cgroup: rename cgroupfs_root->number_of_cgroups to ->nr_cgrps and make it atomic_t
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8
PM
44#include <linux/spinlock.h>
45#include <linux/string.h>
bbcb81d0 46#include <linux/sort.h>
81a6a5cd 47#include <linux/kmod.h>
846c7bb0
BS
48#include <linux/delayacct.h>
49#include <linux/cgroupstats.h>
0ac801fe 50#include <linux/hashtable.h>
096b7fe0 51#include <linux/pid_namespace.h>
2c6ab6d2 52#include <linux/idr.h>
d1d9fd33 53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 54#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 55#include <linux/kthread.h>
846c7bb0 56
60063497 57#include <linux/atomic.h>
ddbcc7e8 58
b1a21367
TH
59/*
60 * pidlists linger the following amount before being destroyed. The goal
61 * is avoiding frequent destruction in the middle of consecutive read calls
62 * Expiring in the middle is a performance problem not a correctness one.
63 * 1 sec should be enough.
64 */
65#define CGROUP_PIDLIST_DESTROY_DELAY HZ
66
8d7e6fb0
TH
67#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
68 MAX_CFTYPE_NAME + 2)
69
ace2bee8
TH
70/*
71 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
72 * creation/removal and hierarchy changing operations including cgroup
73 * creation, removal, css association and controller rebinding. This outer
74 * lock is needed mainly to resolve the circular dependency between kernfs
75 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
76 */
77static DEFINE_MUTEX(cgroup_tree_mutex);
78
e25e2cbb
TH
79/*
80 * cgroup_mutex is the master lock. Any modification to cgroup or its
81 * hierarchy must be performed while holding it.
e25e2cbb 82 */
2219449a
TH
83#ifdef CONFIG_PROVE_RCU
84DEFINE_MUTEX(cgroup_mutex);
8af01f56 85EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 86#else
81a6a5cd 87static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
88#endif
89
69e943b7
TH
90/*
91 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
92 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
93 */
94static DEFINE_SPINLOCK(release_agent_path_lock);
95
ace2bee8 96#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 97 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 98 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 99 lockdep_is_held(&cgroup_mutex), \
ace2bee8 100 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 101
e5fca243
TH
102/*
103 * cgroup destruction makes heavy use of work items and there can be a lot
104 * of concurrent destructions. Use a separate workqueue so that cgroup
105 * destruction work items don't end up filling up max_active of system_wq
106 * which may lead to deadlock.
107 */
108static struct workqueue_struct *cgroup_destroy_wq;
109
b1a21367
TH
110/*
111 * pidlist destructions need to be flushed on cgroup destruction. Use a
112 * separate workqueue as flush domain.
113 */
114static struct workqueue_struct *cgroup_pidlist_destroy_wq;
115
3ed80a62 116/* generate an array of cgroup subsystem pointers */
073219e9 117#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 118static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
119#include <linux/cgroup_subsys.h>
120};
073219e9
TH
121#undef SUBSYS
122
123/* array of cgroup subsystem names */
124#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125static const char *cgroup_subsys_name[] = {
126#include <linux/cgroup_subsys.h>
127};
128#undef SUBSYS
ddbcc7e8 129
ddbcc7e8 130/*
9871bf95
TH
131 * The dummy hierarchy, reserved for the subsystems that are otherwise
132 * unattached - it never has more than a single cgroup, and all tasks are
133 * part of that cgroup.
ddbcc7e8 134 */
9871bf95
TH
135static struct cgroupfs_root cgroup_dummy_root;
136
137/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
138static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
139
140/* The list of hierarchy roots */
141
9871bf95
TH
142static LIST_HEAD(cgroup_roots);
143static int cgroup_root_count;
ddbcc7e8 144
3417ae1f 145/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 146static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 147
794611a1
LZ
148/*
149 * Assign a monotonically increasing serial number to cgroups. It
150 * guarantees cgroups with bigger numbers are newer than those with smaller
151 * numbers. Also, as cgroups are always appended to the parent's
152 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
153 * the ascending serial number order on the list. Protected by
154 * cgroup_mutex.
794611a1 155 */
00356bd5 156static u64 cgroup_serial_nr_next = 1;
794611a1 157
ddbcc7e8 158/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
159 * check for fork/exit handlers to call. This avoids us having to do
160 * extra work in the fork/exit path if none of the subsystems need to
161 * be called.
ddbcc7e8 162 */
8947f9d5 163static int need_forkexit_callback __read_mostly;
ddbcc7e8 164
628f7cd4
TH
165static struct cftype cgroup_base_files[];
166
59f5296b 167static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
168static int rebind_subsystems(struct cgroupfs_root *root,
169 unsigned long added_mask, unsigned removed_mask);
f20104de 170static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 171static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
172static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
173 bool is_add);
b1a21367 174static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 175
95109b62
TH
176/**
177 * cgroup_css - obtain a cgroup's css for the specified subsystem
178 * @cgrp: the cgroup of interest
ca8bdcaf 179 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 180 *
ca8bdcaf
TH
181 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
182 * function must be called either under cgroup_mutex or rcu_read_lock() and
183 * the caller is responsible for pinning the returned css if it wants to
184 * keep accessing it outside the said locks. This function may return
185 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
186 */
187static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 188 struct cgroup_subsys *ss)
95109b62 189{
ca8bdcaf 190 if (ss)
aec25020 191 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
192 lockdep_is_held(&cgroup_tree_mutex) ||
193 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
194 else
195 return &cgrp->dummy_css;
95109b62 196}
42809dd4 197
ddbcc7e8 198/* convenient tests for these bits */
54766d4a 199static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 200{
54766d4a 201 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
202}
203
59f5296b
TH
204struct cgroup_subsys_state *seq_css(struct seq_file *seq)
205{
2bd59d48
TH
206 struct kernfs_open_file *of = seq->private;
207 struct cgroup *cgrp = of->kn->parent->priv;
208 struct cftype *cft = seq_cft(seq);
209
210 /*
211 * This is open and unprotected implementation of cgroup_css().
212 * seq_css() is only called from a kernfs file operation which has
213 * an active reference on the file. Because all the subsystem
214 * files are drained before a css is disassociated with a cgroup,
215 * the matching css from the cgroup's subsys table is guaranteed to
216 * be and stay valid until the enclosing operation is complete.
217 */
218 if (cft->ss)
219 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
220 else
221 return &cgrp->dummy_css;
59f5296b
TH
222}
223EXPORT_SYMBOL_GPL(seq_css);
224
78574cf9
LZ
225/**
226 * cgroup_is_descendant - test ancestry
227 * @cgrp: the cgroup to be tested
228 * @ancestor: possible ancestor of @cgrp
229 *
230 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
231 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
232 * and @ancestor are accessible.
233 */
234bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
235{
236 while (cgrp) {
237 if (cgrp == ancestor)
238 return true;
239 cgrp = cgrp->parent;
240 }
241 return false;
242}
243EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 244
e9685a03 245static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
246{
247 const int bits =
bd89aabc
PM
248 (1 << CGRP_RELEASABLE) |
249 (1 << CGRP_NOTIFY_ON_RELEASE);
250 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
251}
252
e9685a03 253static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 254{
bd89aabc 255 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
256}
257
1c6727af
TH
258/**
259 * for_each_css - iterate all css's of a cgroup
260 * @css: the iteration cursor
261 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
262 * @cgrp: the target cgroup to iterate css's of
263 *
264 * Should be called under cgroup_mutex.
265 */
266#define for_each_css(css, ssid, cgrp) \
267 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
268 if (!((css) = rcu_dereference_check( \
269 (cgrp)->subsys[(ssid)], \
ace2bee8 270 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
271 lockdep_is_held(&cgroup_mutex)))) { } \
272 else
273
30159ec7 274/**
3ed80a62 275 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 276 * @ss: the iteration cursor
780cd8b3 277 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 278 */
780cd8b3 279#define for_each_subsys(ss, ssid) \
3ed80a62
TH
280 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
281 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 282
5549c497
TH
283/* iterate across the active hierarchies */
284#define for_each_active_root(root) \
285 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 286
7ae1bad9
TH
287/**
288 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
289 * @cgrp: the cgroup to be checked for liveness
290 *
47cfcd09
TH
291 * On success, returns true; the mutex should be later unlocked. On
292 * failure returns false with no lock held.
7ae1bad9 293 */
b9777cf8 294static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
295{
296 mutex_lock(&cgroup_mutex);
54766d4a 297 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
298 mutex_unlock(&cgroup_mutex);
299 return false;
300 }
301 return true;
302}
7ae1bad9 303
81a6a5cd
PM
304/* the list of cgroups eligible for automatic release. Protected by
305 * release_list_lock */
306static LIST_HEAD(release_list);
cdcc136f 307static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
308static void cgroup_release_agent(struct work_struct *work);
309static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 310static void check_for_release(struct cgroup *cgrp);
81a6a5cd 311
69d0206c
TH
312/*
313 * A cgroup can be associated with multiple css_sets as different tasks may
314 * belong to different cgroups on different hierarchies. In the other
315 * direction, a css_set is naturally associated with multiple cgroups.
316 * This M:N relationship is represented by the following link structure
317 * which exists for each association and allows traversing the associations
318 * from both sides.
319 */
320struct cgrp_cset_link {
321 /* the cgroup and css_set this link associates */
322 struct cgroup *cgrp;
323 struct css_set *cset;
324
325 /* list of cgrp_cset_links anchored at cgrp->cset_links */
326 struct list_head cset_link;
327
328 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
329 struct list_head cgrp_link;
817929ec
PM
330};
331
332/* The default css_set - used by init and its children prior to any
333 * hierarchies being mounted. It contains a pointer to the root state
334 * for each subsystem. Also used to anchor the list of css_sets. Not
335 * reference-counted, to improve performance when child cgroups
336 * haven't been created.
337 */
338
339static struct css_set init_css_set;
69d0206c 340static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 341
0942eeee
TH
342/*
343 * css_set_lock protects the list of css_set objects, and the chain of
344 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 345 * css_task_iter_start().
0942eeee 346 */
817929ec
PM
347static DEFINE_RWLOCK(css_set_lock);
348static int css_set_count;
349
7717f7ba
PM
350/*
351 * hash table for cgroup groups. This improves the performance to find
352 * an existing css_set. This hash doesn't (currently) take into
353 * account cgroups in empty hierarchies.
354 */
472b1053 355#define CSS_SET_HASH_BITS 7
0ac801fe 356static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 357
0ac801fe 358static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 359{
0ac801fe 360 unsigned long key = 0UL;
30159ec7
TH
361 struct cgroup_subsys *ss;
362 int i;
472b1053 363
30159ec7 364 for_each_subsys(ss, i)
0ac801fe
LZ
365 key += (unsigned long)css[i];
366 key = (key >> 16) ^ key;
472b1053 367
0ac801fe 368 return key;
472b1053
LZ
369}
370
0942eeee
TH
371/*
372 * We don't maintain the lists running through each css_set to its task
72ec7029
TH
373 * until after the first call to css_task_iter_start(). This reduces the
374 * fork()/exit() overhead for people who have cgroups compiled into their
375 * kernel but not actually in use.
0942eeee 376 */
8947f9d5 377static int use_task_css_set_links __read_mostly;
817929ec 378
5abb8855 379static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 380{
69d0206c 381 struct cgrp_cset_link *link, *tmp_link;
5abb8855 382
146aa1bd
LJ
383 /*
384 * Ensure that the refcount doesn't hit zero while any readers
385 * can see it. Similar to atomic_dec_and_lock(), but for an
386 * rwlock
387 */
5abb8855 388 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
389 return;
390 write_lock(&css_set_lock);
5abb8855 391 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
392 write_unlock(&css_set_lock);
393 return;
394 }
81a6a5cd 395
2c6ab6d2 396 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 397 hash_del(&cset->hlist);
2c6ab6d2
PM
398 css_set_count--;
399
69d0206c 400 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 401 struct cgroup *cgrp = link->cgrp;
5abb8855 402
69d0206c
TH
403 list_del(&link->cset_link);
404 list_del(&link->cgrp_link);
71b5707e 405
ddd69148 406 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 407 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 408 if (taskexit)
bd89aabc
PM
409 set_bit(CGRP_RELEASABLE, &cgrp->flags);
410 check_for_release(cgrp);
81a6a5cd 411 }
2c6ab6d2
PM
412
413 kfree(link);
81a6a5cd 414 }
2c6ab6d2
PM
415
416 write_unlock(&css_set_lock);
5abb8855 417 kfree_rcu(cset, rcu_head);
b4f48b63
PM
418}
419
817929ec
PM
420/*
421 * refcounted get/put for css_set objects
422 */
5abb8855 423static inline void get_css_set(struct css_set *cset)
817929ec 424{
5abb8855 425 atomic_inc(&cset->refcount);
817929ec
PM
426}
427
5abb8855 428static inline void put_css_set(struct css_set *cset)
817929ec 429{
5abb8855 430 __put_css_set(cset, 0);
817929ec
PM
431}
432
5abb8855 433static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 434{
5abb8855 435 __put_css_set(cset, 1);
81a6a5cd
PM
436}
437
b326f9d0 438/**
7717f7ba 439 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
440 * @cset: candidate css_set being tested
441 * @old_cset: existing css_set for a task
7717f7ba
PM
442 * @new_cgrp: cgroup that's being entered by the task
443 * @template: desired set of css pointers in css_set (pre-calculated)
444 *
6f4b7e63 445 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
446 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
447 */
5abb8855
TH
448static bool compare_css_sets(struct css_set *cset,
449 struct css_set *old_cset,
7717f7ba
PM
450 struct cgroup *new_cgrp,
451 struct cgroup_subsys_state *template[])
452{
453 struct list_head *l1, *l2;
454
5abb8855 455 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
456 /* Not all subsystems matched */
457 return false;
458 }
459
460 /*
461 * Compare cgroup pointers in order to distinguish between
462 * different cgroups in heirarchies with no subsystems. We
463 * could get by with just this check alone (and skip the
464 * memcmp above) but on most setups the memcmp check will
465 * avoid the need for this more expensive check on almost all
466 * candidates.
467 */
468
69d0206c
TH
469 l1 = &cset->cgrp_links;
470 l2 = &old_cset->cgrp_links;
7717f7ba 471 while (1) {
69d0206c 472 struct cgrp_cset_link *link1, *link2;
5abb8855 473 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
474
475 l1 = l1->next;
476 l2 = l2->next;
477 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
478 if (l1 == &cset->cgrp_links) {
479 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
480 break;
481 } else {
69d0206c 482 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
483 }
484 /* Locate the cgroups associated with these links. */
69d0206c
TH
485 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
486 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
487 cgrp1 = link1->cgrp;
488 cgrp2 = link2->cgrp;
7717f7ba 489 /* Hierarchies should be linked in the same order. */
5abb8855 490 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
491
492 /*
493 * If this hierarchy is the hierarchy of the cgroup
494 * that's changing, then we need to check that this
495 * css_set points to the new cgroup; if it's any other
496 * hierarchy, then this css_set should point to the
497 * same cgroup as the old css_set.
498 */
5abb8855
TH
499 if (cgrp1->root == new_cgrp->root) {
500 if (cgrp1 != new_cgrp)
7717f7ba
PM
501 return false;
502 } else {
5abb8855 503 if (cgrp1 != cgrp2)
7717f7ba
PM
504 return false;
505 }
506 }
507 return true;
508}
509
b326f9d0
TH
510/**
511 * find_existing_css_set - init css array and find the matching css_set
512 * @old_cset: the css_set that we're using before the cgroup transition
513 * @cgrp: the cgroup that we're moving into
514 * @template: out param for the new set of csses, should be clear on entry
817929ec 515 */
5abb8855
TH
516static struct css_set *find_existing_css_set(struct css_set *old_cset,
517 struct cgroup *cgrp,
518 struct cgroup_subsys_state *template[])
b4f48b63 519{
bd89aabc 520 struct cgroupfs_root *root = cgrp->root;
30159ec7 521 struct cgroup_subsys *ss;
5abb8855 522 struct css_set *cset;
0ac801fe 523 unsigned long key;
b326f9d0 524 int i;
817929ec 525
aae8aab4
BB
526 /*
527 * Build the set of subsystem state objects that we want to see in the
528 * new css_set. while subsystems can change globally, the entries here
529 * won't change, so no need for locking.
530 */
30159ec7 531 for_each_subsys(ss, i) {
a1a71b45 532 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
533 /* Subsystem is in this hierarchy. So we want
534 * the subsystem state from the new
535 * cgroup */
ca8bdcaf 536 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
537 } else {
538 /* Subsystem is not in this hierarchy, so we
539 * don't want to change the subsystem state */
5abb8855 540 template[i] = old_cset->subsys[i];
817929ec
PM
541 }
542 }
543
0ac801fe 544 key = css_set_hash(template);
5abb8855
TH
545 hash_for_each_possible(css_set_table, cset, hlist, key) {
546 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
547 continue;
548
549 /* This css_set matches what we need */
5abb8855 550 return cset;
472b1053 551 }
817929ec
PM
552
553 /* No existing cgroup group matched */
554 return NULL;
555}
556
69d0206c 557static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 558{
69d0206c 559 struct cgrp_cset_link *link, *tmp_link;
36553434 560
69d0206c
TH
561 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
562 list_del(&link->cset_link);
36553434
LZ
563 kfree(link);
564 }
565}
566
69d0206c
TH
567/**
568 * allocate_cgrp_cset_links - allocate cgrp_cset_links
569 * @count: the number of links to allocate
570 * @tmp_links: list_head the allocated links are put on
571 *
572 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
573 * through ->cset_link. Returns 0 on success or -errno.
817929ec 574 */
69d0206c 575static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 576{
69d0206c 577 struct cgrp_cset_link *link;
817929ec 578 int i;
69d0206c
TH
579
580 INIT_LIST_HEAD(tmp_links);
581
817929ec 582 for (i = 0; i < count; i++) {
f4f4be2b 583 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 584 if (!link) {
69d0206c 585 free_cgrp_cset_links(tmp_links);
817929ec
PM
586 return -ENOMEM;
587 }
69d0206c 588 list_add(&link->cset_link, tmp_links);
817929ec
PM
589 }
590 return 0;
591}
592
c12f65d4
LZ
593/**
594 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 595 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 596 * @cset: the css_set to be linked
c12f65d4
LZ
597 * @cgrp: the destination cgroup
598 */
69d0206c
TH
599static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
600 struct cgroup *cgrp)
c12f65d4 601{
69d0206c 602 struct cgrp_cset_link *link;
c12f65d4 603
69d0206c
TH
604 BUG_ON(list_empty(tmp_links));
605 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
606 link->cset = cset;
7717f7ba 607 link->cgrp = cgrp;
69d0206c 608 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
609 /*
610 * Always add links to the tail of the list so that the list
611 * is sorted by order of hierarchy creation
612 */
69d0206c 613 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
614}
615
b326f9d0
TH
616/**
617 * find_css_set - return a new css_set with one cgroup updated
618 * @old_cset: the baseline css_set
619 * @cgrp: the cgroup to be updated
620 *
621 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
622 * substituted into the appropriate hierarchy.
817929ec 623 */
5abb8855
TH
624static struct css_set *find_css_set(struct css_set *old_cset,
625 struct cgroup *cgrp)
817929ec 626{
b326f9d0 627 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 628 struct css_set *cset;
69d0206c
TH
629 struct list_head tmp_links;
630 struct cgrp_cset_link *link;
0ac801fe 631 unsigned long key;
472b1053 632
b326f9d0
TH
633 lockdep_assert_held(&cgroup_mutex);
634
817929ec
PM
635 /* First see if we already have a cgroup group that matches
636 * the desired set */
7e9abd89 637 read_lock(&css_set_lock);
5abb8855
TH
638 cset = find_existing_css_set(old_cset, cgrp, template);
639 if (cset)
640 get_css_set(cset);
7e9abd89 641 read_unlock(&css_set_lock);
817929ec 642
5abb8855
TH
643 if (cset)
644 return cset;
817929ec 645
f4f4be2b 646 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 647 if (!cset)
817929ec
PM
648 return NULL;
649
69d0206c 650 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 651 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 652 kfree(cset);
817929ec
PM
653 return NULL;
654 }
655
5abb8855 656 atomic_set(&cset->refcount, 1);
69d0206c 657 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
658 INIT_LIST_HEAD(&cset->tasks);
659 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
660
661 /* Copy the set of subsystem state objects generated in
662 * find_existing_css_set() */
5abb8855 663 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
664
665 write_lock(&css_set_lock);
666 /* Add reference counts and links from the new css_set. */
69d0206c 667 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 668 struct cgroup *c = link->cgrp;
69d0206c 669
7717f7ba
PM
670 if (c->root == cgrp->root)
671 c = cgrp;
69d0206c 672 link_css_set(&tmp_links, cset, c);
7717f7ba 673 }
817929ec 674
69d0206c 675 BUG_ON(!list_empty(&tmp_links));
817929ec 676
817929ec 677 css_set_count++;
472b1053
LZ
678
679 /* Add this cgroup group to the hash table */
5abb8855
TH
680 key = css_set_hash(cset->subsys);
681 hash_add(css_set_table, &cset->hlist, key);
472b1053 682
817929ec
PM
683 write_unlock(&css_set_lock);
684
5abb8855 685 return cset;
b4f48b63
PM
686}
687
2bd59d48
TH
688static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
689{
690 struct cgroup *top_cgrp = kf_root->kn->priv;
691
692 return top_cgrp->root;
693}
694
f2e85d57
TH
695static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
696{
697 int id;
698
699 lockdep_assert_held(&cgroup_mutex);
700
701 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
702 GFP_KERNEL);
703 if (id < 0)
704 return id;
705
706 root->hierarchy_id = id;
707 return 0;
708}
709
710static void cgroup_exit_root_id(struct cgroupfs_root *root)
711{
712 lockdep_assert_held(&cgroup_mutex);
713
714 if (root->hierarchy_id) {
715 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
716 root->hierarchy_id = 0;
717 }
718}
719
720static void cgroup_free_root(struct cgroupfs_root *root)
721{
722 if (root) {
723 /* hierarhcy ID shoulid already have been released */
724 WARN_ON_ONCE(root->hierarchy_id);
725
726 idr_destroy(&root->cgroup_idr);
727 kfree(root);
728 }
729}
730
59f5296b
TH
731static void cgroup_get_root(struct cgroupfs_root *root)
732{
2bd59d48
TH
733 /*
734 * The caller must ensure that @root is alive, which can be
735 * achieved by holding a ref on one of the member cgroups or
736 * following a registered reference to @root while holding
737 * cgroup_tree_mutex.
738 */
739 WARN_ON_ONCE(atomic_read(&root->refcnt) <= 0);
740 atomic_inc(&root->refcnt);
59f5296b
TH
741}
742
743static void cgroup_put_root(struct cgroupfs_root *root)
744{
f2e85d57
TH
745 struct cgroup *cgrp = &root->top_cgroup;
746 struct cgrp_cset_link *link, *tmp_link;
747 int ret;
748
2bd59d48
TH
749 /*
750 * @root's refcnt reaching zero and its deregistration should be
751 * atomic w.r.t. cgroup_tree_mutex. This ensures that
752 * cgroup_get_root() is safe to invoke if @root is registered.
753 */
754 mutex_lock(&cgroup_tree_mutex);
755 if (!atomic_dec_and_test(&root->refcnt)) {
756 mutex_unlock(&cgroup_tree_mutex);
757 return;
758 }
759 mutex_lock(&cgroup_mutex);
f2e85d57 760
3c9c825b 761 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
f2e85d57
TH
762 BUG_ON(!list_empty(&cgrp->children));
763
f2e85d57
TH
764 /* Rebind all subsystems back to the default hierarchy */
765 if (root->flags & CGRP_ROOT_SUBSYS_BOUND) {
766 ret = rebind_subsystems(root, 0, root->subsys_mask);
767 /* Shouldn't be able to fail ... */
768 BUG_ON(ret);
769 }
770
771 /*
772 * Release all the links from cset_links to this hierarchy's
773 * root cgroup
774 */
775 write_lock(&css_set_lock);
776
777 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
778 list_del(&link->cset_link);
779 list_del(&link->cgrp_link);
780 kfree(link);
781 }
782 write_unlock(&css_set_lock);
783
784 if (!list_empty(&root->root_list)) {
785 list_del(&root->root_list);
786 cgroup_root_count--;
787 }
788
789 cgroup_exit_root_id(root);
790
791 mutex_unlock(&cgroup_mutex);
792 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 793
2bd59d48 794 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
795 cgroup_free_root(root);
796}
797
7717f7ba
PM
798/*
799 * Return the cgroup for "task" from the given hierarchy. Must be
800 * called with cgroup_mutex held.
801 */
802static struct cgroup *task_cgroup_from_root(struct task_struct *task,
803 struct cgroupfs_root *root)
804{
5abb8855 805 struct css_set *cset;
7717f7ba
PM
806 struct cgroup *res = NULL;
807
808 BUG_ON(!mutex_is_locked(&cgroup_mutex));
809 read_lock(&css_set_lock);
810 /*
811 * No need to lock the task - since we hold cgroup_mutex the
812 * task can't change groups, so the only thing that can happen
813 * is that it exits and its css is set back to init_css_set.
814 */
a8ad805c 815 cset = task_css_set(task);
5abb8855 816 if (cset == &init_css_set) {
7717f7ba
PM
817 res = &root->top_cgroup;
818 } else {
69d0206c
TH
819 struct cgrp_cset_link *link;
820
821 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 822 struct cgroup *c = link->cgrp;
69d0206c 823
7717f7ba
PM
824 if (c->root == root) {
825 res = c;
826 break;
827 }
828 }
829 }
830 read_unlock(&css_set_lock);
831 BUG_ON(!res);
832 return res;
833}
834
ddbcc7e8
PM
835/*
836 * There is one global cgroup mutex. We also require taking
837 * task_lock() when dereferencing a task's cgroup subsys pointers.
838 * See "The task_lock() exception", at the end of this comment.
839 *
840 * A task must hold cgroup_mutex to modify cgroups.
841 *
842 * Any task can increment and decrement the count field without lock.
843 * So in general, code holding cgroup_mutex can't rely on the count
844 * field not changing. However, if the count goes to zero, then only
956db3ca 845 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
846 * means that no tasks are currently attached, therefore there is no
847 * way a task attached to that cgroup can fork (the other way to
848 * increment the count). So code holding cgroup_mutex can safely
849 * assume that if the count is zero, it will stay zero. Similarly, if
850 * a task holds cgroup_mutex on a cgroup with zero count, it
851 * knows that the cgroup won't be removed, as cgroup_rmdir()
852 * needs that mutex.
853 *
ddbcc7e8
PM
854 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
855 * (usually) take cgroup_mutex. These are the two most performance
856 * critical pieces of code here. The exception occurs on cgroup_exit(),
857 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
858 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
859 * to the release agent with the name of the cgroup (path relative to
860 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
861 *
862 * A cgroup can only be deleted if both its 'count' of using tasks
863 * is zero, and its list of 'children' cgroups is empty. Since all
864 * tasks in the system use _some_ cgroup, and since there is always at
865 * least one task in the system (init, pid == 1), therefore, top_cgroup
866 * always has either children cgroups and/or using tasks. So we don't
867 * need a special hack to ensure that top_cgroup cannot be deleted.
868 *
869 * The task_lock() exception
870 *
871 * The need for this exception arises from the action of
d0b2fdd2 872 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 873 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
874 * several performance critical places that need to reference
875 * task->cgroup without the expense of grabbing a system global
876 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 877 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
878 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
879 * the task_struct routinely used for such matters.
880 *
881 * P.S. One more locking exception. RCU is used to guard the
956db3ca 882 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
883 */
884
628f7cd4 885static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 886static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 887static const struct file_operations proc_cgroupstats_operations;
a424316c 888
8d7e6fb0
TH
889static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
890 char *buf)
891{
892 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
893 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
894 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
895 cft->ss->name, cft->name);
896 else
897 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
898 return buf;
899}
900
f2e85d57
TH
901/**
902 * cgroup_file_mode - deduce file mode of a control file
903 * @cft: the control file in question
904 *
905 * returns cft->mode if ->mode is not 0
906 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
907 * returns S_IRUGO if it has only a read handler
908 * returns S_IWUSR if it has only a write hander
909 */
910static umode_t cgroup_file_mode(const struct cftype *cft)
911{
912 umode_t mode = 0;
913
914 if (cft->mode)
915 return cft->mode;
916
917 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
918 mode |= S_IRUGO;
919
920 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
921 cft->trigger)
922 mode |= S_IWUSR;
923
924 return mode;
925}
926
be445626
LZ
927static void cgroup_free_fn(struct work_struct *work)
928{
ea15f8cc 929 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 930
3c9c825b 931 atomic_dec(&cgrp->root->nr_cgrps);
be445626 932
415cf07a 933 /*
59f5296b
TH
934 * We get a ref to the parent, and put the ref when this cgroup is
935 * being freed, so it's guaranteed that the parent won't be
936 * destroyed before its children.
415cf07a 937 */
59f5296b 938 cgroup_put(cgrp->parent);
415cf07a 939
59f5296b
TH
940 /* put the root reference that we took when we created the cgroup */
941 cgroup_put_root(cgrp->root);
be445626 942
b1a21367 943 cgroup_pidlist_destroy_all(cgrp);
be445626 944
6f30558f 945 kernfs_put(cgrp->kn);
be445626
LZ
946 kfree(cgrp);
947}
948
949static void cgroup_free_rcu(struct rcu_head *head)
950{
951 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
952
ea15f8cc 953 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 954 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
955}
956
59f5296b
TH
957static void cgroup_get(struct cgroup *cgrp)
958{
2bd59d48
TH
959 WARN_ON_ONCE(cgroup_is_dead(cgrp));
960 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
961 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
962}
963
59f5296b
TH
964static void cgroup_put(struct cgroup *cgrp)
965{
2bd59d48
TH
966 if (!atomic_dec_and_test(&cgrp->refcnt))
967 return;
968 if (WARN_ON_ONCE(!cgroup_is_dead(cgrp)))
969 return;
59f5296b 970
2bd59d48
TH
971 /*
972 * XXX: cgrp->id is only used to look up css's. As cgroup and
973 * css's lifetimes will be decoupled, it should be made
974 * per-subsystem and moved to css->id so that lookups are
975 * successful until the target css is released.
976 */
977 mutex_lock(&cgroup_mutex);
978 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
979 mutex_unlock(&cgroup_mutex);
980 cgrp->id = -1;
ddbcc7e8 981
2bd59d48 982 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
983}
984
2739d3cc 985static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 986{
2bd59d48 987 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 988
ace2bee8 989 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 990 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
991}
992
13af07df 993/**
628f7cd4 994 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 995 * @cgrp: target cgroup
13af07df
AR
996 * @subsys_mask: mask of the subsystem ids whose files should be removed
997 */
628f7cd4 998static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 999{
13af07df 1000 struct cgroup_subsys *ss;
b420ba7d 1001 int i;
05ef1d7c 1002
b420ba7d 1003 for_each_subsys(ss, i) {
0adb0704 1004 struct cftype *cfts;
b420ba7d
TH
1005
1006 if (!test_bit(i, &subsys_mask))
13af07df 1007 continue;
0adb0704
TH
1008 list_for_each_entry(cfts, &ss->cfts, node)
1009 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1010 }
ddbcc7e8
PM
1011}
1012
ddbcc7e8 1013static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 1014 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 1015{
bd89aabc 1016 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 1017 struct cgroup_subsys *ss;
3126121f 1018 int i, ret;
ddbcc7e8 1019
ace2bee8
TH
1020 lockdep_assert_held(&cgroup_tree_mutex);
1021 lockdep_assert_held(&cgroup_mutex);
aae8aab4 1022
ddbcc7e8 1023 /* Check that any added subsystems are currently free */
3ed80a62
TH
1024 for_each_subsys(ss, i)
1025 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
1026 return -EBUSY;
ddbcc7e8 1027
3126121f
TH
1028 ret = cgroup_populate_dir(cgrp, added_mask);
1029 if (ret)
3ed80a62 1030 return ret;
3126121f
TH
1031
1032 /*
1033 * Nothing can fail from this point on. Remove files for the
1034 * removed subsystems and rebind each subsystem.
1035 */
4ac06017 1036 mutex_unlock(&cgroup_mutex);
3126121f 1037 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1038 mutex_lock(&cgroup_mutex);
ddbcc7e8 1039
30159ec7 1040 for_each_subsys(ss, i) {
ddbcc7e8 1041 unsigned long bit = 1UL << i;
30159ec7 1042
a1a71b45 1043 if (bit & added_mask) {
ddbcc7e8 1044 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1045 BUG_ON(cgroup_css(cgrp, ss));
1046 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1047 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1048
73e80ed8 1049 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1050 cgroup_css(cgroup_dummy_top, ss));
1051 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1052
b2aa30f7 1053 ss->root = root;
ddbcc7e8 1054 if (ss->bind)
ca8bdcaf 1055 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1056
cf5d5941 1057 /* refcount was already taken, and we're keeping it */
a8a648c4 1058 root->subsys_mask |= bit;
a1a71b45 1059 } else if (bit & removed_mask) {
ddbcc7e8 1060 /* We're removing this subsystem */
ca8bdcaf
TH
1061 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1062 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1063
ddbcc7e8 1064 if (ss->bind)
ca8bdcaf 1065 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1066
ca8bdcaf 1067 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1068 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1069
9871bf95 1070 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1071 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1072 }
1073 }
ddbcc7e8 1074
1672d040
TH
1075 /*
1076 * Mark @root has finished binding subsystems. @root->subsys_mask
1077 * now matches the bound subsystems.
1078 */
1079 root->flags |= CGRP_ROOT_SUBSYS_BOUND;
2bd59d48 1080 kernfs_activate(cgrp->kn);
1672d040 1081
ddbcc7e8
PM
1082 return 0;
1083}
1084
2bd59d48
TH
1085static int cgroup_show_options(struct seq_file *seq,
1086 struct kernfs_root *kf_root)
ddbcc7e8 1087{
2bd59d48 1088 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1089 struct cgroup_subsys *ss;
b85d2040 1090 int ssid;
ddbcc7e8 1091
b85d2040
TH
1092 for_each_subsys(ss, ssid)
1093 if (root->subsys_mask & (1 << ssid))
1094 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1095 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1096 seq_puts(seq, ",sane_behavior");
93438629 1097 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1098 seq_puts(seq, ",noprefix");
93438629 1099 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1100 seq_puts(seq, ",xattr");
69e943b7
TH
1101
1102 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1103 if (strlen(root->release_agent_path))
1104 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1105 spin_unlock(&release_agent_path_lock);
1106
2260e7fc 1107 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1108 seq_puts(seq, ",clone_children");
c6d57f33
PM
1109 if (strlen(root->name))
1110 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1111 return 0;
1112}
1113
1114struct cgroup_sb_opts {
a1a71b45 1115 unsigned long subsys_mask;
ddbcc7e8 1116 unsigned long flags;
81a6a5cd 1117 char *release_agent;
2260e7fc 1118 bool cpuset_clone_children;
c6d57f33 1119 char *name;
2c6ab6d2
PM
1120 /* User explicitly requested empty subsystem */
1121 bool none;
ddbcc7e8
PM
1122};
1123
aae8aab4 1124/*
9871bf95
TH
1125 * Convert a hierarchy specifier into a bitmask of subsystems and
1126 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1127 * array. This function takes refcounts on subsystems to be used, unless it
1128 * returns error, in which case no refcounts are taken.
aae8aab4 1129 */
cf5d5941 1130static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1131{
32a8cf23
DL
1132 char *token, *o = data;
1133 bool all_ss = false, one_ss = false;
f9ab5b5b 1134 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1135 struct cgroup_subsys *ss;
1136 int i;
f9ab5b5b 1137
aae8aab4
BB
1138 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1139
f9ab5b5b 1140#ifdef CONFIG_CPUSETS
073219e9 1141 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1142#endif
ddbcc7e8 1143
c6d57f33 1144 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1145
1146 while ((token = strsep(&o, ",")) != NULL) {
1147 if (!*token)
1148 return -EINVAL;
32a8cf23 1149 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1150 /* Explicitly have no subsystems */
1151 opts->none = true;
32a8cf23
DL
1152 continue;
1153 }
1154 if (!strcmp(token, "all")) {
1155 /* Mutually exclusive option 'all' + subsystem name */
1156 if (one_ss)
1157 return -EINVAL;
1158 all_ss = true;
1159 continue;
1160 }
873fe09e
TH
1161 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1162 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1163 continue;
1164 }
32a8cf23 1165 if (!strcmp(token, "noprefix")) {
93438629 1166 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1167 continue;
1168 }
1169 if (!strcmp(token, "clone_children")) {
2260e7fc 1170 opts->cpuset_clone_children = true;
32a8cf23
DL
1171 continue;
1172 }
03b1cde6 1173 if (!strcmp(token, "xattr")) {
93438629 1174 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1175 continue;
1176 }
32a8cf23 1177 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1178 /* Specifying two release agents is forbidden */
1179 if (opts->release_agent)
1180 return -EINVAL;
c6d57f33 1181 opts->release_agent =
e400c285 1182 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1183 if (!opts->release_agent)
1184 return -ENOMEM;
32a8cf23
DL
1185 continue;
1186 }
1187 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1188 const char *name = token + 5;
1189 /* Can't specify an empty name */
1190 if (!strlen(name))
1191 return -EINVAL;
1192 /* Must match [\w.-]+ */
1193 for (i = 0; i < strlen(name); i++) {
1194 char c = name[i];
1195 if (isalnum(c))
1196 continue;
1197 if ((c == '.') || (c == '-') || (c == '_'))
1198 continue;
1199 return -EINVAL;
1200 }
1201 /* Specifying two names is forbidden */
1202 if (opts->name)
1203 return -EINVAL;
1204 opts->name = kstrndup(name,
e400c285 1205 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1206 GFP_KERNEL);
1207 if (!opts->name)
1208 return -ENOMEM;
32a8cf23
DL
1209
1210 continue;
1211 }
1212
30159ec7 1213 for_each_subsys(ss, i) {
32a8cf23
DL
1214 if (strcmp(token, ss->name))
1215 continue;
1216 if (ss->disabled)
1217 continue;
1218
1219 /* Mutually exclusive option 'all' + subsystem name */
1220 if (all_ss)
1221 return -EINVAL;
a1a71b45 1222 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1223 one_ss = true;
1224
1225 break;
1226 }
1227 if (i == CGROUP_SUBSYS_COUNT)
1228 return -ENOENT;
1229 }
1230
1231 /*
1232 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1233 * otherwise if 'none', 'name=' and a subsystem name options
1234 * were not specified, let's default to 'all'
32a8cf23 1235 */
30159ec7
TH
1236 if (all_ss || (!one_ss && !opts->none && !opts->name))
1237 for_each_subsys(ss, i)
1238 if (!ss->disabled)
1239 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1240
2c6ab6d2
PM
1241 /* Consistency checks */
1242
873fe09e
TH
1243 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1244 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1245
1246 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1247 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1248 return -EINVAL;
1249 }
1250
1251 if (opts->cpuset_clone_children) {
1252 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1253 return -EINVAL;
1254 }
86bf4b68
TH
1255
1256 if (opts->flags & CGRP_ROOT_XATTR)
1257 pr_warning("cgroup: sane_behavior: xattr is always available, flag unnecessary\n");
873fe09e
TH
1258 }
1259
f9ab5b5b
LZ
1260 /*
1261 * Option noprefix was introduced just for backward compatibility
1262 * with the old cpuset, so we allow noprefix only if mounting just
1263 * the cpuset subsystem.
1264 */
93438629 1265 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1266 return -EINVAL;
1267
2c6ab6d2
PM
1268
1269 /* Can't specify "none" and some subsystems */
a1a71b45 1270 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1271 return -EINVAL;
1272
1273 /*
1274 * We either have to specify by name or by subsystems. (So all
1275 * empty hierarchies must have a name).
1276 */
a1a71b45 1277 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1278 return -EINVAL;
1279
1280 return 0;
1281}
1282
2bd59d48 1283static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1284{
1285 int ret = 0;
2bd59d48 1286 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1287 struct cgroup_sb_opts opts;
a1a71b45 1288 unsigned long added_mask, removed_mask;
ddbcc7e8 1289
873fe09e
TH
1290 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1291 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1292 return -EINVAL;
1293 }
1294
ace2bee8 1295 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1296 mutex_lock(&cgroup_mutex);
1297
1298 /* See what subsystems are wanted */
1299 ret = parse_cgroupfs_options(data, &opts);
1300 if (ret)
1301 goto out_unlock;
1302
a8a648c4 1303 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1304 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1305 task_tgid_nr(current), current->comm);
1306
a1a71b45
AR
1307 added_mask = opts.subsys_mask & ~root->subsys_mask;
1308 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1309
cf5d5941 1310 /* Don't allow flags or name to change at remount */
0ce6cba3 1311 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1312 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1313 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1314 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1315 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1316 ret = -EINVAL;
1317 goto out_unlock;
1318 }
1319
f172e67c 1320 /* remounting is not allowed for populated hierarchies */
3c9c825b 1321 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1322 ret = -EBUSY;
0670e08b 1323 goto out_unlock;
cf5d5941 1324 }
ddbcc7e8 1325
a8a648c4 1326 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1327 if (ret)
0670e08b 1328 goto out_unlock;
ddbcc7e8 1329
69e943b7
TH
1330 if (opts.release_agent) {
1331 spin_lock(&release_agent_path_lock);
81a6a5cd 1332 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1333 spin_unlock(&release_agent_path_lock);
1334 }
ddbcc7e8 1335 out_unlock:
66bdc9cf 1336 kfree(opts.release_agent);
c6d57f33 1337 kfree(opts.name);
ddbcc7e8 1338 mutex_unlock(&cgroup_mutex);
ace2bee8 1339 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1340 return ret;
1341}
1342
cc31edce
PM
1343static void init_cgroup_housekeeping(struct cgroup *cgrp)
1344{
2bd59d48 1345 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1346 INIT_LIST_HEAD(&cgrp->sibling);
1347 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1348 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1349 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1350 INIT_LIST_HEAD(&cgrp->pidlists);
1351 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1352 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1353}
c6d57f33 1354
ddbcc7e8
PM
1355static void init_cgroup_root(struct cgroupfs_root *root)
1356{
bd89aabc 1357 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1358
2bd59d48 1359 atomic_set(&root->refcnt, 1);
ddbcc7e8 1360 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1361 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1362 cgrp->root = root;
cc31edce 1363 init_cgroup_housekeeping(cgrp);
4e96ee8e 1364 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1365}
1366
c6d57f33
PM
1367static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1368{
1369 struct cgroupfs_root *root;
1370
a1a71b45 1371 if (!opts->subsys_mask && !opts->none)
2bd59d48 1372 return ERR_PTR(-EINVAL);
c6d57f33
PM
1373
1374 root = kzalloc(sizeof(*root), GFP_KERNEL);
1375 if (!root)
1376 return ERR_PTR(-ENOMEM);
1377
1378 init_cgroup_root(root);
2c6ab6d2 1379
1672d040
TH
1380 /*
1381 * We need to set @root->subsys_mask now so that @root can be
1382 * matched by cgroup_test_super() before it finishes
1383 * initialization; otherwise, competing mounts with the same
1384 * options may try to bind the same subsystems instead of waiting
1385 * for the first one leading to unexpected mount errors.
1386 * SUBSYS_BOUND will be set once actual binding is complete.
1387 */
a1a71b45 1388 root->subsys_mask = opts->subsys_mask;
c6d57f33
PM
1389 root->flags = opts->flags;
1390 if (opts->release_agent)
1391 strcpy(root->release_agent_path, opts->release_agent);
1392 if (opts->name)
1393 strcpy(root->name, opts->name);
2260e7fc
TH
1394 if (opts->cpuset_clone_children)
1395 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1396 return root;
1397}
1398
d427dfeb
TH
1399static int cgroup_setup_root(struct cgroupfs_root *root)
1400{
1401 LIST_HEAD(tmp_links);
d427dfeb 1402 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1403 struct css_set *cset;
d427dfeb
TH
1404 int i, ret;
1405
1406 lockdep_assert_held(&cgroup_tree_mutex);
1407 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1408
1409 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1410 if (ret < 0)
2bd59d48 1411 goto out;
d427dfeb
TH
1412 root_cgrp->id = ret;
1413
d427dfeb
TH
1414 /*
1415 * We're accessing css_set_count without locking css_set_lock here,
1416 * but that's OK - it can only be increased by someone holding
1417 * cgroup_lock, and that's us. The worst that can happen is that we
1418 * have some link structures left over
1419 */
1420 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1421 if (ret)
2bd59d48 1422 goto out;
d427dfeb
TH
1423
1424 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1425 ret = cgroup_init_root_id(root, 2, 0);
1426 if (ret)
2bd59d48 1427 goto out;
d427dfeb 1428
2bd59d48
TH
1429 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1430 KERNFS_ROOT_CREATE_DEACTIVATED,
1431 root_cgrp);
1432 if (IS_ERR(root->kf_root)) {
1433 ret = PTR_ERR(root->kf_root);
1434 goto exit_root_id;
1435 }
1436 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1437
1438 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1439 if (ret)
2bd59d48 1440 goto destroy_root;
d427dfeb
TH
1441
1442 ret = rebind_subsystems(root, root->subsys_mask, 0);
1443 if (ret)
2bd59d48 1444 goto destroy_root;
d427dfeb
TH
1445
1446 /*
1447 * There must be no failure case after here, since rebinding takes
1448 * care of subsystems' refcounts, which are explicitly dropped in
1449 * the failure exit path.
1450 */
1451 list_add(&root->root_list, &cgroup_roots);
1452 cgroup_root_count++;
1453
1454 /*
1455 * Link the top cgroup in this hierarchy into all the css_set
1456 * objects.
1457 */
1458 write_lock(&css_set_lock);
1459 hash_for_each(css_set_table, i, cset, hlist)
1460 link_css_set(&tmp_links, cset, root_cgrp);
1461 write_unlock(&css_set_lock);
1462
1463 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1464 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1465
2bd59d48 1466 kernfs_activate(root_cgrp->kn);
d427dfeb 1467 ret = 0;
2bd59d48 1468 goto out;
d427dfeb 1469
2bd59d48
TH
1470destroy_root:
1471 kernfs_destroy_root(root->kf_root);
1472 root->kf_root = NULL;
1473exit_root_id:
d427dfeb 1474 cgroup_exit_root_id(root);
2bd59d48 1475out:
d427dfeb
TH
1476 free_cgrp_cset_links(&tmp_links);
1477 return ret;
1478}
1479
f7e83571 1480static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1481 int flags, const char *unused_dev_name,
f7e83571 1482 void *data)
ddbcc7e8 1483{
2bd59d48 1484 struct cgroupfs_root *root;
ddbcc7e8 1485 struct cgroup_sb_opts opts;
2bd59d48 1486 struct dentry *dentry;
8e30e2b8 1487 int ret;
ddbcc7e8 1488
8e30e2b8 1489 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1490 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1491
1492 /* First find the desired set of subsystems */
ddbcc7e8 1493 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1494 if (ret)
8e30e2b8 1495 goto out_unlock;
ddbcc7e8 1496
2bd59d48
TH
1497 /* look for a matching existing root */
1498 for_each_active_root(root) {
1499 bool name_match = false;
ddbcc7e8 1500
2bd59d48
TH
1501 /*
1502 * If we asked for a name then it must match. Also, if
1503 * name matches but sybsys_mask doesn't, we should fail.
1504 * Remember whether name matched.
1505 */
1506 if (opts.name) {
1507 if (strcmp(opts.name, root->name))
1508 continue;
1509 name_match = true;
1510 }
ddbcc7e8 1511
c6d57f33 1512 /*
2bd59d48
TH
1513 * If we asked for subsystems (or explicitly for no
1514 * subsystems) then they must match.
c6d57f33 1515 */
2bd59d48
TH
1516 if ((opts.subsys_mask || opts.none) &&
1517 (opts.subsys_mask != root->subsys_mask)) {
1518 if (!name_match)
1519 continue;
1520 ret = -EBUSY;
1521 goto out_unlock;
1522 }
873fe09e 1523
c7ba8287 1524 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1525 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1526 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1527 ret = -EINVAL;
8e30e2b8 1528 goto out_unlock;
2a0ff3fb
JL
1529 } else {
1530 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1531 }
873fe09e 1532 }
2bd59d48
TH
1533
1534 cgroup_get_root(root);
1535 goto out_unlock;
ddbcc7e8
PM
1536 }
1537
2bd59d48
TH
1538 /* no such thing, create a new one */
1539 root = cgroup_root_from_opts(&opts);
1540 if (IS_ERR(root)) {
1541 ret = PTR_ERR(root);
1542 goto out_unlock;
1543 }
1544
1545 ret = cgroup_setup_root(root);
1546 if (ret)
1547 cgroup_free_root(root);
1548
8e30e2b8 1549out_unlock:
e25e2cbb 1550 mutex_unlock(&cgroup_mutex);
ace2bee8 1551 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1552
c6d57f33
PM
1553 kfree(opts.release_agent);
1554 kfree(opts.name);
8e30e2b8 1555
2bd59d48 1556 if (ret)
8e30e2b8 1557 return ERR_PTR(ret);
2bd59d48
TH
1558
1559 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1560 if (IS_ERR(dentry))
1561 cgroup_put_root(root);
1562 return dentry;
1563}
1564
1565static void cgroup_kill_sb(struct super_block *sb)
1566{
1567 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1568 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1569
1570 cgroup_put_root(root);
1571 kernfs_kill_sb(sb);
ddbcc7e8
PM
1572}
1573
ddbcc7e8
PM
1574static struct file_system_type cgroup_fs_type = {
1575 .name = "cgroup",
f7e83571 1576 .mount = cgroup_mount,
ddbcc7e8
PM
1577 .kill_sb = cgroup_kill_sb,
1578};
1579
676db4af
GK
1580static struct kobject *cgroup_kobj;
1581
857a2beb 1582/**
913ffdb5 1583 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1584 * @task: target task
857a2beb
TH
1585 * @buf: the buffer to write the path into
1586 * @buflen: the length of the buffer
1587 *
913ffdb5
TH
1588 * Determine @task's cgroup on the first (the one with the lowest non-zero
1589 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1590 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1591 * cgroup controller callbacks.
1592 *
e61734c5 1593 * Return value is the same as kernfs_path().
857a2beb 1594 */
e61734c5 1595char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1596{
1597 struct cgroupfs_root *root;
913ffdb5 1598 struct cgroup *cgrp;
e61734c5
TH
1599 int hierarchy_id = 1;
1600 char *path = NULL;
857a2beb
TH
1601
1602 mutex_lock(&cgroup_mutex);
1603
913ffdb5
TH
1604 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1605
857a2beb
TH
1606 if (root) {
1607 cgrp = task_cgroup_from_root(task, root);
e61734c5 1608 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1609 } else {
1610 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1611 if (strlcpy(buf, "/", buflen) < buflen)
1612 path = buf;
857a2beb
TH
1613 }
1614
1615 mutex_unlock(&cgroup_mutex);
e61734c5 1616 return path;
857a2beb 1617}
913ffdb5 1618EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1619
2f7ee569
TH
1620/*
1621 * Control Group taskset
1622 */
134d3373
TH
1623struct task_and_cgroup {
1624 struct task_struct *task;
1625 struct cgroup *cgrp;
6f4b7e63 1626 struct css_set *cset;
134d3373
TH
1627};
1628
2f7ee569
TH
1629struct cgroup_taskset {
1630 struct task_and_cgroup single;
1631 struct flex_array *tc_array;
1632 int tc_array_len;
1633 int idx;
1634 struct cgroup *cur_cgrp;
1635};
1636
1637/**
1638 * cgroup_taskset_first - reset taskset and return the first task
1639 * @tset: taskset of interest
1640 *
1641 * @tset iteration is initialized and the first task is returned.
1642 */
1643struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1644{
1645 if (tset->tc_array) {
1646 tset->idx = 0;
1647 return cgroup_taskset_next(tset);
1648 } else {
1649 tset->cur_cgrp = tset->single.cgrp;
1650 return tset->single.task;
1651 }
1652}
1653EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1654
1655/**
1656 * cgroup_taskset_next - iterate to the next task in taskset
1657 * @tset: taskset of interest
1658 *
1659 * Return the next task in @tset. Iteration must have been initialized
1660 * with cgroup_taskset_first().
1661 */
1662struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1663{
1664 struct task_and_cgroup *tc;
1665
1666 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1667 return NULL;
1668
1669 tc = flex_array_get(tset->tc_array, tset->idx++);
1670 tset->cur_cgrp = tc->cgrp;
1671 return tc->task;
1672}
1673EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1674
1675/**
d99c8727 1676 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1677 * @tset: taskset of interest
d99c8727 1678 * @subsys_id: the ID of the target subsystem
2f7ee569 1679 *
d99c8727
TH
1680 * Return the css for the current (last returned) task of @tset for
1681 * subsystem specified by @subsys_id. This function must be preceded by
1682 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1683 */
d99c8727
TH
1684struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1685 int subsys_id)
2f7ee569 1686{
ca8bdcaf 1687 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1688}
d99c8727 1689EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1690
1691/**
1692 * cgroup_taskset_size - return the number of tasks in taskset
1693 * @tset: taskset of interest
1694 */
1695int cgroup_taskset_size(struct cgroup_taskset *tset)
1696{
1697 return tset->tc_array ? tset->tc_array_len : 1;
1698}
1699EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1700
1701
74a1166d
BB
1702/*
1703 * cgroup_task_migrate - move a task from one cgroup to another.
1704 *
d0b2fdd2 1705 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1706 */
5abb8855
TH
1707static void cgroup_task_migrate(struct cgroup *old_cgrp,
1708 struct task_struct *tsk,
1709 struct css_set *new_cset)
74a1166d 1710{
5abb8855 1711 struct css_set *old_cset;
74a1166d
BB
1712
1713 /*
026085ef
MSB
1714 * We are synchronized through threadgroup_lock() against PF_EXITING
1715 * setting such that we can't race against cgroup_exit() changing the
1716 * css_set to init_css_set and dropping the old one.
74a1166d 1717 */
c84cdf75 1718 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1719 old_cset = task_css_set(tsk);
74a1166d 1720
74a1166d 1721 task_lock(tsk);
5abb8855 1722 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1723 task_unlock(tsk);
1724
1725 /* Update the css_set linked lists if we're using them */
1726 write_lock(&css_set_lock);
1727 if (!list_empty(&tsk->cg_list))
5abb8855 1728 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1729 write_unlock(&css_set_lock);
1730
1731 /*
5abb8855
TH
1732 * We just gained a reference on old_cset by taking it from the
1733 * task. As trading it for new_cset is protected by cgroup_mutex,
1734 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1735 */
5abb8855
TH
1736 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1737 put_css_set(old_cset);
74a1166d
BB
1738}
1739
a043e3b2 1740/**
081aa458 1741 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1742 * @cgrp: the cgroup to attach to
081aa458
LZ
1743 * @tsk: the task or the leader of the threadgroup to be attached
1744 * @threadgroup: attach the whole threadgroup?
74a1166d 1745 *
257058ae 1746 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1747 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1748 */
47cfcd09
TH
1749static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1750 bool threadgroup)
74a1166d
BB
1751{
1752 int retval, i, group_size;
74a1166d 1753 struct cgroupfs_root *root = cgrp->root;
1c6727af 1754 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1755 /* threadgroup list cursor and array */
081aa458 1756 struct task_struct *leader = tsk;
134d3373 1757 struct task_and_cgroup *tc;
d846687d 1758 struct flex_array *group;
2f7ee569 1759 struct cgroup_taskset tset = { };
74a1166d
BB
1760
1761 /*
1762 * step 0: in order to do expensive, possibly blocking operations for
1763 * every thread, we cannot iterate the thread group list, since it needs
1764 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1765 * group - group_rwsem prevents new threads from appearing, and if
1766 * threads exit, this will just be an over-estimate.
74a1166d 1767 */
081aa458
LZ
1768 if (threadgroup)
1769 group_size = get_nr_threads(tsk);
1770 else
1771 group_size = 1;
d846687d 1772 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1773 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1774 if (!group)
1775 return -ENOMEM;
d846687d 1776 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1777 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1778 if (retval)
1779 goto out_free_group_list;
74a1166d 1780
74a1166d 1781 i = 0;
fb5d2b4c
MSB
1782 /*
1783 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1784 * already PF_EXITING could be freed from underneath us unless we
1785 * take an rcu_read_lock.
1786 */
1787 rcu_read_lock();
74a1166d 1788 do {
134d3373
TH
1789 struct task_and_cgroup ent;
1790
cd3d0952
TH
1791 /* @tsk either already exited or can't exit until the end */
1792 if (tsk->flags & PF_EXITING)
ea84753c 1793 goto next;
cd3d0952 1794
74a1166d
BB
1795 /* as per above, nr_threads may decrease, but not increase. */
1796 BUG_ON(i >= group_size);
134d3373
TH
1797 ent.task = tsk;
1798 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1799 /* nothing to do if this task is already in the cgroup */
1800 if (ent.cgrp == cgrp)
ea84753c 1801 goto next;
61d1d219
MSB
1802 /*
1803 * saying GFP_ATOMIC has no effect here because we did prealloc
1804 * earlier, but it's good form to communicate our expectations.
1805 */
134d3373 1806 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1807 BUG_ON(retval != 0);
74a1166d 1808 i++;
ea84753c 1809 next:
081aa458
LZ
1810 if (!threadgroup)
1811 break;
74a1166d 1812 } while_each_thread(leader, tsk);
fb5d2b4c 1813 rcu_read_unlock();
74a1166d
BB
1814 /* remember the number of threads in the array for later. */
1815 group_size = i;
2f7ee569
TH
1816 tset.tc_array = group;
1817 tset.tc_array_len = group_size;
74a1166d 1818
134d3373
TH
1819 /* methods shouldn't be called if no task is actually migrating */
1820 retval = 0;
892a2b90 1821 if (!group_size)
b07ef774 1822 goto out_free_group_list;
134d3373 1823
74a1166d
BB
1824 /*
1825 * step 1: check that we can legitimately attach to the cgroup.
1826 */
1c6727af
TH
1827 for_each_css(css, i, cgrp) {
1828 if (css->ss->can_attach) {
1829 retval = css->ss->can_attach(css, &tset);
74a1166d 1830 if (retval) {
1c6727af 1831 failed_css = css;
74a1166d
BB
1832 goto out_cancel_attach;
1833 }
1834 }
74a1166d
BB
1835 }
1836
1837 /*
1838 * step 2: make sure css_sets exist for all threads to be migrated.
1839 * we use find_css_set, which allocates a new one if necessary.
1840 */
74a1166d 1841 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1842 struct css_set *old_cset;
1843
134d3373 1844 tc = flex_array_get(group, i);
a8ad805c 1845 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1846 tc->cset = find_css_set(old_cset, cgrp);
1847 if (!tc->cset) {
61d1d219
MSB
1848 retval = -ENOMEM;
1849 goto out_put_css_set_refs;
74a1166d
BB
1850 }
1851 }
1852
1853 /*
494c167c
TH
1854 * step 3: now that we're guaranteed success wrt the css_sets,
1855 * proceed to move all tasks to the new cgroup. There are no
1856 * failure cases after here, so this is the commit point.
74a1166d 1857 */
74a1166d 1858 for (i = 0; i < group_size; i++) {
134d3373 1859 tc = flex_array_get(group, i);
6f4b7e63 1860 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
1861 }
1862 /* nothing is sensitive to fork() after this point. */
1863
1864 /*
494c167c 1865 * step 4: do subsystem attach callbacks.
74a1166d 1866 */
1c6727af
TH
1867 for_each_css(css, i, cgrp)
1868 if (css->ss->attach)
1869 css->ss->attach(css, &tset);
74a1166d
BB
1870
1871 /*
1872 * step 5: success! and cleanup
1873 */
74a1166d 1874 retval = 0;
61d1d219
MSB
1875out_put_css_set_refs:
1876 if (retval) {
1877 for (i = 0; i < group_size; i++) {
1878 tc = flex_array_get(group, i);
6f4b7e63 1879 if (!tc->cset)
61d1d219 1880 break;
6f4b7e63 1881 put_css_set(tc->cset);
61d1d219 1882 }
74a1166d
BB
1883 }
1884out_cancel_attach:
74a1166d 1885 if (retval) {
1c6727af
TH
1886 for_each_css(css, i, cgrp) {
1887 if (css == failed_css)
74a1166d 1888 break;
1c6727af
TH
1889 if (css->ss->cancel_attach)
1890 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1891 }
1892 }
74a1166d 1893out_free_group_list:
d846687d 1894 flex_array_free(group);
74a1166d
BB
1895 return retval;
1896}
1897
1898/*
1899 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1900 * function to attach either it or all tasks in its threadgroup. Will lock
1901 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1902 */
74a1166d 1903static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1904{
bbcb81d0 1905 struct task_struct *tsk;
c69e8d9c 1906 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1907 int ret;
1908
74a1166d
BB
1909 if (!cgroup_lock_live_group(cgrp))
1910 return -ENODEV;
1911
b78949eb
MSB
1912retry_find_task:
1913 rcu_read_lock();
bbcb81d0 1914 if (pid) {
73507f33 1915 tsk = find_task_by_vpid(pid);
74a1166d
BB
1916 if (!tsk) {
1917 rcu_read_unlock();
dd4b0a46 1918 ret = -ESRCH;
b78949eb 1919 goto out_unlock_cgroup;
bbcb81d0 1920 }
74a1166d
BB
1921 /*
1922 * even if we're attaching all tasks in the thread group, we
1923 * only need to check permissions on one of them.
1924 */
c69e8d9c 1925 tcred = __task_cred(tsk);
14a590c3
EB
1926 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1927 !uid_eq(cred->euid, tcred->uid) &&
1928 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1929 rcu_read_unlock();
b78949eb
MSB
1930 ret = -EACCES;
1931 goto out_unlock_cgroup;
bbcb81d0 1932 }
b78949eb
MSB
1933 } else
1934 tsk = current;
cd3d0952
TH
1935
1936 if (threadgroup)
b78949eb 1937 tsk = tsk->group_leader;
c4c27fbd
MG
1938
1939 /*
14a40ffc 1940 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1941 * trapped in a cpuset, or RT worker may be born in a cgroup
1942 * with no rt_runtime allocated. Just say no.
1943 */
14a40ffc 1944 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1945 ret = -EINVAL;
1946 rcu_read_unlock();
1947 goto out_unlock_cgroup;
1948 }
1949
b78949eb
MSB
1950 get_task_struct(tsk);
1951 rcu_read_unlock();
1952
1953 threadgroup_lock(tsk);
1954 if (threadgroup) {
1955 if (!thread_group_leader(tsk)) {
1956 /*
1957 * a race with de_thread from another thread's exec()
1958 * may strip us of our leadership, if this happens,
1959 * there is no choice but to throw this task away and
1960 * try again; this is
1961 * "double-double-toil-and-trouble-check locking".
1962 */
1963 threadgroup_unlock(tsk);
1964 put_task_struct(tsk);
1965 goto retry_find_task;
1966 }
081aa458
LZ
1967 }
1968
1969 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1970
cd3d0952
TH
1971 threadgroup_unlock(tsk);
1972
bbcb81d0 1973 put_task_struct(tsk);
b78949eb 1974out_unlock_cgroup:
47cfcd09 1975 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1976 return ret;
1977}
1978
7ae1bad9
TH
1979/**
1980 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1981 * @from: attach to all cgroups of a given task
1982 * @tsk: the task to be attached
1983 */
1984int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1985{
1986 struct cgroupfs_root *root;
1987 int retval = 0;
1988
47cfcd09 1989 mutex_lock(&cgroup_mutex);
7ae1bad9 1990 for_each_active_root(root) {
6f4b7e63 1991 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 1992
6f4b7e63 1993 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
1994 if (retval)
1995 break;
1996 }
47cfcd09 1997 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
1998
1999 return retval;
2000}
2001EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2002
182446d0
TH
2003static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2004 struct cftype *cft, u64 pid)
74a1166d 2005{
182446d0 2006 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2007}
2008
182446d0
TH
2009static int cgroup_procs_write(struct cgroup_subsys_state *css,
2010 struct cftype *cft, u64 tgid)
af351026 2011{
182446d0 2012 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2013}
2014
182446d0
TH
2015static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2016 struct cftype *cft, const char *buffer)
e788e066 2017{
5f469907
TH
2018 struct cgroupfs_root *root = css->cgroup->root;
2019
2020 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2021 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2022 return -ENODEV;
69e943b7 2023 spin_lock(&release_agent_path_lock);
5f469907
TH
2024 strlcpy(root->release_agent_path, buffer,
2025 sizeof(root->release_agent_path));
69e943b7 2026 spin_unlock(&release_agent_path_lock);
47cfcd09 2027 mutex_unlock(&cgroup_mutex);
e788e066
PM
2028 return 0;
2029}
2030
2da8ca82 2031static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2032{
2da8ca82 2033 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2034
e788e066
PM
2035 if (!cgroup_lock_live_group(cgrp))
2036 return -ENODEV;
2037 seq_puts(seq, cgrp->root->release_agent_path);
2038 seq_putc(seq, '\n');
47cfcd09 2039 mutex_unlock(&cgroup_mutex);
e788e066
PM
2040 return 0;
2041}
2042
2da8ca82 2043static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2044{
2da8ca82
TH
2045 struct cgroup *cgrp = seq_css(seq)->cgroup;
2046
2047 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2048 return 0;
2049}
2050
2bd59d48
TH
2051static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2052 size_t nbytes, loff_t off)
355e0c48 2053{
2bd59d48
TH
2054 struct cgroup *cgrp = of->kn->parent->priv;
2055 struct cftype *cft = of->kn->priv;
2056 struct cgroup_subsys_state *css;
a742c59d 2057 int ret;
355e0c48 2058
2bd59d48
TH
2059 /*
2060 * kernfs guarantees that a file isn't deleted with operations in
2061 * flight, which means that the matching css is and stays alive and
2062 * doesn't need to be pinned. The RCU locking is not necessary
2063 * either. It's just for the convenience of using cgroup_css().
2064 */
2065 rcu_read_lock();
2066 css = cgroup_css(cgrp, cft->ss);
2067 rcu_read_unlock();
a742c59d
TH
2068
2069 if (cft->write_string) {
2070 ret = cft->write_string(css, cft, strstrip(buf));
2071 } else if (cft->write_u64) {
2072 unsigned long long v;
2073 ret = kstrtoull(buf, 0, &v);
2074 if (!ret)
2075 ret = cft->write_u64(css, cft, v);
2076 } else if (cft->write_s64) {
2077 long long v;
2078 ret = kstrtoll(buf, 0, &v);
2079 if (!ret)
2080 ret = cft->write_s64(css, cft, v);
2081 } else if (cft->trigger) {
2082 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2083 } else {
a742c59d 2084 ret = -EINVAL;
e73d2c61 2085 }
2bd59d48 2086
a742c59d 2087 return ret ?: nbytes;
355e0c48
PM
2088}
2089
6612f05b 2090static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2091{
2bd59d48 2092 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2093}
2094
6612f05b 2095static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2096{
2bd59d48 2097 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2098}
2099
6612f05b 2100static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2101{
2bd59d48 2102 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2103}
2104
91796569 2105static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2106{
7da11279
TH
2107 struct cftype *cft = seq_cft(m);
2108 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2109
2da8ca82
TH
2110 if (cft->seq_show)
2111 return cft->seq_show(m, arg);
e73d2c61 2112
f4c753b7 2113 if (cft->read_u64)
896f5199
TH
2114 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2115 else if (cft->read_s64)
2116 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2117 else
2118 return -EINVAL;
2119 return 0;
91796569
PM
2120}
2121
2bd59d48
TH
2122static struct kernfs_ops cgroup_kf_single_ops = {
2123 .atomic_write_len = PAGE_SIZE,
2124 .write = cgroup_file_write,
2125 .seq_show = cgroup_seqfile_show,
91796569
PM
2126};
2127
2bd59d48
TH
2128static struct kernfs_ops cgroup_kf_ops = {
2129 .atomic_write_len = PAGE_SIZE,
2130 .write = cgroup_file_write,
2131 .seq_start = cgroup_seqfile_start,
2132 .seq_next = cgroup_seqfile_next,
2133 .seq_stop = cgroup_seqfile_stop,
2134 .seq_show = cgroup_seqfile_show,
2135};
ddbcc7e8
PM
2136
2137/*
2138 * cgroup_rename - Only allow simple rename of directories in place.
2139 */
2bd59d48
TH
2140static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2141 const char *new_name_str)
ddbcc7e8 2142{
2bd59d48 2143 struct cgroup *cgrp = kn->priv;
2bd59d48 2144 int ret;
65dff759 2145
2bd59d48 2146 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2147 return -ENOTDIR;
2bd59d48 2148 if (kn->parent != new_parent)
ddbcc7e8 2149 return -EIO;
65dff759 2150
6db8e85c
TH
2151 /*
2152 * This isn't a proper migration and its usefulness is very
2153 * limited. Disallow if sane_behavior.
2154 */
2155 if (cgroup_sane_behavior(cgrp))
2156 return -EPERM;
2157
2bd59d48
TH
2158 mutex_lock(&cgroup_tree_mutex);
2159 mutex_lock(&cgroup_mutex);
2160
2161 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2162
2bd59d48
TH
2163 mutex_unlock(&cgroup_mutex);
2164 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2165 return ret;
ddbcc7e8
PM
2166}
2167
2bb566cb 2168static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2169{
8d7e6fb0 2170 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2171 struct kernfs_node *kn;
2172 struct lock_class_key *key = NULL;
05ef1d7c 2173
2bd59d48
TH
2174#ifdef CONFIG_DEBUG_LOCK_ALLOC
2175 key = &cft->lockdep_key;
2176#endif
2177 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2178 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2179 NULL, false, key);
2180 if (IS_ERR(kn))
2181 return PTR_ERR(kn);
2182 return 0;
ddbcc7e8
PM
2183}
2184
b1f28d31
TH
2185/**
2186 * cgroup_addrm_files - add or remove files to a cgroup directory
2187 * @cgrp: the target cgroup
b1f28d31
TH
2188 * @cfts: array of cftypes to be added
2189 * @is_add: whether to add or remove
2190 *
2191 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2192 * For removals, this function never fails. If addition fails, this
2193 * function doesn't remove files already added. The caller is responsible
2194 * for cleaning up.
b1f28d31 2195 */
2bb566cb
TH
2196static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2197 bool is_add)
ddbcc7e8 2198{
03b1cde6 2199 struct cftype *cft;
b1f28d31
TH
2200 int ret;
2201
ace2bee8 2202 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2203
2204 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2205 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2206 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2207 continue;
f33fddc2
G
2208 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2209 continue;
2210 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2211 continue;
2212
2739d3cc 2213 if (is_add) {
2bb566cb 2214 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2215 if (ret) {
2739d3cc 2216 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2217 cft->name, ret);
2218 return ret;
2219 }
2739d3cc
LZ
2220 } else {
2221 cgroup_rm_file(cgrp, cft);
db0416b6 2222 }
ddbcc7e8 2223 }
b1f28d31 2224 return 0;
ddbcc7e8
PM
2225}
2226
21a2d343 2227static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2228{
2229 LIST_HEAD(pending);
2bb566cb 2230 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2231 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2232 struct cgroup_subsys_state *css;
9ccece80 2233 int ret = 0;
8e3f6541 2234
21a2d343 2235 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2236
21a2d343
TH
2237 /* don't bother if @ss isn't attached */
2238 if (ss->root == &cgroup_dummy_root)
9ccece80 2239 return 0;
e8c82d20 2240
e8c82d20 2241 /* add/rm files for all cgroups created before */
ca8bdcaf 2242 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2243 struct cgroup *cgrp = css->cgroup;
2244
e8c82d20
LZ
2245 if (cgroup_is_dead(cgrp))
2246 continue;
2247
21a2d343 2248 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2249 if (ret)
2250 break;
8e3f6541 2251 }
21a2d343
TH
2252
2253 if (is_add && !ret)
2254 kernfs_activate(root->kn);
9ccece80 2255 return ret;
8e3f6541
TH
2256}
2257
2da440a2
TH
2258static void cgroup_exit_cftypes(struct cftype *cfts)
2259{
2260 struct cftype *cft;
2261
2bd59d48
TH
2262 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2263 /* free copy for custom atomic_write_len, see init_cftypes() */
2264 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2265 kfree(cft->kf_ops);
2266 cft->kf_ops = NULL;
2da440a2 2267 cft->ss = NULL;
2bd59d48 2268 }
2da440a2
TH
2269}
2270
2bd59d48 2271static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2272{
2273 struct cftype *cft;
2274
2bd59d48
TH
2275 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2276 struct kernfs_ops *kf_ops;
2277
0adb0704
TH
2278 WARN_ON(cft->ss || cft->kf_ops);
2279
2bd59d48
TH
2280 if (cft->seq_start)
2281 kf_ops = &cgroup_kf_ops;
2282 else
2283 kf_ops = &cgroup_kf_single_ops;
2284
2285 /*
2286 * Ugh... if @cft wants a custom max_write_len, we need to
2287 * make a copy of kf_ops to set its atomic_write_len.
2288 */
2289 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2290 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2291 if (!kf_ops) {
2292 cgroup_exit_cftypes(cfts);
2293 return -ENOMEM;
2294 }
2295 kf_ops->atomic_write_len = cft->max_write_len;
2296 }
2297
2298 cft->kf_ops = kf_ops;
2da440a2 2299 cft->ss = ss;
2bd59d48
TH
2300 }
2301
2302 return 0;
2da440a2
TH
2303}
2304
21a2d343
TH
2305static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2306{
2307 lockdep_assert_held(&cgroup_tree_mutex);
2308
2309 if (!cfts || !cfts[0].ss)
2310 return -ENOENT;
2311
2312 list_del(&cfts->node);
2313 cgroup_apply_cftypes(cfts, false);
2314 cgroup_exit_cftypes(cfts);
2315 return 0;
2316}
2317
80b13586
TH
2318/**
2319 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2320 * @cfts: zero-length name terminated array of cftypes
2321 *
2322 * Unregister @cfts. Files described by @cfts are removed from all
2323 * existing cgroups and all future cgroups won't have them either. This
2324 * function can be called anytime whether @cfts' subsys is attached or not.
2325 *
2326 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2327 * registered.
2328 */
2329int cgroup_rm_cftypes(struct cftype *cfts)
2330{
21a2d343 2331 int ret;
80b13586 2332
21a2d343
TH
2333 mutex_lock(&cgroup_tree_mutex);
2334 ret = cgroup_rm_cftypes_locked(cfts);
2335 mutex_unlock(&cgroup_tree_mutex);
2336 return ret;
80b13586
TH
2337}
2338
8e3f6541
TH
2339/**
2340 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2341 * @ss: target cgroup subsystem
2342 * @cfts: zero-length name terminated array of cftypes
2343 *
2344 * Register @cfts to @ss. Files described by @cfts are created for all
2345 * existing cgroups to which @ss is attached and all future cgroups will
2346 * have them too. This function can be called anytime whether @ss is
2347 * attached or not.
2348 *
2349 * Returns 0 on successful registration, -errno on failure. Note that this
2350 * function currently returns 0 as long as @cfts registration is successful
2351 * even if some file creation attempts on existing cgroups fail.
2352 */
03b1cde6 2353int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2354{
9ccece80 2355 int ret;
8e3f6541 2356
2bd59d48
TH
2357 ret = cgroup_init_cftypes(ss, cfts);
2358 if (ret)
2359 return ret;
2bb566cb 2360
21a2d343
TH
2361 mutex_lock(&cgroup_tree_mutex);
2362
0adb0704 2363 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2364 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2365 if (ret)
21a2d343
TH
2366 cgroup_rm_cftypes_locked(cfts);
2367
2368 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2369 return ret;
8e3f6541
TH
2370}
2371EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2372
a043e3b2
LZ
2373/**
2374 * cgroup_task_count - count the number of tasks in a cgroup.
2375 * @cgrp: the cgroup in question
2376 *
2377 * Return the number of tasks in the cgroup.
2378 */
bd89aabc 2379int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2380{
2381 int count = 0;
69d0206c 2382 struct cgrp_cset_link *link;
817929ec
PM
2383
2384 read_lock(&css_set_lock);
69d0206c
TH
2385 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2386 count += atomic_read(&link->cset->refcount);
817929ec 2387 read_unlock(&css_set_lock);
bbcb81d0
PM
2388 return count;
2389}
2390
817929ec 2391/*
0942eeee
TH
2392 * To reduce the fork() overhead for systems that are not actually using
2393 * their cgroups capability, we don't maintain the lists running through
2394 * each css_set to its tasks until we see the list actually used - in other
72ec7029 2395 * words after the first call to css_task_iter_start().
31a7df01 2396 */
3df91fe3 2397static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2398{
2399 struct task_struct *p, *g;
2400 write_lock(&css_set_lock);
2401 use_task_css_set_links = 1;
3ce3230a
FW
2402 /*
2403 * We need tasklist_lock because RCU is not safe against
2404 * while_each_thread(). Besides, a forking task that has passed
2405 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2406 * is not guaranteed to have its child immediately visible in the
2407 * tasklist if we walk through it with RCU.
2408 */
2409 read_lock(&tasklist_lock);
31a7df01
CW
2410 do_each_thread(g, p) {
2411 task_lock(p);
0e04388f
LZ
2412 /*
2413 * We should check if the process is exiting, otherwise
2414 * it will race with cgroup_exit() in that the list
2415 * entry won't be deleted though the process has exited.
2416 */
2417 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
a8ad805c 2418 list_add(&p->cg_list, &task_css_set(p)->tasks);
31a7df01
CW
2419 task_unlock(p);
2420 } while_each_thread(g, p);
3ce3230a 2421 read_unlock(&tasklist_lock);
31a7df01
CW
2422 write_unlock(&css_set_lock);
2423}
2424
53fa5261 2425/**
492eb21b
TH
2426 * css_next_child - find the next child of a given css
2427 * @pos_css: the current position (%NULL to initiate traversal)
2428 * @parent_css: css whose children to walk
53fa5261 2429 *
492eb21b 2430 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2431 * under either cgroup_mutex or RCU read lock. The only requirement is
2432 * that @parent_css and @pos_css are accessible. The next sibling is
2433 * guaranteed to be returned regardless of their states.
53fa5261 2434 */
492eb21b
TH
2435struct cgroup_subsys_state *
2436css_next_child(struct cgroup_subsys_state *pos_css,
2437 struct cgroup_subsys_state *parent_css)
53fa5261 2438{
492eb21b
TH
2439 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2440 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2441 struct cgroup *next;
2442
ace2bee8 2443 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2444
2445 /*
2446 * @pos could already have been removed. Once a cgroup is removed,
2447 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2448 * changes. As CGRP_DEAD assertion is serialized and happens
2449 * before the cgroup is taken off the ->sibling list, if we see it
2450 * unasserted, it's guaranteed that the next sibling hasn't
2451 * finished its grace period even if it's already removed, and thus
2452 * safe to dereference from this RCU critical section. If
2453 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2454 * to be visible as %true here.
3b287a50
TH
2455 *
2456 * If @pos is dead, its next pointer can't be dereferenced;
2457 * however, as each cgroup is given a monotonically increasing
2458 * unique serial number and always appended to the sibling list,
2459 * the next one can be found by walking the parent's children until
2460 * we see a cgroup with higher serial number than @pos's. While
2461 * this path can be slower, it's taken only when either the current
2462 * cgroup is removed or iteration and removal race.
53fa5261 2463 */
3b287a50
TH
2464 if (!pos) {
2465 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2466 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2467 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2468 } else {
2469 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2470 if (next->serial_nr > pos->serial_nr)
2471 break;
53fa5261
TH
2472 }
2473
492eb21b
TH
2474 if (&next->sibling == &cgrp->children)
2475 return NULL;
2476
ca8bdcaf 2477 return cgroup_css(next, parent_css->ss);
53fa5261 2478}
492eb21b 2479EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2480
574bd9f7 2481/**
492eb21b 2482 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2483 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2484 * @root: css whose descendants to walk
574bd9f7 2485 *
492eb21b 2486 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2487 * to visit for pre-order traversal of @root's descendants. @root is
2488 * included in the iteration and the first node to be visited.
75501a6d 2489 *
87fb54f1
TH
2490 * While this function requires cgroup_mutex or RCU read locking, it
2491 * doesn't require the whole traversal to be contained in a single critical
2492 * section. This function will return the correct next descendant as long
2493 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2494 */
492eb21b
TH
2495struct cgroup_subsys_state *
2496css_next_descendant_pre(struct cgroup_subsys_state *pos,
2497 struct cgroup_subsys_state *root)
574bd9f7 2498{
492eb21b 2499 struct cgroup_subsys_state *next;
574bd9f7 2500
ace2bee8 2501 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2502
bd8815a6 2503 /* if first iteration, visit @root */
7805d000 2504 if (!pos)
bd8815a6 2505 return root;
574bd9f7
TH
2506
2507 /* visit the first child if exists */
492eb21b 2508 next = css_next_child(NULL, pos);
574bd9f7
TH
2509 if (next)
2510 return next;
2511
2512 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2513 while (pos != root) {
2514 next = css_next_child(pos, css_parent(pos));
75501a6d 2515 if (next)
574bd9f7 2516 return next;
492eb21b 2517 pos = css_parent(pos);
7805d000 2518 }
574bd9f7
TH
2519
2520 return NULL;
2521}
492eb21b 2522EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2523
12a9d2fe 2524/**
492eb21b
TH
2525 * css_rightmost_descendant - return the rightmost descendant of a css
2526 * @pos: css of interest
12a9d2fe 2527 *
492eb21b
TH
2528 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2529 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2530 * subtree of @pos.
75501a6d 2531 *
87fb54f1
TH
2532 * While this function requires cgroup_mutex or RCU read locking, it
2533 * doesn't require the whole traversal to be contained in a single critical
2534 * section. This function will return the correct rightmost descendant as
2535 * long as @pos is accessible.
12a9d2fe 2536 */
492eb21b
TH
2537struct cgroup_subsys_state *
2538css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2539{
492eb21b 2540 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2541
ace2bee8 2542 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2543
2544 do {
2545 last = pos;
2546 /* ->prev isn't RCU safe, walk ->next till the end */
2547 pos = NULL;
492eb21b 2548 css_for_each_child(tmp, last)
12a9d2fe
TH
2549 pos = tmp;
2550 } while (pos);
2551
2552 return last;
2553}
492eb21b 2554EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 2555
492eb21b
TH
2556static struct cgroup_subsys_state *
2557css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2558{
492eb21b 2559 struct cgroup_subsys_state *last;
574bd9f7
TH
2560
2561 do {
2562 last = pos;
492eb21b 2563 pos = css_next_child(NULL, pos);
574bd9f7
TH
2564 } while (pos);
2565
2566 return last;
2567}
2568
2569/**
492eb21b 2570 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2571 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2572 * @root: css whose descendants to walk
574bd9f7 2573 *
492eb21b 2574 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2575 * to visit for post-order traversal of @root's descendants. @root is
2576 * included in the iteration and the last node to be visited.
75501a6d 2577 *
87fb54f1
TH
2578 * While this function requires cgroup_mutex or RCU read locking, it
2579 * doesn't require the whole traversal to be contained in a single critical
2580 * section. This function will return the correct next descendant as long
2581 * as both @pos and @cgroup are accessible and @pos is a descendant of
2582 * @cgroup.
574bd9f7 2583 */
492eb21b
TH
2584struct cgroup_subsys_state *
2585css_next_descendant_post(struct cgroup_subsys_state *pos,
2586 struct cgroup_subsys_state *root)
574bd9f7 2587{
492eb21b 2588 struct cgroup_subsys_state *next;
574bd9f7 2589
ace2bee8 2590 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2591
58b79a91
TH
2592 /* if first iteration, visit leftmost descendant which may be @root */
2593 if (!pos)
2594 return css_leftmost_descendant(root);
574bd9f7 2595
bd8815a6
TH
2596 /* if we visited @root, we're done */
2597 if (pos == root)
2598 return NULL;
2599
574bd9f7 2600 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2601 next = css_next_child(pos, css_parent(pos));
75501a6d 2602 if (next)
492eb21b 2603 return css_leftmost_descendant(next);
574bd9f7
TH
2604
2605 /* no sibling left, visit parent */
bd8815a6 2606 return css_parent(pos);
574bd9f7 2607}
492eb21b 2608EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 2609
0942eeee 2610/**
72ec7029 2611 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2612 * @it: the iterator to advance
2613 *
2614 * Advance @it to the next css_set to walk.
d515876e 2615 */
72ec7029 2616static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2617{
2618 struct list_head *l = it->cset_link;
2619 struct cgrp_cset_link *link;
2620 struct css_set *cset;
2621
2622 /* Advance to the next non-empty css_set */
2623 do {
2624 l = l->next;
72ec7029 2625 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2626 it->cset_link = NULL;
2627 return;
2628 }
2629 link = list_entry(l, struct cgrp_cset_link, cset_link);
2630 cset = link->cset;
2631 } while (list_empty(&cset->tasks));
2632 it->cset_link = l;
2633 it->task = cset->tasks.next;
2634}
2635
0942eeee 2636/**
72ec7029
TH
2637 * css_task_iter_start - initiate task iteration
2638 * @css: the css to walk tasks of
0942eeee
TH
2639 * @it: the task iterator to use
2640 *
72ec7029
TH
2641 * Initiate iteration through the tasks of @css. The caller can call
2642 * css_task_iter_next() to walk through the tasks until the function
2643 * returns NULL. On completion of iteration, css_task_iter_end() must be
2644 * called.
0942eeee
TH
2645 *
2646 * Note that this function acquires a lock which is released when the
2647 * iteration finishes. The caller can't sleep while iteration is in
2648 * progress.
2649 */
72ec7029
TH
2650void css_task_iter_start(struct cgroup_subsys_state *css,
2651 struct css_task_iter *it)
c6ca5750 2652 __acquires(css_set_lock)
817929ec
PM
2653{
2654 /*
72ec7029
TH
2655 * The first time anyone tries to iterate across a css, we need to
2656 * enable the list linking each css_set to its tasks, and fix up
2657 * all existing tasks.
817929ec 2658 */
31a7df01
CW
2659 if (!use_task_css_set_links)
2660 cgroup_enable_task_cg_lists();
2661
817929ec 2662 read_lock(&css_set_lock);
c59cd3d8 2663
72ec7029
TH
2664 it->origin_css = css;
2665 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2666
72ec7029 2667 css_advance_task_iter(it);
817929ec
PM
2668}
2669
0942eeee 2670/**
72ec7029 2671 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2672 * @it: the task iterator being iterated
2673 *
2674 * The "next" function for task iteration. @it should have been
72ec7029
TH
2675 * initialized via css_task_iter_start(). Returns NULL when the iteration
2676 * reaches the end.
0942eeee 2677 */
72ec7029 2678struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2679{
2680 struct task_struct *res;
2681 struct list_head *l = it->task;
69d0206c 2682 struct cgrp_cset_link *link;
817929ec
PM
2683
2684 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2685 if (!it->cset_link)
817929ec
PM
2686 return NULL;
2687 res = list_entry(l, struct task_struct, cg_list);
2688 /* Advance iterator to find next entry */
2689 l = l->next;
69d0206c
TH
2690 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2691 if (l == &link->cset->tasks) {
0942eeee
TH
2692 /*
2693 * We reached the end of this task list - move on to the
2694 * next cgrp_cset_link.
2695 */
72ec7029 2696 css_advance_task_iter(it);
817929ec
PM
2697 } else {
2698 it->task = l;
2699 }
2700 return res;
2701}
2702
0942eeee 2703/**
72ec7029 2704 * css_task_iter_end - finish task iteration
0942eeee
TH
2705 * @it: the task iterator to finish
2706 *
72ec7029 2707 * Finish task iteration started by css_task_iter_start().
0942eeee 2708 */
72ec7029 2709void css_task_iter_end(struct css_task_iter *it)
c6ca5750 2710 __releases(css_set_lock)
817929ec
PM
2711{
2712 read_unlock(&css_set_lock);
2713}
2714
31a7df01
CW
2715static inline int started_after_time(struct task_struct *t1,
2716 struct timespec *time,
2717 struct task_struct *t2)
2718{
2719 int start_diff = timespec_compare(&t1->start_time, time);
2720 if (start_diff > 0) {
2721 return 1;
2722 } else if (start_diff < 0) {
2723 return 0;
2724 } else {
2725 /*
2726 * Arbitrarily, if two processes started at the same
2727 * time, we'll say that the lower pointer value
2728 * started first. Note that t2 may have exited by now
2729 * so this may not be a valid pointer any longer, but
2730 * that's fine - it still serves to distinguish
2731 * between two tasks started (effectively) simultaneously.
2732 */
2733 return t1 > t2;
2734 }
2735}
2736
2737/*
2738 * This function is a callback from heap_insert() and is used to order
2739 * the heap.
2740 * In this case we order the heap in descending task start time.
2741 */
2742static inline int started_after(void *p1, void *p2)
2743{
2744 struct task_struct *t1 = p1;
2745 struct task_struct *t2 = p2;
2746 return started_after_time(t1, &t2->start_time, t2);
2747}
2748
2749/**
72ec7029
TH
2750 * css_scan_tasks - iterate though all the tasks in a css
2751 * @css: the css to iterate tasks of
e535837b
TH
2752 * @test: optional test callback
2753 * @process: process callback
2754 * @data: data passed to @test and @process
2755 * @heap: optional pre-allocated heap used for task iteration
31a7df01 2756 *
72ec7029
TH
2757 * Iterate through all the tasks in @css, calling @test for each, and if it
2758 * returns %true, call @process for it also.
31a7df01 2759 *
e535837b 2760 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 2761 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
2762 * lock css_set_lock for the call to @process.
2763 *
2764 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
2765 * of @css for the duration of this call. This function may or may not
2766 * call @process for tasks that exit or move to a different css during the
2767 * call, or are forked or move into the css during the call.
31a7df01 2768 *
e535837b
TH
2769 * Note that @test may be called with locks held, and may in some
2770 * situations be called multiple times for the same task, so it should be
2771 * cheap.
31a7df01 2772 *
e535837b
TH
2773 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
2774 * heap operations (and its "gt" member will be overwritten), else a
2775 * temporary heap will be used (allocation of which may cause this function
2776 * to fail).
31a7df01 2777 */
72ec7029
TH
2778int css_scan_tasks(struct cgroup_subsys_state *css,
2779 bool (*test)(struct task_struct *, void *),
2780 void (*process)(struct task_struct *, void *),
2781 void *data, struct ptr_heap *heap)
31a7df01
CW
2782{
2783 int retval, i;
72ec7029 2784 struct css_task_iter it;
31a7df01
CW
2785 struct task_struct *p, *dropped;
2786 /* Never dereference latest_task, since it's not refcounted */
2787 struct task_struct *latest_task = NULL;
2788 struct ptr_heap tmp_heap;
31a7df01
CW
2789 struct timespec latest_time = { 0, 0 };
2790
e535837b 2791 if (heap) {
31a7df01 2792 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
2793 heap->gt = &started_after;
2794 } else {
2795 /* We need to allocate our own heap memory */
2796 heap = &tmp_heap;
2797 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2798 if (retval)
2799 /* cannot allocate the heap */
2800 return retval;
2801 }
2802
2803 again:
2804 /*
72ec7029 2805 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
2806 * which are of interest, and invoking @process callback on the
2807 * ones which need an update. Since we don't want to hold any
2808 * locks during the task updates, gather tasks to be processed in a
2809 * heap structure. The heap is sorted by descending task start
2810 * time. If the statically-sized heap fills up, we overflow tasks
2811 * that started later, and in future iterations only consider tasks
2812 * that started after the latest task in the previous pass. This
31a7df01
CW
2813 * guarantees forward progress and that we don't miss any tasks.
2814 */
2815 heap->size = 0;
72ec7029
TH
2816 css_task_iter_start(css, &it);
2817 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
2818 /*
2819 * Only affect tasks that qualify per the caller's callback,
2820 * if he provided one
2821 */
e535837b 2822 if (test && !test(p, data))
31a7df01
CW
2823 continue;
2824 /*
2825 * Only process tasks that started after the last task
2826 * we processed
2827 */
2828 if (!started_after_time(p, &latest_time, latest_task))
2829 continue;
2830 dropped = heap_insert(heap, p);
2831 if (dropped == NULL) {
2832 /*
2833 * The new task was inserted; the heap wasn't
2834 * previously full
2835 */
2836 get_task_struct(p);
2837 } else if (dropped != p) {
2838 /*
2839 * The new task was inserted, and pushed out a
2840 * different task
2841 */
2842 get_task_struct(p);
2843 put_task_struct(dropped);
2844 }
2845 /*
2846 * Else the new task was newer than anything already in
2847 * the heap and wasn't inserted
2848 */
2849 }
72ec7029 2850 css_task_iter_end(&it);
31a7df01
CW
2851
2852 if (heap->size) {
2853 for (i = 0; i < heap->size; i++) {
4fe91d51 2854 struct task_struct *q = heap->ptrs[i];
31a7df01 2855 if (i == 0) {
4fe91d51
PJ
2856 latest_time = q->start_time;
2857 latest_task = q;
31a7df01
CW
2858 }
2859 /* Process the task per the caller's callback */
e535837b 2860 process(q, data);
4fe91d51 2861 put_task_struct(q);
31a7df01
CW
2862 }
2863 /*
2864 * If we had to process any tasks at all, scan again
2865 * in case some of them were in the middle of forking
2866 * children that didn't get processed.
2867 * Not the most efficient way to do it, but it avoids
2868 * having to take callback_mutex in the fork path
2869 */
2870 goto again;
2871 }
2872 if (heap == &tmp_heap)
2873 heap_free(&tmp_heap);
2874 return 0;
2875}
2876
e535837b 2877static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 2878{
e535837b 2879 struct cgroup *new_cgroup = data;
8cc99345 2880
47cfcd09 2881 mutex_lock(&cgroup_mutex);
8cc99345 2882 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 2883 mutex_unlock(&cgroup_mutex);
8cc99345
TH
2884}
2885
2886/**
2887 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2888 * @to: cgroup to which the tasks will be moved
2889 * @from: cgroup in which the tasks currently reside
2890 */
2891int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2892{
72ec7029
TH
2893 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
2894 to, NULL);
8cc99345
TH
2895}
2896
bbcb81d0 2897/*
102a775e 2898 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2899 *
2900 * Reading this file can return large amounts of data if a cgroup has
2901 * *lots* of attached tasks. So it may need several calls to read(),
2902 * but we cannot guarantee that the information we produce is correct
2903 * unless we produce it entirely atomically.
2904 *
bbcb81d0 2905 */
bbcb81d0 2906
24528255
LZ
2907/* which pidlist file are we talking about? */
2908enum cgroup_filetype {
2909 CGROUP_FILE_PROCS,
2910 CGROUP_FILE_TASKS,
2911};
2912
2913/*
2914 * A pidlist is a list of pids that virtually represents the contents of one
2915 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2916 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2917 * to the cgroup.
2918 */
2919struct cgroup_pidlist {
2920 /*
2921 * used to find which pidlist is wanted. doesn't change as long as
2922 * this particular list stays in the list.
2923 */
2924 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2925 /* array of xids */
2926 pid_t *list;
2927 /* how many elements the above list has */
2928 int length;
24528255
LZ
2929 /* each of these stored in a list by its cgroup */
2930 struct list_head links;
2931 /* pointer to the cgroup we belong to, for list removal purposes */
2932 struct cgroup *owner;
b1a21367
TH
2933 /* for delayed destruction */
2934 struct delayed_work destroy_dwork;
24528255
LZ
2935};
2936
d1d9fd33
BB
2937/*
2938 * The following two functions "fix" the issue where there are more pids
2939 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2940 * TODO: replace with a kernel-wide solution to this problem
2941 */
2942#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2943static void *pidlist_allocate(int count)
2944{
2945 if (PIDLIST_TOO_LARGE(count))
2946 return vmalloc(count * sizeof(pid_t));
2947 else
2948 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2949}
b1a21367 2950
d1d9fd33
BB
2951static void pidlist_free(void *p)
2952{
2953 if (is_vmalloc_addr(p))
2954 vfree(p);
2955 else
2956 kfree(p);
2957}
d1d9fd33 2958
b1a21367
TH
2959/*
2960 * Used to destroy all pidlists lingering waiting for destroy timer. None
2961 * should be left afterwards.
2962 */
2963static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2964{
2965 struct cgroup_pidlist *l, *tmp_l;
2966
2967 mutex_lock(&cgrp->pidlist_mutex);
2968 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2969 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2970 mutex_unlock(&cgrp->pidlist_mutex);
2971
2972 flush_workqueue(cgroup_pidlist_destroy_wq);
2973 BUG_ON(!list_empty(&cgrp->pidlists));
2974}
2975
2976static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2977{
2978 struct delayed_work *dwork = to_delayed_work(work);
2979 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2980 destroy_dwork);
2981 struct cgroup_pidlist *tofree = NULL;
2982
2983 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2984
2985 /*
04502365
TH
2986 * Destroy iff we didn't get queued again. The state won't change
2987 * as destroy_dwork can only be queued while locked.
b1a21367 2988 */
04502365 2989 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2990 list_del(&l->links);
2991 pidlist_free(l->list);
2992 put_pid_ns(l->key.ns);
2993 tofree = l;
2994 }
2995
b1a21367
TH
2996 mutex_unlock(&l->owner->pidlist_mutex);
2997 kfree(tofree);
2998}
2999
bbcb81d0 3000/*
102a775e 3001 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3002 * Returns the number of unique elements.
bbcb81d0 3003 */
6ee211ad 3004static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3005{
102a775e 3006 int src, dest = 1;
102a775e
BB
3007
3008 /*
3009 * we presume the 0th element is unique, so i starts at 1. trivial
3010 * edge cases first; no work needs to be done for either
3011 */
3012 if (length == 0 || length == 1)
3013 return length;
3014 /* src and dest walk down the list; dest counts unique elements */
3015 for (src = 1; src < length; src++) {
3016 /* find next unique element */
3017 while (list[src] == list[src-1]) {
3018 src++;
3019 if (src == length)
3020 goto after;
3021 }
3022 /* dest always points to where the next unique element goes */
3023 list[dest] = list[src];
3024 dest++;
3025 }
3026after:
102a775e
BB
3027 return dest;
3028}
3029
afb2bc14
TH
3030/*
3031 * The two pid files - task and cgroup.procs - guaranteed that the result
3032 * is sorted, which forced this whole pidlist fiasco. As pid order is
3033 * different per namespace, each namespace needs differently sorted list,
3034 * making it impossible to use, for example, single rbtree of member tasks
3035 * sorted by task pointer. As pidlists can be fairly large, allocating one
3036 * per open file is dangerous, so cgroup had to implement shared pool of
3037 * pidlists keyed by cgroup and namespace.
3038 *
3039 * All this extra complexity was caused by the original implementation
3040 * committing to an entirely unnecessary property. In the long term, we
3041 * want to do away with it. Explicitly scramble sort order if
3042 * sane_behavior so that no such expectation exists in the new interface.
3043 *
3044 * Scrambling is done by swapping every two consecutive bits, which is
3045 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3046 */
3047static pid_t pid_fry(pid_t pid)
3048{
3049 unsigned a = pid & 0x55555555;
3050 unsigned b = pid & 0xAAAAAAAA;
3051
3052 return (a << 1) | (b >> 1);
3053}
3054
3055static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3056{
3057 if (cgroup_sane_behavior(cgrp))
3058 return pid_fry(pid);
3059 else
3060 return pid;
3061}
3062
102a775e
BB
3063static int cmppid(const void *a, const void *b)
3064{
3065 return *(pid_t *)a - *(pid_t *)b;
3066}
3067
afb2bc14
TH
3068static int fried_cmppid(const void *a, const void *b)
3069{
3070 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3071}
3072
e6b81710
TH
3073static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3074 enum cgroup_filetype type)
3075{
3076 struct cgroup_pidlist *l;
3077 /* don't need task_nsproxy() if we're looking at ourself */
3078 struct pid_namespace *ns = task_active_pid_ns(current);
3079
3080 lockdep_assert_held(&cgrp->pidlist_mutex);
3081
3082 list_for_each_entry(l, &cgrp->pidlists, links)
3083 if (l->key.type == type && l->key.ns == ns)
3084 return l;
3085 return NULL;
3086}
3087
72a8cb30
BB
3088/*
3089 * find the appropriate pidlist for our purpose (given procs vs tasks)
3090 * returns with the lock on that pidlist already held, and takes care
3091 * of the use count, or returns NULL with no locks held if we're out of
3092 * memory.
3093 */
e6b81710
TH
3094static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3095 enum cgroup_filetype type)
72a8cb30
BB
3096{
3097 struct cgroup_pidlist *l;
b70cc5fd 3098
e6b81710
TH
3099 lockdep_assert_held(&cgrp->pidlist_mutex);
3100
3101 l = cgroup_pidlist_find(cgrp, type);
3102 if (l)
3103 return l;
3104
72a8cb30 3105 /* entry not found; create a new one */
f4f4be2b 3106 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3107 if (!l)
72a8cb30 3108 return l;
e6b81710 3109
b1a21367 3110 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3111 l->key.type = type;
e6b81710
TH
3112 /* don't need task_nsproxy() if we're looking at ourself */
3113 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3114 l->owner = cgrp;
3115 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3116 return l;
3117}
3118
102a775e
BB
3119/*
3120 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3121 */
72a8cb30
BB
3122static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3123 struct cgroup_pidlist **lp)
102a775e
BB
3124{
3125 pid_t *array;
3126 int length;
3127 int pid, n = 0; /* used for populating the array */
72ec7029 3128 struct css_task_iter it;
817929ec 3129 struct task_struct *tsk;
102a775e
BB
3130 struct cgroup_pidlist *l;
3131
4bac00d1
TH
3132 lockdep_assert_held(&cgrp->pidlist_mutex);
3133
102a775e
BB
3134 /*
3135 * If cgroup gets more users after we read count, we won't have
3136 * enough space - tough. This race is indistinguishable to the
3137 * caller from the case that the additional cgroup users didn't
3138 * show up until sometime later on.
3139 */
3140 length = cgroup_task_count(cgrp);
d1d9fd33 3141 array = pidlist_allocate(length);
102a775e
BB
3142 if (!array)
3143 return -ENOMEM;
3144 /* now, populate the array */
72ec7029
TH
3145 css_task_iter_start(&cgrp->dummy_css, &it);
3146 while ((tsk = css_task_iter_next(&it))) {
102a775e 3147 if (unlikely(n == length))
817929ec 3148 break;
102a775e 3149 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3150 if (type == CGROUP_FILE_PROCS)
3151 pid = task_tgid_vnr(tsk);
3152 else
3153 pid = task_pid_vnr(tsk);
102a775e
BB
3154 if (pid > 0) /* make sure to only use valid results */
3155 array[n++] = pid;
817929ec 3156 }
72ec7029 3157 css_task_iter_end(&it);
102a775e
BB
3158 length = n;
3159 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3160 if (cgroup_sane_behavior(cgrp))
3161 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3162 else
3163 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3164 if (type == CGROUP_FILE_PROCS)
6ee211ad 3165 length = pidlist_uniq(array, length);
e6b81710 3166
e6b81710 3167 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3168 if (!l) {
e6b81710 3169 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3170 pidlist_free(array);
72a8cb30 3171 return -ENOMEM;
102a775e 3172 }
e6b81710
TH
3173
3174 /* store array, freeing old if necessary */
d1d9fd33 3175 pidlist_free(l->list);
102a775e
BB
3176 l->list = array;
3177 l->length = length;
72a8cb30 3178 *lp = l;
102a775e 3179 return 0;
bbcb81d0
PM
3180}
3181
846c7bb0 3182/**
a043e3b2 3183 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3184 * @stats: cgroupstats to fill information into
3185 * @dentry: A dentry entry belonging to the cgroup for which stats have
3186 * been requested.
a043e3b2
LZ
3187 *
3188 * Build and fill cgroupstats so that taskstats can export it to user
3189 * space.
846c7bb0
BS
3190 */
3191int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3192{
2bd59d48 3193 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3194 struct cgroup *cgrp;
72ec7029 3195 struct css_task_iter it;
846c7bb0 3196 struct task_struct *tsk;
33d283be 3197
2bd59d48
TH
3198 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3199 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3200 kernfs_type(kn) != KERNFS_DIR)
3201 return -EINVAL;
3202
846c7bb0 3203 /*
2bd59d48
TH
3204 * We aren't being called from kernfs and there's no guarantee on
3205 * @kn->priv's validity. For this and css_tryget_from_dir(),
3206 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3207 */
2bd59d48
TH
3208 rcu_read_lock();
3209 cgrp = rcu_dereference(kn->priv);
3210 if (!cgrp) {
3211 rcu_read_unlock();
3212 return -ENOENT;
3213 }
846c7bb0 3214
72ec7029
TH
3215 css_task_iter_start(&cgrp->dummy_css, &it);
3216 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3217 switch (tsk->state) {
3218 case TASK_RUNNING:
3219 stats->nr_running++;
3220 break;
3221 case TASK_INTERRUPTIBLE:
3222 stats->nr_sleeping++;
3223 break;
3224 case TASK_UNINTERRUPTIBLE:
3225 stats->nr_uninterruptible++;
3226 break;
3227 case TASK_STOPPED:
3228 stats->nr_stopped++;
3229 break;
3230 default:
3231 if (delayacct_is_task_waiting_on_io(tsk))
3232 stats->nr_io_wait++;
3233 break;
3234 }
3235 }
72ec7029 3236 css_task_iter_end(&it);
846c7bb0 3237
2bd59d48
TH
3238 rcu_read_unlock();
3239 return 0;
846c7bb0
BS
3240}
3241
8f3ff208 3242
bbcb81d0 3243/*
102a775e 3244 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3245 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3246 * in the cgroup->l->list array.
bbcb81d0 3247 */
cc31edce 3248
102a775e 3249static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3250{
cc31edce
PM
3251 /*
3252 * Initially we receive a position value that corresponds to
3253 * one more than the last pid shown (or 0 on the first call or
3254 * after a seek to the start). Use a binary-search to find the
3255 * next pid to display, if any
3256 */
2bd59d48 3257 struct kernfs_open_file *of = s->private;
7da11279 3258 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3259 struct cgroup_pidlist *l;
7da11279 3260 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3261 int index = 0, pid = *pos;
4bac00d1
TH
3262 int *iter, ret;
3263
3264 mutex_lock(&cgrp->pidlist_mutex);
3265
3266 /*
5d22444f 3267 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3268 * after open. If the matching pidlist is around, we can use that.
5d22444f 3269 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3270 * could already have been destroyed.
3271 */
5d22444f
TH
3272 if (of->priv)
3273 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3274
3275 /*
3276 * Either this is the first start() after open or the matching
3277 * pidlist has been destroyed inbetween. Create a new one.
3278 */
5d22444f
TH
3279 if (!of->priv) {
3280 ret = pidlist_array_load(cgrp, type,
3281 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3282 if (ret)
3283 return ERR_PTR(ret);
3284 }
5d22444f 3285 l = of->priv;
cc31edce 3286
cc31edce 3287 if (pid) {
102a775e 3288 int end = l->length;
20777766 3289
cc31edce
PM
3290 while (index < end) {
3291 int mid = (index + end) / 2;
afb2bc14 3292 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3293 index = mid;
3294 break;
afb2bc14 3295 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3296 index = mid + 1;
3297 else
3298 end = mid;
3299 }
3300 }
3301 /* If we're off the end of the array, we're done */
102a775e 3302 if (index >= l->length)
cc31edce
PM
3303 return NULL;
3304 /* Update the abstract position to be the actual pid that we found */
102a775e 3305 iter = l->list + index;
afb2bc14 3306 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3307 return iter;
3308}
3309
102a775e 3310static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3311{
2bd59d48 3312 struct kernfs_open_file *of = s->private;
5d22444f 3313 struct cgroup_pidlist *l = of->priv;
62236858 3314
5d22444f
TH
3315 if (l)
3316 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3317 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3318 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3319}
3320
102a775e 3321static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3322{
2bd59d48 3323 struct kernfs_open_file *of = s->private;
5d22444f 3324 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3325 pid_t *p = v;
3326 pid_t *end = l->list + l->length;
cc31edce
PM
3327 /*
3328 * Advance to the next pid in the array. If this goes off the
3329 * end, we're done
3330 */
3331 p++;
3332 if (p >= end) {
3333 return NULL;
3334 } else {
7da11279 3335 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3336 return p;
3337 }
3338}
3339
102a775e 3340static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3341{
3342 return seq_printf(s, "%d\n", *(int *)v);
3343}
bbcb81d0 3344
102a775e
BB
3345/*
3346 * seq_operations functions for iterating on pidlists through seq_file -
3347 * independent of whether it's tasks or procs
3348 */
3349static const struct seq_operations cgroup_pidlist_seq_operations = {
3350 .start = cgroup_pidlist_start,
3351 .stop = cgroup_pidlist_stop,
3352 .next = cgroup_pidlist_next,
3353 .show = cgroup_pidlist_show,
cc31edce
PM
3354};
3355
182446d0
TH
3356static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3357 struct cftype *cft)
81a6a5cd 3358{
182446d0 3359 return notify_on_release(css->cgroup);
81a6a5cd
PM
3360}
3361
182446d0
TH
3362static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3363 struct cftype *cft, u64 val)
6379c106 3364{
182446d0 3365 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3366 if (val)
182446d0 3367 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3368 else
182446d0 3369 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3370 return 0;
3371}
3372
182446d0
TH
3373static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3374 struct cftype *cft)
97978e6d 3375{
182446d0 3376 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3377}
3378
182446d0
TH
3379static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3380 struct cftype *cft, u64 val)
97978e6d
DL
3381{
3382 if (val)
182446d0 3383 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3384 else
182446d0 3385 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3386 return 0;
3387}
3388
d5c56ced 3389static struct cftype cgroup_base_files[] = {
81a6a5cd 3390 {
d5c56ced 3391 .name = "cgroup.procs",
6612f05b
TH
3392 .seq_start = cgroup_pidlist_start,
3393 .seq_next = cgroup_pidlist_next,
3394 .seq_stop = cgroup_pidlist_stop,
3395 .seq_show = cgroup_pidlist_show,
5d22444f 3396 .private = CGROUP_FILE_PROCS,
74a1166d 3397 .write_u64 = cgroup_procs_write,
74a1166d 3398 .mode = S_IRUGO | S_IWUSR,
102a775e 3399 },
97978e6d
DL
3400 {
3401 .name = "cgroup.clone_children",
873fe09e 3402 .flags = CFTYPE_INSANE,
97978e6d
DL
3403 .read_u64 = cgroup_clone_children_read,
3404 .write_u64 = cgroup_clone_children_write,
3405 },
873fe09e
TH
3406 {
3407 .name = "cgroup.sane_behavior",
3408 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3409 .seq_show = cgroup_sane_behavior_show,
873fe09e 3410 },
d5c56ced
TH
3411
3412 /*
3413 * Historical crazy stuff. These don't have "cgroup." prefix and
3414 * don't exist if sane_behavior. If you're depending on these, be
3415 * prepared to be burned.
3416 */
3417 {
3418 .name = "tasks",
3419 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3420 .seq_start = cgroup_pidlist_start,
3421 .seq_next = cgroup_pidlist_next,
3422 .seq_stop = cgroup_pidlist_stop,
3423 .seq_show = cgroup_pidlist_show,
5d22444f 3424 .private = CGROUP_FILE_TASKS,
d5c56ced 3425 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3426 .mode = S_IRUGO | S_IWUSR,
3427 },
3428 {
3429 .name = "notify_on_release",
3430 .flags = CFTYPE_INSANE,
3431 .read_u64 = cgroup_read_notify_on_release,
3432 .write_u64 = cgroup_write_notify_on_release,
3433 },
6e6ff25b
TH
3434 {
3435 .name = "release_agent",
cc5943a7 3436 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3437 .seq_show = cgroup_release_agent_show,
6e6ff25b 3438 .write_string = cgroup_release_agent_write,
5f469907 3439 .max_write_len = PATH_MAX - 1,
6e6ff25b 3440 },
db0416b6 3441 { } /* terminate */
bbcb81d0
PM
3442};
3443
13af07df 3444/**
628f7cd4 3445 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3446 * @cgrp: target cgroup
13af07df 3447 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3448 *
3449 * On failure, no file is added.
13af07df 3450 */
628f7cd4 3451static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3452{
ddbcc7e8 3453 struct cgroup_subsys *ss;
b420ba7d 3454 int i, ret = 0;
bbcb81d0 3455
8e3f6541 3456 /* process cftsets of each subsystem */
b420ba7d 3457 for_each_subsys(ss, i) {
0adb0704 3458 struct cftype *cfts;
b420ba7d
TH
3459
3460 if (!test_bit(i, &subsys_mask))
13af07df 3461 continue;
8e3f6541 3462
0adb0704
TH
3463 list_for_each_entry(cfts, &ss->cfts, node) {
3464 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3465 if (ret < 0)
3466 goto err;
3467 }
ddbcc7e8 3468 }
ddbcc7e8 3469 return 0;
bee55099
TH
3470err:
3471 cgroup_clear_dir(cgrp, subsys_mask);
3472 return ret;
ddbcc7e8
PM
3473}
3474
0c21ead1
TH
3475/*
3476 * css destruction is four-stage process.
3477 *
3478 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3479 * Implemented in kill_css().
3480 *
3481 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3482 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3483 * by invoking offline_css(). After offlining, the base ref is put.
3484 * Implemented in css_killed_work_fn().
3485 *
3486 * 3. When the percpu_ref reaches zero, the only possible remaining
3487 * accessors are inside RCU read sections. css_release() schedules the
3488 * RCU callback.
3489 *
3490 * 4. After the grace period, the css can be freed. Implemented in
3491 * css_free_work_fn().
3492 *
3493 * It is actually hairier because both step 2 and 4 require process context
3494 * and thus involve punting to css->destroy_work adding two additional
3495 * steps to the already complex sequence.
3496 */
35ef10da 3497static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3498{
3499 struct cgroup_subsys_state *css =
35ef10da 3500 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3501 struct cgroup *cgrp = css->cgroup;
48ddbe19 3502
0ae78e0b
TH
3503 if (css->parent)
3504 css_put(css->parent);
3505
0c21ead1 3506 css->ss->css_free(css);
2bd59d48 3507 cgroup_put(cgrp);
48ddbe19
TH
3508}
3509
0c21ead1 3510static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3511{
3512 struct cgroup_subsys_state *css =
0c21ead1 3513 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3514
35ef10da 3515 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3516 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3517}
3518
d3daf28d
TH
3519static void css_release(struct percpu_ref *ref)
3520{
3521 struct cgroup_subsys_state *css =
3522 container_of(ref, struct cgroup_subsys_state, refcnt);
3523
aec25020 3524 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3525 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3526}
3527
623f926b
TH
3528static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3529 struct cgroup *cgrp)
ddbcc7e8 3530{
bd89aabc 3531 css->cgroup = cgrp;
72c97e54 3532 css->ss = ss;
ddbcc7e8 3533 css->flags = 0;
0ae78e0b
TH
3534
3535 if (cgrp->parent)
ca8bdcaf 3536 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3537 else
38b53aba 3538 css->flags |= CSS_ROOT;
48ddbe19 3539
ca8bdcaf 3540 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3541}
3542
2a4ac633 3543/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3544static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3545{
623f926b 3546 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3547 int ret = 0;
3548
ace2bee8 3549 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3550 lockdep_assert_held(&cgroup_mutex);
3551
92fb9748 3552 if (ss->css_online)
eb95419b 3553 ret = ss->css_online(css);
ae7f164a 3554 if (!ret) {
eb95419b 3555 css->flags |= CSS_ONLINE;
f20104de 3556 css->cgroup->nr_css++;
aec25020 3557 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3558 }
b1929db4 3559 return ret;
a31f2d3f
TH
3560}
3561
2a4ac633 3562/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3563static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3564{
623f926b 3565 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3566
ace2bee8 3567 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3568 lockdep_assert_held(&cgroup_mutex);
3569
3570 if (!(css->flags & CSS_ONLINE))
3571 return;
3572
d7eeac19 3573 if (ss->css_offline)
eb95419b 3574 ss->css_offline(css);
a31f2d3f 3575
eb95419b 3576 css->flags &= ~CSS_ONLINE;
09a503ea 3577 css->cgroup->nr_css--;
aec25020 3578 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3579}
3580
c81c925a
TH
3581/**
3582 * create_css - create a cgroup_subsys_state
3583 * @cgrp: the cgroup new css will be associated with
3584 * @ss: the subsys of new css
3585 *
3586 * Create a new css associated with @cgrp - @ss pair. On success, the new
3587 * css is online and installed in @cgrp with all interface files created.
3588 * Returns 0 on success, -errno on failure.
3589 */
3590static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3591{
3592 struct cgroup *parent = cgrp->parent;
3593 struct cgroup_subsys_state *css;
3594 int err;
3595
c81c925a
TH
3596 lockdep_assert_held(&cgroup_mutex);
3597
3598 css = ss->css_alloc(cgroup_css(parent, ss));
3599 if (IS_ERR(css))
3600 return PTR_ERR(css);
3601
3602 err = percpu_ref_init(&css->refcnt, css_release);
3603 if (err)
3604 goto err_free;
3605
3606 init_css(css, ss, cgrp);
3607
aec25020 3608 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3609 if (err)
3610 goto err_free;
3611
3612 err = online_css(css);
3613 if (err)
3614 goto err_free;
3615
59f5296b 3616 cgroup_get(cgrp);
c81c925a
TH
3617 css_get(css->parent);
3618
3619 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3620 parent->parent) {
3621 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3622 current->comm, current->pid, ss->name);
3623 if (!strcmp(ss->name, "memory"))
3624 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3625 ss->warned_broken_hierarchy = true;
3626 }
3627
3628 return 0;
3629
3630err_free:
3631 percpu_ref_cancel_init(&css->refcnt);
3632 ss->css_free(css);
3633 return err;
3634}
3635
2bd59d48 3636/**
a043e3b2
LZ
3637 * cgroup_create - create a cgroup
3638 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3639 * @name: name of the new cgroup
2bd59d48 3640 * @mode: mode to set on new cgroup
ddbcc7e8 3641 */
e61734c5 3642static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3643 umode_t mode)
ddbcc7e8 3644{
bd89aabc 3645 struct cgroup *cgrp;
ddbcc7e8 3646 struct cgroupfs_root *root = parent->root;
b58c8998 3647 int ssid, err;
ddbcc7e8 3648 struct cgroup_subsys *ss;
2bd59d48 3649 struct kernfs_node *kn;
ddbcc7e8 3650
0a950f65 3651 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3652 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3653 if (!cgrp)
ddbcc7e8
PM
3654 return -ENOMEM;
3655
ace2bee8
TH
3656 mutex_lock(&cgroup_tree_mutex);
3657
976c06bc
TH
3658 /*
3659 * Only live parents can have children. Note that the liveliness
3660 * check isn't strictly necessary because cgroup_mkdir() and
3661 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3662 * anyway so that locking is contained inside cgroup proper and we
3663 * don't get nasty surprises if we ever grow another caller.
3664 */
3665 if (!cgroup_lock_live_group(parent)) {
3666 err = -ENODEV;
ace2bee8 3667 goto err_unlock_tree;
0ab02ca8
LZ
3668 }
3669
3670 /*
3671 * Temporarily set the pointer to NULL, so idr_find() won't return
3672 * a half-baked cgroup.
3673 */
3674 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3675 if (cgrp->id < 0) {
3676 err = -ENOMEM;
3677 goto err_unlock;
976c06bc
TH
3678 }
3679
cc31edce 3680 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3681
bd89aabc 3682 cgrp->parent = parent;
0ae78e0b 3683 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3684 cgrp->root = parent->root;
ddbcc7e8 3685
b6abdb0e
LZ
3686 if (notify_on_release(parent))
3687 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3688
2260e7fc
TH
3689 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3690 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3691
2bd59d48 3692 /* create the directory */
e61734c5 3693 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3694 if (IS_ERR(kn)) {
3695 err = PTR_ERR(kn);
0ab02ca8 3696 goto err_free_id;
2bd59d48
TH
3697 }
3698 cgrp->kn = kn;
ddbcc7e8 3699
6f30558f
TH
3700 /*
3701 * This extra ref will be put in cgroup_free_fn() and guarantees
3702 * that @cgrp->kn is always accessible.
3703 */
3704 kernfs_get(kn);
3705
00356bd5 3706 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3707
4e139afc 3708 /* allocation complete, commit to creation */
4e139afc 3709 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3710 atomic_inc(&root->nr_cgrps);
28fd6f30 3711
2bd59d48
TH
3712 /*
3713 * Grab a reference on the root and parent so that they don't get
3714 * deleted while there are child cgroups.
3715 */
3716 cgroup_get_root(root);
59f5296b 3717 cgroup_get(parent);
415cf07a 3718
0d80255e
TH
3719 /*
3720 * @cgrp is now fully operational. If something fails after this
3721 * point, it'll be released via the normal destruction path.
3722 */
4e96ee8e
LZ
3723 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3724
2bb566cb 3725 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3726 if (err)
3727 goto err_destroy;
3728
9d403e99 3729 /* let's create and online css's */
b85d2040
TH
3730 for_each_subsys(ss, ssid) {
3731 if (root->subsys_mask & (1 << ssid)) {
3732 err = create_css(cgrp, ss);
3733 if (err)
3734 goto err_destroy;
3735 }
a8638030 3736 }
ddbcc7e8 3737
2bd59d48
TH
3738 kernfs_activate(kn);
3739
ddbcc7e8 3740 mutex_unlock(&cgroup_mutex);
ace2bee8 3741 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3742
3743 return 0;
3744
0a950f65 3745err_free_id:
4e96ee8e 3746 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3747err_unlock:
3748 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3749err_unlock_tree:
3750 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3751 kfree(cgrp);
ddbcc7e8 3752 return err;
4b8b47eb
TH
3753
3754err_destroy:
3755 cgroup_destroy_locked(cgrp);
3756 mutex_unlock(&cgroup_mutex);
ace2bee8 3757 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3758 return err;
ddbcc7e8
PM
3759}
3760
2bd59d48
TH
3761static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3762 umode_t mode)
ddbcc7e8 3763{
2bd59d48 3764 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3765
2bd59d48 3766 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3767}
3768
223dbc38
TH
3769/*
3770 * This is called when the refcnt of a css is confirmed to be killed.
3771 * css_tryget() is now guaranteed to fail.
3772 */
3773static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3774{
223dbc38
TH
3775 struct cgroup_subsys_state *css =
3776 container_of(work, struct cgroup_subsys_state, destroy_work);
3777 struct cgroup *cgrp = css->cgroup;
d3daf28d 3778
ace2bee8 3779 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3780 mutex_lock(&cgroup_mutex);
3781
09a503ea
TH
3782 /*
3783 * css_tryget() is guaranteed to fail now. Tell subsystems to
3784 * initate destruction.
3785 */
3786 offline_css(css);
3787
f20104de
TH
3788 /*
3789 * If @cgrp is marked dead, it's waiting for refs of all css's to
3790 * be disabled before proceeding to the second phase of cgroup
3791 * destruction. If we are the last one, kick it off.
3792 */
09a503ea 3793 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3794 cgroup_destroy_css_killed(cgrp);
3795
3796 mutex_unlock(&cgroup_mutex);
ace2bee8 3797 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3798
3799 /*
3800 * Put the css refs from kill_css(). Each css holds an extra
3801 * reference to the cgroup's dentry and cgroup removal proceeds
3802 * regardless of css refs. On the last put of each css, whenever
3803 * that may be, the extra dentry ref is put so that dentry
3804 * destruction happens only after all css's are released.
3805 */
3806 css_put(css);
d3daf28d
TH
3807}
3808
223dbc38
TH
3809/* css kill confirmation processing requires process context, bounce */
3810static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3811{
3812 struct cgroup_subsys_state *css =
3813 container_of(ref, struct cgroup_subsys_state, refcnt);
3814
223dbc38 3815 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3816 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3817}
3818
edae0c33
TH
3819/**
3820 * kill_css - destroy a css
3821 * @css: css to destroy
3822 *
3c14f8b4
TH
3823 * This function initiates destruction of @css by removing cgroup interface
3824 * files and putting its base reference. ->css_offline() will be invoked
3825 * asynchronously once css_tryget() is guaranteed to fail and when the
3826 * reference count reaches zero, @css will be released.
edae0c33
TH
3827 */
3828static void kill_css(struct cgroup_subsys_state *css)
3829{
2bd59d48
TH
3830 /*
3831 * This must happen before css is disassociated with its cgroup.
3832 * See seq_css() for details.
3833 */
aec25020 3834 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3835
edae0c33
TH
3836 /*
3837 * Killing would put the base ref, but we need to keep it alive
3838 * until after ->css_offline().
3839 */
3840 css_get(css);
3841
3842 /*
3843 * cgroup core guarantees that, by the time ->css_offline() is
3844 * invoked, no new css reference will be given out via
3845 * css_tryget(). We can't simply call percpu_ref_kill() and
3846 * proceed to offlining css's because percpu_ref_kill() doesn't
3847 * guarantee that the ref is seen as killed on all CPUs on return.
3848 *
3849 * Use percpu_ref_kill_and_confirm() to get notifications as each
3850 * css is confirmed to be seen as killed on all CPUs.
3851 */
3852 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3853}
3854
3855/**
3856 * cgroup_destroy_locked - the first stage of cgroup destruction
3857 * @cgrp: cgroup to be destroyed
3858 *
3859 * css's make use of percpu refcnts whose killing latency shouldn't be
3860 * exposed to userland and are RCU protected. Also, cgroup core needs to
3861 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3862 * invoked. To satisfy all the requirements, destruction is implemented in
3863 * the following two steps.
3864 *
3865 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3866 * userland visible parts and start killing the percpu refcnts of
3867 * css's. Set up so that the next stage will be kicked off once all
3868 * the percpu refcnts are confirmed to be killed.
3869 *
3870 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3871 * rest of destruction. Once all cgroup references are gone, the
3872 * cgroup is RCU-freed.
3873 *
3874 * This function implements s1. After this step, @cgrp is gone as far as
3875 * the userland is concerned and a new cgroup with the same name may be
3876 * created. As cgroup doesn't care about the names internally, this
3877 * doesn't cause any problem.
3878 */
42809dd4
TH
3879static int cgroup_destroy_locked(struct cgroup *cgrp)
3880 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3881{
bb78a92f 3882 struct cgroup *child;
2bd59d48 3883 struct cgroup_subsys_state *css;
ddd69148 3884 bool empty;
1c6727af 3885 int ssid;
ddbcc7e8 3886
ace2bee8 3887 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3888 lockdep_assert_held(&cgroup_mutex);
3889
ddd69148 3890 /*
6f3d828f
TH
3891 * css_set_lock synchronizes access to ->cset_links and prevents
3892 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
3893 */
3894 read_lock(&css_set_lock);
bb78a92f 3895 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
3896 read_unlock(&css_set_lock);
3897 if (!empty)
ddbcc7e8 3898 return -EBUSY;
a043e3b2 3899
bb78a92f
HD
3900 /*
3901 * Make sure there's no live children. We can't test ->children
3902 * emptiness as dead children linger on it while being destroyed;
3903 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3904 */
3905 empty = true;
3906 rcu_read_lock();
3907 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3908 empty = cgroup_is_dead(child);
3909 if (!empty)
3910 break;
3911 }
3912 rcu_read_unlock();
3913 if (!empty)
3914 return -EBUSY;
3915
88703267 3916 /*
edae0c33
TH
3917 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3918 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3919 * percpu refs of all css's are confirmed to be killed. This
3920 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3921 */
4ac06017 3922 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3923 for_each_css(css, ssid, cgrp)
3924 kill_css(css);
4ac06017 3925 mutex_lock(&cgroup_mutex);
455050d2
TH
3926
3927 /*
3928 * Mark @cgrp dead. This prevents further task migration and child
3929 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3930 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3931 * resume iteration after dropping RCU read lock. See
492eb21b 3932 * css_next_child() for details.
455050d2 3933 */
54766d4a 3934 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3935
455050d2
TH
3936 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3937 raw_spin_lock(&release_list_lock);
3938 if (!list_empty(&cgrp->release_list))
3939 list_del_init(&cgrp->release_list);
3940 raw_spin_unlock(&release_list_lock);
3941
3942 /*
f20104de
TH
3943 * If @cgrp has css's attached, the second stage of cgroup
3944 * destruction is kicked off from css_killed_work_fn() after the
3945 * refs of all attached css's are killed. If @cgrp doesn't have
3946 * any css, we kick it off here.
3947 */
3948 if (!cgrp->nr_css)
3949 cgroup_destroy_css_killed(cgrp);
3950
2bd59d48
TH
3951 /* remove @cgrp directory along with the base files */
3952 mutex_unlock(&cgroup_mutex);
3953
455050d2 3954 /*
2bd59d48
TH
3955 * There are two control paths which try to determine cgroup from
3956 * dentry without going through kernfs - cgroupstats_build() and
3957 * css_tryget_from_dir(). Those are supported by RCU protecting
3958 * clearing of cgrp->kn->priv backpointer, which should happen
3959 * after all files under it have been removed.
455050d2 3960 */
6f30558f 3961 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3962 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3963
4ac06017 3964 mutex_lock(&cgroup_mutex);
455050d2 3965
ea15f8cc
TH
3966 return 0;
3967};
3968
d3daf28d 3969/**
f20104de 3970 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3971 * @work: cgroup->destroy_free_work
3972 *
3973 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3974 * destroyed after all css's are offlined and performs the rest of
3975 * destruction. This is the second step of destruction described in the
3976 * comment above cgroup_destroy_locked().
d3daf28d 3977 */
f20104de 3978static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3979{
ea15f8cc 3980 struct cgroup *parent = cgrp->parent;
ea15f8cc 3981
ace2bee8 3982 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3983 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3984
999cd8a4 3985 /* delete this cgroup from parent->children */
eb6fd504 3986 list_del_rcu(&cgrp->sibling);
ed957793 3987
59f5296b 3988 cgroup_put(cgrp);
ddbcc7e8 3989
bd89aabc 3990 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3991 check_for_release(parent);
ddbcc7e8
PM
3992}
3993
2bd59d48 3994static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3995{
2bd59d48
TH
3996 struct cgroup *cgrp = kn->priv;
3997 int ret = 0;
3998
3999 /*
4000 * This is self-destruction but @kn can't be removed while this
4001 * callback is in progress. Let's break active protection. Once
4002 * the protection is broken, @cgrp can be destroyed at any point.
4003 * Pin it so that it stays accessible.
4004 */
4005 cgroup_get(cgrp);
4006 kernfs_break_active_protection(kn);
42809dd4 4007
ace2bee8 4008 mutex_lock(&cgroup_tree_mutex);
42809dd4 4009 mutex_lock(&cgroup_mutex);
2bd59d48
TH
4010
4011 /*
4012 * @cgrp might already have been destroyed while we're trying to
4013 * grab the mutexes.
4014 */
4015 if (!cgroup_is_dead(cgrp))
4016 ret = cgroup_destroy_locked(cgrp);
4017
42809dd4 4018 mutex_unlock(&cgroup_mutex);
ace2bee8 4019 mutex_unlock(&cgroup_tree_mutex);
42809dd4 4020
2bd59d48
TH
4021 kernfs_unbreak_active_protection(kn);
4022 cgroup_put(cgrp);
42809dd4
TH
4023 return ret;
4024}
4025
2bd59d48
TH
4026static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4027 .remount_fs = cgroup_remount,
4028 .show_options = cgroup_show_options,
4029 .mkdir = cgroup_mkdir,
4030 .rmdir = cgroup_rmdir,
4031 .rename = cgroup_rename,
4032};
4033
06a11920 4034static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4035{
ddbcc7e8 4036 struct cgroup_subsys_state *css;
cfe36bde
DC
4037
4038 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4039
ace2bee8 4040 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4041 mutex_lock(&cgroup_mutex);
4042
0adb0704 4043 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4044
ddbcc7e8 4045 /* Create the top cgroup state for this subsystem */
9871bf95 4046 ss->root = &cgroup_dummy_root;
ca8bdcaf 4047 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4048 /* We don't handle early failures gracefully */
4049 BUG_ON(IS_ERR(css));
623f926b 4050 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4051
e8d55fde 4052 /* Update the init_css_set to contain a subsys
817929ec 4053 * pointer to this state - since the subsystem is
e8d55fde
LZ
4054 * newly registered, all tasks and hence the
4055 * init_css_set is in the subsystem's top cgroup. */
aec25020 4056 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4057
4058 need_forkexit_callback |= ss->fork || ss->exit;
4059
e8d55fde
LZ
4060 /* At system boot, before all subsystems have been
4061 * registered, no tasks have been forked, so we don't
4062 * need to invoke fork callbacks here. */
4063 BUG_ON(!list_empty(&init_task.tasks));
4064
ae7f164a 4065 BUG_ON(online_css(css));
a8638030 4066
648bb56d 4067 mutex_unlock(&cgroup_mutex);
ace2bee8 4068 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4069}
4070
ddbcc7e8 4071/**
a043e3b2
LZ
4072 * cgroup_init_early - cgroup initialization at system boot
4073 *
4074 * Initialize cgroups at system boot, and initialize any
4075 * subsystems that request early init.
ddbcc7e8
PM
4076 */
4077int __init cgroup_init_early(void)
4078{
30159ec7 4079 struct cgroup_subsys *ss;
ddbcc7e8 4080 int i;
30159ec7 4081
146aa1bd 4082 atomic_set(&init_css_set.refcount, 1);
69d0206c 4083 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4084 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4085 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4086 css_set_count = 1;
9871bf95
TH
4087 init_cgroup_root(&cgroup_dummy_root);
4088 cgroup_root_count = 1;
a4ea1cc9 4089 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4090
69d0206c 4091 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4092 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4093 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4094 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4095
3ed80a62 4096 for_each_subsys(ss, i) {
aec25020 4097 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4098 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4099 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4100 ss->id, ss->name);
073219e9
TH
4101 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4102 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4103
aec25020 4104 ss->id = i;
073219e9 4105 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4106
4107 if (ss->early_init)
4108 cgroup_init_subsys(ss);
4109 }
4110 return 0;
4111}
4112
4113/**
a043e3b2
LZ
4114 * cgroup_init - cgroup initialization
4115 *
4116 * Register cgroup filesystem and /proc file, and initialize
4117 * any subsystems that didn't request early init.
ddbcc7e8
PM
4118 */
4119int __init cgroup_init(void)
4120{
30159ec7 4121 struct cgroup_subsys *ss;
0ac801fe 4122 unsigned long key;
30159ec7 4123 int i, err;
a424316c 4124
2bd59d48 4125 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4126
3ed80a62 4127 for_each_subsys(ss, i) {
ddbcc7e8
PM
4128 if (!ss->early_init)
4129 cgroup_init_subsys(ss);
de00ffa5
TH
4130
4131 /*
4132 * cftype registration needs kmalloc and can't be done
4133 * during early_init. Register base cftypes separately.
4134 */
4135 if (ss->base_cftypes)
4136 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
4137 }
4138
fa3ca07e 4139 /* allocate id for the dummy hierarchy */
54e7b4eb 4140 mutex_lock(&cgroup_mutex);
54e7b4eb 4141
82fe9b0d
TH
4142 /* Add init_css_set to the hash table */
4143 key = css_set_hash(init_css_set.subsys);
4144 hash_add(css_set_table, &init_css_set.hlist, key);
4145
fc76df70 4146 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4147
4e96ee8e
LZ
4148 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4149 0, 1, GFP_KERNEL);
4150 BUG_ON(err < 0);
4151
54e7b4eb
TH
4152 mutex_unlock(&cgroup_mutex);
4153
676db4af 4154 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4155 if (!cgroup_kobj)
4156 return -ENOMEM;
676db4af 4157
ddbcc7e8 4158 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4159 if (err < 0) {
4160 kobject_put(cgroup_kobj);
2bd59d48 4161 return err;
676db4af 4162 }
ddbcc7e8 4163
46ae220b 4164 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4165 return 0;
ddbcc7e8 4166}
b4f48b63 4167
e5fca243
TH
4168static int __init cgroup_wq_init(void)
4169{
4170 /*
4171 * There isn't much point in executing destruction path in
4172 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
4173 *
4174 * XXX: Must be ordered to make sure parent is offlined after
4175 * children. The ordering requirement is for memcg where a
4176 * parent's offline may wait for a child's leading to deadlock. In
4177 * the long term, this should be fixed from memcg side.
e5fca243
TH
4178 *
4179 * We would prefer to do this in cgroup_init() above, but that
4180 * is called before init_workqueues(): so leave this until after.
4181 */
ab3f5faa 4182 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 4183 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4184
4185 /*
4186 * Used to destroy pidlists and separate to serve as flush domain.
4187 * Cap @max_active to 1 too.
4188 */
4189 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4190 0, 1);
4191 BUG_ON(!cgroup_pidlist_destroy_wq);
4192
e5fca243
TH
4193 return 0;
4194}
4195core_initcall(cgroup_wq_init);
4196
a424316c
PM
4197/*
4198 * proc_cgroup_show()
4199 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4200 * - Used for /proc/<pid>/cgroup.
4201 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4202 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4203 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4204 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4205 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4206 * cgroup to top_cgroup.
4207 */
4208
4209/* TODO: Use a proper seq_file iterator */
8d8b97ba 4210int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4211{
4212 struct pid *pid;
4213 struct task_struct *tsk;
e61734c5 4214 char *buf, *path;
a424316c
PM
4215 int retval;
4216 struct cgroupfs_root *root;
4217
4218 retval = -ENOMEM;
e61734c5 4219 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4220 if (!buf)
4221 goto out;
4222
4223 retval = -ESRCH;
4224 pid = m->private;
4225 tsk = get_pid_task(pid, PIDTYPE_PID);
4226 if (!tsk)
4227 goto out_free;
4228
4229 retval = 0;
4230
4231 mutex_lock(&cgroup_mutex);
4232
e5f6a860 4233 for_each_active_root(root) {
a424316c 4234 struct cgroup_subsys *ss;
bd89aabc 4235 struct cgroup *cgrp;
b85d2040 4236 int ssid, count = 0;
a424316c 4237
2c6ab6d2 4238 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4239 for_each_subsys(ss, ssid)
4240 if (root->subsys_mask & (1 << ssid))
4241 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4242 if (strlen(root->name))
4243 seq_printf(m, "%sname=%s", count ? "," : "",
4244 root->name);
a424316c 4245 seq_putc(m, ':');
7717f7ba 4246 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4247 path = cgroup_path(cgrp, buf, PATH_MAX);
4248 if (!path) {
4249 retval = -ENAMETOOLONG;
a424316c 4250 goto out_unlock;
e61734c5
TH
4251 }
4252 seq_puts(m, path);
a424316c
PM
4253 seq_putc(m, '\n');
4254 }
4255
4256out_unlock:
4257 mutex_unlock(&cgroup_mutex);
4258 put_task_struct(tsk);
4259out_free:
4260 kfree(buf);
4261out:
4262 return retval;
4263}
4264
a424316c
PM
4265/* Display information about each subsystem and each hierarchy */
4266static int proc_cgroupstats_show(struct seq_file *m, void *v)
4267{
30159ec7 4268 struct cgroup_subsys *ss;
a424316c 4269 int i;
a424316c 4270
8bab8dde 4271 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4272 /*
4273 * ideally we don't want subsystems moving around while we do this.
4274 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4275 * subsys/hierarchy state.
4276 */
a424316c 4277 mutex_lock(&cgroup_mutex);
30159ec7
TH
4278
4279 for_each_subsys(ss, i)
2c6ab6d2
PM
4280 seq_printf(m, "%s\t%d\t%d\t%d\n",
4281 ss->name, ss->root->hierarchy_id,
3c9c825b 4282 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4283
a424316c
PM
4284 mutex_unlock(&cgroup_mutex);
4285 return 0;
4286}
4287
4288static int cgroupstats_open(struct inode *inode, struct file *file)
4289{
9dce07f1 4290 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4291}
4292
828c0950 4293static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4294 .open = cgroupstats_open,
4295 .read = seq_read,
4296 .llseek = seq_lseek,
4297 .release = single_release,
4298};
4299
b4f48b63
PM
4300/**
4301 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4302 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4303 *
4304 * Description: A task inherits its parent's cgroup at fork().
4305 *
4306 * A pointer to the shared css_set was automatically copied in
4307 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4308 * it was not made under the protection of RCU or cgroup_mutex, so
4309 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4310 * have already changed current->cgroups, allowing the previously
4311 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4312 *
4313 * At the point that cgroup_fork() is called, 'current' is the parent
4314 * task, and the passed argument 'child' points to the child task.
4315 */
4316void cgroup_fork(struct task_struct *child)
4317{
9bb71308 4318 task_lock(current);
a8ad805c 4319 get_css_set(task_css_set(current));
817929ec 4320 child->cgroups = current->cgroups;
9bb71308 4321 task_unlock(current);
817929ec 4322 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4323}
4324
817929ec 4325/**
a043e3b2
LZ
4326 * cgroup_post_fork - called on a new task after adding it to the task list
4327 * @child: the task in question
4328 *
5edee61e
TH
4329 * Adds the task to the list running through its css_set if necessary and
4330 * call the subsystem fork() callbacks. Has to be after the task is
4331 * visible on the task list in case we race with the first call to
0942eeee 4332 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4333 * list.
a043e3b2 4334 */
817929ec
PM
4335void cgroup_post_fork(struct task_struct *child)
4336{
30159ec7 4337 struct cgroup_subsys *ss;
5edee61e
TH
4338 int i;
4339
3ce3230a
FW
4340 /*
4341 * use_task_css_set_links is set to 1 before we walk the tasklist
4342 * under the tasklist_lock and we read it here after we added the child
4343 * to the tasklist under the tasklist_lock as well. If the child wasn't
4344 * yet in the tasklist when we walked through it from
4345 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4346 * should be visible now due to the paired locking and barriers implied
4347 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4348 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4349 * lock on fork.
4350 */
817929ec
PM
4351 if (use_task_css_set_links) {
4352 write_lock(&css_set_lock);
d8783832
TH
4353 task_lock(child);
4354 if (list_empty(&child->cg_list))
a8ad805c 4355 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4356 task_unlock(child);
817929ec
PM
4357 write_unlock(&css_set_lock);
4358 }
5edee61e
TH
4359
4360 /*
4361 * Call ss->fork(). This must happen after @child is linked on
4362 * css_set; otherwise, @child might change state between ->fork()
4363 * and addition to css_set.
4364 */
4365 if (need_forkexit_callback) {
3ed80a62 4366 for_each_subsys(ss, i)
5edee61e
TH
4367 if (ss->fork)
4368 ss->fork(child);
5edee61e 4369 }
817929ec 4370}
5edee61e 4371
b4f48b63
PM
4372/**
4373 * cgroup_exit - detach cgroup from exiting task
4374 * @tsk: pointer to task_struct of exiting process
a043e3b2 4375 * @run_callback: run exit callbacks?
b4f48b63
PM
4376 *
4377 * Description: Detach cgroup from @tsk and release it.
4378 *
4379 * Note that cgroups marked notify_on_release force every task in
4380 * them to take the global cgroup_mutex mutex when exiting.
4381 * This could impact scaling on very large systems. Be reluctant to
4382 * use notify_on_release cgroups where very high task exit scaling
4383 * is required on large systems.
4384 *
4385 * the_top_cgroup_hack:
4386 *
4387 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4388 *
4389 * We call cgroup_exit() while the task is still competent to
4390 * handle notify_on_release(), then leave the task attached to the
4391 * root cgroup in each hierarchy for the remainder of its exit.
4392 *
4393 * To do this properly, we would increment the reference count on
4394 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4395 * code we would add a second cgroup function call, to drop that
4396 * reference. This would just create an unnecessary hot spot on
4397 * the top_cgroup reference count, to no avail.
4398 *
4399 * Normally, holding a reference to a cgroup without bumping its
4400 * count is unsafe. The cgroup could go away, or someone could
4401 * attach us to a different cgroup, decrementing the count on
4402 * the first cgroup that we never incremented. But in this case,
4403 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4404 * which wards off any cgroup_attach_task() attempts, or task is a failed
4405 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4406 */
4407void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4408{
30159ec7 4409 struct cgroup_subsys *ss;
5abb8855 4410 struct css_set *cset;
d41d5a01 4411 int i;
817929ec
PM
4412
4413 /*
4414 * Unlink from the css_set task list if necessary.
4415 * Optimistically check cg_list before taking
4416 * css_set_lock
4417 */
4418 if (!list_empty(&tsk->cg_list)) {
4419 write_lock(&css_set_lock);
4420 if (!list_empty(&tsk->cg_list))
8d258797 4421 list_del_init(&tsk->cg_list);
817929ec
PM
4422 write_unlock(&css_set_lock);
4423 }
4424
b4f48b63
PM
4425 /* Reassign the task to the init_css_set. */
4426 task_lock(tsk);
a8ad805c
TH
4427 cset = task_css_set(tsk);
4428 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4429
4430 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4431 /* see cgroup_post_fork() for details */
4432 for_each_subsys(ss, i) {
d41d5a01 4433 if (ss->exit) {
eb95419b
TH
4434 struct cgroup_subsys_state *old_css = cset->subsys[i];
4435 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4436
eb95419b 4437 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4438 }
4439 }
4440 }
b4f48b63 4441 task_unlock(tsk);
d41d5a01 4442
5abb8855 4443 put_css_set_taskexit(cset);
b4f48b63 4444}
697f4161 4445
bd89aabc 4446static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4447{
f50daa70 4448 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4449 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4450 /*
4451 * Control Group is currently removeable. If it's not
81a6a5cd 4452 * already queued for a userspace notification, queue
f50daa70
LZ
4453 * it now
4454 */
81a6a5cd 4455 int need_schedule_work = 0;
f50daa70 4456
cdcc136f 4457 raw_spin_lock(&release_list_lock);
54766d4a 4458 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4459 list_empty(&cgrp->release_list)) {
4460 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4461 need_schedule_work = 1;
4462 }
cdcc136f 4463 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4464 if (need_schedule_work)
4465 schedule_work(&release_agent_work);
4466 }
4467}
4468
81a6a5cd
PM
4469/*
4470 * Notify userspace when a cgroup is released, by running the
4471 * configured release agent with the name of the cgroup (path
4472 * relative to the root of cgroup file system) as the argument.
4473 *
4474 * Most likely, this user command will try to rmdir this cgroup.
4475 *
4476 * This races with the possibility that some other task will be
4477 * attached to this cgroup before it is removed, or that some other
4478 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4479 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4480 * unused, and this cgroup will be reprieved from its death sentence,
4481 * to continue to serve a useful existence. Next time it's released,
4482 * we will get notified again, if it still has 'notify_on_release' set.
4483 *
4484 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4485 * means only wait until the task is successfully execve()'d. The
4486 * separate release agent task is forked by call_usermodehelper(),
4487 * then control in this thread returns here, without waiting for the
4488 * release agent task. We don't bother to wait because the caller of
4489 * this routine has no use for the exit status of the release agent
4490 * task, so no sense holding our caller up for that.
81a6a5cd 4491 */
81a6a5cd
PM
4492static void cgroup_release_agent(struct work_struct *work)
4493{
4494 BUG_ON(work != &release_agent_work);
4495 mutex_lock(&cgroup_mutex);
cdcc136f 4496 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4497 while (!list_empty(&release_list)) {
4498 char *argv[3], *envp[3];
4499 int i;
e61734c5 4500 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4501 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4502 struct cgroup,
4503 release_list);
bd89aabc 4504 list_del_init(&cgrp->release_list);
cdcc136f 4505 raw_spin_unlock(&release_list_lock);
e61734c5 4506 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4507 if (!pathbuf)
4508 goto continue_free;
e61734c5
TH
4509 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4510 if (!path)
e788e066
PM
4511 goto continue_free;
4512 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4513 if (!agentbuf)
4514 goto continue_free;
81a6a5cd
PM
4515
4516 i = 0;
e788e066 4517 argv[i++] = agentbuf;
e61734c5 4518 argv[i++] = path;
81a6a5cd
PM
4519 argv[i] = NULL;
4520
4521 i = 0;
4522 /* minimal command environment */
4523 envp[i++] = "HOME=/";
4524 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4525 envp[i] = NULL;
4526
4527 /* Drop the lock while we invoke the usermode helper,
4528 * since the exec could involve hitting disk and hence
4529 * be a slow process */
4530 mutex_unlock(&cgroup_mutex);
4531 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4532 mutex_lock(&cgroup_mutex);
e788e066
PM
4533 continue_free:
4534 kfree(pathbuf);
4535 kfree(agentbuf);
cdcc136f 4536 raw_spin_lock(&release_list_lock);
81a6a5cd 4537 }
cdcc136f 4538 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4539 mutex_unlock(&cgroup_mutex);
4540}
8bab8dde
PM
4541
4542static int __init cgroup_disable(char *str)
4543{
30159ec7 4544 struct cgroup_subsys *ss;
8bab8dde 4545 char *token;
30159ec7 4546 int i;
8bab8dde
PM
4547
4548 while ((token = strsep(&str, ",")) != NULL) {
4549 if (!*token)
4550 continue;
be45c900 4551
3ed80a62 4552 for_each_subsys(ss, i) {
8bab8dde
PM
4553 if (!strcmp(token, ss->name)) {
4554 ss->disabled = 1;
4555 printk(KERN_INFO "Disabling %s control group"
4556 " subsystem\n", ss->name);
4557 break;
4558 }
4559 }
4560 }
4561 return 1;
4562}
4563__setup("cgroup_disable=", cgroup_disable);
38460b48 4564
b77d7b60 4565/**
5a17f543 4566 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4567 * @dentry: directory dentry of interest
4568 * @ss: subsystem of interest
b77d7b60 4569 *
5a17f543
TH
4570 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4571 * to get the corresponding css and return it. If such css doesn't exist
4572 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4573 */
5a17f543
TH
4574struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4575 struct cgroup_subsys *ss)
e5d1367f 4576{
2bd59d48
TH
4577 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4578 struct cgroup_subsys_state *css = NULL;
e5d1367f 4579 struct cgroup *cgrp;
b77d7b60 4580
35cf0836 4581 /* is @dentry a cgroup dir? */
2bd59d48
TH
4582 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4583 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4584 return ERR_PTR(-EBADF);
4585
5a17f543
TH
4586 rcu_read_lock();
4587
2bd59d48
TH
4588 /*
4589 * This path doesn't originate from kernfs and @kn could already
4590 * have been or be removed at any point. @kn->priv is RCU
4591 * protected for this access. See destroy_locked() for details.
4592 */
4593 cgrp = rcu_dereference(kn->priv);
4594 if (cgrp)
4595 css = cgroup_css(cgrp, ss);
5a17f543
TH
4596
4597 if (!css || !css_tryget(css))
4598 css = ERR_PTR(-ENOENT);
4599
4600 rcu_read_unlock();
4601 return css;
e5d1367f 4602}
e5d1367f 4603
1cb650b9
LZ
4604/**
4605 * css_from_id - lookup css by id
4606 * @id: the cgroup id
4607 * @ss: cgroup subsys to be looked into
4608 *
4609 * Returns the css if there's valid one with @id, otherwise returns NULL.
4610 * Should be called under rcu_read_lock().
4611 */
4612struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4613{
4614 struct cgroup *cgrp;
4615
ace2bee8 4616 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4617
4618 cgrp = idr_find(&ss->root->cgroup_idr, id);
4619 if (cgrp)
d1625964 4620 return cgroup_css(cgrp, ss);
1cb650b9 4621 return NULL;
e5d1367f
SE
4622}
4623
fe693435 4624#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4625static struct cgroup_subsys_state *
4626debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4627{
4628 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4629
4630 if (!css)
4631 return ERR_PTR(-ENOMEM);
4632
4633 return css;
4634}
4635
eb95419b 4636static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4637{
eb95419b 4638 kfree(css);
fe693435
PM
4639}
4640
182446d0
TH
4641static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4642 struct cftype *cft)
fe693435 4643{
182446d0 4644 return cgroup_task_count(css->cgroup);
fe693435
PM
4645}
4646
182446d0
TH
4647static u64 current_css_set_read(struct cgroup_subsys_state *css,
4648 struct cftype *cft)
fe693435
PM
4649{
4650 return (u64)(unsigned long)current->cgroups;
4651}
4652
182446d0 4653static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4654 struct cftype *cft)
fe693435
PM
4655{
4656 u64 count;
4657
4658 rcu_read_lock();
a8ad805c 4659 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4660 rcu_read_unlock();
4661 return count;
4662}
4663
2da8ca82 4664static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4665{
69d0206c 4666 struct cgrp_cset_link *link;
5abb8855 4667 struct css_set *cset;
e61734c5
TH
4668 char *name_buf;
4669
4670 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4671 if (!name_buf)
4672 return -ENOMEM;
7717f7ba
PM
4673
4674 read_lock(&css_set_lock);
4675 rcu_read_lock();
5abb8855 4676 cset = rcu_dereference(current->cgroups);
69d0206c 4677 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4678 struct cgroup *c = link->cgrp;
59f5296b
TH
4679 const char *name = "?";
4680
e61734c5
TH
4681 if (c != cgroup_dummy_top) {
4682 cgroup_name(c, name_buf, NAME_MAX + 1);
4683 name = name_buf;
4684 }
7717f7ba 4685
2c6ab6d2
PM
4686 seq_printf(seq, "Root %d group %s\n",
4687 c->root->hierarchy_id, name);
7717f7ba
PM
4688 }
4689 rcu_read_unlock();
4690 read_unlock(&css_set_lock);
e61734c5 4691 kfree(name_buf);
7717f7ba
PM
4692 return 0;
4693}
4694
4695#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4696static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4697{
2da8ca82 4698 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4699 struct cgrp_cset_link *link;
7717f7ba
PM
4700
4701 read_lock(&css_set_lock);
182446d0 4702 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4703 struct css_set *cset = link->cset;
7717f7ba
PM
4704 struct task_struct *task;
4705 int count = 0;
5abb8855
TH
4706 seq_printf(seq, "css_set %p\n", cset);
4707 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4708 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4709 seq_puts(seq, " ...\n");
4710 break;
4711 } else {
4712 seq_printf(seq, " task %d\n",
4713 task_pid_vnr(task));
4714 }
4715 }
4716 }
4717 read_unlock(&css_set_lock);
4718 return 0;
4719}
4720
182446d0 4721static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4722{
182446d0 4723 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4724}
4725
4726static struct cftype debug_files[] = {
fe693435
PM
4727 {
4728 .name = "taskcount",
4729 .read_u64 = debug_taskcount_read,
4730 },
4731
4732 {
4733 .name = "current_css_set",
4734 .read_u64 = current_css_set_read,
4735 },
4736
4737 {
4738 .name = "current_css_set_refcount",
4739 .read_u64 = current_css_set_refcount_read,
4740 },
4741
7717f7ba
PM
4742 {
4743 .name = "current_css_set_cg_links",
2da8ca82 4744 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4745 },
4746
4747 {
4748 .name = "cgroup_css_links",
2da8ca82 4749 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4750 },
4751
fe693435
PM
4752 {
4753 .name = "releasable",
4754 .read_u64 = releasable_read,
4755 },
fe693435 4756
4baf6e33
TH
4757 { } /* terminate */
4758};
fe693435 4759
073219e9 4760struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4761 .css_alloc = debug_css_alloc,
4762 .css_free = debug_css_free,
4baf6e33 4763 .base_cftypes = debug_files,
fe693435
PM
4764};
4765#endif /* CONFIG_CGROUP_DEBUG */