sched, cgroup: replace signal_struct->group_rwsem with a global percpu_rwsem
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
ddbcc7e8 142/*
3dd06ffa 143 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
ddbcc7e8 146 */
a2dd4247 147struct cgroup_root cgrp_dfl_root;
d0ec4230 148EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 149
a2dd4247
TH
150/*
151 * The default hierarchy always exists but is hidden until mounted for the
152 * first time. This is for backward compatibility.
153 */
154static bool cgrp_dfl_root_visible;
ddbcc7e8 155
a8ddc821
TH
156/*
157 * Set by the boot param of the same name and makes subsystems with NULL
158 * ->dfl_files to use ->legacy_files on the default hierarchy.
159 */
160static bool cgroup_legacy_files_on_dfl;
161
5533e011 162/* some controllers are not supported in the default hierarchy */
8ab456ac 163static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 164
ddbcc7e8
PM
165/* The list of hierarchy roots */
166
9871bf95
TH
167static LIST_HEAD(cgroup_roots);
168static int cgroup_root_count;
ddbcc7e8 169
3417ae1f 170/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 171static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 172
794611a1 173/*
0cb51d71
TH
174 * Assign a monotonically increasing serial number to csses. It guarantees
175 * cgroups with bigger numbers are newer than those with smaller numbers.
176 * Also, as csses are always appended to the parent's ->children list, it
177 * guarantees that sibling csses are always sorted in the ascending serial
178 * number order on the list. Protected by cgroup_mutex.
794611a1 179 */
0cb51d71 180static u64 css_serial_nr_next = 1;
794611a1 181
cb4a3167
AS
182/*
183 * These bitmask flags indicate whether tasks in the fork and exit paths have
184 * fork/exit handlers to call. This avoids us having to do extra work in the
185 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 186 */
cb4a3167
AS
187static unsigned long have_fork_callback __read_mostly;
188static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 189
7e47682e
AS
190/* Ditto for the can_fork callback. */
191static unsigned long have_canfork_callback __read_mostly;
192
a14c6874
TH
193static struct cftype cgroup_dfl_base_files[];
194static struct cftype cgroup_legacy_base_files[];
628f7cd4 195
3dd06ffa 196static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 197 unsigned long ss_mask);
42809dd4 198static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
199static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
200 bool visible);
9d755d33 201static void css_release(struct percpu_ref *ref);
f8f22e53 202static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
203static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
204 bool is_add);
42809dd4 205
6fa4918d
TH
206/* IDR wrappers which synchronize using cgroup_idr_lock */
207static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
208 gfp_t gfp_mask)
209{
210 int ret;
211
212 idr_preload(gfp_mask);
54504e97 213 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 214 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 215 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
216 idr_preload_end();
217 return ret;
218}
219
220static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
221{
222 void *ret;
223
54504e97 224 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 225 ret = idr_replace(idr, ptr, id);
54504e97 226 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
227 return ret;
228}
229
230static void cgroup_idr_remove(struct idr *idr, int id)
231{
54504e97 232 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 233 idr_remove(idr, id);
54504e97 234 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
235}
236
d51f39b0
TH
237static struct cgroup *cgroup_parent(struct cgroup *cgrp)
238{
239 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
240
241 if (parent_css)
242 return container_of(parent_css, struct cgroup, self);
243 return NULL;
244}
245
95109b62
TH
246/**
247 * cgroup_css - obtain a cgroup's css for the specified subsystem
248 * @cgrp: the cgroup of interest
9d800df1 249 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 250 *
ca8bdcaf
TH
251 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
252 * function must be called either under cgroup_mutex or rcu_read_lock() and
253 * the caller is responsible for pinning the returned css if it wants to
254 * keep accessing it outside the said locks. This function may return
255 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
256 */
257static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 258 struct cgroup_subsys *ss)
95109b62 259{
ca8bdcaf 260 if (ss)
aec25020 261 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 262 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 263 else
9d800df1 264 return &cgrp->self;
95109b62 265}
42809dd4 266
aec3dfcb
TH
267/**
268 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
269 * @cgrp: the cgroup of interest
9d800df1 270 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 271 *
d0f702e6 272 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
273 * as the matching css of the nearest ancestor including self which has @ss
274 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
275 * function is guaranteed to return non-NULL css.
276 */
277static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
278 struct cgroup_subsys *ss)
279{
280 lockdep_assert_held(&cgroup_mutex);
281
282 if (!ss)
9d800df1 283 return &cgrp->self;
aec3dfcb
TH
284
285 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
286 return NULL;
287
eeecbd19
TH
288 /*
289 * This function is used while updating css associations and thus
290 * can't test the csses directly. Use ->child_subsys_mask.
291 */
d51f39b0
TH
292 while (cgroup_parent(cgrp) &&
293 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
294 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
295
296 return cgroup_css(cgrp, ss);
95109b62 297}
42809dd4 298
eeecbd19
TH
299/**
300 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
301 * @cgrp: the cgroup of interest
302 * @ss: the subsystem of interest
303 *
304 * Find and get the effective css of @cgrp for @ss. The effective css is
305 * defined as the matching css of the nearest ancestor including self which
306 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
307 * the root css is returned, so this function always returns a valid css.
308 * The returned css must be put using css_put().
309 */
310struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
311 struct cgroup_subsys *ss)
312{
313 struct cgroup_subsys_state *css;
314
315 rcu_read_lock();
316
317 do {
318 css = cgroup_css(cgrp, ss);
319
320 if (css && css_tryget_online(css))
321 goto out_unlock;
322 cgrp = cgroup_parent(cgrp);
323 } while (cgrp);
324
325 css = init_css_set.subsys[ss->id];
326 css_get(css);
327out_unlock:
328 rcu_read_unlock();
329 return css;
330}
331
ddbcc7e8 332/* convenient tests for these bits */
54766d4a 333static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 334{
184faf32 335 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
336}
337
b4168640 338struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 339{
2bd59d48 340 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 341 struct cftype *cft = of_cft(of);
2bd59d48
TH
342
343 /*
344 * This is open and unprotected implementation of cgroup_css().
345 * seq_css() is only called from a kernfs file operation which has
346 * an active reference on the file. Because all the subsystem
347 * files are drained before a css is disassociated with a cgroup,
348 * the matching css from the cgroup's subsys table is guaranteed to
349 * be and stay valid until the enclosing operation is complete.
350 */
351 if (cft->ss)
352 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
353 else
9d800df1 354 return &cgrp->self;
59f5296b 355}
b4168640 356EXPORT_SYMBOL_GPL(of_css);
59f5296b 357
78574cf9
LZ
358/**
359 * cgroup_is_descendant - test ancestry
360 * @cgrp: the cgroup to be tested
361 * @ancestor: possible ancestor of @cgrp
362 *
363 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
364 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
365 * and @ancestor are accessible.
366 */
367bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
368{
369 while (cgrp) {
370 if (cgrp == ancestor)
371 return true;
d51f39b0 372 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
373 }
374 return false;
375}
ddbcc7e8 376
e9685a03 377static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 378{
bd89aabc 379 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
380}
381
1c6727af
TH
382/**
383 * for_each_css - iterate all css's of a cgroup
384 * @css: the iteration cursor
385 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
386 * @cgrp: the target cgroup to iterate css's of
387 *
aec3dfcb 388 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
389 */
390#define for_each_css(css, ssid, cgrp) \
391 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
392 if (!((css) = rcu_dereference_check( \
393 (cgrp)->subsys[(ssid)], \
394 lockdep_is_held(&cgroup_mutex)))) { } \
395 else
396
aec3dfcb
TH
397/**
398 * for_each_e_css - iterate all effective css's of a cgroup
399 * @css: the iteration cursor
400 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
401 * @cgrp: the target cgroup to iterate css's of
402 *
403 * Should be called under cgroup_[tree_]mutex.
404 */
405#define for_each_e_css(css, ssid, cgrp) \
406 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
407 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
408 ; \
409 else
410
30159ec7 411/**
3ed80a62 412 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 413 * @ss: the iteration cursor
780cd8b3 414 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 415 */
780cd8b3 416#define for_each_subsys(ss, ssid) \
3ed80a62
TH
417 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
418 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 419
cb4a3167
AS
420/**
421 * for_each_subsys_which - filter for_each_subsys with a bitmask
422 * @ss: the iteration cursor
423 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
424 * @ss_maskp: a pointer to the bitmask
425 *
426 * The block will only run for cases where the ssid-th bit (1 << ssid) of
427 * mask is set to 1.
428 */
429#define for_each_subsys_which(ss, ssid, ss_maskp) \
430 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 431 (ssid) = 0; \
cb4a3167
AS
432 else \
433 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
434 if (((ss) = cgroup_subsys[ssid]) && false) \
435 break; \
436 else
437
985ed670
TH
438/* iterate across the hierarchies */
439#define for_each_root(root) \
5549c497 440 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 441
f8f22e53
TH
442/* iterate over child cgrps, lock should be held throughout iteration */
443#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 444 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 445 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
446 cgroup_is_dead(child); })) \
447 ; \
448 else
7ae1bad9 449
81a6a5cd 450static void cgroup_release_agent(struct work_struct *work);
bd89aabc 451static void check_for_release(struct cgroup *cgrp);
81a6a5cd 452
69d0206c
TH
453/*
454 * A cgroup can be associated with multiple css_sets as different tasks may
455 * belong to different cgroups on different hierarchies. In the other
456 * direction, a css_set is naturally associated with multiple cgroups.
457 * This M:N relationship is represented by the following link structure
458 * which exists for each association and allows traversing the associations
459 * from both sides.
460 */
461struct cgrp_cset_link {
462 /* the cgroup and css_set this link associates */
463 struct cgroup *cgrp;
464 struct css_set *cset;
465
466 /* list of cgrp_cset_links anchored at cgrp->cset_links */
467 struct list_head cset_link;
468
469 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
470 struct list_head cgrp_link;
817929ec
PM
471};
472
172a2c06
TH
473/*
474 * The default css_set - used by init and its children prior to any
817929ec
PM
475 * hierarchies being mounted. It contains a pointer to the root state
476 * for each subsystem. Also used to anchor the list of css_sets. Not
477 * reference-counted, to improve performance when child cgroups
478 * haven't been created.
479 */
5024ae29 480struct css_set init_css_set = {
172a2c06
TH
481 .refcount = ATOMIC_INIT(1),
482 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
483 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
484 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
485 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
486 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
487};
817929ec 488
172a2c06 489static int css_set_count = 1; /* 1 for init_css_set */
817929ec 490
842b597e
TH
491/**
492 * cgroup_update_populated - updated populated count of a cgroup
493 * @cgrp: the target cgroup
494 * @populated: inc or dec populated count
495 *
496 * @cgrp is either getting the first task (css_set) or losing the last.
497 * Update @cgrp->populated_cnt accordingly. The count is propagated
498 * towards root so that a given cgroup's populated_cnt is zero iff the
499 * cgroup and all its descendants are empty.
500 *
501 * @cgrp's interface file "cgroup.populated" is zero if
502 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
503 * changes from or to zero, userland is notified that the content of the
504 * interface file has changed. This can be used to detect when @cgrp and
505 * its descendants become populated or empty.
506 */
507static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
508{
509 lockdep_assert_held(&css_set_rwsem);
510
511 do {
512 bool trigger;
513
514 if (populated)
515 trigger = !cgrp->populated_cnt++;
516 else
517 trigger = !--cgrp->populated_cnt;
518
519 if (!trigger)
520 break;
521
522 if (cgrp->populated_kn)
523 kernfs_notify(cgrp->populated_kn);
d51f39b0 524 cgrp = cgroup_parent(cgrp);
842b597e
TH
525 } while (cgrp);
526}
527
7717f7ba
PM
528/*
529 * hash table for cgroup groups. This improves the performance to find
530 * an existing css_set. This hash doesn't (currently) take into
531 * account cgroups in empty hierarchies.
532 */
472b1053 533#define CSS_SET_HASH_BITS 7
0ac801fe 534static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 535
0ac801fe 536static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 537{
0ac801fe 538 unsigned long key = 0UL;
30159ec7
TH
539 struct cgroup_subsys *ss;
540 int i;
472b1053 541
30159ec7 542 for_each_subsys(ss, i)
0ac801fe
LZ
543 key += (unsigned long)css[i];
544 key = (key >> 16) ^ key;
472b1053 545
0ac801fe 546 return key;
472b1053
LZ
547}
548
a25eb52e 549static void put_css_set_locked(struct css_set *cset)
b4f48b63 550{
69d0206c 551 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
552 struct cgroup_subsys *ss;
553 int ssid;
5abb8855 554
89c5509b
TH
555 lockdep_assert_held(&css_set_rwsem);
556
557 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 558 return;
81a6a5cd 559
2c6ab6d2 560 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
561 for_each_subsys(ss, ssid)
562 list_del(&cset->e_cset_node[ssid]);
5abb8855 563 hash_del(&cset->hlist);
2c6ab6d2
PM
564 css_set_count--;
565
69d0206c 566 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 567 struct cgroup *cgrp = link->cgrp;
5abb8855 568
69d0206c
TH
569 list_del(&link->cset_link);
570 list_del(&link->cgrp_link);
71b5707e 571
96d365e0 572 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
573 if (list_empty(&cgrp->cset_links)) {
574 cgroup_update_populated(cgrp, false);
a25eb52e 575 check_for_release(cgrp);
81a6a5cd 576 }
2c6ab6d2
PM
577
578 kfree(link);
81a6a5cd 579 }
2c6ab6d2 580
5abb8855 581 kfree_rcu(cset, rcu_head);
b4f48b63
PM
582}
583
a25eb52e 584static void put_css_set(struct css_set *cset)
89c5509b
TH
585{
586 /*
587 * Ensure that the refcount doesn't hit zero while any readers
588 * can see it. Similar to atomic_dec_and_lock(), but for an
589 * rwlock
590 */
591 if (atomic_add_unless(&cset->refcount, -1, 1))
592 return;
593
594 down_write(&css_set_rwsem);
a25eb52e 595 put_css_set_locked(cset);
89c5509b
TH
596 up_write(&css_set_rwsem);
597}
598
817929ec
PM
599/*
600 * refcounted get/put for css_set objects
601 */
5abb8855 602static inline void get_css_set(struct css_set *cset)
817929ec 603{
5abb8855 604 atomic_inc(&cset->refcount);
817929ec
PM
605}
606
b326f9d0 607/**
7717f7ba 608 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
609 * @cset: candidate css_set being tested
610 * @old_cset: existing css_set for a task
7717f7ba
PM
611 * @new_cgrp: cgroup that's being entered by the task
612 * @template: desired set of css pointers in css_set (pre-calculated)
613 *
6f4b7e63 614 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
615 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
616 */
5abb8855
TH
617static bool compare_css_sets(struct css_set *cset,
618 struct css_set *old_cset,
7717f7ba
PM
619 struct cgroup *new_cgrp,
620 struct cgroup_subsys_state *template[])
621{
622 struct list_head *l1, *l2;
623
aec3dfcb
TH
624 /*
625 * On the default hierarchy, there can be csets which are
626 * associated with the same set of cgroups but different csses.
627 * Let's first ensure that csses match.
628 */
629 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 630 return false;
7717f7ba
PM
631
632 /*
633 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
634 * different cgroups in hierarchies. As different cgroups may
635 * share the same effective css, this comparison is always
636 * necessary.
7717f7ba 637 */
69d0206c
TH
638 l1 = &cset->cgrp_links;
639 l2 = &old_cset->cgrp_links;
7717f7ba 640 while (1) {
69d0206c 641 struct cgrp_cset_link *link1, *link2;
5abb8855 642 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
643
644 l1 = l1->next;
645 l2 = l2->next;
646 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
647 if (l1 == &cset->cgrp_links) {
648 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
649 break;
650 } else {
69d0206c 651 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
652 }
653 /* Locate the cgroups associated with these links. */
69d0206c
TH
654 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
655 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
656 cgrp1 = link1->cgrp;
657 cgrp2 = link2->cgrp;
7717f7ba 658 /* Hierarchies should be linked in the same order. */
5abb8855 659 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
660
661 /*
662 * If this hierarchy is the hierarchy of the cgroup
663 * that's changing, then we need to check that this
664 * css_set points to the new cgroup; if it's any other
665 * hierarchy, then this css_set should point to the
666 * same cgroup as the old css_set.
667 */
5abb8855
TH
668 if (cgrp1->root == new_cgrp->root) {
669 if (cgrp1 != new_cgrp)
7717f7ba
PM
670 return false;
671 } else {
5abb8855 672 if (cgrp1 != cgrp2)
7717f7ba
PM
673 return false;
674 }
675 }
676 return true;
677}
678
b326f9d0
TH
679/**
680 * find_existing_css_set - init css array and find the matching css_set
681 * @old_cset: the css_set that we're using before the cgroup transition
682 * @cgrp: the cgroup that we're moving into
683 * @template: out param for the new set of csses, should be clear on entry
817929ec 684 */
5abb8855
TH
685static struct css_set *find_existing_css_set(struct css_set *old_cset,
686 struct cgroup *cgrp,
687 struct cgroup_subsys_state *template[])
b4f48b63 688{
3dd06ffa 689 struct cgroup_root *root = cgrp->root;
30159ec7 690 struct cgroup_subsys *ss;
5abb8855 691 struct css_set *cset;
0ac801fe 692 unsigned long key;
b326f9d0 693 int i;
817929ec 694
aae8aab4
BB
695 /*
696 * Build the set of subsystem state objects that we want to see in the
697 * new css_set. while subsystems can change globally, the entries here
698 * won't change, so no need for locking.
699 */
30159ec7 700 for_each_subsys(ss, i) {
f392e51c 701 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
702 /*
703 * @ss is in this hierarchy, so we want the
704 * effective css from @cgrp.
705 */
706 template[i] = cgroup_e_css(cgrp, ss);
817929ec 707 } else {
aec3dfcb
TH
708 /*
709 * @ss is not in this hierarchy, so we don't want
710 * to change the css.
711 */
5abb8855 712 template[i] = old_cset->subsys[i];
817929ec
PM
713 }
714 }
715
0ac801fe 716 key = css_set_hash(template);
5abb8855
TH
717 hash_for_each_possible(css_set_table, cset, hlist, key) {
718 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
719 continue;
720
721 /* This css_set matches what we need */
5abb8855 722 return cset;
472b1053 723 }
817929ec
PM
724
725 /* No existing cgroup group matched */
726 return NULL;
727}
728
69d0206c 729static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 730{
69d0206c 731 struct cgrp_cset_link *link, *tmp_link;
36553434 732
69d0206c
TH
733 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
734 list_del(&link->cset_link);
36553434
LZ
735 kfree(link);
736 }
737}
738
69d0206c
TH
739/**
740 * allocate_cgrp_cset_links - allocate cgrp_cset_links
741 * @count: the number of links to allocate
742 * @tmp_links: list_head the allocated links are put on
743 *
744 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
745 * through ->cset_link. Returns 0 on success or -errno.
817929ec 746 */
69d0206c 747static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 748{
69d0206c 749 struct cgrp_cset_link *link;
817929ec 750 int i;
69d0206c
TH
751
752 INIT_LIST_HEAD(tmp_links);
753
817929ec 754 for (i = 0; i < count; i++) {
f4f4be2b 755 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 756 if (!link) {
69d0206c 757 free_cgrp_cset_links(tmp_links);
817929ec
PM
758 return -ENOMEM;
759 }
69d0206c 760 list_add(&link->cset_link, tmp_links);
817929ec
PM
761 }
762 return 0;
763}
764
c12f65d4
LZ
765/**
766 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 767 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 768 * @cset: the css_set to be linked
c12f65d4
LZ
769 * @cgrp: the destination cgroup
770 */
69d0206c
TH
771static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
772 struct cgroup *cgrp)
c12f65d4 773{
69d0206c 774 struct cgrp_cset_link *link;
c12f65d4 775
69d0206c 776 BUG_ON(list_empty(tmp_links));
6803c006
TH
777
778 if (cgroup_on_dfl(cgrp))
779 cset->dfl_cgrp = cgrp;
780
69d0206c
TH
781 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
782 link->cset = cset;
7717f7ba 783 link->cgrp = cgrp;
842b597e
TH
784
785 if (list_empty(&cgrp->cset_links))
786 cgroup_update_populated(cgrp, true);
69d0206c 787 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 788
7717f7ba
PM
789 /*
790 * Always add links to the tail of the list so that the list
791 * is sorted by order of hierarchy creation
792 */
69d0206c 793 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
794}
795
b326f9d0
TH
796/**
797 * find_css_set - return a new css_set with one cgroup updated
798 * @old_cset: the baseline css_set
799 * @cgrp: the cgroup to be updated
800 *
801 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
802 * substituted into the appropriate hierarchy.
817929ec 803 */
5abb8855
TH
804static struct css_set *find_css_set(struct css_set *old_cset,
805 struct cgroup *cgrp)
817929ec 806{
b326f9d0 807 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 808 struct css_set *cset;
69d0206c
TH
809 struct list_head tmp_links;
810 struct cgrp_cset_link *link;
2d8f243a 811 struct cgroup_subsys *ss;
0ac801fe 812 unsigned long key;
2d8f243a 813 int ssid;
472b1053 814
b326f9d0
TH
815 lockdep_assert_held(&cgroup_mutex);
816
817929ec
PM
817 /* First see if we already have a cgroup group that matches
818 * the desired set */
96d365e0 819 down_read(&css_set_rwsem);
5abb8855
TH
820 cset = find_existing_css_set(old_cset, cgrp, template);
821 if (cset)
822 get_css_set(cset);
96d365e0 823 up_read(&css_set_rwsem);
817929ec 824
5abb8855
TH
825 if (cset)
826 return cset;
817929ec 827
f4f4be2b 828 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 829 if (!cset)
817929ec
PM
830 return NULL;
831
69d0206c 832 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 833 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 834 kfree(cset);
817929ec
PM
835 return NULL;
836 }
837
5abb8855 838 atomic_set(&cset->refcount, 1);
69d0206c 839 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 840 INIT_LIST_HEAD(&cset->tasks);
c7561128 841 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 842 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 843 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 844 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
845
846 /* Copy the set of subsystem state objects generated in
847 * find_existing_css_set() */
5abb8855 848 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 849
96d365e0 850 down_write(&css_set_rwsem);
817929ec 851 /* Add reference counts and links from the new css_set. */
69d0206c 852 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 853 struct cgroup *c = link->cgrp;
69d0206c 854
7717f7ba
PM
855 if (c->root == cgrp->root)
856 c = cgrp;
69d0206c 857 link_css_set(&tmp_links, cset, c);
7717f7ba 858 }
817929ec 859
69d0206c 860 BUG_ON(!list_empty(&tmp_links));
817929ec 861
817929ec 862 css_set_count++;
472b1053 863
2d8f243a 864 /* Add @cset to the hash table */
5abb8855
TH
865 key = css_set_hash(cset->subsys);
866 hash_add(css_set_table, &cset->hlist, key);
472b1053 867
2d8f243a
TH
868 for_each_subsys(ss, ssid)
869 list_add_tail(&cset->e_cset_node[ssid],
870 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
871
96d365e0 872 up_write(&css_set_rwsem);
817929ec 873
5abb8855 874 return cset;
b4f48b63
PM
875}
876
3dd06ffa 877static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 878{
3dd06ffa 879 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 880
3dd06ffa 881 return root_cgrp->root;
2bd59d48
TH
882}
883
3dd06ffa 884static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
885{
886 int id;
887
888 lockdep_assert_held(&cgroup_mutex);
889
985ed670 890 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
891 if (id < 0)
892 return id;
893
894 root->hierarchy_id = id;
895 return 0;
896}
897
3dd06ffa 898static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
899{
900 lockdep_assert_held(&cgroup_mutex);
901
902 if (root->hierarchy_id) {
903 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
904 root->hierarchy_id = 0;
905 }
906}
907
3dd06ffa 908static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
909{
910 if (root) {
d0f702e6 911 /* hierarchy ID should already have been released */
f2e85d57
TH
912 WARN_ON_ONCE(root->hierarchy_id);
913
914 idr_destroy(&root->cgroup_idr);
915 kfree(root);
916 }
917}
918
3dd06ffa 919static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 920{
3dd06ffa 921 struct cgroup *cgrp = &root->cgrp;
f2e85d57 922 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 923
2bd59d48 924 mutex_lock(&cgroup_mutex);
f2e85d57 925
776f02fa 926 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 927 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 928
f2e85d57 929 /* Rebind all subsystems back to the default hierarchy */
f392e51c 930 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 931
7717f7ba 932 /*
f2e85d57
TH
933 * Release all the links from cset_links to this hierarchy's
934 * root cgroup
7717f7ba 935 */
96d365e0 936 down_write(&css_set_rwsem);
f2e85d57
TH
937
938 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
939 list_del(&link->cset_link);
940 list_del(&link->cgrp_link);
941 kfree(link);
942 }
96d365e0 943 up_write(&css_set_rwsem);
f2e85d57
TH
944
945 if (!list_empty(&root->root_list)) {
946 list_del(&root->root_list);
947 cgroup_root_count--;
948 }
949
950 cgroup_exit_root_id(root);
951
952 mutex_unlock(&cgroup_mutex);
f2e85d57 953
2bd59d48 954 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
955 cgroup_free_root(root);
956}
957
ceb6a081
TH
958/* look up cgroup associated with given css_set on the specified hierarchy */
959static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 960 struct cgroup_root *root)
7717f7ba 961{
7717f7ba
PM
962 struct cgroup *res = NULL;
963
96d365e0
TH
964 lockdep_assert_held(&cgroup_mutex);
965 lockdep_assert_held(&css_set_rwsem);
966
5abb8855 967 if (cset == &init_css_set) {
3dd06ffa 968 res = &root->cgrp;
7717f7ba 969 } else {
69d0206c
TH
970 struct cgrp_cset_link *link;
971
972 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 973 struct cgroup *c = link->cgrp;
69d0206c 974
7717f7ba
PM
975 if (c->root == root) {
976 res = c;
977 break;
978 }
979 }
980 }
96d365e0 981
7717f7ba
PM
982 BUG_ON(!res);
983 return res;
984}
985
ddbcc7e8 986/*
ceb6a081
TH
987 * Return the cgroup for "task" from the given hierarchy. Must be
988 * called with cgroup_mutex and css_set_rwsem held.
989 */
990static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 991 struct cgroup_root *root)
ceb6a081
TH
992{
993 /*
994 * No need to lock the task - since we hold cgroup_mutex the
995 * task can't change groups, so the only thing that can happen
996 * is that it exits and its css is set back to init_css_set.
997 */
998 return cset_cgroup_from_root(task_css_set(task), root);
999}
1000
ddbcc7e8 1001/*
ddbcc7e8
PM
1002 * A task must hold cgroup_mutex to modify cgroups.
1003 *
1004 * Any task can increment and decrement the count field without lock.
1005 * So in general, code holding cgroup_mutex can't rely on the count
1006 * field not changing. However, if the count goes to zero, then only
956db3ca 1007 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1008 * means that no tasks are currently attached, therefore there is no
1009 * way a task attached to that cgroup can fork (the other way to
1010 * increment the count). So code holding cgroup_mutex can safely
1011 * assume that if the count is zero, it will stay zero. Similarly, if
1012 * a task holds cgroup_mutex on a cgroup with zero count, it
1013 * knows that the cgroup won't be removed, as cgroup_rmdir()
1014 * needs that mutex.
1015 *
ddbcc7e8
PM
1016 * A cgroup can only be deleted if both its 'count' of using tasks
1017 * is zero, and its list of 'children' cgroups is empty. Since all
1018 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1019 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1020 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1021 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1022 *
1023 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1024 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1025 */
1026
8ab456ac 1027static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 1028static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1029static const struct file_operations proc_cgroupstats_operations;
a424316c 1030
8d7e6fb0
TH
1031static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1032 char *buf)
ddbcc7e8 1033{
3e1d2eed
TH
1034 struct cgroup_subsys *ss = cft->ss;
1035
8d7e6fb0
TH
1036 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1037 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1038 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1039 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1040 cft->name);
8d7e6fb0
TH
1041 else
1042 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1043 return buf;
ddbcc7e8
PM
1044}
1045
f2e85d57
TH
1046/**
1047 * cgroup_file_mode - deduce file mode of a control file
1048 * @cft: the control file in question
1049 *
1050 * returns cft->mode if ->mode is not 0
1051 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1052 * returns S_IRUGO if it has only a read handler
1053 * returns S_IWUSR if it has only a write hander
1054 */
1055static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1056{
f2e85d57 1057 umode_t mode = 0;
65dff759 1058
f2e85d57
TH
1059 if (cft->mode)
1060 return cft->mode;
1061
1062 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1063 mode |= S_IRUGO;
1064
6770c64e 1065 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1066 mode |= S_IWUSR;
1067
1068 return mode;
65dff759
LZ
1069}
1070
59f5296b 1071static void cgroup_get(struct cgroup *cgrp)
be445626 1072{
2bd59d48 1073 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1074 css_get(&cgrp->self);
be445626
LZ
1075}
1076
aa32362f
LZ
1077static bool cgroup_tryget(struct cgroup *cgrp)
1078{
1079 return css_tryget(&cgrp->self);
1080}
1081
59f5296b 1082static void cgroup_put(struct cgroup *cgrp)
be445626 1083{
9d755d33 1084 css_put(&cgrp->self);
be445626
LZ
1085}
1086
af0ba678 1087/**
0f060deb 1088 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1089 * @cgrp: the target cgroup
0f060deb 1090 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1091 *
1092 * On the default hierarchy, a subsystem may request other subsystems to be
1093 * enabled together through its ->depends_on mask. In such cases, more
1094 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1095 *
0f060deb
TH
1096 * This function calculates which subsystems need to be enabled if
1097 * @subtree_control is to be applied to @cgrp. The returned mask is always
1098 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1099 */
8ab456ac
AS
1100static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1101 unsigned long subtree_control)
667c2491 1102{
af0ba678 1103 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1104 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1105 struct cgroup_subsys *ss;
1106 int ssid;
1107
1108 lockdep_assert_held(&cgroup_mutex);
1109
0f060deb
TH
1110 if (!cgroup_on_dfl(cgrp))
1111 return cur_ss_mask;
af0ba678
TH
1112
1113 while (true) {
8ab456ac 1114 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1115
a966a4ed
AS
1116 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1117 new_ss_mask |= ss->depends_on;
af0ba678
TH
1118
1119 /*
1120 * Mask out subsystems which aren't available. This can
1121 * happen only if some depended-upon subsystems were bound
1122 * to non-default hierarchies.
1123 */
1124 if (parent)
1125 new_ss_mask &= parent->child_subsys_mask;
1126 else
1127 new_ss_mask &= cgrp->root->subsys_mask;
1128
1129 if (new_ss_mask == cur_ss_mask)
1130 break;
1131 cur_ss_mask = new_ss_mask;
1132 }
1133
0f060deb
TH
1134 return cur_ss_mask;
1135}
1136
1137/**
1138 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1139 * @cgrp: the target cgroup
1140 *
1141 * Update @cgrp->child_subsys_mask according to the current
1142 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1143 */
1144static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1145{
1146 cgrp->child_subsys_mask =
1147 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1148}
1149
a9746d8d
TH
1150/**
1151 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1152 * @kn: the kernfs_node being serviced
1153 *
1154 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1155 * the method finishes if locking succeeded. Note that once this function
1156 * returns the cgroup returned by cgroup_kn_lock_live() may become
1157 * inaccessible any time. If the caller intends to continue to access the
1158 * cgroup, it should pin it before invoking this function.
1159 */
1160static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1161{
a9746d8d
TH
1162 struct cgroup *cgrp;
1163
1164 if (kernfs_type(kn) == KERNFS_DIR)
1165 cgrp = kn->priv;
1166 else
1167 cgrp = kn->parent->priv;
1168
1169 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1170
1171 kernfs_unbreak_active_protection(kn);
1172 cgroup_put(cgrp);
ddbcc7e8
PM
1173}
1174
a9746d8d
TH
1175/**
1176 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1177 * @kn: the kernfs_node being serviced
1178 *
1179 * This helper is to be used by a cgroup kernfs method currently servicing
1180 * @kn. It breaks the active protection, performs cgroup locking and
1181 * verifies that the associated cgroup is alive. Returns the cgroup if
1182 * alive; otherwise, %NULL. A successful return should be undone by a
1183 * matching cgroup_kn_unlock() invocation.
1184 *
1185 * Any cgroup kernfs method implementation which requires locking the
1186 * associated cgroup should use this helper. It avoids nesting cgroup
1187 * locking under kernfs active protection and allows all kernfs operations
1188 * including self-removal.
1189 */
1190static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1191{
a9746d8d
TH
1192 struct cgroup *cgrp;
1193
1194 if (kernfs_type(kn) == KERNFS_DIR)
1195 cgrp = kn->priv;
1196 else
1197 cgrp = kn->parent->priv;
05ef1d7c 1198
2739d3cc 1199 /*
01f6474c 1200 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1201 * active_ref. cgroup liveliness check alone provides enough
1202 * protection against removal. Ensure @cgrp stays accessible and
1203 * break the active_ref protection.
2739d3cc 1204 */
aa32362f
LZ
1205 if (!cgroup_tryget(cgrp))
1206 return NULL;
a9746d8d
TH
1207 kernfs_break_active_protection(kn);
1208
2bd59d48 1209 mutex_lock(&cgroup_mutex);
05ef1d7c 1210
a9746d8d
TH
1211 if (!cgroup_is_dead(cgrp))
1212 return cgrp;
1213
1214 cgroup_kn_unlock(kn);
1215 return NULL;
ddbcc7e8 1216}
05ef1d7c 1217
2739d3cc 1218static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1219{
2bd59d48 1220 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1221
01f6474c 1222 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1223 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1224}
1225
13af07df 1226/**
628f7cd4 1227 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1228 * @cgrp: target cgroup
13af07df
AR
1229 * @subsys_mask: mask of the subsystem ids whose files should be removed
1230 */
8ab456ac 1231static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1232{
13af07df 1233 struct cgroup_subsys *ss;
b420ba7d 1234 int i;
05ef1d7c 1235
b420ba7d 1236 for_each_subsys(ss, i) {
0adb0704 1237 struct cftype *cfts;
b420ba7d 1238
69dfa00c 1239 if (!(subsys_mask & (1 << i)))
13af07df 1240 continue;
0adb0704
TH
1241 list_for_each_entry(cfts, &ss->cfts, node)
1242 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1243 }
ddbcc7e8
PM
1244}
1245
8ab456ac
AS
1246static int rebind_subsystems(struct cgroup_root *dst_root,
1247 unsigned long ss_mask)
ddbcc7e8 1248{
30159ec7 1249 struct cgroup_subsys *ss;
8ab456ac 1250 unsigned long tmp_ss_mask;
2d8f243a 1251 int ssid, i, ret;
ddbcc7e8 1252
ace2bee8 1253 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1254
a966a4ed 1255 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1256 /* if @ss has non-root csses attached to it, can't move */
1257 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1258 return -EBUSY;
1d5be6b2 1259
5df36032 1260 /* can't move between two non-dummy roots either */
7fd8c565 1261 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1262 return -EBUSY;
ddbcc7e8
PM
1263 }
1264
5533e011
TH
1265 /* skip creating root files on dfl_root for inhibited subsystems */
1266 tmp_ss_mask = ss_mask;
1267 if (dst_root == &cgrp_dfl_root)
1268 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1269
1270 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1271 if (ret) {
1272 if (dst_root != &cgrp_dfl_root)
5df36032 1273 return ret;
ddbcc7e8 1274
a2dd4247
TH
1275 /*
1276 * Rebinding back to the default root is not allowed to
1277 * fail. Using both default and non-default roots should
1278 * be rare. Moving subsystems back and forth even more so.
1279 * Just warn about it and continue.
1280 */
1281 if (cgrp_dfl_root_visible) {
8ab456ac 1282 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
a2a1f9ea 1283 ret, ss_mask);
ed3d261b 1284 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1285 }
5df36032 1286 }
3126121f
TH
1287
1288 /*
1289 * Nothing can fail from this point on. Remove files for the
1290 * removed subsystems and rebind each subsystem.
1291 */
a966a4ed
AS
1292 for_each_subsys_which(ss, ssid, &ss_mask)
1293 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1294
a966a4ed 1295 for_each_subsys_which(ss, ssid, &ss_mask) {
3dd06ffa 1296 struct cgroup_root *src_root;
5df36032 1297 struct cgroup_subsys_state *css;
2d8f243a 1298 struct css_set *cset;
a8a648c4 1299
5df36032 1300 src_root = ss->root;
3dd06ffa 1301 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1302
3dd06ffa 1303 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1304
3dd06ffa
TH
1305 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1306 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1307 ss->root = dst_root;
3dd06ffa 1308 css->cgroup = &dst_root->cgrp;
73e80ed8 1309
2d8f243a
TH
1310 down_write(&css_set_rwsem);
1311 hash_for_each(css_set_table, i, cset, hlist)
1312 list_move_tail(&cset->e_cset_node[ss->id],
1313 &dst_root->cgrp.e_csets[ss->id]);
1314 up_write(&css_set_rwsem);
1315
f392e51c 1316 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1317 src_root->cgrp.subtree_control &= ~(1 << ssid);
1318 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1319
bd53d617 1320 /* default hierarchy doesn't enable controllers by default */
f392e51c 1321 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1322 if (dst_root != &cgrp_dfl_root) {
1323 dst_root->cgrp.subtree_control |= 1 << ssid;
1324 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1325 }
a8a648c4 1326
5df36032
TH
1327 if (ss->bind)
1328 ss->bind(css);
ddbcc7e8 1329 }
ddbcc7e8 1330
a2dd4247 1331 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1332 return 0;
1333}
1334
2bd59d48
TH
1335static int cgroup_show_options(struct seq_file *seq,
1336 struct kernfs_root *kf_root)
ddbcc7e8 1337{
3dd06ffa 1338 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1339 struct cgroup_subsys *ss;
b85d2040 1340 int ssid;
ddbcc7e8 1341
d98817d4
TH
1342 if (root != &cgrp_dfl_root)
1343 for_each_subsys(ss, ssid)
1344 if (root->subsys_mask & (1 << ssid))
61e57c0c 1345 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1346 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1347 seq_puts(seq, ",noprefix");
93438629 1348 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1349 seq_puts(seq, ",xattr");
69e943b7
TH
1350
1351 spin_lock(&release_agent_path_lock);
81a6a5cd 1352 if (strlen(root->release_agent_path))
a068acf2
KC
1353 seq_show_option(seq, "release_agent",
1354 root->release_agent_path);
69e943b7
TH
1355 spin_unlock(&release_agent_path_lock);
1356
3dd06ffa 1357 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1358 seq_puts(seq, ",clone_children");
c6d57f33 1359 if (strlen(root->name))
a068acf2 1360 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1361 return 0;
1362}
1363
1364struct cgroup_sb_opts {
8ab456ac 1365 unsigned long subsys_mask;
69dfa00c 1366 unsigned int flags;
81a6a5cd 1367 char *release_agent;
2260e7fc 1368 bool cpuset_clone_children;
c6d57f33 1369 char *name;
2c6ab6d2
PM
1370 /* User explicitly requested empty subsystem */
1371 bool none;
ddbcc7e8
PM
1372};
1373
cf5d5941 1374static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1375{
32a8cf23
DL
1376 char *token, *o = data;
1377 bool all_ss = false, one_ss = false;
8ab456ac 1378 unsigned long mask = -1UL;
30159ec7 1379 struct cgroup_subsys *ss;
7b9a6ba5 1380 int nr_opts = 0;
30159ec7 1381 int i;
f9ab5b5b
LZ
1382
1383#ifdef CONFIG_CPUSETS
69dfa00c 1384 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1385#endif
ddbcc7e8 1386
c6d57f33 1387 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1388
1389 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1390 nr_opts++;
1391
ddbcc7e8
PM
1392 if (!*token)
1393 return -EINVAL;
32a8cf23 1394 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1395 /* Explicitly have no subsystems */
1396 opts->none = true;
32a8cf23
DL
1397 continue;
1398 }
1399 if (!strcmp(token, "all")) {
1400 /* Mutually exclusive option 'all' + subsystem name */
1401 if (one_ss)
1402 return -EINVAL;
1403 all_ss = true;
1404 continue;
1405 }
873fe09e
TH
1406 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1407 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1408 continue;
1409 }
32a8cf23 1410 if (!strcmp(token, "noprefix")) {
93438629 1411 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1412 continue;
1413 }
1414 if (!strcmp(token, "clone_children")) {
2260e7fc 1415 opts->cpuset_clone_children = true;
32a8cf23
DL
1416 continue;
1417 }
03b1cde6 1418 if (!strcmp(token, "xattr")) {
93438629 1419 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1420 continue;
1421 }
32a8cf23 1422 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1423 /* Specifying two release agents is forbidden */
1424 if (opts->release_agent)
1425 return -EINVAL;
c6d57f33 1426 opts->release_agent =
e400c285 1427 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1428 if (!opts->release_agent)
1429 return -ENOMEM;
32a8cf23
DL
1430 continue;
1431 }
1432 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1433 const char *name = token + 5;
1434 /* Can't specify an empty name */
1435 if (!strlen(name))
1436 return -EINVAL;
1437 /* Must match [\w.-]+ */
1438 for (i = 0; i < strlen(name); i++) {
1439 char c = name[i];
1440 if (isalnum(c))
1441 continue;
1442 if ((c == '.') || (c == '-') || (c == '_'))
1443 continue;
1444 return -EINVAL;
1445 }
1446 /* Specifying two names is forbidden */
1447 if (opts->name)
1448 return -EINVAL;
1449 opts->name = kstrndup(name,
e400c285 1450 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1451 GFP_KERNEL);
1452 if (!opts->name)
1453 return -ENOMEM;
32a8cf23
DL
1454
1455 continue;
1456 }
1457
30159ec7 1458 for_each_subsys(ss, i) {
3e1d2eed 1459 if (strcmp(token, ss->legacy_name))
32a8cf23
DL
1460 continue;
1461 if (ss->disabled)
1462 continue;
1463
1464 /* Mutually exclusive option 'all' + subsystem name */
1465 if (all_ss)
1466 return -EINVAL;
69dfa00c 1467 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1468 one_ss = true;
1469
1470 break;
1471 }
1472 if (i == CGROUP_SUBSYS_COUNT)
1473 return -ENOENT;
1474 }
1475
873fe09e 1476 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1477 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1478 if (nr_opts != 1) {
1479 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1480 return -EINVAL;
1481 }
7b9a6ba5 1482 return 0;
873fe09e
TH
1483 }
1484
7b9a6ba5
TH
1485 /*
1486 * If the 'all' option was specified select all the subsystems,
1487 * otherwise if 'none', 'name=' and a subsystem name options were
1488 * not specified, let's default to 'all'
1489 */
1490 if (all_ss || (!one_ss && !opts->none && !opts->name))
1491 for_each_subsys(ss, i)
1492 if (!ss->disabled)
1493 opts->subsys_mask |= (1 << i);
1494
1495 /*
1496 * We either have to specify by name or by subsystems. (So all
1497 * empty hierarchies must have a name).
1498 */
1499 if (!opts->subsys_mask && !opts->name)
1500 return -EINVAL;
1501
f9ab5b5b
LZ
1502 /*
1503 * Option noprefix was introduced just for backward compatibility
1504 * with the old cpuset, so we allow noprefix only if mounting just
1505 * the cpuset subsystem.
1506 */
93438629 1507 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1508 return -EINVAL;
1509
2c6ab6d2 1510 /* Can't specify "none" and some subsystems */
a1a71b45 1511 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1512 return -EINVAL;
1513
ddbcc7e8
PM
1514 return 0;
1515}
1516
2bd59d48 1517static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1518{
1519 int ret = 0;
3dd06ffa 1520 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1521 struct cgroup_sb_opts opts;
8ab456ac 1522 unsigned long added_mask, removed_mask;
ddbcc7e8 1523
aa6ec29b
TH
1524 if (root == &cgrp_dfl_root) {
1525 pr_err("remount is not allowed\n");
873fe09e
TH
1526 return -EINVAL;
1527 }
1528
ddbcc7e8
PM
1529 mutex_lock(&cgroup_mutex);
1530
1531 /* See what subsystems are wanted */
1532 ret = parse_cgroupfs_options(data, &opts);
1533 if (ret)
1534 goto out_unlock;
1535
f392e51c 1536 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1537 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1538 task_tgid_nr(current), current->comm);
8b5a5a9d 1539
f392e51c
TH
1540 added_mask = opts.subsys_mask & ~root->subsys_mask;
1541 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1542
cf5d5941 1543 /* Don't allow flags or name to change at remount */
7450e90b 1544 if ((opts.flags ^ root->flags) ||
cf5d5941 1545 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1546 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1547 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1548 ret = -EINVAL;
1549 goto out_unlock;
1550 }
1551
f172e67c 1552 /* remounting is not allowed for populated hierarchies */
d5c419b6 1553 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1554 ret = -EBUSY;
0670e08b 1555 goto out_unlock;
cf5d5941 1556 }
ddbcc7e8 1557
5df36032 1558 ret = rebind_subsystems(root, added_mask);
3126121f 1559 if (ret)
0670e08b 1560 goto out_unlock;
ddbcc7e8 1561
3dd06ffa 1562 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1563
69e943b7
TH
1564 if (opts.release_agent) {
1565 spin_lock(&release_agent_path_lock);
81a6a5cd 1566 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1567 spin_unlock(&release_agent_path_lock);
1568 }
ddbcc7e8 1569 out_unlock:
66bdc9cf 1570 kfree(opts.release_agent);
c6d57f33 1571 kfree(opts.name);
ddbcc7e8 1572 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1573 return ret;
1574}
1575
afeb0f9f
TH
1576/*
1577 * To reduce the fork() overhead for systems that are not actually using
1578 * their cgroups capability, we don't maintain the lists running through
1579 * each css_set to its tasks until we see the list actually used - in other
1580 * words after the first mount.
1581 */
1582static bool use_task_css_set_links __read_mostly;
1583
1584static void cgroup_enable_task_cg_lists(void)
1585{
1586 struct task_struct *p, *g;
1587
96d365e0 1588 down_write(&css_set_rwsem);
afeb0f9f
TH
1589
1590 if (use_task_css_set_links)
1591 goto out_unlock;
1592
1593 use_task_css_set_links = true;
1594
1595 /*
1596 * We need tasklist_lock because RCU is not safe against
1597 * while_each_thread(). Besides, a forking task that has passed
1598 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1599 * is not guaranteed to have its child immediately visible in the
1600 * tasklist if we walk through it with RCU.
1601 */
1602 read_lock(&tasklist_lock);
1603 do_each_thread(g, p) {
afeb0f9f
TH
1604 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1605 task_css_set(p) != &init_css_set);
1606
1607 /*
1608 * We should check if the process is exiting, otherwise
1609 * it will race with cgroup_exit() in that the list
1610 * entry won't be deleted though the process has exited.
f153ad11
TH
1611 * Do it while holding siglock so that we don't end up
1612 * racing against cgroup_exit().
afeb0f9f 1613 */
f153ad11 1614 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1615 if (!(p->flags & PF_EXITING)) {
1616 struct css_set *cset = task_css_set(p);
1617
1618 list_add(&p->cg_list, &cset->tasks);
1619 get_css_set(cset);
1620 }
f153ad11 1621 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1622 } while_each_thread(g, p);
1623 read_unlock(&tasklist_lock);
1624out_unlock:
96d365e0 1625 up_write(&css_set_rwsem);
afeb0f9f 1626}
ddbcc7e8 1627
cc31edce
PM
1628static void init_cgroup_housekeeping(struct cgroup *cgrp)
1629{
2d8f243a
TH
1630 struct cgroup_subsys *ss;
1631 int ssid;
1632
d5c419b6
TH
1633 INIT_LIST_HEAD(&cgrp->self.sibling);
1634 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1635 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1636 INIT_LIST_HEAD(&cgrp->pidlists);
1637 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1638 cgrp->self.cgroup = cgrp;
184faf32 1639 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1640
1641 for_each_subsys(ss, ssid)
1642 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1643
1644 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1645 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1646}
c6d57f33 1647
3dd06ffa 1648static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1649 struct cgroup_sb_opts *opts)
ddbcc7e8 1650{
3dd06ffa 1651 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1652
ddbcc7e8 1653 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1654 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1655 cgrp->root = root;
cc31edce 1656 init_cgroup_housekeeping(cgrp);
4e96ee8e 1657 idr_init(&root->cgroup_idr);
c6d57f33 1658
c6d57f33
PM
1659 root->flags = opts->flags;
1660 if (opts->release_agent)
1661 strcpy(root->release_agent_path, opts->release_agent);
1662 if (opts->name)
1663 strcpy(root->name, opts->name);
2260e7fc 1664 if (opts->cpuset_clone_children)
3dd06ffa 1665 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1666}
1667
8ab456ac 1668static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1669{
d427dfeb 1670 LIST_HEAD(tmp_links);
3dd06ffa 1671 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1672 struct cftype *base_files;
d427dfeb 1673 struct css_set *cset;
d427dfeb 1674 int i, ret;
2c6ab6d2 1675
d427dfeb 1676 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1677
cf780b7d 1678 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1679 if (ret < 0)
2bd59d48 1680 goto out;
d427dfeb 1681 root_cgrp->id = ret;
c6d57f33 1682
2aad2a86
TH
1683 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1684 GFP_KERNEL);
9d755d33
TH
1685 if (ret)
1686 goto out;
1687
d427dfeb 1688 /*
96d365e0 1689 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1690 * but that's OK - it can only be increased by someone holding
1691 * cgroup_lock, and that's us. The worst that can happen is that we
1692 * have some link structures left over
1693 */
1694 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1695 if (ret)
9d755d33 1696 goto cancel_ref;
ddbcc7e8 1697
985ed670 1698 ret = cgroup_init_root_id(root);
ddbcc7e8 1699 if (ret)
9d755d33 1700 goto cancel_ref;
ddbcc7e8 1701
2bd59d48
TH
1702 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1703 KERNFS_ROOT_CREATE_DEACTIVATED,
1704 root_cgrp);
1705 if (IS_ERR(root->kf_root)) {
1706 ret = PTR_ERR(root->kf_root);
1707 goto exit_root_id;
1708 }
1709 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1710
a14c6874
TH
1711 if (root == &cgrp_dfl_root)
1712 base_files = cgroup_dfl_base_files;
1713 else
1714 base_files = cgroup_legacy_base_files;
1715
1716 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1717 if (ret)
2bd59d48 1718 goto destroy_root;
ddbcc7e8 1719
5df36032 1720 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1721 if (ret)
2bd59d48 1722 goto destroy_root;
ddbcc7e8 1723
d427dfeb
TH
1724 /*
1725 * There must be no failure case after here, since rebinding takes
1726 * care of subsystems' refcounts, which are explicitly dropped in
1727 * the failure exit path.
1728 */
1729 list_add(&root->root_list, &cgroup_roots);
1730 cgroup_root_count++;
0df6a63f 1731
d427dfeb 1732 /*
3dd06ffa 1733 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1734 * objects.
1735 */
96d365e0 1736 down_write(&css_set_rwsem);
d427dfeb
TH
1737 hash_for_each(css_set_table, i, cset, hlist)
1738 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1739 up_write(&css_set_rwsem);
ddbcc7e8 1740
d5c419b6 1741 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1742 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1743
2bd59d48 1744 kernfs_activate(root_cgrp->kn);
d427dfeb 1745 ret = 0;
2bd59d48 1746 goto out;
d427dfeb 1747
2bd59d48
TH
1748destroy_root:
1749 kernfs_destroy_root(root->kf_root);
1750 root->kf_root = NULL;
1751exit_root_id:
d427dfeb 1752 cgroup_exit_root_id(root);
9d755d33 1753cancel_ref:
9a1049da 1754 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1755out:
d427dfeb
TH
1756 free_cgrp_cset_links(&tmp_links);
1757 return ret;
ddbcc7e8
PM
1758}
1759
f7e83571 1760static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1761 int flags, const char *unused_dev_name,
f7e83571 1762 void *data)
ddbcc7e8 1763{
3a32bd72 1764 struct super_block *pinned_sb = NULL;
970317aa 1765 struct cgroup_subsys *ss;
3dd06ffa 1766 struct cgroup_root *root;
ddbcc7e8 1767 struct cgroup_sb_opts opts;
2bd59d48 1768 struct dentry *dentry;
8e30e2b8 1769 int ret;
970317aa 1770 int i;
c6b3d5bc 1771 bool new_sb;
ddbcc7e8 1772
56fde9e0
TH
1773 /*
1774 * The first time anyone tries to mount a cgroup, enable the list
1775 * linking each css_set to its tasks and fix up all existing tasks.
1776 */
1777 if (!use_task_css_set_links)
1778 cgroup_enable_task_cg_lists();
e37a06f1 1779
aae8aab4 1780 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1781
1782 /* First find the desired set of subsystems */
ddbcc7e8 1783 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1784 if (ret)
8e30e2b8 1785 goto out_unlock;
a015edd2 1786
2bd59d48 1787 /* look for a matching existing root */
7b9a6ba5 1788 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1789 cgrp_dfl_root_visible = true;
1790 root = &cgrp_dfl_root;
1791 cgroup_get(&root->cgrp);
1792 ret = 0;
1793 goto out_unlock;
ddbcc7e8
PM
1794 }
1795
970317aa
LZ
1796 /*
1797 * Destruction of cgroup root is asynchronous, so subsystems may
1798 * still be dying after the previous unmount. Let's drain the
1799 * dying subsystems. We just need to ensure that the ones
1800 * unmounted previously finish dying and don't care about new ones
1801 * starting. Testing ref liveliness is good enough.
1802 */
1803 for_each_subsys(ss, i) {
1804 if (!(opts.subsys_mask & (1 << i)) ||
1805 ss->root == &cgrp_dfl_root)
1806 continue;
1807
1808 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1809 mutex_unlock(&cgroup_mutex);
1810 msleep(10);
1811 ret = restart_syscall();
1812 goto out_free;
1813 }
1814 cgroup_put(&ss->root->cgrp);
1815 }
1816
985ed670 1817 for_each_root(root) {
2bd59d48 1818 bool name_match = false;
3126121f 1819
3dd06ffa 1820 if (root == &cgrp_dfl_root)
985ed670 1821 continue;
3126121f 1822
cf5d5941 1823 /*
2bd59d48
TH
1824 * If we asked for a name then it must match. Also, if
1825 * name matches but sybsys_mask doesn't, we should fail.
1826 * Remember whether name matched.
cf5d5941 1827 */
2bd59d48
TH
1828 if (opts.name) {
1829 if (strcmp(opts.name, root->name))
1830 continue;
1831 name_match = true;
1832 }
ddbcc7e8 1833
c6d57f33 1834 /*
2bd59d48
TH
1835 * If we asked for subsystems (or explicitly for no
1836 * subsystems) then they must match.
c6d57f33 1837 */
2bd59d48 1838 if ((opts.subsys_mask || opts.none) &&
f392e51c 1839 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1840 if (!name_match)
1841 continue;
1842 ret = -EBUSY;
1843 goto out_unlock;
1844 }
873fe09e 1845
7b9a6ba5
TH
1846 if (root->flags ^ opts.flags)
1847 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1848
776f02fa 1849 /*
3a32bd72
LZ
1850 * We want to reuse @root whose lifetime is governed by its
1851 * ->cgrp. Let's check whether @root is alive and keep it
1852 * that way. As cgroup_kill_sb() can happen anytime, we
1853 * want to block it by pinning the sb so that @root doesn't
1854 * get killed before mount is complete.
1855 *
1856 * With the sb pinned, tryget_live can reliably indicate
1857 * whether @root can be reused. If it's being killed,
1858 * drain it. We can use wait_queue for the wait but this
1859 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1860 */
3a32bd72
LZ
1861 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1862 if (IS_ERR(pinned_sb) ||
1863 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1864 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1865 if (!IS_ERR_OR_NULL(pinned_sb))
1866 deactivate_super(pinned_sb);
776f02fa 1867 msleep(10);
a015edd2
TH
1868 ret = restart_syscall();
1869 goto out_free;
776f02fa 1870 }
ddbcc7e8 1871
776f02fa 1872 ret = 0;
2bd59d48 1873 goto out_unlock;
ddbcc7e8 1874 }
ddbcc7e8 1875
817929ec 1876 /*
172a2c06
TH
1877 * No such thing, create a new one. name= matching without subsys
1878 * specification is allowed for already existing hierarchies but we
1879 * can't create new one without subsys specification.
817929ec 1880 */
172a2c06
TH
1881 if (!opts.subsys_mask && !opts.none) {
1882 ret = -EINVAL;
1883 goto out_unlock;
817929ec 1884 }
817929ec 1885
172a2c06
TH
1886 root = kzalloc(sizeof(*root), GFP_KERNEL);
1887 if (!root) {
1888 ret = -ENOMEM;
2bd59d48 1889 goto out_unlock;
839ec545 1890 }
e5f6a860 1891
172a2c06
TH
1892 init_cgroup_root(root, &opts);
1893
35585573 1894 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1895 if (ret)
1896 cgroup_free_root(root);
fa3ca07e 1897
8e30e2b8 1898out_unlock:
ddbcc7e8 1899 mutex_unlock(&cgroup_mutex);
a015edd2 1900out_free:
c6d57f33
PM
1901 kfree(opts.release_agent);
1902 kfree(opts.name);
03b1cde6 1903
2bd59d48 1904 if (ret)
8e30e2b8 1905 return ERR_PTR(ret);
2bd59d48 1906
c9482a5b
JZ
1907 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1908 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1909 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1910 cgroup_put(&root->cgrp);
3a32bd72
LZ
1911
1912 /*
1913 * If @pinned_sb, we're reusing an existing root and holding an
1914 * extra ref on its sb. Mount is complete. Put the extra ref.
1915 */
1916 if (pinned_sb) {
1917 WARN_ON(new_sb);
1918 deactivate_super(pinned_sb);
1919 }
1920
2bd59d48
TH
1921 return dentry;
1922}
1923
1924static void cgroup_kill_sb(struct super_block *sb)
1925{
1926 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1927 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1928
9d755d33
TH
1929 /*
1930 * If @root doesn't have any mounts or children, start killing it.
1931 * This prevents new mounts by disabling percpu_ref_tryget_live().
1932 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1933 *
1934 * And don't kill the default root.
9d755d33 1935 */
3c606d35 1936 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 1937 root == &cgrp_dfl_root)
9d755d33
TH
1938 cgroup_put(&root->cgrp);
1939 else
1940 percpu_ref_kill(&root->cgrp.self.refcnt);
1941
2bd59d48 1942 kernfs_kill_sb(sb);
ddbcc7e8
PM
1943}
1944
1945static struct file_system_type cgroup_fs_type = {
1946 .name = "cgroup",
f7e83571 1947 .mount = cgroup_mount,
ddbcc7e8
PM
1948 .kill_sb = cgroup_kill_sb,
1949};
1950
857a2beb 1951/**
913ffdb5 1952 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1953 * @task: target task
857a2beb
TH
1954 * @buf: the buffer to write the path into
1955 * @buflen: the length of the buffer
1956 *
913ffdb5
TH
1957 * Determine @task's cgroup on the first (the one with the lowest non-zero
1958 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1959 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1960 * cgroup controller callbacks.
1961 *
e61734c5 1962 * Return value is the same as kernfs_path().
857a2beb 1963 */
e61734c5 1964char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1965{
3dd06ffa 1966 struct cgroup_root *root;
913ffdb5 1967 struct cgroup *cgrp;
e61734c5
TH
1968 int hierarchy_id = 1;
1969 char *path = NULL;
857a2beb
TH
1970
1971 mutex_lock(&cgroup_mutex);
96d365e0 1972 down_read(&css_set_rwsem);
857a2beb 1973
913ffdb5
TH
1974 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1975
857a2beb
TH
1976 if (root) {
1977 cgrp = task_cgroup_from_root(task, root);
e61734c5 1978 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1979 } else {
1980 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1981 if (strlcpy(buf, "/", buflen) < buflen)
1982 path = buf;
857a2beb
TH
1983 }
1984
96d365e0 1985 up_read(&css_set_rwsem);
857a2beb 1986 mutex_unlock(&cgroup_mutex);
e61734c5 1987 return path;
857a2beb 1988}
913ffdb5 1989EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1990
b3dc094e 1991/* used to track tasks and other necessary states during migration */
2f7ee569 1992struct cgroup_taskset {
b3dc094e
TH
1993 /* the src and dst cset list running through cset->mg_node */
1994 struct list_head src_csets;
1995 struct list_head dst_csets;
1996
1997 /*
1998 * Fields for cgroup_taskset_*() iteration.
1999 *
2000 * Before migration is committed, the target migration tasks are on
2001 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2002 * the csets on ->dst_csets. ->csets point to either ->src_csets
2003 * or ->dst_csets depending on whether migration is committed.
2004 *
2005 * ->cur_csets and ->cur_task point to the current task position
2006 * during iteration.
2007 */
2008 struct list_head *csets;
2009 struct css_set *cur_cset;
2010 struct task_struct *cur_task;
2f7ee569
TH
2011};
2012
2013/**
2014 * cgroup_taskset_first - reset taskset and return the first task
2015 * @tset: taskset of interest
2016 *
2017 * @tset iteration is initialized and the first task is returned.
2018 */
2019struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2020{
b3dc094e
TH
2021 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2022 tset->cur_task = NULL;
2023
2024 return cgroup_taskset_next(tset);
2f7ee569 2025}
2f7ee569
TH
2026
2027/**
2028 * cgroup_taskset_next - iterate to the next task in taskset
2029 * @tset: taskset of interest
2030 *
2031 * Return the next task in @tset. Iteration must have been initialized
2032 * with cgroup_taskset_first().
2033 */
2034struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2035{
b3dc094e
TH
2036 struct css_set *cset = tset->cur_cset;
2037 struct task_struct *task = tset->cur_task;
2f7ee569 2038
b3dc094e
TH
2039 while (&cset->mg_node != tset->csets) {
2040 if (!task)
2041 task = list_first_entry(&cset->mg_tasks,
2042 struct task_struct, cg_list);
2043 else
2044 task = list_next_entry(task, cg_list);
2f7ee569 2045
b3dc094e
TH
2046 if (&task->cg_list != &cset->mg_tasks) {
2047 tset->cur_cset = cset;
2048 tset->cur_task = task;
2049 return task;
2050 }
2f7ee569 2051
b3dc094e
TH
2052 cset = list_next_entry(cset, mg_node);
2053 task = NULL;
2054 }
2f7ee569 2055
b3dc094e 2056 return NULL;
2f7ee569 2057}
2f7ee569 2058
cb0f1fe9 2059/**
74a1166d 2060 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2061 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2062 * @tsk: the task being migrated
2063 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2064 *
cb0f1fe9 2065 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2066 */
5abb8855
TH
2067static void cgroup_task_migrate(struct cgroup *old_cgrp,
2068 struct task_struct *tsk,
2069 struct css_set *new_cset)
74a1166d 2070{
5abb8855 2071 struct css_set *old_cset;
74a1166d 2072
cb0f1fe9
TH
2073 lockdep_assert_held(&cgroup_mutex);
2074 lockdep_assert_held(&css_set_rwsem);
2075
74a1166d 2076 /*
1ed13287
TH
2077 * We are synchronized through cgroup_threadgroup_rwsem against
2078 * PF_EXITING setting such that we can't race against cgroup_exit()
2079 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2080 */
c84cdf75 2081 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2082 old_cset = task_css_set(tsk);
74a1166d 2083
b3dc094e 2084 get_css_set(new_cset);
5abb8855 2085 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2086
1b9aba49
TH
2087 /*
2088 * Use move_tail so that cgroup_taskset_first() still returns the
2089 * leader after migration. This works because cgroup_migrate()
2090 * ensures that the dst_cset of the leader is the first on the
2091 * tset's dst_csets list.
2092 */
2093 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2094
2095 /*
5abb8855
TH
2096 * We just gained a reference on old_cset by taking it from the
2097 * task. As trading it for new_cset is protected by cgroup_mutex,
2098 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2099 */
a25eb52e 2100 put_css_set_locked(old_cset);
74a1166d
BB
2101}
2102
a043e3b2 2103/**
1958d2d5
TH
2104 * cgroup_migrate_finish - cleanup after attach
2105 * @preloaded_csets: list of preloaded css_sets
74a1166d 2106 *
1958d2d5
TH
2107 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2108 * those functions for details.
74a1166d 2109 */
1958d2d5 2110static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2111{
1958d2d5 2112 struct css_set *cset, *tmp_cset;
74a1166d 2113
1958d2d5
TH
2114 lockdep_assert_held(&cgroup_mutex);
2115
2116 down_write(&css_set_rwsem);
2117 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2118 cset->mg_src_cgrp = NULL;
2119 cset->mg_dst_cset = NULL;
2120 list_del_init(&cset->mg_preload_node);
a25eb52e 2121 put_css_set_locked(cset);
1958d2d5
TH
2122 }
2123 up_write(&css_set_rwsem);
2124}
2125
2126/**
2127 * cgroup_migrate_add_src - add a migration source css_set
2128 * @src_cset: the source css_set to add
2129 * @dst_cgrp: the destination cgroup
2130 * @preloaded_csets: list of preloaded css_sets
2131 *
2132 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2133 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2134 * up by cgroup_migrate_finish().
2135 *
1ed13287
TH
2136 * This function may be called without holding cgroup_threadgroup_rwsem
2137 * even if the target is a process. Threads may be created and destroyed
2138 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2139 * into play and the preloaded css_sets are guaranteed to cover all
2140 * migrations.
1958d2d5
TH
2141 */
2142static void cgroup_migrate_add_src(struct css_set *src_cset,
2143 struct cgroup *dst_cgrp,
2144 struct list_head *preloaded_csets)
2145{
2146 struct cgroup *src_cgrp;
2147
2148 lockdep_assert_held(&cgroup_mutex);
2149 lockdep_assert_held(&css_set_rwsem);
2150
2151 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2152
1958d2d5
TH
2153 if (!list_empty(&src_cset->mg_preload_node))
2154 return;
2155
2156 WARN_ON(src_cset->mg_src_cgrp);
2157 WARN_ON(!list_empty(&src_cset->mg_tasks));
2158 WARN_ON(!list_empty(&src_cset->mg_node));
2159
2160 src_cset->mg_src_cgrp = src_cgrp;
2161 get_css_set(src_cset);
2162 list_add(&src_cset->mg_preload_node, preloaded_csets);
2163}
2164
2165/**
2166 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2167 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2168 * @preloaded_csets: list of preloaded source css_sets
2169 *
2170 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2171 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2172 * pins all destination css_sets, links each to its source, and append them
2173 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2174 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2175 *
2176 * This function must be called after cgroup_migrate_add_src() has been
2177 * called on each migration source css_set. After migration is performed
2178 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2179 * @preloaded_csets.
2180 */
2181static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2182 struct list_head *preloaded_csets)
2183{
2184 LIST_HEAD(csets);
f817de98 2185 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2186
2187 lockdep_assert_held(&cgroup_mutex);
2188
f8f22e53
TH
2189 /*
2190 * Except for the root, child_subsys_mask must be zero for a cgroup
2191 * with tasks so that child cgroups don't compete against tasks.
2192 */
d51f39b0 2193 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2194 dst_cgrp->child_subsys_mask)
2195 return -EBUSY;
2196
1958d2d5 2197 /* look up the dst cset for each src cset and link it to src */
f817de98 2198 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2199 struct css_set *dst_cset;
2200
f817de98
TH
2201 dst_cset = find_css_set(src_cset,
2202 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2203 if (!dst_cset)
2204 goto err;
2205
2206 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2207
2208 /*
2209 * If src cset equals dst, it's noop. Drop the src.
2210 * cgroup_migrate() will skip the cset too. Note that we
2211 * can't handle src == dst as some nodes are used by both.
2212 */
2213 if (src_cset == dst_cset) {
2214 src_cset->mg_src_cgrp = NULL;
2215 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2216 put_css_set(src_cset);
2217 put_css_set(dst_cset);
f817de98
TH
2218 continue;
2219 }
2220
1958d2d5
TH
2221 src_cset->mg_dst_cset = dst_cset;
2222
2223 if (list_empty(&dst_cset->mg_preload_node))
2224 list_add(&dst_cset->mg_preload_node, &csets);
2225 else
a25eb52e 2226 put_css_set(dst_cset);
1958d2d5
TH
2227 }
2228
f817de98 2229 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2230 return 0;
2231err:
2232 cgroup_migrate_finish(&csets);
2233 return -ENOMEM;
2234}
2235
2236/**
2237 * cgroup_migrate - migrate a process or task to a cgroup
2238 * @cgrp: the destination cgroup
2239 * @leader: the leader of the process or the task to migrate
2240 * @threadgroup: whether @leader points to the whole process or a single task
2241 *
2242 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2243 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2244 * caller is also responsible for invoking cgroup_migrate_add_src() and
2245 * cgroup_migrate_prepare_dst() on the targets before invoking this
2246 * function and following up with cgroup_migrate_finish().
2247 *
2248 * As long as a controller's ->can_attach() doesn't fail, this function is
2249 * guaranteed to succeed. This means that, excluding ->can_attach()
2250 * failure, when migrating multiple targets, the success or failure can be
2251 * decided for all targets by invoking group_migrate_prepare_dst() before
2252 * actually starting migrating.
2253 */
2254static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2255 bool threadgroup)
74a1166d 2256{
b3dc094e
TH
2257 struct cgroup_taskset tset = {
2258 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2259 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2260 .csets = &tset.src_csets,
2261 };
1c6727af 2262 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2263 struct css_set *cset, *tmp_cset;
2264 struct task_struct *task, *tmp_task;
2265 int i, ret;
74a1166d 2266
fb5d2b4c
MSB
2267 /*
2268 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2269 * already PF_EXITING could be freed from underneath us unless we
2270 * take an rcu_read_lock.
2271 */
b3dc094e 2272 down_write(&css_set_rwsem);
fb5d2b4c 2273 rcu_read_lock();
9db8de37 2274 task = leader;
74a1166d 2275 do {
9db8de37
TH
2276 /* @task either already exited or can't exit until the end */
2277 if (task->flags & PF_EXITING)
ea84753c 2278 goto next;
134d3373 2279
eaf797ab
TH
2280 /* leave @task alone if post_fork() hasn't linked it yet */
2281 if (list_empty(&task->cg_list))
ea84753c 2282 goto next;
cd3d0952 2283
b3dc094e 2284 cset = task_css_set(task);
1958d2d5 2285 if (!cset->mg_src_cgrp)
ea84753c 2286 goto next;
b3dc094e 2287
61d1d219 2288 /*
1b9aba49
TH
2289 * cgroup_taskset_first() must always return the leader.
2290 * Take care to avoid disturbing the ordering.
61d1d219 2291 */
1b9aba49
TH
2292 list_move_tail(&task->cg_list, &cset->mg_tasks);
2293 if (list_empty(&cset->mg_node))
2294 list_add_tail(&cset->mg_node, &tset.src_csets);
2295 if (list_empty(&cset->mg_dst_cset->mg_node))
2296 list_move_tail(&cset->mg_dst_cset->mg_node,
2297 &tset.dst_csets);
ea84753c 2298 next:
081aa458
LZ
2299 if (!threadgroup)
2300 break;
9db8de37 2301 } while_each_thread(leader, task);
fb5d2b4c 2302 rcu_read_unlock();
b3dc094e 2303 up_write(&css_set_rwsem);
74a1166d 2304
134d3373 2305 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2306 if (list_empty(&tset.src_csets))
2307 return 0;
134d3373 2308
1958d2d5 2309 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2310 for_each_e_css(css, i, cgrp) {
1c6727af 2311 if (css->ss->can_attach) {
9db8de37
TH
2312 ret = css->ss->can_attach(css, &tset);
2313 if (ret) {
1c6727af 2314 failed_css = css;
74a1166d
BB
2315 goto out_cancel_attach;
2316 }
2317 }
74a1166d
BB
2318 }
2319
2320 /*
1958d2d5
TH
2321 * Now that we're guaranteed success, proceed to move all tasks to
2322 * the new cgroup. There are no failure cases after here, so this
2323 * is the commit point.
74a1166d 2324 */
cb0f1fe9 2325 down_write(&css_set_rwsem);
b3dc094e
TH
2326 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2327 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2328 cgroup_task_migrate(cset->mg_src_cgrp, task,
2329 cset->mg_dst_cset);
74a1166d 2330 }
cb0f1fe9 2331 up_write(&css_set_rwsem);
74a1166d
BB
2332
2333 /*
1958d2d5
TH
2334 * Migration is committed, all target tasks are now on dst_csets.
2335 * Nothing is sensitive to fork() after this point. Notify
2336 * controllers that migration is complete.
74a1166d 2337 */
1958d2d5 2338 tset.csets = &tset.dst_csets;
74a1166d 2339
aec3dfcb 2340 for_each_e_css(css, i, cgrp)
1c6727af
TH
2341 if (css->ss->attach)
2342 css->ss->attach(css, &tset);
74a1166d 2343
9db8de37 2344 ret = 0;
b3dc094e
TH
2345 goto out_release_tset;
2346
74a1166d 2347out_cancel_attach:
aec3dfcb 2348 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2349 if (css == failed_css)
2350 break;
2351 if (css->ss->cancel_attach)
2352 css->ss->cancel_attach(css, &tset);
74a1166d 2353 }
b3dc094e
TH
2354out_release_tset:
2355 down_write(&css_set_rwsem);
2356 list_splice_init(&tset.dst_csets, &tset.src_csets);
2357 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2358 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2359 list_del_init(&cset->mg_node);
b3dc094e
TH
2360 }
2361 up_write(&css_set_rwsem);
9db8de37 2362 return ret;
74a1166d
BB
2363}
2364
1958d2d5
TH
2365/**
2366 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2367 * @dst_cgrp: the cgroup to attach to
2368 * @leader: the task or the leader of the threadgroup to be attached
2369 * @threadgroup: attach the whole threadgroup?
2370 *
1ed13287 2371 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2372 */
2373static int cgroup_attach_task(struct cgroup *dst_cgrp,
2374 struct task_struct *leader, bool threadgroup)
2375{
2376 LIST_HEAD(preloaded_csets);
2377 struct task_struct *task;
2378 int ret;
2379
2380 /* look up all src csets */
2381 down_read(&css_set_rwsem);
2382 rcu_read_lock();
2383 task = leader;
2384 do {
2385 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2386 &preloaded_csets);
2387 if (!threadgroup)
2388 break;
2389 } while_each_thread(leader, task);
2390 rcu_read_unlock();
2391 up_read(&css_set_rwsem);
2392
2393 /* prepare dst csets and commit */
2394 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2395 if (!ret)
2396 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2397
2398 cgroup_migrate_finish(&preloaded_csets);
2399 return ret;
74a1166d
BB
2400}
2401
187fe840
TH
2402static int cgroup_procs_write_permission(struct task_struct *task,
2403 struct cgroup *dst_cgrp,
2404 struct kernfs_open_file *of)
dedf22e9
TH
2405{
2406 const struct cred *cred = current_cred();
2407 const struct cred *tcred = get_task_cred(task);
2408 int ret = 0;
2409
2410 /*
2411 * even if we're attaching all tasks in the thread group, we only
2412 * need to check permissions on one of them.
2413 */
2414 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2415 !uid_eq(cred->euid, tcred->uid) &&
2416 !uid_eq(cred->euid, tcred->suid))
2417 ret = -EACCES;
2418
187fe840
TH
2419 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2420 struct super_block *sb = of->file->f_path.dentry->d_sb;
2421 struct cgroup *cgrp;
2422 struct inode *inode;
2423
2424 down_read(&css_set_rwsem);
2425 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2426 up_read(&css_set_rwsem);
2427
2428 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2429 cgrp = cgroup_parent(cgrp);
2430
2431 ret = -ENOMEM;
2432 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2433 if (inode) {
2434 ret = inode_permission(inode, MAY_WRITE);
2435 iput(inode);
2436 }
2437 }
2438
dedf22e9
TH
2439 put_cred(tcred);
2440 return ret;
2441}
2442
74a1166d
BB
2443/*
2444 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2445 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2446 * cgroup_mutex and threadgroup.
bbcb81d0 2447 */
acbef755
TH
2448static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2449 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2450{
bbcb81d0 2451 struct task_struct *tsk;
e76ecaee 2452 struct cgroup *cgrp;
acbef755 2453 pid_t pid;
bbcb81d0
PM
2454 int ret;
2455
acbef755
TH
2456 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2457 return -EINVAL;
2458
e76ecaee
TH
2459 cgrp = cgroup_kn_lock_live(of->kn);
2460 if (!cgrp)
74a1166d
BB
2461 return -ENODEV;
2462
f9f9e7b7 2463retry_find_task:
b78949eb 2464 rcu_read_lock();
bbcb81d0 2465 if (pid) {
73507f33 2466 tsk = find_task_by_vpid(pid);
74a1166d 2467 if (!tsk) {
f9f9e7b7 2468 rcu_read_unlock();
dd4b0a46 2469 ret = -ESRCH;
f9f9e7b7 2470 goto out_unlock_cgroup;
bbcb81d0 2471 }
dedf22e9 2472 } else {
b78949eb 2473 tsk = current;
dedf22e9 2474 }
cd3d0952
TH
2475
2476 if (threadgroup)
b78949eb 2477 tsk = tsk->group_leader;
c4c27fbd
MG
2478
2479 /*
14a40ffc 2480 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2481 * trapped in a cpuset, or RT worker may be born in a cgroup
2482 * with no rt_runtime allocated. Just say no.
2483 */
14a40ffc 2484 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2485 ret = -EINVAL;
f9f9e7b7
TH
2486 rcu_read_unlock();
2487 goto out_unlock_cgroup;
c4c27fbd
MG
2488 }
2489
b78949eb
MSB
2490 get_task_struct(tsk);
2491 rcu_read_unlock();
2492
1ed13287 2493 percpu_down_write(&cgroup_threadgroup_rwsem);
f9f9e7b7
TH
2494 if (threadgroup) {
2495 if (!thread_group_leader(tsk)) {
2496 /*
2497 * a race with de_thread from another thread's exec()
2498 * may strip us of our leadership, if this happens,
2499 * there is no choice but to throw this task away and
2500 * try again; this is
2501 * "double-double-toil-and-trouble-check locking".
2502 */
1ed13287 2503 percpu_up_write(&cgroup_threadgroup_rwsem);
f9f9e7b7
TH
2504 put_task_struct(tsk);
2505 goto retry_find_task;
2506 }
2507 }
2508
187fe840 2509 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2510 if (!ret)
2511 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2512
1ed13287 2513 percpu_up_write(&cgroup_threadgroup_rwsem);
f9f9e7b7
TH
2514
2515 put_task_struct(tsk);
2516out_unlock_cgroup:
e76ecaee 2517 cgroup_kn_unlock(of->kn);
acbef755 2518 return ret ?: nbytes;
bbcb81d0
PM
2519}
2520
7ae1bad9
TH
2521/**
2522 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2523 * @from: attach to all cgroups of a given task
2524 * @tsk: the task to be attached
2525 */
2526int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2527{
3dd06ffa 2528 struct cgroup_root *root;
7ae1bad9
TH
2529 int retval = 0;
2530
47cfcd09 2531 mutex_lock(&cgroup_mutex);
985ed670 2532 for_each_root(root) {
96d365e0
TH
2533 struct cgroup *from_cgrp;
2534
3dd06ffa 2535 if (root == &cgrp_dfl_root)
985ed670
TH
2536 continue;
2537
96d365e0
TH
2538 down_read(&css_set_rwsem);
2539 from_cgrp = task_cgroup_from_root(from, root);
2540 up_read(&css_set_rwsem);
7ae1bad9 2541
6f4b7e63 2542 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2543 if (retval)
2544 break;
2545 }
47cfcd09 2546 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2547
2548 return retval;
2549}
2550EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2551
acbef755
TH
2552static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2553 char *buf, size_t nbytes, loff_t off)
74a1166d 2554{
acbef755 2555 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2556}
2557
acbef755
TH
2558static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2559 char *buf, size_t nbytes, loff_t off)
af351026 2560{
acbef755 2561 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2562}
2563
451af504
TH
2564static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2565 char *buf, size_t nbytes, loff_t off)
e788e066 2566{
e76ecaee 2567 struct cgroup *cgrp;
5f469907 2568
e76ecaee 2569 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2570
e76ecaee
TH
2571 cgrp = cgroup_kn_lock_live(of->kn);
2572 if (!cgrp)
e788e066 2573 return -ENODEV;
69e943b7 2574 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2575 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2576 sizeof(cgrp->root->release_agent_path));
69e943b7 2577 spin_unlock(&release_agent_path_lock);
e76ecaee 2578 cgroup_kn_unlock(of->kn);
451af504 2579 return nbytes;
e788e066
PM
2580}
2581
2da8ca82 2582static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2583{
2da8ca82 2584 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2585
46cfeb04 2586 spin_lock(&release_agent_path_lock);
e788e066 2587 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2588 spin_unlock(&release_agent_path_lock);
e788e066 2589 seq_putc(seq, '\n');
e788e066
PM
2590 return 0;
2591}
2592
2da8ca82 2593static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2594{
c1d5d42e 2595 seq_puts(seq, "0\n");
e788e066
PM
2596 return 0;
2597}
2598
8ab456ac 2599static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2600{
f8f22e53
TH
2601 struct cgroup_subsys *ss;
2602 bool printed = false;
2603 int ssid;
a742c59d 2604
a966a4ed
AS
2605 for_each_subsys_which(ss, ssid, &ss_mask) {
2606 if (printed)
2607 seq_putc(seq, ' ');
2608 seq_printf(seq, "%s", ss->name);
2609 printed = true;
e73d2c61 2610 }
f8f22e53
TH
2611 if (printed)
2612 seq_putc(seq, '\n');
355e0c48
PM
2613}
2614
f8f22e53
TH
2615/* show controllers which are currently attached to the default hierarchy */
2616static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2617{
f8f22e53
TH
2618 struct cgroup *cgrp = seq_css(seq)->cgroup;
2619
5533e011
TH
2620 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2621 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2622 return 0;
db3b1497
PM
2623}
2624
f8f22e53
TH
2625/* show controllers which are enabled from the parent */
2626static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2627{
f8f22e53
TH
2628 struct cgroup *cgrp = seq_css(seq)->cgroup;
2629
667c2491 2630 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2631 return 0;
ddbcc7e8
PM
2632}
2633
f8f22e53
TH
2634/* show controllers which are enabled for a given cgroup's children */
2635static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2636{
f8f22e53
TH
2637 struct cgroup *cgrp = seq_css(seq)->cgroup;
2638
667c2491 2639 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2640 return 0;
2641}
2642
2643/**
2644 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2645 * @cgrp: root of the subtree to update csses for
2646 *
2647 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2648 * css associations need to be updated accordingly. This function looks up
2649 * all css_sets which are attached to the subtree, creates the matching
2650 * updated css_sets and migrates the tasks to the new ones.
2651 */
2652static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2653{
2654 LIST_HEAD(preloaded_csets);
2655 struct cgroup_subsys_state *css;
2656 struct css_set *src_cset;
2657 int ret;
2658
f8f22e53
TH
2659 lockdep_assert_held(&cgroup_mutex);
2660
2661 /* look up all csses currently attached to @cgrp's subtree */
2662 down_read(&css_set_rwsem);
2663 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2664 struct cgrp_cset_link *link;
2665
2666 /* self is not affected by child_subsys_mask change */
2667 if (css->cgroup == cgrp)
2668 continue;
2669
2670 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2671 cgroup_migrate_add_src(link->cset, cgrp,
2672 &preloaded_csets);
2673 }
2674 up_read(&css_set_rwsem);
2675
2676 /* NULL dst indicates self on default hierarchy */
2677 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2678 if (ret)
2679 goto out_finish;
2680
2681 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2682 struct task_struct *last_task = NULL, *task;
2683
2684 /* src_csets precede dst_csets, break on the first dst_cset */
2685 if (!src_cset->mg_src_cgrp)
2686 break;
2687
2688 /*
2689 * All tasks in src_cset need to be migrated to the
2690 * matching dst_cset. Empty it process by process. We
2691 * walk tasks but migrate processes. The leader might even
2692 * belong to a different cset but such src_cset would also
2693 * be among the target src_csets because the default
2694 * hierarchy enforces per-process membership.
2695 */
2696 while (true) {
2697 down_read(&css_set_rwsem);
2698 task = list_first_entry_or_null(&src_cset->tasks,
2699 struct task_struct, cg_list);
2700 if (task) {
2701 task = task->group_leader;
2702 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2703 get_task_struct(task);
2704 }
2705 up_read(&css_set_rwsem);
2706
2707 if (!task)
2708 break;
2709
2710 /* guard against possible infinite loop */
2711 if (WARN(last_task == task,
2712 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2713 goto out_finish;
2714 last_task = task;
2715
1ed13287 2716 percpu_down_write(&cgroup_threadgroup_rwsem);
f9f9e7b7
TH
2717 /* raced against de_thread() from another thread? */
2718 if (!thread_group_leader(task)) {
1ed13287 2719 percpu_up_write(&cgroup_threadgroup_rwsem);
f9f9e7b7
TH
2720 put_task_struct(task);
2721 continue;
2722 }
2723
f8f22e53
TH
2724 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2725
1ed13287 2726 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2727 put_task_struct(task);
2728
2729 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2730 goto out_finish;
2731 }
2732 }
2733
2734out_finish:
2735 cgroup_migrate_finish(&preloaded_csets);
2736 return ret;
2737}
2738
2739/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2740static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2741 char *buf, size_t nbytes,
2742 loff_t off)
f8f22e53 2743{
8ab456ac
AS
2744 unsigned long enable = 0, disable = 0;
2745 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2746 struct cgroup *cgrp, *child;
f8f22e53 2747 struct cgroup_subsys *ss;
451af504 2748 char *tok;
f8f22e53
TH
2749 int ssid, ret;
2750
2751 /*
d37167ab
TH
2752 * Parse input - space separated list of subsystem names prefixed
2753 * with either + or -.
f8f22e53 2754 */
451af504
TH
2755 buf = strstrip(buf);
2756 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2757 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2758
d37167ab
TH
2759 if (tok[0] == '\0')
2760 continue;
a966a4ed
AS
2761 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2762 if (ss->disabled || strcmp(tok + 1, ss->name))
f8f22e53
TH
2763 continue;
2764
2765 if (*tok == '+') {
7d331fa9
TH
2766 enable |= 1 << ssid;
2767 disable &= ~(1 << ssid);
f8f22e53 2768 } else if (*tok == '-') {
7d331fa9
TH
2769 disable |= 1 << ssid;
2770 enable &= ~(1 << ssid);
f8f22e53
TH
2771 } else {
2772 return -EINVAL;
2773 }
2774 break;
2775 }
2776 if (ssid == CGROUP_SUBSYS_COUNT)
2777 return -EINVAL;
2778 }
2779
a9746d8d
TH
2780 cgrp = cgroup_kn_lock_live(of->kn);
2781 if (!cgrp)
2782 return -ENODEV;
f8f22e53
TH
2783
2784 for_each_subsys(ss, ssid) {
2785 if (enable & (1 << ssid)) {
667c2491 2786 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2787 enable &= ~(1 << ssid);
2788 continue;
2789 }
2790
c29adf24
TH
2791 /* unavailable or not enabled on the parent? */
2792 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2793 (cgroup_parent(cgrp) &&
667c2491 2794 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2795 ret = -ENOENT;
2796 goto out_unlock;
2797 }
f8f22e53 2798 } else if (disable & (1 << ssid)) {
667c2491 2799 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2800 disable &= ~(1 << ssid);
2801 continue;
2802 }
2803
2804 /* a child has it enabled? */
2805 cgroup_for_each_live_child(child, cgrp) {
667c2491 2806 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2807 ret = -EBUSY;
ddab2b6e 2808 goto out_unlock;
f8f22e53
TH
2809 }
2810 }
2811 }
2812 }
2813
2814 if (!enable && !disable) {
2815 ret = 0;
ddab2b6e 2816 goto out_unlock;
f8f22e53
TH
2817 }
2818
2819 /*
667c2491 2820 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2821 * with tasks so that child cgroups don't compete against tasks.
2822 */
d51f39b0 2823 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2824 ret = -EBUSY;
2825 goto out_unlock;
2826 }
2827
2828 /*
f63070d3
TH
2829 * Update subsys masks and calculate what needs to be done. More
2830 * subsystems than specified may need to be enabled or disabled
2831 * depending on subsystem dependencies.
2832 */
755bf5ee
TH
2833 old_sc = cgrp->subtree_control;
2834 old_ss = cgrp->child_subsys_mask;
2835 new_sc = (old_sc | enable) & ~disable;
2836 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2837
755bf5ee
TH
2838 css_enable = ~old_ss & new_ss;
2839 css_disable = old_ss & ~new_ss;
f63070d3
TH
2840 enable |= css_enable;
2841 disable |= css_disable;
c29adf24 2842
db6e3053
TH
2843 /*
2844 * Because css offlining is asynchronous, userland might try to
2845 * re-enable the same controller while the previous instance is
2846 * still around. In such cases, wait till it's gone using
2847 * offline_waitq.
2848 */
a966a4ed 2849 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2850 cgroup_for_each_live_child(child, cgrp) {
2851 DEFINE_WAIT(wait);
2852
2853 if (!cgroup_css(child, ss))
2854 continue;
2855
2856 cgroup_get(child);
2857 prepare_to_wait(&child->offline_waitq, &wait,
2858 TASK_UNINTERRUPTIBLE);
2859 cgroup_kn_unlock(of->kn);
2860 schedule();
2861 finish_wait(&child->offline_waitq, &wait);
2862 cgroup_put(child);
2863
2864 return restart_syscall();
2865 }
2866 }
2867
755bf5ee
TH
2868 cgrp->subtree_control = new_sc;
2869 cgrp->child_subsys_mask = new_ss;
2870
f63070d3
TH
2871 /*
2872 * Create new csses or make the existing ones visible. A css is
2873 * created invisible if it's being implicitly enabled through
2874 * dependency. An invisible css is made visible when the userland
2875 * explicitly enables it.
f8f22e53
TH
2876 */
2877 for_each_subsys(ss, ssid) {
2878 if (!(enable & (1 << ssid)))
2879 continue;
2880
2881 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2882 if (css_enable & (1 << ssid))
2883 ret = create_css(child, ss,
2884 cgrp->subtree_control & (1 << ssid));
2885 else
2886 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2887 if (ret)
2888 goto err_undo_css;
2889 }
2890 }
2891
c29adf24
TH
2892 /*
2893 * At this point, cgroup_e_css() results reflect the new csses
2894 * making the following cgroup_update_dfl_csses() properly update
2895 * css associations of all tasks in the subtree.
2896 */
f8f22e53
TH
2897 ret = cgroup_update_dfl_csses(cgrp);
2898 if (ret)
2899 goto err_undo_css;
2900
f63070d3
TH
2901 /*
2902 * All tasks are migrated out of disabled csses. Kill or hide
2903 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2904 * disabled while other subsystems are still depending on it. The
2905 * css must not actively control resources and be in the vanilla
2906 * state if it's made visible again later. Controllers which may
2907 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2908 */
f8f22e53
TH
2909 for_each_subsys(ss, ssid) {
2910 if (!(disable & (1 << ssid)))
2911 continue;
2912
f63070d3 2913 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2914 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2915
2916 if (css_disable & (1 << ssid)) {
2917 kill_css(css);
2918 } else {
f63070d3 2919 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2920 if (ss->css_reset)
2921 ss->css_reset(css);
2922 }
f63070d3 2923 }
f8f22e53
TH
2924 }
2925
56c807ba
TH
2926 /*
2927 * The effective csses of all the descendants (excluding @cgrp) may
2928 * have changed. Subsystems can optionally subscribe to this event
2929 * by implementing ->css_e_css_changed() which is invoked if any of
2930 * the effective csses seen from the css's cgroup may have changed.
2931 */
2932 for_each_subsys(ss, ssid) {
2933 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2934 struct cgroup_subsys_state *css;
2935
2936 if (!ss->css_e_css_changed || !this_css)
2937 continue;
2938
2939 css_for_each_descendant_pre(css, this_css)
2940 if (css != this_css)
2941 ss->css_e_css_changed(css);
2942 }
2943
f8f22e53
TH
2944 kernfs_activate(cgrp->kn);
2945 ret = 0;
2946out_unlock:
a9746d8d 2947 cgroup_kn_unlock(of->kn);
451af504 2948 return ret ?: nbytes;
f8f22e53
TH
2949
2950err_undo_css:
755bf5ee
TH
2951 cgrp->subtree_control = old_sc;
2952 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
2953
2954 for_each_subsys(ss, ssid) {
2955 if (!(enable & (1 << ssid)))
2956 continue;
2957
2958 cgroup_for_each_live_child(child, cgrp) {
2959 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2960
2961 if (!css)
2962 continue;
2963
2964 if (css_enable & (1 << ssid))
f8f22e53 2965 kill_css(css);
f63070d3
TH
2966 else
2967 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2968 }
2969 }
2970 goto out_unlock;
2971}
2972
842b597e
TH
2973static int cgroup_populated_show(struct seq_file *seq, void *v)
2974{
2975 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2976 return 0;
2977}
2978
2bd59d48
TH
2979static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2980 size_t nbytes, loff_t off)
355e0c48 2981{
2bd59d48
TH
2982 struct cgroup *cgrp = of->kn->parent->priv;
2983 struct cftype *cft = of->kn->priv;
2984 struct cgroup_subsys_state *css;
a742c59d 2985 int ret;
355e0c48 2986
b4168640
TH
2987 if (cft->write)
2988 return cft->write(of, buf, nbytes, off);
2989
2bd59d48
TH
2990 /*
2991 * kernfs guarantees that a file isn't deleted with operations in
2992 * flight, which means that the matching css is and stays alive and
2993 * doesn't need to be pinned. The RCU locking is not necessary
2994 * either. It's just for the convenience of using cgroup_css().
2995 */
2996 rcu_read_lock();
2997 css = cgroup_css(cgrp, cft->ss);
2998 rcu_read_unlock();
a742c59d 2999
451af504 3000 if (cft->write_u64) {
a742c59d
TH
3001 unsigned long long v;
3002 ret = kstrtoull(buf, 0, &v);
3003 if (!ret)
3004 ret = cft->write_u64(css, cft, v);
3005 } else if (cft->write_s64) {
3006 long long v;
3007 ret = kstrtoll(buf, 0, &v);
3008 if (!ret)
3009 ret = cft->write_s64(css, cft, v);
e73d2c61 3010 } else {
a742c59d 3011 ret = -EINVAL;
e73d2c61 3012 }
2bd59d48 3013
a742c59d 3014 return ret ?: nbytes;
355e0c48
PM
3015}
3016
6612f05b 3017static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3018{
2bd59d48 3019 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3020}
3021
6612f05b 3022static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3023{
2bd59d48 3024 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3025}
3026
6612f05b 3027static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3028{
2bd59d48 3029 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3030}
3031
91796569 3032static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3033{
7da11279
TH
3034 struct cftype *cft = seq_cft(m);
3035 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3036
2da8ca82
TH
3037 if (cft->seq_show)
3038 return cft->seq_show(m, arg);
e73d2c61 3039
f4c753b7 3040 if (cft->read_u64)
896f5199
TH
3041 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3042 else if (cft->read_s64)
3043 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3044 else
3045 return -EINVAL;
3046 return 0;
91796569
PM
3047}
3048
2bd59d48
TH
3049static struct kernfs_ops cgroup_kf_single_ops = {
3050 .atomic_write_len = PAGE_SIZE,
3051 .write = cgroup_file_write,
3052 .seq_show = cgroup_seqfile_show,
91796569
PM
3053};
3054
2bd59d48
TH
3055static struct kernfs_ops cgroup_kf_ops = {
3056 .atomic_write_len = PAGE_SIZE,
3057 .write = cgroup_file_write,
3058 .seq_start = cgroup_seqfile_start,
3059 .seq_next = cgroup_seqfile_next,
3060 .seq_stop = cgroup_seqfile_stop,
3061 .seq_show = cgroup_seqfile_show,
3062};
ddbcc7e8
PM
3063
3064/*
3065 * cgroup_rename - Only allow simple rename of directories in place.
3066 */
2bd59d48
TH
3067static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3068 const char *new_name_str)
ddbcc7e8 3069{
2bd59d48 3070 struct cgroup *cgrp = kn->priv;
65dff759 3071 int ret;
65dff759 3072
2bd59d48 3073 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3074 return -ENOTDIR;
2bd59d48 3075 if (kn->parent != new_parent)
ddbcc7e8 3076 return -EIO;
65dff759 3077
6db8e85c
TH
3078 /*
3079 * This isn't a proper migration and its usefulness is very
aa6ec29b 3080 * limited. Disallow on the default hierarchy.
6db8e85c 3081 */
aa6ec29b 3082 if (cgroup_on_dfl(cgrp))
6db8e85c 3083 return -EPERM;
099fca32 3084
e1b2dc17 3085 /*
8353da1f 3086 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3087 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3088 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3089 */
3090 kernfs_break_active_protection(new_parent);
3091 kernfs_break_active_protection(kn);
099fca32 3092
2bd59d48 3093 mutex_lock(&cgroup_mutex);
099fca32 3094
2bd59d48 3095 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3096
2bd59d48 3097 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3098
3099 kernfs_unbreak_active_protection(kn);
3100 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3101 return ret;
099fca32
LZ
3102}
3103
49957f8e
TH
3104/* set uid and gid of cgroup dirs and files to that of the creator */
3105static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3106{
3107 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3108 .ia_uid = current_fsuid(),
3109 .ia_gid = current_fsgid(), };
3110
3111 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3112 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3113 return 0;
3114
3115 return kernfs_setattr(kn, &iattr);
3116}
3117
2bb566cb 3118static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3119{
8d7e6fb0 3120 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3121 struct kernfs_node *kn;
3122 struct lock_class_key *key = NULL;
49957f8e 3123 int ret;
05ef1d7c 3124
2bd59d48
TH
3125#ifdef CONFIG_DEBUG_LOCK_ALLOC
3126 key = &cft->lockdep_key;
3127#endif
3128 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3129 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3130 NULL, key);
49957f8e
TH
3131 if (IS_ERR(kn))
3132 return PTR_ERR(kn);
3133
3134 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3135 if (ret) {
49957f8e 3136 kernfs_remove(kn);
f8f22e53
TH
3137 return ret;
3138 }
3139
187fe840
TH
3140 if (cft->write == cgroup_procs_write)
3141 cgrp->procs_kn = kn;
3142 else if (cft->seq_show == cgroup_populated_show)
842b597e 3143 cgrp->populated_kn = kn;
f8f22e53 3144 return 0;
ddbcc7e8
PM
3145}
3146
b1f28d31
TH
3147/**
3148 * cgroup_addrm_files - add or remove files to a cgroup directory
3149 * @cgrp: the target cgroup
b1f28d31
TH
3150 * @cfts: array of cftypes to be added
3151 * @is_add: whether to add or remove
3152 *
3153 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3154 * For removals, this function never fails. If addition fails, this
3155 * function doesn't remove files already added. The caller is responsible
3156 * for cleaning up.
b1f28d31 3157 */
2bb566cb
TH
3158static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3159 bool is_add)
ddbcc7e8 3160{
03b1cde6 3161 struct cftype *cft;
b1f28d31
TH
3162 int ret;
3163
01f6474c 3164 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3165
3166 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3167 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3168 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3169 continue;
05ebb6e6 3170 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3171 continue;
d51f39b0 3172 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3173 continue;
d51f39b0 3174 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3175 continue;
3176
2739d3cc 3177 if (is_add) {
2bb566cb 3178 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3179 if (ret) {
ed3d261b
JP
3180 pr_warn("%s: failed to add %s, err=%d\n",
3181 __func__, cft->name, ret);
b1f28d31
TH
3182 return ret;
3183 }
2739d3cc
LZ
3184 } else {
3185 cgroup_rm_file(cgrp, cft);
db0416b6 3186 }
ddbcc7e8 3187 }
b1f28d31 3188 return 0;
ddbcc7e8
PM
3189}
3190
21a2d343 3191static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3192{
3193 LIST_HEAD(pending);
2bb566cb 3194 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3195 struct cgroup *root = &ss->root->cgrp;
492eb21b 3196 struct cgroup_subsys_state *css;
9ccece80 3197 int ret = 0;
8e3f6541 3198
01f6474c 3199 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3200
e8c82d20 3201 /* add/rm files for all cgroups created before */
ca8bdcaf 3202 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3203 struct cgroup *cgrp = css->cgroup;
3204
e8c82d20
LZ
3205 if (cgroup_is_dead(cgrp))
3206 continue;
3207
21a2d343 3208 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3209 if (ret)
3210 break;
8e3f6541 3211 }
21a2d343
TH
3212
3213 if (is_add && !ret)
3214 kernfs_activate(root->kn);
9ccece80 3215 return ret;
8e3f6541
TH
3216}
3217
2da440a2 3218static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3219{
2bb566cb 3220 struct cftype *cft;
8e3f6541 3221
2bd59d48
TH
3222 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3223 /* free copy for custom atomic_write_len, see init_cftypes() */
3224 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3225 kfree(cft->kf_ops);
3226 cft->kf_ops = NULL;
2da440a2 3227 cft->ss = NULL;
a8ddc821
TH
3228
3229 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3230 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3231 }
2da440a2
TH
3232}
3233
2bd59d48 3234static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3235{
3236 struct cftype *cft;
3237
2bd59d48
TH
3238 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3239 struct kernfs_ops *kf_ops;
3240
0adb0704
TH
3241 WARN_ON(cft->ss || cft->kf_ops);
3242
2bd59d48
TH
3243 if (cft->seq_start)
3244 kf_ops = &cgroup_kf_ops;
3245 else
3246 kf_ops = &cgroup_kf_single_ops;
3247
3248 /*
3249 * Ugh... if @cft wants a custom max_write_len, we need to
3250 * make a copy of kf_ops to set its atomic_write_len.
3251 */
3252 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3253 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3254 if (!kf_ops) {
3255 cgroup_exit_cftypes(cfts);
3256 return -ENOMEM;
3257 }
3258 kf_ops->atomic_write_len = cft->max_write_len;
3259 }
8e3f6541 3260
2bd59d48 3261 cft->kf_ops = kf_ops;
2bb566cb 3262 cft->ss = ss;
2bd59d48 3263 }
2bb566cb 3264
2bd59d48 3265 return 0;
2da440a2
TH
3266}
3267
21a2d343
TH
3268static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3269{
01f6474c 3270 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3271
3272 if (!cfts || !cfts[0].ss)
3273 return -ENOENT;
3274
3275 list_del(&cfts->node);
3276 cgroup_apply_cftypes(cfts, false);
3277 cgroup_exit_cftypes(cfts);
3278 return 0;
8e3f6541 3279}
8e3f6541 3280
79578621
TH
3281/**
3282 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3283 * @cfts: zero-length name terminated array of cftypes
3284 *
2bb566cb
TH
3285 * Unregister @cfts. Files described by @cfts are removed from all
3286 * existing cgroups and all future cgroups won't have them either. This
3287 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3288 *
3289 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3290 * registered.
79578621 3291 */
2bb566cb 3292int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3293{
21a2d343 3294 int ret;
79578621 3295
01f6474c 3296 mutex_lock(&cgroup_mutex);
21a2d343 3297 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3298 mutex_unlock(&cgroup_mutex);
21a2d343 3299 return ret;
80b13586
TH
3300}
3301
8e3f6541
TH
3302/**
3303 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3304 * @ss: target cgroup subsystem
3305 * @cfts: zero-length name terminated array of cftypes
3306 *
3307 * Register @cfts to @ss. Files described by @cfts are created for all
3308 * existing cgroups to which @ss is attached and all future cgroups will
3309 * have them too. This function can be called anytime whether @ss is
3310 * attached or not.
3311 *
3312 * Returns 0 on successful registration, -errno on failure. Note that this
3313 * function currently returns 0 as long as @cfts registration is successful
3314 * even if some file creation attempts on existing cgroups fail.
3315 */
2cf669a5 3316static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3317{
9ccece80 3318 int ret;
8e3f6541 3319
c731ae1d
LZ
3320 if (ss->disabled)
3321 return 0;
3322
dc5736ed
LZ
3323 if (!cfts || cfts[0].name[0] == '\0')
3324 return 0;
2bb566cb 3325
2bd59d48
TH
3326 ret = cgroup_init_cftypes(ss, cfts);
3327 if (ret)
3328 return ret;
79578621 3329
01f6474c 3330 mutex_lock(&cgroup_mutex);
21a2d343 3331
0adb0704 3332 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3333 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3334 if (ret)
21a2d343 3335 cgroup_rm_cftypes_locked(cfts);
79578621 3336
01f6474c 3337 mutex_unlock(&cgroup_mutex);
9ccece80 3338 return ret;
79578621
TH
3339}
3340
a8ddc821
TH
3341/**
3342 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3343 * @ss: target cgroup subsystem
3344 * @cfts: zero-length name terminated array of cftypes
3345 *
3346 * Similar to cgroup_add_cftypes() but the added files are only used for
3347 * the default hierarchy.
3348 */
3349int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3350{
3351 struct cftype *cft;
3352
3353 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3354 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3355 return cgroup_add_cftypes(ss, cfts);
3356}
3357
3358/**
3359 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3360 * @ss: target cgroup subsystem
3361 * @cfts: zero-length name terminated array of cftypes
3362 *
3363 * Similar to cgroup_add_cftypes() but the added files are only used for
3364 * the legacy hierarchies.
3365 */
2cf669a5
TH
3366int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3367{
a8ddc821
TH
3368 struct cftype *cft;
3369
fa8137be
VG
3370 /*
3371 * If legacy_flies_on_dfl, we want to show the legacy files on the
3372 * dfl hierarchy but iff the target subsystem hasn't been updated
3373 * for the dfl hierarchy yet.
3374 */
3375 if (!cgroup_legacy_files_on_dfl ||
3376 ss->dfl_cftypes != ss->legacy_cftypes) {
3377 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3378 cft->flags |= __CFTYPE_NOT_ON_DFL;
3379 }
3380
2cf669a5
TH
3381 return cgroup_add_cftypes(ss, cfts);
3382}
3383
a043e3b2
LZ
3384/**
3385 * cgroup_task_count - count the number of tasks in a cgroup.
3386 * @cgrp: the cgroup in question
3387 *
3388 * Return the number of tasks in the cgroup.
3389 */
07bc356e 3390static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3391{
3392 int count = 0;
69d0206c 3393 struct cgrp_cset_link *link;
817929ec 3394
96d365e0 3395 down_read(&css_set_rwsem);
69d0206c
TH
3396 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3397 count += atomic_read(&link->cset->refcount);
96d365e0 3398 up_read(&css_set_rwsem);
bbcb81d0
PM
3399 return count;
3400}
3401
53fa5261 3402/**
492eb21b 3403 * css_next_child - find the next child of a given css
c2931b70
TH
3404 * @pos: the current position (%NULL to initiate traversal)
3405 * @parent: css whose children to walk
53fa5261 3406 *
c2931b70 3407 * This function returns the next child of @parent and should be called
87fb54f1 3408 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3409 * that @parent and @pos are accessible. The next sibling is guaranteed to
3410 * be returned regardless of their states.
3411 *
3412 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3413 * css which finished ->css_online() is guaranteed to be visible in the
3414 * future iterations and will stay visible until the last reference is put.
3415 * A css which hasn't finished ->css_online() or already finished
3416 * ->css_offline() may show up during traversal. It's each subsystem's
3417 * responsibility to synchronize against on/offlining.
53fa5261 3418 */
c2931b70
TH
3419struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3420 struct cgroup_subsys_state *parent)
53fa5261 3421{
c2931b70 3422 struct cgroup_subsys_state *next;
53fa5261 3423
8353da1f 3424 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3425
3426 /*
de3f0341
TH
3427 * @pos could already have been unlinked from the sibling list.
3428 * Once a cgroup is removed, its ->sibling.next is no longer
3429 * updated when its next sibling changes. CSS_RELEASED is set when
3430 * @pos is taken off list, at which time its next pointer is valid,
3431 * and, as releases are serialized, the one pointed to by the next
3432 * pointer is guaranteed to not have started release yet. This
3433 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3434 * critical section, the one pointed to by its next pointer is
3435 * guaranteed to not have finished its RCU grace period even if we
3436 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3437 *
de3f0341
TH
3438 * If @pos has CSS_RELEASED set, its next pointer can't be
3439 * dereferenced; however, as each css is given a monotonically
3440 * increasing unique serial number and always appended to the
3441 * sibling list, the next one can be found by walking the parent's
3442 * children until the first css with higher serial number than
3443 * @pos's. While this path can be slower, it happens iff iteration
3444 * races against release and the race window is very small.
53fa5261 3445 */
3b287a50 3446 if (!pos) {
c2931b70
TH
3447 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3448 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3449 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3450 } else {
c2931b70 3451 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3452 if (next->serial_nr > pos->serial_nr)
3453 break;
53fa5261
TH
3454 }
3455
3b281afb
TH
3456 /*
3457 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3458 * the next sibling.
3b281afb 3459 */
c2931b70
TH
3460 if (&next->sibling != &parent->children)
3461 return next;
3b281afb 3462 return NULL;
53fa5261 3463}
53fa5261 3464
574bd9f7 3465/**
492eb21b 3466 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3467 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3468 * @root: css whose descendants to walk
574bd9f7 3469 *
492eb21b 3470 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3471 * to visit for pre-order traversal of @root's descendants. @root is
3472 * included in the iteration and the first node to be visited.
75501a6d 3473 *
87fb54f1
TH
3474 * While this function requires cgroup_mutex or RCU read locking, it
3475 * doesn't require the whole traversal to be contained in a single critical
3476 * section. This function will return the correct next descendant as long
3477 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3478 *
3479 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3480 * css which finished ->css_online() is guaranteed to be visible in the
3481 * future iterations and will stay visible until the last reference is put.
3482 * A css which hasn't finished ->css_online() or already finished
3483 * ->css_offline() may show up during traversal. It's each subsystem's
3484 * responsibility to synchronize against on/offlining.
574bd9f7 3485 */
492eb21b
TH
3486struct cgroup_subsys_state *
3487css_next_descendant_pre(struct cgroup_subsys_state *pos,
3488 struct cgroup_subsys_state *root)
574bd9f7 3489{
492eb21b 3490 struct cgroup_subsys_state *next;
574bd9f7 3491
8353da1f 3492 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3493
bd8815a6 3494 /* if first iteration, visit @root */
7805d000 3495 if (!pos)
bd8815a6 3496 return root;
574bd9f7
TH
3497
3498 /* visit the first child if exists */
492eb21b 3499 next = css_next_child(NULL, pos);
574bd9f7
TH
3500 if (next)
3501 return next;
3502
3503 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3504 while (pos != root) {
5c9d535b 3505 next = css_next_child(pos, pos->parent);
75501a6d 3506 if (next)
574bd9f7 3507 return next;
5c9d535b 3508 pos = pos->parent;
7805d000 3509 }
574bd9f7
TH
3510
3511 return NULL;
3512}
574bd9f7 3513
12a9d2fe 3514/**
492eb21b
TH
3515 * css_rightmost_descendant - return the rightmost descendant of a css
3516 * @pos: css of interest
12a9d2fe 3517 *
492eb21b
TH
3518 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3519 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3520 * subtree of @pos.
75501a6d 3521 *
87fb54f1
TH
3522 * While this function requires cgroup_mutex or RCU read locking, it
3523 * doesn't require the whole traversal to be contained in a single critical
3524 * section. This function will return the correct rightmost descendant as
3525 * long as @pos is accessible.
12a9d2fe 3526 */
492eb21b
TH
3527struct cgroup_subsys_state *
3528css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3529{
492eb21b 3530 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3531
8353da1f 3532 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3533
3534 do {
3535 last = pos;
3536 /* ->prev isn't RCU safe, walk ->next till the end */
3537 pos = NULL;
492eb21b 3538 css_for_each_child(tmp, last)
12a9d2fe
TH
3539 pos = tmp;
3540 } while (pos);
3541
3542 return last;
3543}
12a9d2fe 3544
492eb21b
TH
3545static struct cgroup_subsys_state *
3546css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3547{
492eb21b 3548 struct cgroup_subsys_state *last;
574bd9f7
TH
3549
3550 do {
3551 last = pos;
492eb21b 3552 pos = css_next_child(NULL, pos);
574bd9f7
TH
3553 } while (pos);
3554
3555 return last;
3556}
3557
3558/**
492eb21b 3559 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3560 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3561 * @root: css whose descendants to walk
574bd9f7 3562 *
492eb21b 3563 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3564 * to visit for post-order traversal of @root's descendants. @root is
3565 * included in the iteration and the last node to be visited.
75501a6d 3566 *
87fb54f1
TH
3567 * While this function requires cgroup_mutex or RCU read locking, it
3568 * doesn't require the whole traversal to be contained in a single critical
3569 * section. This function will return the correct next descendant as long
3570 * as both @pos and @cgroup are accessible and @pos is a descendant of
3571 * @cgroup.
c2931b70
TH
3572 *
3573 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3574 * css which finished ->css_online() is guaranteed to be visible in the
3575 * future iterations and will stay visible until the last reference is put.
3576 * A css which hasn't finished ->css_online() or already finished
3577 * ->css_offline() may show up during traversal. It's each subsystem's
3578 * responsibility to synchronize against on/offlining.
574bd9f7 3579 */
492eb21b
TH
3580struct cgroup_subsys_state *
3581css_next_descendant_post(struct cgroup_subsys_state *pos,
3582 struct cgroup_subsys_state *root)
574bd9f7 3583{
492eb21b 3584 struct cgroup_subsys_state *next;
574bd9f7 3585
8353da1f 3586 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3587
58b79a91
TH
3588 /* if first iteration, visit leftmost descendant which may be @root */
3589 if (!pos)
3590 return css_leftmost_descendant(root);
574bd9f7 3591
bd8815a6
TH
3592 /* if we visited @root, we're done */
3593 if (pos == root)
3594 return NULL;
3595
574bd9f7 3596 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3597 next = css_next_child(pos, pos->parent);
75501a6d 3598 if (next)
492eb21b 3599 return css_leftmost_descendant(next);
574bd9f7
TH
3600
3601 /* no sibling left, visit parent */
5c9d535b 3602 return pos->parent;
574bd9f7 3603}
574bd9f7 3604
f3d46500
TH
3605/**
3606 * css_has_online_children - does a css have online children
3607 * @css: the target css
3608 *
3609 * Returns %true if @css has any online children; otherwise, %false. This
3610 * function can be called from any context but the caller is responsible
3611 * for synchronizing against on/offlining as necessary.
3612 */
3613bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3614{
f3d46500
TH
3615 struct cgroup_subsys_state *child;
3616 bool ret = false;
cbc125ef
TH
3617
3618 rcu_read_lock();
f3d46500 3619 css_for_each_child(child, css) {
99bae5f9 3620 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3621 ret = true;
3622 break;
cbc125ef
TH
3623 }
3624 }
3625 rcu_read_unlock();
f3d46500 3626 return ret;
574bd9f7 3627}
574bd9f7 3628
0942eeee 3629/**
72ec7029 3630 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3631 * @it: the iterator to advance
3632 *
3633 * Advance @it to the next css_set to walk.
d515876e 3634 */
72ec7029 3635static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3636{
0f0a2b4f 3637 struct list_head *l = it->cset_pos;
d515876e
TH
3638 struct cgrp_cset_link *link;
3639 struct css_set *cset;
3640
3641 /* Advance to the next non-empty css_set */
3642 do {
3643 l = l->next;
0f0a2b4f
TH
3644 if (l == it->cset_head) {
3645 it->cset_pos = NULL;
d515876e
TH
3646 return;
3647 }
3ebb2b6e
TH
3648
3649 if (it->ss) {
3650 cset = container_of(l, struct css_set,
3651 e_cset_node[it->ss->id]);
3652 } else {
3653 link = list_entry(l, struct cgrp_cset_link, cset_link);
3654 cset = link->cset;
3655 }
c7561128
TH
3656 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3657
0f0a2b4f 3658 it->cset_pos = l;
c7561128
TH
3659
3660 if (!list_empty(&cset->tasks))
0f0a2b4f 3661 it->task_pos = cset->tasks.next;
c7561128 3662 else
0f0a2b4f
TH
3663 it->task_pos = cset->mg_tasks.next;
3664
3665 it->tasks_head = &cset->tasks;
3666 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3667}
3668
0942eeee 3669/**
72ec7029
TH
3670 * css_task_iter_start - initiate task iteration
3671 * @css: the css to walk tasks of
0942eeee
TH
3672 * @it: the task iterator to use
3673 *
72ec7029
TH
3674 * Initiate iteration through the tasks of @css. The caller can call
3675 * css_task_iter_next() to walk through the tasks until the function
3676 * returns NULL. On completion of iteration, css_task_iter_end() must be
3677 * called.
0942eeee
TH
3678 *
3679 * Note that this function acquires a lock which is released when the
3680 * iteration finishes. The caller can't sleep while iteration is in
3681 * progress.
3682 */
72ec7029
TH
3683void css_task_iter_start(struct cgroup_subsys_state *css,
3684 struct css_task_iter *it)
96d365e0 3685 __acquires(css_set_rwsem)
817929ec 3686{
56fde9e0
TH
3687 /* no one should try to iterate before mounting cgroups */
3688 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3689
96d365e0 3690 down_read(&css_set_rwsem);
c59cd3d8 3691
3ebb2b6e
TH
3692 it->ss = css->ss;
3693
3694 if (it->ss)
3695 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3696 else
3697 it->cset_pos = &css->cgroup->cset_links;
3698
0f0a2b4f 3699 it->cset_head = it->cset_pos;
c59cd3d8 3700
72ec7029 3701 css_advance_task_iter(it);
817929ec
PM
3702}
3703
0942eeee 3704/**
72ec7029 3705 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3706 * @it: the task iterator being iterated
3707 *
3708 * The "next" function for task iteration. @it should have been
72ec7029
TH
3709 * initialized via css_task_iter_start(). Returns NULL when the iteration
3710 * reaches the end.
0942eeee 3711 */
72ec7029 3712struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3713{
3714 struct task_struct *res;
0f0a2b4f 3715 struct list_head *l = it->task_pos;
817929ec
PM
3716
3717 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3718 if (!it->cset_pos)
817929ec
PM
3719 return NULL;
3720 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3721
3722 /*
3723 * Advance iterator to find next entry. cset->tasks is consumed
3724 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3725 * next cset.
3726 */
817929ec 3727 l = l->next;
c7561128 3728
0f0a2b4f
TH
3729 if (l == it->tasks_head)
3730 l = it->mg_tasks_head->next;
c7561128 3731
0f0a2b4f 3732 if (l == it->mg_tasks_head)
72ec7029 3733 css_advance_task_iter(it);
c7561128 3734 else
0f0a2b4f 3735 it->task_pos = l;
c7561128 3736
817929ec
PM
3737 return res;
3738}
3739
0942eeee 3740/**
72ec7029 3741 * css_task_iter_end - finish task iteration
0942eeee
TH
3742 * @it: the task iterator to finish
3743 *
72ec7029 3744 * Finish task iteration started by css_task_iter_start().
0942eeee 3745 */
72ec7029 3746void css_task_iter_end(struct css_task_iter *it)
96d365e0 3747 __releases(css_set_rwsem)
31a7df01 3748{
96d365e0 3749 up_read(&css_set_rwsem);
31a7df01
CW
3750}
3751
3752/**
8cc99345
TH
3753 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3754 * @to: cgroup to which the tasks will be moved
3755 * @from: cgroup in which the tasks currently reside
31a7df01 3756 *
eaf797ab
TH
3757 * Locking rules between cgroup_post_fork() and the migration path
3758 * guarantee that, if a task is forking while being migrated, the new child
3759 * is guaranteed to be either visible in the source cgroup after the
3760 * parent's migration is complete or put into the target cgroup. No task
3761 * can slip out of migration through forking.
31a7df01 3762 */
8cc99345 3763int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3764{
952aaa12
TH
3765 LIST_HEAD(preloaded_csets);
3766 struct cgrp_cset_link *link;
72ec7029 3767 struct css_task_iter it;
e406d1cf 3768 struct task_struct *task;
952aaa12 3769 int ret;
31a7df01 3770
952aaa12 3771 mutex_lock(&cgroup_mutex);
31a7df01 3772
952aaa12
TH
3773 /* all tasks in @from are being moved, all csets are source */
3774 down_read(&css_set_rwsem);
3775 list_for_each_entry(link, &from->cset_links, cset_link)
3776 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3777 up_read(&css_set_rwsem);
31a7df01 3778
952aaa12
TH
3779 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3780 if (ret)
3781 goto out_err;
8cc99345 3782
952aaa12
TH
3783 /*
3784 * Migrate tasks one-by-one until @form is empty. This fails iff
3785 * ->can_attach() fails.
3786 */
e406d1cf 3787 do {
9d800df1 3788 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3789 task = css_task_iter_next(&it);
3790 if (task)
3791 get_task_struct(task);
3792 css_task_iter_end(&it);
3793
3794 if (task) {
952aaa12 3795 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3796 put_task_struct(task);
3797 }
3798 } while (task && !ret);
952aaa12
TH
3799out_err:
3800 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3801 mutex_unlock(&cgroup_mutex);
e406d1cf 3802 return ret;
8cc99345
TH
3803}
3804
bbcb81d0 3805/*
102a775e 3806 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3807 *
3808 * Reading this file can return large amounts of data if a cgroup has
3809 * *lots* of attached tasks. So it may need several calls to read(),
3810 * but we cannot guarantee that the information we produce is correct
3811 * unless we produce it entirely atomically.
3812 *
bbcb81d0 3813 */
bbcb81d0 3814
24528255
LZ
3815/* which pidlist file are we talking about? */
3816enum cgroup_filetype {
3817 CGROUP_FILE_PROCS,
3818 CGROUP_FILE_TASKS,
3819};
3820
3821/*
3822 * A pidlist is a list of pids that virtually represents the contents of one
3823 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3824 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3825 * to the cgroup.
3826 */
3827struct cgroup_pidlist {
3828 /*
3829 * used to find which pidlist is wanted. doesn't change as long as
3830 * this particular list stays in the list.
3831 */
3832 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3833 /* array of xids */
3834 pid_t *list;
3835 /* how many elements the above list has */
3836 int length;
24528255
LZ
3837 /* each of these stored in a list by its cgroup */
3838 struct list_head links;
3839 /* pointer to the cgroup we belong to, for list removal purposes */
3840 struct cgroup *owner;
b1a21367
TH
3841 /* for delayed destruction */
3842 struct delayed_work destroy_dwork;
24528255
LZ
3843};
3844
d1d9fd33
BB
3845/*
3846 * The following two functions "fix" the issue where there are more pids
3847 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3848 * TODO: replace with a kernel-wide solution to this problem
3849 */
3850#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3851static void *pidlist_allocate(int count)
3852{
3853 if (PIDLIST_TOO_LARGE(count))
3854 return vmalloc(count * sizeof(pid_t));
3855 else
3856 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3857}
b1a21367 3858
d1d9fd33
BB
3859static void pidlist_free(void *p)
3860{
58794514 3861 kvfree(p);
d1d9fd33 3862}
d1d9fd33 3863
b1a21367
TH
3864/*
3865 * Used to destroy all pidlists lingering waiting for destroy timer. None
3866 * should be left afterwards.
3867 */
3868static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3869{
3870 struct cgroup_pidlist *l, *tmp_l;
3871
3872 mutex_lock(&cgrp->pidlist_mutex);
3873 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3874 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3875 mutex_unlock(&cgrp->pidlist_mutex);
3876
3877 flush_workqueue(cgroup_pidlist_destroy_wq);
3878 BUG_ON(!list_empty(&cgrp->pidlists));
3879}
3880
3881static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3882{
3883 struct delayed_work *dwork = to_delayed_work(work);
3884 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3885 destroy_dwork);
3886 struct cgroup_pidlist *tofree = NULL;
3887
3888 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3889
3890 /*
04502365
TH
3891 * Destroy iff we didn't get queued again. The state won't change
3892 * as destroy_dwork can only be queued while locked.
b1a21367 3893 */
04502365 3894 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3895 list_del(&l->links);
3896 pidlist_free(l->list);
3897 put_pid_ns(l->key.ns);
3898 tofree = l;
3899 }
3900
b1a21367
TH
3901 mutex_unlock(&l->owner->pidlist_mutex);
3902 kfree(tofree);
3903}
3904
bbcb81d0 3905/*
102a775e 3906 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3907 * Returns the number of unique elements.
bbcb81d0 3908 */
6ee211ad 3909static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3910{
102a775e 3911 int src, dest = 1;
102a775e
BB
3912
3913 /*
3914 * we presume the 0th element is unique, so i starts at 1. trivial
3915 * edge cases first; no work needs to be done for either
3916 */
3917 if (length == 0 || length == 1)
3918 return length;
3919 /* src and dest walk down the list; dest counts unique elements */
3920 for (src = 1; src < length; src++) {
3921 /* find next unique element */
3922 while (list[src] == list[src-1]) {
3923 src++;
3924 if (src == length)
3925 goto after;
3926 }
3927 /* dest always points to where the next unique element goes */
3928 list[dest] = list[src];
3929 dest++;
3930 }
3931after:
102a775e
BB
3932 return dest;
3933}
3934
afb2bc14
TH
3935/*
3936 * The two pid files - task and cgroup.procs - guaranteed that the result
3937 * is sorted, which forced this whole pidlist fiasco. As pid order is
3938 * different per namespace, each namespace needs differently sorted list,
3939 * making it impossible to use, for example, single rbtree of member tasks
3940 * sorted by task pointer. As pidlists can be fairly large, allocating one
3941 * per open file is dangerous, so cgroup had to implement shared pool of
3942 * pidlists keyed by cgroup and namespace.
3943 *
3944 * All this extra complexity was caused by the original implementation
3945 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3946 * want to do away with it. Explicitly scramble sort order if on the
3947 * default hierarchy so that no such expectation exists in the new
3948 * interface.
afb2bc14
TH
3949 *
3950 * Scrambling is done by swapping every two consecutive bits, which is
3951 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3952 */
3953static pid_t pid_fry(pid_t pid)
3954{
3955 unsigned a = pid & 0x55555555;
3956 unsigned b = pid & 0xAAAAAAAA;
3957
3958 return (a << 1) | (b >> 1);
3959}
3960
3961static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3962{
aa6ec29b 3963 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3964 return pid_fry(pid);
3965 else
3966 return pid;
3967}
3968
102a775e
BB
3969static int cmppid(const void *a, const void *b)
3970{
3971 return *(pid_t *)a - *(pid_t *)b;
3972}
3973
afb2bc14
TH
3974static int fried_cmppid(const void *a, const void *b)
3975{
3976 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3977}
3978
e6b81710
TH
3979static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3980 enum cgroup_filetype type)
3981{
3982 struct cgroup_pidlist *l;
3983 /* don't need task_nsproxy() if we're looking at ourself */
3984 struct pid_namespace *ns = task_active_pid_ns(current);
3985
3986 lockdep_assert_held(&cgrp->pidlist_mutex);
3987
3988 list_for_each_entry(l, &cgrp->pidlists, links)
3989 if (l->key.type == type && l->key.ns == ns)
3990 return l;
3991 return NULL;
3992}
3993
72a8cb30
BB
3994/*
3995 * find the appropriate pidlist for our purpose (given procs vs tasks)
3996 * returns with the lock on that pidlist already held, and takes care
3997 * of the use count, or returns NULL with no locks held if we're out of
3998 * memory.
3999 */
e6b81710
TH
4000static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4001 enum cgroup_filetype type)
72a8cb30
BB
4002{
4003 struct cgroup_pidlist *l;
b70cc5fd 4004
e6b81710
TH
4005 lockdep_assert_held(&cgrp->pidlist_mutex);
4006
4007 l = cgroup_pidlist_find(cgrp, type);
4008 if (l)
4009 return l;
4010
72a8cb30 4011 /* entry not found; create a new one */
f4f4be2b 4012 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4013 if (!l)
72a8cb30 4014 return l;
e6b81710 4015
b1a21367 4016 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4017 l->key.type = type;
e6b81710
TH
4018 /* don't need task_nsproxy() if we're looking at ourself */
4019 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4020 l->owner = cgrp;
4021 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4022 return l;
4023}
4024
102a775e
BB
4025/*
4026 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4027 */
72a8cb30
BB
4028static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4029 struct cgroup_pidlist **lp)
102a775e
BB
4030{
4031 pid_t *array;
4032 int length;
4033 int pid, n = 0; /* used for populating the array */
72ec7029 4034 struct css_task_iter it;
817929ec 4035 struct task_struct *tsk;
102a775e
BB
4036 struct cgroup_pidlist *l;
4037
4bac00d1
TH
4038 lockdep_assert_held(&cgrp->pidlist_mutex);
4039
102a775e
BB
4040 /*
4041 * If cgroup gets more users after we read count, we won't have
4042 * enough space - tough. This race is indistinguishable to the
4043 * caller from the case that the additional cgroup users didn't
4044 * show up until sometime later on.
4045 */
4046 length = cgroup_task_count(cgrp);
d1d9fd33 4047 array = pidlist_allocate(length);
102a775e
BB
4048 if (!array)
4049 return -ENOMEM;
4050 /* now, populate the array */
9d800df1 4051 css_task_iter_start(&cgrp->self, &it);
72ec7029 4052 while ((tsk = css_task_iter_next(&it))) {
102a775e 4053 if (unlikely(n == length))
817929ec 4054 break;
102a775e 4055 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4056 if (type == CGROUP_FILE_PROCS)
4057 pid = task_tgid_vnr(tsk);
4058 else
4059 pid = task_pid_vnr(tsk);
102a775e
BB
4060 if (pid > 0) /* make sure to only use valid results */
4061 array[n++] = pid;
817929ec 4062 }
72ec7029 4063 css_task_iter_end(&it);
102a775e
BB
4064 length = n;
4065 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4066 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4067 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4068 else
4069 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4070 if (type == CGROUP_FILE_PROCS)
6ee211ad 4071 length = pidlist_uniq(array, length);
e6b81710 4072
e6b81710 4073 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4074 if (!l) {
d1d9fd33 4075 pidlist_free(array);
72a8cb30 4076 return -ENOMEM;
102a775e 4077 }
e6b81710
TH
4078
4079 /* store array, freeing old if necessary */
d1d9fd33 4080 pidlist_free(l->list);
102a775e
BB
4081 l->list = array;
4082 l->length = length;
72a8cb30 4083 *lp = l;
102a775e 4084 return 0;
bbcb81d0
PM
4085}
4086
846c7bb0 4087/**
a043e3b2 4088 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4089 * @stats: cgroupstats to fill information into
4090 * @dentry: A dentry entry belonging to the cgroup for which stats have
4091 * been requested.
a043e3b2
LZ
4092 *
4093 * Build and fill cgroupstats so that taskstats can export it to user
4094 * space.
846c7bb0
BS
4095 */
4096int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4097{
2bd59d48 4098 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4099 struct cgroup *cgrp;
72ec7029 4100 struct css_task_iter it;
846c7bb0 4101 struct task_struct *tsk;
33d283be 4102
2bd59d48
TH
4103 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4104 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4105 kernfs_type(kn) != KERNFS_DIR)
4106 return -EINVAL;
4107
bad34660
LZ
4108 mutex_lock(&cgroup_mutex);
4109
846c7bb0 4110 /*
2bd59d48 4111 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4112 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4113 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4114 */
2bd59d48
TH
4115 rcu_read_lock();
4116 cgrp = rcu_dereference(kn->priv);
bad34660 4117 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4118 rcu_read_unlock();
bad34660 4119 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4120 return -ENOENT;
4121 }
bad34660 4122 rcu_read_unlock();
846c7bb0 4123
9d800df1 4124 css_task_iter_start(&cgrp->self, &it);
72ec7029 4125 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4126 switch (tsk->state) {
4127 case TASK_RUNNING:
4128 stats->nr_running++;
4129 break;
4130 case TASK_INTERRUPTIBLE:
4131 stats->nr_sleeping++;
4132 break;
4133 case TASK_UNINTERRUPTIBLE:
4134 stats->nr_uninterruptible++;
4135 break;
4136 case TASK_STOPPED:
4137 stats->nr_stopped++;
4138 break;
4139 default:
4140 if (delayacct_is_task_waiting_on_io(tsk))
4141 stats->nr_io_wait++;
4142 break;
4143 }
4144 }
72ec7029 4145 css_task_iter_end(&it);
846c7bb0 4146
bad34660 4147 mutex_unlock(&cgroup_mutex);
2bd59d48 4148 return 0;
846c7bb0
BS
4149}
4150
8f3ff208 4151
bbcb81d0 4152/*
102a775e 4153 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4154 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4155 * in the cgroup->l->list array.
bbcb81d0 4156 */
cc31edce 4157
102a775e 4158static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4159{
cc31edce
PM
4160 /*
4161 * Initially we receive a position value that corresponds to
4162 * one more than the last pid shown (or 0 on the first call or
4163 * after a seek to the start). Use a binary-search to find the
4164 * next pid to display, if any
4165 */
2bd59d48 4166 struct kernfs_open_file *of = s->private;
7da11279 4167 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4168 struct cgroup_pidlist *l;
7da11279 4169 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4170 int index = 0, pid = *pos;
4bac00d1
TH
4171 int *iter, ret;
4172
4173 mutex_lock(&cgrp->pidlist_mutex);
4174
4175 /*
5d22444f 4176 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4177 * after open. If the matching pidlist is around, we can use that.
5d22444f 4178 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4179 * could already have been destroyed.
4180 */
5d22444f
TH
4181 if (of->priv)
4182 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4183
4184 /*
4185 * Either this is the first start() after open or the matching
4186 * pidlist has been destroyed inbetween. Create a new one.
4187 */
5d22444f
TH
4188 if (!of->priv) {
4189 ret = pidlist_array_load(cgrp, type,
4190 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4191 if (ret)
4192 return ERR_PTR(ret);
4193 }
5d22444f 4194 l = of->priv;
cc31edce 4195
cc31edce 4196 if (pid) {
102a775e 4197 int end = l->length;
20777766 4198
cc31edce
PM
4199 while (index < end) {
4200 int mid = (index + end) / 2;
afb2bc14 4201 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4202 index = mid;
4203 break;
afb2bc14 4204 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4205 index = mid + 1;
4206 else
4207 end = mid;
4208 }
4209 }
4210 /* If we're off the end of the array, we're done */
102a775e 4211 if (index >= l->length)
cc31edce
PM
4212 return NULL;
4213 /* Update the abstract position to be the actual pid that we found */
102a775e 4214 iter = l->list + index;
afb2bc14 4215 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4216 return iter;
4217}
4218
102a775e 4219static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4220{
2bd59d48 4221 struct kernfs_open_file *of = s->private;
5d22444f 4222 struct cgroup_pidlist *l = of->priv;
62236858 4223
5d22444f
TH
4224 if (l)
4225 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4226 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4227 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4228}
4229
102a775e 4230static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4231{
2bd59d48 4232 struct kernfs_open_file *of = s->private;
5d22444f 4233 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4234 pid_t *p = v;
4235 pid_t *end = l->list + l->length;
cc31edce
PM
4236 /*
4237 * Advance to the next pid in the array. If this goes off the
4238 * end, we're done
4239 */
4240 p++;
4241 if (p >= end) {
4242 return NULL;
4243 } else {
7da11279 4244 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4245 return p;
4246 }
4247}
4248
102a775e 4249static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4250{
94ff212d
JP
4251 seq_printf(s, "%d\n", *(int *)v);
4252
4253 return 0;
cc31edce 4254}
bbcb81d0 4255
182446d0
TH
4256static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4257 struct cftype *cft)
81a6a5cd 4258{
182446d0 4259 return notify_on_release(css->cgroup);
81a6a5cd
PM
4260}
4261
182446d0
TH
4262static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4263 struct cftype *cft, u64 val)
6379c106 4264{
6379c106 4265 if (val)
182446d0 4266 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4267 else
182446d0 4268 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4269 return 0;
4270}
4271
182446d0
TH
4272static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4273 struct cftype *cft)
97978e6d 4274{
182446d0 4275 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4276}
4277
182446d0
TH
4278static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4279 struct cftype *cft, u64 val)
97978e6d
DL
4280{
4281 if (val)
182446d0 4282 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4283 else
182446d0 4284 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4285 return 0;
4286}
4287
a14c6874
TH
4288/* cgroup core interface files for the default hierarchy */
4289static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4290 {
d5c56ced 4291 .name = "cgroup.procs",
6612f05b
TH
4292 .seq_start = cgroup_pidlist_start,
4293 .seq_next = cgroup_pidlist_next,
4294 .seq_stop = cgroup_pidlist_stop,
4295 .seq_show = cgroup_pidlist_show,
5d22444f 4296 .private = CGROUP_FILE_PROCS,
acbef755 4297 .write = cgroup_procs_write,
74a1166d 4298 .mode = S_IRUGO | S_IWUSR,
102a775e 4299 },
f8f22e53
TH
4300 {
4301 .name = "cgroup.controllers",
a14c6874 4302 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4303 .seq_show = cgroup_root_controllers_show,
4304 },
4305 {
4306 .name = "cgroup.controllers",
a14c6874 4307 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4308 .seq_show = cgroup_controllers_show,
4309 },
4310 {
4311 .name = "cgroup.subtree_control",
f8f22e53 4312 .seq_show = cgroup_subtree_control_show,
451af504 4313 .write = cgroup_subtree_control_write,
f8f22e53 4314 },
842b597e
TH
4315 {
4316 .name = "cgroup.populated",
a14c6874 4317 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4318 .seq_show = cgroup_populated_show,
4319 },
a14c6874
TH
4320 { } /* terminate */
4321};
d5c56ced 4322
a14c6874
TH
4323/* cgroup core interface files for the legacy hierarchies */
4324static struct cftype cgroup_legacy_base_files[] = {
4325 {
4326 .name = "cgroup.procs",
4327 .seq_start = cgroup_pidlist_start,
4328 .seq_next = cgroup_pidlist_next,
4329 .seq_stop = cgroup_pidlist_stop,
4330 .seq_show = cgroup_pidlist_show,
4331 .private = CGROUP_FILE_PROCS,
4332 .write = cgroup_procs_write,
4333 .mode = S_IRUGO | S_IWUSR,
4334 },
4335 {
4336 .name = "cgroup.clone_children",
4337 .read_u64 = cgroup_clone_children_read,
4338 .write_u64 = cgroup_clone_children_write,
4339 },
4340 {
4341 .name = "cgroup.sane_behavior",
4342 .flags = CFTYPE_ONLY_ON_ROOT,
4343 .seq_show = cgroup_sane_behavior_show,
4344 },
d5c56ced
TH
4345 {
4346 .name = "tasks",
6612f05b
TH
4347 .seq_start = cgroup_pidlist_start,
4348 .seq_next = cgroup_pidlist_next,
4349 .seq_stop = cgroup_pidlist_stop,
4350 .seq_show = cgroup_pidlist_show,
5d22444f 4351 .private = CGROUP_FILE_TASKS,
acbef755 4352 .write = cgroup_tasks_write,
d5c56ced
TH
4353 .mode = S_IRUGO | S_IWUSR,
4354 },
4355 {
4356 .name = "notify_on_release",
d5c56ced
TH
4357 .read_u64 = cgroup_read_notify_on_release,
4358 .write_u64 = cgroup_write_notify_on_release,
4359 },
6e6ff25b
TH
4360 {
4361 .name = "release_agent",
a14c6874 4362 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4363 .seq_show = cgroup_release_agent_show,
451af504 4364 .write = cgroup_release_agent_write,
5f469907 4365 .max_write_len = PATH_MAX - 1,
6e6ff25b 4366 },
db0416b6 4367 { } /* terminate */
bbcb81d0
PM
4368};
4369
13af07df 4370/**
628f7cd4 4371 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4372 * @cgrp: target cgroup
13af07df 4373 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4374 *
4375 * On failure, no file is added.
13af07df 4376 */
8ab456ac 4377static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4378{
ddbcc7e8 4379 struct cgroup_subsys *ss;
b420ba7d 4380 int i, ret = 0;
bbcb81d0 4381
8e3f6541 4382 /* process cftsets of each subsystem */
b420ba7d 4383 for_each_subsys(ss, i) {
0adb0704 4384 struct cftype *cfts;
b420ba7d 4385
69dfa00c 4386 if (!(subsys_mask & (1 << i)))
13af07df 4387 continue;
8e3f6541 4388
0adb0704
TH
4389 list_for_each_entry(cfts, &ss->cfts, node) {
4390 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4391 if (ret < 0)
4392 goto err;
4393 }
ddbcc7e8 4394 }
ddbcc7e8 4395 return 0;
bee55099
TH
4396err:
4397 cgroup_clear_dir(cgrp, subsys_mask);
4398 return ret;
ddbcc7e8
PM
4399}
4400
0c21ead1
TH
4401/*
4402 * css destruction is four-stage process.
4403 *
4404 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4405 * Implemented in kill_css().
4406 *
4407 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4408 * and thus css_tryget_online() is guaranteed to fail, the css can be
4409 * offlined by invoking offline_css(). After offlining, the base ref is
4410 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4411 *
4412 * 3. When the percpu_ref reaches zero, the only possible remaining
4413 * accessors are inside RCU read sections. css_release() schedules the
4414 * RCU callback.
4415 *
4416 * 4. After the grace period, the css can be freed. Implemented in
4417 * css_free_work_fn().
4418 *
4419 * It is actually hairier because both step 2 and 4 require process context
4420 * and thus involve punting to css->destroy_work adding two additional
4421 * steps to the already complex sequence.
4422 */
35ef10da 4423static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4424{
4425 struct cgroup_subsys_state *css =
35ef10da 4426 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4427 struct cgroup_subsys *ss = css->ss;
0c21ead1 4428 struct cgroup *cgrp = css->cgroup;
48ddbe19 4429
9a1049da
TH
4430 percpu_ref_exit(&css->refcnt);
4431
01e58659 4432 if (ss) {
9d755d33 4433 /* css free path */
01e58659
VD
4434 int id = css->id;
4435
9d755d33
TH
4436 if (css->parent)
4437 css_put(css->parent);
0ae78e0b 4438
01e58659
VD
4439 ss->css_free(css);
4440 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4441 cgroup_put(cgrp);
4442 } else {
4443 /* cgroup free path */
4444 atomic_dec(&cgrp->root->nr_cgrps);
4445 cgroup_pidlist_destroy_all(cgrp);
971ff493 4446 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4447
d51f39b0 4448 if (cgroup_parent(cgrp)) {
9d755d33
TH
4449 /*
4450 * We get a ref to the parent, and put the ref when
4451 * this cgroup is being freed, so it's guaranteed
4452 * that the parent won't be destroyed before its
4453 * children.
4454 */
d51f39b0 4455 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4456 kernfs_put(cgrp->kn);
4457 kfree(cgrp);
4458 } else {
4459 /*
4460 * This is root cgroup's refcnt reaching zero,
4461 * which indicates that the root should be
4462 * released.
4463 */
4464 cgroup_destroy_root(cgrp->root);
4465 }
4466 }
48ddbe19
TH
4467}
4468
0c21ead1 4469static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4470{
4471 struct cgroup_subsys_state *css =
0c21ead1 4472 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4473
35ef10da 4474 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4475 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4476}
4477
25e15d83 4478static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4479{
4480 struct cgroup_subsys_state *css =
25e15d83 4481 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4482 struct cgroup_subsys *ss = css->ss;
9d755d33 4483 struct cgroup *cgrp = css->cgroup;
15a4c835 4484
1fed1b2e
TH
4485 mutex_lock(&cgroup_mutex);
4486
de3f0341 4487 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4488 list_del_rcu(&css->sibling);
4489
9d755d33
TH
4490 if (ss) {
4491 /* css release path */
01e58659 4492 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4493 if (ss->css_released)
4494 ss->css_released(css);
9d755d33
TH
4495 } else {
4496 /* cgroup release path */
9d755d33
TH
4497 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4498 cgrp->id = -1;
a4189487
LZ
4499
4500 /*
4501 * There are two control paths which try to determine
4502 * cgroup from dentry without going through kernfs -
4503 * cgroupstats_build() and css_tryget_online_from_dir().
4504 * Those are supported by RCU protecting clearing of
4505 * cgrp->kn->priv backpointer.
4506 */
4507 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4508 }
d3daf28d 4509
1fed1b2e
TH
4510 mutex_unlock(&cgroup_mutex);
4511
0c21ead1 4512 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4513}
4514
d3daf28d
TH
4515static void css_release(struct percpu_ref *ref)
4516{
4517 struct cgroup_subsys_state *css =
4518 container_of(ref, struct cgroup_subsys_state, refcnt);
4519
25e15d83
TH
4520 INIT_WORK(&css->destroy_work, css_release_work_fn);
4521 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4522}
4523
ddfcadab
TH
4524static void init_and_link_css(struct cgroup_subsys_state *css,
4525 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4526{
0cb51d71
TH
4527 lockdep_assert_held(&cgroup_mutex);
4528
ddfcadab
TH
4529 cgroup_get(cgrp);
4530
d5c419b6 4531 memset(css, 0, sizeof(*css));
bd89aabc 4532 css->cgroup = cgrp;
72c97e54 4533 css->ss = ss;
d5c419b6
TH
4534 INIT_LIST_HEAD(&css->sibling);
4535 INIT_LIST_HEAD(&css->children);
0cb51d71 4536 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4537
d51f39b0
TH
4538 if (cgroup_parent(cgrp)) {
4539 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4540 css_get(css->parent);
ddfcadab 4541 }
48ddbe19 4542
ca8bdcaf 4543 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4544}
4545
2a4ac633 4546/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4547static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4548{
623f926b 4549 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4550 int ret = 0;
4551
a31f2d3f
TH
4552 lockdep_assert_held(&cgroup_mutex);
4553
92fb9748 4554 if (ss->css_online)
eb95419b 4555 ret = ss->css_online(css);
ae7f164a 4556 if (!ret) {
eb95419b 4557 css->flags |= CSS_ONLINE;
aec25020 4558 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4559 }
b1929db4 4560 return ret;
a31f2d3f
TH
4561}
4562
2a4ac633 4563/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4564static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4565{
623f926b 4566 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4567
4568 lockdep_assert_held(&cgroup_mutex);
4569
4570 if (!(css->flags & CSS_ONLINE))
4571 return;
4572
d7eeac19 4573 if (ss->css_offline)
eb95419b 4574 ss->css_offline(css);
a31f2d3f 4575
eb95419b 4576 css->flags &= ~CSS_ONLINE;
e3297803 4577 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4578
4579 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4580}
4581
c81c925a
TH
4582/**
4583 * create_css - create a cgroup_subsys_state
4584 * @cgrp: the cgroup new css will be associated with
4585 * @ss: the subsys of new css
f63070d3 4586 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4587 *
4588 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4589 * css is online and installed in @cgrp with all interface files created if
4590 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4591 */
f63070d3
TH
4592static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4593 bool visible)
c81c925a 4594{
d51f39b0 4595 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4596 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4597 struct cgroup_subsys_state *css;
4598 int err;
4599
c81c925a
TH
4600 lockdep_assert_held(&cgroup_mutex);
4601
1fed1b2e 4602 css = ss->css_alloc(parent_css);
c81c925a
TH
4603 if (IS_ERR(css))
4604 return PTR_ERR(css);
4605
ddfcadab 4606 init_and_link_css(css, ss, cgrp);
a2bed820 4607
2aad2a86 4608 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4609 if (err)
3eb59ec6 4610 goto err_free_css;
c81c925a 4611
cf780b7d 4612 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4613 if (err < 0)
4614 goto err_free_percpu_ref;
4615 css->id = err;
c81c925a 4616
f63070d3
TH
4617 if (visible) {
4618 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4619 if (err)
4620 goto err_free_id;
4621 }
15a4c835
TH
4622
4623 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4624 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4625 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4626
4627 err = online_css(css);
4628 if (err)
1fed1b2e 4629 goto err_list_del;
94419627 4630
c81c925a 4631 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4632 cgroup_parent(parent)) {
ed3d261b 4633 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4634 current->comm, current->pid, ss->name);
c81c925a 4635 if (!strcmp(ss->name, "memory"))
ed3d261b 4636 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4637 ss->warned_broken_hierarchy = true;
4638 }
4639
4640 return 0;
4641
1fed1b2e
TH
4642err_list_del:
4643 list_del_rcu(&css->sibling);
32d01dc7 4644 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4645err_free_id:
4646 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4647err_free_percpu_ref:
9a1049da 4648 percpu_ref_exit(&css->refcnt);
3eb59ec6 4649err_free_css:
a2bed820 4650 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4651 return err;
4652}
4653
b3bfd983
TH
4654static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4655 umode_t mode)
ddbcc7e8 4656{
a9746d8d
TH
4657 struct cgroup *parent, *cgrp;
4658 struct cgroup_root *root;
ddbcc7e8 4659 struct cgroup_subsys *ss;
2bd59d48 4660 struct kernfs_node *kn;
a14c6874 4661 struct cftype *base_files;
b3bfd983 4662 int ssid, ret;
ddbcc7e8 4663
71b1fb5c
AC
4664 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4665 */
4666 if (strchr(name, '\n'))
4667 return -EINVAL;
4668
a9746d8d
TH
4669 parent = cgroup_kn_lock_live(parent_kn);
4670 if (!parent)
4671 return -ENODEV;
4672 root = parent->root;
ddbcc7e8 4673
0a950f65 4674 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4675 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4676 if (!cgrp) {
4677 ret = -ENOMEM;
4678 goto out_unlock;
0ab02ca8
LZ
4679 }
4680
2aad2a86 4681 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4682 if (ret)
4683 goto out_free_cgrp;
4684
0ab02ca8
LZ
4685 /*
4686 * Temporarily set the pointer to NULL, so idr_find() won't return
4687 * a half-baked cgroup.
4688 */
cf780b7d 4689 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4690 if (cgrp->id < 0) {
ba0f4d76 4691 ret = -ENOMEM;
9d755d33 4692 goto out_cancel_ref;
976c06bc
TH
4693 }
4694
cc31edce 4695 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4696
9d800df1 4697 cgrp->self.parent = &parent->self;
ba0f4d76 4698 cgrp->root = root;
ddbcc7e8 4699
b6abdb0e
LZ
4700 if (notify_on_release(parent))
4701 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4702
2260e7fc
TH
4703 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4704 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4705
2bd59d48 4706 /* create the directory */
e61734c5 4707 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4708 if (IS_ERR(kn)) {
ba0f4d76
TH
4709 ret = PTR_ERR(kn);
4710 goto out_free_id;
2bd59d48
TH
4711 }
4712 cgrp->kn = kn;
ddbcc7e8 4713
4e139afc 4714 /*
6f30558f
TH
4715 * This extra ref will be put in cgroup_free_fn() and guarantees
4716 * that @cgrp->kn is always accessible.
4e139afc 4717 */
6f30558f 4718 kernfs_get(kn);
ddbcc7e8 4719
0cb51d71 4720 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4721
4e139afc 4722 /* allocation complete, commit to creation */
d5c419b6 4723 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4724 atomic_inc(&root->nr_cgrps);
59f5296b 4725 cgroup_get(parent);
415cf07a 4726
0d80255e
TH
4727 /*
4728 * @cgrp is now fully operational. If something fails after this
4729 * point, it'll be released via the normal destruction path.
4730 */
6fa4918d 4731 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4732
ba0f4d76
TH
4733 ret = cgroup_kn_set_ugid(kn);
4734 if (ret)
4735 goto out_destroy;
49957f8e 4736
a14c6874
TH
4737 if (cgroup_on_dfl(cgrp))
4738 base_files = cgroup_dfl_base_files;
4739 else
4740 base_files = cgroup_legacy_base_files;
4741
4742 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4743 if (ret)
4744 goto out_destroy;
628f7cd4 4745
9d403e99 4746 /* let's create and online css's */
b85d2040 4747 for_each_subsys(ss, ssid) {
f392e51c 4748 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4749 ret = create_css(cgrp, ss,
4750 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4751 if (ret)
4752 goto out_destroy;
b85d2040 4753 }
a8638030 4754 }
ddbcc7e8 4755
bd53d617
TH
4756 /*
4757 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4758 * subtree_control from the parent. Each is configured manually.
bd53d617 4759 */
667c2491
TH
4760 if (!cgroup_on_dfl(cgrp)) {
4761 cgrp->subtree_control = parent->subtree_control;
4762 cgroup_refresh_child_subsys_mask(cgrp);
4763 }
2bd59d48 4764
2bd59d48 4765 kernfs_activate(kn);
ddbcc7e8 4766
ba0f4d76
TH
4767 ret = 0;
4768 goto out_unlock;
ddbcc7e8 4769
ba0f4d76 4770out_free_id:
6fa4918d 4771 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4772out_cancel_ref:
9a1049da 4773 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4774out_free_cgrp:
bd89aabc 4775 kfree(cgrp);
ba0f4d76 4776out_unlock:
a9746d8d 4777 cgroup_kn_unlock(parent_kn);
ba0f4d76 4778 return ret;
4b8b47eb 4779
ba0f4d76 4780out_destroy:
4b8b47eb 4781 cgroup_destroy_locked(cgrp);
ba0f4d76 4782 goto out_unlock;
ddbcc7e8
PM
4783}
4784
223dbc38
TH
4785/*
4786 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4787 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4788 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4789 */
4790static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4791{
223dbc38
TH
4792 struct cgroup_subsys_state *css =
4793 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4794
f20104de 4795 mutex_lock(&cgroup_mutex);
09a503ea 4796 offline_css(css);
f20104de 4797 mutex_unlock(&cgroup_mutex);
09a503ea 4798
09a503ea 4799 css_put(css);
d3daf28d
TH
4800}
4801
223dbc38
TH
4802/* css kill confirmation processing requires process context, bounce */
4803static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4804{
4805 struct cgroup_subsys_state *css =
4806 container_of(ref, struct cgroup_subsys_state, refcnt);
4807
223dbc38 4808 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4809 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4810}
4811
f392e51c
TH
4812/**
4813 * kill_css - destroy a css
4814 * @css: css to destroy
4815 *
4816 * This function initiates destruction of @css by removing cgroup interface
4817 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4818 * asynchronously once css_tryget_online() is guaranteed to fail and when
4819 * the reference count reaches zero, @css will be released.
f392e51c
TH
4820 */
4821static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4822{
01f6474c 4823 lockdep_assert_held(&cgroup_mutex);
94419627 4824
2bd59d48
TH
4825 /*
4826 * This must happen before css is disassociated with its cgroup.
4827 * See seq_css() for details.
4828 */
aec25020 4829 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4830
edae0c33
TH
4831 /*
4832 * Killing would put the base ref, but we need to keep it alive
4833 * until after ->css_offline().
4834 */
4835 css_get(css);
4836
4837 /*
4838 * cgroup core guarantees that, by the time ->css_offline() is
4839 * invoked, no new css reference will be given out via
ec903c0c 4840 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4841 * proceed to offlining css's because percpu_ref_kill() doesn't
4842 * guarantee that the ref is seen as killed on all CPUs on return.
4843 *
4844 * Use percpu_ref_kill_and_confirm() to get notifications as each
4845 * css is confirmed to be seen as killed on all CPUs.
4846 */
4847 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4848}
4849
4850/**
4851 * cgroup_destroy_locked - the first stage of cgroup destruction
4852 * @cgrp: cgroup to be destroyed
4853 *
4854 * css's make use of percpu refcnts whose killing latency shouldn't be
4855 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4856 * guarantee that css_tryget_online() won't succeed by the time
4857 * ->css_offline() is invoked. To satisfy all the requirements,
4858 * destruction is implemented in the following two steps.
d3daf28d
TH
4859 *
4860 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4861 * userland visible parts and start killing the percpu refcnts of
4862 * css's. Set up so that the next stage will be kicked off once all
4863 * the percpu refcnts are confirmed to be killed.
4864 *
4865 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4866 * rest of destruction. Once all cgroup references are gone, the
4867 * cgroup is RCU-freed.
4868 *
4869 * This function implements s1. After this step, @cgrp is gone as far as
4870 * the userland is concerned and a new cgroup with the same name may be
4871 * created. As cgroup doesn't care about the names internally, this
4872 * doesn't cause any problem.
4873 */
42809dd4
TH
4874static int cgroup_destroy_locked(struct cgroup *cgrp)
4875 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4876{
2bd59d48 4877 struct cgroup_subsys_state *css;
ddd69148 4878 bool empty;
1c6727af 4879 int ssid;
ddbcc7e8 4880
42809dd4
TH
4881 lockdep_assert_held(&cgroup_mutex);
4882
ddd69148 4883 /*
96d365e0 4884 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4885 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4886 */
96d365e0 4887 down_read(&css_set_rwsem);
bb78a92f 4888 empty = list_empty(&cgrp->cset_links);
96d365e0 4889 up_read(&css_set_rwsem);
ddd69148 4890 if (!empty)
ddbcc7e8 4891 return -EBUSY;
a043e3b2 4892
bb78a92f 4893 /*
d5c419b6
TH
4894 * Make sure there's no live children. We can't test emptiness of
4895 * ->self.children as dead children linger on it while being
4896 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4897 */
f3d46500 4898 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4899 return -EBUSY;
4900
455050d2
TH
4901 /*
4902 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4903 * creation by disabling cgroup_lock_live_group().
455050d2 4904 */
184faf32 4905 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4906
249f3468 4907 /* initiate massacre of all css's */
1c6727af
TH
4908 for_each_css(css, ssid, cgrp)
4909 kill_css(css);
455050d2 4910
455050d2 4911 /*
01f6474c
TH
4912 * Remove @cgrp directory along with the base files. @cgrp has an
4913 * extra ref on its kn.
f20104de 4914 */
01f6474c 4915 kernfs_remove(cgrp->kn);
f20104de 4916
d51f39b0 4917 check_for_release(cgroup_parent(cgrp));
2bd59d48 4918
249f3468 4919 /* put the base reference */
9d755d33 4920 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4921
ea15f8cc
TH
4922 return 0;
4923};
4924
2bd59d48 4925static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4926{
a9746d8d 4927 struct cgroup *cgrp;
2bd59d48 4928 int ret = 0;
42809dd4 4929
a9746d8d
TH
4930 cgrp = cgroup_kn_lock_live(kn);
4931 if (!cgrp)
4932 return 0;
42809dd4 4933
a9746d8d 4934 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4935
a9746d8d 4936 cgroup_kn_unlock(kn);
42809dd4 4937 return ret;
8e3f6541
TH
4938}
4939
2bd59d48
TH
4940static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4941 .remount_fs = cgroup_remount,
4942 .show_options = cgroup_show_options,
4943 .mkdir = cgroup_mkdir,
4944 .rmdir = cgroup_rmdir,
4945 .rename = cgroup_rename,
4946};
4947
15a4c835 4948static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4949{
ddbcc7e8 4950 struct cgroup_subsys_state *css;
cfe36bde
DC
4951
4952 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4953
648bb56d
TH
4954 mutex_lock(&cgroup_mutex);
4955
15a4c835 4956 idr_init(&ss->css_idr);
0adb0704 4957 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4958
3dd06ffa
TH
4959 /* Create the root cgroup state for this subsystem */
4960 ss->root = &cgrp_dfl_root;
4961 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4962 /* We don't handle early failures gracefully */
4963 BUG_ON(IS_ERR(css));
ddfcadab 4964 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4965
4966 /*
4967 * Root csses are never destroyed and we can't initialize
4968 * percpu_ref during early init. Disable refcnting.
4969 */
4970 css->flags |= CSS_NO_REF;
4971
15a4c835 4972 if (early) {
9395a450 4973 /* allocation can't be done safely during early init */
15a4c835
TH
4974 css->id = 1;
4975 } else {
4976 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4977 BUG_ON(css->id < 0);
4978 }
ddbcc7e8 4979
e8d55fde 4980 /* Update the init_css_set to contain a subsys
817929ec 4981 * pointer to this state - since the subsystem is
e8d55fde 4982 * newly registered, all tasks and hence the
3dd06ffa 4983 * init_css_set is in the subsystem's root cgroup. */
aec25020 4984 init_css_set.subsys[ss->id] = css;
ddbcc7e8 4985
cb4a3167
AS
4986 have_fork_callback |= (bool)ss->fork << ss->id;
4987 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 4988 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 4989
e8d55fde
LZ
4990 /* At system boot, before all subsystems have been
4991 * registered, no tasks have been forked, so we don't
4992 * need to invoke fork callbacks here. */
4993 BUG_ON(!list_empty(&init_task.tasks));
4994
ae7f164a 4995 BUG_ON(online_css(css));
a8638030 4996
cf5d5941
BB
4997 mutex_unlock(&cgroup_mutex);
4998}
cf5d5941 4999
ddbcc7e8 5000/**
a043e3b2
LZ
5001 * cgroup_init_early - cgroup initialization at system boot
5002 *
5003 * Initialize cgroups at system boot, and initialize any
5004 * subsystems that request early init.
ddbcc7e8
PM
5005 */
5006int __init cgroup_init_early(void)
5007{
7b9a6ba5 5008 static struct cgroup_sb_opts __initdata opts;
30159ec7 5009 struct cgroup_subsys *ss;
ddbcc7e8 5010 int i;
30159ec7 5011
3dd06ffa 5012 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5013 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5014
a4ea1cc9 5015 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5016
3ed80a62 5017 for_each_subsys(ss, i) {
aec25020 5018 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5019 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5020 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5021 ss->id, ss->name);
073219e9
TH
5022 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5023 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5024
aec25020 5025 ss->id = i;
073219e9 5026 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5027 if (!ss->legacy_name)
5028 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5029
5030 if (ss->early_init)
15a4c835 5031 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5032 }
5033 return 0;
5034}
5035
5036/**
a043e3b2
LZ
5037 * cgroup_init - cgroup initialization
5038 *
5039 * Register cgroup filesystem and /proc file, and initialize
5040 * any subsystems that didn't request early init.
ddbcc7e8
PM
5041 */
5042int __init cgroup_init(void)
5043{
30159ec7 5044 struct cgroup_subsys *ss;
0ac801fe 5045 unsigned long key;
172a2c06 5046 int ssid, err;
ddbcc7e8 5047
1ed13287 5048 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5049 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5050 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5051
54e7b4eb 5052 mutex_lock(&cgroup_mutex);
54e7b4eb 5053
82fe9b0d
TH
5054 /* Add init_css_set to the hash table */
5055 key = css_set_hash(init_css_set.subsys);
5056 hash_add(css_set_table, &init_css_set.hlist, key);
5057
3dd06ffa 5058 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5059
54e7b4eb
TH
5060 mutex_unlock(&cgroup_mutex);
5061
172a2c06 5062 for_each_subsys(ss, ssid) {
15a4c835
TH
5063 if (ss->early_init) {
5064 struct cgroup_subsys_state *css =
5065 init_css_set.subsys[ss->id];
5066
5067 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5068 GFP_KERNEL);
5069 BUG_ON(css->id < 0);
5070 } else {
5071 cgroup_init_subsys(ss, false);
5072 }
172a2c06 5073
2d8f243a
TH
5074 list_add_tail(&init_css_set.e_cset_node[ssid],
5075 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5076
5077 /*
c731ae1d
LZ
5078 * Setting dfl_root subsys_mask needs to consider the
5079 * disabled flag and cftype registration needs kmalloc,
5080 * both of which aren't available during early_init.
172a2c06 5081 */
a8ddc821
TH
5082 if (ss->disabled)
5083 continue;
5084
5085 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5086
5087 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5088 ss->dfl_cftypes = ss->legacy_cftypes;
5089
5de4fa13
TH
5090 if (!ss->dfl_cftypes)
5091 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5092
a8ddc821
TH
5093 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5094 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5095 } else {
5096 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5097 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5098 }
295458e6
VD
5099
5100 if (ss->bind)
5101 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5102 }
5103
f9bb4882
EB
5104 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5105 if (err)
5106 return err;
676db4af 5107
ddbcc7e8 5108 err = register_filesystem(&cgroup_fs_type);
676db4af 5109 if (err < 0) {
f9bb4882 5110 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5111 return err;
676db4af 5112 }
ddbcc7e8 5113
46ae220b 5114 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5115 return 0;
ddbcc7e8 5116}
b4f48b63 5117
e5fca243
TH
5118static int __init cgroup_wq_init(void)
5119{
5120 /*
5121 * There isn't much point in executing destruction path in
5122 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5123 * Use 1 for @max_active.
e5fca243
TH
5124 *
5125 * We would prefer to do this in cgroup_init() above, but that
5126 * is called before init_workqueues(): so leave this until after.
5127 */
1a11533f 5128 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5129 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5130
5131 /*
5132 * Used to destroy pidlists and separate to serve as flush domain.
5133 * Cap @max_active to 1 too.
5134 */
5135 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5136 0, 1);
5137 BUG_ON(!cgroup_pidlist_destroy_wq);
5138
e5fca243
TH
5139 return 0;
5140}
5141core_initcall(cgroup_wq_init);
5142
a424316c
PM
5143/*
5144 * proc_cgroup_show()
5145 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5146 * - Used for /proc/<pid>/cgroup.
a424316c 5147 */
006f4ac4
ZL
5148int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5149 struct pid *pid, struct task_struct *tsk)
a424316c 5150{
e61734c5 5151 char *buf, *path;
a424316c 5152 int retval;
3dd06ffa 5153 struct cgroup_root *root;
a424316c
PM
5154
5155 retval = -ENOMEM;
e61734c5 5156 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5157 if (!buf)
5158 goto out;
5159
a424316c 5160 mutex_lock(&cgroup_mutex);
96d365e0 5161 down_read(&css_set_rwsem);
a424316c 5162
985ed670 5163 for_each_root(root) {
a424316c 5164 struct cgroup_subsys *ss;
bd89aabc 5165 struct cgroup *cgrp;
b85d2040 5166 int ssid, count = 0;
a424316c 5167
a2dd4247 5168 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5169 continue;
5170
2c6ab6d2 5171 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5172 if (root != &cgrp_dfl_root)
5173 for_each_subsys(ss, ssid)
5174 if (root->subsys_mask & (1 << ssid))
5175 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5176 ss->legacy_name);
c6d57f33
PM
5177 if (strlen(root->name))
5178 seq_printf(m, "%sname=%s", count ? "," : "",
5179 root->name);
a424316c 5180 seq_putc(m, ':');
7717f7ba 5181 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5182 path = cgroup_path(cgrp, buf, PATH_MAX);
5183 if (!path) {
5184 retval = -ENAMETOOLONG;
a424316c 5185 goto out_unlock;
e61734c5
TH
5186 }
5187 seq_puts(m, path);
a424316c
PM
5188 seq_putc(m, '\n');
5189 }
5190
006f4ac4 5191 retval = 0;
a424316c 5192out_unlock:
96d365e0 5193 up_read(&css_set_rwsem);
a424316c 5194 mutex_unlock(&cgroup_mutex);
a424316c
PM
5195 kfree(buf);
5196out:
5197 return retval;
5198}
5199
a424316c
PM
5200/* Display information about each subsystem and each hierarchy */
5201static int proc_cgroupstats_show(struct seq_file *m, void *v)
5202{
30159ec7 5203 struct cgroup_subsys *ss;
a424316c 5204 int i;
a424316c 5205
8bab8dde 5206 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5207 /*
5208 * ideally we don't want subsystems moving around while we do this.
5209 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5210 * subsys/hierarchy state.
5211 */
a424316c 5212 mutex_lock(&cgroup_mutex);
30159ec7
TH
5213
5214 for_each_subsys(ss, i)
2c6ab6d2 5215 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5216 ss->legacy_name, ss->root->hierarchy_id,
3c9c825b 5217 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5218
a424316c
PM
5219 mutex_unlock(&cgroup_mutex);
5220 return 0;
5221}
5222
5223static int cgroupstats_open(struct inode *inode, struct file *file)
5224{
9dce07f1 5225 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5226}
5227
828c0950 5228static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5229 .open = cgroupstats_open,
5230 .read = seq_read,
5231 .llseek = seq_lseek,
5232 .release = single_release,
5233};
5234
7e47682e
AS
5235static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5236{
5237 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5238 return &ss_priv[i - CGROUP_CANFORK_START];
5239 return NULL;
5240}
5241
5242static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5243{
5244 void **private = subsys_canfork_priv_p(ss_priv, i);
5245 return private ? *private : NULL;
5246}
5247
b4f48b63 5248/**
eaf797ab 5249 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5250 * @child: pointer to task_struct of forking parent process.
b4f48b63 5251 *
eaf797ab
TH
5252 * A task is associated with the init_css_set until cgroup_post_fork()
5253 * attaches it to the parent's css_set. Empty cg_list indicates that
5254 * @child isn't holding reference to its css_set.
b4f48b63
PM
5255 */
5256void cgroup_fork(struct task_struct *child)
5257{
eaf797ab 5258 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5259 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5260}
5261
7e47682e
AS
5262/**
5263 * cgroup_can_fork - called on a new task before the process is exposed
5264 * @child: the task in question.
5265 *
5266 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5267 * returns an error, the fork aborts with that error code. This allows for
5268 * a cgroup subsystem to conditionally allow or deny new forks.
5269 */
5270int cgroup_can_fork(struct task_struct *child,
5271 void *ss_priv[CGROUP_CANFORK_COUNT])
5272{
5273 struct cgroup_subsys *ss;
5274 int i, j, ret;
5275
5276 for_each_subsys_which(ss, i, &have_canfork_callback) {
5277 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5278 if (ret)
5279 goto out_revert;
5280 }
5281
5282 return 0;
5283
5284out_revert:
5285 for_each_subsys(ss, j) {
5286 if (j >= i)
5287 break;
5288 if (ss->cancel_fork)
5289 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5290 }
5291
5292 return ret;
5293}
5294
5295/**
5296 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5297 * @child: the task in question
5298 *
5299 * This calls the cancel_fork() callbacks if a fork failed *after*
5300 * cgroup_can_fork() succeded.
5301 */
5302void cgroup_cancel_fork(struct task_struct *child,
5303 void *ss_priv[CGROUP_CANFORK_COUNT])
5304{
5305 struct cgroup_subsys *ss;
5306 int i;
5307
5308 for_each_subsys(ss, i)
5309 if (ss->cancel_fork)
5310 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5311}
5312
817929ec 5313/**
a043e3b2
LZ
5314 * cgroup_post_fork - called on a new task after adding it to the task list
5315 * @child: the task in question
5316 *
5edee61e
TH
5317 * Adds the task to the list running through its css_set if necessary and
5318 * call the subsystem fork() callbacks. Has to be after the task is
5319 * visible on the task list in case we race with the first call to
0942eeee 5320 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5321 * list.
a043e3b2 5322 */
7e47682e
AS
5323void cgroup_post_fork(struct task_struct *child,
5324 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5325{
30159ec7 5326 struct cgroup_subsys *ss;
5edee61e
TH
5327 int i;
5328
3ce3230a 5329 /*
251f8c03 5330 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5331 * function sets use_task_css_set_links before grabbing
5332 * tasklist_lock and we just went through tasklist_lock to add
5333 * @child, it's guaranteed that either we see the set
5334 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5335 * @child during its iteration.
5336 *
5337 * If we won the race, @child is associated with %current's
5338 * css_set. Grabbing css_set_rwsem guarantees both that the
5339 * association is stable, and, on completion of the parent's
5340 * migration, @child is visible in the source of migration or
5341 * already in the destination cgroup. This guarantee is necessary
5342 * when implementing operations which need to migrate all tasks of
5343 * a cgroup to another.
5344 *
251f8c03 5345 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5346 * will remain in init_css_set. This is safe because all tasks are
5347 * in the init_css_set before cg_links is enabled and there's no
5348 * operation which transfers all tasks out of init_css_set.
3ce3230a 5349 */
817929ec 5350 if (use_task_css_set_links) {
eaf797ab
TH
5351 struct css_set *cset;
5352
96d365e0 5353 down_write(&css_set_rwsem);
0e1d768f 5354 cset = task_css_set(current);
eaf797ab
TH
5355 if (list_empty(&child->cg_list)) {
5356 rcu_assign_pointer(child->cgroups, cset);
5357 list_add(&child->cg_list, &cset->tasks);
5358 get_css_set(cset);
5359 }
96d365e0 5360 up_write(&css_set_rwsem);
817929ec 5361 }
5edee61e
TH
5362
5363 /*
5364 * Call ss->fork(). This must happen after @child is linked on
5365 * css_set; otherwise, @child might change state between ->fork()
5366 * and addition to css_set.
5367 */
cb4a3167 5368 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5369 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5370}
5edee61e 5371
b4f48b63
PM
5372/**
5373 * cgroup_exit - detach cgroup from exiting task
5374 * @tsk: pointer to task_struct of exiting process
5375 *
5376 * Description: Detach cgroup from @tsk and release it.
5377 *
5378 * Note that cgroups marked notify_on_release force every task in
5379 * them to take the global cgroup_mutex mutex when exiting.
5380 * This could impact scaling on very large systems. Be reluctant to
5381 * use notify_on_release cgroups where very high task exit scaling
5382 * is required on large systems.
5383 *
0e1d768f
TH
5384 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5385 * call cgroup_exit() while the task is still competent to handle
5386 * notify_on_release(), then leave the task attached to the root cgroup in
5387 * each hierarchy for the remainder of its exit. No need to bother with
5388 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5389 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5390 */
1ec41830 5391void cgroup_exit(struct task_struct *tsk)
b4f48b63 5392{
30159ec7 5393 struct cgroup_subsys *ss;
5abb8855 5394 struct css_set *cset;
eaf797ab 5395 bool put_cset = false;
d41d5a01 5396 int i;
817929ec
PM
5397
5398 /*
0e1d768f
TH
5399 * Unlink from @tsk from its css_set. As migration path can't race
5400 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5401 */
5402 if (!list_empty(&tsk->cg_list)) {
96d365e0 5403 down_write(&css_set_rwsem);
0e1d768f 5404 list_del_init(&tsk->cg_list);
96d365e0 5405 up_write(&css_set_rwsem);
0e1d768f 5406 put_cset = true;
817929ec
PM
5407 }
5408
b4f48b63 5409 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5410 cset = task_css_set(tsk);
5411 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5412
cb4a3167
AS
5413 /* see cgroup_post_fork() for details */
5414 for_each_subsys_which(ss, i, &have_exit_callback) {
5415 struct cgroup_subsys_state *old_css = cset->subsys[i];
5416 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5417
cb4a3167 5418 ss->exit(css, old_css, tsk);
d41d5a01 5419 }
d41d5a01 5420
eaf797ab 5421 if (put_cset)
a25eb52e 5422 put_css_set(cset);
b4f48b63 5423}
697f4161 5424
bd89aabc 5425static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5426{
a25eb52e 5427 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5428 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5429 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5430}
5431
81a6a5cd
PM
5432/*
5433 * Notify userspace when a cgroup is released, by running the
5434 * configured release agent with the name of the cgroup (path
5435 * relative to the root of cgroup file system) as the argument.
5436 *
5437 * Most likely, this user command will try to rmdir this cgroup.
5438 *
5439 * This races with the possibility that some other task will be
5440 * attached to this cgroup before it is removed, or that some other
5441 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5442 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5443 * unused, and this cgroup will be reprieved from its death sentence,
5444 * to continue to serve a useful existence. Next time it's released,
5445 * we will get notified again, if it still has 'notify_on_release' set.
5446 *
5447 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5448 * means only wait until the task is successfully execve()'d. The
5449 * separate release agent task is forked by call_usermodehelper(),
5450 * then control in this thread returns here, without waiting for the
5451 * release agent task. We don't bother to wait because the caller of
5452 * this routine has no use for the exit status of the release agent
5453 * task, so no sense holding our caller up for that.
81a6a5cd 5454 */
81a6a5cd
PM
5455static void cgroup_release_agent(struct work_struct *work)
5456{
971ff493
ZL
5457 struct cgroup *cgrp =
5458 container_of(work, struct cgroup, release_agent_work);
5459 char *pathbuf = NULL, *agentbuf = NULL, *path;
5460 char *argv[3], *envp[3];
5461
81a6a5cd 5462 mutex_lock(&cgroup_mutex);
971ff493
ZL
5463
5464 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5465 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5466 if (!pathbuf || !agentbuf)
5467 goto out;
5468
5469 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5470 if (!path)
5471 goto out;
5472
5473 argv[0] = agentbuf;
5474 argv[1] = path;
5475 argv[2] = NULL;
5476
5477 /* minimal command environment */
5478 envp[0] = "HOME=/";
5479 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5480 envp[2] = NULL;
5481
81a6a5cd 5482 mutex_unlock(&cgroup_mutex);
971ff493 5483 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5484 goto out_free;
971ff493 5485out:
81a6a5cd 5486 mutex_unlock(&cgroup_mutex);
3e2cd91a 5487out_free:
971ff493
ZL
5488 kfree(agentbuf);
5489 kfree(pathbuf);
81a6a5cd 5490}
8bab8dde
PM
5491
5492static int __init cgroup_disable(char *str)
5493{
30159ec7 5494 struct cgroup_subsys *ss;
8bab8dde 5495 char *token;
30159ec7 5496 int i;
8bab8dde
PM
5497
5498 while ((token = strsep(&str, ",")) != NULL) {
5499 if (!*token)
5500 continue;
be45c900 5501
3ed80a62 5502 for_each_subsys(ss, i) {
3e1d2eed
TH
5503 if (strcmp(token, ss->name) &&
5504 strcmp(token, ss->legacy_name))
5505 continue;
5506
5507 ss->disabled = 1;
5508 printk(KERN_INFO "Disabling %s control group subsystem\n",
5509 ss->name);
5510 break;
8bab8dde
PM
5511 }
5512 }
5513 return 1;
5514}
5515__setup("cgroup_disable=", cgroup_disable);
38460b48 5516
a8ddc821
TH
5517static int __init cgroup_set_legacy_files_on_dfl(char *str)
5518{
5519 printk("cgroup: using legacy files on the default hierarchy\n");
5520 cgroup_legacy_files_on_dfl = true;
5521 return 0;
5522}
5523__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5524
b77d7b60 5525/**
ec903c0c 5526 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5527 * @dentry: directory dentry of interest
5528 * @ss: subsystem of interest
b77d7b60 5529 *
5a17f543
TH
5530 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5531 * to get the corresponding css and return it. If such css doesn't exist
5532 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5533 */
ec903c0c
TH
5534struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5535 struct cgroup_subsys *ss)
e5d1367f 5536{
2bd59d48
TH
5537 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5538 struct cgroup_subsys_state *css = NULL;
e5d1367f 5539 struct cgroup *cgrp;
e5d1367f 5540
35cf0836 5541 /* is @dentry a cgroup dir? */
2bd59d48
TH
5542 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5543 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5544 return ERR_PTR(-EBADF);
5545
5a17f543
TH
5546 rcu_read_lock();
5547
2bd59d48
TH
5548 /*
5549 * This path doesn't originate from kernfs and @kn could already
5550 * have been or be removed at any point. @kn->priv is RCU
a4189487 5551 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5552 */
5553 cgrp = rcu_dereference(kn->priv);
5554 if (cgrp)
5555 css = cgroup_css(cgrp, ss);
5a17f543 5556
ec903c0c 5557 if (!css || !css_tryget_online(css))
5a17f543
TH
5558 css = ERR_PTR(-ENOENT);
5559
5560 rcu_read_unlock();
5561 return css;
e5d1367f 5562}
e5d1367f 5563
1cb650b9
LZ
5564/**
5565 * css_from_id - lookup css by id
5566 * @id: the cgroup id
5567 * @ss: cgroup subsys to be looked into
5568 *
5569 * Returns the css if there's valid one with @id, otherwise returns NULL.
5570 * Should be called under rcu_read_lock().
5571 */
5572struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5573{
6fa4918d 5574 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5575 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5576}
5577
fe693435 5578#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5579static struct cgroup_subsys_state *
5580debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5581{
5582 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5583
5584 if (!css)
5585 return ERR_PTR(-ENOMEM);
5586
5587 return css;
5588}
5589
eb95419b 5590static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5591{
eb95419b 5592 kfree(css);
fe693435
PM
5593}
5594
182446d0
TH
5595static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5596 struct cftype *cft)
fe693435 5597{
182446d0 5598 return cgroup_task_count(css->cgroup);
fe693435
PM
5599}
5600
182446d0
TH
5601static u64 current_css_set_read(struct cgroup_subsys_state *css,
5602 struct cftype *cft)
fe693435
PM
5603{
5604 return (u64)(unsigned long)current->cgroups;
5605}
5606
182446d0 5607static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5608 struct cftype *cft)
fe693435
PM
5609{
5610 u64 count;
5611
5612 rcu_read_lock();
a8ad805c 5613 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5614 rcu_read_unlock();
5615 return count;
5616}
5617
2da8ca82 5618static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5619{
69d0206c 5620 struct cgrp_cset_link *link;
5abb8855 5621 struct css_set *cset;
e61734c5
TH
5622 char *name_buf;
5623
5624 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5625 if (!name_buf)
5626 return -ENOMEM;
7717f7ba 5627
96d365e0 5628 down_read(&css_set_rwsem);
7717f7ba 5629 rcu_read_lock();
5abb8855 5630 cset = rcu_dereference(current->cgroups);
69d0206c 5631 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5632 struct cgroup *c = link->cgrp;
7717f7ba 5633
a2dd4247 5634 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5635 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5636 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5637 }
5638 rcu_read_unlock();
96d365e0 5639 up_read(&css_set_rwsem);
e61734c5 5640 kfree(name_buf);
7717f7ba
PM
5641 return 0;
5642}
5643
5644#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5645static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5646{
2da8ca82 5647 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5648 struct cgrp_cset_link *link;
7717f7ba 5649
96d365e0 5650 down_read(&css_set_rwsem);
182446d0 5651 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5652 struct css_set *cset = link->cset;
7717f7ba
PM
5653 struct task_struct *task;
5654 int count = 0;
c7561128 5655
5abb8855 5656 seq_printf(seq, "css_set %p\n", cset);
c7561128 5657
5abb8855 5658 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5659 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5660 goto overflow;
5661 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5662 }
5663
5664 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5665 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5666 goto overflow;
5667 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5668 }
c7561128
TH
5669 continue;
5670 overflow:
5671 seq_puts(seq, " ...\n");
7717f7ba 5672 }
96d365e0 5673 up_read(&css_set_rwsem);
7717f7ba
PM
5674 return 0;
5675}
5676
182446d0 5677static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5678{
a25eb52e
ZL
5679 return (!cgroup_has_tasks(css->cgroup) &&
5680 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5681}
5682
5683static struct cftype debug_files[] = {
fe693435
PM
5684 {
5685 .name = "taskcount",
5686 .read_u64 = debug_taskcount_read,
5687 },
5688
5689 {
5690 .name = "current_css_set",
5691 .read_u64 = current_css_set_read,
5692 },
5693
5694 {
5695 .name = "current_css_set_refcount",
5696 .read_u64 = current_css_set_refcount_read,
5697 },
5698
7717f7ba
PM
5699 {
5700 .name = "current_css_set_cg_links",
2da8ca82 5701 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5702 },
5703
5704 {
5705 .name = "cgroup_css_links",
2da8ca82 5706 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5707 },
5708
fe693435
PM
5709 {
5710 .name = "releasable",
5711 .read_u64 = releasable_read,
5712 },
fe693435 5713
4baf6e33
TH
5714 { } /* terminate */
5715};
fe693435 5716
073219e9 5717struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5718 .css_alloc = debug_css_alloc,
5719 .css_free = debug_css_free,
5577964e 5720 .legacy_cftypes = debug_files,
fe693435
PM
5721};
5722#endif /* CONFIG_CGROUP_DEBUG */