);
1933 if (IS_ERR(root->kf_root)) {
1934 ret = PTR_ERR(root->kf_root);
1935 goto exit_root_id;
1936 }
1937 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1938
334c3679 1939 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 1940 if (ret)
2bd59d48 1941 goto destroy_root;
ddbcc7e8 1942
5df36032 1943 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1944 if (ret)
2bd59d48 1945 goto destroy_root;
ddbcc7e8 1946
d427dfeb
TH
1947 /*
1948 * There must be no failure case after here, since rebinding takes
1949 * care of subsystems' refcounts, which are explicitly dropped in
1950 * the failure exit path.
1951 */
1952 list_add(&root->root_list, &cgroup_roots);
1953 cgroup_root_count++;
0df6a63f 1954
d427dfeb 1955 /*
3dd06ffa 1956 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1957 * objects.
1958 */
f0d9a5f1 1959 spin_lock_bh(&css_set_lock);
0de0942d 1960 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1961 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1962 if (css_set_populated(cset))
1963 cgroup_update_populated(root_cgrp, true);
1964 }
f0d9a5f1 1965 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1966
d5c419b6 1967 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1968 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1969
2bd59d48 1970 kernfs_activate(root_cgrp->kn);
d427dfeb 1971 ret = 0;
2bd59d48 1972 goto out;
d427dfeb 1973
2bd59d48
TH
1974destroy_root:
1975 kernfs_destroy_root(root->kf_root);
1976 root->kf_root = NULL;
1977exit_root_id:
d427dfeb 1978 cgroup_exit_root_id(root);
9d755d33 1979cancel_ref:
9a1049da 1980 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1981out:
d427dfeb
TH
1982 free_cgrp_cset_links(&tmp_links);
1983 return ret;
ddbcc7e8
PM
1984}
1985
f7e83571 1986static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1987 int flags, const char *unused_dev_name,
f7e83571 1988 void *data)
ddbcc7e8 1989{
67e9c74b 1990 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 1991 struct super_block *pinned_sb = NULL;
970317aa 1992 struct cgroup_subsys *ss;
3dd06ffa 1993 struct cgroup_root *root;
ddbcc7e8 1994 struct cgroup_sb_opts opts;
2bd59d48 1995 struct dentry *dentry;
8e30e2b8 1996 int ret;
970317aa 1997 int i;
c6b3d5bc 1998 bool new_sb;
ddbcc7e8 1999
56fde9e0
TH
2000 /*
2001 * The first time anyone tries to mount a cgroup, enable the list
2002 * linking each css_set to its tasks and fix up all existing tasks.
2003 */
2004 if (!use_task_css_set_links)
2005 cgroup_enable_task_cg_lists();
e37a06f1 2006
67e9c74b
TH
2007 if (is_v2) {
2008 if (data) {
2009 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2010 return ERR_PTR(-EINVAL);
2011 }
a7165264 2012 cgrp_dfl_visible = true;
67e9c74b
TH
2013 root = &cgrp_dfl_root;
2014 cgroup_get(&root->cgrp);
2015 goto out_mount;
2016 }
2017
334c3679 2018 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2019
2020 /* First find the desired set of subsystems */
ddbcc7e8 2021 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2022 if (ret)
8e30e2b8 2023 goto out_unlock;
a015edd2 2024
970317aa
LZ
2025 /*
2026 * Destruction of cgroup root is asynchronous, so subsystems may
2027 * still be dying after the previous unmount. Let's drain the
2028 * dying subsystems. We just need to ensure that the ones
2029 * unmounted previously finish dying and don't care about new ones
2030 * starting. Testing ref liveliness is good enough.
2031 */
2032 for_each_subsys(ss, i) {
2033 if (!(opts.subsys_mask & (1 << i)) ||
2034 ss->root == &cgrp_dfl_root)
2035 continue;
2036
2037 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2038 mutex_unlock(&cgroup_mutex);
2039 msleep(10);
2040 ret = restart_syscall();
2041 goto out_free;
2042 }
2043 cgroup_put(&ss->root->cgrp);
2044 }
2045
985ed670 2046 for_each_root(root) {
2bd59d48 2047 bool name_match = false;
3126121f 2048
3dd06ffa 2049 if (root == &cgrp_dfl_root)
985ed670 2050 continue;
3126121f 2051
cf5d5941 2052 /*
2bd59d48
TH
2053 * If we asked for a name then it must match. Also, if
2054 * name matches but sybsys_mask doesn't, we should fail.
2055 * Remember whether name matched.
cf5d5941 2056 */
2bd59d48
TH
2057 if (opts.name) {
2058 if (strcmp(opts.name, root->name))
2059 continue;
2060 name_match = true;
2061 }
ddbcc7e8 2062
c6d57f33 2063 /*
2bd59d48
TH
2064 * If we asked for subsystems (or explicitly for no
2065 * subsystems) then they must match.
c6d57f33 2066 */
2bd59d48 2067 if ((opts.subsys_mask || opts.none) &&
f392e51c 2068 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2069 if (!name_match)
2070 continue;
2071 ret = -EBUSY;
2072 goto out_unlock;
2073 }
873fe09e 2074
7b9a6ba5
TH
2075 if (root->flags ^ opts.flags)
2076 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2077
776f02fa 2078 /*
3a32bd72
LZ
2079 * We want to reuse @root whose lifetime is governed by its
2080 * ->cgrp. Let's check whether @root is alive and keep it
2081 * that way. As cgroup_kill_sb() can happen anytime, we
2082 * want to block it by pinning the sb so that @root doesn't
2083 * get killed before mount is complete.
2084 *
2085 * With the sb pinned, tryget_live can reliably indicate
2086 * whether @root can be reused. If it's being killed,
2087 * drain it. We can use wait_queue for the wait but this
2088 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2089 */
3a32bd72
LZ
2090 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2091 if (IS_ERR(pinned_sb) ||
2092 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2093 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2094 if (!IS_ERR_OR_NULL(pinned_sb))
2095 deactivate_super(pinned_sb);
776f02fa 2096 msleep(10);
a015edd2
TH
2097 ret = restart_syscall();
2098 goto out_free;
776f02fa 2099 }
ddbcc7e8 2100
776f02fa 2101 ret = 0;
2bd59d48 2102 goto out_unlock;
ddbcc7e8 2103 }
ddbcc7e8 2104
817929ec 2105 /*
172a2c06
TH
2106 * No such thing, create a new one. name= matching without subsys
2107 * specification is allowed for already existing hierarchies but we
2108 * can't create new one without subsys specification.
817929ec 2109 */
172a2c06
TH
2110 if (!opts.subsys_mask && !opts.none) {
2111 ret = -EINVAL;
2112 goto out_unlock;
817929ec 2113 }
817929ec 2114
172a2c06
TH
2115 root = kzalloc(sizeof(*root), GFP_KERNEL);
2116 if (!root) {
2117 ret = -ENOMEM;
2bd59d48 2118 goto out_unlock;
839ec545 2119 }
e5f6a860 2120
172a2c06
TH
2121 init_cgroup_root(root, &opts);
2122
35585573 2123 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2124 if (ret)
2125 cgroup_free_root(root);
fa3ca07e 2126
8e30e2b8 2127out_unlock:
ddbcc7e8 2128 mutex_unlock(&cgroup_mutex);
a015edd2 2129out_free:
c6d57f33
PM
2130 kfree(opts.release_agent);
2131 kfree(opts.name);
03b1cde6 2132
2bd59d48 2133 if (ret)
8e30e2b8 2134 return ERR_PTR(ret);
67e9c74b 2135out_mount:
c9482a5b 2136 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2137 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2138 &new_sb);
c6b3d5bc 2139 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2140 cgroup_put(&root->cgrp);
3a32bd72
LZ
2141
2142 /*
2143 * If @pinned_sb, we're reusing an existing root and holding an
2144 * extra ref on its sb. Mount is complete. Put the extra ref.
2145 */
2146 if (pinned_sb) {
2147 WARN_ON(new_sb);
2148 deactivate_super(pinned_sb);
2149 }
2150
2bd59d48
TH
2151 return dentry;
2152}
2153
2154static void cgroup_kill_sb(struct super_block *sb)
2155{
2156 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2157 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2158
9d755d33
TH
2159 /*
2160 * If @root doesn't have any mounts or children, start killing it.
2161 * This prevents new mounts by disabling percpu_ref_tryget_live().
2162 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2163 *
2164 * And don't kill the default root.
9d755d33 2165 */
3c606d35 2166 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2167 root == &cgrp_dfl_root)
9d755d33
TH
2168 cgroup_put(&root->cgrp);
2169 else
2170 percpu_ref_kill(&root->cgrp.self.refcnt);
2171
2bd59d48 2172 kernfs_kill_sb(sb);
ddbcc7e8
PM
2173}
2174
2175static struct file_system_type cgroup_fs_type = {
2176 .name = "cgroup",
f7e83571 2177 .mount = cgroup_mount,
ddbcc7e8
PM
2178 .kill_sb = cgroup_kill_sb,
2179};
2180
67e9c74b
TH
2181static struct file_system_type cgroup2_fs_type = {
2182 .name = "cgroup2",
2183 .mount = cgroup_mount,
2184 .kill_sb = cgroup_kill_sb,
2185};
2186
857a2beb 2187/**
913ffdb5 2188 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2189 * @task: target task
857a2beb
TH
2190 * @buf: the buffer to write the path into
2191 * @buflen: the length of the buffer
2192 *
913ffdb5
TH
2193 * Determine @task's cgroup on the first (the one with the lowest non-zero
2194 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2195 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2196 * cgroup controller callbacks.
2197 *
e61734c5 2198 * Return value is the same as kernfs_path().
857a2beb 2199 */
e61734c5 2200char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2201{
3dd06ffa 2202 struct cgroup_root *root;
913ffdb5 2203 struct cgroup *cgrp;
e61734c5
TH
2204 int hierarchy_id = 1;
2205 char *path = NULL;
857a2beb
TH
2206
2207 mutex_lock(&cgroup_mutex);
f0d9a5f1 2208 spin_lock_bh(&css_set_lock);
857a2beb 2209
913ffdb5
TH
2210 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2211
857a2beb
TH
2212 if (root) {
2213 cgrp = task_cgroup_from_root(task, root);
e61734c5 2214 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2215 } else {
2216 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2217 if (strlcpy(buf, "/", buflen) < buflen)
2218 path = buf;
857a2beb
TH
2219 }
2220
f0d9a5f1 2221 spin_unlock_bh(&css_set_lock);
857a2beb 2222 mutex_unlock(&cgroup_mutex);
e61734c5 2223 return path;
857a2beb 2224}
913ffdb5 2225EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2226
b3dc094e 2227/* used to track tasks and other necessary states during migration */
2f7ee569 2228struct cgroup_taskset {
b3dc094e
TH
2229 /* the src and dst cset list running through cset->mg_node */
2230 struct list_head src_csets;
2231 struct list_head dst_csets;
2232
1f7dd3e5
TH
2233 /* the subsys currently being processed */
2234 int ssid;
2235
b3dc094e
TH
2236 /*
2237 * Fields for cgroup_taskset_*() iteration.
2238 *
2239 * Before migration is committed, the target migration tasks are on
2240 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2241 * the csets on ->dst_csets. ->csets point to either ->src_csets
2242 * or ->dst_csets depending on whether migration is committed.
2243 *
2244 * ->cur_csets and ->cur_task point to the current task position
2245 * during iteration.
2246 */
2247 struct list_head *csets;
2248 struct css_set *cur_cset;
2249 struct task_struct *cur_task;
2f7ee569
TH
2250};
2251
adaae5dc
TH
2252#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2253 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2254 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2255 .csets = &tset.src_csets, \
2256}
2257
2258/**
2259 * cgroup_taskset_add - try to add a migration target task to a taskset
2260 * @task: target task
2261 * @tset: target taskset
2262 *
2263 * Add @task, which is a migration target, to @tset. This function becomes
2264 * noop if @task doesn't need to be migrated. @task's css_set should have
2265 * been added as a migration source and @task->cg_list will be moved from
2266 * the css_set's tasks list to mg_tasks one.
2267 */
2268static void cgroup_taskset_add(struct task_struct *task,
2269 struct cgroup_taskset *tset)
2270{
2271 struct css_set *cset;
2272
f0d9a5f1 2273 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2274
2275 /* @task either already exited or can't exit until the end */
2276 if (task->flags & PF_EXITING)
2277 return;
2278
2279 /* leave @task alone if post_fork() hasn't linked it yet */
2280 if (list_empty(&task->cg_list))
2281 return;
2282
2283 cset = task_css_set(task);
2284 if (!cset->mg_src_cgrp)
2285 return;
2286
2287 list_move_tail(&task->cg_list, &cset->mg_tasks);
2288 if (list_empty(&cset->mg_node))
2289 list_add_tail(&cset->mg_node, &tset->src_csets);
2290 if (list_empty(&cset->mg_dst_cset->mg_node))
2291 list_move_tail(&cset->mg_dst_cset->mg_node,
2292 &tset->dst_csets);
2293}
2294
2f7ee569
TH
2295/**
2296 * cgroup_taskset_first - reset taskset and return the first task
2297 * @tset: taskset of interest
1f7dd3e5 2298 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2299 *
2300 * @tset iteration is initialized and the first task is returned.
2301 */
1f7dd3e5
TH
2302struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2303 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2304{
b3dc094e
TH
2305 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2306 tset->cur_task = NULL;
2307
1f7dd3e5 2308 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2309}
2f7ee569
TH
2310
2311/**
2312 * cgroup_taskset_next - iterate to the next task in taskset
2313 * @tset: taskset of interest
1f7dd3e5 2314 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2315 *
2316 * Return the next task in @tset. Iteration must have been initialized
2317 * with cgroup_taskset_first().
2318 */
1f7dd3e5
TH
2319struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2320 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2321{
b3dc094e
TH
2322 struct css_set *cset = tset->cur_cset;
2323 struct task_struct *task = tset->cur_task;
2f7ee569 2324
b3dc094e
TH
2325 while (&cset->mg_node != tset->csets) {
2326 if (!task)
2327 task = list_first_entry(&cset->mg_tasks,
2328 struct task_struct, cg_list);
2329 else
2330 task = list_next_entry(task, cg_list);
2f7ee569 2331
b3dc094e
TH
2332 if (&task->cg_list != &cset->mg_tasks) {
2333 tset->cur_cset = cset;
2334 tset->cur_task = task;
1f7dd3e5
TH
2335
2336 /*
2337 * This function may be called both before and
2338 * after cgroup_taskset_migrate(). The two cases
2339 * can be distinguished by looking at whether @cset
2340 * has its ->mg_dst_cset set.
2341 */
2342 if (cset->mg_dst_cset)
2343 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2344 else
2345 *dst_cssp = cset->subsys[tset->ssid];
2346
b3dc094e
TH
2347 return task;
2348 }
2f7ee569 2349
b3dc094e
TH
2350 cset = list_next_entry(cset, mg_node);
2351 task = NULL;
2352 }
2f7ee569 2353
b3dc094e 2354 return NULL;
2f7ee569 2355}
2f7ee569 2356
adaae5dc
TH
2357/**
2358 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2359 * @tset: taget taskset
2360 * @dst_cgrp: destination cgroup
2361 *
2362 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2363 * ->can_attach callbacks fails and guarantees that either all or none of
2364 * the tasks in @tset are migrated. @tset is consumed regardless of
2365 * success.
2366 */
2367static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2368 struct cgroup *dst_cgrp)
2369{
2370 struct cgroup_subsys_state *css, *failed_css = NULL;
2371 struct task_struct *task, *tmp_task;
2372 struct css_set *cset, *tmp_cset;
2373 int i, ret;
2374
2375 /* methods shouldn't be called if no task is actually migrating */
2376 if (list_empty(&tset->src_csets))
2377 return 0;
2378
2379 /* check that we can legitimately attach to the cgroup */
2380 for_each_e_css(css, i, dst_cgrp) {
2381 if (css->ss->can_attach) {
1f7dd3e5
TH
2382 tset->ssid = i;
2383 ret = css->ss->can_attach(tset);
adaae5dc
TH
2384 if (ret) {
2385 failed_css = css;
2386 goto out_cancel_attach;
2387 }
2388 }
2389 }
2390
2391 /*
2392 * Now that we're guaranteed success, proceed to move all tasks to
2393 * the new cgroup. There are no failure cases after here, so this
2394 * is the commit point.
2395 */
f0d9a5f1 2396 spin_lock_bh(&css_set_lock);
adaae5dc 2397 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2398 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2399 struct css_set *from_cset = task_css_set(task);
2400 struct css_set *to_cset = cset->mg_dst_cset;
2401
2402 get_css_set(to_cset);
2403 css_set_move_task(task, from_cset, to_cset, true);
2404 put_css_set_locked(from_cset);
2405 }
adaae5dc 2406 }
f0d9a5f1 2407 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2408
2409 /*
2410 * Migration is committed, all target tasks are now on dst_csets.
2411 * Nothing is sensitive to fork() after this point. Notify
2412 * controllers that migration is complete.
2413 */
2414 tset->csets = &tset->dst_csets;
2415
1f7dd3e5
TH
2416 for_each_e_css(css, i, dst_cgrp) {
2417 if (css->ss->attach) {
2418 tset->ssid = i;
2419 css->ss->attach(tset);
2420 }
2421 }
adaae5dc
TH
2422
2423 ret = 0;
2424 goto out_release_tset;
2425
2426out_cancel_attach:
2427 for_each_e_css(css, i, dst_cgrp) {
2428 if (css == failed_css)
2429 break;
1f7dd3e5
TH
2430 if (css->ss->cancel_attach) {
2431 tset->ssid = i;
2432 css->ss->cancel_attach(tset);
2433 }
adaae5dc
TH
2434 }
2435out_release_tset:
f0d9a5f1 2436 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2437 list_splice_init(&tset->dst_csets, &tset->src_csets);
2438 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2439 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2440 list_del_init(&cset->mg_node);
2441 }
f0d9a5f1 2442 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2443 return ret;
2444}
2445
a043e3b2 2446/**
1958d2d5
TH
2447 * cgroup_migrate_finish - cleanup after attach
2448 * @preloaded_csets: list of preloaded css_sets
74a1166d 2449 *
1958d2d5
TH
2450 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2451 * those functions for details.
74a1166d 2452 */
1958d2d5 2453static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2454{
1958d2d5 2455 struct css_set *cset, *tmp_cset;
74a1166d 2456
1958d2d5
TH
2457 lockdep_assert_held(&cgroup_mutex);
2458
f0d9a5f1 2459 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2460 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2461 cset->mg_src_cgrp = NULL;
2462 cset->mg_dst_cset = NULL;
2463 list_del_init(&cset->mg_preload_node);
a25eb52e 2464 put_css_set_locked(cset);
1958d2d5 2465 }
f0d9a5f1 2466 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2467}
2468
2469/**
2470 * cgroup_migrate_add_src - add a migration source css_set
2471 * @src_cset: the source css_set to add
2472 * @dst_cgrp: the destination cgroup
2473 * @preloaded_csets: list of preloaded css_sets
2474 *
2475 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2476 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2477 * up by cgroup_migrate_finish().
2478 *
1ed13287
TH
2479 * This function may be called without holding cgroup_threadgroup_rwsem
2480 * even if the target is a process. Threads may be created and destroyed
2481 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2482 * into play and the preloaded css_sets are guaranteed to cover all
2483 * migrations.
1958d2d5
TH
2484 */
2485static void cgroup_migrate_add_src(struct css_set *src_cset,
2486 struct cgroup *dst_cgrp,
2487 struct list_head *preloaded_csets)
2488{
2489 struct cgroup *src_cgrp;
2490
2491 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2492 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2493
2494 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2495
1958d2d5
TH
2496 if (!list_empty(&src_cset->mg_preload_node))
2497 return;
2498
2499 WARN_ON(src_cset->mg_src_cgrp);
2500 WARN_ON(!list_empty(&src_cset->mg_tasks));
2501 WARN_ON(!list_empty(&src_cset->mg_node));
2502
2503 src_cset->mg_src_cgrp = src_cgrp;
2504 get_css_set(src_cset);
2505 list_add(&src_cset->mg_preload_node, preloaded_csets);
2506}
2507
2508/**
2509 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2510 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2511 * @preloaded_csets: list of preloaded source css_sets
2512 *
2513 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2514 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2515 * pins all destination css_sets, links each to its source, and append them
2516 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2517 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2518 *
2519 * This function must be called after cgroup_migrate_add_src() has been
2520 * called on each migration source css_set. After migration is performed
2521 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2522 * @preloaded_csets.
2523 */
2524static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2525 struct list_head *preloaded_csets)
2526{
2527 LIST_HEAD(csets);
f817de98 2528 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2529
2530 lockdep_assert_held(&cgroup_mutex);
2531
f8f22e53 2532 /*
62716ea0 2533 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2534 * with tasks so that child cgroups don't compete against tasks.
2535 */
d51f39b0 2536 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
62716ea0 2537 dst_cgrp->subtree_control)
f8f22e53
TH
2538 return -EBUSY;
2539
1958d2d5 2540 /* look up the dst cset for each src cset and link it to src */
f817de98 2541 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2542 struct css_set *dst_cset;
2543
f817de98
TH
2544 dst_cset = find_css_set(src_cset,
2545 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2546 if (!dst_cset)
2547 goto err;
2548
2549 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2550
2551 /*
2552 * If src cset equals dst, it's noop. Drop the src.
2553 * cgroup_migrate() will skip the cset too. Note that we
2554 * can't handle src == dst as some nodes are used by both.
2555 */
2556 if (src_cset == dst_cset) {
2557 src_cset->mg_src_cgrp = NULL;
2558 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2559 put_css_set(src_cset);
2560 put_css_set(dst_cset);
f817de98
TH
2561 continue;
2562 }
2563
1958d2d5
TH
2564 src_cset->mg_dst_cset = dst_cset;
2565
2566 if (list_empty(&dst_cset->mg_preload_node))
2567 list_add(&dst_cset->mg_preload_node, &csets);
2568 else
a25eb52e 2569 put_css_set(dst_cset);
1958d2d5
TH
2570 }
2571
f817de98 2572 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2573 return 0;
2574err:
2575 cgroup_migrate_finish(&csets);
2576 return -ENOMEM;
2577}
2578
2579/**
2580 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2581 * @leader: the leader of the process or the task to migrate
2582 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2583 * @cgrp: the destination cgroup
1958d2d5
TH
2584 *
2585 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2586 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2587 * caller is also responsible for invoking cgroup_migrate_add_src() and
2588 * cgroup_migrate_prepare_dst() on the targets before invoking this
2589 * function and following up with cgroup_migrate_finish().
2590 *
2591 * As long as a controller's ->can_attach() doesn't fail, this function is
2592 * guaranteed to succeed. This means that, excluding ->can_attach()
2593 * failure, when migrating multiple targets, the success or failure can be
2594 * decided for all targets by invoking group_migrate_prepare_dst() before
2595 * actually starting migrating.
2596 */
9af2ec45
TH
2597static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2598 struct cgroup *cgrp)
74a1166d 2599{
adaae5dc
TH
2600 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2601 struct task_struct *task;
74a1166d 2602
fb5d2b4c
MSB
2603 /*
2604 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2605 * already PF_EXITING could be freed from underneath us unless we
2606 * take an rcu_read_lock.
2607 */
f0d9a5f1 2608 spin_lock_bh(&css_set_lock);
fb5d2b4c 2609 rcu_read_lock();
9db8de37 2610 task = leader;
74a1166d 2611 do {
adaae5dc 2612 cgroup_taskset_add(task, &tset);
081aa458
LZ
2613 if (!threadgroup)
2614 break;
9db8de37 2615 } while_each_thread(leader, task);
fb5d2b4c 2616 rcu_read_unlock();
f0d9a5f1 2617 spin_unlock_bh(&css_set_lock);
74a1166d 2618
adaae5dc 2619 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2620}
2621
1958d2d5
TH
2622/**
2623 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2624 * @dst_cgrp: the cgroup to attach to
2625 * @leader: the task or the leader of the threadgroup to be attached
2626 * @threadgroup: attach the whole threadgroup?
2627 *
1ed13287 2628 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2629 */
2630static int cgroup_attach_task(struct cgroup *dst_cgrp,
2631 struct task_struct *leader, bool threadgroup)
2632{
2633 LIST_HEAD(preloaded_csets);
2634 struct task_struct *task;
2635 int ret;
2636
2637 /* look up all src csets */
f0d9a5f1 2638 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2639 rcu_read_lock();
2640 task = leader;
2641 do {
2642 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2643 &preloaded_csets);
2644 if (!threadgroup)
2645 break;
2646 } while_each_thread(leader, task);
2647 rcu_read_unlock();
f0d9a5f1 2648 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2649
2650 /* prepare dst csets and commit */
2651 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2652 if (!ret)
9af2ec45 2653 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2654
2655 cgroup_migrate_finish(&preloaded_csets);
2656 return ret;
74a1166d
BB
2657}
2658
187fe840
TH
2659static int cgroup_procs_write_permission(struct task_struct *task,
2660 struct cgroup *dst_cgrp,
2661 struct kernfs_open_file *of)
dedf22e9
TH
2662{
2663 const struct cred *cred = current_cred();
2664 const struct cred *tcred = get_task_cred(task);
2665 int ret = 0;
2666
2667 /*
2668 * even if we're attaching all tasks in the thread group, we only
2669 * need to check permissions on one of them.
2670 */
2671 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2672 !uid_eq(cred->euid, tcred->uid) &&
2673 !uid_eq(cred->euid, tcred->suid))
2674 ret = -EACCES;
2675
187fe840
TH
2676 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2677 struct super_block *sb = of->file->f_path.dentry->d_sb;
2678 struct cgroup *cgrp;
2679 struct inode *inode;
2680
f0d9a5f1 2681 spin_lock_bh(&css_set_lock);
187fe840 2682 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2683 spin_unlock_bh(&css_set_lock);
187fe840
TH
2684
2685 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2686 cgrp = cgroup_parent(cgrp);
2687
2688 ret = -ENOMEM;
6f60eade 2689 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2690 if (inode) {
2691 ret = inode_permission(inode, MAY_WRITE);
2692 iput(inode);
2693 }
2694 }
2695
dedf22e9
TH
2696 put_cred(tcred);
2697 return ret;
2698}
2699
74a1166d
BB
2700/*
2701 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2702 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2703 * cgroup_mutex and threadgroup.
bbcb81d0 2704 */
acbef755
TH
2705static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2706 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2707{
bbcb81d0 2708 struct task_struct *tsk;
e76ecaee 2709 struct cgroup *cgrp;
acbef755 2710 pid_t pid;
bbcb81d0
PM
2711 int ret;
2712
acbef755
TH
2713 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2714 return -EINVAL;
2715
945ba199 2716 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2717 if (!cgrp)
74a1166d
BB
2718 return -ENODEV;
2719
3014dde7 2720 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2721 rcu_read_lock();
bbcb81d0 2722 if (pid) {
73507f33 2723 tsk = find_task_by_vpid(pid);
74a1166d 2724 if (!tsk) {
dd4b0a46 2725 ret = -ESRCH;
3014dde7 2726 goto out_unlock_rcu;
bbcb81d0 2727 }
dedf22e9 2728 } else {
b78949eb 2729 tsk = current;
dedf22e9 2730 }
cd3d0952
TH
2731
2732 if (threadgroup)
b78949eb 2733 tsk = tsk->group_leader;
c4c27fbd
MG
2734
2735 /*
14a40ffc 2736 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2737 * trapped in a cpuset, or RT worker may be born in a cgroup
2738 * with no rt_runtime allocated. Just say no.
2739 */
14a40ffc 2740 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2741 ret = -EINVAL;
3014dde7 2742 goto out_unlock_rcu;
c4c27fbd
MG
2743 }
2744
b78949eb
MSB
2745 get_task_struct(tsk);
2746 rcu_read_unlock();
2747
187fe840 2748 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2749 if (!ret)
2750 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2751
f9f9e7b7 2752 put_task_struct(tsk);
3014dde7
TH
2753 goto out_unlock_threadgroup;
2754
2755out_unlock_rcu:
2756 rcu_read_unlock();
2757out_unlock_threadgroup:
2758 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2759 cgroup_kn_unlock(of->kn);
e93ad19d 2760 cpuset_post_attach_flush();
acbef755 2761 return ret ?: nbytes;
bbcb81d0
PM
2762}
2763
7ae1bad9
TH
2764/**
2765 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2766 * @from: attach to all cgroups of a given task
2767 * @tsk: the task to be attached
2768 */
2769int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2770{
3dd06ffa 2771 struct cgroup_root *root;
7ae1bad9
TH
2772 int retval = 0;
2773
47cfcd09 2774 mutex_lock(&cgroup_mutex);
985ed670 2775 for_each_root(root) {
96d365e0
TH
2776 struct cgroup *from_cgrp;
2777
3dd06ffa 2778 if (root == &cgrp_dfl_root)
985ed670
TH
2779 continue;
2780
f0d9a5f1 2781 spin_lock_bh(&css_set_lock);
96d365e0 2782 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2783 spin_unlock_bh(&css_set_lock);
7ae1bad9 2784
6f4b7e63 2785 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2786 if (retval)
2787 break;
2788 }
47cfcd09 2789 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2790
2791 return retval;
2792}
2793EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2794
acbef755
TH
2795static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2796 char *buf, size_t nbytes, loff_t off)
74a1166d 2797{
acbef755 2798 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2799}
2800
acbef755
TH
2801static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2802 char *buf, size_t nbytes, loff_t off)
af351026 2803{
acbef755 2804 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2805}
2806
451af504
TH
2807static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2808 char *buf, size_t nbytes, loff_t off)
e788e066 2809{
e76ecaee 2810 struct cgroup *cgrp;
5f469907 2811
e76ecaee 2812 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2813
945ba199 2814 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2815 if (!cgrp)
e788e066 2816 return -ENODEV;
69e943b7 2817 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2818 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2819 sizeof(cgrp->root->release_agent_path));
69e943b7 2820 spin_unlock(&release_agent_path_lock);
e76ecaee 2821 cgroup_kn_unlock(of->kn);
451af504 2822 return nbytes;
e788e066
PM
2823}
2824
2da8ca82 2825static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2826{
2da8ca82 2827 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2828
46cfeb04 2829 spin_lock(&release_agent_path_lock);
e788e066 2830 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2831 spin_unlock(&release_agent_path_lock);
e788e066 2832 seq_putc(seq, '\n');
e788e066
PM
2833 return 0;
2834}
2835
2da8ca82 2836static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2837{
c1d5d42e 2838 seq_puts(seq, "0\n");
e788e066
PM
2839 return 0;
2840}
2841
6e5c8307 2842static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 2843{
f8f22e53
TH
2844 struct cgroup_subsys *ss;
2845 bool printed = false;
2846 int ssid;
a742c59d 2847
b4e0eeaf 2848 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
2849 if (printed)
2850 seq_putc(seq, ' ');
2851 seq_printf(seq, "%s", ss->name);
2852 printed = true;
b4e0eeaf 2853 } while_each_subsys_mask();
f8f22e53
TH
2854 if (printed)
2855 seq_putc(seq, '\n');
355e0c48
PM
2856}
2857
f8f22e53
TH
2858/* show controllers which are enabled from the parent */
2859static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2860{
f8f22e53
TH
2861 struct cgroup *cgrp = seq_css(seq)->cgroup;
2862
5531dc91 2863 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 2864 return 0;
ddbcc7e8
PM
2865}
2866
f8f22e53
TH
2867/* show controllers which are enabled for a given cgroup's children */
2868static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2869{
f8f22e53
TH
2870 struct cgroup *cgrp = seq_css(seq)->cgroup;
2871
667c2491 2872 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2873 return 0;
2874}
2875
2876/**
2877 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2878 * @cgrp: root of the subtree to update csses for
2879 *
54962604
TH
2880 * @cgrp's control masks have changed and its subtree's css associations
2881 * need to be updated accordingly. This function looks up all css_sets
2882 * which are attached to the subtree, creates the matching updated css_sets
2883 * and migrates the tasks to the new ones.
f8f22e53
TH
2884 */
2885static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2886{
2887 LIST_HEAD(preloaded_csets);
10265075 2888 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
2889 struct cgroup_subsys_state *d_css;
2890 struct cgroup *dsct;
f8f22e53
TH
2891 struct css_set *src_cset;
2892 int ret;
2893
f8f22e53
TH
2894 lockdep_assert_held(&cgroup_mutex);
2895
3014dde7
TH
2896 percpu_down_write(&cgroup_threadgroup_rwsem);
2897
f8f22e53 2898 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2899 spin_lock_bh(&css_set_lock);
54962604 2900 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
2901 struct cgrp_cset_link *link;
2902
54962604 2903 list_for_each_entry(link, &dsct->cset_links, cset_link)
f8f22e53
TH
2904 cgroup_migrate_add_src(link->cset, cgrp,
2905 &preloaded_csets);
2906 }
f0d9a5f1 2907 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2908
2909 /* NULL dst indicates self on default hierarchy */
2910 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2911 if (ret)
2912 goto out_finish;
2913
f0d9a5f1 2914 spin_lock_bh(&css_set_lock);
f8f22e53 2915 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2916 struct task_struct *task, *ntask;
f8f22e53
TH
2917
2918 /* src_csets precede dst_csets, break on the first dst_cset */
2919 if (!src_cset->mg_src_cgrp)
2920 break;
2921
10265075
TH
2922 /* all tasks in src_csets need to be migrated */
2923 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2924 cgroup_taskset_add(task, &tset);
f8f22e53 2925 }
f0d9a5f1 2926 spin_unlock_bh(&css_set_lock);
f8f22e53 2927
10265075 2928 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2929out_finish:
2930 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2931 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2932 return ret;
2933}
2934
1b9b96a1 2935/**
945ba199 2936 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 2937 * @cgrp: root of the target subtree
1b9b96a1
TH
2938 *
2939 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
2940 * controller while the previous css is still around. This function grabs
2941 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 2942 */
945ba199
TH
2943static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2944 __acquires(&cgroup_mutex)
1b9b96a1
TH
2945{
2946 struct cgroup *dsct;
ce3f1d9d 2947 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
2948 struct cgroup_subsys *ss;
2949 int ssid;
2950
945ba199
TH
2951restart:
2952 mutex_lock(&cgroup_mutex);
1b9b96a1 2953
ce3f1d9d 2954 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
2955 for_each_subsys(ss, ssid) {
2956 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2957 DEFINE_WAIT(wait);
2958
ce3f1d9d 2959 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
2960 continue;
2961
2962 cgroup_get(dsct);
2963 prepare_to_wait(&dsct->offline_waitq, &wait,
2964 TASK_UNINTERRUPTIBLE);
2965
2966 mutex_unlock(&cgroup_mutex);
2967 schedule();
2968 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
2969
2970 cgroup_put(dsct);
945ba199 2971 goto restart;
1b9b96a1
TH
2972 }
2973 }
1b9b96a1
TH
2974}
2975
15a27c36
TH
2976/**
2977 * cgroup_save_control - save control masks of a subtree
2978 * @cgrp: root of the target subtree
2979 *
2980 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2981 * prefixed fields for @cgrp's subtree including @cgrp itself.
2982 */
2983static void cgroup_save_control(struct cgroup *cgrp)
2984{
2985 struct cgroup *dsct;
2986 struct cgroup_subsys_state *d_css;
2987
2988 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2989 dsct->old_subtree_control = dsct->subtree_control;
2990 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2991 }
2992}
2993
2994/**
2995 * cgroup_propagate_control - refresh control masks of a subtree
2996 * @cgrp: root of the target subtree
2997 *
2998 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2999 * ->subtree_control and propagate controller availability through the
3000 * subtree so that descendants don't have unavailable controllers enabled.
3001 */
3002static void cgroup_propagate_control(struct cgroup *cgrp)
3003{
3004 struct cgroup *dsct;
3005 struct cgroup_subsys_state *d_css;
3006
3007 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3008 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3009 dsct->subtree_ss_mask =
3010 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3011 cgroup_ss_mask(dsct));
15a27c36
TH
3012 }
3013}
3014
3015/**
3016 * cgroup_restore_control - restore control masks of a subtree
3017 * @cgrp: root of the target subtree
3018 *
3019 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3020 * prefixed fields for @cgrp's subtree including @cgrp itself.
3021 */
3022static void cgroup_restore_control(struct cgroup *cgrp)
3023{
3024 struct cgroup *dsct;
3025 struct cgroup_subsys_state *d_css;
3026
3027 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3028 dsct->subtree_control = dsct->old_subtree_control;
3029 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3030 }
3031}
3032
bdb53bd7
TH
3033/**
3034 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3035 * @cgrp: root of the target subtree
bdb53bd7 3036 *
ce3f1d9d 3037 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3038 * visible. A css is created invisible if it's being implicitly enabled
3039 * through dependency. An invisible css is made visible when the userland
3040 * explicitly enables it.
3041 *
3042 * Returns 0 on success, -errno on failure. On failure, csses which have
3043 * been processed already aren't cleaned up. The caller is responsible for
3044 * cleaning up with cgroup_apply_control_disble().
3045 */
3046static int cgroup_apply_control_enable(struct cgroup *cgrp)
3047{
3048 struct cgroup *dsct;
ce3f1d9d 3049 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3050 struct cgroup_subsys *ss;
3051 int ssid, ret;
3052
ce3f1d9d 3053 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3054 for_each_subsys(ss, ssid) {
3055 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3056
945ba199
TH
3057 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3058
bdb53bd7
TH
3059 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3060 continue;
3061
3062 if (!css) {
3063 css = css_create(dsct, ss);
3064 if (IS_ERR(css))
3065 return PTR_ERR(css);
3066 }
3067
3068 if (cgroup_control(dsct) & (1 << ss->id)) {
334c3679 3069 ret = css_populate_dir(css);
bdb53bd7
TH
3070 if (ret)
3071 return ret;
3072 }
3073 }
3074 }
3075
3076 return 0;
3077}
3078
12b3bb6a
TH
3079/**
3080 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3081 * @cgrp: root of the target subtree
12b3bb6a 3082 *
ce3f1d9d 3083 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3084 * cgroup_ss_mask() and cgroup_visible_mask().
3085 *
3086 * A css is hidden when the userland requests it to be disabled while other
3087 * subsystems are still depending on it. The css must not actively control
3088 * resources and be in the vanilla state if it's made visible again later.
3089 * Controllers which may be depended upon should provide ->css_reset() for
3090 * this purpose.
3091 */
3092static void cgroup_apply_control_disable(struct cgroup *cgrp)
3093{
3094 struct cgroup *dsct;
ce3f1d9d 3095 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3096 struct cgroup_subsys *ss;
3097 int ssid;
3098
ce3f1d9d 3099 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3100 for_each_subsys(ss, ssid) {
3101 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3102
945ba199
TH
3103 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3104
12b3bb6a
TH
3105 if (!css)
3106 continue;
3107
334c3679
TH
3108 if (css->parent &&
3109 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a
TH
3110 kill_css(css);
3111 } else if (!(cgroup_control(dsct) & (1 << ss->id))) {
334c3679 3112 css_clear_dir(css);
12b3bb6a
TH
3113 if (ss->css_reset)
3114 ss->css_reset(css);
3115 }
3116 }
3117 }
3118}
3119
f7b2814b
TH
3120/**
3121 * cgroup_apply_control - apply control mask updates to the subtree
3122 * @cgrp: root of the target subtree
3123 *
3124 * subsystems can be enabled and disabled in a subtree using the following
3125 * steps.
3126 *
3127 * 1. Call cgroup_save_control() to stash the current state.
3128 * 2. Update ->subtree_control masks in the subtree as desired.
3129 * 3. Call cgroup_apply_control() to apply the changes.
3130 * 4. Optionally perform other related operations.
3131 * 5. Call cgroup_finalize_control() to finish up.
3132 *
3133 * This function implements step 3 and propagates the mask changes
3134 * throughout @cgrp's subtree, updates csses accordingly and perform
3135 * process migrations.
3136 */
3137static int cgroup_apply_control(struct cgroup *cgrp)
3138{
3139 int ret;
3140
3141 cgroup_propagate_control(cgrp);
3142
3143 ret = cgroup_apply_control_enable(cgrp);
3144 if (ret)
3145 return ret;
3146
3147 /*
3148 * At this point, cgroup_e_css() results reflect the new csses
3149 * making the following cgroup_update_dfl_csses() properly update
3150 * css associations of all tasks in the subtree.
3151 */
3152 ret = cgroup_update_dfl_csses(cgrp);
3153 if (ret)
3154 return ret;
3155
3156 return 0;
3157}
3158
3159/**
3160 * cgroup_finalize_control - finalize control mask update
3161 * @cgrp: root of the target subtree
3162 * @ret: the result of the update
3163 *
3164 * Finalize control mask update. See cgroup_apply_control() for more info.
3165 */
3166static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3167{
3168 if (ret) {
3169 cgroup_restore_control(cgrp);
3170 cgroup_propagate_control(cgrp);
3171 }
3172
3173 cgroup_apply_control_disable(cgrp);
3174}
3175
f8f22e53 3176/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3177static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3178 char *buf, size_t nbytes,
3179 loff_t off)
f8f22e53 3180{
6e5c8307 3181 u16 enable = 0, disable = 0;
a9746d8d 3182 struct cgroup *cgrp, *child;
f8f22e53 3183 struct cgroup_subsys *ss;
451af504 3184 char *tok;
f8f22e53
TH
3185 int ssid, ret;
3186
3187 /*
d37167ab
TH
3188 * Parse input - space separated list of subsystem names prefixed
3189 * with either + or -.
f8f22e53 3190 */
451af504
TH
3191 buf = strstrip(buf);
3192 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3193 if (tok[0] == '\0')
3194 continue;
a7165264 3195 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3196 if (!cgroup_ssid_enabled(ssid) ||
3197 strcmp(tok + 1, ss->name))
f8f22e53
TH
3198 continue;
3199
3200 if (*tok == '+') {
7d331fa9
TH
3201 enable |= 1 << ssid;
3202 disable &= ~(1 << ssid);
f8f22e53 3203 } else if (*tok == '-') {
7d331fa9
TH
3204 disable |= 1 << ssid;
3205 enable &= ~(1 << ssid);
f8f22e53
TH
3206 } else {
3207 return -EINVAL;
3208 }
3209 break;
b4e0eeaf 3210 } while_each_subsys_mask();
f8f22e53
TH
3211 if (ssid == CGROUP_SUBSYS_COUNT)
3212 return -EINVAL;
3213 }
3214
945ba199 3215 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3216 if (!cgrp)
3217 return -ENODEV;
f8f22e53
TH
3218
3219 for_each_subsys(ss, ssid) {
3220 if (enable & (1 << ssid)) {
667c2491 3221 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3222 enable &= ~(1 << ssid);
3223 continue;
3224 }
3225
5531dc91 3226 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3227 ret = -ENOENT;
3228 goto out_unlock;
3229 }
f8f22e53 3230 } else if (disable & (1 << ssid)) {
667c2491 3231 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3232 disable &= ~(1 << ssid);
3233 continue;
3234 }
3235
3236 /* a child has it enabled? */
3237 cgroup_for_each_live_child(child, cgrp) {
667c2491 3238 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3239 ret = -EBUSY;
ddab2b6e 3240 goto out_unlock;
f8f22e53
TH
3241 }
3242 }
3243 }
3244 }
3245
3246 if (!enable && !disable) {
3247 ret = 0;
ddab2b6e 3248 goto out_unlock;
f8f22e53
TH
3249 }
3250
3251 /*
667c2491 3252 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3253 * with tasks so that child cgroups don't compete against tasks.
3254 */
d51f39b0 3255 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3256 ret = -EBUSY;
3257 goto out_unlock;
3258 }
3259
15a27c36
TH
3260 /* save and update control masks and prepare csses */
3261 cgroup_save_control(cgrp);
f63070d3 3262
15a27c36
TH
3263 cgrp->subtree_control |= enable;
3264 cgrp->subtree_control &= ~disable;
c29adf24 3265
f7b2814b 3266 ret = cgroup_apply_control(cgrp);
f8f22e53 3267
f7b2814b 3268 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3269
3270 kernfs_activate(cgrp->kn);
3271 ret = 0;
3272out_unlock:
a9746d8d 3273 cgroup_kn_unlock(of->kn);
451af504 3274 return ret ?: nbytes;
f8f22e53
TH
3275}
3276
4a07c222 3277static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3278{
4a07c222 3279 seq_printf(seq, "populated %d\n",
27bd4dbb 3280 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3281 return 0;
3282}
3283
2bd59d48
TH
3284static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3285 size_t nbytes, loff_t off)
355e0c48 3286{
2bd59d48
TH
3287 struct cgroup *cgrp = of->kn->parent->priv;
3288 struct cftype *cft = of->kn->priv;
3289 struct cgroup_subsys_state *css;
a742c59d 3290 int ret;
355e0c48 3291
b4168640
TH
3292 if (cft->write)
3293 return cft->write(of, buf, nbytes, off);
3294
2bd59d48
TH
3295 /*
3296 * kernfs guarantees that a file isn't deleted with operations in
3297 * flight, which means that the matching css is and stays alive and
3298 * doesn't need to be pinned. The RCU locking is not necessary
3299 * either. It's just for the convenience of using cgroup_css().
3300 */
3301 rcu_read_lock();
3302 css = cgroup_css(cgrp, cft->ss);
3303 rcu_read_unlock();
a742c59d 3304
451af504 3305 if (cft->write_u64) {
a742c59d
TH
3306 unsigned long long v;
3307 ret = kstrtoull(buf, 0, &v);
3308 if (!ret)
3309 ret = cft->write_u64(css, cft, v);
3310 } else if (cft->write_s64) {
3311 long long v;
3312 ret = kstrtoll(buf, 0, &v);
3313 if (!ret)
3314 ret = cft->write_s64(css, cft, v);
e73d2c61 3315 } else {
a742c59d 3316 ret = -EINVAL;
e73d2c61 3317 }
2bd59d48 3318
a742c59d 3319 return ret ?: nbytes;
355e0c48
PM
3320}
3321
6612f05b 3322static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3323{
2bd59d48 3324 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3325}
3326
6612f05b 3327static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3328{
2bd59d48 3329 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3330}
3331
6612f05b 3332static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3333{
2bd59d48 3334 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3335}
3336
91796569 3337static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3338{
7da11279
TH
3339 struct cftype *cft = seq_cft(m);
3340 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3341
2da8ca82
TH
3342 if (cft->seq_show)
3343 return cft->seq_show(m, arg);
e73d2c61 3344
f4c753b7 3345 if (cft->read_u64)
896f5199
TH
3346 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3347 else if (cft->read_s64)
3348 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3349 else
3350 return -EINVAL;
3351 return 0;
91796569
PM
3352}
3353
2bd59d48
TH
3354static struct kernfs_ops cgroup_kf_single_ops = {
3355 .atomic_write_len = PAGE_SIZE,
3356 .write = cgroup_file_write,
3357 .seq_show = cgroup_seqfile_show,
91796569
PM
3358};
3359
2bd59d48
TH
3360static struct kernfs_ops cgroup_kf_ops = {
3361 .atomic_write_len = PAGE_SIZE,
3362 .write = cgroup_file_write,
3363 .seq_start = cgroup_seqfile_start,
3364 .seq_next = cgroup_seqfile_next,
3365 .seq_stop = cgroup_seqfile_stop,
3366 .seq_show = cgroup_seqfile_show,
3367};
ddbcc7e8
PM
3368
3369/*
3370 * cgroup_rename - Only allow simple rename of directories in place.
3371 */
2bd59d48
TH
3372static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3373 const char *new_name_str)
ddbcc7e8 3374{
2bd59d48 3375 struct cgroup *cgrp = kn->priv;
65dff759 3376 int ret;
65dff759 3377
2bd59d48 3378 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3379 return -ENOTDIR;
2bd59d48 3380 if (kn->parent != new_parent)
ddbcc7e8 3381 return -EIO;
65dff759 3382
6db8e85c
TH
3383 /*
3384 * This isn't a proper migration and its usefulness is very
aa6ec29b 3385 * limited. Disallow on the default hierarchy.
6db8e85c 3386 */
aa6ec29b 3387 if (cgroup_on_dfl(cgrp))
6db8e85c 3388 return -EPERM;
099fca32 3389
e1b2dc17 3390 /*
8353da1f 3391 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3392 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3393 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3394 */
3395 kernfs_break_active_protection(new_parent);
3396 kernfs_break_active_protection(kn);
099fca32 3397
2bd59d48 3398 mutex_lock(&cgroup_mutex);
099fca32 3399
2bd59d48 3400 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3401
2bd59d48 3402 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3403
3404 kernfs_unbreak_active_protection(kn);
3405 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3406 return ret;
099fca32
LZ
3407}
3408
49957f8e
TH
3409/* set uid and gid of cgroup dirs and files to that of the creator */
3410static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3411{
3412 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3413 .ia_uid = current_fsuid(),
3414 .ia_gid = current_fsgid(), };
3415
3416 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3417 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3418 return 0;
3419
3420 return kernfs_setattr(kn, &iattr);
3421}
3422
4df8dc90
TH
3423static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3424 struct cftype *cft)
ddbcc7e8 3425{
8d7e6fb0 3426 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3427 struct kernfs_node *kn;
3428 struct lock_class_key *key = NULL;
49957f8e 3429 int ret;
05ef1d7c 3430
2bd59d48
TH
3431#ifdef CONFIG_DEBUG_LOCK_ALLOC
3432 key = &cft->lockdep_key;
3433#endif
3434 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3435 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3436 NULL, key);
49957f8e
TH
3437 if (IS_ERR(kn))
3438 return PTR_ERR(kn);
3439
3440 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3441 if (ret) {
49957f8e 3442 kernfs_remove(kn);
f8f22e53
TH
3443 return ret;
3444 }
3445
6f60eade
TH
3446 if (cft->file_offset) {
3447 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3448
34c06254 3449 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3450 cfile->kn = kn;
34c06254 3451 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3452 }
3453
f8f22e53 3454 return 0;
ddbcc7e8
PM
3455}
3456
b1f28d31
TH
3457/**
3458 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3459 * @css: the target css
3460 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3461 * @cfts: array of cftypes to be added
3462 * @is_add: whether to add or remove
3463 *
3464 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3465 * For removals, this function never fails.
b1f28d31 3466 */
4df8dc90
TH
3467static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3468 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3469 bool is_add)
ddbcc7e8 3470{
6732ed85 3471 struct cftype *cft, *cft_end = NULL;
b598dde3 3472 int ret = 0;
b1f28d31 3473
01f6474c 3474 lockdep_assert_held(&cgroup_mutex);
db0416b6 3475
6732ed85
TH
3476restart:
3477 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3478 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3479 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3480 continue;
05ebb6e6 3481 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3482 continue;
d51f39b0 3483 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3484 continue;
d51f39b0 3485 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3486 continue;
3487
2739d3cc 3488 if (is_add) {
4df8dc90 3489 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3490 if (ret) {
ed3d261b
JP
3491 pr_warn("%s: failed to add %s, err=%d\n",
3492 __func__, cft->name, ret);
6732ed85
TH
3493 cft_end = cft;
3494 is_add = false;
3495 goto restart;
b1f28d31 3496 }
2739d3cc
LZ
3497 } else {
3498 cgroup_rm_file(cgrp, cft);
db0416b6 3499 }
ddbcc7e8 3500 }
b598dde3 3501 return ret;
ddbcc7e8
PM
3502}
3503
21a2d343 3504static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3505{
3506 LIST_HEAD(pending);
2bb566cb 3507 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3508 struct cgroup *root = &ss->root->cgrp;
492eb21b 3509 struct cgroup_subsys_state *css;
9ccece80 3510 int ret = 0;
8e3f6541 3511
01f6474c 3512 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3513
e8c82d20 3514 /* add/rm files for all cgroups created before */
ca8bdcaf 3515 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3516 struct cgroup *cgrp = css->cgroup;
3517
88cb04b9 3518 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3519 continue;
3520
4df8dc90 3521 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3522 if (ret)
3523 break;
8e3f6541 3524 }
21a2d343
TH
3525
3526 if (is_add && !ret)
3527 kernfs_activate(root->kn);
9ccece80 3528 return ret;
8e3f6541
TH
3529}
3530
2da440a2 3531static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3532{
2bb566cb 3533 struct cftype *cft;
8e3f6541 3534
2bd59d48
TH
3535 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3536 /* free copy for custom atomic_write_len, see init_cftypes() */
3537 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3538 kfree(cft->kf_ops);
3539 cft->kf_ops = NULL;
2da440a2 3540 cft->ss = NULL;
a8ddc821
TH
3541
3542 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3543 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3544 }
2da440a2
TH
3545}
3546
2bd59d48 3547static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3548{
3549 struct cftype *cft;
3550
2bd59d48
TH
3551 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3552 struct kernfs_ops *kf_ops;
3553
0adb0704
TH
3554 WARN_ON(cft->ss || cft->kf_ops);
3555
2bd59d48
TH
3556 if (cft->seq_start)
3557 kf_ops = &cgroup_kf_ops;
3558 else
3559 kf_ops = &cgroup_kf_single_ops;
3560
3561 /*
3562 * Ugh... if @cft wants a custom max_write_len, we need to
3563 * make a copy of kf_ops to set its atomic_write_len.
3564 */
3565 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3566 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3567 if (!kf_ops) {
3568 cgroup_exit_cftypes(cfts);
3569 return -ENOMEM;
3570 }
3571 kf_ops->atomic_write_len = cft->max_write_len;
3572 }
8e3f6541 3573
2bd59d48 3574 cft->kf_ops = kf_ops;
2bb566cb 3575 cft->ss = ss;
2bd59d48 3576 }
2bb566cb 3577
2bd59d48 3578 return 0;
2da440a2
TH
3579}
3580
21a2d343
TH
3581static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3582{
01f6474c 3583 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3584
3585 if (!cfts || !cfts[0].ss)
3586 return -ENOENT;
3587
3588 list_del(&cfts->node);
3589 cgroup_apply_cftypes(cfts, false);
3590 cgroup_exit_cftypes(cfts);
3591 return 0;
8e3f6541 3592}
8e3f6541 3593
79578621
TH
3594/**
3595 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3596 * @cfts: zero-length name terminated array of cftypes
3597 *
2bb566cb
TH
3598 * Unregister @cfts. Files described by @cfts are removed from all
3599 * existing cgroups and all future cgroups won't have them either. This
3600 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3601 *
3602 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3603 * registered.
79578621 3604 */
2bb566cb 3605int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3606{
21a2d343 3607 int ret;
79578621 3608
01f6474c 3609 mutex_lock(&cgroup_mutex);
21a2d343 3610 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3611 mutex_unlock(&cgroup_mutex);
21a2d343 3612 return ret;
80b13586
TH
3613}
3614
8e3f6541
TH
3615/**
3616 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3617 * @ss: target cgroup subsystem
3618 * @cfts: zero-length name terminated array of cftypes
3619 *
3620 * Register @cfts to @ss. Files described by @cfts are created for all
3621 * existing cgroups to which @ss is attached and all future cgroups will
3622 * have them too. This function can be called anytime whether @ss is
3623 * attached or not.
3624 *
3625 * Returns 0 on successful registration, -errno on failure. Note that this
3626 * function currently returns 0 as long as @cfts registration is successful
3627 * even if some file creation attempts on existing cgroups fail.
3628 */
2cf669a5 3629static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3630{
9ccece80 3631 int ret;
8e3f6541 3632
fc5ed1e9 3633 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3634 return 0;
3635
dc5736ed
LZ
3636 if (!cfts || cfts[0].name[0] == '\0')
3637 return 0;
2bb566cb 3638
2bd59d48
TH
3639 ret = cgroup_init_cftypes(ss, cfts);
3640 if (ret)
3641 return ret;
79578621 3642
01f6474c 3643 mutex_lock(&cgroup_mutex);
21a2d343 3644
0adb0704 3645 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3646 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3647 if (ret)
21a2d343 3648 cgroup_rm_cftypes_locked(cfts);
79578621 3649
01f6474c 3650 mutex_unlock(&cgroup_mutex);
9ccece80 3651 return ret;
79578621
TH
3652}
3653
a8ddc821
TH
3654/**
3655 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3656 * @ss: target cgroup subsystem
3657 * @cfts: zero-length name terminated array of cftypes
3658 *
3659 * Similar to cgroup_add_cftypes() but the added files are only used for
3660 * the default hierarchy.
3661 */
3662int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3663{
3664 struct cftype *cft;
3665
3666 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3667 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3668 return cgroup_add_cftypes(ss, cfts);
3669}
3670
3671/**
3672 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3673 * @ss: target cgroup subsystem
3674 * @cfts: zero-length name terminated array of cftypes
3675 *
3676 * Similar to cgroup_add_cftypes() but the added files are only used for
3677 * the legacy hierarchies.
3678 */
2cf669a5
TH
3679int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3680{
a8ddc821
TH
3681 struct cftype *cft;
3682
e4b7037c
TH
3683 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3684 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3685 return cgroup_add_cftypes(ss, cfts);
3686}
3687
34c06254
TH
3688/**
3689 * cgroup_file_notify - generate a file modified event for a cgroup_file
3690 * @cfile: target cgroup_file
3691 *
3692 * @cfile must have been obtained by setting cftype->file_offset.
3693 */
3694void cgroup_file_notify(struct cgroup_file *cfile)
3695{
3696 unsigned long flags;
3697
3698 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3699 if (cfile->kn)
3700 kernfs_notify(cfile->kn);
3701 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3702}
3703
a043e3b2
LZ
3704/**
3705 * cgroup_task_count - count the number of tasks in a cgroup.
3706 * @cgrp: the cgroup in question
3707 *
3708 * Return the number of tasks in the cgroup.
3709 */
07bc356e 3710static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3711{
3712 int count = 0;
69d0206c 3713 struct cgrp_cset_link *link;
817929ec 3714
f0d9a5f1 3715 spin_lock_bh(&css_set_lock);
69d0206c
TH
3716 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3717 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3718 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3719 return count;
3720}
3721
53fa5261 3722/**
492eb21b 3723 * css_next_child - find the next child of a given css
c2931b70
TH
3724 * @pos: the current position (%NULL to initiate traversal)
3725 * @parent: css whose children to walk
53fa5261 3726 *
c2931b70 3727 * This function returns the next child of @parent and should be called
87fb54f1 3728 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3729 * that @parent and @pos are accessible. The next sibling is guaranteed to
3730 * be returned regardless of their states.
3731 *
3732 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3733 * css which finished ->css_online() is guaranteed to be visible in the
3734 * future iterations and will stay visible until the last reference is put.
3735 * A css which hasn't finished ->css_online() or already finished
3736 * ->css_offline() may show up during traversal. It's each subsystem's
3737 * responsibility to synchronize against on/offlining.
53fa5261 3738 */
c2931b70
TH
3739struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3740 struct cgroup_subsys_state *parent)
53fa5261 3741{
c2931b70 3742 struct cgroup_subsys_state *next;
53fa5261 3743
8353da1f 3744 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3745
3746 /*
de3f0341
TH
3747 * @pos could already have been unlinked from the sibling list.
3748 * Once a cgroup is removed, its ->sibling.next is no longer
3749 * updated when its next sibling changes. CSS_RELEASED is set when
3750 * @pos is taken off list, at which time its next pointer is valid,
3751 * and, as releases are serialized, the one pointed to by the next
3752 * pointer is guaranteed to not have started release yet. This
3753 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3754 * critical section, the one pointed to by its next pointer is
3755 * guaranteed to not have finished its RCU grace period even if we
3756 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3757 *
de3f0341
TH
3758 * If @pos has CSS_RELEASED set, its next pointer can't be
3759 * dereferenced; however, as each css is given a monotonically
3760 * increasing unique serial number and always appended to the
3761 * sibling list, the next one can be found by walking the parent's
3762 * children until the first css with higher serial number than
3763 * @pos's. While this path can be slower, it happens iff iteration
3764 * races against release and the race window is very small.
53fa5261 3765 */
3b287a50 3766 if (!pos) {
c2931b70
TH
3767 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3768 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3769 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3770 } else {
c2931b70 3771 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3772 if (next->serial_nr > pos->serial_nr)
3773 break;
53fa5261
TH
3774 }
3775
3b281afb
TH
3776 /*
3777 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3778 * the next sibling.
3b281afb 3779 */
c2931b70
TH
3780 if (&next->sibling != &parent->children)
3781 return next;
3b281afb 3782 return NULL;
53fa5261 3783}
53fa5261 3784
574bd9f7 3785/**
492eb21b 3786 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3787 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3788 * @root: css whose descendants to walk
574bd9f7 3789 *
492eb21b 3790 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3791 * to visit for pre-order traversal of @root's descendants. @root is
3792 * included in the iteration and the first node to be visited.
75501a6d 3793 *
87fb54f1
TH
3794 * While this function requires cgroup_mutex or RCU read locking, it
3795 * doesn't require the whole traversal to be contained in a single critical
3796 * section. This function will return the correct next descendant as long
3797 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3798 *
3799 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3800 * css which finished ->css_online() is guaranteed to be visible in the
3801 * future iterations and will stay visible until the last reference is put.
3802 * A css which hasn't finished ->css_online() or already finished
3803 * ->css_offline() may show up during traversal. It's each subsystem's
3804 * responsibility to synchronize against on/offlining.
574bd9f7 3805 */
492eb21b
TH
3806struct cgroup_subsys_state *
3807css_next_descendant_pre(struct cgroup_subsys_state *pos,
3808 struct cgroup_subsys_state *root)
574bd9f7 3809{
492eb21b 3810 struct cgroup_subsys_state *next;
574bd9f7 3811
8353da1f 3812 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3813
bd8815a6 3814 /* if first iteration, visit @root */
7805d000 3815 if (!pos)
bd8815a6 3816 return root;
574bd9f7
TH
3817
3818 /* visit the first child if exists */
492eb21b 3819 next = css_next_child(NULL, pos);
574bd9f7
TH
3820 if (next)
3821 return next;
3822
3823 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3824 while (pos != root) {
5c9d535b 3825 next = css_next_child(pos, pos->parent);
75501a6d 3826 if (next)
574bd9f7 3827 return next;
5c9d535b 3828 pos = pos->parent;
7805d000 3829 }
574bd9f7
TH
3830
3831 return NULL;
3832}
574bd9f7 3833
12a9d2fe 3834/**
492eb21b
TH
3835 * css_rightmost_descendant - return the rightmost descendant of a css
3836 * @pos: css of interest
12a9d2fe 3837 *
492eb21b
TH
3838 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3839 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3840 * subtree of @pos.
75501a6d 3841 *
87fb54f1
TH
3842 * While this function requires cgroup_mutex or RCU read locking, it
3843 * doesn't require the whole traversal to be contained in a single critical
3844 * section. This function will return the correct rightmost descendant as
3845 * long as @pos is accessible.
12a9d2fe 3846 */
492eb21b
TH
3847struct cgroup_subsys_state *
3848css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3849{
492eb21b 3850 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3851
8353da1f 3852 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3853
3854 do {
3855 last = pos;
3856 /* ->prev isn't RCU safe, walk ->next till the end */
3857 pos = NULL;
492eb21b 3858 css_for_each_child(tmp, last)
12a9d2fe
TH
3859 pos = tmp;
3860 } while (pos);
3861
3862 return last;
3863}
12a9d2fe 3864
492eb21b
TH
3865static struct cgroup_subsys_state *
3866css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3867{
492eb21b 3868 struct cgroup_subsys_state *last;
574bd9f7
TH
3869
3870 do {
3871 last = pos;
492eb21b 3872 pos = css_next_child(NULL, pos);
574bd9f7
TH
3873 } while (pos);
3874
3875 return last;
3876}
3877
3878/**
492eb21b 3879 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3880 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3881 * @root: css whose descendants to walk
574bd9f7 3882 *
492eb21b 3883 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3884 * to visit for post-order traversal of @root's descendants. @root is
3885 * included in the iteration and the last node to be visited.
75501a6d 3886 *
87fb54f1
TH
3887 * While this function requires cgroup_mutex or RCU read locking, it
3888 * doesn't require the whole traversal to be contained in a single critical
3889 * section. This function will return the correct next descendant as long
3890 * as both @pos and @cgroup are accessible and @pos is a descendant of
3891 * @cgroup.
c2931b70
TH
3892 *
3893 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3894 * css which finished ->css_online() is guaranteed to be visible in the
3895 * future iterations and will stay visible until the last reference is put.
3896 * A css which hasn't finished ->css_online() or already finished
3897 * ->css_offline() may show up during traversal. It's each subsystem's
3898 * responsibility to synchronize against on/offlining.
574bd9f7 3899 */
492eb21b
TH
3900struct cgroup_subsys_state *
3901css_next_descendant_post(struct cgroup_subsys_state *pos,
3902 struct cgroup_subsys_state *root)
574bd9f7 3903{
492eb21b 3904 struct cgroup_subsys_state *next;
574bd9f7 3905
8353da1f 3906 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3907
58b79a91
TH
3908 /* if first iteration, visit leftmost descendant which may be @root */
3909 if (!pos)
3910 return css_leftmost_descendant(root);
574bd9f7 3911
bd8815a6
TH
3912 /* if we visited @root, we're done */
3913 if (pos == root)
3914 return NULL;
3915
574bd9f7 3916 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3917 next = css_next_child(pos, pos->parent);
75501a6d 3918 if (next)
492eb21b 3919 return css_leftmost_descendant(next);
574bd9f7
TH
3920
3921 /* no sibling left, visit parent */
5c9d535b 3922 return pos->parent;
574bd9f7 3923}
574bd9f7 3924
f3d46500
TH
3925/**
3926 * css_has_online_children - does a css have online children
3927 * @css: the target css
3928 *
3929 * Returns %true if @css has any online children; otherwise, %false. This
3930 * function can be called from any context but the caller is responsible
3931 * for synchronizing against on/offlining as necessary.
3932 */
3933bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3934{
f3d46500
TH
3935 struct cgroup_subsys_state *child;
3936 bool ret = false;
cbc125ef
TH
3937
3938 rcu_read_lock();
f3d46500 3939 css_for_each_child(child, css) {
99bae5f9 3940 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3941 ret = true;
3942 break;
cbc125ef
TH
3943 }
3944 }
3945 rcu_read_unlock();
f3d46500 3946 return ret;
574bd9f7 3947}
574bd9f7 3948
0942eeee 3949/**
ecb9d535 3950 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3951 * @it: the iterator to advance
3952 *
3953 * Advance @it to the next css_set to walk.
d515876e 3954 */
ecb9d535 3955static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3956{
0f0a2b4f 3957 struct list_head *l = it->cset_pos;
d515876e
TH
3958 struct cgrp_cset_link *link;
3959 struct css_set *cset;
3960
f0d9a5f1 3961 lockdep_assert_held(&css_set_lock);
ed27b9f7 3962
d515876e
TH
3963 /* Advance to the next non-empty css_set */
3964 do {
3965 l = l->next;
0f0a2b4f
TH
3966 if (l == it->cset_head) {
3967 it->cset_pos = NULL;
ecb9d535 3968 it->task_pos = NULL;
d515876e
TH
3969 return;
3970 }
3ebb2b6e
TH
3971
3972 if (it->ss) {
3973 cset = container_of(l, struct css_set,
3974 e_cset_node[it->ss->id]);
3975 } else {
3976 link = list_entry(l, struct cgrp_cset_link, cset_link);
3977 cset = link->cset;
3978 }
0de0942d 3979 } while (!css_set_populated(cset));
c7561128 3980
0f0a2b4f 3981 it->cset_pos = l;
c7561128
TH
3982
3983 if (!list_empty(&cset->tasks))
0f0a2b4f 3984 it->task_pos = cset->tasks.next;
c7561128 3985 else
0f0a2b4f
TH
3986 it->task_pos = cset->mg_tasks.next;
3987
3988 it->tasks_head = &cset->tasks;
3989 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3990
3991 /*
3992 * We don't keep css_sets locked across iteration steps and thus
3993 * need to take steps to ensure that iteration can be resumed after
3994 * the lock is re-acquired. Iteration is performed at two levels -
3995 * css_sets and tasks in them.
3996 *
3997 * Once created, a css_set never leaves its cgroup lists, so a
3998 * pinned css_set is guaranteed to stay put and we can resume
3999 * iteration afterwards.
4000 *
4001 * Tasks may leave @cset across iteration steps. This is resolved
4002 * by registering each iterator with the css_set currently being
4003 * walked and making css_set_move_task() advance iterators whose
4004 * next task is leaving.
4005 */
4006 if (it->cur_cset) {
4007 list_del(&it->iters_node);
4008 put_css_set_locked(it->cur_cset);
4009 }
4010 get_css_set(cset);
4011 it->cur_cset = cset;
4012 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4013}
4014
ecb9d535
TH
4015static void css_task_iter_advance(struct css_task_iter *it)
4016{
4017 struct list_head *l = it->task_pos;
4018
f0d9a5f1 4019 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4020 WARN_ON_ONCE(!l);
4021
4022 /*
4023 * Advance iterator to find next entry. cset->tasks is consumed
4024 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4025 * next cset.
4026 */
4027 l = l->next;
4028
4029 if (l == it->tasks_head)
4030 l = it->mg_tasks_head->next;
4031
4032 if (l == it->mg_tasks_head)
4033 css_task_iter_advance_css_set(it);
4034 else
4035 it->task_pos = l;
4036}
4037
0942eeee 4038/**
72ec7029
TH
4039 * css_task_iter_start - initiate task iteration
4040 * @css: the css to walk tasks of
0942eeee
TH
4041 * @it: the task iterator to use
4042 *
72ec7029
TH
4043 * Initiate iteration through the tasks of @css. The caller can call
4044 * css_task_iter_next() to walk through the tasks until the function
4045 * returns NULL. On completion of iteration, css_task_iter_end() must be
4046 * called.
0942eeee 4047 */
72ec7029
TH
4048void css_task_iter_start(struct cgroup_subsys_state *css,
4049 struct css_task_iter *it)
817929ec 4050{
56fde9e0
TH
4051 /* no one should try to iterate before mounting cgroups */
4052 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4053
ed27b9f7
TH
4054 memset(it, 0, sizeof(*it));
4055
f0d9a5f1 4056 spin_lock_bh(&css_set_lock);
c59cd3d8 4057
3ebb2b6e
TH
4058 it->ss = css->ss;
4059
4060 if (it->ss)
4061 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4062 else
4063 it->cset_pos = &css->cgroup->cset_links;
4064
0f0a2b4f 4065 it->cset_head = it->cset_pos;
c59cd3d8 4066
ecb9d535 4067 css_task_iter_advance_css_set(it);
ed27b9f7 4068
f0d9a5f1 4069 spin_unlock_bh(&css_set_lock);
817929ec
PM
4070}
4071
0942eeee 4072/**
72ec7029 4073 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4074 * @it: the task iterator being iterated
4075 *
4076 * The "next" function for task iteration. @it should have been
72ec7029
TH
4077 * initialized via css_task_iter_start(). Returns NULL when the iteration
4078 * reaches the end.
0942eeee 4079 */
72ec7029 4080struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4081{
d5745675 4082 if (it->cur_task) {
ed27b9f7 4083 put_task_struct(it->cur_task);
d5745675
TH
4084 it->cur_task = NULL;
4085 }
ed27b9f7 4086
f0d9a5f1 4087 spin_lock_bh(&css_set_lock);
ed27b9f7 4088
d5745675
TH
4089 if (it->task_pos) {
4090 it->cur_task = list_entry(it->task_pos, struct task_struct,
4091 cg_list);
4092 get_task_struct(it->cur_task);
4093 css_task_iter_advance(it);
4094 }
ed27b9f7 4095
f0d9a5f1 4096 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4097
4098 return it->cur_task;
817929ec
PM
4099}
4100
0942eeee 4101/**
72ec7029 4102 * css_task_iter_end - finish task iteration
0942eeee
TH
4103 * @it: the task iterator to finish
4104 *
72ec7029 4105 * Finish task iteration started by css_task_iter_start().
0942eeee 4106 */
72ec7029 4107void css_task_iter_end(struct css_task_iter *it)
31a7df01 4108{
ed27b9f7 4109 if (it->cur_cset) {
f0d9a5f1 4110 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4111 list_del(&it->iters_node);
4112 put_css_set_locked(it->cur_cset);
f0d9a5f1 4113 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4114 }
4115
4116 if (it->cur_task)
4117 put_task_struct(it->cur_task);
31a7df01
CW
4118}
4119
4120/**
8cc99345
TH
4121 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4122 * @to: cgroup to which the tasks will be moved
4123 * @from: cgroup in which the tasks currently reside
31a7df01 4124 *
eaf797ab
TH
4125 * Locking rules between cgroup_post_fork() and the migration path
4126 * guarantee that, if a task is forking while being migrated, the new child
4127 * is guaranteed to be either visible in the source cgroup after the
4128 * parent's migration is complete or put into the target cgroup. No task
4129 * can slip out of migration through forking.
31a7df01 4130 */
8cc99345 4131int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4132{
952aaa12
TH
4133 LIST_HEAD(preloaded_csets);
4134 struct cgrp_cset_link *link;
72ec7029 4135 struct css_task_iter it;
e406d1cf 4136 struct task_struct *task;
952aaa12 4137 int ret;
31a7df01 4138
952aaa12 4139 mutex_lock(&cgroup_mutex);
31a7df01 4140
952aaa12 4141 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4142 spin_lock_bh(&css_set_lock);
952aaa12
TH
4143 list_for_each_entry(link, &from->cset_links, cset_link)
4144 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4145 spin_unlock_bh(&css_set_lock);
31a7df01 4146
952aaa12
TH
4147 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4148 if (ret)
4149 goto out_err;
8cc99345 4150
952aaa12 4151 /*
2cfa2b19 4152 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4153 * ->can_attach() fails.
4154 */
e406d1cf 4155 do {
9d800df1 4156 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4157 task = css_task_iter_next(&it);
4158 if (task)
4159 get_task_struct(task);
4160 css_task_iter_end(&it);
4161
4162 if (task) {
9af2ec45 4163 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4164 put_task_struct(task);
4165 }
4166 } while (task && !ret);
952aaa12
TH
4167out_err:
4168 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4169 mutex_unlock(&cgroup_mutex);
e406d1cf 4170 return ret;
8cc99345
TH
4171}
4172
bbcb81d0 4173/*
102a775e 4174 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4175 *
4176 * Reading this file can return large amounts of data if a cgroup has
4177 * *lots* of attached tasks. So it may need several calls to read(),
4178 * but we cannot guarantee that the information we produce is correct
4179 * unless we produce it entirely atomically.
4180 *
bbcb81d0 4181 */
bbcb81d0 4182
24528255
LZ
4183/* which pidlist file are we talking about? */
4184enum cgroup_filetype {
4185 CGROUP_FILE_PROCS,
4186 CGROUP_FILE_TASKS,
4187};
4188
4189/*
4190 * A pidlist is a list of pids that virtually represents the contents of one
4191 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4192 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4193 * to the cgroup.
4194 */
4195struct cgroup_pidlist {
4196 /*
4197 * used to find which pidlist is wanted. doesn't change as long as
4198 * this particular list stays in the list.
4199 */
4200 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4201 /* array of xids */
4202 pid_t *list;
4203 /* how many elements the above list has */
4204 int length;
24528255
LZ
4205 /* each of these stored in a list by its cgroup */
4206 struct list_head links;
4207 /* pointer to the cgroup we belong to, for list removal purposes */
4208 struct cgroup *owner;
b1a21367
TH
4209 /* for delayed destruction */
4210 struct delayed_work destroy_dwork;
24528255
LZ
4211};
4212
d1d9fd33
BB
4213/*
4214 * The following two functions "fix" the issue where there are more pids
4215 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4216 * TODO: replace with a kernel-wide solution to this problem
4217 */
4218#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4219static void *pidlist_allocate(int count)
4220{
4221 if (PIDLIST_TOO_LARGE(count))
4222 return vmalloc(count * sizeof(pid_t));
4223 else
4224 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4225}
b1a21367 4226
d1d9fd33
BB
4227static void pidlist_free(void *p)
4228{
58794514 4229 kvfree(p);
d1d9fd33 4230}
d1d9fd33 4231
b1a21367
TH
4232/*
4233 * Used to destroy all pidlists lingering waiting for destroy timer. None
4234 * should be left afterwards.
4235 */
4236static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4237{
4238 struct cgroup_pidlist *l, *tmp_l;
4239
4240 mutex_lock(&cgrp->pidlist_mutex);
4241 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4242 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4243 mutex_unlock(&cgrp->pidlist_mutex);
4244
4245 flush_workqueue(cgroup_pidlist_destroy_wq);
4246 BUG_ON(!list_empty(&cgrp->pidlists));
4247}
4248
4249static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4250{
4251 struct delayed_work *dwork = to_delayed_work(work);
4252 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4253 destroy_dwork);
4254 struct cgroup_pidlist *tofree = NULL;
4255
4256 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4257
4258 /*
04502365
TH
4259 * Destroy iff we didn't get queued again. The state won't change
4260 * as destroy_dwork can only be queued while locked.
b1a21367 4261 */
04502365 4262 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4263 list_del(&l->links);
4264 pidlist_free(l->list);
4265 put_pid_ns(l->key.ns);
4266 tofree = l;
4267 }
4268
b1a21367
TH
4269 mutex_unlock(&l->owner->pidlist_mutex);
4270 kfree(tofree);
4271}
4272
bbcb81d0 4273/*
102a775e 4274 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4275 * Returns the number of unique elements.
bbcb81d0 4276 */
6ee211ad 4277static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4278{
102a775e 4279 int src, dest = 1;
102a775e
BB
4280
4281 /*
4282 * we presume the 0th element is unique, so i starts at 1. trivial
4283 * edge cases first; no work needs to be done for either
4284 */
4285 if (length == 0 || length == 1)
4286 return length;
4287 /* src and dest walk down the list; dest counts unique elements */
4288 for (src = 1; src < length; src++) {
4289 /* find next unique element */
4290 while (list[src] == list[src-1]) {
4291 src++;
4292 if (src == length)
4293 goto after;
4294 }
4295 /* dest always points to where the next unique element goes */
4296 list[dest] = list[src];
4297 dest++;
4298 }
4299after:
102a775e
BB
4300 return dest;
4301}
4302
afb2bc14
TH
4303/*
4304 * The two pid files - task and cgroup.procs - guaranteed that the result
4305 * is sorted, which forced this whole pidlist fiasco. As pid order is
4306 * different per namespace, each namespace needs differently sorted list,
4307 * making it impossible to use, for example, single rbtree of member tasks
4308 * sorted by task pointer. As pidlists can be fairly large, allocating one
4309 * per open file is dangerous, so cgroup had to implement shared pool of
4310 * pidlists keyed by cgroup and namespace.
4311 *
4312 * All this extra complexity was caused by the original implementation
4313 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4314 * want to do away with it. Explicitly scramble sort order if on the
4315 * default hierarchy so that no such expectation exists in the new
4316 * interface.
afb2bc14
TH
4317 *
4318 * Scrambling is done by swapping every two consecutive bits, which is
4319 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4320 */
4321static pid_t pid_fry(pid_t pid)
4322{
4323 unsigned a = pid & 0x55555555;
4324 unsigned b = pid & 0xAAAAAAAA;
4325
4326 return (a << 1) | (b >> 1);
4327}
4328
4329static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4330{
aa6ec29b 4331 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4332 return pid_fry(pid);
4333 else
4334 return pid;
4335}
4336
102a775e
BB
4337static int cmppid(const void *a, const void *b)
4338{
4339 return *(pid_t *)a - *(pid_t *)b;
4340}
4341
afb2bc14
TH
4342static int fried_cmppid(const void *a, const void *b)
4343{
4344 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4345}
4346
e6b81710
TH
4347static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4348 enum cgroup_filetype type)
4349{
4350 struct cgroup_pidlist *l;
4351 /* don't need task_nsproxy() if we're looking at ourself */
4352 struct pid_namespace *ns = task_active_pid_ns(current);
4353
4354 lockdep_assert_held(&cgrp->pidlist_mutex);
4355
4356 list_for_each_entry(l, &cgrp->pidlists, links)
4357 if (l->key.type == type && l->key.ns == ns)
4358 return l;
4359 return NULL;
4360}
4361
72a8cb30
BB
4362/*
4363 * find the appropriate pidlist for our purpose (given procs vs tasks)
4364 * returns with the lock on that pidlist already held, and takes care
4365 * of the use count, or returns NULL with no locks held if we're out of
4366 * memory.
4367 */
e6b81710
TH
4368static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4369 enum cgroup_filetype type)
72a8cb30
BB
4370{
4371 struct cgroup_pidlist *l;
b70cc5fd 4372
e6b81710
TH
4373 lockdep_assert_held(&cgrp->pidlist_mutex);
4374
4375 l = cgroup_pidlist_find(cgrp, type);
4376 if (l)
4377 return l;
4378
72a8cb30 4379 /* entry not found; create a new one */
f4f4be2b 4380 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4381 if (!l)
72a8cb30 4382 return l;
e6b81710 4383
b1a21367 4384 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4385 l->key.type = type;
e6b81710
TH
4386 /* don't need task_nsproxy() if we're looking at ourself */
4387 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4388 l->owner = cgrp;
4389 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4390 return l;
4391}
4392
102a775e
BB
4393/*
4394 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4395 */
72a8cb30
BB
4396static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4397 struct cgroup_pidlist **lp)
102a775e
BB
4398{
4399 pid_t *array;
4400 int length;
4401 int pid, n = 0; /* used for populating the array */
72ec7029 4402 struct css_task_iter it;
817929ec 4403 struct task_struct *tsk;
102a775e
BB
4404 struct cgroup_pidlist *l;
4405
4bac00d1
TH
4406 lockdep_assert_held(&cgrp->pidlist_mutex);
4407
102a775e
BB
4408 /*
4409 * If cgroup gets more users after we read count, we won't have
4410 * enough space - tough. This race is indistinguishable to the
4411 * caller from the case that the additional cgroup users didn't
4412 * show up until sometime later on.
4413 */
4414 length = cgroup_task_count(cgrp);
d1d9fd33 4415 array = pidlist_allocate(length);
102a775e
BB
4416 if (!array)
4417 return -ENOMEM;
4418 /* now, populate the array */
9d800df1 4419 css_task_iter_start(&cgrp->self, &it);
72ec7029 4420 while ((tsk = css_task_iter_next(&it))) {
102a775e 4421 if (unlikely(n == length))
817929ec 4422 break;
102a775e 4423 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4424 if (type == CGROUP_FILE_PROCS)
4425 pid = task_tgid_vnr(tsk);
4426 else
4427 pid = task_pid_vnr(tsk);
102a775e
BB
4428 if (pid > 0) /* make sure to only use valid results */
4429 array[n++] = pid;
817929ec 4430 }
72ec7029 4431 css_task_iter_end(&it);
102a775e
BB
4432 length = n;
4433 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4434 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4435 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4436 else
4437 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4438 if (type == CGROUP_FILE_PROCS)
6ee211ad 4439 length = pidlist_uniq(array, length);
e6b81710 4440
e6b81710 4441 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4442 if (!l) {
d1d9fd33 4443 pidlist_free(array);
72a8cb30 4444 return -ENOMEM;
102a775e 4445 }
e6b81710
TH
4446
4447 /* store array, freeing old if necessary */
d1d9fd33 4448 pidlist_free(l->list);
102a775e
BB
4449 l->list = array;
4450 l->length = length;
72a8cb30 4451 *lp = l;
102a775e 4452 return 0;
bbcb81d0
PM
4453}
4454
846c7bb0 4455/**
a043e3b2 4456 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4457 * @stats: cgroupstats to fill information into
4458 * @dentry: A dentry entry belonging to the cgroup for which stats have
4459 * been requested.
a043e3b2
LZ
4460 *
4461 * Build and fill cgroupstats so that taskstats can export it to user
4462 * space.
846c7bb0
BS
4463 */
4464int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4465{
2bd59d48 4466 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4467 struct cgroup *cgrp;
72ec7029 4468 struct css_task_iter it;
846c7bb0 4469 struct task_struct *tsk;
33d283be 4470
2bd59d48
TH
4471 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4472 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4473 kernfs_type(kn) != KERNFS_DIR)
4474 return -EINVAL;
4475
bad34660
LZ
4476 mutex_lock(&cgroup_mutex);
4477
846c7bb0 4478 /*
2bd59d48 4479 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4480 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4481 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4482 */
2bd59d48
TH
4483 rcu_read_lock();
4484 cgrp = rcu_dereference(kn->priv);
bad34660 4485 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4486 rcu_read_unlock();
bad34660 4487 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4488 return -ENOENT;
4489 }
bad34660 4490 rcu_read_unlock();
846c7bb0 4491
9d800df1 4492 css_task_iter_start(&cgrp->self, &it);
72ec7029 4493 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4494 switch (tsk->state) {
4495 case TASK_RUNNING:
4496 stats->nr_running++;
4497 break;
4498 case TASK_INTERRUPTIBLE:
4499 stats->nr_sleeping++;
4500 break;
4501 case TASK_UNINTERRUPTIBLE:
4502 stats->nr_uninterruptible++;
4503 break;
4504 case TASK_STOPPED:
4505 stats->nr_stopped++;
4506 break;
4507 default:
4508 if (delayacct_is_task_waiting_on_io(tsk))
4509 stats->nr_io_wait++;
4510 break;
4511 }
4512 }
72ec7029 4513 css_task_iter_end(&it);
846c7bb0 4514
bad34660 4515 mutex_unlock(&cgroup_mutex);
2bd59d48 4516 return 0;
846c7bb0
BS
4517}
4518
8f3ff208 4519
bbcb81d0 4520/*
102a775e 4521 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4522 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4523 * in the cgroup->l->list array.
bbcb81d0 4524 */
cc31edce 4525
102a775e 4526static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4527{
cc31edce
PM
4528 /*
4529 * Initially we receive a position value that corresponds to
4530 * one more than the last pid shown (or 0 on the first call or
4531 * after a seek to the start). Use a binary-search to find the
4532 * next pid to display, if any
4533 */
2bd59d48 4534 struct kernfs_open_file *of = s->private;
7da11279 4535 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4536 struct cgroup_pidlist *l;
7da11279 4537 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4538 int index = 0, pid = *pos;
4bac00d1
TH
4539 int *iter, ret;
4540
4541 mutex_lock(&cgrp->pidlist_mutex);
4542
4543 /*
5d22444f 4544 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4545 * after open. If the matching pidlist is around, we can use that.
5d22444f 4546 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4547 * could already have been destroyed.
4548 */
5d22444f
TH
4549 if (of->priv)
4550 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4551
4552 /*
4553 * Either this is the first start() after open or the matching
4554 * pidlist has been destroyed inbetween. Create a new one.
4555 */
5d22444f
TH
4556 if (!of->priv) {
4557 ret = pidlist_array_load(cgrp, type,
4558 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4559 if (ret)
4560 return ERR_PTR(ret);
4561 }
5d22444f 4562 l = of->priv;
cc31edce 4563
cc31edce 4564 if (pid) {
102a775e 4565 int end = l->length;
20777766 4566
cc31edce
PM
4567 while (index < end) {
4568 int mid = (index + end) / 2;
afb2bc14 4569 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4570 index = mid;
4571 break;
afb2bc14 4572 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4573 index = mid + 1;
4574 else
4575 end = mid;
4576 }
4577 }
4578 /* If we're off the end of the array, we're done */
102a775e 4579 if (index >= l->length)
cc31edce
PM
4580 return NULL;
4581 /* Update the abstract position to be the actual pid that we found */
102a775e 4582 iter = l->list + index;
afb2bc14 4583 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4584 return iter;
4585}
4586
102a775e 4587static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4588{
2bd59d48 4589 struct kernfs_open_file *of = s->private;
5d22444f 4590 struct cgroup_pidlist *l = of->priv;
62236858 4591
5d22444f
TH
4592 if (l)
4593 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4594 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4595 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4596}
4597
102a775e 4598static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4599{
2bd59d48 4600 struct kernfs_open_file *of = s->private;
5d22444f 4601 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4602 pid_t *p = v;
4603 pid_t *end = l->list + l->length;
cc31edce
PM
4604 /*
4605 * Advance to the next pid in the array. If this goes off the
4606 * end, we're done
4607 */
4608 p++;
4609 if (p >= end) {
4610 return NULL;
4611 } else {
7da11279 4612 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4613 return p;
4614 }
4615}
4616
102a775e 4617static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4618{
94ff212d
JP
4619 seq_printf(s, "%d\n", *(int *)v);
4620
4621 return 0;
cc31edce 4622}
bbcb81d0 4623
182446d0
TH
4624static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4625 struct cftype *cft)
81a6a5cd 4626{
182446d0 4627 return notify_on_release(css->cgroup);
81a6a5cd
PM
4628}
4629
182446d0
TH
4630static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4631 struct cftype *cft, u64 val)
6379c106 4632{
6379c106 4633 if (val)
182446d0 4634 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4635 else
182446d0 4636 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4637 return 0;
4638}
4639
182446d0
TH
4640static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4641 struct cftype *cft)
97978e6d 4642{
182446d0 4643 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4644}
4645
182446d0
TH
4646static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4647 struct cftype *cft, u64 val)
97978e6d
DL
4648{
4649 if (val)
182446d0 4650 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4651 else
182446d0 4652 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4653 return 0;
4654}
4655
a14c6874
TH
4656/* cgroup core interface files for the default hierarchy */
4657static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4658 {
d5c56ced 4659 .name = "cgroup.procs",
6f60eade 4660 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4661 .seq_start = cgroup_pidlist_start,
4662 .seq_next = cgroup_pidlist_next,
4663 .seq_stop = cgroup_pidlist_stop,
4664 .seq_show = cgroup_pidlist_show,
5d22444f 4665 .private = CGROUP_FILE_PROCS,
acbef755 4666 .write = cgroup_procs_write,
102a775e 4667 },
f8f22e53
TH
4668 {
4669 .name = "cgroup.controllers",
f8f22e53
TH
4670 .seq_show = cgroup_controllers_show,
4671 },
4672 {
4673 .name = "cgroup.subtree_control",
f8f22e53 4674 .seq_show = cgroup_subtree_control_show,
451af504 4675 .write = cgroup_subtree_control_write,
f8f22e53 4676 },
842b597e 4677 {
4a07c222 4678 .name = "cgroup.events",
a14c6874 4679 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4680 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4681 .seq_show = cgroup_events_show,
842b597e 4682 },
a14c6874
TH
4683 { } /* terminate */
4684};
d5c56ced 4685
a14c6874
TH
4686/* cgroup core interface files for the legacy hierarchies */
4687static struct cftype cgroup_legacy_base_files[] = {
4688 {
4689 .name = "cgroup.procs",
4690 .seq_start = cgroup_pidlist_start,
4691 .seq_next = cgroup_pidlist_next,
4692 .seq_stop = cgroup_pidlist_stop,
4693 .seq_show = cgroup_pidlist_show,
4694 .private = CGROUP_FILE_PROCS,
4695 .write = cgroup_procs_write,
a14c6874
TH
4696 },
4697 {
4698 .name = "cgroup.clone_children",
4699 .read_u64 = cgroup_clone_children_read,
4700 .write_u64 = cgroup_clone_children_write,
4701 },
4702 {
4703 .name = "cgroup.sane_behavior",
4704 .flags = CFTYPE_ONLY_ON_ROOT,
4705 .seq_show = cgroup_sane_behavior_show,
4706 },
d5c56ced
TH
4707 {
4708 .name = "tasks",
6612f05b
TH
4709 .seq_start = cgroup_pidlist_start,
4710 .seq_next = cgroup_pidlist_next,
4711 .seq_stop = cgroup_pidlist_stop,
4712 .seq_show = cgroup_pidlist_show,
5d22444f 4713 .private = CGROUP_FILE_TASKS,
acbef755 4714 .write = cgroup_tasks_write,
d5c56ced
TH
4715 },
4716 {
4717 .name = "notify_on_release",
d5c56ced
TH
4718 .read_u64 = cgroup_read_notify_on_release,
4719 .write_u64 = cgroup_write_notify_on_release,
4720 },
6e6ff25b
TH
4721 {
4722 .name = "release_agent",
a14c6874 4723 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4724 .seq_show = cgroup_release_agent_show,
451af504 4725 .write = cgroup_release_agent_write,
5f469907 4726 .max_write_len = PATH_MAX - 1,
6e6ff25b 4727 },
db0416b6 4728 { } /* terminate */
bbcb81d0
PM
4729};
4730
0c21ead1
TH
4731/*
4732 * css destruction is four-stage process.
4733 *
4734 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4735 * Implemented in kill_css().
4736 *
4737 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4738 * and thus css_tryget_online() is guaranteed to fail, the css can be
4739 * offlined by invoking offline_css(). After offlining, the base ref is
4740 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4741 *
4742 * 3. When the percpu_ref reaches zero, the only possible remaining
4743 * accessors are inside RCU read sections. css_release() schedules the
4744 * RCU callback.
4745 *
4746 * 4. After the grace period, the css can be freed. Implemented in
4747 * css_free_work_fn().
4748 *
4749 * It is actually hairier because both step 2 and 4 require process context
4750 * and thus involve punting to css->destroy_work adding two additional
4751 * steps to the already complex sequence.
4752 */
35ef10da 4753static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4754{
4755 struct cgroup_subsys_state *css =
35ef10da 4756 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4757 struct cgroup_subsys *ss = css->ss;
0c21ead1 4758 struct cgroup *cgrp = css->cgroup;
48ddbe19 4759
9a1049da
TH
4760 percpu_ref_exit(&css->refcnt);
4761
01e58659 4762 if (ss) {
9d755d33 4763 /* css free path */
8bb5ef79 4764 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4765 int id = css->id;
4766
01e58659
VD
4767 ss->css_free(css);
4768 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4769 cgroup_put(cgrp);
8bb5ef79
TH
4770
4771 if (parent)
4772 css_put(parent);
9d755d33
TH
4773 } else {
4774 /* cgroup free path */
4775 atomic_dec(&cgrp->root->nr_cgrps);
4776 cgroup_pidlist_destroy_all(cgrp);
971ff493 4777 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4778
d51f39b0 4779 if (cgroup_parent(cgrp)) {
9d755d33
TH
4780 /*
4781 * We get a ref to the parent, and put the ref when
4782 * this cgroup is being freed, so it's guaranteed
4783 * that the parent won't be destroyed before its
4784 * children.
4785 */
d51f39b0 4786 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4787 kernfs_put(cgrp->kn);
4788 kfree(cgrp);
4789 } else {
4790 /*
4791 * This is root cgroup's refcnt reaching zero,
4792 * which indicates that the root should be
4793 * released.
4794 */
4795 cgroup_destroy_root(cgrp->root);
4796 }
4797 }
48ddbe19
TH
4798}
4799
0c21ead1 4800static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4801{
4802 struct cgroup_subsys_state *css =
0c21ead1 4803 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4804
35ef10da 4805 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4806 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4807}
4808
25e15d83 4809static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4810{
4811 struct cgroup_subsys_state *css =
25e15d83 4812 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4813 struct cgroup_subsys *ss = css->ss;
9d755d33 4814 struct cgroup *cgrp = css->cgroup;
15a4c835 4815
1fed1b2e
TH
4816 mutex_lock(&cgroup_mutex);
4817
de3f0341 4818 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4819 list_del_rcu(&css->sibling);
4820
9d755d33
TH
4821 if (ss) {
4822 /* css release path */
01e58659 4823 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4824 if (ss->css_released)
4825 ss->css_released(css);
9d755d33
TH
4826 } else {
4827 /* cgroup release path */
9d755d33
TH
4828 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4829 cgrp->id = -1;
a4189487
LZ
4830
4831 /*
4832 * There are two control paths which try to determine
4833 * cgroup from dentry without going through kernfs -
4834 * cgroupstats_build() and css_tryget_online_from_dir().
4835 * Those are supported by RCU protecting clearing of
4836 * cgrp->kn->priv backpointer.
4837 */
6cd0f5bb
TH
4838 if (cgrp->kn)
4839 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4840 NULL);
9d755d33 4841 }
d3daf28d 4842
1fed1b2e
TH
4843 mutex_unlock(&cgroup_mutex);
4844
0c21ead1 4845 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4846}
4847
d3daf28d
TH
4848static void css_release(struct percpu_ref *ref)
4849{
4850 struct cgroup_subsys_state *css =
4851 container_of(ref, struct cgroup_subsys_state, refcnt);
4852
25e15d83
TH
4853 INIT_WORK(&css->destroy_work, css_release_work_fn);
4854 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4855}
4856
ddfcadab
TH
4857static void init_and_link_css(struct cgroup_subsys_state *css,
4858 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4859{
0cb51d71
TH
4860 lockdep_assert_held(&cgroup_mutex);
4861
ddfcadab
TH
4862 cgroup_get(cgrp);
4863
d5c419b6 4864 memset(css, 0, sizeof(*css));
bd89aabc 4865 css->cgroup = cgrp;
72c97e54 4866 css->ss = ss;
d5c419b6
TH
4867 INIT_LIST_HEAD(&css->sibling);
4868 INIT_LIST_HEAD(&css->children);
0cb51d71 4869 css->serial_nr = css_serial_nr_next++;
aa226ff4 4870 atomic_set(&css->online_cnt, 0);
0ae78e0b 4871
d51f39b0
TH
4872 if (cgroup_parent(cgrp)) {
4873 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4874 css_get(css->parent);
ddfcadab 4875 }
48ddbe19 4876
ca8bdcaf 4877 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4878}
4879
2a4ac633 4880/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4881static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4882{
623f926b 4883 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4884 int ret = 0;
4885
a31f2d3f
TH
4886 lockdep_assert_held(&cgroup_mutex);
4887
92fb9748 4888 if (ss->css_online)
eb95419b 4889 ret = ss->css_online(css);
ae7f164a 4890 if (!ret) {
eb95419b 4891 css->flags |= CSS_ONLINE;
aec25020 4892 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4893
4894 atomic_inc(&css->online_cnt);
4895 if (css->parent)
4896 atomic_inc(&css->parent->online_cnt);
ae7f164a 4897 }
b1929db4 4898 return ret;
a31f2d3f
TH
4899}
4900
2a4ac633 4901/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4902static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4903{
623f926b 4904 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4905
4906 lockdep_assert_held(&cgroup_mutex);
4907
4908 if (!(css->flags & CSS_ONLINE))
4909 return;
4910
fa06235b
VD
4911 if (ss->css_reset)
4912 ss->css_reset(css);
4913
d7eeac19 4914 if (ss->css_offline)
eb95419b 4915 ss->css_offline(css);
a31f2d3f 4916
eb95419b 4917 css->flags &= ~CSS_ONLINE;
e3297803 4918 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4919
4920 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4921}
4922
c81c925a 4923/**
6cd0f5bb 4924 * css_create - create a cgroup_subsys_state
c81c925a
TH
4925 * @cgrp: the cgroup new css will be associated with
4926 * @ss: the subsys of new css
4927 *
4928 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
4929 * css is online and installed in @cgrp. This function doesn't create the
4930 * interface files. Returns 0 on success, -errno on failure.
c81c925a 4931 */
6cd0f5bb
TH
4932static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4933 struct cgroup_subsys *ss)
c81c925a 4934{
d51f39b0 4935 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4936 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4937 struct cgroup_subsys_state *css;
4938 int err;
4939
c81c925a
TH
4940 lockdep_assert_held(&cgroup_mutex);
4941
1fed1b2e 4942 css = ss->css_alloc(parent_css);
c81c925a 4943 if (IS_ERR(css))
6cd0f5bb 4944 return css;
c81c925a 4945
ddfcadab 4946 init_and_link_css(css, ss, cgrp);
a2bed820 4947
2aad2a86 4948 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4949 if (err)
3eb59ec6 4950 goto err_free_css;
c81c925a 4951
cf780b7d 4952 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4953 if (err < 0)
4954 goto err_free_percpu_ref;
4955 css->id = err;
c81c925a 4956
15a4c835 4957 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4958 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4959 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4960
4961 err = online_css(css);
4962 if (err)
1fed1b2e 4963 goto err_list_del;
94419627 4964
c81c925a 4965 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4966 cgroup_parent(parent)) {
ed3d261b 4967 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4968 current->comm, current->pid, ss->name);
c81c925a 4969 if (!strcmp(ss->name, "memory"))
ed3d261b 4970 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4971 ss->warned_broken_hierarchy = true;
4972 }
4973
6cd0f5bb 4974 return css;
c81c925a 4975
1fed1b2e
TH
4976err_list_del:
4977 list_del_rcu(&css->sibling);
15a4c835 4978 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4979err_free_percpu_ref:
9a1049da 4980 percpu_ref_exit(&css->refcnt);
3eb59ec6 4981err_free_css:
a2bed820 4982 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 4983 return ERR_PTR(err);
c81c925a
TH
4984}
4985
a5bca215 4986static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 4987{
a5bca215 4988 struct cgroup_root *root = parent->root;
a5bca215
TH
4989 struct cgroup *cgrp, *tcgrp;
4990 int level = parent->level + 1;
03970d3c 4991 int ret;
ddbcc7e8 4992
0a950f65 4993 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4994 cgrp = kzalloc(sizeof(*cgrp) +
4995 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
4996 if (!cgrp)
4997 return ERR_PTR(-ENOMEM);
0ab02ca8 4998
2aad2a86 4999 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5000 if (ret)
5001 goto out_free_cgrp;
5002
0ab02ca8
LZ
5003 /*
5004 * Temporarily set the pointer to NULL, so idr_find() won't return
5005 * a half-baked cgroup.
5006 */
cf780b7d 5007 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5008 if (cgrp->id < 0) {
ba0f4d76 5009 ret = -ENOMEM;
9d755d33 5010 goto out_cancel_ref;
976c06bc
TH
5011 }
5012
cc31edce 5013 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5014
9d800df1 5015 cgrp->self.parent = &parent->self;
ba0f4d76 5016 cgrp->root = root;
b11cfb58
TH
5017 cgrp->level = level;
5018
5019 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5020 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5021
b6abdb0e
LZ
5022 if (notify_on_release(parent))
5023 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5024
2260e7fc
TH
5025 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5026 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5027
0cb51d71 5028 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5029
4e139afc 5030 /* allocation complete, commit to creation */
d5c419b6 5031 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5032 atomic_inc(&root->nr_cgrps);
59f5296b 5033 cgroup_get(parent);
415cf07a 5034
0d80255e
TH
5035 /*
5036 * @cgrp is now fully operational. If something fails after this
5037 * point, it'll be released via the normal destruction path.
5038 */
6fa4918d 5039 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5040
bd53d617
TH
5041 /*
5042 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5043 * subtree_control from the parent. Each is configured manually.
bd53d617 5044 */
03970d3c 5045 if (!cgroup_on_dfl(cgrp))
5531dc91 5046 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5047
5048 cgroup_propagate_control(cgrp);
5049
5050 /* @cgrp doesn't have dir yet so the following will only create csses */
5051 ret = cgroup_apply_control_enable(cgrp);
5052 if (ret)
5053 goto out_destroy;
2bd59d48 5054
a5bca215
TH
5055 return cgrp;
5056
5057out_cancel_ref:
5058 percpu_ref_exit(&cgrp->self.refcnt);
5059out_free_cgrp:
5060 kfree(cgrp);
5061 return ERR_PTR(ret);
5062out_destroy:
5063 cgroup_destroy_locked(cgrp);
5064 return ERR_PTR(ret);
5065}
5066
5067static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5068 umode_t mode)
5069{
5070 struct cgroup *parent, *cgrp;
a5bca215 5071 struct kernfs_node *kn;
03970d3c 5072 int ret;
a5bca215
TH
5073
5074 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5075 if (strchr(name, '\n'))
5076 return -EINVAL;
5077
945ba199 5078 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5079 if (!parent)
5080 return -ENODEV;
5081
5082 cgrp = cgroup_create(parent);
5083 if (IS_ERR(cgrp)) {
5084 ret = PTR_ERR(cgrp);
5085 goto out_unlock;
5086 }
5087
195e9b6c
TH
5088 /* create the directory */
5089 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5090 if (IS_ERR(kn)) {
5091 ret = PTR_ERR(kn);
5092 goto out_destroy;
5093 }
5094 cgrp->kn = kn;
5095
5096 /*
5097 * This extra ref will be put in cgroup_free_fn() and guarantees
5098 * that @cgrp->kn is always accessible.
5099 */
5100 kernfs_get(kn);
5101
5102 ret = cgroup_kn_set_ugid(kn);
5103 if (ret)
5104 goto out_destroy;
5105
334c3679 5106 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5107 if (ret)
5108 goto out_destroy;
5109
03970d3c
TH
5110 ret = cgroup_apply_control_enable(cgrp);
5111 if (ret)
5112 goto out_destroy;
195e9b6c
TH
5113
5114 /* let's create and online css's */
2bd59d48 5115 kernfs_activate(kn);
ddbcc7e8 5116
ba0f4d76
TH
5117 ret = 0;
5118 goto out_unlock;
ddbcc7e8 5119
a5bca215
TH
5120out_destroy:
5121 cgroup_destroy_locked(cgrp);
ba0f4d76 5122out_unlock:
a9746d8d 5123 cgroup_kn_unlock(parent_kn);
ba0f4d76 5124 return ret;
ddbcc7e8
PM
5125}
5126
223dbc38
TH
5127/*
5128 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5129 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5130 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5131 */
5132static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5133{
223dbc38
TH
5134 struct cgroup_subsys_state *css =
5135 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5136
f20104de 5137 mutex_lock(&cgroup_mutex);
09a503ea 5138
aa226ff4
TH
5139 do {
5140 offline_css(css);
5141 css_put(css);
5142 /* @css can't go away while we're holding cgroup_mutex */
5143 css = css->parent;
5144 } while (css && atomic_dec_and_test(&css->online_cnt));
5145
5146 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5147}
5148
223dbc38
TH
5149/* css kill confirmation processing requires process context, bounce */
5150static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5151{
5152 struct cgroup_subsys_state *css =
5153 container_of(ref, struct cgroup_subsys_state, refcnt);
5154
aa226ff4
TH
5155 if (atomic_dec_and_test(&css->online_cnt)) {
5156 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5157 queue_work(cgroup_destroy_wq, &css->destroy_work);
5158 }
d3daf28d
TH
5159}
5160
f392e51c
TH
5161/**
5162 * kill_css - destroy a css
5163 * @css: css to destroy
5164 *
5165 * This function initiates destruction of @css by removing cgroup interface
5166 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5167 * asynchronously once css_tryget_online() is guaranteed to fail and when
5168 * the reference count reaches zero, @css will be released.
f392e51c
TH
5169 */
5170static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5171{
01f6474c 5172 lockdep_assert_held(&cgroup_mutex);
94419627 5173
2bd59d48
TH
5174 /*
5175 * This must happen before css is disassociated with its cgroup.
5176 * See seq_css() for details.
5177 */
334c3679 5178 css_clear_dir(css);
3c14f8b4 5179
edae0c33
TH
5180 /*
5181 * Killing would put the base ref, but we need to keep it alive
5182 * until after ->css_offline().
5183 */
5184 css_get(css);
5185
5186 /*
5187 * cgroup core guarantees that, by the time ->css_offline() is
5188 * invoked, no new css reference will be given out via
ec903c0c 5189 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5190 * proceed to offlining css's because percpu_ref_kill() doesn't
5191 * guarantee that the ref is seen as killed on all CPUs on return.
5192 *
5193 * Use percpu_ref_kill_and_confirm() to get notifications as each
5194 * css is confirmed to be seen as killed on all CPUs.
5195 */
5196 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5197}
5198
5199/**
5200 * cgroup_destroy_locked - the first stage of cgroup destruction
5201 * @cgrp: cgroup to be destroyed
5202 *
5203 * css's make use of percpu refcnts whose killing latency shouldn't be
5204 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5205 * guarantee that css_tryget_online() won't succeed by the time
5206 * ->css_offline() is invoked. To satisfy all the requirements,
5207 * destruction is implemented in the following two steps.
d3daf28d
TH
5208 *
5209 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5210 * userland visible parts and start killing the percpu refcnts of
5211 * css's. Set up so that the next stage will be kicked off once all
5212 * the percpu refcnts are confirmed to be killed.
5213 *
5214 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5215 * rest of destruction. Once all cgroup references are gone, the
5216 * cgroup is RCU-freed.
5217 *
5218 * This function implements s1. After this step, @cgrp is gone as far as
5219 * the userland is concerned and a new cgroup with the same name may be
5220 * created. As cgroup doesn't care about the names internally, this
5221 * doesn't cause any problem.
5222 */
42809dd4
TH
5223static int cgroup_destroy_locked(struct cgroup *cgrp)
5224 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5225{
2bd59d48 5226 struct cgroup_subsys_state *css;
1c6727af 5227 int ssid;
ddbcc7e8 5228
42809dd4
TH
5229 lockdep_assert_held(&cgroup_mutex);
5230
91486f61
TH
5231 /*
5232 * Only migration can raise populated from zero and we're already
5233 * holding cgroup_mutex.
5234 */
5235 if (cgroup_is_populated(cgrp))
ddbcc7e8 5236 return -EBUSY;
a043e3b2 5237
bb78a92f 5238 /*
d5c419b6
TH
5239 * Make sure there's no live children. We can't test emptiness of
5240 * ->self.children as dead children linger on it while being
5241 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5242 */
f3d46500 5243 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5244 return -EBUSY;
5245
455050d2
TH
5246 /*
5247 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5248 * creation by disabling cgroup_lock_live_group().
455050d2 5249 */
184faf32 5250 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5251
249f3468 5252 /* initiate massacre of all css's */
1c6727af
TH
5253 for_each_css(css, ssid, cgrp)
5254 kill_css(css);
455050d2 5255
455050d2 5256 /*
01f6474c
TH
5257 * Remove @cgrp directory along with the base files. @cgrp has an
5258 * extra ref on its kn.
f20104de 5259 */
01f6474c 5260 kernfs_remove(cgrp->kn);
f20104de 5261
d51f39b0 5262 check_for_release(cgroup_parent(cgrp));
2bd59d48 5263
249f3468 5264 /* put the base reference */
9d755d33 5265 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5266
ea15f8cc
TH
5267 return 0;
5268};
5269
2bd59d48 5270static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5271{
a9746d8d 5272 struct cgroup *cgrp;
2bd59d48 5273 int ret = 0;
42809dd4 5274
945ba199 5275 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5276 if (!cgrp)
5277 return 0;
42809dd4 5278
a9746d8d 5279 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5280
a9746d8d 5281 cgroup_kn_unlock(kn);
42809dd4 5282 return ret;
8e3f6541
TH
5283}
5284
2bd59d48
TH
5285static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5286 .remount_fs = cgroup_remount,
5287 .show_options = cgroup_show_options,
5288 .mkdir = cgroup_mkdir,
5289 .rmdir = cgroup_rmdir,
5290 .rename = cgroup_rename,
5291};
5292
15a4c835 5293static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5294{
ddbcc7e8 5295 struct cgroup_subsys_state *css;
cfe36bde 5296
a5ae9899 5297 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5298
648bb56d
TH
5299 mutex_lock(&cgroup_mutex);
5300
15a4c835 5301 idr_init(&ss->css_idr);
0adb0704 5302 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5303
3dd06ffa
TH
5304 /* Create the root cgroup state for this subsystem */
5305 ss->root = &cgrp_dfl_root;
5306 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5307 /* We don't handle early failures gracefully */
5308 BUG_ON(IS_ERR(css));
ddfcadab 5309 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5310
5311 /*
5312 * Root csses are never destroyed and we can't initialize
5313 * percpu_ref during early init. Disable refcnting.
5314 */
5315 css->flags |= CSS_NO_REF;
5316
15a4c835 5317 if (early) {
9395a450 5318 /* allocation can't be done safely during early init */
15a4c835
TH
5319 css->id = 1;
5320 } else {
5321 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5322 BUG_ON(css->id < 0);
5323 }
ddbcc7e8 5324
e8d55fde 5325 /* Update the init_css_set to contain a subsys
817929ec 5326 * pointer to this state - since the subsystem is
e8d55fde 5327 * newly registered, all tasks and hence the
3dd06ffa 5328 * init_css_set is in the subsystem's root cgroup. */
aec25020 5329 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5330
cb4a3167
AS
5331 have_fork_callback |= (bool)ss->fork << ss->id;
5332 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5333 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5334 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5335
e8d55fde
LZ
5336 /* At system boot, before all subsystems have been
5337 * registered, no tasks have been forked, so we don't
5338 * need to invoke fork callbacks here. */
5339 BUG_ON(!list_empty(&init_task.tasks));
5340
ae7f164a 5341 BUG_ON(online_css(css));
a8638030 5342
cf5d5941
BB
5343 mutex_unlock(&cgroup_mutex);
5344}
cf5d5941 5345
ddbcc7e8 5346/**
a043e3b2
LZ
5347 * cgroup_init_early - cgroup initialization at system boot
5348 *
5349 * Initialize cgroups at system boot, and initialize any
5350 * subsystems that request early init.
ddbcc7e8
PM
5351 */
5352int __init cgroup_init_early(void)
5353{
7b9a6ba5 5354 static struct cgroup_sb_opts __initdata opts;
30159ec7 5355 struct cgroup_subsys *ss;
ddbcc7e8 5356 int i;
30159ec7 5357
3dd06ffa 5358 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5359 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5360
a4ea1cc9 5361 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5362
3ed80a62 5363 for_each_subsys(ss, i) {
aec25020 5364 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5365 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5366 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5367 ss->id, ss->name);
073219e9
TH
5368 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5369 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5370
aec25020 5371 ss->id = i;
073219e9 5372 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5373 if (!ss->legacy_name)
5374 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5375
5376 if (ss->early_init)
15a4c835 5377 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5378 }
5379 return 0;
5380}
5381
6e5c8307 5382static u16 cgroup_disable_mask __initdata;
a3e72739 5383
ddbcc7e8 5384/**
a043e3b2
LZ
5385 * cgroup_init - cgroup initialization
5386 *
5387 * Register cgroup filesystem and /proc file, and initialize
5388 * any subsystems that didn't request early init.
ddbcc7e8
PM
5389 */
5390int __init cgroup_init(void)
5391{
30159ec7 5392 struct cgroup_subsys *ss;
035f4f51 5393 int ssid;
ddbcc7e8 5394
6e5c8307 5395 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5396 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5397 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5398 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5399
54e7b4eb 5400 mutex_lock(&cgroup_mutex);
54e7b4eb 5401
2378d8b8
TH
5402 /*
5403 * Add init_css_set to the hash table so that dfl_root can link to
5404 * it during init.
5405 */
5406 hash_add(css_set_table, &init_css_set.hlist,
5407 css_set_hash(init_css_set.subsys));
82fe9b0d 5408
3dd06ffa 5409 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5410
54e7b4eb
TH
5411 mutex_unlock(&cgroup_mutex);
5412
172a2c06 5413 for_each_subsys(ss, ssid) {
15a4c835
TH
5414 if (ss->early_init) {
5415 struct cgroup_subsys_state *css =
5416 init_css_set.subsys[ss->id];
5417
5418 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5419 GFP_KERNEL);
5420 BUG_ON(css->id < 0);
5421 } else {
5422 cgroup_init_subsys(ss, false);
5423 }
172a2c06 5424
2d8f243a
TH
5425 list_add_tail(&init_css_set.e_cset_node[ssid],
5426 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5427
5428 /*
c731ae1d
LZ
5429 * Setting dfl_root subsys_mask needs to consider the
5430 * disabled flag and cftype registration needs kmalloc,
5431 * both of which aren't available during early_init.
172a2c06 5432 */
a3e72739
TH
5433 if (cgroup_disable_mask & (1 << ssid)) {
5434 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5435 printk(KERN_INFO "Disabling %s control group subsystem\n",
5436 ss->name);
a8ddc821 5437 continue;
a3e72739 5438 }
a8ddc821 5439
223ffb29
JW
5440 if (cgroup_ssid_no_v1(ssid))
5441 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5442 ss->name);
5443
a8ddc821
TH
5444 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5445
5de4fa13 5446 if (!ss->dfl_cftypes)
a7165264 5447 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5448
a8ddc821
TH
5449 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5450 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5451 } else {
5452 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5453 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5454 }
295458e6
VD
5455
5456 if (ss->bind)
5457 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5458 }
5459
2378d8b8
TH
5460 /* init_css_set.subsys[] has been updated, re-hash */
5461 hash_del(&init_css_set.hlist);
5462 hash_add(css_set_table, &init_css_set.hlist,
5463 css_set_hash(init_css_set.subsys));
5464
035f4f51
TH
5465 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5466 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5467 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5468 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5469
2bd59d48 5470 return 0;
ddbcc7e8 5471}
b4f48b63 5472
e5fca243
TH
5473static int __init cgroup_wq_init(void)
5474{
5475 /*
5476 * There isn't much point in executing destruction path in
5477 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5478 * Use 1 for @max_active.
e5fca243
TH
5479 *
5480 * We would prefer to do this in cgroup_init() above, but that
5481 * is called before init_workqueues(): so leave this until after.
5482 */
1a11533f 5483 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5484 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5485
5486 /*
5487 * Used to destroy pidlists and separate to serve as flush domain.
5488 * Cap @max_active to 1 too.
5489 */
5490 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5491 0, 1);
5492 BUG_ON(!cgroup_pidlist_destroy_wq);
5493
e5fca243
TH
5494 return 0;
5495}
5496core_initcall(cgroup_wq_init);
5497
a424316c
PM
5498/*
5499 * proc_cgroup_show()
5500 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5501 * - Used for /proc/<pid>/cgroup.
a424316c 5502 */
006f4ac4
ZL
5503int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5504 struct pid *pid, struct task_struct *tsk)
a424316c 5505{
e61734c5 5506 char *buf, *path;
a424316c 5507 int retval;
3dd06ffa 5508 struct cgroup_root *root;
a424316c
PM
5509
5510 retval = -ENOMEM;
e61734c5 5511 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5512 if (!buf)
5513 goto out;
5514
a424316c 5515 mutex_lock(&cgroup_mutex);
f0d9a5f1 5516 spin_lock_bh(&css_set_lock);
a424316c 5517
985ed670 5518 for_each_root(root) {
a424316c 5519 struct cgroup_subsys *ss;
bd89aabc 5520 struct cgroup *cgrp;
b85d2040 5521 int ssid, count = 0;
a424316c 5522
a7165264 5523 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5524 continue;
5525
2c6ab6d2 5526 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5527 if (root != &cgrp_dfl_root)
5528 for_each_subsys(ss, ssid)
5529 if (root->subsys_mask & (1 << ssid))
5530 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5531 ss->legacy_name);
c6d57f33
PM
5532 if (strlen(root->name))
5533 seq_printf(m, "%sname=%s", count ? "," : "",
5534 root->name);
a424316c 5535 seq_putc(m, ':');
2e91fa7f 5536
7717f7ba 5537 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5538
5539 /*
5540 * On traditional hierarchies, all zombie tasks show up as
5541 * belonging to the root cgroup. On the default hierarchy,
5542 * while a zombie doesn't show up in "cgroup.procs" and
5543 * thus can't be migrated, its /proc/PID/cgroup keeps
5544 * reporting the cgroup it belonged to before exiting. If
5545 * the cgroup is removed before the zombie is reaped,
5546 * " (deleted)" is appended to the cgroup path.
5547 */
5548 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5549 path = cgroup_path(cgrp, buf, PATH_MAX);
5550 if (!path) {
5551 retval = -ENAMETOOLONG;
5552 goto out_unlock;
5553 }
5554 } else {
5555 path = "/";
e61734c5 5556 }
2e91fa7f 5557
e61734c5 5558 seq_puts(m, path);
2e91fa7f
TH
5559
5560 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5561 seq_puts(m, " (deleted)\n");
5562 else
5563 seq_putc(m, '\n');
a424316c
PM
5564 }
5565
006f4ac4 5566 retval = 0;
a424316c 5567out_unlock:
f0d9a5f1 5568 spin_unlock_bh(&css_set_lock);
a424316c 5569 mutex_unlock(&cgroup_mutex);
a424316c
PM
5570 kfree(buf);
5571out:
5572 return retval;
5573}
5574
a424316c
PM
5575/* Display information about each subsystem and each hierarchy */
5576static int proc_cgroupstats_show(struct seq_file *m, void *v)
5577{
30159ec7 5578 struct cgroup_subsys *ss;
a424316c 5579 int i;
a424316c 5580
8bab8dde 5581 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5582 /*
5583 * ideally we don't want subsystems moving around while we do this.
5584 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5585 * subsys/hierarchy state.
5586 */
a424316c 5587 mutex_lock(&cgroup_mutex);
30159ec7
TH
5588
5589 for_each_subsys(ss, i)
2c6ab6d2 5590 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5591 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5592 atomic_read(&ss->root->nr_cgrps),
5593 cgroup_ssid_enabled(i));
30159ec7 5594
a424316c
PM
5595 mutex_unlock(&cgroup_mutex);
5596 return 0;
5597}
5598
5599static int cgroupstats_open(struct inode *inode, struct file *file)
5600{
9dce07f1 5601 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5602}
5603
828c0950 5604static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5605 .open = cgroupstats_open,
5606 .read = seq_read,
5607 .llseek = seq_lseek,
5608 .release = single_release,
5609};
5610
b4f48b63 5611/**
eaf797ab 5612 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5613 * @child: pointer to task_struct of forking parent process.
b4f48b63 5614 *
eaf797ab
TH
5615 * A task is associated with the init_css_set until cgroup_post_fork()
5616 * attaches it to the parent's css_set. Empty cg_list indicates that
5617 * @child isn't holding reference to its css_set.
b4f48b63
PM
5618 */
5619void cgroup_fork(struct task_struct *child)
5620{
eaf797ab 5621 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5622 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5623}
5624
7e47682e
AS
5625/**
5626 * cgroup_can_fork - called on a new task before the process is exposed
5627 * @child: the task in question.
5628 *
5629 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5630 * returns an error, the fork aborts with that error code. This allows for
5631 * a cgroup subsystem to conditionally allow or deny new forks.
5632 */
b53202e6 5633int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5634{
5635 struct cgroup_subsys *ss;
5636 int i, j, ret;
5637
b4e0eeaf 5638 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5639 ret = ss->can_fork(child);
7e47682e
AS
5640 if (ret)
5641 goto out_revert;
b4e0eeaf 5642 } while_each_subsys_mask();
7e47682e
AS
5643
5644 return 0;
5645
5646out_revert:
5647 for_each_subsys(ss, j) {
5648 if (j >= i)
5649 break;
5650 if (ss->cancel_fork)
b53202e6 5651 ss->cancel_fork(child);
7e47682e
AS
5652 }
5653
5654 return ret;
5655}
5656
5657/**
5658 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5659 * @child: the task in question
5660 *
5661 * This calls the cancel_fork() callbacks if a fork failed *after*
5662 * cgroup_can_fork() succeded.
5663 */
b53202e6 5664void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5665{
5666 struct cgroup_subsys *ss;
5667 int i;
5668
5669 for_each_subsys(ss, i)
5670 if (ss->cancel_fork)
b53202e6 5671 ss->cancel_fork(child);
7e47682e
AS
5672}
5673
817929ec 5674/**
a043e3b2
LZ
5675 * cgroup_post_fork - called on a new task after adding it to the task list
5676 * @child: the task in question
5677 *
5edee61e
TH
5678 * Adds the task to the list running through its css_set if necessary and
5679 * call the subsystem fork() callbacks. Has to be after the task is
5680 * visible on the task list in case we race with the first call to
0942eeee 5681 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5682 * list.
a043e3b2 5683 */
b53202e6 5684void cgroup_post_fork(struct task_struct *child)
817929ec 5685{
30159ec7 5686 struct cgroup_subsys *ss;
5edee61e
TH
5687 int i;
5688
3ce3230a 5689 /*
251f8c03 5690 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5691 * function sets use_task_css_set_links before grabbing
5692 * tasklist_lock and we just went through tasklist_lock to add
5693 * @child, it's guaranteed that either we see the set
5694 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5695 * @child during its iteration.
5696 *
5697 * If we won the race, @child is associated with %current's
f0d9a5f1 5698 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5699 * association is stable, and, on completion of the parent's
5700 * migration, @child is visible in the source of migration or
5701 * already in the destination cgroup. This guarantee is necessary
5702 * when implementing operations which need to migrate all tasks of
5703 * a cgroup to another.
5704 *
251f8c03 5705 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5706 * will remain in init_css_set. This is safe because all tasks are
5707 * in the init_css_set before cg_links is enabled and there's no
5708 * operation which transfers all tasks out of init_css_set.
3ce3230a 5709 */
817929ec 5710 if (use_task_css_set_links) {
eaf797ab
TH
5711 struct css_set *cset;
5712
f0d9a5f1 5713 spin_lock_bh(&css_set_lock);
0e1d768f 5714 cset = task_css_set(current);
eaf797ab 5715 if (list_empty(&child->cg_list)) {
eaf797ab 5716 get_css_set(cset);
f6d7d049 5717 css_set_move_task(child, NULL, cset, false);
eaf797ab 5718 }
f0d9a5f1 5719 spin_unlock_bh(&css_set_lock);
817929ec 5720 }
5edee61e
TH
5721
5722 /*
5723 * Call ss->fork(). This must happen after @child is linked on
5724 * css_set; otherwise, @child might change state between ->fork()
5725 * and addition to css_set.
5726 */
b4e0eeaf 5727 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5728 ss->fork(child);
b4e0eeaf 5729 } while_each_subsys_mask();
817929ec 5730}
5edee61e 5731
b4f48b63
PM
5732/**
5733 * cgroup_exit - detach cgroup from exiting task
5734 * @tsk: pointer to task_struct of exiting process
5735 *
5736 * Description: Detach cgroup from @tsk and release it.
5737 *
5738 * Note that cgroups marked notify_on_release force every task in
5739 * them to take the global cgroup_mutex mutex when exiting.
5740 * This could impact scaling on very large systems. Be reluctant to
5741 * use notify_on_release cgroups where very high task exit scaling
5742 * is required on large systems.
5743 *
0e1d768f
TH
5744 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5745 * call cgroup_exit() while the task is still competent to handle
5746 * notify_on_release(), then leave the task attached to the root cgroup in
5747 * each hierarchy for the remainder of its exit. No need to bother with
5748 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5749 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5750 */
1ec41830 5751void cgroup_exit(struct task_struct *tsk)
b4f48b63 5752{
30159ec7 5753 struct cgroup_subsys *ss;
5abb8855 5754 struct css_set *cset;
d41d5a01 5755 int i;
817929ec
PM
5756
5757 /*
0e1d768f 5758 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5759 * with us, we can check css_set and cg_list without synchronization.
817929ec 5760 */
0de0942d
TH
5761 cset = task_css_set(tsk);
5762
817929ec 5763 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5764 spin_lock_bh(&css_set_lock);
f6d7d049 5765 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5766 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5767 } else {
5768 get_css_set(cset);
817929ec
PM
5769 }
5770
cb4a3167 5771 /* see cgroup_post_fork() for details */
b4e0eeaf 5772 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5773 ss->exit(tsk);
b4e0eeaf 5774 } while_each_subsys_mask();
2e91fa7f 5775}
30159ec7 5776
2e91fa7f
TH
5777void cgroup_free(struct task_struct *task)
5778{
5779 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5780 struct cgroup_subsys *ss;
5781 int ssid;
5782
b4e0eeaf 5783 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5784 ss->free(task);
b4e0eeaf 5785 } while_each_subsys_mask();
d41d5a01 5786
2e91fa7f 5787 put_css_set(cset);
b4f48b63 5788}
697f4161 5789
bd89aabc 5790static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5791{
27bd4dbb 5792 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5793 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5794 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5795}
5796
81a6a5cd
PM
5797/*
5798 * Notify userspace when a cgroup is released, by running the
5799 * configured release agent with the name of the cgroup (path
5800 * relative to the root of cgroup file system) as the argument.
5801 *
5802 * Most likely, this user command will try to rmdir this cgroup.
5803 *
5804 * This races with the possibility that some other task will be
5805 * attached to this cgroup before it is removed, or that some other
5806 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5807 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5808 * unused, and this cgroup will be reprieved from its death sentence,
5809 * to continue to serve a useful existence. Next time it's released,
5810 * we will get notified again, if it still has 'notify_on_release' set.
5811 *
5812 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5813 * means only wait until the task is successfully execve()'d. The
5814 * separate release agent task is forked by call_usermodehelper(),
5815 * then control in this thread returns here, without waiting for the
5816 * release agent task. We don't bother to wait because the caller of
5817 * this routine has no use for the exit status of the release agent
5818 * task, so no sense holding our caller up for that.
81a6a5cd 5819 */
81a6a5cd
PM
5820static void cgroup_release_agent(struct work_struct *work)
5821{
971ff493
ZL
5822 struct cgroup *cgrp =
5823 container_of(work, struct cgroup, release_agent_work);
5824 char *pathbuf = NULL, *agentbuf = NULL, *path;
5825 char *argv[3], *envp[3];
5826
81a6a5cd 5827 mutex_lock(&cgroup_mutex);
971ff493
ZL
5828
5829 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5830 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5831 if (!pathbuf || !agentbuf)
5832 goto out;
5833
5834 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5835 if (!path)
5836 goto out;
5837
5838 argv[0] = agentbuf;
5839 argv[1] = path;
5840 argv[2] = NULL;
5841
5842 /* minimal command environment */
5843 envp[0] = "HOME=/";
5844 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5845 envp[2] = NULL;
5846
81a6a5cd 5847 mutex_unlock(&cgroup_mutex);
971ff493 5848 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5849 goto out_free;
971ff493 5850out:
81a6a5cd 5851 mutex_unlock(&cgroup_mutex);
3e2cd91a 5852out_free:
971ff493
ZL
5853 kfree(agentbuf);
5854 kfree(pathbuf);
81a6a5cd 5855}
8bab8dde
PM
5856
5857static int __init cgroup_disable(char *str)
5858{
30159ec7 5859 struct cgroup_subsys *ss;
8bab8dde 5860 char *token;
30159ec7 5861 int i;
8bab8dde
PM
5862
5863 while ((token = strsep(&str, ",")) != NULL) {
5864 if (!*token)
5865 continue;
be45c900 5866
3ed80a62 5867 for_each_subsys(ss, i) {
3e1d2eed
TH
5868 if (strcmp(token, ss->name) &&
5869 strcmp(token, ss->legacy_name))
5870 continue;
a3e72739 5871 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5872 }
5873 }
5874 return 1;
5875}
5876__setup("cgroup_disable=", cgroup_disable);
38460b48 5877
223ffb29
JW
5878static int __init cgroup_no_v1(char *str)
5879{
5880 struct cgroup_subsys *ss;
5881 char *token;
5882 int i;
5883
5884 while ((token = strsep(&str, ",")) != NULL) {
5885 if (!*token)
5886 continue;
5887
5888 if (!strcmp(token, "all")) {
6e5c8307 5889 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
5890 break;
5891 }
5892
5893 for_each_subsys(ss, i) {
5894 if (strcmp(token, ss->name) &&
5895 strcmp(token, ss->legacy_name))
5896 continue;
5897
5898 cgroup_no_v1_mask |= 1 << i;
5899 }
5900 }
5901 return 1;
5902}
5903__setup("cgroup_no_v1=", cgroup_no_v1);
5904
b77d7b60 5905/**
ec903c0c 5906 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5907 * @dentry: directory dentry of interest
5908 * @ss: subsystem of interest
b77d7b60 5909 *
5a17f543
TH
5910 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5911 * to get the corresponding css and return it. If such css doesn't exist
5912 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5913 */
ec903c0c
TH
5914struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5915 struct cgroup_subsys *ss)
e5d1367f 5916{
2bd59d48 5917 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 5918 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 5919 struct cgroup_subsys_state *css = NULL;
e5d1367f 5920 struct cgroup *cgrp;
e5d1367f 5921
35cf0836 5922 /* is @dentry a cgroup dir? */
f17fc25f
TH
5923 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5924 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5925 return ERR_PTR(-EBADF);
5926
5a17f543
TH
5927 rcu_read_lock();
5928
2bd59d48
TH
5929 /*
5930 * This path doesn't originate from kernfs and @kn could already
5931 * have been or be removed at any point. @kn->priv is RCU
a4189487 5932 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5933 */
5934 cgrp = rcu_dereference(kn->priv);
5935 if (cgrp)
5936 css = cgroup_css(cgrp, ss);
5a17f543 5937
ec903c0c 5938 if (!css || !css_tryget_online(css))
5a17f543
TH
5939 css = ERR_PTR(-ENOENT);
5940
5941 rcu_read_unlock();
5942 return css;
e5d1367f 5943}
e5d1367f 5944
1cb650b9
LZ
5945/**
5946 * css_from_id - lookup css by id
5947 * @id: the cgroup id
5948 * @ss: cgroup subsys to be looked into
5949 *
5950 * Returns the css if there's valid one with @id, otherwise returns NULL.
5951 * Should be called under rcu_read_lock().
5952 */
5953struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5954{
6fa4918d 5955 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5956 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5957}
5958
16af4396
TH
5959/**
5960 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5961 * @path: path on the default hierarchy
5962 *
5963 * Find the cgroup at @path on the default hierarchy, increment its
5964 * reference count and return it. Returns pointer to the found cgroup on
5965 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5966 * if @path points to a non-directory.
5967 */
5968struct cgroup *cgroup_get_from_path(const char *path)
5969{
5970 struct kernfs_node *kn;
5971 struct cgroup *cgrp;
5972
5973 mutex_lock(&cgroup_mutex);
5974
5975 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5976 if (kn) {
5977 if (kernfs_type(kn) == KERNFS_DIR) {
5978 cgrp = kn->priv;
5979 cgroup_get(cgrp);
5980 } else {
5981 cgrp = ERR_PTR(-ENOTDIR);
5982 }
5983 kernfs_put(kn);
5984 } else {
5985 cgrp = ERR_PTR(-ENOENT);
5986 }
5987
5988 mutex_unlock(&cgroup_mutex);
5989 return cgrp;
5990}
5991EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5992
bd1060a1
TH
5993/*
5994 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5995 * definition in cgroup-defs.h.
5996 */
5997#ifdef CONFIG_SOCK_CGROUP_DATA
5998
5999#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6000
3fa4cc9c 6001DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6002static bool cgroup_sk_alloc_disabled __read_mostly;
6003
6004void cgroup_sk_alloc_disable(void)
6005{
6006 if (cgroup_sk_alloc_disabled)
6007 return;
6008 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6009 cgroup_sk_alloc_disabled = true;
6010}
6011
6012#else
6013
6014#define cgroup_sk_alloc_disabled false
6015
6016#endif
6017
6018void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6019{
6020 if (cgroup_sk_alloc_disabled)
6021 return;
6022
6023 rcu_read_lock();
6024
6025 while (true) {
6026 struct css_set *cset;
6027
6028 cset = task_css_set(current);
6029 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6030 skcd->val = (unsigned long)cset->dfl_cgrp;
6031 break;
6032 }
6033 cpu_relax();
6034 }
6035
6036 rcu_read_unlock();
6037}
6038
6039void cgroup_sk_free(struct sock_cgroup_data *skcd)
6040{
6041 cgroup_put(sock_cgroup_ptr(skcd));
6042}
6043
6044#endif /* CONFIG_SOCK_CGROUP_DATA */
6045
fe693435 6046#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6047static struct cgroup_subsys_state *
6048debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6049{
6050 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6051
6052 if (!css)
6053 return ERR_PTR(-ENOMEM);
6054
6055 return css;
6056}
6057
eb95419b 6058static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6059{
eb95419b 6060 kfree(css);
fe693435
PM
6061}
6062
182446d0
TH
6063static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6064 struct cftype *cft)
fe693435 6065{
182446d0 6066 return cgroup_task_count(css->cgroup);
fe693435
PM
6067}
6068
182446d0
TH
6069static u64 current_css_set_read(struct cgroup_subsys_state *css,
6070 struct cftype *cft)
fe693435
PM
6071{
6072 return (u64)(unsigned long)current->cgroups;
6073}
6074
182446d0 6075static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6076 struct cftype *cft)
fe693435
PM
6077{
6078 u64 count;
6079
6080 rcu_read_lock();
a8ad805c 6081 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6082 rcu_read_unlock();
6083 return count;
6084}
6085
2da8ca82 6086static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6087{
69d0206c 6088 struct cgrp_cset_link *link;
5abb8855 6089 struct css_set *cset;
e61734c5
TH
6090 char *name_buf;
6091
6092 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6093 if (!name_buf)
6094 return -ENOMEM;
7717f7ba 6095
f0d9a5f1 6096 spin_lock_bh(&css_set_lock);
7717f7ba 6097 rcu_read_lock();
5abb8855 6098 cset = rcu_dereference(current->cgroups);
69d0206c 6099 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6100 struct cgroup *c = link->cgrp;
7717f7ba 6101
a2dd4247 6102 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6103 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6104 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6105 }
6106 rcu_read_unlock();
f0d9a5f1 6107 spin_unlock_bh(&css_set_lock);
e61734c5 6108 kfree(name_buf);
7717f7ba
PM
6109 return 0;
6110}
6111
6112#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6113static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6114{
2da8ca82 6115 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6116 struct cgrp_cset_link *link;
7717f7ba 6117
f0d9a5f1 6118 spin_lock_bh(&css_set_lock);
182446d0 6119 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6120 struct css_set *cset = link->cset;
7717f7ba
PM
6121 struct task_struct *task;
6122 int count = 0;
c7561128 6123
5abb8855 6124 seq_printf(seq, "css_set %p\n", cset);
c7561128 6125
5abb8855 6126 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6127 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6128 goto overflow;
6129 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6130 }
6131
6132 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6133 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6134 goto overflow;
6135 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6136 }
c7561128
TH
6137 continue;
6138 overflow:
6139 seq_puts(seq, " ...\n");
7717f7ba 6140 }
f0d9a5f1 6141 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6142 return 0;
6143}
6144
182446d0 6145static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6146{
27bd4dbb 6147 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6148 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6149}
6150
6151static struct cftype debug_files[] = {
fe693435
PM
6152 {
6153 .name = "taskcount",
6154 .read_u64 = debug_taskcount_read,
6155 },
6156
6157 {
6158 .name = "current_css_set",
6159 .read_u64 = current_css_set_read,
6160 },
6161
6162 {
6163 .name = "current_css_set_refcount",
6164 .read_u64 = current_css_set_refcount_read,
6165 },
6166
7717f7ba
PM
6167 {
6168 .name = "current_css_set_cg_links",
2da8ca82 6169 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6170 },
6171
6172 {
6173 .name = "cgroup_css_links",
2da8ca82 6174 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6175 },
6176
fe693435
PM
6177 {
6178 .name = "releasable",
6179 .read_u64 = releasable_read,
6180 },
fe693435 6181
4baf6e33
TH
6182 { } /* terminate */
6183};
fe693435 6184
073219e9 6185struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6186 .css_alloc = debug_css_alloc,
6187 .css_free = debug_css_free,
5577964e 6188 .legacy_cftypes = debug_files,
fe693435
PM
6189};
6190#endif /* CONFIG_CGROUP_DEBUG */