cgroup: add cgroup_subsys->css_e_css_changed()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
a8ddc821
TH
152/*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156static bool cgroup_legacy_files_on_dfl;
157
5533e011 158/* some controllers are not supported in the default hierarchy */
5de4fa13 159static unsigned int cgrp_dfl_root_inhibit_ss_mask;
5533e011 160
ddbcc7e8
PM
161/* The list of hierarchy roots */
162
9871bf95
TH
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
ddbcc7e8 165
3417ae1f 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 167static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 168
794611a1 169/*
0cb51d71
TH
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
794611a1 175 */
0cb51d71 176static u64 css_serial_nr_next = 1;
794611a1 177
ddbcc7e8 178/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
ddbcc7e8 182 */
8947f9d5 183static int need_forkexit_callback __read_mostly;
ddbcc7e8 184
a14c6874
TH
185static struct cftype cgroup_dfl_base_files[];
186static struct cftype cgroup_legacy_base_files[];
628f7cd4 187
3dd06ffa 188static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 189 unsigned int ss_mask);
42809dd4 190static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
191static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
192 bool visible);
9d755d33 193static void css_release(struct percpu_ref *ref);
f8f22e53 194static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
195static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
42809dd4 197
6fa4918d
TH
198/* IDR wrappers which synchronize using cgroup_idr_lock */
199static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
200 gfp_t gfp_mask)
201{
202 int ret;
203
204 idr_preload(gfp_mask);
54504e97 205 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 206 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 207 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
208 idr_preload_end();
209 return ret;
210}
211
212static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
213{
214 void *ret;
215
54504e97 216 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 217 ret = idr_replace(idr, ptr, id);
54504e97 218 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
219 return ret;
220}
221
222static void cgroup_idr_remove(struct idr *idr, int id)
223{
54504e97 224 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 225 idr_remove(idr, id);
54504e97 226 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
227}
228
d51f39b0
TH
229static struct cgroup *cgroup_parent(struct cgroup *cgrp)
230{
231 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
232
233 if (parent_css)
234 return container_of(parent_css, struct cgroup, self);
235 return NULL;
236}
237
95109b62
TH
238/**
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
9d800df1 241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 242 *
ca8bdcaf
TH
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
248 */
249static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 250 struct cgroup_subsys *ss)
95109b62 251{
ca8bdcaf 252 if (ss)
aec25020 253 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 254 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 255 else
9d800df1 256 return &cgrp->self;
95109b62 257}
42809dd4 258
aec3dfcb
TH
259/**
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
9d800df1 262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
263 *
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
268 */
269static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
270 struct cgroup_subsys *ss)
271{
272 lockdep_assert_held(&cgroup_mutex);
273
274 if (!ss)
9d800df1 275 return &cgrp->self;
aec3dfcb
TH
276
277 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
278 return NULL;
279
d51f39b0
TH
280 while (cgroup_parent(cgrp) &&
281 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
282 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
283
284 return cgroup_css(cgrp, ss);
95109b62 285}
42809dd4 286
ddbcc7e8 287/* convenient tests for these bits */
54766d4a 288static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 289{
184faf32 290 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
291}
292
b4168640 293struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 294{
2bd59d48 295 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 296 struct cftype *cft = of_cft(of);
2bd59d48
TH
297
298 /*
299 * This is open and unprotected implementation of cgroup_css().
300 * seq_css() is only called from a kernfs file operation which has
301 * an active reference on the file. Because all the subsystem
302 * files are drained before a css is disassociated with a cgroup,
303 * the matching css from the cgroup's subsys table is guaranteed to
304 * be and stay valid until the enclosing operation is complete.
305 */
306 if (cft->ss)
307 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
308 else
9d800df1 309 return &cgrp->self;
59f5296b 310}
b4168640 311EXPORT_SYMBOL_GPL(of_css);
59f5296b 312
78574cf9
LZ
313/**
314 * cgroup_is_descendant - test ancestry
315 * @cgrp: the cgroup to be tested
316 * @ancestor: possible ancestor of @cgrp
317 *
318 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
319 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
320 * and @ancestor are accessible.
321 */
322bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
323{
324 while (cgrp) {
325 if (cgrp == ancestor)
326 return true;
d51f39b0 327 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
328 }
329 return false;
330}
ddbcc7e8 331
e9685a03 332static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 333{
bd89aabc 334 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
335}
336
1c6727af
TH
337/**
338 * for_each_css - iterate all css's of a cgroup
339 * @css: the iteration cursor
340 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
341 * @cgrp: the target cgroup to iterate css's of
342 *
aec3dfcb 343 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
344 */
345#define for_each_css(css, ssid, cgrp) \
346 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
347 if (!((css) = rcu_dereference_check( \
348 (cgrp)->subsys[(ssid)], \
349 lockdep_is_held(&cgroup_mutex)))) { } \
350 else
351
aec3dfcb
TH
352/**
353 * for_each_e_css - iterate all effective css's of a cgroup
354 * @css: the iteration cursor
355 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
356 * @cgrp: the target cgroup to iterate css's of
357 *
358 * Should be called under cgroup_[tree_]mutex.
359 */
360#define for_each_e_css(css, ssid, cgrp) \
361 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
362 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
363 ; \
364 else
365
30159ec7 366/**
3ed80a62 367 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 368 * @ss: the iteration cursor
780cd8b3 369 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 370 */
780cd8b3 371#define for_each_subsys(ss, ssid) \
3ed80a62
TH
372 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
373 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 374
985ed670
TH
375/* iterate across the hierarchies */
376#define for_each_root(root) \
5549c497 377 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 378
f8f22e53
TH
379/* iterate over child cgrps, lock should be held throughout iteration */
380#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 381 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 382 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
383 cgroup_is_dead(child); })) \
384 ; \
385 else
7ae1bad9 386
81a6a5cd 387static void cgroup_release_agent(struct work_struct *work);
bd89aabc 388static void check_for_release(struct cgroup *cgrp);
81a6a5cd 389
69d0206c
TH
390/*
391 * A cgroup can be associated with multiple css_sets as different tasks may
392 * belong to different cgroups on different hierarchies. In the other
393 * direction, a css_set is naturally associated with multiple cgroups.
394 * This M:N relationship is represented by the following link structure
395 * which exists for each association and allows traversing the associations
396 * from both sides.
397 */
398struct cgrp_cset_link {
399 /* the cgroup and css_set this link associates */
400 struct cgroup *cgrp;
401 struct css_set *cset;
402
403 /* list of cgrp_cset_links anchored at cgrp->cset_links */
404 struct list_head cset_link;
405
406 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
407 struct list_head cgrp_link;
817929ec
PM
408};
409
172a2c06
TH
410/*
411 * The default css_set - used by init and its children prior to any
817929ec
PM
412 * hierarchies being mounted. It contains a pointer to the root state
413 * for each subsystem. Also used to anchor the list of css_sets. Not
414 * reference-counted, to improve performance when child cgroups
415 * haven't been created.
416 */
5024ae29 417struct css_set init_css_set = {
172a2c06
TH
418 .refcount = ATOMIC_INIT(1),
419 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
420 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
421 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
422 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
423 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
424};
817929ec 425
172a2c06 426static int css_set_count = 1; /* 1 for init_css_set */
817929ec 427
842b597e
TH
428/**
429 * cgroup_update_populated - updated populated count of a cgroup
430 * @cgrp: the target cgroup
431 * @populated: inc or dec populated count
432 *
433 * @cgrp is either getting the first task (css_set) or losing the last.
434 * Update @cgrp->populated_cnt accordingly. The count is propagated
435 * towards root so that a given cgroup's populated_cnt is zero iff the
436 * cgroup and all its descendants are empty.
437 *
438 * @cgrp's interface file "cgroup.populated" is zero if
439 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
440 * changes from or to zero, userland is notified that the content of the
441 * interface file has changed. This can be used to detect when @cgrp and
442 * its descendants become populated or empty.
443 */
444static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
445{
446 lockdep_assert_held(&css_set_rwsem);
447
448 do {
449 bool trigger;
450
451 if (populated)
452 trigger = !cgrp->populated_cnt++;
453 else
454 trigger = !--cgrp->populated_cnt;
455
456 if (!trigger)
457 break;
458
459 if (cgrp->populated_kn)
460 kernfs_notify(cgrp->populated_kn);
d51f39b0 461 cgrp = cgroup_parent(cgrp);
842b597e
TH
462 } while (cgrp);
463}
464
7717f7ba
PM
465/*
466 * hash table for cgroup groups. This improves the performance to find
467 * an existing css_set. This hash doesn't (currently) take into
468 * account cgroups in empty hierarchies.
469 */
472b1053 470#define CSS_SET_HASH_BITS 7
0ac801fe 471static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 472
0ac801fe 473static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 474{
0ac801fe 475 unsigned long key = 0UL;
30159ec7
TH
476 struct cgroup_subsys *ss;
477 int i;
472b1053 478
30159ec7 479 for_each_subsys(ss, i)
0ac801fe
LZ
480 key += (unsigned long)css[i];
481 key = (key >> 16) ^ key;
472b1053 482
0ac801fe 483 return key;
472b1053
LZ
484}
485
a25eb52e 486static void put_css_set_locked(struct css_set *cset)
b4f48b63 487{
69d0206c 488 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
489 struct cgroup_subsys *ss;
490 int ssid;
5abb8855 491
89c5509b
TH
492 lockdep_assert_held(&css_set_rwsem);
493
494 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 495 return;
81a6a5cd 496
2c6ab6d2 497 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
498 for_each_subsys(ss, ssid)
499 list_del(&cset->e_cset_node[ssid]);
5abb8855 500 hash_del(&cset->hlist);
2c6ab6d2
PM
501 css_set_count--;
502
69d0206c 503 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 504 struct cgroup *cgrp = link->cgrp;
5abb8855 505
69d0206c
TH
506 list_del(&link->cset_link);
507 list_del(&link->cgrp_link);
71b5707e 508
96d365e0 509 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
510 if (list_empty(&cgrp->cset_links)) {
511 cgroup_update_populated(cgrp, false);
a25eb52e 512 check_for_release(cgrp);
81a6a5cd 513 }
2c6ab6d2
PM
514
515 kfree(link);
81a6a5cd 516 }
2c6ab6d2 517
5abb8855 518 kfree_rcu(cset, rcu_head);
b4f48b63
PM
519}
520
a25eb52e 521static void put_css_set(struct css_set *cset)
89c5509b
TH
522{
523 /*
524 * Ensure that the refcount doesn't hit zero while any readers
525 * can see it. Similar to atomic_dec_and_lock(), but for an
526 * rwlock
527 */
528 if (atomic_add_unless(&cset->refcount, -1, 1))
529 return;
530
531 down_write(&css_set_rwsem);
a25eb52e 532 put_css_set_locked(cset);
89c5509b
TH
533 up_write(&css_set_rwsem);
534}
535
817929ec
PM
536/*
537 * refcounted get/put for css_set objects
538 */
5abb8855 539static inline void get_css_set(struct css_set *cset)
817929ec 540{
5abb8855 541 atomic_inc(&cset->refcount);
817929ec
PM
542}
543
b326f9d0 544/**
7717f7ba 545 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
546 * @cset: candidate css_set being tested
547 * @old_cset: existing css_set for a task
7717f7ba
PM
548 * @new_cgrp: cgroup that's being entered by the task
549 * @template: desired set of css pointers in css_set (pre-calculated)
550 *
6f4b7e63 551 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
552 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
553 */
5abb8855
TH
554static bool compare_css_sets(struct css_set *cset,
555 struct css_set *old_cset,
7717f7ba
PM
556 struct cgroup *new_cgrp,
557 struct cgroup_subsys_state *template[])
558{
559 struct list_head *l1, *l2;
560
aec3dfcb
TH
561 /*
562 * On the default hierarchy, there can be csets which are
563 * associated with the same set of cgroups but different csses.
564 * Let's first ensure that csses match.
565 */
566 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 567 return false;
7717f7ba
PM
568
569 /*
570 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
571 * different cgroups in hierarchies. As different cgroups may
572 * share the same effective css, this comparison is always
573 * necessary.
7717f7ba 574 */
69d0206c
TH
575 l1 = &cset->cgrp_links;
576 l2 = &old_cset->cgrp_links;
7717f7ba 577 while (1) {
69d0206c 578 struct cgrp_cset_link *link1, *link2;
5abb8855 579 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
580
581 l1 = l1->next;
582 l2 = l2->next;
583 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
584 if (l1 == &cset->cgrp_links) {
585 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
586 break;
587 } else {
69d0206c 588 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
589 }
590 /* Locate the cgroups associated with these links. */
69d0206c
TH
591 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
592 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
593 cgrp1 = link1->cgrp;
594 cgrp2 = link2->cgrp;
7717f7ba 595 /* Hierarchies should be linked in the same order. */
5abb8855 596 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
597
598 /*
599 * If this hierarchy is the hierarchy of the cgroup
600 * that's changing, then we need to check that this
601 * css_set points to the new cgroup; if it's any other
602 * hierarchy, then this css_set should point to the
603 * same cgroup as the old css_set.
604 */
5abb8855
TH
605 if (cgrp1->root == new_cgrp->root) {
606 if (cgrp1 != new_cgrp)
7717f7ba
PM
607 return false;
608 } else {
5abb8855 609 if (cgrp1 != cgrp2)
7717f7ba
PM
610 return false;
611 }
612 }
613 return true;
614}
615
b326f9d0
TH
616/**
617 * find_existing_css_set - init css array and find the matching css_set
618 * @old_cset: the css_set that we're using before the cgroup transition
619 * @cgrp: the cgroup that we're moving into
620 * @template: out param for the new set of csses, should be clear on entry
817929ec 621 */
5abb8855
TH
622static struct css_set *find_existing_css_set(struct css_set *old_cset,
623 struct cgroup *cgrp,
624 struct cgroup_subsys_state *template[])
b4f48b63 625{
3dd06ffa 626 struct cgroup_root *root = cgrp->root;
30159ec7 627 struct cgroup_subsys *ss;
5abb8855 628 struct css_set *cset;
0ac801fe 629 unsigned long key;
b326f9d0 630 int i;
817929ec 631
aae8aab4
BB
632 /*
633 * Build the set of subsystem state objects that we want to see in the
634 * new css_set. while subsystems can change globally, the entries here
635 * won't change, so no need for locking.
636 */
30159ec7 637 for_each_subsys(ss, i) {
f392e51c 638 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
639 /*
640 * @ss is in this hierarchy, so we want the
641 * effective css from @cgrp.
642 */
643 template[i] = cgroup_e_css(cgrp, ss);
817929ec 644 } else {
aec3dfcb
TH
645 /*
646 * @ss is not in this hierarchy, so we don't want
647 * to change the css.
648 */
5abb8855 649 template[i] = old_cset->subsys[i];
817929ec
PM
650 }
651 }
652
0ac801fe 653 key = css_set_hash(template);
5abb8855
TH
654 hash_for_each_possible(css_set_table, cset, hlist, key) {
655 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
656 continue;
657
658 /* This css_set matches what we need */
5abb8855 659 return cset;
472b1053 660 }
817929ec
PM
661
662 /* No existing cgroup group matched */
663 return NULL;
664}
665
69d0206c 666static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 667{
69d0206c 668 struct cgrp_cset_link *link, *tmp_link;
36553434 669
69d0206c
TH
670 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
671 list_del(&link->cset_link);
36553434
LZ
672 kfree(link);
673 }
674}
675
69d0206c
TH
676/**
677 * allocate_cgrp_cset_links - allocate cgrp_cset_links
678 * @count: the number of links to allocate
679 * @tmp_links: list_head the allocated links are put on
680 *
681 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
682 * through ->cset_link. Returns 0 on success or -errno.
817929ec 683 */
69d0206c 684static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 685{
69d0206c 686 struct cgrp_cset_link *link;
817929ec 687 int i;
69d0206c
TH
688
689 INIT_LIST_HEAD(tmp_links);
690
817929ec 691 for (i = 0; i < count; i++) {
f4f4be2b 692 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 693 if (!link) {
69d0206c 694 free_cgrp_cset_links(tmp_links);
817929ec
PM
695 return -ENOMEM;
696 }
69d0206c 697 list_add(&link->cset_link, tmp_links);
817929ec
PM
698 }
699 return 0;
700}
701
c12f65d4
LZ
702/**
703 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 704 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 705 * @cset: the css_set to be linked
c12f65d4
LZ
706 * @cgrp: the destination cgroup
707 */
69d0206c
TH
708static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
709 struct cgroup *cgrp)
c12f65d4 710{
69d0206c 711 struct cgrp_cset_link *link;
c12f65d4 712
69d0206c 713 BUG_ON(list_empty(tmp_links));
6803c006
TH
714
715 if (cgroup_on_dfl(cgrp))
716 cset->dfl_cgrp = cgrp;
717
69d0206c
TH
718 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
719 link->cset = cset;
7717f7ba 720 link->cgrp = cgrp;
842b597e
TH
721
722 if (list_empty(&cgrp->cset_links))
723 cgroup_update_populated(cgrp, true);
69d0206c 724 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 725
7717f7ba
PM
726 /*
727 * Always add links to the tail of the list so that the list
728 * is sorted by order of hierarchy creation
729 */
69d0206c 730 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
731}
732
b326f9d0
TH
733/**
734 * find_css_set - return a new css_set with one cgroup updated
735 * @old_cset: the baseline css_set
736 * @cgrp: the cgroup to be updated
737 *
738 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
739 * substituted into the appropriate hierarchy.
817929ec 740 */
5abb8855
TH
741static struct css_set *find_css_set(struct css_set *old_cset,
742 struct cgroup *cgrp)
817929ec 743{
b326f9d0 744 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 745 struct css_set *cset;
69d0206c
TH
746 struct list_head tmp_links;
747 struct cgrp_cset_link *link;
2d8f243a 748 struct cgroup_subsys *ss;
0ac801fe 749 unsigned long key;
2d8f243a 750 int ssid;
472b1053 751
b326f9d0
TH
752 lockdep_assert_held(&cgroup_mutex);
753
817929ec
PM
754 /* First see if we already have a cgroup group that matches
755 * the desired set */
96d365e0 756 down_read(&css_set_rwsem);
5abb8855
TH
757 cset = find_existing_css_set(old_cset, cgrp, template);
758 if (cset)
759 get_css_set(cset);
96d365e0 760 up_read(&css_set_rwsem);
817929ec 761
5abb8855
TH
762 if (cset)
763 return cset;
817929ec 764
f4f4be2b 765 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 766 if (!cset)
817929ec
PM
767 return NULL;
768
69d0206c 769 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 770 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 771 kfree(cset);
817929ec
PM
772 return NULL;
773 }
774
5abb8855 775 atomic_set(&cset->refcount, 1);
69d0206c 776 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 777 INIT_LIST_HEAD(&cset->tasks);
c7561128 778 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 779 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 780 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 781 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
782
783 /* Copy the set of subsystem state objects generated in
784 * find_existing_css_set() */
5abb8855 785 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 786
96d365e0 787 down_write(&css_set_rwsem);
817929ec 788 /* Add reference counts and links from the new css_set. */
69d0206c 789 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 790 struct cgroup *c = link->cgrp;
69d0206c 791
7717f7ba
PM
792 if (c->root == cgrp->root)
793 c = cgrp;
69d0206c 794 link_css_set(&tmp_links, cset, c);
7717f7ba 795 }
817929ec 796
69d0206c 797 BUG_ON(!list_empty(&tmp_links));
817929ec 798
817929ec 799 css_set_count++;
472b1053 800
2d8f243a 801 /* Add @cset to the hash table */
5abb8855
TH
802 key = css_set_hash(cset->subsys);
803 hash_add(css_set_table, &cset->hlist, key);
472b1053 804
2d8f243a
TH
805 for_each_subsys(ss, ssid)
806 list_add_tail(&cset->e_cset_node[ssid],
807 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
808
96d365e0 809 up_write(&css_set_rwsem);
817929ec 810
5abb8855 811 return cset;
b4f48b63
PM
812}
813
3dd06ffa 814static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 815{
3dd06ffa 816 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 817
3dd06ffa 818 return root_cgrp->root;
2bd59d48
TH
819}
820
3dd06ffa 821static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
822{
823 int id;
824
825 lockdep_assert_held(&cgroup_mutex);
826
985ed670 827 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
828 if (id < 0)
829 return id;
830
831 root->hierarchy_id = id;
832 return 0;
833}
834
3dd06ffa 835static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
836{
837 lockdep_assert_held(&cgroup_mutex);
838
839 if (root->hierarchy_id) {
840 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
841 root->hierarchy_id = 0;
842 }
843}
844
3dd06ffa 845static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
846{
847 if (root) {
848 /* hierarhcy ID shoulid already have been released */
849 WARN_ON_ONCE(root->hierarchy_id);
850
851 idr_destroy(&root->cgroup_idr);
852 kfree(root);
853 }
854}
855
3dd06ffa 856static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 857{
3dd06ffa 858 struct cgroup *cgrp = &root->cgrp;
f2e85d57 859 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 860
2bd59d48 861 mutex_lock(&cgroup_mutex);
f2e85d57 862
776f02fa 863 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 864 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 865
f2e85d57 866 /* Rebind all subsystems back to the default hierarchy */
f392e51c 867 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 868
7717f7ba 869 /*
f2e85d57
TH
870 * Release all the links from cset_links to this hierarchy's
871 * root cgroup
7717f7ba 872 */
96d365e0 873 down_write(&css_set_rwsem);
f2e85d57
TH
874
875 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
876 list_del(&link->cset_link);
877 list_del(&link->cgrp_link);
878 kfree(link);
879 }
96d365e0 880 up_write(&css_set_rwsem);
f2e85d57
TH
881
882 if (!list_empty(&root->root_list)) {
883 list_del(&root->root_list);
884 cgroup_root_count--;
885 }
886
887 cgroup_exit_root_id(root);
888
889 mutex_unlock(&cgroup_mutex);
f2e85d57 890
2bd59d48 891 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
892 cgroup_free_root(root);
893}
894
ceb6a081
TH
895/* look up cgroup associated with given css_set on the specified hierarchy */
896static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 897 struct cgroup_root *root)
7717f7ba 898{
7717f7ba
PM
899 struct cgroup *res = NULL;
900
96d365e0
TH
901 lockdep_assert_held(&cgroup_mutex);
902 lockdep_assert_held(&css_set_rwsem);
903
5abb8855 904 if (cset == &init_css_set) {
3dd06ffa 905 res = &root->cgrp;
7717f7ba 906 } else {
69d0206c
TH
907 struct cgrp_cset_link *link;
908
909 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 910 struct cgroup *c = link->cgrp;
69d0206c 911
7717f7ba
PM
912 if (c->root == root) {
913 res = c;
914 break;
915 }
916 }
917 }
96d365e0 918
7717f7ba
PM
919 BUG_ON(!res);
920 return res;
921}
922
ddbcc7e8 923/*
ceb6a081
TH
924 * Return the cgroup for "task" from the given hierarchy. Must be
925 * called with cgroup_mutex and css_set_rwsem held.
926 */
927static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 928 struct cgroup_root *root)
ceb6a081
TH
929{
930 /*
931 * No need to lock the task - since we hold cgroup_mutex the
932 * task can't change groups, so the only thing that can happen
933 * is that it exits and its css is set back to init_css_set.
934 */
935 return cset_cgroup_from_root(task_css_set(task), root);
936}
937
ddbcc7e8 938/*
ddbcc7e8
PM
939 * A task must hold cgroup_mutex to modify cgroups.
940 *
941 * Any task can increment and decrement the count field without lock.
942 * So in general, code holding cgroup_mutex can't rely on the count
943 * field not changing. However, if the count goes to zero, then only
956db3ca 944 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
945 * means that no tasks are currently attached, therefore there is no
946 * way a task attached to that cgroup can fork (the other way to
947 * increment the count). So code holding cgroup_mutex can safely
948 * assume that if the count is zero, it will stay zero. Similarly, if
949 * a task holds cgroup_mutex on a cgroup with zero count, it
950 * knows that the cgroup won't be removed, as cgroup_rmdir()
951 * needs that mutex.
952 *
ddbcc7e8
PM
953 * A cgroup can only be deleted if both its 'count' of using tasks
954 * is zero, and its list of 'children' cgroups is empty. Since all
955 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 956 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 957 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 958 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
959 *
960 * P.S. One more locking exception. RCU is used to guard the
956db3ca 961 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
962 */
963
69dfa00c 964static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 965static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 966static const struct file_operations proc_cgroupstats_operations;
a424316c 967
8d7e6fb0
TH
968static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
969 char *buf)
ddbcc7e8 970{
8d7e6fb0
TH
971 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
972 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
973 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
974 cft->ss->name, cft->name);
975 else
976 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
977 return buf;
ddbcc7e8
PM
978}
979
f2e85d57
TH
980/**
981 * cgroup_file_mode - deduce file mode of a control file
982 * @cft: the control file in question
983 *
984 * returns cft->mode if ->mode is not 0
985 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
986 * returns S_IRUGO if it has only a read handler
987 * returns S_IWUSR if it has only a write hander
988 */
989static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 990{
f2e85d57 991 umode_t mode = 0;
65dff759 992
f2e85d57
TH
993 if (cft->mode)
994 return cft->mode;
995
996 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
997 mode |= S_IRUGO;
998
6770c64e 999 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1000 mode |= S_IWUSR;
1001
1002 return mode;
65dff759
LZ
1003}
1004
59f5296b 1005static void cgroup_get(struct cgroup *cgrp)
be445626 1006{
2bd59d48 1007 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1008 css_get(&cgrp->self);
be445626
LZ
1009}
1010
aa32362f
LZ
1011static bool cgroup_tryget(struct cgroup *cgrp)
1012{
1013 return css_tryget(&cgrp->self);
1014}
1015
59f5296b 1016static void cgroup_put(struct cgroup *cgrp)
be445626 1017{
9d755d33 1018 css_put(&cgrp->self);
be445626
LZ
1019}
1020
af0ba678 1021/**
0f060deb 1022 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1023 * @cgrp: the target cgroup
0f060deb 1024 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1025 *
1026 * On the default hierarchy, a subsystem may request other subsystems to be
1027 * enabled together through its ->depends_on mask. In such cases, more
1028 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1029 *
0f060deb
TH
1030 * This function calculates which subsystems need to be enabled if
1031 * @subtree_control is to be applied to @cgrp. The returned mask is always
1032 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1033 */
0f060deb
TH
1034static unsigned int cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1035 unsigned int subtree_control)
667c2491 1036{
af0ba678 1037 struct cgroup *parent = cgroup_parent(cgrp);
0f060deb 1038 unsigned int cur_ss_mask = subtree_control;
af0ba678
TH
1039 struct cgroup_subsys *ss;
1040 int ssid;
1041
1042 lockdep_assert_held(&cgroup_mutex);
1043
0f060deb
TH
1044 if (!cgroup_on_dfl(cgrp))
1045 return cur_ss_mask;
af0ba678
TH
1046
1047 while (true) {
1048 unsigned int new_ss_mask = cur_ss_mask;
1049
1050 for_each_subsys(ss, ssid)
1051 if (cur_ss_mask & (1 << ssid))
1052 new_ss_mask |= ss->depends_on;
1053
1054 /*
1055 * Mask out subsystems which aren't available. This can
1056 * happen only if some depended-upon subsystems were bound
1057 * to non-default hierarchies.
1058 */
1059 if (parent)
1060 new_ss_mask &= parent->child_subsys_mask;
1061 else
1062 new_ss_mask &= cgrp->root->subsys_mask;
1063
1064 if (new_ss_mask == cur_ss_mask)
1065 break;
1066 cur_ss_mask = new_ss_mask;
1067 }
1068
0f060deb
TH
1069 return cur_ss_mask;
1070}
1071
1072/**
1073 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1074 * @cgrp: the target cgroup
1075 *
1076 * Update @cgrp->child_subsys_mask according to the current
1077 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1078 */
1079static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1080{
1081 cgrp->child_subsys_mask =
1082 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1083}
1084
a9746d8d
TH
1085/**
1086 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1087 * @kn: the kernfs_node being serviced
1088 *
1089 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1090 * the method finishes if locking succeeded. Note that once this function
1091 * returns the cgroup returned by cgroup_kn_lock_live() may become
1092 * inaccessible any time. If the caller intends to continue to access the
1093 * cgroup, it should pin it before invoking this function.
1094 */
1095static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1096{
a9746d8d
TH
1097 struct cgroup *cgrp;
1098
1099 if (kernfs_type(kn) == KERNFS_DIR)
1100 cgrp = kn->priv;
1101 else
1102 cgrp = kn->parent->priv;
1103
1104 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1105
1106 kernfs_unbreak_active_protection(kn);
1107 cgroup_put(cgrp);
ddbcc7e8
PM
1108}
1109
a9746d8d
TH
1110/**
1111 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1112 * @kn: the kernfs_node being serviced
1113 *
1114 * This helper is to be used by a cgroup kernfs method currently servicing
1115 * @kn. It breaks the active protection, performs cgroup locking and
1116 * verifies that the associated cgroup is alive. Returns the cgroup if
1117 * alive; otherwise, %NULL. A successful return should be undone by a
1118 * matching cgroup_kn_unlock() invocation.
1119 *
1120 * Any cgroup kernfs method implementation which requires locking the
1121 * associated cgroup should use this helper. It avoids nesting cgroup
1122 * locking under kernfs active protection and allows all kernfs operations
1123 * including self-removal.
1124 */
1125static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1126{
a9746d8d
TH
1127 struct cgroup *cgrp;
1128
1129 if (kernfs_type(kn) == KERNFS_DIR)
1130 cgrp = kn->priv;
1131 else
1132 cgrp = kn->parent->priv;
05ef1d7c 1133
2739d3cc 1134 /*
01f6474c 1135 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1136 * active_ref. cgroup liveliness check alone provides enough
1137 * protection against removal. Ensure @cgrp stays accessible and
1138 * break the active_ref protection.
2739d3cc 1139 */
aa32362f
LZ
1140 if (!cgroup_tryget(cgrp))
1141 return NULL;
a9746d8d
TH
1142 kernfs_break_active_protection(kn);
1143
2bd59d48 1144 mutex_lock(&cgroup_mutex);
05ef1d7c 1145
a9746d8d
TH
1146 if (!cgroup_is_dead(cgrp))
1147 return cgrp;
1148
1149 cgroup_kn_unlock(kn);
1150 return NULL;
ddbcc7e8 1151}
05ef1d7c 1152
2739d3cc 1153static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1154{
2bd59d48 1155 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1156
01f6474c 1157 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1158 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1159}
1160
13af07df 1161/**
628f7cd4 1162 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1163 * @cgrp: target cgroup
13af07df
AR
1164 * @subsys_mask: mask of the subsystem ids whose files should be removed
1165 */
69dfa00c 1166static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1167{
13af07df 1168 struct cgroup_subsys *ss;
b420ba7d 1169 int i;
05ef1d7c 1170
b420ba7d 1171 for_each_subsys(ss, i) {
0adb0704 1172 struct cftype *cfts;
b420ba7d 1173
69dfa00c 1174 if (!(subsys_mask & (1 << i)))
13af07df 1175 continue;
0adb0704
TH
1176 list_for_each_entry(cfts, &ss->cfts, node)
1177 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1178 }
ddbcc7e8
PM
1179}
1180
69dfa00c 1181static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1182{
30159ec7 1183 struct cgroup_subsys *ss;
5533e011 1184 unsigned int tmp_ss_mask;
2d8f243a 1185 int ssid, i, ret;
ddbcc7e8 1186
ace2bee8 1187 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1188
5df36032
TH
1189 for_each_subsys(ss, ssid) {
1190 if (!(ss_mask & (1 << ssid)))
1191 continue;
aae8aab4 1192
7fd8c565
TH
1193 /* if @ss has non-root csses attached to it, can't move */
1194 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1195 return -EBUSY;
1d5be6b2 1196
5df36032 1197 /* can't move between two non-dummy roots either */
7fd8c565 1198 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1199 return -EBUSY;
ddbcc7e8
PM
1200 }
1201
5533e011
TH
1202 /* skip creating root files on dfl_root for inhibited subsystems */
1203 tmp_ss_mask = ss_mask;
1204 if (dst_root == &cgrp_dfl_root)
1205 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1206
1207 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1208 if (ret) {
1209 if (dst_root != &cgrp_dfl_root)
5df36032 1210 return ret;
ddbcc7e8 1211
a2dd4247
TH
1212 /*
1213 * Rebinding back to the default root is not allowed to
1214 * fail. Using both default and non-default roots should
1215 * be rare. Moving subsystems back and forth even more so.
1216 * Just warn about it and continue.
1217 */
1218 if (cgrp_dfl_root_visible) {
69dfa00c 1219 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1220 ret, ss_mask);
ed3d261b 1221 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1222 }
5df36032 1223 }
3126121f
TH
1224
1225 /*
1226 * Nothing can fail from this point on. Remove files for the
1227 * removed subsystems and rebind each subsystem.
1228 */
5df36032 1229 for_each_subsys(ss, ssid)
a2dd4247 1230 if (ss_mask & (1 << ssid))
3dd06ffa 1231 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1232
5df36032 1233 for_each_subsys(ss, ssid) {
3dd06ffa 1234 struct cgroup_root *src_root;
5df36032 1235 struct cgroup_subsys_state *css;
2d8f243a 1236 struct css_set *cset;
a8a648c4 1237
5df36032
TH
1238 if (!(ss_mask & (1 << ssid)))
1239 continue;
a8a648c4 1240
5df36032 1241 src_root = ss->root;
3dd06ffa 1242 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1243
3dd06ffa 1244 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1245
3dd06ffa
TH
1246 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1247 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1248 ss->root = dst_root;
3dd06ffa 1249 css->cgroup = &dst_root->cgrp;
73e80ed8 1250
2d8f243a
TH
1251 down_write(&css_set_rwsem);
1252 hash_for_each(css_set_table, i, cset, hlist)
1253 list_move_tail(&cset->e_cset_node[ss->id],
1254 &dst_root->cgrp.e_csets[ss->id]);
1255 up_write(&css_set_rwsem);
1256
f392e51c 1257 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1258 src_root->cgrp.subtree_control &= ~(1 << ssid);
1259 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1260
bd53d617 1261 /* default hierarchy doesn't enable controllers by default */
f392e51c 1262 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1263 if (dst_root != &cgrp_dfl_root) {
1264 dst_root->cgrp.subtree_control |= 1 << ssid;
1265 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1266 }
a8a648c4 1267
5df36032
TH
1268 if (ss->bind)
1269 ss->bind(css);
ddbcc7e8 1270 }
ddbcc7e8 1271
a2dd4247 1272 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1273 return 0;
1274}
1275
2bd59d48
TH
1276static int cgroup_show_options(struct seq_file *seq,
1277 struct kernfs_root *kf_root)
ddbcc7e8 1278{
3dd06ffa 1279 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1280 struct cgroup_subsys *ss;
b85d2040 1281 int ssid;
ddbcc7e8 1282
b85d2040 1283 for_each_subsys(ss, ssid)
f392e51c 1284 if (root->subsys_mask & (1 << ssid))
b85d2040 1285 seq_printf(seq, ",%s", ss->name);
93438629 1286 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1287 seq_puts(seq, ",noprefix");
93438629 1288 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1289 seq_puts(seq, ",xattr");
69e943b7
TH
1290
1291 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1292 if (strlen(root->release_agent_path))
1293 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1294 spin_unlock(&release_agent_path_lock);
1295
3dd06ffa 1296 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1297 seq_puts(seq, ",clone_children");
c6d57f33
PM
1298 if (strlen(root->name))
1299 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1300 return 0;
1301}
1302
1303struct cgroup_sb_opts {
69dfa00c
TH
1304 unsigned int subsys_mask;
1305 unsigned int flags;
81a6a5cd 1306 char *release_agent;
2260e7fc 1307 bool cpuset_clone_children;
c6d57f33 1308 char *name;
2c6ab6d2
PM
1309 /* User explicitly requested empty subsystem */
1310 bool none;
ddbcc7e8
PM
1311};
1312
cf5d5941 1313static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1314{
32a8cf23
DL
1315 char *token, *o = data;
1316 bool all_ss = false, one_ss = false;
69dfa00c 1317 unsigned int mask = -1U;
30159ec7 1318 struct cgroup_subsys *ss;
7b9a6ba5 1319 int nr_opts = 0;
30159ec7 1320 int i;
f9ab5b5b
LZ
1321
1322#ifdef CONFIG_CPUSETS
69dfa00c 1323 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1324#endif
ddbcc7e8 1325
c6d57f33 1326 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1327
1328 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1329 nr_opts++;
1330
ddbcc7e8
PM
1331 if (!*token)
1332 return -EINVAL;
32a8cf23 1333 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1334 /* Explicitly have no subsystems */
1335 opts->none = true;
32a8cf23
DL
1336 continue;
1337 }
1338 if (!strcmp(token, "all")) {
1339 /* Mutually exclusive option 'all' + subsystem name */
1340 if (one_ss)
1341 return -EINVAL;
1342 all_ss = true;
1343 continue;
1344 }
873fe09e
TH
1345 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1346 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1347 continue;
1348 }
32a8cf23 1349 if (!strcmp(token, "noprefix")) {
93438629 1350 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1351 continue;
1352 }
1353 if (!strcmp(token, "clone_children")) {
2260e7fc 1354 opts->cpuset_clone_children = true;
32a8cf23
DL
1355 continue;
1356 }
03b1cde6 1357 if (!strcmp(token, "xattr")) {
93438629 1358 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1359 continue;
1360 }
32a8cf23 1361 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1362 /* Specifying two release agents is forbidden */
1363 if (opts->release_agent)
1364 return -EINVAL;
c6d57f33 1365 opts->release_agent =
e400c285 1366 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1367 if (!opts->release_agent)
1368 return -ENOMEM;
32a8cf23
DL
1369 continue;
1370 }
1371 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1372 const char *name = token + 5;
1373 /* Can't specify an empty name */
1374 if (!strlen(name))
1375 return -EINVAL;
1376 /* Must match [\w.-]+ */
1377 for (i = 0; i < strlen(name); i++) {
1378 char c = name[i];
1379 if (isalnum(c))
1380 continue;
1381 if ((c == '.') || (c == '-') || (c == '_'))
1382 continue;
1383 return -EINVAL;
1384 }
1385 /* Specifying two names is forbidden */
1386 if (opts->name)
1387 return -EINVAL;
1388 opts->name = kstrndup(name,
e400c285 1389 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1390 GFP_KERNEL);
1391 if (!opts->name)
1392 return -ENOMEM;
32a8cf23
DL
1393
1394 continue;
1395 }
1396
30159ec7 1397 for_each_subsys(ss, i) {
32a8cf23
DL
1398 if (strcmp(token, ss->name))
1399 continue;
1400 if (ss->disabled)
1401 continue;
1402
1403 /* Mutually exclusive option 'all' + subsystem name */
1404 if (all_ss)
1405 return -EINVAL;
69dfa00c 1406 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1407 one_ss = true;
1408
1409 break;
1410 }
1411 if (i == CGROUP_SUBSYS_COUNT)
1412 return -ENOENT;
1413 }
1414
873fe09e 1415 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1416 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1417 if (nr_opts != 1) {
1418 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1419 return -EINVAL;
1420 }
7b9a6ba5 1421 return 0;
873fe09e
TH
1422 }
1423
7b9a6ba5
TH
1424 /*
1425 * If the 'all' option was specified select all the subsystems,
1426 * otherwise if 'none', 'name=' and a subsystem name options were
1427 * not specified, let's default to 'all'
1428 */
1429 if (all_ss || (!one_ss && !opts->none && !opts->name))
1430 for_each_subsys(ss, i)
1431 if (!ss->disabled)
1432 opts->subsys_mask |= (1 << i);
1433
1434 /*
1435 * We either have to specify by name or by subsystems. (So all
1436 * empty hierarchies must have a name).
1437 */
1438 if (!opts->subsys_mask && !opts->name)
1439 return -EINVAL;
1440
f9ab5b5b
LZ
1441 /*
1442 * Option noprefix was introduced just for backward compatibility
1443 * with the old cpuset, so we allow noprefix only if mounting just
1444 * the cpuset subsystem.
1445 */
93438629 1446 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1447 return -EINVAL;
1448
2c6ab6d2 1449 /* Can't specify "none" and some subsystems */
a1a71b45 1450 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1451 return -EINVAL;
1452
ddbcc7e8
PM
1453 return 0;
1454}
1455
2bd59d48 1456static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1457{
1458 int ret = 0;
3dd06ffa 1459 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1460 struct cgroup_sb_opts opts;
69dfa00c 1461 unsigned int added_mask, removed_mask;
ddbcc7e8 1462
aa6ec29b
TH
1463 if (root == &cgrp_dfl_root) {
1464 pr_err("remount is not allowed\n");
873fe09e
TH
1465 return -EINVAL;
1466 }
1467
ddbcc7e8
PM
1468 mutex_lock(&cgroup_mutex);
1469
1470 /* See what subsystems are wanted */
1471 ret = parse_cgroupfs_options(data, &opts);
1472 if (ret)
1473 goto out_unlock;
1474
f392e51c 1475 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1476 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1477 task_tgid_nr(current), current->comm);
8b5a5a9d 1478
f392e51c
TH
1479 added_mask = opts.subsys_mask & ~root->subsys_mask;
1480 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1481
cf5d5941 1482 /* Don't allow flags or name to change at remount */
7450e90b 1483 if ((opts.flags ^ root->flags) ||
cf5d5941 1484 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1485 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1486 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1487 ret = -EINVAL;
1488 goto out_unlock;
1489 }
1490
f172e67c 1491 /* remounting is not allowed for populated hierarchies */
d5c419b6 1492 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1493 ret = -EBUSY;
0670e08b 1494 goto out_unlock;
cf5d5941 1495 }
ddbcc7e8 1496
5df36032 1497 ret = rebind_subsystems(root, added_mask);
3126121f 1498 if (ret)
0670e08b 1499 goto out_unlock;
ddbcc7e8 1500
3dd06ffa 1501 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1502
69e943b7
TH
1503 if (opts.release_agent) {
1504 spin_lock(&release_agent_path_lock);
81a6a5cd 1505 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1506 spin_unlock(&release_agent_path_lock);
1507 }
ddbcc7e8 1508 out_unlock:
66bdc9cf 1509 kfree(opts.release_agent);
c6d57f33 1510 kfree(opts.name);
ddbcc7e8 1511 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1512 return ret;
1513}
1514
afeb0f9f
TH
1515/*
1516 * To reduce the fork() overhead for systems that are not actually using
1517 * their cgroups capability, we don't maintain the lists running through
1518 * each css_set to its tasks until we see the list actually used - in other
1519 * words after the first mount.
1520 */
1521static bool use_task_css_set_links __read_mostly;
1522
1523static void cgroup_enable_task_cg_lists(void)
1524{
1525 struct task_struct *p, *g;
1526
96d365e0 1527 down_write(&css_set_rwsem);
afeb0f9f
TH
1528
1529 if (use_task_css_set_links)
1530 goto out_unlock;
1531
1532 use_task_css_set_links = true;
1533
1534 /*
1535 * We need tasklist_lock because RCU is not safe against
1536 * while_each_thread(). Besides, a forking task that has passed
1537 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1538 * is not guaranteed to have its child immediately visible in the
1539 * tasklist if we walk through it with RCU.
1540 */
1541 read_lock(&tasklist_lock);
1542 do_each_thread(g, p) {
afeb0f9f
TH
1543 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1544 task_css_set(p) != &init_css_set);
1545
1546 /*
1547 * We should check if the process is exiting, otherwise
1548 * it will race with cgroup_exit() in that the list
1549 * entry won't be deleted though the process has exited.
f153ad11
TH
1550 * Do it while holding siglock so that we don't end up
1551 * racing against cgroup_exit().
afeb0f9f 1552 */
f153ad11 1553 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1554 if (!(p->flags & PF_EXITING)) {
1555 struct css_set *cset = task_css_set(p);
1556
1557 list_add(&p->cg_list, &cset->tasks);
1558 get_css_set(cset);
1559 }
f153ad11 1560 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1561 } while_each_thread(g, p);
1562 read_unlock(&tasklist_lock);
1563out_unlock:
96d365e0 1564 up_write(&css_set_rwsem);
afeb0f9f 1565}
ddbcc7e8 1566
cc31edce
PM
1567static void init_cgroup_housekeeping(struct cgroup *cgrp)
1568{
2d8f243a
TH
1569 struct cgroup_subsys *ss;
1570 int ssid;
1571
d5c419b6
TH
1572 INIT_LIST_HEAD(&cgrp->self.sibling);
1573 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1574 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1575 INIT_LIST_HEAD(&cgrp->pidlists);
1576 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1577 cgrp->self.cgroup = cgrp;
184faf32 1578 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1579
1580 for_each_subsys(ss, ssid)
1581 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1582
1583 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1584 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1585}
c6d57f33 1586
3dd06ffa 1587static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1588 struct cgroup_sb_opts *opts)
ddbcc7e8 1589{
3dd06ffa 1590 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1591
ddbcc7e8 1592 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1593 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1594 cgrp->root = root;
cc31edce 1595 init_cgroup_housekeeping(cgrp);
4e96ee8e 1596 idr_init(&root->cgroup_idr);
c6d57f33 1597
c6d57f33
PM
1598 root->flags = opts->flags;
1599 if (opts->release_agent)
1600 strcpy(root->release_agent_path, opts->release_agent);
1601 if (opts->name)
1602 strcpy(root->name, opts->name);
2260e7fc 1603 if (opts->cpuset_clone_children)
3dd06ffa 1604 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1605}
1606
69dfa00c 1607static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1608{
d427dfeb 1609 LIST_HEAD(tmp_links);
3dd06ffa 1610 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1611 struct cftype *base_files;
d427dfeb 1612 struct css_set *cset;
d427dfeb 1613 int i, ret;
2c6ab6d2 1614
d427dfeb 1615 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1616
6fa4918d 1617 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1618 if (ret < 0)
2bd59d48 1619 goto out;
d427dfeb 1620 root_cgrp->id = ret;
c6d57f33 1621
2aad2a86
TH
1622 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1623 GFP_KERNEL);
9d755d33
TH
1624 if (ret)
1625 goto out;
1626
d427dfeb 1627 /*
96d365e0 1628 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1629 * but that's OK - it can only be increased by someone holding
1630 * cgroup_lock, and that's us. The worst that can happen is that we
1631 * have some link structures left over
1632 */
1633 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1634 if (ret)
9d755d33 1635 goto cancel_ref;
ddbcc7e8 1636
985ed670 1637 ret = cgroup_init_root_id(root);
ddbcc7e8 1638 if (ret)
9d755d33 1639 goto cancel_ref;
ddbcc7e8 1640
2bd59d48
TH
1641 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1642 KERNFS_ROOT_CREATE_DEACTIVATED,
1643 root_cgrp);
1644 if (IS_ERR(root->kf_root)) {
1645 ret = PTR_ERR(root->kf_root);
1646 goto exit_root_id;
1647 }
1648 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1649
a14c6874
TH
1650 if (root == &cgrp_dfl_root)
1651 base_files = cgroup_dfl_base_files;
1652 else
1653 base_files = cgroup_legacy_base_files;
1654
1655 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1656 if (ret)
2bd59d48 1657 goto destroy_root;
ddbcc7e8 1658
5df36032 1659 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1660 if (ret)
2bd59d48 1661 goto destroy_root;
ddbcc7e8 1662
d427dfeb
TH
1663 /*
1664 * There must be no failure case after here, since rebinding takes
1665 * care of subsystems' refcounts, which are explicitly dropped in
1666 * the failure exit path.
1667 */
1668 list_add(&root->root_list, &cgroup_roots);
1669 cgroup_root_count++;
0df6a63f 1670
d427dfeb 1671 /*
3dd06ffa 1672 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1673 * objects.
1674 */
96d365e0 1675 down_write(&css_set_rwsem);
d427dfeb
TH
1676 hash_for_each(css_set_table, i, cset, hlist)
1677 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1678 up_write(&css_set_rwsem);
ddbcc7e8 1679
d5c419b6 1680 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1681 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1682
2bd59d48 1683 kernfs_activate(root_cgrp->kn);
d427dfeb 1684 ret = 0;
2bd59d48 1685 goto out;
d427dfeb 1686
2bd59d48
TH
1687destroy_root:
1688 kernfs_destroy_root(root->kf_root);
1689 root->kf_root = NULL;
1690exit_root_id:
d427dfeb 1691 cgroup_exit_root_id(root);
9d755d33 1692cancel_ref:
9a1049da 1693 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1694out:
d427dfeb
TH
1695 free_cgrp_cset_links(&tmp_links);
1696 return ret;
ddbcc7e8
PM
1697}
1698
f7e83571 1699static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1700 int flags, const char *unused_dev_name,
f7e83571 1701 void *data)
ddbcc7e8 1702{
3a32bd72 1703 struct super_block *pinned_sb = NULL;
970317aa 1704 struct cgroup_subsys *ss;
3dd06ffa 1705 struct cgroup_root *root;
ddbcc7e8 1706 struct cgroup_sb_opts opts;
2bd59d48 1707 struct dentry *dentry;
8e30e2b8 1708 int ret;
970317aa 1709 int i;
c6b3d5bc 1710 bool new_sb;
ddbcc7e8 1711
56fde9e0
TH
1712 /*
1713 * The first time anyone tries to mount a cgroup, enable the list
1714 * linking each css_set to its tasks and fix up all existing tasks.
1715 */
1716 if (!use_task_css_set_links)
1717 cgroup_enable_task_cg_lists();
e37a06f1 1718
aae8aab4 1719 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1720
1721 /* First find the desired set of subsystems */
ddbcc7e8 1722 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1723 if (ret)
8e30e2b8 1724 goto out_unlock;
a015edd2 1725
2bd59d48 1726 /* look for a matching existing root */
7b9a6ba5 1727 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1728 cgrp_dfl_root_visible = true;
1729 root = &cgrp_dfl_root;
1730 cgroup_get(&root->cgrp);
1731 ret = 0;
1732 goto out_unlock;
ddbcc7e8
PM
1733 }
1734
970317aa
LZ
1735 /*
1736 * Destruction of cgroup root is asynchronous, so subsystems may
1737 * still be dying after the previous unmount. Let's drain the
1738 * dying subsystems. We just need to ensure that the ones
1739 * unmounted previously finish dying and don't care about new ones
1740 * starting. Testing ref liveliness is good enough.
1741 */
1742 for_each_subsys(ss, i) {
1743 if (!(opts.subsys_mask & (1 << i)) ||
1744 ss->root == &cgrp_dfl_root)
1745 continue;
1746
1747 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1748 mutex_unlock(&cgroup_mutex);
1749 msleep(10);
1750 ret = restart_syscall();
1751 goto out_free;
1752 }
1753 cgroup_put(&ss->root->cgrp);
1754 }
1755
985ed670 1756 for_each_root(root) {
2bd59d48 1757 bool name_match = false;
3126121f 1758
3dd06ffa 1759 if (root == &cgrp_dfl_root)
985ed670 1760 continue;
3126121f 1761
cf5d5941 1762 /*
2bd59d48
TH
1763 * If we asked for a name then it must match. Also, if
1764 * name matches but sybsys_mask doesn't, we should fail.
1765 * Remember whether name matched.
cf5d5941 1766 */
2bd59d48
TH
1767 if (opts.name) {
1768 if (strcmp(opts.name, root->name))
1769 continue;
1770 name_match = true;
1771 }
ddbcc7e8 1772
c6d57f33 1773 /*
2bd59d48
TH
1774 * If we asked for subsystems (or explicitly for no
1775 * subsystems) then they must match.
c6d57f33 1776 */
2bd59d48 1777 if ((opts.subsys_mask || opts.none) &&
f392e51c 1778 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1779 if (!name_match)
1780 continue;
1781 ret = -EBUSY;
1782 goto out_unlock;
1783 }
873fe09e 1784
7b9a6ba5
TH
1785 if (root->flags ^ opts.flags)
1786 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1787
776f02fa 1788 /*
3a32bd72
LZ
1789 * We want to reuse @root whose lifetime is governed by its
1790 * ->cgrp. Let's check whether @root is alive and keep it
1791 * that way. As cgroup_kill_sb() can happen anytime, we
1792 * want to block it by pinning the sb so that @root doesn't
1793 * get killed before mount is complete.
1794 *
1795 * With the sb pinned, tryget_live can reliably indicate
1796 * whether @root can be reused. If it's being killed,
1797 * drain it. We can use wait_queue for the wait but this
1798 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1799 */
3a32bd72
LZ
1800 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1801 if (IS_ERR(pinned_sb) ||
1802 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1803 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1804 if (!IS_ERR_OR_NULL(pinned_sb))
1805 deactivate_super(pinned_sb);
776f02fa 1806 msleep(10);
a015edd2
TH
1807 ret = restart_syscall();
1808 goto out_free;
776f02fa 1809 }
ddbcc7e8 1810
776f02fa 1811 ret = 0;
2bd59d48 1812 goto out_unlock;
ddbcc7e8 1813 }
ddbcc7e8 1814
817929ec 1815 /*
172a2c06
TH
1816 * No such thing, create a new one. name= matching without subsys
1817 * specification is allowed for already existing hierarchies but we
1818 * can't create new one without subsys specification.
817929ec 1819 */
172a2c06
TH
1820 if (!opts.subsys_mask && !opts.none) {
1821 ret = -EINVAL;
1822 goto out_unlock;
817929ec 1823 }
817929ec 1824
172a2c06
TH
1825 root = kzalloc(sizeof(*root), GFP_KERNEL);
1826 if (!root) {
1827 ret = -ENOMEM;
2bd59d48 1828 goto out_unlock;
839ec545 1829 }
e5f6a860 1830
172a2c06
TH
1831 init_cgroup_root(root, &opts);
1832
35585573 1833 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1834 if (ret)
1835 cgroup_free_root(root);
fa3ca07e 1836
8e30e2b8 1837out_unlock:
ddbcc7e8 1838 mutex_unlock(&cgroup_mutex);
a015edd2 1839out_free:
c6d57f33
PM
1840 kfree(opts.release_agent);
1841 kfree(opts.name);
03b1cde6 1842
2bd59d48 1843 if (ret)
8e30e2b8 1844 return ERR_PTR(ret);
2bd59d48 1845
c9482a5b
JZ
1846 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1847 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1848 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1849 cgroup_put(&root->cgrp);
3a32bd72
LZ
1850
1851 /*
1852 * If @pinned_sb, we're reusing an existing root and holding an
1853 * extra ref on its sb. Mount is complete. Put the extra ref.
1854 */
1855 if (pinned_sb) {
1856 WARN_ON(new_sb);
1857 deactivate_super(pinned_sb);
1858 }
1859
2bd59d48
TH
1860 return dentry;
1861}
1862
1863static void cgroup_kill_sb(struct super_block *sb)
1864{
1865 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1866 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1867
9d755d33
TH
1868 /*
1869 * If @root doesn't have any mounts or children, start killing it.
1870 * This prevents new mounts by disabling percpu_ref_tryget_live().
1871 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1872 *
1873 * And don't kill the default root.
9d755d33 1874 */
1f779fb2
LZ
1875 if (css_has_online_children(&root->cgrp.self) ||
1876 root == &cgrp_dfl_root)
9d755d33
TH
1877 cgroup_put(&root->cgrp);
1878 else
1879 percpu_ref_kill(&root->cgrp.self.refcnt);
1880
2bd59d48 1881 kernfs_kill_sb(sb);
ddbcc7e8
PM
1882}
1883
1884static struct file_system_type cgroup_fs_type = {
1885 .name = "cgroup",
f7e83571 1886 .mount = cgroup_mount,
ddbcc7e8
PM
1887 .kill_sb = cgroup_kill_sb,
1888};
1889
676db4af
GK
1890static struct kobject *cgroup_kobj;
1891
857a2beb 1892/**
913ffdb5 1893 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1894 * @task: target task
857a2beb
TH
1895 * @buf: the buffer to write the path into
1896 * @buflen: the length of the buffer
1897 *
913ffdb5
TH
1898 * Determine @task's cgroup on the first (the one with the lowest non-zero
1899 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1900 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1901 * cgroup controller callbacks.
1902 *
e61734c5 1903 * Return value is the same as kernfs_path().
857a2beb 1904 */
e61734c5 1905char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1906{
3dd06ffa 1907 struct cgroup_root *root;
913ffdb5 1908 struct cgroup *cgrp;
e61734c5
TH
1909 int hierarchy_id = 1;
1910 char *path = NULL;
857a2beb
TH
1911
1912 mutex_lock(&cgroup_mutex);
96d365e0 1913 down_read(&css_set_rwsem);
857a2beb 1914
913ffdb5
TH
1915 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1916
857a2beb
TH
1917 if (root) {
1918 cgrp = task_cgroup_from_root(task, root);
e61734c5 1919 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1920 } else {
1921 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1922 if (strlcpy(buf, "/", buflen) < buflen)
1923 path = buf;
857a2beb
TH
1924 }
1925
96d365e0 1926 up_read(&css_set_rwsem);
857a2beb 1927 mutex_unlock(&cgroup_mutex);
e61734c5 1928 return path;
857a2beb 1929}
913ffdb5 1930EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1931
b3dc094e 1932/* used to track tasks and other necessary states during migration */
2f7ee569 1933struct cgroup_taskset {
b3dc094e
TH
1934 /* the src and dst cset list running through cset->mg_node */
1935 struct list_head src_csets;
1936 struct list_head dst_csets;
1937
1938 /*
1939 * Fields for cgroup_taskset_*() iteration.
1940 *
1941 * Before migration is committed, the target migration tasks are on
1942 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1943 * the csets on ->dst_csets. ->csets point to either ->src_csets
1944 * or ->dst_csets depending on whether migration is committed.
1945 *
1946 * ->cur_csets and ->cur_task point to the current task position
1947 * during iteration.
1948 */
1949 struct list_head *csets;
1950 struct css_set *cur_cset;
1951 struct task_struct *cur_task;
2f7ee569
TH
1952};
1953
1954/**
1955 * cgroup_taskset_first - reset taskset and return the first task
1956 * @tset: taskset of interest
1957 *
1958 * @tset iteration is initialized and the first task is returned.
1959 */
1960struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1961{
b3dc094e
TH
1962 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1963 tset->cur_task = NULL;
1964
1965 return cgroup_taskset_next(tset);
2f7ee569 1966}
2f7ee569
TH
1967
1968/**
1969 * cgroup_taskset_next - iterate to the next task in taskset
1970 * @tset: taskset of interest
1971 *
1972 * Return the next task in @tset. Iteration must have been initialized
1973 * with cgroup_taskset_first().
1974 */
1975struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1976{
b3dc094e
TH
1977 struct css_set *cset = tset->cur_cset;
1978 struct task_struct *task = tset->cur_task;
2f7ee569 1979
b3dc094e
TH
1980 while (&cset->mg_node != tset->csets) {
1981 if (!task)
1982 task = list_first_entry(&cset->mg_tasks,
1983 struct task_struct, cg_list);
1984 else
1985 task = list_next_entry(task, cg_list);
2f7ee569 1986
b3dc094e
TH
1987 if (&task->cg_list != &cset->mg_tasks) {
1988 tset->cur_cset = cset;
1989 tset->cur_task = task;
1990 return task;
1991 }
2f7ee569 1992
b3dc094e
TH
1993 cset = list_next_entry(cset, mg_node);
1994 task = NULL;
1995 }
2f7ee569 1996
b3dc094e 1997 return NULL;
2f7ee569 1998}
2f7ee569 1999
cb0f1fe9 2000/**
74a1166d 2001 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2002 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2003 * @tsk: the task being migrated
2004 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2005 *
cb0f1fe9 2006 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2007 */
5abb8855
TH
2008static void cgroup_task_migrate(struct cgroup *old_cgrp,
2009 struct task_struct *tsk,
2010 struct css_set *new_cset)
74a1166d 2011{
5abb8855 2012 struct css_set *old_cset;
74a1166d 2013
cb0f1fe9
TH
2014 lockdep_assert_held(&cgroup_mutex);
2015 lockdep_assert_held(&css_set_rwsem);
2016
74a1166d 2017 /*
026085ef
MSB
2018 * We are synchronized through threadgroup_lock() against PF_EXITING
2019 * setting such that we can't race against cgroup_exit() changing the
2020 * css_set to init_css_set and dropping the old one.
74a1166d 2021 */
c84cdf75 2022 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2023 old_cset = task_css_set(tsk);
74a1166d 2024
b3dc094e 2025 get_css_set(new_cset);
5abb8855 2026 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2027
1b9aba49
TH
2028 /*
2029 * Use move_tail so that cgroup_taskset_first() still returns the
2030 * leader after migration. This works because cgroup_migrate()
2031 * ensures that the dst_cset of the leader is the first on the
2032 * tset's dst_csets list.
2033 */
2034 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2035
2036 /*
5abb8855
TH
2037 * We just gained a reference on old_cset by taking it from the
2038 * task. As trading it for new_cset is protected by cgroup_mutex,
2039 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2040 */
a25eb52e 2041 put_css_set_locked(old_cset);
74a1166d
BB
2042}
2043
a043e3b2 2044/**
1958d2d5
TH
2045 * cgroup_migrate_finish - cleanup after attach
2046 * @preloaded_csets: list of preloaded css_sets
74a1166d 2047 *
1958d2d5
TH
2048 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2049 * those functions for details.
74a1166d 2050 */
1958d2d5 2051static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2052{
1958d2d5 2053 struct css_set *cset, *tmp_cset;
74a1166d 2054
1958d2d5
TH
2055 lockdep_assert_held(&cgroup_mutex);
2056
2057 down_write(&css_set_rwsem);
2058 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2059 cset->mg_src_cgrp = NULL;
2060 cset->mg_dst_cset = NULL;
2061 list_del_init(&cset->mg_preload_node);
a25eb52e 2062 put_css_set_locked(cset);
1958d2d5
TH
2063 }
2064 up_write(&css_set_rwsem);
2065}
2066
2067/**
2068 * cgroup_migrate_add_src - add a migration source css_set
2069 * @src_cset: the source css_set to add
2070 * @dst_cgrp: the destination cgroup
2071 * @preloaded_csets: list of preloaded css_sets
2072 *
2073 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2074 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2075 * up by cgroup_migrate_finish().
2076 *
2077 * This function may be called without holding threadgroup_lock even if the
2078 * target is a process. Threads may be created and destroyed but as long
2079 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2080 * the preloaded css_sets are guaranteed to cover all migrations.
2081 */
2082static void cgroup_migrate_add_src(struct css_set *src_cset,
2083 struct cgroup *dst_cgrp,
2084 struct list_head *preloaded_csets)
2085{
2086 struct cgroup *src_cgrp;
2087
2088 lockdep_assert_held(&cgroup_mutex);
2089 lockdep_assert_held(&css_set_rwsem);
2090
2091 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2092
1958d2d5
TH
2093 if (!list_empty(&src_cset->mg_preload_node))
2094 return;
2095
2096 WARN_ON(src_cset->mg_src_cgrp);
2097 WARN_ON(!list_empty(&src_cset->mg_tasks));
2098 WARN_ON(!list_empty(&src_cset->mg_node));
2099
2100 src_cset->mg_src_cgrp = src_cgrp;
2101 get_css_set(src_cset);
2102 list_add(&src_cset->mg_preload_node, preloaded_csets);
2103}
2104
2105/**
2106 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2107 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2108 * @preloaded_csets: list of preloaded source css_sets
2109 *
2110 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2111 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2112 * pins all destination css_sets, links each to its source, and append them
2113 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2114 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2115 *
2116 * This function must be called after cgroup_migrate_add_src() has been
2117 * called on each migration source css_set. After migration is performed
2118 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2119 * @preloaded_csets.
2120 */
2121static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2122 struct list_head *preloaded_csets)
2123{
2124 LIST_HEAD(csets);
f817de98 2125 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2126
2127 lockdep_assert_held(&cgroup_mutex);
2128
f8f22e53
TH
2129 /*
2130 * Except for the root, child_subsys_mask must be zero for a cgroup
2131 * with tasks so that child cgroups don't compete against tasks.
2132 */
d51f39b0 2133 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2134 dst_cgrp->child_subsys_mask)
2135 return -EBUSY;
2136
1958d2d5 2137 /* look up the dst cset for each src cset and link it to src */
f817de98 2138 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2139 struct css_set *dst_cset;
2140
f817de98
TH
2141 dst_cset = find_css_set(src_cset,
2142 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2143 if (!dst_cset)
2144 goto err;
2145
2146 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2147
2148 /*
2149 * If src cset equals dst, it's noop. Drop the src.
2150 * cgroup_migrate() will skip the cset too. Note that we
2151 * can't handle src == dst as some nodes are used by both.
2152 */
2153 if (src_cset == dst_cset) {
2154 src_cset->mg_src_cgrp = NULL;
2155 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2156 put_css_set(src_cset);
2157 put_css_set(dst_cset);
f817de98
TH
2158 continue;
2159 }
2160
1958d2d5
TH
2161 src_cset->mg_dst_cset = dst_cset;
2162
2163 if (list_empty(&dst_cset->mg_preload_node))
2164 list_add(&dst_cset->mg_preload_node, &csets);
2165 else
a25eb52e 2166 put_css_set(dst_cset);
1958d2d5
TH
2167 }
2168
f817de98 2169 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2170 return 0;
2171err:
2172 cgroup_migrate_finish(&csets);
2173 return -ENOMEM;
2174}
2175
2176/**
2177 * cgroup_migrate - migrate a process or task to a cgroup
2178 * @cgrp: the destination cgroup
2179 * @leader: the leader of the process or the task to migrate
2180 * @threadgroup: whether @leader points to the whole process or a single task
2181 *
2182 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2183 * process, the caller must be holding threadgroup_lock of @leader. The
2184 * caller is also responsible for invoking cgroup_migrate_add_src() and
2185 * cgroup_migrate_prepare_dst() on the targets before invoking this
2186 * function and following up with cgroup_migrate_finish().
2187 *
2188 * As long as a controller's ->can_attach() doesn't fail, this function is
2189 * guaranteed to succeed. This means that, excluding ->can_attach()
2190 * failure, when migrating multiple targets, the success or failure can be
2191 * decided for all targets by invoking group_migrate_prepare_dst() before
2192 * actually starting migrating.
2193 */
2194static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2195 bool threadgroup)
74a1166d 2196{
b3dc094e
TH
2197 struct cgroup_taskset tset = {
2198 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2199 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2200 .csets = &tset.src_csets,
2201 };
1c6727af 2202 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2203 struct css_set *cset, *tmp_cset;
2204 struct task_struct *task, *tmp_task;
2205 int i, ret;
74a1166d 2206
fb5d2b4c
MSB
2207 /*
2208 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2209 * already PF_EXITING could be freed from underneath us unless we
2210 * take an rcu_read_lock.
2211 */
b3dc094e 2212 down_write(&css_set_rwsem);
fb5d2b4c 2213 rcu_read_lock();
9db8de37 2214 task = leader;
74a1166d 2215 do {
9db8de37
TH
2216 /* @task either already exited or can't exit until the end */
2217 if (task->flags & PF_EXITING)
ea84753c 2218 goto next;
134d3373 2219
eaf797ab
TH
2220 /* leave @task alone if post_fork() hasn't linked it yet */
2221 if (list_empty(&task->cg_list))
ea84753c 2222 goto next;
cd3d0952 2223
b3dc094e 2224 cset = task_css_set(task);
1958d2d5 2225 if (!cset->mg_src_cgrp)
ea84753c 2226 goto next;
b3dc094e 2227
61d1d219 2228 /*
1b9aba49
TH
2229 * cgroup_taskset_first() must always return the leader.
2230 * Take care to avoid disturbing the ordering.
61d1d219 2231 */
1b9aba49
TH
2232 list_move_tail(&task->cg_list, &cset->mg_tasks);
2233 if (list_empty(&cset->mg_node))
2234 list_add_tail(&cset->mg_node, &tset.src_csets);
2235 if (list_empty(&cset->mg_dst_cset->mg_node))
2236 list_move_tail(&cset->mg_dst_cset->mg_node,
2237 &tset.dst_csets);
ea84753c 2238 next:
081aa458
LZ
2239 if (!threadgroup)
2240 break;
9db8de37 2241 } while_each_thread(leader, task);
fb5d2b4c 2242 rcu_read_unlock();
b3dc094e 2243 up_write(&css_set_rwsem);
74a1166d 2244
134d3373 2245 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2246 if (list_empty(&tset.src_csets))
2247 return 0;
134d3373 2248
1958d2d5 2249 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2250 for_each_e_css(css, i, cgrp) {
1c6727af 2251 if (css->ss->can_attach) {
9db8de37
TH
2252 ret = css->ss->can_attach(css, &tset);
2253 if (ret) {
1c6727af 2254 failed_css = css;
74a1166d
BB
2255 goto out_cancel_attach;
2256 }
2257 }
74a1166d
BB
2258 }
2259
2260 /*
1958d2d5
TH
2261 * Now that we're guaranteed success, proceed to move all tasks to
2262 * the new cgroup. There are no failure cases after here, so this
2263 * is the commit point.
74a1166d 2264 */
cb0f1fe9 2265 down_write(&css_set_rwsem);
b3dc094e
TH
2266 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2267 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2268 cgroup_task_migrate(cset->mg_src_cgrp, task,
2269 cset->mg_dst_cset);
74a1166d 2270 }
cb0f1fe9 2271 up_write(&css_set_rwsem);
74a1166d
BB
2272
2273 /*
1958d2d5
TH
2274 * Migration is committed, all target tasks are now on dst_csets.
2275 * Nothing is sensitive to fork() after this point. Notify
2276 * controllers that migration is complete.
74a1166d 2277 */
1958d2d5 2278 tset.csets = &tset.dst_csets;
74a1166d 2279
aec3dfcb 2280 for_each_e_css(css, i, cgrp)
1c6727af
TH
2281 if (css->ss->attach)
2282 css->ss->attach(css, &tset);
74a1166d 2283
9db8de37 2284 ret = 0;
b3dc094e
TH
2285 goto out_release_tset;
2286
74a1166d 2287out_cancel_attach:
aec3dfcb 2288 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2289 if (css == failed_css)
2290 break;
2291 if (css->ss->cancel_attach)
2292 css->ss->cancel_attach(css, &tset);
74a1166d 2293 }
b3dc094e
TH
2294out_release_tset:
2295 down_write(&css_set_rwsem);
2296 list_splice_init(&tset.dst_csets, &tset.src_csets);
2297 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2298 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2299 list_del_init(&cset->mg_node);
b3dc094e
TH
2300 }
2301 up_write(&css_set_rwsem);
9db8de37 2302 return ret;
74a1166d
BB
2303}
2304
1958d2d5
TH
2305/**
2306 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2307 * @dst_cgrp: the cgroup to attach to
2308 * @leader: the task or the leader of the threadgroup to be attached
2309 * @threadgroup: attach the whole threadgroup?
2310 *
0e1d768f 2311 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2312 */
2313static int cgroup_attach_task(struct cgroup *dst_cgrp,
2314 struct task_struct *leader, bool threadgroup)
2315{
2316 LIST_HEAD(preloaded_csets);
2317 struct task_struct *task;
2318 int ret;
2319
2320 /* look up all src csets */
2321 down_read(&css_set_rwsem);
2322 rcu_read_lock();
2323 task = leader;
2324 do {
2325 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2326 &preloaded_csets);
2327 if (!threadgroup)
2328 break;
2329 } while_each_thread(leader, task);
2330 rcu_read_unlock();
2331 up_read(&css_set_rwsem);
2332
2333 /* prepare dst csets and commit */
2334 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2335 if (!ret)
2336 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2337
2338 cgroup_migrate_finish(&preloaded_csets);
2339 return ret;
74a1166d
BB
2340}
2341
2342/*
2343 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2344 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2345 * cgroup_mutex and threadgroup.
bbcb81d0 2346 */
acbef755
TH
2347static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2348 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2349{
bbcb81d0 2350 struct task_struct *tsk;
c69e8d9c 2351 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2352 struct cgroup *cgrp;
acbef755 2353 pid_t pid;
bbcb81d0
PM
2354 int ret;
2355
acbef755
TH
2356 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2357 return -EINVAL;
2358
e76ecaee
TH
2359 cgrp = cgroup_kn_lock_live(of->kn);
2360 if (!cgrp)
74a1166d
BB
2361 return -ENODEV;
2362
b78949eb
MSB
2363retry_find_task:
2364 rcu_read_lock();
bbcb81d0 2365 if (pid) {
73507f33 2366 tsk = find_task_by_vpid(pid);
74a1166d
BB
2367 if (!tsk) {
2368 rcu_read_unlock();
dd4b0a46 2369 ret = -ESRCH;
b78949eb 2370 goto out_unlock_cgroup;
bbcb81d0 2371 }
74a1166d
BB
2372 /*
2373 * even if we're attaching all tasks in the thread group, we
2374 * only need to check permissions on one of them.
2375 */
c69e8d9c 2376 tcred = __task_cred(tsk);
14a590c3
EB
2377 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2378 !uid_eq(cred->euid, tcred->uid) &&
2379 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2380 rcu_read_unlock();
b78949eb
MSB
2381 ret = -EACCES;
2382 goto out_unlock_cgroup;
bbcb81d0 2383 }
b78949eb
MSB
2384 } else
2385 tsk = current;
cd3d0952
TH
2386
2387 if (threadgroup)
b78949eb 2388 tsk = tsk->group_leader;
c4c27fbd
MG
2389
2390 /*
14a40ffc 2391 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2392 * trapped in a cpuset, or RT worker may be born in a cgroup
2393 * with no rt_runtime allocated. Just say no.
2394 */
14a40ffc 2395 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2396 ret = -EINVAL;
2397 rcu_read_unlock();
2398 goto out_unlock_cgroup;
2399 }
2400
b78949eb
MSB
2401 get_task_struct(tsk);
2402 rcu_read_unlock();
2403
2404 threadgroup_lock(tsk);
2405 if (threadgroup) {
2406 if (!thread_group_leader(tsk)) {
2407 /*
2408 * a race with de_thread from another thread's exec()
2409 * may strip us of our leadership, if this happens,
2410 * there is no choice but to throw this task away and
2411 * try again; this is
2412 * "double-double-toil-and-trouble-check locking".
2413 */
2414 threadgroup_unlock(tsk);
2415 put_task_struct(tsk);
2416 goto retry_find_task;
2417 }
081aa458
LZ
2418 }
2419
2420 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2421
cd3d0952
TH
2422 threadgroup_unlock(tsk);
2423
bbcb81d0 2424 put_task_struct(tsk);
b78949eb 2425out_unlock_cgroup:
e76ecaee 2426 cgroup_kn_unlock(of->kn);
acbef755 2427 return ret ?: nbytes;
bbcb81d0
PM
2428}
2429
7ae1bad9
TH
2430/**
2431 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2432 * @from: attach to all cgroups of a given task
2433 * @tsk: the task to be attached
2434 */
2435int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2436{
3dd06ffa 2437 struct cgroup_root *root;
7ae1bad9
TH
2438 int retval = 0;
2439
47cfcd09 2440 mutex_lock(&cgroup_mutex);
985ed670 2441 for_each_root(root) {
96d365e0
TH
2442 struct cgroup *from_cgrp;
2443
3dd06ffa 2444 if (root == &cgrp_dfl_root)
985ed670
TH
2445 continue;
2446
96d365e0
TH
2447 down_read(&css_set_rwsem);
2448 from_cgrp = task_cgroup_from_root(from, root);
2449 up_read(&css_set_rwsem);
7ae1bad9 2450
6f4b7e63 2451 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2452 if (retval)
2453 break;
2454 }
47cfcd09 2455 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2456
2457 return retval;
2458}
2459EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2460
acbef755
TH
2461static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2462 char *buf, size_t nbytes, loff_t off)
74a1166d 2463{
acbef755 2464 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2465}
2466
acbef755
TH
2467static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2468 char *buf, size_t nbytes, loff_t off)
af351026 2469{
acbef755 2470 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2471}
2472
451af504
TH
2473static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2474 char *buf, size_t nbytes, loff_t off)
e788e066 2475{
e76ecaee 2476 struct cgroup *cgrp;
5f469907 2477
e76ecaee 2478 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2479
e76ecaee
TH
2480 cgrp = cgroup_kn_lock_live(of->kn);
2481 if (!cgrp)
e788e066 2482 return -ENODEV;
69e943b7 2483 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2484 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2485 sizeof(cgrp->root->release_agent_path));
69e943b7 2486 spin_unlock(&release_agent_path_lock);
e76ecaee 2487 cgroup_kn_unlock(of->kn);
451af504 2488 return nbytes;
e788e066
PM
2489}
2490
2da8ca82 2491static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2492{
2da8ca82 2493 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2494
46cfeb04 2495 spin_lock(&release_agent_path_lock);
e788e066 2496 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2497 spin_unlock(&release_agent_path_lock);
e788e066 2498 seq_putc(seq, '\n');
e788e066
PM
2499 return 0;
2500}
2501
2da8ca82 2502static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2503{
c1d5d42e 2504 seq_puts(seq, "0\n");
e788e066
PM
2505 return 0;
2506}
2507
f8f22e53 2508static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2509{
f8f22e53
TH
2510 struct cgroup_subsys *ss;
2511 bool printed = false;
2512 int ssid;
a742c59d 2513
f8f22e53
TH
2514 for_each_subsys(ss, ssid) {
2515 if (ss_mask & (1 << ssid)) {
2516 if (printed)
2517 seq_putc(seq, ' ');
2518 seq_printf(seq, "%s", ss->name);
2519 printed = true;
2520 }
e73d2c61 2521 }
f8f22e53
TH
2522 if (printed)
2523 seq_putc(seq, '\n');
355e0c48
PM
2524}
2525
f8f22e53
TH
2526/* show controllers which are currently attached to the default hierarchy */
2527static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2528{
f8f22e53
TH
2529 struct cgroup *cgrp = seq_css(seq)->cgroup;
2530
5533e011
TH
2531 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2532 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2533 return 0;
db3b1497
PM
2534}
2535
f8f22e53
TH
2536/* show controllers which are enabled from the parent */
2537static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2538{
f8f22e53
TH
2539 struct cgroup *cgrp = seq_css(seq)->cgroup;
2540
667c2491 2541 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2542 return 0;
ddbcc7e8
PM
2543}
2544
f8f22e53
TH
2545/* show controllers which are enabled for a given cgroup's children */
2546static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2547{
f8f22e53
TH
2548 struct cgroup *cgrp = seq_css(seq)->cgroup;
2549
667c2491 2550 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2551 return 0;
2552}
2553
2554/**
2555 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2556 * @cgrp: root of the subtree to update csses for
2557 *
2558 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2559 * css associations need to be updated accordingly. This function looks up
2560 * all css_sets which are attached to the subtree, creates the matching
2561 * updated css_sets and migrates the tasks to the new ones.
2562 */
2563static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2564{
2565 LIST_HEAD(preloaded_csets);
2566 struct cgroup_subsys_state *css;
2567 struct css_set *src_cset;
2568 int ret;
2569
f8f22e53
TH
2570 lockdep_assert_held(&cgroup_mutex);
2571
2572 /* look up all csses currently attached to @cgrp's subtree */
2573 down_read(&css_set_rwsem);
2574 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2575 struct cgrp_cset_link *link;
2576
2577 /* self is not affected by child_subsys_mask change */
2578 if (css->cgroup == cgrp)
2579 continue;
2580
2581 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2582 cgroup_migrate_add_src(link->cset, cgrp,
2583 &preloaded_csets);
2584 }
2585 up_read(&css_set_rwsem);
2586
2587 /* NULL dst indicates self on default hierarchy */
2588 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2589 if (ret)
2590 goto out_finish;
2591
2592 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2593 struct task_struct *last_task = NULL, *task;
2594
2595 /* src_csets precede dst_csets, break on the first dst_cset */
2596 if (!src_cset->mg_src_cgrp)
2597 break;
2598
2599 /*
2600 * All tasks in src_cset need to be migrated to the
2601 * matching dst_cset. Empty it process by process. We
2602 * walk tasks but migrate processes. The leader might even
2603 * belong to a different cset but such src_cset would also
2604 * be among the target src_csets because the default
2605 * hierarchy enforces per-process membership.
2606 */
2607 while (true) {
2608 down_read(&css_set_rwsem);
2609 task = list_first_entry_or_null(&src_cset->tasks,
2610 struct task_struct, cg_list);
2611 if (task) {
2612 task = task->group_leader;
2613 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2614 get_task_struct(task);
2615 }
2616 up_read(&css_set_rwsem);
2617
2618 if (!task)
2619 break;
2620
2621 /* guard against possible infinite loop */
2622 if (WARN(last_task == task,
2623 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2624 goto out_finish;
2625 last_task = task;
2626
2627 threadgroup_lock(task);
2628 /* raced against de_thread() from another thread? */
2629 if (!thread_group_leader(task)) {
2630 threadgroup_unlock(task);
2631 put_task_struct(task);
2632 continue;
2633 }
2634
2635 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2636
2637 threadgroup_unlock(task);
2638 put_task_struct(task);
2639
2640 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2641 goto out_finish;
2642 }
2643 }
2644
2645out_finish:
2646 cgroup_migrate_finish(&preloaded_csets);
2647 return ret;
2648}
2649
2650/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2651static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2652 char *buf, size_t nbytes,
2653 loff_t off)
f8f22e53 2654{
7d331fa9 2655 unsigned int enable = 0, disable = 0;
755bf5ee 2656 unsigned int css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2657 struct cgroup *cgrp, *child;
f8f22e53 2658 struct cgroup_subsys *ss;
451af504 2659 char *tok;
f8f22e53
TH
2660 int ssid, ret;
2661
2662 /*
d37167ab
TH
2663 * Parse input - space separated list of subsystem names prefixed
2664 * with either + or -.
f8f22e53 2665 */
451af504
TH
2666 buf = strstrip(buf);
2667 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2668 if (tok[0] == '\0')
2669 continue;
f8f22e53 2670 for_each_subsys(ss, ssid) {
5533e011
TH
2671 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2672 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2673 continue;
2674
2675 if (*tok == '+') {
7d331fa9
TH
2676 enable |= 1 << ssid;
2677 disable &= ~(1 << ssid);
f8f22e53 2678 } else if (*tok == '-') {
7d331fa9
TH
2679 disable |= 1 << ssid;
2680 enable &= ~(1 << ssid);
f8f22e53
TH
2681 } else {
2682 return -EINVAL;
2683 }
2684 break;
2685 }
2686 if (ssid == CGROUP_SUBSYS_COUNT)
2687 return -EINVAL;
2688 }
2689
a9746d8d
TH
2690 cgrp = cgroup_kn_lock_live(of->kn);
2691 if (!cgrp)
2692 return -ENODEV;
f8f22e53
TH
2693
2694 for_each_subsys(ss, ssid) {
2695 if (enable & (1 << ssid)) {
667c2491 2696 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2697 enable &= ~(1 << ssid);
2698 continue;
2699 }
2700
c29adf24
TH
2701 /* unavailable or not enabled on the parent? */
2702 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2703 (cgroup_parent(cgrp) &&
667c2491 2704 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2705 ret = -ENOENT;
2706 goto out_unlock;
2707 }
f8f22e53 2708 } else if (disable & (1 << ssid)) {
667c2491 2709 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2710 disable &= ~(1 << ssid);
2711 continue;
2712 }
2713
2714 /* a child has it enabled? */
2715 cgroup_for_each_live_child(child, cgrp) {
667c2491 2716 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2717 ret = -EBUSY;
ddab2b6e 2718 goto out_unlock;
f8f22e53
TH
2719 }
2720 }
2721 }
2722 }
2723
2724 if (!enable && !disable) {
2725 ret = 0;
ddab2b6e 2726 goto out_unlock;
f8f22e53
TH
2727 }
2728
2729 /*
667c2491 2730 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2731 * with tasks so that child cgroups don't compete against tasks.
2732 */
d51f39b0 2733 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2734 ret = -EBUSY;
2735 goto out_unlock;
2736 }
2737
2738 /*
f63070d3
TH
2739 * Update subsys masks and calculate what needs to be done. More
2740 * subsystems than specified may need to be enabled or disabled
2741 * depending on subsystem dependencies.
2742 */
755bf5ee
TH
2743 old_sc = cgrp->subtree_control;
2744 old_ss = cgrp->child_subsys_mask;
2745 new_sc = (old_sc | enable) & ~disable;
2746 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2747
755bf5ee
TH
2748 css_enable = ~old_ss & new_ss;
2749 css_disable = old_ss & ~new_ss;
f63070d3
TH
2750 enable |= css_enable;
2751 disable |= css_disable;
c29adf24 2752
db6e3053
TH
2753 /*
2754 * Because css offlining is asynchronous, userland might try to
2755 * re-enable the same controller while the previous instance is
2756 * still around. In such cases, wait till it's gone using
2757 * offline_waitq.
2758 */
2759 for_each_subsys(ss, ssid) {
2760 if (!(css_enable & (1 << ssid)))
2761 continue;
2762
2763 cgroup_for_each_live_child(child, cgrp) {
2764 DEFINE_WAIT(wait);
2765
2766 if (!cgroup_css(child, ss))
2767 continue;
2768
2769 cgroup_get(child);
2770 prepare_to_wait(&child->offline_waitq, &wait,
2771 TASK_UNINTERRUPTIBLE);
2772 cgroup_kn_unlock(of->kn);
2773 schedule();
2774 finish_wait(&child->offline_waitq, &wait);
2775 cgroup_put(child);
2776
2777 return restart_syscall();
2778 }
2779 }
2780
755bf5ee
TH
2781 cgrp->subtree_control = new_sc;
2782 cgrp->child_subsys_mask = new_ss;
2783
f63070d3
TH
2784 /*
2785 * Create new csses or make the existing ones visible. A css is
2786 * created invisible if it's being implicitly enabled through
2787 * dependency. An invisible css is made visible when the userland
2788 * explicitly enables it.
f8f22e53
TH
2789 */
2790 for_each_subsys(ss, ssid) {
2791 if (!(enable & (1 << ssid)))
2792 continue;
2793
2794 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2795 if (css_enable & (1 << ssid))
2796 ret = create_css(child, ss,
2797 cgrp->subtree_control & (1 << ssid));
2798 else
2799 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2800 if (ret)
2801 goto err_undo_css;
2802 }
2803 }
2804
c29adf24
TH
2805 /*
2806 * At this point, cgroup_e_css() results reflect the new csses
2807 * making the following cgroup_update_dfl_csses() properly update
2808 * css associations of all tasks in the subtree.
2809 */
f8f22e53
TH
2810 ret = cgroup_update_dfl_csses(cgrp);
2811 if (ret)
2812 goto err_undo_css;
2813
f63070d3
TH
2814 /*
2815 * All tasks are migrated out of disabled csses. Kill or hide
2816 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2817 * disabled while other subsystems are still depending on it. The
2818 * css must not actively control resources and be in the vanilla
2819 * state if it's made visible again later. Controllers which may
2820 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2821 */
f8f22e53
TH
2822 for_each_subsys(ss, ssid) {
2823 if (!(disable & (1 << ssid)))
2824 continue;
2825
f63070d3 2826 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2827 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2828
2829 if (css_disable & (1 << ssid)) {
2830 kill_css(css);
2831 } else {
f63070d3 2832 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2833 if (ss->css_reset)
2834 ss->css_reset(css);
2835 }
f63070d3 2836 }
f8f22e53
TH
2837 }
2838
56c807ba
TH
2839 /*
2840 * The effective csses of all the descendants (excluding @cgrp) may
2841 * have changed. Subsystems can optionally subscribe to this event
2842 * by implementing ->css_e_css_changed() which is invoked if any of
2843 * the effective csses seen from the css's cgroup may have changed.
2844 */
2845 for_each_subsys(ss, ssid) {
2846 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2847 struct cgroup_subsys_state *css;
2848
2849 if (!ss->css_e_css_changed || !this_css)
2850 continue;
2851
2852 css_for_each_descendant_pre(css, this_css)
2853 if (css != this_css)
2854 ss->css_e_css_changed(css);
2855 }
2856
f8f22e53
TH
2857 kernfs_activate(cgrp->kn);
2858 ret = 0;
2859out_unlock:
a9746d8d 2860 cgroup_kn_unlock(of->kn);
451af504 2861 return ret ?: nbytes;
f8f22e53
TH
2862
2863err_undo_css:
755bf5ee
TH
2864 cgrp->subtree_control = old_sc;
2865 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
2866
2867 for_each_subsys(ss, ssid) {
2868 if (!(enable & (1 << ssid)))
2869 continue;
2870
2871 cgroup_for_each_live_child(child, cgrp) {
2872 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2873
2874 if (!css)
2875 continue;
2876
2877 if (css_enable & (1 << ssid))
f8f22e53 2878 kill_css(css);
f63070d3
TH
2879 else
2880 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2881 }
2882 }
2883 goto out_unlock;
2884}
2885
842b597e
TH
2886static int cgroup_populated_show(struct seq_file *seq, void *v)
2887{
2888 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2889 return 0;
2890}
2891
2bd59d48
TH
2892static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2893 size_t nbytes, loff_t off)
355e0c48 2894{
2bd59d48
TH
2895 struct cgroup *cgrp = of->kn->parent->priv;
2896 struct cftype *cft = of->kn->priv;
2897 struct cgroup_subsys_state *css;
a742c59d 2898 int ret;
355e0c48 2899
b4168640
TH
2900 if (cft->write)
2901 return cft->write(of, buf, nbytes, off);
2902
2bd59d48
TH
2903 /*
2904 * kernfs guarantees that a file isn't deleted with operations in
2905 * flight, which means that the matching css is and stays alive and
2906 * doesn't need to be pinned. The RCU locking is not necessary
2907 * either. It's just for the convenience of using cgroup_css().
2908 */
2909 rcu_read_lock();
2910 css = cgroup_css(cgrp, cft->ss);
2911 rcu_read_unlock();
a742c59d 2912
451af504 2913 if (cft->write_u64) {
a742c59d
TH
2914 unsigned long long v;
2915 ret = kstrtoull(buf, 0, &v);
2916 if (!ret)
2917 ret = cft->write_u64(css, cft, v);
2918 } else if (cft->write_s64) {
2919 long long v;
2920 ret = kstrtoll(buf, 0, &v);
2921 if (!ret)
2922 ret = cft->write_s64(css, cft, v);
e73d2c61 2923 } else {
a742c59d 2924 ret = -EINVAL;
e73d2c61 2925 }
2bd59d48 2926
a742c59d 2927 return ret ?: nbytes;
355e0c48
PM
2928}
2929
6612f05b 2930static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2931{
2bd59d48 2932 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2933}
2934
6612f05b 2935static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2936{
2bd59d48 2937 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2938}
2939
6612f05b 2940static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2941{
2bd59d48 2942 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2943}
2944
91796569 2945static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2946{
7da11279
TH
2947 struct cftype *cft = seq_cft(m);
2948 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2949
2da8ca82
TH
2950 if (cft->seq_show)
2951 return cft->seq_show(m, arg);
e73d2c61 2952
f4c753b7 2953 if (cft->read_u64)
896f5199
TH
2954 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2955 else if (cft->read_s64)
2956 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2957 else
2958 return -EINVAL;
2959 return 0;
91796569
PM
2960}
2961
2bd59d48
TH
2962static struct kernfs_ops cgroup_kf_single_ops = {
2963 .atomic_write_len = PAGE_SIZE,
2964 .write = cgroup_file_write,
2965 .seq_show = cgroup_seqfile_show,
91796569
PM
2966};
2967
2bd59d48
TH
2968static struct kernfs_ops cgroup_kf_ops = {
2969 .atomic_write_len = PAGE_SIZE,
2970 .write = cgroup_file_write,
2971 .seq_start = cgroup_seqfile_start,
2972 .seq_next = cgroup_seqfile_next,
2973 .seq_stop = cgroup_seqfile_stop,
2974 .seq_show = cgroup_seqfile_show,
2975};
ddbcc7e8
PM
2976
2977/*
2978 * cgroup_rename - Only allow simple rename of directories in place.
2979 */
2bd59d48
TH
2980static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2981 const char *new_name_str)
ddbcc7e8 2982{
2bd59d48 2983 struct cgroup *cgrp = kn->priv;
65dff759 2984 int ret;
65dff759 2985
2bd59d48 2986 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2987 return -ENOTDIR;
2bd59d48 2988 if (kn->parent != new_parent)
ddbcc7e8 2989 return -EIO;
65dff759 2990
6db8e85c
TH
2991 /*
2992 * This isn't a proper migration and its usefulness is very
aa6ec29b 2993 * limited. Disallow on the default hierarchy.
6db8e85c 2994 */
aa6ec29b 2995 if (cgroup_on_dfl(cgrp))
6db8e85c 2996 return -EPERM;
099fca32 2997
e1b2dc17 2998 /*
8353da1f 2999 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3000 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3001 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3002 */
3003 kernfs_break_active_protection(new_parent);
3004 kernfs_break_active_protection(kn);
099fca32 3005
2bd59d48 3006 mutex_lock(&cgroup_mutex);
099fca32 3007
2bd59d48 3008 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3009
2bd59d48 3010 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3011
3012 kernfs_unbreak_active_protection(kn);
3013 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3014 return ret;
099fca32
LZ
3015}
3016
49957f8e
TH
3017/* set uid and gid of cgroup dirs and files to that of the creator */
3018static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3019{
3020 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3021 .ia_uid = current_fsuid(),
3022 .ia_gid = current_fsgid(), };
3023
3024 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3025 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3026 return 0;
3027
3028 return kernfs_setattr(kn, &iattr);
3029}
3030
2bb566cb 3031static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3032{
8d7e6fb0 3033 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3034 struct kernfs_node *kn;
3035 struct lock_class_key *key = NULL;
49957f8e 3036 int ret;
05ef1d7c 3037
2bd59d48
TH
3038#ifdef CONFIG_DEBUG_LOCK_ALLOC
3039 key = &cft->lockdep_key;
3040#endif
3041 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3042 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3043 NULL, false, key);
49957f8e
TH
3044 if (IS_ERR(kn))
3045 return PTR_ERR(kn);
3046
3047 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3048 if (ret) {
49957f8e 3049 kernfs_remove(kn);
f8f22e53
TH
3050 return ret;
3051 }
3052
b7fc5ad2 3053 if (cft->seq_show == cgroup_populated_show)
842b597e 3054 cgrp->populated_kn = kn;
f8f22e53 3055 return 0;
ddbcc7e8
PM
3056}
3057
b1f28d31
TH
3058/**
3059 * cgroup_addrm_files - add or remove files to a cgroup directory
3060 * @cgrp: the target cgroup
b1f28d31
TH
3061 * @cfts: array of cftypes to be added
3062 * @is_add: whether to add or remove
3063 *
3064 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3065 * For removals, this function never fails. If addition fails, this
3066 * function doesn't remove files already added. The caller is responsible
3067 * for cleaning up.
b1f28d31 3068 */
2bb566cb
TH
3069static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3070 bool is_add)
ddbcc7e8 3071{
03b1cde6 3072 struct cftype *cft;
b1f28d31
TH
3073 int ret;
3074
01f6474c 3075 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3076
3077 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3078 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3079 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3080 continue;
05ebb6e6 3081 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3082 continue;
d51f39b0 3083 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3084 continue;
d51f39b0 3085 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3086 continue;
3087
2739d3cc 3088 if (is_add) {
2bb566cb 3089 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3090 if (ret) {
ed3d261b
JP
3091 pr_warn("%s: failed to add %s, err=%d\n",
3092 __func__, cft->name, ret);
b1f28d31
TH
3093 return ret;
3094 }
2739d3cc
LZ
3095 } else {
3096 cgroup_rm_file(cgrp, cft);
db0416b6 3097 }
ddbcc7e8 3098 }
b1f28d31 3099 return 0;
ddbcc7e8
PM
3100}
3101
21a2d343 3102static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3103{
3104 LIST_HEAD(pending);
2bb566cb 3105 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3106 struct cgroup *root = &ss->root->cgrp;
492eb21b 3107 struct cgroup_subsys_state *css;
9ccece80 3108 int ret = 0;
8e3f6541 3109
01f6474c 3110 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3111
e8c82d20 3112 /* add/rm files for all cgroups created before */
ca8bdcaf 3113 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3114 struct cgroup *cgrp = css->cgroup;
3115
e8c82d20
LZ
3116 if (cgroup_is_dead(cgrp))
3117 continue;
3118
21a2d343 3119 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3120 if (ret)
3121 break;
8e3f6541 3122 }
21a2d343
TH
3123
3124 if (is_add && !ret)
3125 kernfs_activate(root->kn);
9ccece80 3126 return ret;
8e3f6541
TH
3127}
3128
2da440a2 3129static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3130{
2bb566cb 3131 struct cftype *cft;
8e3f6541 3132
2bd59d48
TH
3133 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3134 /* free copy for custom atomic_write_len, see init_cftypes() */
3135 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3136 kfree(cft->kf_ops);
3137 cft->kf_ops = NULL;
2da440a2 3138 cft->ss = NULL;
a8ddc821
TH
3139
3140 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3141 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3142 }
2da440a2
TH
3143}
3144
2bd59d48 3145static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3146{
3147 struct cftype *cft;
3148
2bd59d48
TH
3149 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3150 struct kernfs_ops *kf_ops;
3151
0adb0704
TH
3152 WARN_ON(cft->ss || cft->kf_ops);
3153
2bd59d48
TH
3154 if (cft->seq_start)
3155 kf_ops = &cgroup_kf_ops;
3156 else
3157 kf_ops = &cgroup_kf_single_ops;
3158
3159 /*
3160 * Ugh... if @cft wants a custom max_write_len, we need to
3161 * make a copy of kf_ops to set its atomic_write_len.
3162 */
3163 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3164 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3165 if (!kf_ops) {
3166 cgroup_exit_cftypes(cfts);
3167 return -ENOMEM;
3168 }
3169 kf_ops->atomic_write_len = cft->max_write_len;
3170 }
8e3f6541 3171
2bd59d48 3172 cft->kf_ops = kf_ops;
2bb566cb 3173 cft->ss = ss;
2bd59d48 3174 }
2bb566cb 3175
2bd59d48 3176 return 0;
2da440a2
TH
3177}
3178
21a2d343
TH
3179static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3180{
01f6474c 3181 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3182
3183 if (!cfts || !cfts[0].ss)
3184 return -ENOENT;
3185
3186 list_del(&cfts->node);
3187 cgroup_apply_cftypes(cfts, false);
3188 cgroup_exit_cftypes(cfts);
3189 return 0;
8e3f6541 3190}
8e3f6541 3191
79578621
TH
3192/**
3193 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3194 * @cfts: zero-length name terminated array of cftypes
3195 *
2bb566cb
TH
3196 * Unregister @cfts. Files described by @cfts are removed from all
3197 * existing cgroups and all future cgroups won't have them either. This
3198 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3199 *
3200 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3201 * registered.
79578621 3202 */
2bb566cb 3203int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3204{
21a2d343 3205 int ret;
79578621 3206
01f6474c 3207 mutex_lock(&cgroup_mutex);
21a2d343 3208 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3209 mutex_unlock(&cgroup_mutex);
21a2d343 3210 return ret;
80b13586
TH
3211}
3212
8e3f6541
TH
3213/**
3214 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3215 * @ss: target cgroup subsystem
3216 * @cfts: zero-length name terminated array of cftypes
3217 *
3218 * Register @cfts to @ss. Files described by @cfts are created for all
3219 * existing cgroups to which @ss is attached and all future cgroups will
3220 * have them too. This function can be called anytime whether @ss is
3221 * attached or not.
3222 *
3223 * Returns 0 on successful registration, -errno on failure. Note that this
3224 * function currently returns 0 as long as @cfts registration is successful
3225 * even if some file creation attempts on existing cgroups fail.
3226 */
2cf669a5 3227static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3228{
9ccece80 3229 int ret;
8e3f6541 3230
c731ae1d
LZ
3231 if (ss->disabled)
3232 return 0;
3233
dc5736ed
LZ
3234 if (!cfts || cfts[0].name[0] == '\0')
3235 return 0;
2bb566cb 3236
2bd59d48
TH
3237 ret = cgroup_init_cftypes(ss, cfts);
3238 if (ret)
3239 return ret;
79578621 3240
01f6474c 3241 mutex_lock(&cgroup_mutex);
21a2d343 3242
0adb0704 3243 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3244 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3245 if (ret)
21a2d343 3246 cgroup_rm_cftypes_locked(cfts);
79578621 3247
01f6474c 3248 mutex_unlock(&cgroup_mutex);
9ccece80 3249 return ret;
79578621
TH
3250}
3251
a8ddc821
TH
3252/**
3253 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3254 * @ss: target cgroup subsystem
3255 * @cfts: zero-length name terminated array of cftypes
3256 *
3257 * Similar to cgroup_add_cftypes() but the added files are only used for
3258 * the default hierarchy.
3259 */
3260int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3261{
3262 struct cftype *cft;
3263
3264 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3265 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3266 return cgroup_add_cftypes(ss, cfts);
3267}
3268
3269/**
3270 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3271 * @ss: target cgroup subsystem
3272 * @cfts: zero-length name terminated array of cftypes
3273 *
3274 * Similar to cgroup_add_cftypes() but the added files are only used for
3275 * the legacy hierarchies.
3276 */
2cf669a5
TH
3277int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3278{
a8ddc821
TH
3279 struct cftype *cft;
3280
fa8137be
VG
3281 /*
3282 * If legacy_flies_on_dfl, we want to show the legacy files on the
3283 * dfl hierarchy but iff the target subsystem hasn't been updated
3284 * for the dfl hierarchy yet.
3285 */
3286 if (!cgroup_legacy_files_on_dfl ||
3287 ss->dfl_cftypes != ss->legacy_cftypes) {
3288 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3289 cft->flags |= __CFTYPE_NOT_ON_DFL;
3290 }
3291
2cf669a5
TH
3292 return cgroup_add_cftypes(ss, cfts);
3293}
3294
a043e3b2
LZ
3295/**
3296 * cgroup_task_count - count the number of tasks in a cgroup.
3297 * @cgrp: the cgroup in question
3298 *
3299 * Return the number of tasks in the cgroup.
3300 */
07bc356e 3301static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3302{
3303 int count = 0;
69d0206c 3304 struct cgrp_cset_link *link;
817929ec 3305
96d365e0 3306 down_read(&css_set_rwsem);
69d0206c
TH
3307 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3308 count += atomic_read(&link->cset->refcount);
96d365e0 3309 up_read(&css_set_rwsem);
bbcb81d0
PM
3310 return count;
3311}
3312
53fa5261 3313/**
492eb21b 3314 * css_next_child - find the next child of a given css
c2931b70
TH
3315 * @pos: the current position (%NULL to initiate traversal)
3316 * @parent: css whose children to walk
53fa5261 3317 *
c2931b70 3318 * This function returns the next child of @parent and should be called
87fb54f1 3319 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3320 * that @parent and @pos are accessible. The next sibling is guaranteed to
3321 * be returned regardless of their states.
3322 *
3323 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3324 * css which finished ->css_online() is guaranteed to be visible in the
3325 * future iterations and will stay visible until the last reference is put.
3326 * A css which hasn't finished ->css_online() or already finished
3327 * ->css_offline() may show up during traversal. It's each subsystem's
3328 * responsibility to synchronize against on/offlining.
53fa5261 3329 */
c2931b70
TH
3330struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3331 struct cgroup_subsys_state *parent)
53fa5261 3332{
c2931b70 3333 struct cgroup_subsys_state *next;
53fa5261 3334
8353da1f 3335 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3336
3337 /*
de3f0341
TH
3338 * @pos could already have been unlinked from the sibling list.
3339 * Once a cgroup is removed, its ->sibling.next is no longer
3340 * updated when its next sibling changes. CSS_RELEASED is set when
3341 * @pos is taken off list, at which time its next pointer is valid,
3342 * and, as releases are serialized, the one pointed to by the next
3343 * pointer is guaranteed to not have started release yet. This
3344 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3345 * critical section, the one pointed to by its next pointer is
3346 * guaranteed to not have finished its RCU grace period even if we
3347 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3348 *
de3f0341
TH
3349 * If @pos has CSS_RELEASED set, its next pointer can't be
3350 * dereferenced; however, as each css is given a monotonically
3351 * increasing unique serial number and always appended to the
3352 * sibling list, the next one can be found by walking the parent's
3353 * children until the first css with higher serial number than
3354 * @pos's. While this path can be slower, it happens iff iteration
3355 * races against release and the race window is very small.
53fa5261 3356 */
3b287a50 3357 if (!pos) {
c2931b70
TH
3358 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3359 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3360 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3361 } else {
c2931b70 3362 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3363 if (next->serial_nr > pos->serial_nr)
3364 break;
53fa5261
TH
3365 }
3366
3b281afb
TH
3367 /*
3368 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3369 * the next sibling.
3b281afb 3370 */
c2931b70
TH
3371 if (&next->sibling != &parent->children)
3372 return next;
3b281afb 3373 return NULL;
53fa5261 3374}
53fa5261 3375
574bd9f7 3376/**
492eb21b 3377 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3378 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3379 * @root: css whose descendants to walk
574bd9f7 3380 *
492eb21b 3381 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3382 * to visit for pre-order traversal of @root's descendants. @root is
3383 * included in the iteration and the first node to be visited.
75501a6d 3384 *
87fb54f1
TH
3385 * While this function requires cgroup_mutex or RCU read locking, it
3386 * doesn't require the whole traversal to be contained in a single critical
3387 * section. This function will return the correct next descendant as long
3388 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3389 *
3390 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3391 * css which finished ->css_online() is guaranteed to be visible in the
3392 * future iterations and will stay visible until the last reference is put.
3393 * A css which hasn't finished ->css_online() or already finished
3394 * ->css_offline() may show up during traversal. It's each subsystem's
3395 * responsibility to synchronize against on/offlining.
574bd9f7 3396 */
492eb21b
TH
3397struct cgroup_subsys_state *
3398css_next_descendant_pre(struct cgroup_subsys_state *pos,
3399 struct cgroup_subsys_state *root)
574bd9f7 3400{
492eb21b 3401 struct cgroup_subsys_state *next;
574bd9f7 3402
8353da1f 3403 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3404
bd8815a6 3405 /* if first iteration, visit @root */
7805d000 3406 if (!pos)
bd8815a6 3407 return root;
574bd9f7
TH
3408
3409 /* visit the first child if exists */
492eb21b 3410 next = css_next_child(NULL, pos);
574bd9f7
TH
3411 if (next)
3412 return next;
3413
3414 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3415 while (pos != root) {
5c9d535b 3416 next = css_next_child(pos, pos->parent);
75501a6d 3417 if (next)
574bd9f7 3418 return next;
5c9d535b 3419 pos = pos->parent;
7805d000 3420 }
574bd9f7
TH
3421
3422 return NULL;
3423}
574bd9f7 3424
12a9d2fe 3425/**
492eb21b
TH
3426 * css_rightmost_descendant - return the rightmost descendant of a css
3427 * @pos: css of interest
12a9d2fe 3428 *
492eb21b
TH
3429 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3430 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3431 * subtree of @pos.
75501a6d 3432 *
87fb54f1
TH
3433 * While this function requires cgroup_mutex or RCU read locking, it
3434 * doesn't require the whole traversal to be contained in a single critical
3435 * section. This function will return the correct rightmost descendant as
3436 * long as @pos is accessible.
12a9d2fe 3437 */
492eb21b
TH
3438struct cgroup_subsys_state *
3439css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3440{
492eb21b 3441 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3442
8353da1f 3443 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3444
3445 do {
3446 last = pos;
3447 /* ->prev isn't RCU safe, walk ->next till the end */
3448 pos = NULL;
492eb21b 3449 css_for_each_child(tmp, last)
12a9d2fe
TH
3450 pos = tmp;
3451 } while (pos);
3452
3453 return last;
3454}
12a9d2fe 3455
492eb21b
TH
3456static struct cgroup_subsys_state *
3457css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3458{
492eb21b 3459 struct cgroup_subsys_state *last;
574bd9f7
TH
3460
3461 do {
3462 last = pos;
492eb21b 3463 pos = css_next_child(NULL, pos);
574bd9f7
TH
3464 } while (pos);
3465
3466 return last;
3467}
3468
3469/**
492eb21b 3470 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3471 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3472 * @root: css whose descendants to walk
574bd9f7 3473 *
492eb21b 3474 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3475 * to visit for post-order traversal of @root's descendants. @root is
3476 * included in the iteration and the last node to be visited.
75501a6d 3477 *
87fb54f1
TH
3478 * While this function requires cgroup_mutex or RCU read locking, it
3479 * doesn't require the whole traversal to be contained in a single critical
3480 * section. This function will return the correct next descendant as long
3481 * as both @pos and @cgroup are accessible and @pos is a descendant of
3482 * @cgroup.
c2931b70
TH
3483 *
3484 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3485 * css which finished ->css_online() is guaranteed to be visible in the
3486 * future iterations and will stay visible until the last reference is put.
3487 * A css which hasn't finished ->css_online() or already finished
3488 * ->css_offline() may show up during traversal. It's each subsystem's
3489 * responsibility to synchronize against on/offlining.
574bd9f7 3490 */
492eb21b
TH
3491struct cgroup_subsys_state *
3492css_next_descendant_post(struct cgroup_subsys_state *pos,
3493 struct cgroup_subsys_state *root)
574bd9f7 3494{
492eb21b 3495 struct cgroup_subsys_state *next;
574bd9f7 3496
8353da1f 3497 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3498
58b79a91
TH
3499 /* if first iteration, visit leftmost descendant which may be @root */
3500 if (!pos)
3501 return css_leftmost_descendant(root);
574bd9f7 3502
bd8815a6
TH
3503 /* if we visited @root, we're done */
3504 if (pos == root)
3505 return NULL;
3506
574bd9f7 3507 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3508 next = css_next_child(pos, pos->parent);
75501a6d 3509 if (next)
492eb21b 3510 return css_leftmost_descendant(next);
574bd9f7
TH
3511
3512 /* no sibling left, visit parent */
5c9d535b 3513 return pos->parent;
574bd9f7 3514}
574bd9f7 3515
f3d46500
TH
3516/**
3517 * css_has_online_children - does a css have online children
3518 * @css: the target css
3519 *
3520 * Returns %true if @css has any online children; otherwise, %false. This
3521 * function can be called from any context but the caller is responsible
3522 * for synchronizing against on/offlining as necessary.
3523 */
3524bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3525{
f3d46500
TH
3526 struct cgroup_subsys_state *child;
3527 bool ret = false;
cbc125ef
TH
3528
3529 rcu_read_lock();
f3d46500 3530 css_for_each_child(child, css) {
99bae5f9 3531 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3532 ret = true;
3533 break;
cbc125ef
TH
3534 }
3535 }
3536 rcu_read_unlock();
f3d46500 3537 return ret;
574bd9f7 3538}
574bd9f7 3539
0942eeee 3540/**
72ec7029 3541 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3542 * @it: the iterator to advance
3543 *
3544 * Advance @it to the next css_set to walk.
d515876e 3545 */
72ec7029 3546static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3547{
0f0a2b4f 3548 struct list_head *l = it->cset_pos;
d515876e
TH
3549 struct cgrp_cset_link *link;
3550 struct css_set *cset;
3551
3552 /* Advance to the next non-empty css_set */
3553 do {
3554 l = l->next;
0f0a2b4f
TH
3555 if (l == it->cset_head) {
3556 it->cset_pos = NULL;
d515876e
TH
3557 return;
3558 }
3ebb2b6e
TH
3559
3560 if (it->ss) {
3561 cset = container_of(l, struct css_set,
3562 e_cset_node[it->ss->id]);
3563 } else {
3564 link = list_entry(l, struct cgrp_cset_link, cset_link);
3565 cset = link->cset;
3566 }
c7561128
TH
3567 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3568
0f0a2b4f 3569 it->cset_pos = l;
c7561128
TH
3570
3571 if (!list_empty(&cset->tasks))
0f0a2b4f 3572 it->task_pos = cset->tasks.next;
c7561128 3573 else
0f0a2b4f
TH
3574 it->task_pos = cset->mg_tasks.next;
3575
3576 it->tasks_head = &cset->tasks;
3577 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3578}
3579
0942eeee 3580/**
72ec7029
TH
3581 * css_task_iter_start - initiate task iteration
3582 * @css: the css to walk tasks of
0942eeee
TH
3583 * @it: the task iterator to use
3584 *
72ec7029
TH
3585 * Initiate iteration through the tasks of @css. The caller can call
3586 * css_task_iter_next() to walk through the tasks until the function
3587 * returns NULL. On completion of iteration, css_task_iter_end() must be
3588 * called.
0942eeee
TH
3589 *
3590 * Note that this function acquires a lock which is released when the
3591 * iteration finishes. The caller can't sleep while iteration is in
3592 * progress.
3593 */
72ec7029
TH
3594void css_task_iter_start(struct cgroup_subsys_state *css,
3595 struct css_task_iter *it)
96d365e0 3596 __acquires(css_set_rwsem)
817929ec 3597{
56fde9e0
TH
3598 /* no one should try to iterate before mounting cgroups */
3599 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3600
96d365e0 3601 down_read(&css_set_rwsem);
c59cd3d8 3602
3ebb2b6e
TH
3603 it->ss = css->ss;
3604
3605 if (it->ss)
3606 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3607 else
3608 it->cset_pos = &css->cgroup->cset_links;
3609
0f0a2b4f 3610 it->cset_head = it->cset_pos;
c59cd3d8 3611
72ec7029 3612 css_advance_task_iter(it);
817929ec
PM
3613}
3614
0942eeee 3615/**
72ec7029 3616 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3617 * @it: the task iterator being iterated
3618 *
3619 * The "next" function for task iteration. @it should have been
72ec7029
TH
3620 * initialized via css_task_iter_start(). Returns NULL when the iteration
3621 * reaches the end.
0942eeee 3622 */
72ec7029 3623struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3624{
3625 struct task_struct *res;
0f0a2b4f 3626 struct list_head *l = it->task_pos;
817929ec
PM
3627
3628 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3629 if (!it->cset_pos)
817929ec
PM
3630 return NULL;
3631 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3632
3633 /*
3634 * Advance iterator to find next entry. cset->tasks is consumed
3635 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3636 * next cset.
3637 */
817929ec 3638 l = l->next;
c7561128 3639
0f0a2b4f
TH
3640 if (l == it->tasks_head)
3641 l = it->mg_tasks_head->next;
c7561128 3642
0f0a2b4f 3643 if (l == it->mg_tasks_head)
72ec7029 3644 css_advance_task_iter(it);
c7561128 3645 else
0f0a2b4f 3646 it->task_pos = l;
c7561128 3647
817929ec
PM
3648 return res;
3649}
3650
0942eeee 3651/**
72ec7029 3652 * css_task_iter_end - finish task iteration
0942eeee
TH
3653 * @it: the task iterator to finish
3654 *
72ec7029 3655 * Finish task iteration started by css_task_iter_start().
0942eeee 3656 */
72ec7029 3657void css_task_iter_end(struct css_task_iter *it)
96d365e0 3658 __releases(css_set_rwsem)
31a7df01 3659{
96d365e0 3660 up_read(&css_set_rwsem);
31a7df01
CW
3661}
3662
3663/**
8cc99345
TH
3664 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3665 * @to: cgroup to which the tasks will be moved
3666 * @from: cgroup in which the tasks currently reside
31a7df01 3667 *
eaf797ab
TH
3668 * Locking rules between cgroup_post_fork() and the migration path
3669 * guarantee that, if a task is forking while being migrated, the new child
3670 * is guaranteed to be either visible in the source cgroup after the
3671 * parent's migration is complete or put into the target cgroup. No task
3672 * can slip out of migration through forking.
31a7df01 3673 */
8cc99345 3674int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3675{
952aaa12
TH
3676 LIST_HEAD(preloaded_csets);
3677 struct cgrp_cset_link *link;
72ec7029 3678 struct css_task_iter it;
e406d1cf 3679 struct task_struct *task;
952aaa12 3680 int ret;
31a7df01 3681
952aaa12 3682 mutex_lock(&cgroup_mutex);
31a7df01 3683
952aaa12
TH
3684 /* all tasks in @from are being moved, all csets are source */
3685 down_read(&css_set_rwsem);
3686 list_for_each_entry(link, &from->cset_links, cset_link)
3687 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3688 up_read(&css_set_rwsem);
31a7df01 3689
952aaa12
TH
3690 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3691 if (ret)
3692 goto out_err;
8cc99345 3693
952aaa12
TH
3694 /*
3695 * Migrate tasks one-by-one until @form is empty. This fails iff
3696 * ->can_attach() fails.
3697 */
e406d1cf 3698 do {
9d800df1 3699 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3700 task = css_task_iter_next(&it);
3701 if (task)
3702 get_task_struct(task);
3703 css_task_iter_end(&it);
3704
3705 if (task) {
952aaa12 3706 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3707 put_task_struct(task);
3708 }
3709 } while (task && !ret);
952aaa12
TH
3710out_err:
3711 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3712 mutex_unlock(&cgroup_mutex);
e406d1cf 3713 return ret;
8cc99345
TH
3714}
3715
bbcb81d0 3716/*
102a775e 3717 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3718 *
3719 * Reading this file can return large amounts of data if a cgroup has
3720 * *lots* of attached tasks. So it may need several calls to read(),
3721 * but we cannot guarantee that the information we produce is correct
3722 * unless we produce it entirely atomically.
3723 *
bbcb81d0 3724 */
bbcb81d0 3725
24528255
LZ
3726/* which pidlist file are we talking about? */
3727enum cgroup_filetype {
3728 CGROUP_FILE_PROCS,
3729 CGROUP_FILE_TASKS,
3730};
3731
3732/*
3733 * A pidlist is a list of pids that virtually represents the contents of one
3734 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3735 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3736 * to the cgroup.
3737 */
3738struct cgroup_pidlist {
3739 /*
3740 * used to find which pidlist is wanted. doesn't change as long as
3741 * this particular list stays in the list.
3742 */
3743 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3744 /* array of xids */
3745 pid_t *list;
3746 /* how many elements the above list has */
3747 int length;
24528255
LZ
3748 /* each of these stored in a list by its cgroup */
3749 struct list_head links;
3750 /* pointer to the cgroup we belong to, for list removal purposes */
3751 struct cgroup *owner;
b1a21367
TH
3752 /* for delayed destruction */
3753 struct delayed_work destroy_dwork;
24528255
LZ
3754};
3755
d1d9fd33
BB
3756/*
3757 * The following two functions "fix" the issue where there are more pids
3758 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3759 * TODO: replace with a kernel-wide solution to this problem
3760 */
3761#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3762static void *pidlist_allocate(int count)
3763{
3764 if (PIDLIST_TOO_LARGE(count))
3765 return vmalloc(count * sizeof(pid_t));
3766 else
3767 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3768}
b1a21367 3769
d1d9fd33
BB
3770static void pidlist_free(void *p)
3771{
3772 if (is_vmalloc_addr(p))
3773 vfree(p);
3774 else
3775 kfree(p);
3776}
d1d9fd33 3777
b1a21367
TH
3778/*
3779 * Used to destroy all pidlists lingering waiting for destroy timer. None
3780 * should be left afterwards.
3781 */
3782static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3783{
3784 struct cgroup_pidlist *l, *tmp_l;
3785
3786 mutex_lock(&cgrp->pidlist_mutex);
3787 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3788 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3789 mutex_unlock(&cgrp->pidlist_mutex);
3790
3791 flush_workqueue(cgroup_pidlist_destroy_wq);
3792 BUG_ON(!list_empty(&cgrp->pidlists));
3793}
3794
3795static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3796{
3797 struct delayed_work *dwork = to_delayed_work(work);
3798 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3799 destroy_dwork);
3800 struct cgroup_pidlist *tofree = NULL;
3801
3802 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3803
3804 /*
04502365
TH
3805 * Destroy iff we didn't get queued again. The state won't change
3806 * as destroy_dwork can only be queued while locked.
b1a21367 3807 */
04502365 3808 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3809 list_del(&l->links);
3810 pidlist_free(l->list);
3811 put_pid_ns(l->key.ns);
3812 tofree = l;
3813 }
3814
b1a21367
TH
3815 mutex_unlock(&l->owner->pidlist_mutex);
3816 kfree(tofree);
3817}
3818
bbcb81d0 3819/*
102a775e 3820 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3821 * Returns the number of unique elements.
bbcb81d0 3822 */
6ee211ad 3823static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3824{
102a775e 3825 int src, dest = 1;
102a775e
BB
3826
3827 /*
3828 * we presume the 0th element is unique, so i starts at 1. trivial
3829 * edge cases first; no work needs to be done for either
3830 */
3831 if (length == 0 || length == 1)
3832 return length;
3833 /* src and dest walk down the list; dest counts unique elements */
3834 for (src = 1; src < length; src++) {
3835 /* find next unique element */
3836 while (list[src] == list[src-1]) {
3837 src++;
3838 if (src == length)
3839 goto after;
3840 }
3841 /* dest always points to where the next unique element goes */
3842 list[dest] = list[src];
3843 dest++;
3844 }
3845after:
102a775e
BB
3846 return dest;
3847}
3848
afb2bc14
TH
3849/*
3850 * The two pid files - task and cgroup.procs - guaranteed that the result
3851 * is sorted, which forced this whole pidlist fiasco. As pid order is
3852 * different per namespace, each namespace needs differently sorted list,
3853 * making it impossible to use, for example, single rbtree of member tasks
3854 * sorted by task pointer. As pidlists can be fairly large, allocating one
3855 * per open file is dangerous, so cgroup had to implement shared pool of
3856 * pidlists keyed by cgroup and namespace.
3857 *
3858 * All this extra complexity was caused by the original implementation
3859 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3860 * want to do away with it. Explicitly scramble sort order if on the
3861 * default hierarchy so that no such expectation exists in the new
3862 * interface.
afb2bc14
TH
3863 *
3864 * Scrambling is done by swapping every two consecutive bits, which is
3865 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3866 */
3867static pid_t pid_fry(pid_t pid)
3868{
3869 unsigned a = pid & 0x55555555;
3870 unsigned b = pid & 0xAAAAAAAA;
3871
3872 return (a << 1) | (b >> 1);
3873}
3874
3875static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3876{
aa6ec29b 3877 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3878 return pid_fry(pid);
3879 else
3880 return pid;
3881}
3882
102a775e
BB
3883static int cmppid(const void *a, const void *b)
3884{
3885 return *(pid_t *)a - *(pid_t *)b;
3886}
3887
afb2bc14
TH
3888static int fried_cmppid(const void *a, const void *b)
3889{
3890 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3891}
3892
e6b81710
TH
3893static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3894 enum cgroup_filetype type)
3895{
3896 struct cgroup_pidlist *l;
3897 /* don't need task_nsproxy() if we're looking at ourself */
3898 struct pid_namespace *ns = task_active_pid_ns(current);
3899
3900 lockdep_assert_held(&cgrp->pidlist_mutex);
3901
3902 list_for_each_entry(l, &cgrp->pidlists, links)
3903 if (l->key.type == type && l->key.ns == ns)
3904 return l;
3905 return NULL;
3906}
3907
72a8cb30
BB
3908/*
3909 * find the appropriate pidlist for our purpose (given procs vs tasks)
3910 * returns with the lock on that pidlist already held, and takes care
3911 * of the use count, or returns NULL with no locks held if we're out of
3912 * memory.
3913 */
e6b81710
TH
3914static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3915 enum cgroup_filetype type)
72a8cb30
BB
3916{
3917 struct cgroup_pidlist *l;
b70cc5fd 3918
e6b81710
TH
3919 lockdep_assert_held(&cgrp->pidlist_mutex);
3920
3921 l = cgroup_pidlist_find(cgrp, type);
3922 if (l)
3923 return l;
3924
72a8cb30 3925 /* entry not found; create a new one */
f4f4be2b 3926 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3927 if (!l)
72a8cb30 3928 return l;
e6b81710 3929
b1a21367 3930 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3931 l->key.type = type;
e6b81710
TH
3932 /* don't need task_nsproxy() if we're looking at ourself */
3933 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3934 l->owner = cgrp;
3935 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3936 return l;
3937}
3938
102a775e
BB
3939/*
3940 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3941 */
72a8cb30
BB
3942static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3943 struct cgroup_pidlist **lp)
102a775e
BB
3944{
3945 pid_t *array;
3946 int length;
3947 int pid, n = 0; /* used for populating the array */
72ec7029 3948 struct css_task_iter it;
817929ec 3949 struct task_struct *tsk;
102a775e
BB
3950 struct cgroup_pidlist *l;
3951
4bac00d1
TH
3952 lockdep_assert_held(&cgrp->pidlist_mutex);
3953
102a775e
BB
3954 /*
3955 * If cgroup gets more users after we read count, we won't have
3956 * enough space - tough. This race is indistinguishable to the
3957 * caller from the case that the additional cgroup users didn't
3958 * show up until sometime later on.
3959 */
3960 length = cgroup_task_count(cgrp);
d1d9fd33 3961 array = pidlist_allocate(length);
102a775e
BB
3962 if (!array)
3963 return -ENOMEM;
3964 /* now, populate the array */
9d800df1 3965 css_task_iter_start(&cgrp->self, &it);
72ec7029 3966 while ((tsk = css_task_iter_next(&it))) {
102a775e 3967 if (unlikely(n == length))
817929ec 3968 break;
102a775e 3969 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3970 if (type == CGROUP_FILE_PROCS)
3971 pid = task_tgid_vnr(tsk);
3972 else
3973 pid = task_pid_vnr(tsk);
102a775e
BB
3974 if (pid > 0) /* make sure to only use valid results */
3975 array[n++] = pid;
817929ec 3976 }
72ec7029 3977 css_task_iter_end(&it);
102a775e
BB
3978 length = n;
3979 /* now sort & (if procs) strip out duplicates */
aa6ec29b 3980 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3981 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3982 else
3983 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3984 if (type == CGROUP_FILE_PROCS)
6ee211ad 3985 length = pidlist_uniq(array, length);
e6b81710 3986
e6b81710 3987 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3988 if (!l) {
d1d9fd33 3989 pidlist_free(array);
72a8cb30 3990 return -ENOMEM;
102a775e 3991 }
e6b81710
TH
3992
3993 /* store array, freeing old if necessary */
d1d9fd33 3994 pidlist_free(l->list);
102a775e
BB
3995 l->list = array;
3996 l->length = length;
72a8cb30 3997 *lp = l;
102a775e 3998 return 0;
bbcb81d0
PM
3999}
4000
846c7bb0 4001/**
a043e3b2 4002 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4003 * @stats: cgroupstats to fill information into
4004 * @dentry: A dentry entry belonging to the cgroup for which stats have
4005 * been requested.
a043e3b2
LZ
4006 *
4007 * Build and fill cgroupstats so that taskstats can export it to user
4008 * space.
846c7bb0
BS
4009 */
4010int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4011{
2bd59d48 4012 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4013 struct cgroup *cgrp;
72ec7029 4014 struct css_task_iter it;
846c7bb0 4015 struct task_struct *tsk;
33d283be 4016
2bd59d48
TH
4017 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4018 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4019 kernfs_type(kn) != KERNFS_DIR)
4020 return -EINVAL;
4021
bad34660
LZ
4022 mutex_lock(&cgroup_mutex);
4023
846c7bb0 4024 /*
2bd59d48 4025 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4026 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4027 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4028 */
2bd59d48
TH
4029 rcu_read_lock();
4030 cgrp = rcu_dereference(kn->priv);
bad34660 4031 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4032 rcu_read_unlock();
bad34660 4033 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4034 return -ENOENT;
4035 }
bad34660 4036 rcu_read_unlock();
846c7bb0 4037
9d800df1 4038 css_task_iter_start(&cgrp->self, &it);
72ec7029 4039 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4040 switch (tsk->state) {
4041 case TASK_RUNNING:
4042 stats->nr_running++;
4043 break;
4044 case TASK_INTERRUPTIBLE:
4045 stats->nr_sleeping++;
4046 break;
4047 case TASK_UNINTERRUPTIBLE:
4048 stats->nr_uninterruptible++;
4049 break;
4050 case TASK_STOPPED:
4051 stats->nr_stopped++;
4052 break;
4053 default:
4054 if (delayacct_is_task_waiting_on_io(tsk))
4055 stats->nr_io_wait++;
4056 break;
4057 }
4058 }
72ec7029 4059 css_task_iter_end(&it);
846c7bb0 4060
bad34660 4061 mutex_unlock(&cgroup_mutex);
2bd59d48 4062 return 0;
846c7bb0
BS
4063}
4064
8f3ff208 4065
bbcb81d0 4066/*
102a775e 4067 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4068 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4069 * in the cgroup->l->list array.
bbcb81d0 4070 */
cc31edce 4071
102a775e 4072static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4073{
cc31edce
PM
4074 /*
4075 * Initially we receive a position value that corresponds to
4076 * one more than the last pid shown (or 0 on the first call or
4077 * after a seek to the start). Use a binary-search to find the
4078 * next pid to display, if any
4079 */
2bd59d48 4080 struct kernfs_open_file *of = s->private;
7da11279 4081 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4082 struct cgroup_pidlist *l;
7da11279 4083 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4084 int index = 0, pid = *pos;
4bac00d1
TH
4085 int *iter, ret;
4086
4087 mutex_lock(&cgrp->pidlist_mutex);
4088
4089 /*
5d22444f 4090 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4091 * after open. If the matching pidlist is around, we can use that.
5d22444f 4092 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4093 * could already have been destroyed.
4094 */
5d22444f
TH
4095 if (of->priv)
4096 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4097
4098 /*
4099 * Either this is the first start() after open or the matching
4100 * pidlist has been destroyed inbetween. Create a new one.
4101 */
5d22444f
TH
4102 if (!of->priv) {
4103 ret = pidlist_array_load(cgrp, type,
4104 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4105 if (ret)
4106 return ERR_PTR(ret);
4107 }
5d22444f 4108 l = of->priv;
cc31edce 4109
cc31edce 4110 if (pid) {
102a775e 4111 int end = l->length;
20777766 4112
cc31edce
PM
4113 while (index < end) {
4114 int mid = (index + end) / 2;
afb2bc14 4115 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4116 index = mid;
4117 break;
afb2bc14 4118 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4119 index = mid + 1;
4120 else
4121 end = mid;
4122 }
4123 }
4124 /* If we're off the end of the array, we're done */
102a775e 4125 if (index >= l->length)
cc31edce
PM
4126 return NULL;
4127 /* Update the abstract position to be the actual pid that we found */
102a775e 4128 iter = l->list + index;
afb2bc14 4129 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4130 return iter;
4131}
4132
102a775e 4133static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4134{
2bd59d48 4135 struct kernfs_open_file *of = s->private;
5d22444f 4136 struct cgroup_pidlist *l = of->priv;
62236858 4137
5d22444f
TH
4138 if (l)
4139 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4140 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4141 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4142}
4143
102a775e 4144static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4145{
2bd59d48 4146 struct kernfs_open_file *of = s->private;
5d22444f 4147 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4148 pid_t *p = v;
4149 pid_t *end = l->list + l->length;
cc31edce
PM
4150 /*
4151 * Advance to the next pid in the array. If this goes off the
4152 * end, we're done
4153 */
4154 p++;
4155 if (p >= end) {
4156 return NULL;
4157 } else {
7da11279 4158 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4159 return p;
4160 }
4161}
4162
102a775e 4163static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
4164{
4165 return seq_printf(s, "%d\n", *(int *)v);
4166}
bbcb81d0 4167
182446d0
TH
4168static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4169 struct cftype *cft)
81a6a5cd 4170{
182446d0 4171 return notify_on_release(css->cgroup);
81a6a5cd
PM
4172}
4173
182446d0
TH
4174static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4175 struct cftype *cft, u64 val)
6379c106 4176{
6379c106 4177 if (val)
182446d0 4178 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4179 else
182446d0 4180 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4181 return 0;
4182}
4183
182446d0
TH
4184static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4185 struct cftype *cft)
97978e6d 4186{
182446d0 4187 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4188}
4189
182446d0
TH
4190static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4191 struct cftype *cft, u64 val)
97978e6d
DL
4192{
4193 if (val)
182446d0 4194 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4195 else
182446d0 4196 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4197 return 0;
4198}
4199
a14c6874
TH
4200/* cgroup core interface files for the default hierarchy */
4201static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4202 {
d5c56ced 4203 .name = "cgroup.procs",
6612f05b
TH
4204 .seq_start = cgroup_pidlist_start,
4205 .seq_next = cgroup_pidlist_next,
4206 .seq_stop = cgroup_pidlist_stop,
4207 .seq_show = cgroup_pidlist_show,
5d22444f 4208 .private = CGROUP_FILE_PROCS,
acbef755 4209 .write = cgroup_procs_write,
74a1166d 4210 .mode = S_IRUGO | S_IWUSR,
102a775e 4211 },
f8f22e53
TH
4212 {
4213 .name = "cgroup.controllers",
a14c6874 4214 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4215 .seq_show = cgroup_root_controllers_show,
4216 },
4217 {
4218 .name = "cgroup.controllers",
a14c6874 4219 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4220 .seq_show = cgroup_controllers_show,
4221 },
4222 {
4223 .name = "cgroup.subtree_control",
f8f22e53 4224 .seq_show = cgroup_subtree_control_show,
451af504 4225 .write = cgroup_subtree_control_write,
f8f22e53 4226 },
842b597e
TH
4227 {
4228 .name = "cgroup.populated",
a14c6874 4229 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4230 .seq_show = cgroup_populated_show,
4231 },
a14c6874
TH
4232 { } /* terminate */
4233};
d5c56ced 4234
a14c6874
TH
4235/* cgroup core interface files for the legacy hierarchies */
4236static struct cftype cgroup_legacy_base_files[] = {
4237 {
4238 .name = "cgroup.procs",
4239 .seq_start = cgroup_pidlist_start,
4240 .seq_next = cgroup_pidlist_next,
4241 .seq_stop = cgroup_pidlist_stop,
4242 .seq_show = cgroup_pidlist_show,
4243 .private = CGROUP_FILE_PROCS,
4244 .write = cgroup_procs_write,
4245 .mode = S_IRUGO | S_IWUSR,
4246 },
4247 {
4248 .name = "cgroup.clone_children",
4249 .read_u64 = cgroup_clone_children_read,
4250 .write_u64 = cgroup_clone_children_write,
4251 },
4252 {
4253 .name = "cgroup.sane_behavior",
4254 .flags = CFTYPE_ONLY_ON_ROOT,
4255 .seq_show = cgroup_sane_behavior_show,
4256 },
d5c56ced
TH
4257 {
4258 .name = "tasks",
6612f05b
TH
4259 .seq_start = cgroup_pidlist_start,
4260 .seq_next = cgroup_pidlist_next,
4261 .seq_stop = cgroup_pidlist_stop,
4262 .seq_show = cgroup_pidlist_show,
5d22444f 4263 .private = CGROUP_FILE_TASKS,
acbef755 4264 .write = cgroup_tasks_write,
d5c56ced
TH
4265 .mode = S_IRUGO | S_IWUSR,
4266 },
4267 {
4268 .name = "notify_on_release",
d5c56ced
TH
4269 .read_u64 = cgroup_read_notify_on_release,
4270 .write_u64 = cgroup_write_notify_on_release,
4271 },
6e6ff25b
TH
4272 {
4273 .name = "release_agent",
a14c6874 4274 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4275 .seq_show = cgroup_release_agent_show,
451af504 4276 .write = cgroup_release_agent_write,
5f469907 4277 .max_write_len = PATH_MAX - 1,
6e6ff25b 4278 },
db0416b6 4279 { } /* terminate */
bbcb81d0
PM
4280};
4281
13af07df 4282/**
628f7cd4 4283 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4284 * @cgrp: target cgroup
13af07df 4285 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4286 *
4287 * On failure, no file is added.
13af07df 4288 */
69dfa00c 4289static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4290{
ddbcc7e8 4291 struct cgroup_subsys *ss;
b420ba7d 4292 int i, ret = 0;
bbcb81d0 4293
8e3f6541 4294 /* process cftsets of each subsystem */
b420ba7d 4295 for_each_subsys(ss, i) {
0adb0704 4296 struct cftype *cfts;
b420ba7d 4297
69dfa00c 4298 if (!(subsys_mask & (1 << i)))
13af07df 4299 continue;
8e3f6541 4300
0adb0704
TH
4301 list_for_each_entry(cfts, &ss->cfts, node) {
4302 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4303 if (ret < 0)
4304 goto err;
4305 }
ddbcc7e8 4306 }
ddbcc7e8 4307 return 0;
bee55099
TH
4308err:
4309 cgroup_clear_dir(cgrp, subsys_mask);
4310 return ret;
ddbcc7e8
PM
4311}
4312
0c21ead1
TH
4313/*
4314 * css destruction is four-stage process.
4315 *
4316 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4317 * Implemented in kill_css().
4318 *
4319 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4320 * and thus css_tryget_online() is guaranteed to fail, the css can be
4321 * offlined by invoking offline_css(). After offlining, the base ref is
4322 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4323 *
4324 * 3. When the percpu_ref reaches zero, the only possible remaining
4325 * accessors are inside RCU read sections. css_release() schedules the
4326 * RCU callback.
4327 *
4328 * 4. After the grace period, the css can be freed. Implemented in
4329 * css_free_work_fn().
4330 *
4331 * It is actually hairier because both step 2 and 4 require process context
4332 * and thus involve punting to css->destroy_work adding two additional
4333 * steps to the already complex sequence.
4334 */
35ef10da 4335static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4336{
4337 struct cgroup_subsys_state *css =
35ef10da 4338 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4339 struct cgroup *cgrp = css->cgroup;
48ddbe19 4340
9a1049da
TH
4341 percpu_ref_exit(&css->refcnt);
4342
9d755d33
TH
4343 if (css->ss) {
4344 /* css free path */
4345 if (css->parent)
4346 css_put(css->parent);
0ae78e0b 4347
9d755d33
TH
4348 css->ss->css_free(css);
4349 cgroup_put(cgrp);
4350 } else {
4351 /* cgroup free path */
4352 atomic_dec(&cgrp->root->nr_cgrps);
4353 cgroup_pidlist_destroy_all(cgrp);
971ff493 4354 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4355
d51f39b0 4356 if (cgroup_parent(cgrp)) {
9d755d33
TH
4357 /*
4358 * We get a ref to the parent, and put the ref when
4359 * this cgroup is being freed, so it's guaranteed
4360 * that the parent won't be destroyed before its
4361 * children.
4362 */
d51f39b0 4363 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4364 kernfs_put(cgrp->kn);
4365 kfree(cgrp);
4366 } else {
4367 /*
4368 * This is root cgroup's refcnt reaching zero,
4369 * which indicates that the root should be
4370 * released.
4371 */
4372 cgroup_destroy_root(cgrp->root);
4373 }
4374 }
48ddbe19
TH
4375}
4376
0c21ead1 4377static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4378{
4379 struct cgroup_subsys_state *css =
0c21ead1 4380 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4381
35ef10da 4382 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4383 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4384}
4385
25e15d83 4386static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4387{
4388 struct cgroup_subsys_state *css =
25e15d83 4389 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4390 struct cgroup_subsys *ss = css->ss;
9d755d33 4391 struct cgroup *cgrp = css->cgroup;
15a4c835 4392
1fed1b2e
TH
4393 mutex_lock(&cgroup_mutex);
4394
de3f0341 4395 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4396 list_del_rcu(&css->sibling);
4397
9d755d33
TH
4398 if (ss) {
4399 /* css release path */
4400 cgroup_idr_remove(&ss->css_idr, css->id);
7d172cc8
TH
4401 if (ss->css_released)
4402 ss->css_released(css);
9d755d33
TH
4403 } else {
4404 /* cgroup release path */
9d755d33
TH
4405 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4406 cgrp->id = -1;
a4189487
LZ
4407
4408 /*
4409 * There are two control paths which try to determine
4410 * cgroup from dentry without going through kernfs -
4411 * cgroupstats_build() and css_tryget_online_from_dir().
4412 * Those are supported by RCU protecting clearing of
4413 * cgrp->kn->priv backpointer.
4414 */
4415 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4416 }
d3daf28d 4417
1fed1b2e
TH
4418 mutex_unlock(&cgroup_mutex);
4419
0c21ead1 4420 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4421}
4422
d3daf28d
TH
4423static void css_release(struct percpu_ref *ref)
4424{
4425 struct cgroup_subsys_state *css =
4426 container_of(ref, struct cgroup_subsys_state, refcnt);
4427
25e15d83
TH
4428 INIT_WORK(&css->destroy_work, css_release_work_fn);
4429 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4430}
4431
ddfcadab
TH
4432static void init_and_link_css(struct cgroup_subsys_state *css,
4433 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4434{
0cb51d71
TH
4435 lockdep_assert_held(&cgroup_mutex);
4436
ddfcadab
TH
4437 cgroup_get(cgrp);
4438
d5c419b6 4439 memset(css, 0, sizeof(*css));
bd89aabc 4440 css->cgroup = cgrp;
72c97e54 4441 css->ss = ss;
d5c419b6
TH
4442 INIT_LIST_HEAD(&css->sibling);
4443 INIT_LIST_HEAD(&css->children);
0cb51d71 4444 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4445
d51f39b0
TH
4446 if (cgroup_parent(cgrp)) {
4447 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4448 css_get(css->parent);
ddfcadab 4449 }
48ddbe19 4450
ca8bdcaf 4451 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4452}
4453
2a4ac633 4454/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4455static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4456{
623f926b 4457 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4458 int ret = 0;
4459
a31f2d3f
TH
4460 lockdep_assert_held(&cgroup_mutex);
4461
92fb9748 4462 if (ss->css_online)
eb95419b 4463 ret = ss->css_online(css);
ae7f164a 4464 if (!ret) {
eb95419b 4465 css->flags |= CSS_ONLINE;
aec25020 4466 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4467 }
b1929db4 4468 return ret;
a31f2d3f
TH
4469}
4470
2a4ac633 4471/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4472static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4473{
623f926b 4474 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4475
4476 lockdep_assert_held(&cgroup_mutex);
4477
4478 if (!(css->flags & CSS_ONLINE))
4479 return;
4480
d7eeac19 4481 if (ss->css_offline)
eb95419b 4482 ss->css_offline(css);
a31f2d3f 4483
eb95419b 4484 css->flags &= ~CSS_ONLINE;
e3297803 4485 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4486
4487 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4488}
4489
c81c925a
TH
4490/**
4491 * create_css - create a cgroup_subsys_state
4492 * @cgrp: the cgroup new css will be associated with
4493 * @ss: the subsys of new css
f63070d3 4494 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4495 *
4496 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4497 * css is online and installed in @cgrp with all interface files created if
4498 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4499 */
f63070d3
TH
4500static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4501 bool visible)
c81c925a 4502{
d51f39b0 4503 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4504 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4505 struct cgroup_subsys_state *css;
4506 int err;
4507
c81c925a
TH
4508 lockdep_assert_held(&cgroup_mutex);
4509
1fed1b2e 4510 css = ss->css_alloc(parent_css);
c81c925a
TH
4511 if (IS_ERR(css))
4512 return PTR_ERR(css);
4513
ddfcadab 4514 init_and_link_css(css, ss, cgrp);
a2bed820 4515
2aad2a86 4516 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4517 if (err)
3eb59ec6 4518 goto err_free_css;
c81c925a 4519
15a4c835
TH
4520 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4521 if (err < 0)
4522 goto err_free_percpu_ref;
4523 css->id = err;
c81c925a 4524
f63070d3
TH
4525 if (visible) {
4526 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4527 if (err)
4528 goto err_free_id;
4529 }
15a4c835
TH
4530
4531 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4532 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4533 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4534
4535 err = online_css(css);
4536 if (err)
1fed1b2e 4537 goto err_list_del;
94419627 4538
c81c925a 4539 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4540 cgroup_parent(parent)) {
ed3d261b 4541 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4542 current->comm, current->pid, ss->name);
c81c925a 4543 if (!strcmp(ss->name, "memory"))
ed3d261b 4544 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4545 ss->warned_broken_hierarchy = true;
4546 }
4547
4548 return 0;
4549
1fed1b2e
TH
4550err_list_del:
4551 list_del_rcu(&css->sibling);
32d01dc7 4552 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4553err_free_id:
4554 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4555err_free_percpu_ref:
9a1049da 4556 percpu_ref_exit(&css->refcnt);
3eb59ec6 4557err_free_css:
a2bed820 4558 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4559 return err;
4560}
4561
b3bfd983
TH
4562static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4563 umode_t mode)
ddbcc7e8 4564{
a9746d8d
TH
4565 struct cgroup *parent, *cgrp;
4566 struct cgroup_root *root;
ddbcc7e8 4567 struct cgroup_subsys *ss;
2bd59d48 4568 struct kernfs_node *kn;
a14c6874 4569 struct cftype *base_files;
b3bfd983 4570 int ssid, ret;
ddbcc7e8 4571
71b1fb5c
AC
4572 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4573 */
4574 if (strchr(name, '\n'))
4575 return -EINVAL;
4576
a9746d8d
TH
4577 parent = cgroup_kn_lock_live(parent_kn);
4578 if (!parent)
4579 return -ENODEV;
4580 root = parent->root;
ddbcc7e8 4581
0a950f65 4582 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4583 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4584 if (!cgrp) {
4585 ret = -ENOMEM;
4586 goto out_unlock;
0ab02ca8
LZ
4587 }
4588
2aad2a86 4589 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4590 if (ret)
4591 goto out_free_cgrp;
4592
0ab02ca8
LZ
4593 /*
4594 * Temporarily set the pointer to NULL, so idr_find() won't return
4595 * a half-baked cgroup.
4596 */
6fa4918d 4597 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4598 if (cgrp->id < 0) {
ba0f4d76 4599 ret = -ENOMEM;
9d755d33 4600 goto out_cancel_ref;
976c06bc
TH
4601 }
4602
cc31edce 4603 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4604
9d800df1 4605 cgrp->self.parent = &parent->self;
ba0f4d76 4606 cgrp->root = root;
ddbcc7e8 4607
b6abdb0e
LZ
4608 if (notify_on_release(parent))
4609 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4610
2260e7fc
TH
4611 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4612 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4613
2bd59d48 4614 /* create the directory */
e61734c5 4615 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4616 if (IS_ERR(kn)) {
ba0f4d76
TH
4617 ret = PTR_ERR(kn);
4618 goto out_free_id;
2bd59d48
TH
4619 }
4620 cgrp->kn = kn;
ddbcc7e8 4621
4e139afc 4622 /*
6f30558f
TH
4623 * This extra ref will be put in cgroup_free_fn() and guarantees
4624 * that @cgrp->kn is always accessible.
4e139afc 4625 */
6f30558f 4626 kernfs_get(kn);
ddbcc7e8 4627
0cb51d71 4628 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4629
4e139afc 4630 /* allocation complete, commit to creation */
d5c419b6 4631 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4632 atomic_inc(&root->nr_cgrps);
59f5296b 4633 cgroup_get(parent);
415cf07a 4634
0d80255e
TH
4635 /*
4636 * @cgrp is now fully operational. If something fails after this
4637 * point, it'll be released via the normal destruction path.
4638 */
6fa4918d 4639 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4640
ba0f4d76
TH
4641 ret = cgroup_kn_set_ugid(kn);
4642 if (ret)
4643 goto out_destroy;
49957f8e 4644
a14c6874
TH
4645 if (cgroup_on_dfl(cgrp))
4646 base_files = cgroup_dfl_base_files;
4647 else
4648 base_files = cgroup_legacy_base_files;
4649
4650 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4651 if (ret)
4652 goto out_destroy;
628f7cd4 4653
9d403e99 4654 /* let's create and online css's */
b85d2040 4655 for_each_subsys(ss, ssid) {
f392e51c 4656 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4657 ret = create_css(cgrp, ss,
4658 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4659 if (ret)
4660 goto out_destroy;
b85d2040 4661 }
a8638030 4662 }
ddbcc7e8 4663
bd53d617
TH
4664 /*
4665 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4666 * subtree_control from the parent. Each is configured manually.
bd53d617 4667 */
667c2491
TH
4668 if (!cgroup_on_dfl(cgrp)) {
4669 cgrp->subtree_control = parent->subtree_control;
4670 cgroup_refresh_child_subsys_mask(cgrp);
4671 }
2bd59d48 4672
2bd59d48 4673 kernfs_activate(kn);
ddbcc7e8 4674
ba0f4d76
TH
4675 ret = 0;
4676 goto out_unlock;
ddbcc7e8 4677
ba0f4d76 4678out_free_id:
6fa4918d 4679 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4680out_cancel_ref:
9a1049da 4681 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4682out_free_cgrp:
bd89aabc 4683 kfree(cgrp);
ba0f4d76 4684out_unlock:
a9746d8d 4685 cgroup_kn_unlock(parent_kn);
ba0f4d76 4686 return ret;
4b8b47eb 4687
ba0f4d76 4688out_destroy:
4b8b47eb 4689 cgroup_destroy_locked(cgrp);
ba0f4d76 4690 goto out_unlock;
ddbcc7e8
PM
4691}
4692
223dbc38
TH
4693/*
4694 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4695 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4696 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4697 */
4698static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4699{
223dbc38
TH
4700 struct cgroup_subsys_state *css =
4701 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4702
f20104de 4703 mutex_lock(&cgroup_mutex);
09a503ea 4704 offline_css(css);
f20104de 4705 mutex_unlock(&cgroup_mutex);
09a503ea 4706
09a503ea 4707 css_put(css);
d3daf28d
TH
4708}
4709
223dbc38
TH
4710/* css kill confirmation processing requires process context, bounce */
4711static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4712{
4713 struct cgroup_subsys_state *css =
4714 container_of(ref, struct cgroup_subsys_state, refcnt);
4715
223dbc38 4716 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4717 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4718}
4719
f392e51c
TH
4720/**
4721 * kill_css - destroy a css
4722 * @css: css to destroy
4723 *
4724 * This function initiates destruction of @css by removing cgroup interface
4725 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4726 * asynchronously once css_tryget_online() is guaranteed to fail and when
4727 * the reference count reaches zero, @css will be released.
f392e51c
TH
4728 */
4729static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4730{
01f6474c 4731 lockdep_assert_held(&cgroup_mutex);
94419627 4732
2bd59d48
TH
4733 /*
4734 * This must happen before css is disassociated with its cgroup.
4735 * See seq_css() for details.
4736 */
aec25020 4737 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4738
edae0c33
TH
4739 /*
4740 * Killing would put the base ref, but we need to keep it alive
4741 * until after ->css_offline().
4742 */
4743 css_get(css);
4744
4745 /*
4746 * cgroup core guarantees that, by the time ->css_offline() is
4747 * invoked, no new css reference will be given out via
ec903c0c 4748 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4749 * proceed to offlining css's because percpu_ref_kill() doesn't
4750 * guarantee that the ref is seen as killed on all CPUs on return.
4751 *
4752 * Use percpu_ref_kill_and_confirm() to get notifications as each
4753 * css is confirmed to be seen as killed on all CPUs.
4754 */
4755 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4756}
4757
4758/**
4759 * cgroup_destroy_locked - the first stage of cgroup destruction
4760 * @cgrp: cgroup to be destroyed
4761 *
4762 * css's make use of percpu refcnts whose killing latency shouldn't be
4763 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4764 * guarantee that css_tryget_online() won't succeed by the time
4765 * ->css_offline() is invoked. To satisfy all the requirements,
4766 * destruction is implemented in the following two steps.
d3daf28d
TH
4767 *
4768 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4769 * userland visible parts and start killing the percpu refcnts of
4770 * css's. Set up so that the next stage will be kicked off once all
4771 * the percpu refcnts are confirmed to be killed.
4772 *
4773 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4774 * rest of destruction. Once all cgroup references are gone, the
4775 * cgroup is RCU-freed.
4776 *
4777 * This function implements s1. After this step, @cgrp is gone as far as
4778 * the userland is concerned and a new cgroup with the same name may be
4779 * created. As cgroup doesn't care about the names internally, this
4780 * doesn't cause any problem.
4781 */
42809dd4
TH
4782static int cgroup_destroy_locked(struct cgroup *cgrp)
4783 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4784{
2bd59d48 4785 struct cgroup_subsys_state *css;
ddd69148 4786 bool empty;
1c6727af 4787 int ssid;
ddbcc7e8 4788
42809dd4
TH
4789 lockdep_assert_held(&cgroup_mutex);
4790
ddd69148 4791 /*
96d365e0 4792 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4793 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4794 */
96d365e0 4795 down_read(&css_set_rwsem);
bb78a92f 4796 empty = list_empty(&cgrp->cset_links);
96d365e0 4797 up_read(&css_set_rwsem);
ddd69148 4798 if (!empty)
ddbcc7e8 4799 return -EBUSY;
a043e3b2 4800
bb78a92f 4801 /*
d5c419b6
TH
4802 * Make sure there's no live children. We can't test emptiness of
4803 * ->self.children as dead children linger on it while being
4804 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4805 */
f3d46500 4806 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4807 return -EBUSY;
4808
455050d2
TH
4809 /*
4810 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4811 * creation by disabling cgroup_lock_live_group().
455050d2 4812 */
184faf32 4813 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4814
249f3468 4815 /* initiate massacre of all css's */
1c6727af
TH
4816 for_each_css(css, ssid, cgrp)
4817 kill_css(css);
455050d2 4818
455050d2 4819 /*
01f6474c
TH
4820 * Remove @cgrp directory along with the base files. @cgrp has an
4821 * extra ref on its kn.
f20104de 4822 */
01f6474c 4823 kernfs_remove(cgrp->kn);
f20104de 4824
d51f39b0 4825 check_for_release(cgroup_parent(cgrp));
2bd59d48 4826
249f3468 4827 /* put the base reference */
9d755d33 4828 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4829
ea15f8cc
TH
4830 return 0;
4831};
4832
2bd59d48 4833static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4834{
a9746d8d 4835 struct cgroup *cgrp;
2bd59d48 4836 int ret = 0;
42809dd4 4837
a9746d8d
TH
4838 cgrp = cgroup_kn_lock_live(kn);
4839 if (!cgrp)
4840 return 0;
42809dd4 4841
a9746d8d 4842 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4843
a9746d8d 4844 cgroup_kn_unlock(kn);
42809dd4 4845 return ret;
8e3f6541
TH
4846}
4847
2bd59d48
TH
4848static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4849 .remount_fs = cgroup_remount,
4850 .show_options = cgroup_show_options,
4851 .mkdir = cgroup_mkdir,
4852 .rmdir = cgroup_rmdir,
4853 .rename = cgroup_rename,
4854};
4855
15a4c835 4856static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4857{
ddbcc7e8 4858 struct cgroup_subsys_state *css;
cfe36bde
DC
4859
4860 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4861
648bb56d
TH
4862 mutex_lock(&cgroup_mutex);
4863
15a4c835 4864 idr_init(&ss->css_idr);
0adb0704 4865 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4866
3dd06ffa
TH
4867 /* Create the root cgroup state for this subsystem */
4868 ss->root = &cgrp_dfl_root;
4869 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4870 /* We don't handle early failures gracefully */
4871 BUG_ON(IS_ERR(css));
ddfcadab 4872 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4873
4874 /*
4875 * Root csses are never destroyed and we can't initialize
4876 * percpu_ref during early init. Disable refcnting.
4877 */
4878 css->flags |= CSS_NO_REF;
4879
15a4c835 4880 if (early) {
9395a450 4881 /* allocation can't be done safely during early init */
15a4c835
TH
4882 css->id = 1;
4883 } else {
4884 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4885 BUG_ON(css->id < 0);
4886 }
ddbcc7e8 4887
e8d55fde 4888 /* Update the init_css_set to contain a subsys
817929ec 4889 * pointer to this state - since the subsystem is
e8d55fde 4890 * newly registered, all tasks and hence the
3dd06ffa 4891 * init_css_set is in the subsystem's root cgroup. */
aec25020 4892 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4893
4894 need_forkexit_callback |= ss->fork || ss->exit;
4895
e8d55fde
LZ
4896 /* At system boot, before all subsystems have been
4897 * registered, no tasks have been forked, so we don't
4898 * need to invoke fork callbacks here. */
4899 BUG_ON(!list_empty(&init_task.tasks));
4900
ae7f164a 4901 BUG_ON(online_css(css));
a8638030 4902
cf5d5941
BB
4903 mutex_unlock(&cgroup_mutex);
4904}
cf5d5941 4905
ddbcc7e8 4906/**
a043e3b2
LZ
4907 * cgroup_init_early - cgroup initialization at system boot
4908 *
4909 * Initialize cgroups at system boot, and initialize any
4910 * subsystems that request early init.
ddbcc7e8
PM
4911 */
4912int __init cgroup_init_early(void)
4913{
7b9a6ba5 4914 static struct cgroup_sb_opts __initdata opts;
30159ec7 4915 struct cgroup_subsys *ss;
ddbcc7e8 4916 int i;
30159ec7 4917
3dd06ffa 4918 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4919 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4920
a4ea1cc9 4921 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4922
3ed80a62 4923 for_each_subsys(ss, i) {
aec25020 4924 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4925 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4926 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4927 ss->id, ss->name);
073219e9
TH
4928 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4929 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4930
aec25020 4931 ss->id = i;
073219e9 4932 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4933
4934 if (ss->early_init)
15a4c835 4935 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4936 }
4937 return 0;
4938}
4939
4940/**
a043e3b2
LZ
4941 * cgroup_init - cgroup initialization
4942 *
4943 * Register cgroup filesystem and /proc file, and initialize
4944 * any subsystems that didn't request early init.
ddbcc7e8
PM
4945 */
4946int __init cgroup_init(void)
4947{
30159ec7 4948 struct cgroup_subsys *ss;
0ac801fe 4949 unsigned long key;
172a2c06 4950 int ssid, err;
ddbcc7e8 4951
a14c6874
TH
4952 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4953 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 4954
54e7b4eb 4955 mutex_lock(&cgroup_mutex);
54e7b4eb 4956
82fe9b0d
TH
4957 /* Add init_css_set to the hash table */
4958 key = css_set_hash(init_css_set.subsys);
4959 hash_add(css_set_table, &init_css_set.hlist, key);
4960
3dd06ffa 4961 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4962
54e7b4eb
TH
4963 mutex_unlock(&cgroup_mutex);
4964
172a2c06 4965 for_each_subsys(ss, ssid) {
15a4c835
TH
4966 if (ss->early_init) {
4967 struct cgroup_subsys_state *css =
4968 init_css_set.subsys[ss->id];
4969
4970 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4971 GFP_KERNEL);
4972 BUG_ON(css->id < 0);
4973 } else {
4974 cgroup_init_subsys(ss, false);
4975 }
172a2c06 4976
2d8f243a
TH
4977 list_add_tail(&init_css_set.e_cset_node[ssid],
4978 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4979
4980 /*
c731ae1d
LZ
4981 * Setting dfl_root subsys_mask needs to consider the
4982 * disabled flag and cftype registration needs kmalloc,
4983 * both of which aren't available during early_init.
172a2c06 4984 */
a8ddc821
TH
4985 if (ss->disabled)
4986 continue;
4987
4988 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4989
4990 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4991 ss->dfl_cftypes = ss->legacy_cftypes;
4992
5de4fa13
TH
4993 if (!ss->dfl_cftypes)
4994 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4995
a8ddc821
TH
4996 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4997 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4998 } else {
4999 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5000 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5001 }
676db4af
GK
5002 }
5003
676db4af 5004 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
5005 if (!cgroup_kobj)
5006 return -ENOMEM;
676db4af 5007
ddbcc7e8 5008 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
5009 if (err < 0) {
5010 kobject_put(cgroup_kobj);
2bd59d48 5011 return err;
676db4af 5012 }
ddbcc7e8 5013
46ae220b 5014 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5015 return 0;
ddbcc7e8 5016}
b4f48b63 5017
e5fca243
TH
5018static int __init cgroup_wq_init(void)
5019{
5020 /*
5021 * There isn't much point in executing destruction path in
5022 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5023 * Use 1 for @max_active.
e5fca243
TH
5024 *
5025 * We would prefer to do this in cgroup_init() above, but that
5026 * is called before init_workqueues(): so leave this until after.
5027 */
1a11533f 5028 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5029 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5030
5031 /*
5032 * Used to destroy pidlists and separate to serve as flush domain.
5033 * Cap @max_active to 1 too.
5034 */
5035 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5036 0, 1);
5037 BUG_ON(!cgroup_pidlist_destroy_wq);
5038
e5fca243
TH
5039 return 0;
5040}
5041core_initcall(cgroup_wq_init);
5042
a424316c
PM
5043/*
5044 * proc_cgroup_show()
5045 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5046 * - Used for /proc/<pid>/cgroup.
a424316c 5047 */
006f4ac4
ZL
5048int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5049 struct pid *pid, struct task_struct *tsk)
a424316c 5050{
e61734c5 5051 char *buf, *path;
a424316c 5052 int retval;
3dd06ffa 5053 struct cgroup_root *root;
a424316c
PM
5054
5055 retval = -ENOMEM;
e61734c5 5056 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5057 if (!buf)
5058 goto out;
5059
a424316c 5060 mutex_lock(&cgroup_mutex);
96d365e0 5061 down_read(&css_set_rwsem);
a424316c 5062
985ed670 5063 for_each_root(root) {
a424316c 5064 struct cgroup_subsys *ss;
bd89aabc 5065 struct cgroup *cgrp;
b85d2040 5066 int ssid, count = 0;
a424316c 5067
a2dd4247 5068 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5069 continue;
5070
2c6ab6d2 5071 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5072 for_each_subsys(ss, ssid)
f392e51c 5073 if (root->subsys_mask & (1 << ssid))
b85d2040 5074 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5075 if (strlen(root->name))
5076 seq_printf(m, "%sname=%s", count ? "," : "",
5077 root->name);
a424316c 5078 seq_putc(m, ':');
7717f7ba 5079 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5080 path = cgroup_path(cgrp, buf, PATH_MAX);
5081 if (!path) {
5082 retval = -ENAMETOOLONG;
a424316c 5083 goto out_unlock;
e61734c5
TH
5084 }
5085 seq_puts(m, path);
a424316c
PM
5086 seq_putc(m, '\n');
5087 }
5088
006f4ac4 5089 retval = 0;
a424316c 5090out_unlock:
96d365e0 5091 up_read(&css_set_rwsem);
a424316c 5092 mutex_unlock(&cgroup_mutex);
a424316c
PM
5093 kfree(buf);
5094out:
5095 return retval;
5096}
5097
a424316c
PM
5098/* Display information about each subsystem and each hierarchy */
5099static int proc_cgroupstats_show(struct seq_file *m, void *v)
5100{
30159ec7 5101 struct cgroup_subsys *ss;
a424316c 5102 int i;
a424316c 5103
8bab8dde 5104 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5105 /*
5106 * ideally we don't want subsystems moving around while we do this.
5107 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5108 * subsys/hierarchy state.
5109 */
a424316c 5110 mutex_lock(&cgroup_mutex);
30159ec7
TH
5111
5112 for_each_subsys(ss, i)
2c6ab6d2
PM
5113 seq_printf(m, "%s\t%d\t%d\t%d\n",
5114 ss->name, ss->root->hierarchy_id,
3c9c825b 5115 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5116
a424316c
PM
5117 mutex_unlock(&cgroup_mutex);
5118 return 0;
5119}
5120
5121static int cgroupstats_open(struct inode *inode, struct file *file)
5122{
9dce07f1 5123 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5124}
5125
828c0950 5126static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5127 .open = cgroupstats_open,
5128 .read = seq_read,
5129 .llseek = seq_lseek,
5130 .release = single_release,
5131};
5132
b4f48b63 5133/**
eaf797ab 5134 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5135 * @child: pointer to task_struct of forking parent process.
b4f48b63 5136 *
eaf797ab
TH
5137 * A task is associated with the init_css_set until cgroup_post_fork()
5138 * attaches it to the parent's css_set. Empty cg_list indicates that
5139 * @child isn't holding reference to its css_set.
b4f48b63
PM
5140 */
5141void cgroup_fork(struct task_struct *child)
5142{
eaf797ab 5143 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5144 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5145}
5146
817929ec 5147/**
a043e3b2
LZ
5148 * cgroup_post_fork - called on a new task after adding it to the task list
5149 * @child: the task in question
5150 *
5edee61e
TH
5151 * Adds the task to the list running through its css_set if necessary and
5152 * call the subsystem fork() callbacks. Has to be after the task is
5153 * visible on the task list in case we race with the first call to
0942eeee 5154 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5155 * list.
a043e3b2 5156 */
817929ec
PM
5157void cgroup_post_fork(struct task_struct *child)
5158{
30159ec7 5159 struct cgroup_subsys *ss;
5edee61e
TH
5160 int i;
5161
3ce3230a 5162 /*
251f8c03 5163 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5164 * function sets use_task_css_set_links before grabbing
5165 * tasklist_lock and we just went through tasklist_lock to add
5166 * @child, it's guaranteed that either we see the set
5167 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5168 * @child during its iteration.
5169 *
5170 * If we won the race, @child is associated with %current's
5171 * css_set. Grabbing css_set_rwsem guarantees both that the
5172 * association is stable, and, on completion of the parent's
5173 * migration, @child is visible in the source of migration or
5174 * already in the destination cgroup. This guarantee is necessary
5175 * when implementing operations which need to migrate all tasks of
5176 * a cgroup to another.
5177 *
251f8c03 5178 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5179 * will remain in init_css_set. This is safe because all tasks are
5180 * in the init_css_set before cg_links is enabled and there's no
5181 * operation which transfers all tasks out of init_css_set.
3ce3230a 5182 */
817929ec 5183 if (use_task_css_set_links) {
eaf797ab
TH
5184 struct css_set *cset;
5185
96d365e0 5186 down_write(&css_set_rwsem);
0e1d768f 5187 cset = task_css_set(current);
eaf797ab
TH
5188 if (list_empty(&child->cg_list)) {
5189 rcu_assign_pointer(child->cgroups, cset);
5190 list_add(&child->cg_list, &cset->tasks);
5191 get_css_set(cset);
5192 }
96d365e0 5193 up_write(&css_set_rwsem);
817929ec 5194 }
5edee61e
TH
5195
5196 /*
5197 * Call ss->fork(). This must happen after @child is linked on
5198 * css_set; otherwise, @child might change state between ->fork()
5199 * and addition to css_set.
5200 */
5201 if (need_forkexit_callback) {
3ed80a62 5202 for_each_subsys(ss, i)
5edee61e
TH
5203 if (ss->fork)
5204 ss->fork(child);
5edee61e 5205 }
817929ec 5206}
5edee61e 5207
b4f48b63
PM
5208/**
5209 * cgroup_exit - detach cgroup from exiting task
5210 * @tsk: pointer to task_struct of exiting process
5211 *
5212 * Description: Detach cgroup from @tsk and release it.
5213 *
5214 * Note that cgroups marked notify_on_release force every task in
5215 * them to take the global cgroup_mutex mutex when exiting.
5216 * This could impact scaling on very large systems. Be reluctant to
5217 * use notify_on_release cgroups where very high task exit scaling
5218 * is required on large systems.
5219 *
0e1d768f
TH
5220 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5221 * call cgroup_exit() while the task is still competent to handle
5222 * notify_on_release(), then leave the task attached to the root cgroup in
5223 * each hierarchy for the remainder of its exit. No need to bother with
5224 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5225 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5226 */
1ec41830 5227void cgroup_exit(struct task_struct *tsk)
b4f48b63 5228{
30159ec7 5229 struct cgroup_subsys *ss;
5abb8855 5230 struct css_set *cset;
eaf797ab 5231 bool put_cset = false;
d41d5a01 5232 int i;
817929ec
PM
5233
5234 /*
0e1d768f
TH
5235 * Unlink from @tsk from its css_set. As migration path can't race
5236 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5237 */
5238 if (!list_empty(&tsk->cg_list)) {
96d365e0 5239 down_write(&css_set_rwsem);
0e1d768f 5240 list_del_init(&tsk->cg_list);
96d365e0 5241 up_write(&css_set_rwsem);
0e1d768f 5242 put_cset = true;
817929ec
PM
5243 }
5244
b4f48b63 5245 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5246 cset = task_css_set(tsk);
5247 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5248
1ec41830 5249 if (need_forkexit_callback) {
3ed80a62
TH
5250 /* see cgroup_post_fork() for details */
5251 for_each_subsys(ss, i) {
d41d5a01 5252 if (ss->exit) {
eb95419b
TH
5253 struct cgroup_subsys_state *old_css = cset->subsys[i];
5254 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5255
eb95419b 5256 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5257 }
5258 }
5259 }
d41d5a01 5260
eaf797ab 5261 if (put_cset)
a25eb52e 5262 put_css_set(cset);
b4f48b63 5263}
697f4161 5264
bd89aabc 5265static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5266{
a25eb52e 5267 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5268 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5269 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5270}
5271
81a6a5cd
PM
5272/*
5273 * Notify userspace when a cgroup is released, by running the
5274 * configured release agent with the name of the cgroup (path
5275 * relative to the root of cgroup file system) as the argument.
5276 *
5277 * Most likely, this user command will try to rmdir this cgroup.
5278 *
5279 * This races with the possibility that some other task will be
5280 * attached to this cgroup before it is removed, or that some other
5281 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5282 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5283 * unused, and this cgroup will be reprieved from its death sentence,
5284 * to continue to serve a useful existence. Next time it's released,
5285 * we will get notified again, if it still has 'notify_on_release' set.
5286 *
5287 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5288 * means only wait until the task is successfully execve()'d. The
5289 * separate release agent task is forked by call_usermodehelper(),
5290 * then control in this thread returns here, without waiting for the
5291 * release agent task. We don't bother to wait because the caller of
5292 * this routine has no use for the exit status of the release agent
5293 * task, so no sense holding our caller up for that.
81a6a5cd 5294 */
81a6a5cd
PM
5295static void cgroup_release_agent(struct work_struct *work)
5296{
971ff493
ZL
5297 struct cgroup *cgrp =
5298 container_of(work, struct cgroup, release_agent_work);
5299 char *pathbuf = NULL, *agentbuf = NULL, *path;
5300 char *argv[3], *envp[3];
5301
81a6a5cd 5302 mutex_lock(&cgroup_mutex);
971ff493
ZL
5303
5304 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5305 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5306 if (!pathbuf || !agentbuf)
5307 goto out;
5308
5309 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5310 if (!path)
5311 goto out;
5312
5313 argv[0] = agentbuf;
5314 argv[1] = path;
5315 argv[2] = NULL;
5316
5317 /* minimal command environment */
5318 envp[0] = "HOME=/";
5319 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5320 envp[2] = NULL;
5321
81a6a5cd 5322 mutex_unlock(&cgroup_mutex);
971ff493 5323 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5324 goto out_free;
971ff493 5325out:
81a6a5cd 5326 mutex_unlock(&cgroup_mutex);
3e2cd91a 5327out_free:
971ff493
ZL
5328 kfree(agentbuf);
5329 kfree(pathbuf);
81a6a5cd 5330}
8bab8dde
PM
5331
5332static int __init cgroup_disable(char *str)
5333{
30159ec7 5334 struct cgroup_subsys *ss;
8bab8dde 5335 char *token;
30159ec7 5336 int i;
8bab8dde
PM
5337
5338 while ((token = strsep(&str, ",")) != NULL) {
5339 if (!*token)
5340 continue;
be45c900 5341
3ed80a62 5342 for_each_subsys(ss, i) {
8bab8dde
PM
5343 if (!strcmp(token, ss->name)) {
5344 ss->disabled = 1;
5345 printk(KERN_INFO "Disabling %s control group"
5346 " subsystem\n", ss->name);
5347 break;
5348 }
5349 }
5350 }
5351 return 1;
5352}
5353__setup("cgroup_disable=", cgroup_disable);
38460b48 5354
a8ddc821
TH
5355static int __init cgroup_set_legacy_files_on_dfl(char *str)
5356{
5357 printk("cgroup: using legacy files on the default hierarchy\n");
5358 cgroup_legacy_files_on_dfl = true;
5359 return 0;
5360}
5361__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5362
b77d7b60 5363/**
ec903c0c 5364 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5365 * @dentry: directory dentry of interest
5366 * @ss: subsystem of interest
b77d7b60 5367 *
5a17f543
TH
5368 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5369 * to get the corresponding css and return it. If such css doesn't exist
5370 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5371 */
ec903c0c
TH
5372struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5373 struct cgroup_subsys *ss)
e5d1367f 5374{
2bd59d48
TH
5375 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5376 struct cgroup_subsys_state *css = NULL;
e5d1367f 5377 struct cgroup *cgrp;
e5d1367f 5378
35cf0836 5379 /* is @dentry a cgroup dir? */
2bd59d48
TH
5380 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5381 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5382 return ERR_PTR(-EBADF);
5383
5a17f543
TH
5384 rcu_read_lock();
5385
2bd59d48
TH
5386 /*
5387 * This path doesn't originate from kernfs and @kn could already
5388 * have been or be removed at any point. @kn->priv is RCU
a4189487 5389 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5390 */
5391 cgrp = rcu_dereference(kn->priv);
5392 if (cgrp)
5393 css = cgroup_css(cgrp, ss);
5a17f543 5394
ec903c0c 5395 if (!css || !css_tryget_online(css))
5a17f543
TH
5396 css = ERR_PTR(-ENOENT);
5397
5398 rcu_read_unlock();
5399 return css;
e5d1367f 5400}
e5d1367f 5401
1cb650b9
LZ
5402/**
5403 * css_from_id - lookup css by id
5404 * @id: the cgroup id
5405 * @ss: cgroup subsys to be looked into
5406 *
5407 * Returns the css if there's valid one with @id, otherwise returns NULL.
5408 * Should be called under rcu_read_lock().
5409 */
5410struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5411{
6fa4918d 5412 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5413 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5414}
5415
fe693435 5416#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5417static struct cgroup_subsys_state *
5418debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5419{
5420 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5421
5422 if (!css)
5423 return ERR_PTR(-ENOMEM);
5424
5425 return css;
5426}
5427
eb95419b 5428static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5429{
eb95419b 5430 kfree(css);
fe693435
PM
5431}
5432
182446d0
TH
5433static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5434 struct cftype *cft)
fe693435 5435{
182446d0 5436 return cgroup_task_count(css->cgroup);
fe693435
PM
5437}
5438
182446d0
TH
5439static u64 current_css_set_read(struct cgroup_subsys_state *css,
5440 struct cftype *cft)
fe693435
PM
5441{
5442 return (u64)(unsigned long)current->cgroups;
5443}
5444
182446d0 5445static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5446 struct cftype *cft)
fe693435
PM
5447{
5448 u64 count;
5449
5450 rcu_read_lock();
a8ad805c 5451 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5452 rcu_read_unlock();
5453 return count;
5454}
5455
2da8ca82 5456static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5457{
69d0206c 5458 struct cgrp_cset_link *link;
5abb8855 5459 struct css_set *cset;
e61734c5
TH
5460 char *name_buf;
5461
5462 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5463 if (!name_buf)
5464 return -ENOMEM;
7717f7ba 5465
96d365e0 5466 down_read(&css_set_rwsem);
7717f7ba 5467 rcu_read_lock();
5abb8855 5468 cset = rcu_dereference(current->cgroups);
69d0206c 5469 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5470 struct cgroup *c = link->cgrp;
7717f7ba 5471
a2dd4247 5472 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5473 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5474 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5475 }
5476 rcu_read_unlock();
96d365e0 5477 up_read(&css_set_rwsem);
e61734c5 5478 kfree(name_buf);
7717f7ba
PM
5479 return 0;
5480}
5481
5482#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5483static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5484{
2da8ca82 5485 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5486 struct cgrp_cset_link *link;
7717f7ba 5487
96d365e0 5488 down_read(&css_set_rwsem);
182446d0 5489 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5490 struct css_set *cset = link->cset;
7717f7ba
PM
5491 struct task_struct *task;
5492 int count = 0;
c7561128 5493
5abb8855 5494 seq_printf(seq, "css_set %p\n", cset);
c7561128 5495
5abb8855 5496 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5497 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5498 goto overflow;
5499 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5500 }
5501
5502 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5503 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5504 goto overflow;
5505 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5506 }
c7561128
TH
5507 continue;
5508 overflow:
5509 seq_puts(seq, " ...\n");
7717f7ba 5510 }
96d365e0 5511 up_read(&css_set_rwsem);
7717f7ba
PM
5512 return 0;
5513}
5514
182446d0 5515static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5516{
a25eb52e
ZL
5517 return (!cgroup_has_tasks(css->cgroup) &&
5518 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5519}
5520
5521static struct cftype debug_files[] = {
fe693435
PM
5522 {
5523 .name = "taskcount",
5524 .read_u64 = debug_taskcount_read,
5525 },
5526
5527 {
5528 .name = "current_css_set",
5529 .read_u64 = current_css_set_read,
5530 },
5531
5532 {
5533 .name = "current_css_set_refcount",
5534 .read_u64 = current_css_set_refcount_read,
5535 },
5536
7717f7ba
PM
5537 {
5538 .name = "current_css_set_cg_links",
2da8ca82 5539 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5540 },
5541
5542 {
5543 .name = "cgroup_css_links",
2da8ca82 5544 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5545 },
5546
fe693435
PM
5547 {
5548 .name = "releasable",
5549 .read_u64 = releasable_read,
5550 },
fe693435 5551
4baf6e33
TH
5552 { } /* terminate */
5553};
fe693435 5554
073219e9 5555struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5556 .css_alloc = debug_css_alloc,
5557 .css_free = debug_css_free,
5577964e 5558 .legacy_cftypes = debug_files,
fe693435
PM
5559};
5560#endif /* CONFIG_CGROUP_DEBUG */