cgroup: implement cgroup_get_from_path() and expose cgroup_put()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
1ed13287
TH
106struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
107
8353da1f 108#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
8353da1f 111 "cgroup_mutex or RCU read lock required");
780cd8b3 112
e5fca243
TH
113/*
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
118 */
119static struct workqueue_struct *cgroup_destroy_wq;
120
b1a21367
TH
121/*
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
124 */
125static struct workqueue_struct *cgroup_pidlist_destroy_wq;
126
3ed80a62 127/* generate an array of cgroup subsystem pointers */
073219e9 128#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 129static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
130#include <linux/cgroup_subsys.h>
131};
073219e9
TH
132#undef SUBSYS
133
134/* array of cgroup subsystem names */
135#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9 139#undef SUBSYS
ddbcc7e8 140
49d1dc4b
TH
141/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142#define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147#include <linux/cgroup_subsys.h>
148#undef SUBSYS
149
150#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151static struct static_key_true *cgroup_subsys_enabled_key[] = {
152#include <linux/cgroup_subsys.h>
153};
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
ddbcc7e8 162/*
3dd06ffa 163 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
ddbcc7e8 166 */
a2dd4247 167struct cgroup_root cgrp_dfl_root;
d0ec4230 168EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 169
a2dd4247
TH
170/*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174static bool cgrp_dfl_root_visible;
ddbcc7e8 175
5533e011 176/* some controllers are not supported in the default hierarchy */
8ab456ac 177static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 178
ddbcc7e8
PM
179/* The list of hierarchy roots */
180
9871bf95
TH
181static LIST_HEAD(cgroup_roots);
182static int cgroup_root_count;
ddbcc7e8 183
3417ae1f 184/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 185static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 186
794611a1 187/*
0cb51d71
TH
188 * Assign a monotonically increasing serial number to csses. It guarantees
189 * cgroups with bigger numbers are newer than those with smaller numbers.
190 * Also, as csses are always appended to the parent's ->children list, it
191 * guarantees that sibling csses are always sorted in the ascending serial
192 * number order on the list. Protected by cgroup_mutex.
794611a1 193 */
0cb51d71 194static u64 css_serial_nr_next = 1;
794611a1 195
cb4a3167
AS
196/*
197 * These bitmask flags indicate whether tasks in the fork and exit paths have
198 * fork/exit handlers to call. This avoids us having to do extra work in the
199 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 200 */
cb4a3167
AS
201static unsigned long have_fork_callback __read_mostly;
202static unsigned long have_exit_callback __read_mostly;
afcf6c8b 203static unsigned long have_free_callback __read_mostly;
ddbcc7e8 204
7e47682e
AS
205/* Ditto for the can_fork callback. */
206static unsigned long have_canfork_callback __read_mostly;
207
a14c6874
TH
208static struct cftype cgroup_dfl_base_files[];
209static struct cftype cgroup_legacy_base_files[];
628f7cd4 210
3dd06ffa 211static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 212 unsigned long ss_mask);
ed27b9f7 213static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 214static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
215static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
216 bool visible);
9d755d33 217static void css_release(struct percpu_ref *ref);
f8f22e53 218static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
219static int cgroup_addrm_files(struct cgroup_subsys_state *css,
220 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 221 bool is_add);
42809dd4 222
fc5ed1e9
TH
223/**
224 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
225 * @ssid: subsys ID of interest
226 *
227 * cgroup_subsys_enabled() can only be used with literal subsys names which
228 * is fine for individual subsystems but unsuitable for cgroup core. This
229 * is slower static_key_enabled() based test indexed by @ssid.
230 */
231static bool cgroup_ssid_enabled(int ssid)
232{
233 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
234}
235
9e10a130
TH
236/**
237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
238 * @cgrp: the cgroup of interest
239 *
240 * The default hierarchy is the v2 interface of cgroup and this function
241 * can be used to test whether a cgroup is on the default hierarchy for
242 * cases where a subsystem should behave differnetly depending on the
243 * interface version.
244 *
245 * The set of behaviors which change on the default hierarchy are still
246 * being determined and the mount option is prefixed with __DEVEL__.
247 *
248 * List of changed behaviors:
249 *
250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
251 * and "name" are disallowed.
252 *
253 * - When mounting an existing superblock, mount options should match.
254 *
255 * - Remount is disallowed.
256 *
257 * - rename(2) is disallowed.
258 *
259 * - "tasks" is removed. Everything should be at process granularity. Use
260 * "cgroup.procs" instead.
261 *
262 * - "cgroup.procs" is not sorted. pids will be unique unless they got
263 * recycled inbetween reads.
264 *
265 * - "release_agent" and "notify_on_release" are removed. Replacement
266 * notification mechanism will be implemented.
267 *
268 * - "cgroup.clone_children" is removed.
269 *
270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
271 * and its descendants contain no task; otherwise, 1. The file also
272 * generates kernfs notification which can be monitored through poll and
273 * [di]notify when the value of the file changes.
274 *
275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
276 * take masks of ancestors with non-empty cpus/mems, instead of being
277 * moved to an ancestor.
278 *
279 * - cpuset: a task can be moved into an empty cpuset, and again it takes
280 * masks of ancestors.
281 *
282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
283 * is not created.
284 *
285 * - blkcg: blk-throttle becomes properly hierarchical.
286 *
287 * - debug: disallowed on the default hierarchy.
288 */
289static bool cgroup_on_dfl(const struct cgroup *cgrp)
290{
291 return cgrp->root == &cgrp_dfl_root;
292}
293
6fa4918d
TH
294/* IDR wrappers which synchronize using cgroup_idr_lock */
295static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
296 gfp_t gfp_mask)
297{
298 int ret;
299
300 idr_preload(gfp_mask);
54504e97 301 spin_lock_bh(&cgroup_idr_lock);
d0164adc 302 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 303 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
304 idr_preload_end();
305 return ret;
306}
307
308static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
309{
310 void *ret;
311
54504e97 312 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 313 ret = idr_replace(idr, ptr, id);
54504e97 314 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
315 return ret;
316}
317
318static void cgroup_idr_remove(struct idr *idr, int id)
319{
54504e97 320 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 321 idr_remove(idr, id);
54504e97 322 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
323}
324
d51f39b0
TH
325static struct cgroup *cgroup_parent(struct cgroup *cgrp)
326{
327 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
328
329 if (parent_css)
330 return container_of(parent_css, struct cgroup, self);
331 return NULL;
332}
333
95109b62
TH
334/**
335 * cgroup_css - obtain a cgroup's css for the specified subsystem
336 * @cgrp: the cgroup of interest
9d800df1 337 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 338 *
ca8bdcaf
TH
339 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
340 * function must be called either under cgroup_mutex or rcu_read_lock() and
341 * the caller is responsible for pinning the returned css if it wants to
342 * keep accessing it outside the said locks. This function may return
343 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
344 */
345static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 346 struct cgroup_subsys *ss)
95109b62 347{
ca8bdcaf 348 if (ss)
aec25020 349 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 350 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 351 else
9d800df1 352 return &cgrp->self;
95109b62 353}
42809dd4 354
aec3dfcb
TH
355/**
356 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
357 * @cgrp: the cgroup of interest
9d800df1 358 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 359 *
d0f702e6 360 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
361 * as the matching css of the nearest ancestor including self which has @ss
362 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
363 * function is guaranteed to return non-NULL css.
364 */
365static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
367{
368 lockdep_assert_held(&cgroup_mutex);
369
370 if (!ss)
9d800df1 371 return &cgrp->self;
aec3dfcb
TH
372
373 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
374 return NULL;
375
eeecbd19
TH
376 /*
377 * This function is used while updating css associations and thus
378 * can't test the csses directly. Use ->child_subsys_mask.
379 */
d51f39b0
TH
380 while (cgroup_parent(cgrp) &&
381 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
382 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
383
384 return cgroup_css(cgrp, ss);
95109b62 385}
42809dd4 386
eeecbd19
TH
387/**
388 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
389 * @cgrp: the cgroup of interest
390 * @ss: the subsystem of interest
391 *
392 * Find and get the effective css of @cgrp for @ss. The effective css is
393 * defined as the matching css of the nearest ancestor including self which
394 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
395 * the root css is returned, so this function always returns a valid css.
396 * The returned css must be put using css_put().
397 */
398struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
399 struct cgroup_subsys *ss)
400{
401 struct cgroup_subsys_state *css;
402
403 rcu_read_lock();
404
405 do {
406 css = cgroup_css(cgrp, ss);
407
408 if (css && css_tryget_online(css))
409 goto out_unlock;
410 cgrp = cgroup_parent(cgrp);
411 } while (cgrp);
412
413 css = init_css_set.subsys[ss->id];
414 css_get(css);
415out_unlock:
416 rcu_read_unlock();
417 return css;
418}
419
ddbcc7e8 420/* convenient tests for these bits */
54766d4a 421static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 422{
184faf32 423 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
424}
425
052c3f3a
TH
426static void cgroup_get(struct cgroup *cgrp)
427{
428 WARN_ON_ONCE(cgroup_is_dead(cgrp));
429 css_get(&cgrp->self);
430}
431
432static bool cgroup_tryget(struct cgroup *cgrp)
433{
434 return css_tryget(&cgrp->self);
435}
436
b4168640 437struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 438{
2bd59d48 439 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 440 struct cftype *cft = of_cft(of);
2bd59d48
TH
441
442 /*
443 * This is open and unprotected implementation of cgroup_css().
444 * seq_css() is only called from a kernfs file operation which has
445 * an active reference on the file. Because all the subsystem
446 * files are drained before a css is disassociated with a cgroup,
447 * the matching css from the cgroup's subsys table is guaranteed to
448 * be and stay valid until the enclosing operation is complete.
449 */
450 if (cft->ss)
451 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
452 else
9d800df1 453 return &cgrp->self;
59f5296b 454}
b4168640 455EXPORT_SYMBOL_GPL(of_css);
59f5296b 456
e9685a03 457static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 458{
bd89aabc 459 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
460}
461
1c6727af
TH
462/**
463 * for_each_css - iterate all css's of a cgroup
464 * @css: the iteration cursor
465 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
466 * @cgrp: the target cgroup to iterate css's of
467 *
aec3dfcb 468 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
469 */
470#define for_each_css(css, ssid, cgrp) \
471 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
472 if (!((css) = rcu_dereference_check( \
473 (cgrp)->subsys[(ssid)], \
474 lockdep_is_held(&cgroup_mutex)))) { } \
475 else
476
aec3dfcb
TH
477/**
478 * for_each_e_css - iterate all effective css's of a cgroup
479 * @css: the iteration cursor
480 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
481 * @cgrp: the target cgroup to iterate css's of
482 *
483 * Should be called under cgroup_[tree_]mutex.
484 */
485#define for_each_e_css(css, ssid, cgrp) \
486 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
487 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
488 ; \
489 else
490
30159ec7 491/**
3ed80a62 492 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 493 * @ss: the iteration cursor
780cd8b3 494 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 495 */
780cd8b3 496#define for_each_subsys(ss, ssid) \
3ed80a62
TH
497 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
498 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 499
cb4a3167
AS
500/**
501 * for_each_subsys_which - filter for_each_subsys with a bitmask
502 * @ss: the iteration cursor
503 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
504 * @ss_maskp: a pointer to the bitmask
505 *
506 * The block will only run for cases where the ssid-th bit (1 << ssid) of
507 * mask is set to 1.
508 */
509#define for_each_subsys_which(ss, ssid, ss_maskp) \
510 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 511 (ssid) = 0; \
cb4a3167
AS
512 else \
513 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
514 if (((ss) = cgroup_subsys[ssid]) && false) \
515 break; \
516 else
517
985ed670
TH
518/* iterate across the hierarchies */
519#define for_each_root(root) \
5549c497 520 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 521
f8f22e53
TH
522/* iterate over child cgrps, lock should be held throughout iteration */
523#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 524 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 525 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
526 cgroup_is_dead(child); })) \
527 ; \
528 else
7ae1bad9 529
81a6a5cd 530static void cgroup_release_agent(struct work_struct *work);
bd89aabc 531static void check_for_release(struct cgroup *cgrp);
81a6a5cd 532
69d0206c
TH
533/*
534 * A cgroup can be associated with multiple css_sets as different tasks may
535 * belong to different cgroups on different hierarchies. In the other
536 * direction, a css_set is naturally associated with multiple cgroups.
537 * This M:N relationship is represented by the following link structure
538 * which exists for each association and allows traversing the associations
539 * from both sides.
540 */
541struct cgrp_cset_link {
542 /* the cgroup and css_set this link associates */
543 struct cgroup *cgrp;
544 struct css_set *cset;
545
546 /* list of cgrp_cset_links anchored at cgrp->cset_links */
547 struct list_head cset_link;
548
549 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
550 struct list_head cgrp_link;
817929ec
PM
551};
552
172a2c06
TH
553/*
554 * The default css_set - used by init and its children prior to any
817929ec
PM
555 * hierarchies being mounted. It contains a pointer to the root state
556 * for each subsystem. Also used to anchor the list of css_sets. Not
557 * reference-counted, to improve performance when child cgroups
558 * haven't been created.
559 */
5024ae29 560struct css_set init_css_set = {
172a2c06
TH
561 .refcount = ATOMIC_INIT(1),
562 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
563 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
565 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
566 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 567 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 568};
817929ec 569
172a2c06 570static int css_set_count = 1; /* 1 for init_css_set */
817929ec 571
0de0942d
TH
572/**
573 * css_set_populated - does a css_set contain any tasks?
574 * @cset: target css_set
575 */
576static bool css_set_populated(struct css_set *cset)
577{
f0d9a5f1 578 lockdep_assert_held(&css_set_lock);
0de0942d
TH
579
580 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
581}
582
842b597e
TH
583/**
584 * cgroup_update_populated - updated populated count of a cgroup
585 * @cgrp: the target cgroup
586 * @populated: inc or dec populated count
587 *
0de0942d
TH
588 * One of the css_sets associated with @cgrp is either getting its first
589 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
590 * count is propagated towards root so that a given cgroup's populated_cnt
591 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
592 *
593 * @cgrp's interface file "cgroup.populated" is zero if
594 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
595 * changes from or to zero, userland is notified that the content of the
596 * interface file has changed. This can be used to detect when @cgrp and
597 * its descendants become populated or empty.
598 */
599static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
600{
f0d9a5f1 601 lockdep_assert_held(&css_set_lock);
842b597e
TH
602
603 do {
604 bool trigger;
605
606 if (populated)
607 trigger = !cgrp->populated_cnt++;
608 else
609 trigger = !--cgrp->populated_cnt;
610
611 if (!trigger)
612 break;
613
ad2ed2b3 614 check_for_release(cgrp);
6f60eade
TH
615 cgroup_file_notify(&cgrp->events_file);
616
d51f39b0 617 cgrp = cgroup_parent(cgrp);
842b597e
TH
618 } while (cgrp);
619}
620
0de0942d
TH
621/**
622 * css_set_update_populated - update populated state of a css_set
623 * @cset: target css_set
624 * @populated: whether @cset is populated or depopulated
625 *
626 * @cset is either getting the first task or losing the last. Update the
627 * ->populated_cnt of all associated cgroups accordingly.
628 */
629static void css_set_update_populated(struct css_set *cset, bool populated)
630{
631 struct cgrp_cset_link *link;
632
f0d9a5f1 633 lockdep_assert_held(&css_set_lock);
0de0942d
TH
634
635 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
636 cgroup_update_populated(link->cgrp, populated);
637}
638
f6d7d049
TH
639/**
640 * css_set_move_task - move a task from one css_set to another
641 * @task: task being moved
642 * @from_cset: css_set @task currently belongs to (may be NULL)
643 * @to_cset: new css_set @task is being moved to (may be NULL)
644 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
645 *
646 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
647 * css_set, @from_cset can be NULL. If @task is being disassociated
648 * instead of moved, @to_cset can be NULL.
649 *
ed27b9f7
TH
650 * This function automatically handles populated_cnt updates and
651 * css_task_iter adjustments but the caller is responsible for managing
652 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
653 */
654static void css_set_move_task(struct task_struct *task,
655 struct css_set *from_cset, struct css_set *to_cset,
656 bool use_mg_tasks)
657{
f0d9a5f1 658 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
659
660 if (from_cset) {
ed27b9f7
TH
661 struct css_task_iter *it, *pos;
662
f6d7d049 663 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
664
665 /*
666 * @task is leaving, advance task iterators which are
667 * pointing to it so that they can resume at the next
668 * position. Advancing an iterator might remove it from
669 * the list, use safe walk. See css_task_iter_advance*()
670 * for details.
671 */
672 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
673 iters_node)
674 if (it->task_pos == &task->cg_list)
675 css_task_iter_advance(it);
676
f6d7d049
TH
677 list_del_init(&task->cg_list);
678 if (!css_set_populated(from_cset))
679 css_set_update_populated(from_cset, false);
680 } else {
681 WARN_ON_ONCE(!list_empty(&task->cg_list));
682 }
683
684 if (to_cset) {
685 /*
686 * We are synchronized through cgroup_threadgroup_rwsem
687 * against PF_EXITING setting such that we can't race
688 * against cgroup_exit() changing the css_set to
689 * init_css_set and dropping the old one.
690 */
691 WARN_ON_ONCE(task->flags & PF_EXITING);
692
693 if (!css_set_populated(to_cset))
694 css_set_update_populated(to_cset, true);
695 rcu_assign_pointer(task->cgroups, to_cset);
696 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
697 &to_cset->tasks);
698 }
699}
700
7717f7ba
PM
701/*
702 * hash table for cgroup groups. This improves the performance to find
703 * an existing css_set. This hash doesn't (currently) take into
704 * account cgroups in empty hierarchies.
705 */
472b1053 706#define CSS_SET_HASH_BITS 7
0ac801fe 707static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 708
0ac801fe 709static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 710{
0ac801fe 711 unsigned long key = 0UL;
30159ec7
TH
712 struct cgroup_subsys *ss;
713 int i;
472b1053 714
30159ec7 715 for_each_subsys(ss, i)
0ac801fe
LZ
716 key += (unsigned long)css[i];
717 key = (key >> 16) ^ key;
472b1053 718
0ac801fe 719 return key;
472b1053
LZ
720}
721
a25eb52e 722static void put_css_set_locked(struct css_set *cset)
b4f48b63 723{
69d0206c 724 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
725 struct cgroup_subsys *ss;
726 int ssid;
5abb8855 727
f0d9a5f1 728 lockdep_assert_held(&css_set_lock);
89c5509b
TH
729
730 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 731 return;
81a6a5cd 732
2c6ab6d2 733 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
734 for_each_subsys(ss, ssid)
735 list_del(&cset->e_cset_node[ssid]);
5abb8855 736 hash_del(&cset->hlist);
2c6ab6d2
PM
737 css_set_count--;
738
69d0206c 739 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
740 list_del(&link->cset_link);
741 list_del(&link->cgrp_link);
2ceb231b
TH
742 if (cgroup_parent(link->cgrp))
743 cgroup_put(link->cgrp);
2c6ab6d2 744 kfree(link);
81a6a5cd 745 }
2c6ab6d2 746
5abb8855 747 kfree_rcu(cset, rcu_head);
b4f48b63
PM
748}
749
a25eb52e 750static void put_css_set(struct css_set *cset)
89c5509b
TH
751{
752 /*
753 * Ensure that the refcount doesn't hit zero while any readers
754 * can see it. Similar to atomic_dec_and_lock(), but for an
755 * rwlock
756 */
757 if (atomic_add_unless(&cset->refcount, -1, 1))
758 return;
759
f0d9a5f1 760 spin_lock_bh(&css_set_lock);
a25eb52e 761 put_css_set_locked(cset);
f0d9a5f1 762 spin_unlock_bh(&css_set_lock);
89c5509b
TH
763}
764
817929ec
PM
765/*
766 * refcounted get/put for css_set objects
767 */
5abb8855 768static inline void get_css_set(struct css_set *cset)
817929ec 769{
5abb8855 770 atomic_inc(&cset->refcount);
817929ec
PM
771}
772
b326f9d0 773/**
7717f7ba 774 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
775 * @cset: candidate css_set being tested
776 * @old_cset: existing css_set for a task
7717f7ba
PM
777 * @new_cgrp: cgroup that's being entered by the task
778 * @template: desired set of css pointers in css_set (pre-calculated)
779 *
6f4b7e63 780 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
781 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
782 */
5abb8855
TH
783static bool compare_css_sets(struct css_set *cset,
784 struct css_set *old_cset,
7717f7ba
PM
785 struct cgroup *new_cgrp,
786 struct cgroup_subsys_state *template[])
787{
788 struct list_head *l1, *l2;
789
aec3dfcb
TH
790 /*
791 * On the default hierarchy, there can be csets which are
792 * associated with the same set of cgroups but different csses.
793 * Let's first ensure that csses match.
794 */
795 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 796 return false;
7717f7ba
PM
797
798 /*
799 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
800 * different cgroups in hierarchies. As different cgroups may
801 * share the same effective css, this comparison is always
802 * necessary.
7717f7ba 803 */
69d0206c
TH
804 l1 = &cset->cgrp_links;
805 l2 = &old_cset->cgrp_links;
7717f7ba 806 while (1) {
69d0206c 807 struct cgrp_cset_link *link1, *link2;
5abb8855 808 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
809
810 l1 = l1->next;
811 l2 = l2->next;
812 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
813 if (l1 == &cset->cgrp_links) {
814 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
815 break;
816 } else {
69d0206c 817 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
818 }
819 /* Locate the cgroups associated with these links. */
69d0206c
TH
820 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
821 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
822 cgrp1 = link1->cgrp;
823 cgrp2 = link2->cgrp;
7717f7ba 824 /* Hierarchies should be linked in the same order. */
5abb8855 825 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
826
827 /*
828 * If this hierarchy is the hierarchy of the cgroup
829 * that's changing, then we need to check that this
830 * css_set points to the new cgroup; if it's any other
831 * hierarchy, then this css_set should point to the
832 * same cgroup as the old css_set.
833 */
5abb8855
TH
834 if (cgrp1->root == new_cgrp->root) {
835 if (cgrp1 != new_cgrp)
7717f7ba
PM
836 return false;
837 } else {
5abb8855 838 if (cgrp1 != cgrp2)
7717f7ba
PM
839 return false;
840 }
841 }
842 return true;
843}
844
b326f9d0
TH
845/**
846 * find_existing_css_set - init css array and find the matching css_set
847 * @old_cset: the css_set that we're using before the cgroup transition
848 * @cgrp: the cgroup that we're moving into
849 * @template: out param for the new set of csses, should be clear on entry
817929ec 850 */
5abb8855
TH
851static struct css_set *find_existing_css_set(struct css_set *old_cset,
852 struct cgroup *cgrp,
853 struct cgroup_subsys_state *template[])
b4f48b63 854{
3dd06ffa 855 struct cgroup_root *root = cgrp->root;
30159ec7 856 struct cgroup_subsys *ss;
5abb8855 857 struct css_set *cset;
0ac801fe 858 unsigned long key;
b326f9d0 859 int i;
817929ec 860
aae8aab4
BB
861 /*
862 * Build the set of subsystem state objects that we want to see in the
863 * new css_set. while subsystems can change globally, the entries here
864 * won't change, so no need for locking.
865 */
30159ec7 866 for_each_subsys(ss, i) {
f392e51c 867 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
868 /*
869 * @ss is in this hierarchy, so we want the
870 * effective css from @cgrp.
871 */
872 template[i] = cgroup_e_css(cgrp, ss);
817929ec 873 } else {
aec3dfcb
TH
874 /*
875 * @ss is not in this hierarchy, so we don't want
876 * to change the css.
877 */
5abb8855 878 template[i] = old_cset->subsys[i];
817929ec
PM
879 }
880 }
881
0ac801fe 882 key = css_set_hash(template);
5abb8855
TH
883 hash_for_each_possible(css_set_table, cset, hlist, key) {
884 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
885 continue;
886
887 /* This css_set matches what we need */
5abb8855 888 return cset;
472b1053 889 }
817929ec
PM
890
891 /* No existing cgroup group matched */
892 return NULL;
893}
894
69d0206c 895static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 896{
69d0206c 897 struct cgrp_cset_link *link, *tmp_link;
36553434 898
69d0206c
TH
899 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
900 list_del(&link->cset_link);
36553434
LZ
901 kfree(link);
902 }
903}
904
69d0206c
TH
905/**
906 * allocate_cgrp_cset_links - allocate cgrp_cset_links
907 * @count: the number of links to allocate
908 * @tmp_links: list_head the allocated links are put on
909 *
910 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
911 * through ->cset_link. Returns 0 on success or -errno.
817929ec 912 */
69d0206c 913static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 914{
69d0206c 915 struct cgrp_cset_link *link;
817929ec 916 int i;
69d0206c
TH
917
918 INIT_LIST_HEAD(tmp_links);
919
817929ec 920 for (i = 0; i < count; i++) {
f4f4be2b 921 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 922 if (!link) {
69d0206c 923 free_cgrp_cset_links(tmp_links);
817929ec
PM
924 return -ENOMEM;
925 }
69d0206c 926 list_add(&link->cset_link, tmp_links);
817929ec
PM
927 }
928 return 0;
929}
930
c12f65d4
LZ
931/**
932 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 933 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 934 * @cset: the css_set to be linked
c12f65d4
LZ
935 * @cgrp: the destination cgroup
936 */
69d0206c
TH
937static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
938 struct cgroup *cgrp)
c12f65d4 939{
69d0206c 940 struct cgrp_cset_link *link;
c12f65d4 941
69d0206c 942 BUG_ON(list_empty(tmp_links));
6803c006
TH
943
944 if (cgroup_on_dfl(cgrp))
945 cset->dfl_cgrp = cgrp;
946
69d0206c
TH
947 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
948 link->cset = cset;
7717f7ba 949 link->cgrp = cgrp;
842b597e 950
7717f7ba 951 /*
389b9c1b
TH
952 * Always add links to the tail of the lists so that the lists are
953 * in choronological order.
7717f7ba 954 */
389b9c1b 955 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 956 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
957
958 if (cgroup_parent(cgrp))
959 cgroup_get(cgrp);
c12f65d4
LZ
960}
961
b326f9d0
TH
962/**
963 * find_css_set - return a new css_set with one cgroup updated
964 * @old_cset: the baseline css_set
965 * @cgrp: the cgroup to be updated
966 *
967 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
968 * substituted into the appropriate hierarchy.
817929ec 969 */
5abb8855
TH
970static struct css_set *find_css_set(struct css_set *old_cset,
971 struct cgroup *cgrp)
817929ec 972{
b326f9d0 973 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 974 struct css_set *cset;
69d0206c
TH
975 struct list_head tmp_links;
976 struct cgrp_cset_link *link;
2d8f243a 977 struct cgroup_subsys *ss;
0ac801fe 978 unsigned long key;
2d8f243a 979 int ssid;
472b1053 980
b326f9d0
TH
981 lockdep_assert_held(&cgroup_mutex);
982
817929ec
PM
983 /* First see if we already have a cgroup group that matches
984 * the desired set */
f0d9a5f1 985 spin_lock_bh(&css_set_lock);
5abb8855
TH
986 cset = find_existing_css_set(old_cset, cgrp, template);
987 if (cset)
988 get_css_set(cset);
f0d9a5f1 989 spin_unlock_bh(&css_set_lock);
817929ec 990
5abb8855
TH
991 if (cset)
992 return cset;
817929ec 993
f4f4be2b 994 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 995 if (!cset)
817929ec
PM
996 return NULL;
997
69d0206c 998 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 999 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1000 kfree(cset);
817929ec
PM
1001 return NULL;
1002 }
1003
5abb8855 1004 atomic_set(&cset->refcount, 1);
69d0206c 1005 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1006 INIT_LIST_HEAD(&cset->tasks);
c7561128 1007 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1008 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1009 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1010 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1011 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1012
1013 /* Copy the set of subsystem state objects generated in
1014 * find_existing_css_set() */
5abb8855 1015 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1016
f0d9a5f1 1017 spin_lock_bh(&css_set_lock);
817929ec 1018 /* Add reference counts and links from the new css_set. */
69d0206c 1019 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1020 struct cgroup *c = link->cgrp;
69d0206c 1021
7717f7ba
PM
1022 if (c->root == cgrp->root)
1023 c = cgrp;
69d0206c 1024 link_css_set(&tmp_links, cset, c);
7717f7ba 1025 }
817929ec 1026
69d0206c 1027 BUG_ON(!list_empty(&tmp_links));
817929ec 1028
817929ec 1029 css_set_count++;
472b1053 1030
2d8f243a 1031 /* Add @cset to the hash table */
5abb8855
TH
1032 key = css_set_hash(cset->subsys);
1033 hash_add(css_set_table, &cset->hlist, key);
472b1053 1034
2d8f243a
TH
1035 for_each_subsys(ss, ssid)
1036 list_add_tail(&cset->e_cset_node[ssid],
1037 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1038
f0d9a5f1 1039 spin_unlock_bh(&css_set_lock);
817929ec 1040
5abb8855 1041 return cset;
b4f48b63
PM
1042}
1043
3dd06ffa 1044static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1045{
3dd06ffa 1046 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1047
3dd06ffa 1048 return root_cgrp->root;
2bd59d48
TH
1049}
1050
3dd06ffa 1051static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1052{
1053 int id;
1054
1055 lockdep_assert_held(&cgroup_mutex);
1056
985ed670 1057 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1058 if (id < 0)
1059 return id;
1060
1061 root->hierarchy_id = id;
1062 return 0;
1063}
1064
3dd06ffa 1065static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1066{
1067 lockdep_assert_held(&cgroup_mutex);
1068
1069 if (root->hierarchy_id) {
1070 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1071 root->hierarchy_id = 0;
1072 }
1073}
1074
3dd06ffa 1075static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1076{
1077 if (root) {
d0f702e6 1078 /* hierarchy ID should already have been released */
f2e85d57
TH
1079 WARN_ON_ONCE(root->hierarchy_id);
1080
1081 idr_destroy(&root->cgroup_idr);
1082 kfree(root);
1083 }
1084}
1085
3dd06ffa 1086static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1087{
3dd06ffa 1088 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1089 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1090
2bd59d48 1091 mutex_lock(&cgroup_mutex);
f2e85d57 1092
776f02fa 1093 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1094 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1095
f2e85d57 1096 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1097 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1098
7717f7ba 1099 /*
f2e85d57
TH
1100 * Release all the links from cset_links to this hierarchy's
1101 * root cgroup
7717f7ba 1102 */
f0d9a5f1 1103 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1104
1105 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1106 list_del(&link->cset_link);
1107 list_del(&link->cgrp_link);
1108 kfree(link);
1109 }
f0d9a5f1
TH
1110
1111 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1112
1113 if (!list_empty(&root->root_list)) {
1114 list_del(&root->root_list);
1115 cgroup_root_count--;
1116 }
1117
1118 cgroup_exit_root_id(root);
1119
1120 mutex_unlock(&cgroup_mutex);
f2e85d57 1121
2bd59d48 1122 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1123 cgroup_free_root(root);
1124}
1125
ceb6a081
TH
1126/* look up cgroup associated with given css_set on the specified hierarchy */
1127static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1128 struct cgroup_root *root)
7717f7ba 1129{
7717f7ba
PM
1130 struct cgroup *res = NULL;
1131
96d365e0 1132 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1133 lockdep_assert_held(&css_set_lock);
96d365e0 1134
5abb8855 1135 if (cset == &init_css_set) {
3dd06ffa 1136 res = &root->cgrp;
7717f7ba 1137 } else {
69d0206c
TH
1138 struct cgrp_cset_link *link;
1139
1140 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1141 struct cgroup *c = link->cgrp;
69d0206c 1142
7717f7ba
PM
1143 if (c->root == root) {
1144 res = c;
1145 break;
1146 }
1147 }
1148 }
96d365e0 1149
7717f7ba
PM
1150 BUG_ON(!res);
1151 return res;
1152}
1153
ddbcc7e8 1154/*
ceb6a081 1155 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1156 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1157 */
1158static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1159 struct cgroup_root *root)
ceb6a081
TH
1160{
1161 /*
1162 * No need to lock the task - since we hold cgroup_mutex the
1163 * task can't change groups, so the only thing that can happen
1164 * is that it exits and its css is set back to init_css_set.
1165 */
1166 return cset_cgroup_from_root(task_css_set(task), root);
1167}
1168
ddbcc7e8 1169/*
ddbcc7e8
PM
1170 * A task must hold cgroup_mutex to modify cgroups.
1171 *
1172 * Any task can increment and decrement the count field without lock.
1173 * So in general, code holding cgroup_mutex can't rely on the count
1174 * field not changing. However, if the count goes to zero, then only
956db3ca 1175 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1176 * means that no tasks are currently attached, therefore there is no
1177 * way a task attached to that cgroup can fork (the other way to
1178 * increment the count). So code holding cgroup_mutex can safely
1179 * assume that if the count is zero, it will stay zero. Similarly, if
1180 * a task holds cgroup_mutex on a cgroup with zero count, it
1181 * knows that the cgroup won't be removed, as cgroup_rmdir()
1182 * needs that mutex.
1183 *
ddbcc7e8
PM
1184 * A cgroup can only be deleted if both its 'count' of using tasks
1185 * is zero, and its list of 'children' cgroups is empty. Since all
1186 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1187 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1188 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1189 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1190 *
1191 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1192 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1193 */
1194
2bd59d48 1195static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1196static const struct file_operations proc_cgroupstats_operations;
a424316c 1197
8d7e6fb0
TH
1198static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1199 char *buf)
ddbcc7e8 1200{
3e1d2eed
TH
1201 struct cgroup_subsys *ss = cft->ss;
1202
8d7e6fb0
TH
1203 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1204 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1205 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1206 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1207 cft->name);
8d7e6fb0
TH
1208 else
1209 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1210 return buf;
ddbcc7e8
PM
1211}
1212
f2e85d57
TH
1213/**
1214 * cgroup_file_mode - deduce file mode of a control file
1215 * @cft: the control file in question
1216 *
7dbdb199 1217 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1218 */
1219static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1220{
f2e85d57 1221 umode_t mode = 0;
65dff759 1222
f2e85d57
TH
1223 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1224 mode |= S_IRUGO;
1225
7dbdb199
TH
1226 if (cft->write_u64 || cft->write_s64 || cft->write) {
1227 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1228 mode |= S_IWUGO;
1229 else
1230 mode |= S_IWUSR;
1231 }
f2e85d57
TH
1232
1233 return mode;
65dff759
LZ
1234}
1235
af0ba678 1236/**
0f060deb 1237 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1238 * @cgrp: the target cgroup
0f060deb 1239 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1240 *
1241 * On the default hierarchy, a subsystem may request other subsystems to be
1242 * enabled together through its ->depends_on mask. In such cases, more
1243 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1244 *
0f060deb
TH
1245 * This function calculates which subsystems need to be enabled if
1246 * @subtree_control is to be applied to @cgrp. The returned mask is always
1247 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1248 */
8ab456ac
AS
1249static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1250 unsigned long subtree_control)
667c2491 1251{
af0ba678 1252 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1253 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1254 struct cgroup_subsys *ss;
1255 int ssid;
1256
1257 lockdep_assert_held(&cgroup_mutex);
1258
0f060deb
TH
1259 if (!cgroup_on_dfl(cgrp))
1260 return cur_ss_mask;
af0ba678
TH
1261
1262 while (true) {
8ab456ac 1263 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1264
a966a4ed
AS
1265 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1266 new_ss_mask |= ss->depends_on;
af0ba678
TH
1267
1268 /*
1269 * Mask out subsystems which aren't available. This can
1270 * happen only if some depended-upon subsystems were bound
1271 * to non-default hierarchies.
1272 */
1273 if (parent)
1274 new_ss_mask &= parent->child_subsys_mask;
1275 else
1276 new_ss_mask &= cgrp->root->subsys_mask;
1277
1278 if (new_ss_mask == cur_ss_mask)
1279 break;
1280 cur_ss_mask = new_ss_mask;
1281 }
1282
0f060deb
TH
1283 return cur_ss_mask;
1284}
1285
1286/**
1287 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1288 * @cgrp: the target cgroup
1289 *
1290 * Update @cgrp->child_subsys_mask according to the current
1291 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1292 */
1293static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1294{
1295 cgrp->child_subsys_mask =
1296 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1297}
1298
a9746d8d
TH
1299/**
1300 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1301 * @kn: the kernfs_node being serviced
1302 *
1303 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1304 * the method finishes if locking succeeded. Note that once this function
1305 * returns the cgroup returned by cgroup_kn_lock_live() may become
1306 * inaccessible any time. If the caller intends to continue to access the
1307 * cgroup, it should pin it before invoking this function.
1308 */
1309static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1310{
a9746d8d
TH
1311 struct cgroup *cgrp;
1312
1313 if (kernfs_type(kn) == KERNFS_DIR)
1314 cgrp = kn->priv;
1315 else
1316 cgrp = kn->parent->priv;
1317
1318 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1319
1320 kernfs_unbreak_active_protection(kn);
1321 cgroup_put(cgrp);
ddbcc7e8
PM
1322}
1323
a9746d8d
TH
1324/**
1325 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1326 * @kn: the kernfs_node being serviced
1327 *
1328 * This helper is to be used by a cgroup kernfs method currently servicing
1329 * @kn. It breaks the active protection, performs cgroup locking and
1330 * verifies that the associated cgroup is alive. Returns the cgroup if
1331 * alive; otherwise, %NULL. A successful return should be undone by a
1332 * matching cgroup_kn_unlock() invocation.
1333 *
1334 * Any cgroup kernfs method implementation which requires locking the
1335 * associated cgroup should use this helper. It avoids nesting cgroup
1336 * locking under kernfs active protection and allows all kernfs operations
1337 * including self-removal.
1338 */
1339static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1340{
a9746d8d
TH
1341 struct cgroup *cgrp;
1342
1343 if (kernfs_type(kn) == KERNFS_DIR)
1344 cgrp = kn->priv;
1345 else
1346 cgrp = kn->parent->priv;
05ef1d7c 1347
2739d3cc 1348 /*
01f6474c 1349 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1350 * active_ref. cgroup liveliness check alone provides enough
1351 * protection against removal. Ensure @cgrp stays accessible and
1352 * break the active_ref protection.
2739d3cc 1353 */
aa32362f
LZ
1354 if (!cgroup_tryget(cgrp))
1355 return NULL;
a9746d8d
TH
1356 kernfs_break_active_protection(kn);
1357
2bd59d48 1358 mutex_lock(&cgroup_mutex);
05ef1d7c 1359
a9746d8d
TH
1360 if (!cgroup_is_dead(cgrp))
1361 return cgrp;
1362
1363 cgroup_kn_unlock(kn);
1364 return NULL;
ddbcc7e8 1365}
05ef1d7c 1366
2739d3cc 1367static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1368{
2bd59d48 1369 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1370
01f6474c 1371 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1372 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1373}
1374
13af07df 1375/**
4df8dc90
TH
1376 * css_clear_dir - remove subsys files in a cgroup directory
1377 * @css: taget css
1378 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1379 */
4df8dc90
TH
1380static void css_clear_dir(struct cgroup_subsys_state *css,
1381 struct cgroup *cgrp_override)
05ef1d7c 1382{
4df8dc90
TH
1383 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1384 struct cftype *cfts;
05ef1d7c 1385
4df8dc90
TH
1386 list_for_each_entry(cfts, &css->ss->cfts, node)
1387 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1388}
1389
ccdca218 1390/**
4df8dc90
TH
1391 * css_populate_dir - create subsys files in a cgroup directory
1392 * @css: target css
1393 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1394 *
1395 * On failure, no file is added.
1396 */
4df8dc90
TH
1397static int css_populate_dir(struct cgroup_subsys_state *css,
1398 struct cgroup *cgrp_override)
ccdca218 1399{
4df8dc90
TH
1400 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1401 struct cftype *cfts, *failed_cfts;
1402 int ret;
ccdca218 1403
4df8dc90
TH
1404 if (!css->ss) {
1405 if (cgroup_on_dfl(cgrp))
1406 cfts = cgroup_dfl_base_files;
1407 else
1408 cfts = cgroup_legacy_base_files;
ccdca218 1409
4df8dc90
TH
1410 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1411 }
ccdca218 1412
4df8dc90
TH
1413 list_for_each_entry(cfts, &css->ss->cfts, node) {
1414 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1415 if (ret < 0) {
1416 failed_cfts = cfts;
1417 goto err;
ccdca218
TH
1418 }
1419 }
1420 return 0;
1421err:
4df8dc90
TH
1422 list_for_each_entry(cfts, &css->ss->cfts, node) {
1423 if (cfts == failed_cfts)
1424 break;
1425 cgroup_addrm_files(css, cgrp, cfts, false);
1426 }
ccdca218
TH
1427 return ret;
1428}
1429
8ab456ac
AS
1430static int rebind_subsystems(struct cgroup_root *dst_root,
1431 unsigned long ss_mask)
ddbcc7e8 1432{
1ada4838 1433 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1434 struct cgroup_subsys *ss;
8ab456ac 1435 unsigned long tmp_ss_mask;
2d8f243a 1436 int ssid, i, ret;
ddbcc7e8 1437
ace2bee8 1438 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1439
a966a4ed 1440 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1441 /* if @ss has non-root csses attached to it, can't move */
1442 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1443 return -EBUSY;
1d5be6b2 1444
5df36032 1445 /* can't move between two non-dummy roots either */
7fd8c565 1446 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1447 return -EBUSY;
ddbcc7e8
PM
1448 }
1449
5533e011
TH
1450 /* skip creating root files on dfl_root for inhibited subsystems */
1451 tmp_ss_mask = ss_mask;
1452 if (dst_root == &cgrp_dfl_root)
1453 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1454
4df8dc90
TH
1455 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1456 struct cgroup *scgrp = &ss->root->cgrp;
1457 int tssid;
1458
1459 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1460 if (!ret)
1461 continue;
ddbcc7e8 1462
a2dd4247
TH
1463 /*
1464 * Rebinding back to the default root is not allowed to
1465 * fail. Using both default and non-default roots should
1466 * be rare. Moving subsystems back and forth even more so.
1467 * Just warn about it and continue.
1468 */
4df8dc90
TH
1469 if (dst_root == &cgrp_dfl_root) {
1470 if (cgrp_dfl_root_visible) {
1471 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1472 ret, ss_mask);
1473 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1474 }
1475 continue;
a2dd4247 1476 }
4df8dc90
TH
1477
1478 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1479 if (tssid == ssid)
1480 break;
1481 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1482 }
1483 return ret;
5df36032 1484 }
3126121f
TH
1485
1486 /*
1487 * Nothing can fail from this point on. Remove files for the
1488 * removed subsystems and rebind each subsystem.
1489 */
a966a4ed 1490 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1491 struct cgroup_root *src_root = ss->root;
1492 struct cgroup *scgrp = &src_root->cgrp;
1493 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1494 struct css_set *cset;
a8a648c4 1495
1ada4838 1496 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1497
4df8dc90
TH
1498 css_clear_dir(css, NULL);
1499
1ada4838
TH
1500 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1501 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1502 ss->root = dst_root;
1ada4838 1503 css->cgroup = dcgrp;
73e80ed8 1504
f0d9a5f1 1505 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1506 hash_for_each(css_set_table, i, cset, hlist)
1507 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1508 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1509 spin_unlock_bh(&css_set_lock);
2d8f243a 1510
f392e51c 1511 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1512 scgrp->subtree_control &= ~(1 << ssid);
1513 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1514
bd53d617 1515 /* default hierarchy doesn't enable controllers by default */
f392e51c 1516 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1517 if (dst_root == &cgrp_dfl_root) {
1518 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1519 } else {
1ada4838
TH
1520 dcgrp->subtree_control |= 1 << ssid;
1521 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1522 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1523 }
a8a648c4 1524
5df36032
TH
1525 if (ss->bind)
1526 ss->bind(css);
ddbcc7e8 1527 }
ddbcc7e8 1528
1ada4838 1529 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1530 return 0;
1531}
1532
2bd59d48
TH
1533static int cgroup_show_options(struct seq_file *seq,
1534 struct kernfs_root *kf_root)
ddbcc7e8 1535{
3dd06ffa 1536 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1537 struct cgroup_subsys *ss;
b85d2040 1538 int ssid;
ddbcc7e8 1539
d98817d4
TH
1540 if (root != &cgrp_dfl_root)
1541 for_each_subsys(ss, ssid)
1542 if (root->subsys_mask & (1 << ssid))
61e57c0c 1543 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1544 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1545 seq_puts(seq, ",noprefix");
93438629 1546 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1547 seq_puts(seq, ",xattr");
69e943b7
TH
1548
1549 spin_lock(&release_agent_path_lock);
81a6a5cd 1550 if (strlen(root->release_agent_path))
a068acf2
KC
1551 seq_show_option(seq, "release_agent",
1552 root->release_agent_path);
69e943b7
TH
1553 spin_unlock(&release_agent_path_lock);
1554
3dd06ffa 1555 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1556 seq_puts(seq, ",clone_children");
c6d57f33 1557 if (strlen(root->name))
a068acf2 1558 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1559 return 0;
1560}
1561
1562struct cgroup_sb_opts {
8ab456ac 1563 unsigned long subsys_mask;
69dfa00c 1564 unsigned int flags;
81a6a5cd 1565 char *release_agent;
2260e7fc 1566 bool cpuset_clone_children;
c6d57f33 1567 char *name;
2c6ab6d2
PM
1568 /* User explicitly requested empty subsystem */
1569 bool none;
ddbcc7e8
PM
1570};
1571
cf5d5941 1572static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1573{
32a8cf23
DL
1574 char *token, *o = data;
1575 bool all_ss = false, one_ss = false;
8ab456ac 1576 unsigned long mask = -1UL;
30159ec7 1577 struct cgroup_subsys *ss;
7b9a6ba5 1578 int nr_opts = 0;
30159ec7 1579 int i;
f9ab5b5b
LZ
1580
1581#ifdef CONFIG_CPUSETS
69dfa00c 1582 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1583#endif
ddbcc7e8 1584
c6d57f33 1585 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1586
1587 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1588 nr_opts++;
1589
ddbcc7e8
PM
1590 if (!*token)
1591 return -EINVAL;
32a8cf23 1592 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1593 /* Explicitly have no subsystems */
1594 opts->none = true;
32a8cf23
DL
1595 continue;
1596 }
1597 if (!strcmp(token, "all")) {
1598 /* Mutually exclusive option 'all' + subsystem name */
1599 if (one_ss)
1600 return -EINVAL;
1601 all_ss = true;
1602 continue;
1603 }
873fe09e
TH
1604 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1605 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1606 continue;
1607 }
32a8cf23 1608 if (!strcmp(token, "noprefix")) {
93438629 1609 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1610 continue;
1611 }
1612 if (!strcmp(token, "clone_children")) {
2260e7fc 1613 opts->cpuset_clone_children = true;
32a8cf23
DL
1614 continue;
1615 }
03b1cde6 1616 if (!strcmp(token, "xattr")) {
93438629 1617 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1618 continue;
1619 }
32a8cf23 1620 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1621 /* Specifying two release agents is forbidden */
1622 if (opts->release_agent)
1623 return -EINVAL;
c6d57f33 1624 opts->release_agent =
e400c285 1625 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1626 if (!opts->release_agent)
1627 return -ENOMEM;
32a8cf23
DL
1628 continue;
1629 }
1630 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1631 const char *name = token + 5;
1632 /* Can't specify an empty name */
1633 if (!strlen(name))
1634 return -EINVAL;
1635 /* Must match [\w.-]+ */
1636 for (i = 0; i < strlen(name); i++) {
1637 char c = name[i];
1638 if (isalnum(c))
1639 continue;
1640 if ((c == '.') || (c == '-') || (c == '_'))
1641 continue;
1642 return -EINVAL;
1643 }
1644 /* Specifying two names is forbidden */
1645 if (opts->name)
1646 return -EINVAL;
1647 opts->name = kstrndup(name,
e400c285 1648 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1649 GFP_KERNEL);
1650 if (!opts->name)
1651 return -ENOMEM;
32a8cf23
DL
1652
1653 continue;
1654 }
1655
30159ec7 1656 for_each_subsys(ss, i) {
3e1d2eed 1657 if (strcmp(token, ss->legacy_name))
32a8cf23 1658 continue;
fc5ed1e9 1659 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1660 continue;
1661
1662 /* Mutually exclusive option 'all' + subsystem name */
1663 if (all_ss)
1664 return -EINVAL;
69dfa00c 1665 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1666 one_ss = true;
1667
1668 break;
1669 }
1670 if (i == CGROUP_SUBSYS_COUNT)
1671 return -ENOENT;
1672 }
1673
873fe09e 1674 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1675 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1676 if (nr_opts != 1) {
1677 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1678 return -EINVAL;
1679 }
7b9a6ba5 1680 return 0;
873fe09e
TH
1681 }
1682
7b9a6ba5
TH
1683 /*
1684 * If the 'all' option was specified select all the subsystems,
1685 * otherwise if 'none', 'name=' and a subsystem name options were
1686 * not specified, let's default to 'all'
1687 */
1688 if (all_ss || (!one_ss && !opts->none && !opts->name))
1689 for_each_subsys(ss, i)
fc5ed1e9 1690 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1691 opts->subsys_mask |= (1 << i);
1692
1693 /*
1694 * We either have to specify by name or by subsystems. (So all
1695 * empty hierarchies must have a name).
1696 */
1697 if (!opts->subsys_mask && !opts->name)
1698 return -EINVAL;
1699
f9ab5b5b
LZ
1700 /*
1701 * Option noprefix was introduced just for backward compatibility
1702 * with the old cpuset, so we allow noprefix only if mounting just
1703 * the cpuset subsystem.
1704 */
93438629 1705 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1706 return -EINVAL;
1707
2c6ab6d2 1708 /* Can't specify "none" and some subsystems */
a1a71b45 1709 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1710 return -EINVAL;
1711
ddbcc7e8
PM
1712 return 0;
1713}
1714
2bd59d48 1715static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1716{
1717 int ret = 0;
3dd06ffa 1718 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1719 struct cgroup_sb_opts opts;
8ab456ac 1720 unsigned long added_mask, removed_mask;
ddbcc7e8 1721
aa6ec29b
TH
1722 if (root == &cgrp_dfl_root) {
1723 pr_err("remount is not allowed\n");
873fe09e
TH
1724 return -EINVAL;
1725 }
1726
ddbcc7e8
PM
1727 mutex_lock(&cgroup_mutex);
1728
1729 /* See what subsystems are wanted */
1730 ret = parse_cgroupfs_options(data, &opts);
1731 if (ret)
1732 goto out_unlock;
1733
f392e51c 1734 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1735 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1736 task_tgid_nr(current), current->comm);
8b5a5a9d 1737
f392e51c
TH
1738 added_mask = opts.subsys_mask & ~root->subsys_mask;
1739 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1740
cf5d5941 1741 /* Don't allow flags or name to change at remount */
7450e90b 1742 if ((opts.flags ^ root->flags) ||
cf5d5941 1743 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1744 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1745 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1746 ret = -EINVAL;
1747 goto out_unlock;
1748 }
1749
f172e67c 1750 /* remounting is not allowed for populated hierarchies */
d5c419b6 1751 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1752 ret = -EBUSY;
0670e08b 1753 goto out_unlock;
cf5d5941 1754 }
ddbcc7e8 1755
5df36032 1756 ret = rebind_subsystems(root, added_mask);
3126121f 1757 if (ret)
0670e08b 1758 goto out_unlock;
ddbcc7e8 1759
3dd06ffa 1760 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1761
69e943b7
TH
1762 if (opts.release_agent) {
1763 spin_lock(&release_agent_path_lock);
81a6a5cd 1764 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1765 spin_unlock(&release_agent_path_lock);
1766 }
ddbcc7e8 1767 out_unlock:
66bdc9cf 1768 kfree(opts.release_agent);
c6d57f33 1769 kfree(opts.name);
ddbcc7e8 1770 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1771 return ret;
1772}
1773
afeb0f9f
TH
1774/*
1775 * To reduce the fork() overhead for systems that are not actually using
1776 * their cgroups capability, we don't maintain the lists running through
1777 * each css_set to its tasks until we see the list actually used - in other
1778 * words after the first mount.
1779 */
1780static bool use_task_css_set_links __read_mostly;
1781
1782static void cgroup_enable_task_cg_lists(void)
1783{
1784 struct task_struct *p, *g;
1785
f0d9a5f1 1786 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1787
1788 if (use_task_css_set_links)
1789 goto out_unlock;
1790
1791 use_task_css_set_links = true;
1792
1793 /*
1794 * We need tasklist_lock because RCU is not safe against
1795 * while_each_thread(). Besides, a forking task that has passed
1796 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1797 * is not guaranteed to have its child immediately visible in the
1798 * tasklist if we walk through it with RCU.
1799 */
1800 read_lock(&tasklist_lock);
1801 do_each_thread(g, p) {
afeb0f9f
TH
1802 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1803 task_css_set(p) != &init_css_set);
1804
1805 /*
1806 * We should check if the process is exiting, otherwise
1807 * it will race with cgroup_exit() in that the list
1808 * entry won't be deleted though the process has exited.
f153ad11
TH
1809 * Do it while holding siglock so that we don't end up
1810 * racing against cgroup_exit().
afeb0f9f 1811 */
f153ad11 1812 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1813 if (!(p->flags & PF_EXITING)) {
1814 struct css_set *cset = task_css_set(p);
1815
0de0942d
TH
1816 if (!css_set_populated(cset))
1817 css_set_update_populated(cset, true);
389b9c1b 1818 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1819 get_css_set(cset);
1820 }
f153ad11 1821 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1822 } while_each_thread(g, p);
1823 read_unlock(&tasklist_lock);
1824out_unlock:
f0d9a5f1 1825 spin_unlock_bh(&css_set_lock);
afeb0f9f 1826}
ddbcc7e8 1827
cc31edce
PM
1828static void init_cgroup_housekeeping(struct cgroup *cgrp)
1829{
2d8f243a
TH
1830 struct cgroup_subsys *ss;
1831 int ssid;
1832
d5c419b6
TH
1833 INIT_LIST_HEAD(&cgrp->self.sibling);
1834 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1835 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1836 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1837 INIT_LIST_HEAD(&cgrp->pidlists);
1838 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1839 cgrp->self.cgroup = cgrp;
184faf32 1840 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1841
1842 for_each_subsys(ss, ssid)
1843 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1844
1845 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1846 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1847}
c6d57f33 1848
3dd06ffa 1849static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1850 struct cgroup_sb_opts *opts)
ddbcc7e8 1851{
3dd06ffa 1852 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1853
ddbcc7e8 1854 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1855 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1856 cgrp->root = root;
cc31edce 1857 init_cgroup_housekeeping(cgrp);
4e96ee8e 1858 idr_init(&root->cgroup_idr);
c6d57f33 1859
c6d57f33
PM
1860 root->flags = opts->flags;
1861 if (opts->release_agent)
1862 strcpy(root->release_agent_path, opts->release_agent);
1863 if (opts->name)
1864 strcpy(root->name, opts->name);
2260e7fc 1865 if (opts->cpuset_clone_children)
3dd06ffa 1866 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1867}
1868
8ab456ac 1869static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1870{
d427dfeb 1871 LIST_HEAD(tmp_links);
3dd06ffa 1872 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1873 struct css_set *cset;
d427dfeb 1874 int i, ret;
2c6ab6d2 1875
d427dfeb 1876 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1877
cf780b7d 1878 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1879 if (ret < 0)
2bd59d48 1880 goto out;
d427dfeb 1881 root_cgrp->id = ret;
b11cfb58 1882 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1883
2aad2a86
TH
1884 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1885 GFP_KERNEL);
9d755d33
TH
1886 if (ret)
1887 goto out;
1888
d427dfeb 1889 /*
f0d9a5f1 1890 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1891 * but that's OK - it can only be increased by someone holding
1892 * cgroup_lock, and that's us. The worst that can happen is that we
1893 * have some link structures left over
1894 */
1895 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1896 if (ret)
9d755d33 1897 goto cancel_ref;
ddbcc7e8 1898
985ed670 1899 ret = cgroup_init_root_id(root);
ddbcc7e8 1900 if (ret)
9d755d33 1901 goto cancel_ref;
ddbcc7e8 1902
2bd59d48
TH
1903 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1904 KERNFS_ROOT_CREATE_DEACTIVATED,
1905 root_cgrp);
1906 if (IS_ERR(root->kf_root)) {
1907 ret = PTR_ERR(root->kf_root);
1908 goto exit_root_id;
1909 }
1910 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1911
4df8dc90 1912 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1913 if (ret)
2bd59d48 1914 goto destroy_root;
ddbcc7e8 1915
5df36032 1916 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1917 if (ret)
2bd59d48 1918 goto destroy_root;
ddbcc7e8 1919
d427dfeb
TH
1920 /*
1921 * There must be no failure case after here, since rebinding takes
1922 * care of subsystems' refcounts, which are explicitly dropped in
1923 * the failure exit path.
1924 */
1925 list_add(&root->root_list, &cgroup_roots);
1926 cgroup_root_count++;
0df6a63f 1927
d427dfeb 1928 /*
3dd06ffa 1929 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1930 * objects.
1931 */
f0d9a5f1 1932 spin_lock_bh(&css_set_lock);
0de0942d 1933 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1934 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1935 if (css_set_populated(cset))
1936 cgroup_update_populated(root_cgrp, true);
1937 }
f0d9a5f1 1938 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1939
d5c419b6 1940 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1941 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1942
2bd59d48 1943 kernfs_activate(root_cgrp->kn);
d427dfeb 1944 ret = 0;
2bd59d48 1945 goto out;
d427dfeb 1946
2bd59d48
TH
1947destroy_root:
1948 kernfs_destroy_root(root->kf_root);
1949 root->kf_root = NULL;
1950exit_root_id:
d427dfeb 1951 cgroup_exit_root_id(root);
9d755d33 1952cancel_ref:
9a1049da 1953 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1954out:
d427dfeb
TH
1955 free_cgrp_cset_links(&tmp_links);
1956 return ret;
ddbcc7e8
PM
1957}
1958
f7e83571 1959static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1960 int flags, const char *unused_dev_name,
f7e83571 1961 void *data)
ddbcc7e8 1962{
3a32bd72 1963 struct super_block *pinned_sb = NULL;
970317aa 1964 struct cgroup_subsys *ss;
3dd06ffa 1965 struct cgroup_root *root;
ddbcc7e8 1966 struct cgroup_sb_opts opts;
2bd59d48 1967 struct dentry *dentry;
8e30e2b8 1968 int ret;
970317aa 1969 int i;
c6b3d5bc 1970 bool new_sb;
ddbcc7e8 1971
56fde9e0
TH
1972 /*
1973 * The first time anyone tries to mount a cgroup, enable the list
1974 * linking each css_set to its tasks and fix up all existing tasks.
1975 */
1976 if (!use_task_css_set_links)
1977 cgroup_enable_task_cg_lists();
e37a06f1 1978
aae8aab4 1979 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1980
1981 /* First find the desired set of subsystems */
ddbcc7e8 1982 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1983 if (ret)
8e30e2b8 1984 goto out_unlock;
a015edd2 1985
2bd59d48 1986 /* look for a matching existing root */
7b9a6ba5 1987 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1988 cgrp_dfl_root_visible = true;
1989 root = &cgrp_dfl_root;
1990 cgroup_get(&root->cgrp);
1991 ret = 0;
1992 goto out_unlock;
ddbcc7e8
PM
1993 }
1994
970317aa
LZ
1995 /*
1996 * Destruction of cgroup root is asynchronous, so subsystems may
1997 * still be dying after the previous unmount. Let's drain the
1998 * dying subsystems. We just need to ensure that the ones
1999 * unmounted previously finish dying and don't care about new ones
2000 * starting. Testing ref liveliness is good enough.
2001 */
2002 for_each_subsys(ss, i) {
2003 if (!(opts.subsys_mask & (1 << i)) ||
2004 ss->root == &cgrp_dfl_root)
2005 continue;
2006
2007 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2008 mutex_unlock(&cgroup_mutex);
2009 msleep(10);
2010 ret = restart_syscall();
2011 goto out_free;
2012 }
2013 cgroup_put(&ss->root->cgrp);
2014 }
2015
985ed670 2016 for_each_root(root) {
2bd59d48 2017 bool name_match = false;
3126121f 2018
3dd06ffa 2019 if (root == &cgrp_dfl_root)
985ed670 2020 continue;
3126121f 2021
cf5d5941 2022 /*
2bd59d48
TH
2023 * If we asked for a name then it must match. Also, if
2024 * name matches but sybsys_mask doesn't, we should fail.
2025 * Remember whether name matched.
cf5d5941 2026 */
2bd59d48
TH
2027 if (opts.name) {
2028 if (strcmp(opts.name, root->name))
2029 continue;
2030 name_match = true;
2031 }
ddbcc7e8 2032
c6d57f33 2033 /*
2bd59d48
TH
2034 * If we asked for subsystems (or explicitly for no
2035 * subsystems) then they must match.
c6d57f33 2036 */
2bd59d48 2037 if ((opts.subsys_mask || opts.none) &&
f392e51c 2038 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2039 if (!name_match)
2040 continue;
2041 ret = -EBUSY;
2042 goto out_unlock;
2043 }
873fe09e 2044
7b9a6ba5
TH
2045 if (root->flags ^ opts.flags)
2046 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2047
776f02fa 2048 /*
3a32bd72
LZ
2049 * We want to reuse @root whose lifetime is governed by its
2050 * ->cgrp. Let's check whether @root is alive and keep it
2051 * that way. As cgroup_kill_sb() can happen anytime, we
2052 * want to block it by pinning the sb so that @root doesn't
2053 * get killed before mount is complete.
2054 *
2055 * With the sb pinned, tryget_live can reliably indicate
2056 * whether @root can be reused. If it's being killed,
2057 * drain it. We can use wait_queue for the wait but this
2058 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2059 */
3a32bd72
LZ
2060 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2061 if (IS_ERR(pinned_sb) ||
2062 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2063 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2064 if (!IS_ERR_OR_NULL(pinned_sb))
2065 deactivate_super(pinned_sb);
776f02fa 2066 msleep(10);
a015edd2
TH
2067 ret = restart_syscall();
2068 goto out_free;
776f02fa 2069 }
ddbcc7e8 2070
776f02fa 2071 ret = 0;
2bd59d48 2072 goto out_unlock;
ddbcc7e8 2073 }
ddbcc7e8 2074
817929ec 2075 /*
172a2c06
TH
2076 * No such thing, create a new one. name= matching without subsys
2077 * specification is allowed for already existing hierarchies but we
2078 * can't create new one without subsys specification.
817929ec 2079 */
172a2c06
TH
2080 if (!opts.subsys_mask && !opts.none) {
2081 ret = -EINVAL;
2082 goto out_unlock;
817929ec 2083 }
817929ec 2084
172a2c06
TH
2085 root = kzalloc(sizeof(*root), GFP_KERNEL);
2086 if (!root) {
2087 ret = -ENOMEM;
2bd59d48 2088 goto out_unlock;
839ec545 2089 }
e5f6a860 2090
172a2c06
TH
2091 init_cgroup_root(root, &opts);
2092
35585573 2093 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2094 if (ret)
2095 cgroup_free_root(root);
fa3ca07e 2096
8e30e2b8 2097out_unlock:
ddbcc7e8 2098 mutex_unlock(&cgroup_mutex);
a015edd2 2099out_free:
c6d57f33
PM
2100 kfree(opts.release_agent);
2101 kfree(opts.name);
03b1cde6 2102
2bd59d48 2103 if (ret)
8e30e2b8 2104 return ERR_PTR(ret);
2bd59d48 2105
c9482a5b
JZ
2106 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2107 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2108 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2109 cgroup_put(&root->cgrp);
3a32bd72
LZ
2110
2111 /*
2112 * If @pinned_sb, we're reusing an existing root and holding an
2113 * extra ref on its sb. Mount is complete. Put the extra ref.
2114 */
2115 if (pinned_sb) {
2116 WARN_ON(new_sb);
2117 deactivate_super(pinned_sb);
2118 }
2119
2bd59d48
TH
2120 return dentry;
2121}
2122
2123static void cgroup_kill_sb(struct super_block *sb)
2124{
2125 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2126 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2127
9d755d33
TH
2128 /*
2129 * If @root doesn't have any mounts or children, start killing it.
2130 * This prevents new mounts by disabling percpu_ref_tryget_live().
2131 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2132 *
2133 * And don't kill the default root.
9d755d33 2134 */
3c606d35 2135 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2136 root == &cgrp_dfl_root)
9d755d33
TH
2137 cgroup_put(&root->cgrp);
2138 else
2139 percpu_ref_kill(&root->cgrp.self.refcnt);
2140
2bd59d48 2141 kernfs_kill_sb(sb);
ddbcc7e8
PM
2142}
2143
2144static struct file_system_type cgroup_fs_type = {
2145 .name = "cgroup",
f7e83571 2146 .mount = cgroup_mount,
ddbcc7e8
PM
2147 .kill_sb = cgroup_kill_sb,
2148};
2149
857a2beb 2150/**
913ffdb5 2151 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2152 * @task: target task
857a2beb
TH
2153 * @buf: the buffer to write the path into
2154 * @buflen: the length of the buffer
2155 *
913ffdb5
TH
2156 * Determine @task's cgroup on the first (the one with the lowest non-zero
2157 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2158 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2159 * cgroup controller callbacks.
2160 *
e61734c5 2161 * Return value is the same as kernfs_path().
857a2beb 2162 */
e61734c5 2163char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2164{
3dd06ffa 2165 struct cgroup_root *root;
913ffdb5 2166 struct cgroup *cgrp;
e61734c5
TH
2167 int hierarchy_id = 1;
2168 char *path = NULL;
857a2beb
TH
2169
2170 mutex_lock(&cgroup_mutex);
f0d9a5f1 2171 spin_lock_bh(&css_set_lock);
857a2beb 2172
913ffdb5
TH
2173 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2174
857a2beb
TH
2175 if (root) {
2176 cgrp = task_cgroup_from_root(task, root);
e61734c5 2177 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2178 } else {
2179 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2180 if (strlcpy(buf, "/", buflen) < buflen)
2181 path = buf;
857a2beb
TH
2182 }
2183
f0d9a5f1 2184 spin_unlock_bh(&css_set_lock);
857a2beb 2185 mutex_unlock(&cgroup_mutex);
e61734c5 2186 return path;
857a2beb 2187}
913ffdb5 2188EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2189
b3dc094e 2190/* used to track tasks and other necessary states during migration */
2f7ee569 2191struct cgroup_taskset {
b3dc094e
TH
2192 /* the src and dst cset list running through cset->mg_node */
2193 struct list_head src_csets;
2194 struct list_head dst_csets;
2195
2196 /*
2197 * Fields for cgroup_taskset_*() iteration.
2198 *
2199 * Before migration is committed, the target migration tasks are on
2200 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2201 * the csets on ->dst_csets. ->csets point to either ->src_csets
2202 * or ->dst_csets depending on whether migration is committed.
2203 *
2204 * ->cur_csets and ->cur_task point to the current task position
2205 * during iteration.
2206 */
2207 struct list_head *csets;
2208 struct css_set *cur_cset;
2209 struct task_struct *cur_task;
2f7ee569
TH
2210};
2211
adaae5dc
TH
2212#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2213 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2214 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2215 .csets = &tset.src_csets, \
2216}
2217
2218/**
2219 * cgroup_taskset_add - try to add a migration target task to a taskset
2220 * @task: target task
2221 * @tset: target taskset
2222 *
2223 * Add @task, which is a migration target, to @tset. This function becomes
2224 * noop if @task doesn't need to be migrated. @task's css_set should have
2225 * been added as a migration source and @task->cg_list will be moved from
2226 * the css_set's tasks list to mg_tasks one.
2227 */
2228static void cgroup_taskset_add(struct task_struct *task,
2229 struct cgroup_taskset *tset)
2230{
2231 struct css_set *cset;
2232
f0d9a5f1 2233 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2234
2235 /* @task either already exited or can't exit until the end */
2236 if (task->flags & PF_EXITING)
2237 return;
2238
2239 /* leave @task alone if post_fork() hasn't linked it yet */
2240 if (list_empty(&task->cg_list))
2241 return;
2242
2243 cset = task_css_set(task);
2244 if (!cset->mg_src_cgrp)
2245 return;
2246
2247 list_move_tail(&task->cg_list, &cset->mg_tasks);
2248 if (list_empty(&cset->mg_node))
2249 list_add_tail(&cset->mg_node, &tset->src_csets);
2250 if (list_empty(&cset->mg_dst_cset->mg_node))
2251 list_move_tail(&cset->mg_dst_cset->mg_node,
2252 &tset->dst_csets);
2253}
2254
2f7ee569
TH
2255/**
2256 * cgroup_taskset_first - reset taskset and return the first task
2257 * @tset: taskset of interest
2258 *
2259 * @tset iteration is initialized and the first task is returned.
2260 */
2261struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2262{
b3dc094e
TH
2263 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2264 tset->cur_task = NULL;
2265
2266 return cgroup_taskset_next(tset);
2f7ee569 2267}
2f7ee569
TH
2268
2269/**
2270 * cgroup_taskset_next - iterate to the next task in taskset
2271 * @tset: taskset of interest
2272 *
2273 * Return the next task in @tset. Iteration must have been initialized
2274 * with cgroup_taskset_first().
2275 */
2276struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2277{
b3dc094e
TH
2278 struct css_set *cset = tset->cur_cset;
2279 struct task_struct *task = tset->cur_task;
2f7ee569 2280
b3dc094e
TH
2281 while (&cset->mg_node != tset->csets) {
2282 if (!task)
2283 task = list_first_entry(&cset->mg_tasks,
2284 struct task_struct, cg_list);
2285 else
2286 task = list_next_entry(task, cg_list);
2f7ee569 2287
b3dc094e
TH
2288 if (&task->cg_list != &cset->mg_tasks) {
2289 tset->cur_cset = cset;
2290 tset->cur_task = task;
2291 return task;
2292 }
2f7ee569 2293
b3dc094e
TH
2294 cset = list_next_entry(cset, mg_node);
2295 task = NULL;
2296 }
2f7ee569 2297
b3dc094e 2298 return NULL;
2f7ee569 2299}
2f7ee569 2300
adaae5dc
TH
2301/**
2302 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2303 * @tset: taget taskset
2304 * @dst_cgrp: destination cgroup
2305 *
2306 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2307 * ->can_attach callbacks fails and guarantees that either all or none of
2308 * the tasks in @tset are migrated. @tset is consumed regardless of
2309 * success.
2310 */
2311static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2312 struct cgroup *dst_cgrp)
2313{
2314 struct cgroup_subsys_state *css, *failed_css = NULL;
2315 struct task_struct *task, *tmp_task;
2316 struct css_set *cset, *tmp_cset;
2317 int i, ret;
2318
2319 /* methods shouldn't be called if no task is actually migrating */
2320 if (list_empty(&tset->src_csets))
2321 return 0;
2322
2323 /* check that we can legitimately attach to the cgroup */
2324 for_each_e_css(css, i, dst_cgrp) {
2325 if (css->ss->can_attach) {
2326 ret = css->ss->can_attach(css, tset);
2327 if (ret) {
2328 failed_css = css;
2329 goto out_cancel_attach;
2330 }
2331 }
2332 }
2333
2334 /*
2335 * Now that we're guaranteed success, proceed to move all tasks to
2336 * the new cgroup. There are no failure cases after here, so this
2337 * is the commit point.
2338 */
f0d9a5f1 2339 spin_lock_bh(&css_set_lock);
adaae5dc 2340 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2341 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2342 struct css_set *from_cset = task_css_set(task);
2343 struct css_set *to_cset = cset->mg_dst_cset;
2344
2345 get_css_set(to_cset);
2346 css_set_move_task(task, from_cset, to_cset, true);
2347 put_css_set_locked(from_cset);
2348 }
adaae5dc 2349 }
f0d9a5f1 2350 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2351
2352 /*
2353 * Migration is committed, all target tasks are now on dst_csets.
2354 * Nothing is sensitive to fork() after this point. Notify
2355 * controllers that migration is complete.
2356 */
2357 tset->csets = &tset->dst_csets;
2358
2359 for_each_e_css(css, i, dst_cgrp)
2360 if (css->ss->attach)
2361 css->ss->attach(css, tset);
2362
2363 ret = 0;
2364 goto out_release_tset;
2365
2366out_cancel_attach:
2367 for_each_e_css(css, i, dst_cgrp) {
2368 if (css == failed_css)
2369 break;
2370 if (css->ss->cancel_attach)
2371 css->ss->cancel_attach(css, tset);
2372 }
2373out_release_tset:
f0d9a5f1 2374 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2375 list_splice_init(&tset->dst_csets, &tset->src_csets);
2376 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2377 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2378 list_del_init(&cset->mg_node);
2379 }
f0d9a5f1 2380 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2381 return ret;
2382}
2383
a043e3b2 2384/**
1958d2d5
TH
2385 * cgroup_migrate_finish - cleanup after attach
2386 * @preloaded_csets: list of preloaded css_sets
74a1166d 2387 *
1958d2d5
TH
2388 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2389 * those functions for details.
74a1166d 2390 */
1958d2d5 2391static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2392{
1958d2d5 2393 struct css_set *cset, *tmp_cset;
74a1166d 2394
1958d2d5
TH
2395 lockdep_assert_held(&cgroup_mutex);
2396
f0d9a5f1 2397 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2398 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2399 cset->mg_src_cgrp = NULL;
2400 cset->mg_dst_cset = NULL;
2401 list_del_init(&cset->mg_preload_node);
a25eb52e 2402 put_css_set_locked(cset);
1958d2d5 2403 }
f0d9a5f1 2404 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2405}
2406
2407/**
2408 * cgroup_migrate_add_src - add a migration source css_set
2409 * @src_cset: the source css_set to add
2410 * @dst_cgrp: the destination cgroup
2411 * @preloaded_csets: list of preloaded css_sets
2412 *
2413 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2414 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2415 * up by cgroup_migrate_finish().
2416 *
1ed13287
TH
2417 * This function may be called without holding cgroup_threadgroup_rwsem
2418 * even if the target is a process. Threads may be created and destroyed
2419 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2420 * into play and the preloaded css_sets are guaranteed to cover all
2421 * migrations.
1958d2d5
TH
2422 */
2423static void cgroup_migrate_add_src(struct css_set *src_cset,
2424 struct cgroup *dst_cgrp,
2425 struct list_head *preloaded_csets)
2426{
2427 struct cgroup *src_cgrp;
2428
2429 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2430 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2431
2432 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2433
1958d2d5
TH
2434 if (!list_empty(&src_cset->mg_preload_node))
2435 return;
2436
2437 WARN_ON(src_cset->mg_src_cgrp);
2438 WARN_ON(!list_empty(&src_cset->mg_tasks));
2439 WARN_ON(!list_empty(&src_cset->mg_node));
2440
2441 src_cset->mg_src_cgrp = src_cgrp;
2442 get_css_set(src_cset);
2443 list_add(&src_cset->mg_preload_node, preloaded_csets);
2444}
2445
2446/**
2447 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2448 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2449 * @preloaded_csets: list of preloaded source css_sets
2450 *
2451 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2452 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2453 * pins all destination css_sets, links each to its source, and append them
2454 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2455 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2456 *
2457 * This function must be called after cgroup_migrate_add_src() has been
2458 * called on each migration source css_set. After migration is performed
2459 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2460 * @preloaded_csets.
2461 */
2462static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2463 struct list_head *preloaded_csets)
2464{
2465 LIST_HEAD(csets);
f817de98 2466 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2467
2468 lockdep_assert_held(&cgroup_mutex);
2469
f8f22e53
TH
2470 /*
2471 * Except for the root, child_subsys_mask must be zero for a cgroup
2472 * with tasks so that child cgroups don't compete against tasks.
2473 */
d51f39b0 2474 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2475 dst_cgrp->child_subsys_mask)
2476 return -EBUSY;
2477
1958d2d5 2478 /* look up the dst cset for each src cset and link it to src */
f817de98 2479 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2480 struct css_set *dst_cset;
2481
f817de98
TH
2482 dst_cset = find_css_set(src_cset,
2483 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2484 if (!dst_cset)
2485 goto err;
2486
2487 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2488
2489 /*
2490 * If src cset equals dst, it's noop. Drop the src.
2491 * cgroup_migrate() will skip the cset too. Note that we
2492 * can't handle src == dst as some nodes are used by both.
2493 */
2494 if (src_cset == dst_cset) {
2495 src_cset->mg_src_cgrp = NULL;
2496 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2497 put_css_set(src_cset);
2498 put_css_set(dst_cset);
f817de98
TH
2499 continue;
2500 }
2501
1958d2d5
TH
2502 src_cset->mg_dst_cset = dst_cset;
2503
2504 if (list_empty(&dst_cset->mg_preload_node))
2505 list_add(&dst_cset->mg_preload_node, &csets);
2506 else
a25eb52e 2507 put_css_set(dst_cset);
1958d2d5
TH
2508 }
2509
f817de98 2510 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2511 return 0;
2512err:
2513 cgroup_migrate_finish(&csets);
2514 return -ENOMEM;
2515}
2516
2517/**
2518 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2519 * @leader: the leader of the process or the task to migrate
2520 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2521 * @cgrp: the destination cgroup
1958d2d5
TH
2522 *
2523 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2524 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2525 * caller is also responsible for invoking cgroup_migrate_add_src() and
2526 * cgroup_migrate_prepare_dst() on the targets before invoking this
2527 * function and following up with cgroup_migrate_finish().
2528 *
2529 * As long as a controller's ->can_attach() doesn't fail, this function is
2530 * guaranteed to succeed. This means that, excluding ->can_attach()
2531 * failure, when migrating multiple targets, the success or failure can be
2532 * decided for all targets by invoking group_migrate_prepare_dst() before
2533 * actually starting migrating.
2534 */
9af2ec45
TH
2535static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2536 struct cgroup *cgrp)
74a1166d 2537{
adaae5dc
TH
2538 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2539 struct task_struct *task;
74a1166d 2540
fb5d2b4c
MSB
2541 /*
2542 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2543 * already PF_EXITING could be freed from underneath us unless we
2544 * take an rcu_read_lock.
2545 */
f0d9a5f1 2546 spin_lock_bh(&css_set_lock);
fb5d2b4c 2547 rcu_read_lock();
9db8de37 2548 task = leader;
74a1166d 2549 do {
adaae5dc 2550 cgroup_taskset_add(task, &tset);
081aa458
LZ
2551 if (!threadgroup)
2552 break;
9db8de37 2553 } while_each_thread(leader, task);
fb5d2b4c 2554 rcu_read_unlock();
f0d9a5f1 2555 spin_unlock_bh(&css_set_lock);
74a1166d 2556
adaae5dc 2557 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2558}
2559
1958d2d5
TH
2560/**
2561 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2562 * @dst_cgrp: the cgroup to attach to
2563 * @leader: the task or the leader of the threadgroup to be attached
2564 * @threadgroup: attach the whole threadgroup?
2565 *
1ed13287 2566 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2567 */
2568static int cgroup_attach_task(struct cgroup *dst_cgrp,
2569 struct task_struct *leader, bool threadgroup)
2570{
2571 LIST_HEAD(preloaded_csets);
2572 struct task_struct *task;
2573 int ret;
2574
2575 /* look up all src csets */
f0d9a5f1 2576 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2577 rcu_read_lock();
2578 task = leader;
2579 do {
2580 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2581 &preloaded_csets);
2582 if (!threadgroup)
2583 break;
2584 } while_each_thread(leader, task);
2585 rcu_read_unlock();
f0d9a5f1 2586 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2587
2588 /* prepare dst csets and commit */
2589 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2590 if (!ret)
9af2ec45 2591 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2592
2593 cgroup_migrate_finish(&preloaded_csets);
2594 return ret;
74a1166d
BB
2595}
2596
187fe840
TH
2597static int cgroup_procs_write_permission(struct task_struct *task,
2598 struct cgroup *dst_cgrp,
2599 struct kernfs_open_file *of)
dedf22e9
TH
2600{
2601 const struct cred *cred = current_cred();
2602 const struct cred *tcred = get_task_cred(task);
2603 int ret = 0;
2604
2605 /*
2606 * even if we're attaching all tasks in the thread group, we only
2607 * need to check permissions on one of them.
2608 */
2609 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2610 !uid_eq(cred->euid, tcred->uid) &&
2611 !uid_eq(cred->euid, tcred->suid))
2612 ret = -EACCES;
2613
187fe840
TH
2614 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2615 struct super_block *sb = of->file->f_path.dentry->d_sb;
2616 struct cgroup *cgrp;
2617 struct inode *inode;
2618
f0d9a5f1 2619 spin_lock_bh(&css_set_lock);
187fe840 2620 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2621 spin_unlock_bh(&css_set_lock);
187fe840
TH
2622
2623 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2624 cgrp = cgroup_parent(cgrp);
2625
2626 ret = -ENOMEM;
6f60eade 2627 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2628 if (inode) {
2629 ret = inode_permission(inode, MAY_WRITE);
2630 iput(inode);
2631 }
2632 }
2633
dedf22e9
TH
2634 put_cred(tcred);
2635 return ret;
2636}
2637
74a1166d
BB
2638/*
2639 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2640 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2641 * cgroup_mutex and threadgroup.
bbcb81d0 2642 */
acbef755
TH
2643static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2644 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2645{
bbcb81d0 2646 struct task_struct *tsk;
e76ecaee 2647 struct cgroup *cgrp;
acbef755 2648 pid_t pid;
bbcb81d0
PM
2649 int ret;
2650
acbef755
TH
2651 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2652 return -EINVAL;
2653
e76ecaee
TH
2654 cgrp = cgroup_kn_lock_live(of->kn);
2655 if (!cgrp)
74a1166d
BB
2656 return -ENODEV;
2657
3014dde7 2658 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2659 rcu_read_lock();
bbcb81d0 2660 if (pid) {
73507f33 2661 tsk = find_task_by_vpid(pid);
74a1166d 2662 if (!tsk) {
dd4b0a46 2663 ret = -ESRCH;
3014dde7 2664 goto out_unlock_rcu;
bbcb81d0 2665 }
dedf22e9 2666 } else {
b78949eb 2667 tsk = current;
dedf22e9 2668 }
cd3d0952
TH
2669
2670 if (threadgroup)
b78949eb 2671 tsk = tsk->group_leader;
c4c27fbd
MG
2672
2673 /*
14a40ffc 2674 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2675 * trapped in a cpuset, or RT worker may be born in a cgroup
2676 * with no rt_runtime allocated. Just say no.
2677 */
14a40ffc 2678 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2679 ret = -EINVAL;
3014dde7 2680 goto out_unlock_rcu;
c4c27fbd
MG
2681 }
2682
b78949eb
MSB
2683 get_task_struct(tsk);
2684 rcu_read_unlock();
2685
187fe840 2686 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2687 if (!ret)
2688 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2689
f9f9e7b7 2690 put_task_struct(tsk);
3014dde7
TH
2691 goto out_unlock_threadgroup;
2692
2693out_unlock_rcu:
2694 rcu_read_unlock();
2695out_unlock_threadgroup:
2696 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2697 cgroup_kn_unlock(of->kn);
acbef755 2698 return ret ?: nbytes;
bbcb81d0
PM
2699}
2700
7ae1bad9
TH
2701/**
2702 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2703 * @from: attach to all cgroups of a given task
2704 * @tsk: the task to be attached
2705 */
2706int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2707{
3dd06ffa 2708 struct cgroup_root *root;
7ae1bad9
TH
2709 int retval = 0;
2710
47cfcd09 2711 mutex_lock(&cgroup_mutex);
985ed670 2712 for_each_root(root) {
96d365e0
TH
2713 struct cgroup *from_cgrp;
2714
3dd06ffa 2715 if (root == &cgrp_dfl_root)
985ed670
TH
2716 continue;
2717
f0d9a5f1 2718 spin_lock_bh(&css_set_lock);
96d365e0 2719 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2720 spin_unlock_bh(&css_set_lock);
7ae1bad9 2721
6f4b7e63 2722 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2723 if (retval)
2724 break;
2725 }
47cfcd09 2726 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2727
2728 return retval;
2729}
2730EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2731
acbef755
TH
2732static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2733 char *buf, size_t nbytes, loff_t off)
74a1166d 2734{
acbef755 2735 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2736}
2737
acbef755
TH
2738static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2739 char *buf, size_t nbytes, loff_t off)
af351026 2740{
acbef755 2741 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2742}
2743
451af504
TH
2744static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2745 char *buf, size_t nbytes, loff_t off)
e788e066 2746{
e76ecaee 2747 struct cgroup *cgrp;
5f469907 2748
e76ecaee 2749 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2750
e76ecaee
TH
2751 cgrp = cgroup_kn_lock_live(of->kn);
2752 if (!cgrp)
e788e066 2753 return -ENODEV;
69e943b7 2754 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2755 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2756 sizeof(cgrp->root->release_agent_path));
69e943b7 2757 spin_unlock(&release_agent_path_lock);
e76ecaee 2758 cgroup_kn_unlock(of->kn);
451af504 2759 return nbytes;
e788e066
PM
2760}
2761
2da8ca82 2762static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2763{
2da8ca82 2764 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2765
46cfeb04 2766 spin_lock(&release_agent_path_lock);
e788e066 2767 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2768 spin_unlock(&release_agent_path_lock);
e788e066 2769 seq_putc(seq, '\n');
e788e066
PM
2770 return 0;
2771}
2772
2da8ca82 2773static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2774{
c1d5d42e 2775 seq_puts(seq, "0\n");
e788e066
PM
2776 return 0;
2777}
2778
8ab456ac 2779static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2780{
f8f22e53
TH
2781 struct cgroup_subsys *ss;
2782 bool printed = false;
2783 int ssid;
a742c59d 2784
a966a4ed
AS
2785 for_each_subsys_which(ss, ssid, &ss_mask) {
2786 if (printed)
2787 seq_putc(seq, ' ');
2788 seq_printf(seq, "%s", ss->name);
2789 printed = true;
e73d2c61 2790 }
f8f22e53
TH
2791 if (printed)
2792 seq_putc(seq, '\n');
355e0c48
PM
2793}
2794
f8f22e53
TH
2795/* show controllers which are currently attached to the default hierarchy */
2796static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2797{
f8f22e53
TH
2798 struct cgroup *cgrp = seq_css(seq)->cgroup;
2799
5533e011
TH
2800 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2801 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2802 return 0;
db3b1497
PM
2803}
2804
f8f22e53
TH
2805/* show controllers which are enabled from the parent */
2806static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2807{
f8f22e53
TH
2808 struct cgroup *cgrp = seq_css(seq)->cgroup;
2809
667c2491 2810 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2811 return 0;
ddbcc7e8
PM
2812}
2813
f8f22e53
TH
2814/* show controllers which are enabled for a given cgroup's children */
2815static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2816{
f8f22e53
TH
2817 struct cgroup *cgrp = seq_css(seq)->cgroup;
2818
667c2491 2819 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2820 return 0;
2821}
2822
2823/**
2824 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2825 * @cgrp: root of the subtree to update csses for
2826 *
2827 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2828 * css associations need to be updated accordingly. This function looks up
2829 * all css_sets which are attached to the subtree, creates the matching
2830 * updated css_sets and migrates the tasks to the new ones.
2831 */
2832static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2833{
2834 LIST_HEAD(preloaded_csets);
10265075 2835 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2836 struct cgroup_subsys_state *css;
2837 struct css_set *src_cset;
2838 int ret;
2839
f8f22e53
TH
2840 lockdep_assert_held(&cgroup_mutex);
2841
3014dde7
TH
2842 percpu_down_write(&cgroup_threadgroup_rwsem);
2843
f8f22e53 2844 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2845 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2846 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2847 struct cgrp_cset_link *link;
2848
2849 /* self is not affected by child_subsys_mask change */
2850 if (css->cgroup == cgrp)
2851 continue;
2852
2853 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2854 cgroup_migrate_add_src(link->cset, cgrp,
2855 &preloaded_csets);
2856 }
f0d9a5f1 2857 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2858
2859 /* NULL dst indicates self on default hierarchy */
2860 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2861 if (ret)
2862 goto out_finish;
2863
f0d9a5f1 2864 spin_lock_bh(&css_set_lock);
f8f22e53 2865 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2866 struct task_struct *task, *ntask;
f8f22e53
TH
2867
2868 /* src_csets precede dst_csets, break on the first dst_cset */
2869 if (!src_cset->mg_src_cgrp)
2870 break;
2871
10265075
TH
2872 /* all tasks in src_csets need to be migrated */
2873 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2874 cgroup_taskset_add(task, &tset);
f8f22e53 2875 }
f0d9a5f1 2876 spin_unlock_bh(&css_set_lock);
f8f22e53 2877
10265075 2878 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2879out_finish:
2880 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2881 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2882 return ret;
2883}
2884
2885/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2886static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2887 char *buf, size_t nbytes,
2888 loff_t off)
f8f22e53 2889{
8ab456ac
AS
2890 unsigned long enable = 0, disable = 0;
2891 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2892 struct cgroup *cgrp, *child;
f8f22e53 2893 struct cgroup_subsys *ss;
451af504 2894 char *tok;
f8f22e53
TH
2895 int ssid, ret;
2896
2897 /*
d37167ab
TH
2898 * Parse input - space separated list of subsystem names prefixed
2899 * with either + or -.
f8f22e53 2900 */
451af504
TH
2901 buf = strstrip(buf);
2902 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2903 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2904
d37167ab
TH
2905 if (tok[0] == '\0')
2906 continue;
a966a4ed 2907 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2908 if (!cgroup_ssid_enabled(ssid) ||
2909 strcmp(tok + 1, ss->name))
f8f22e53
TH
2910 continue;
2911
2912 if (*tok == '+') {
7d331fa9
TH
2913 enable |= 1 << ssid;
2914 disable &= ~(1 << ssid);
f8f22e53 2915 } else if (*tok == '-') {
7d331fa9
TH
2916 disable |= 1 << ssid;
2917 enable &= ~(1 << ssid);
f8f22e53
TH
2918 } else {
2919 return -EINVAL;
2920 }
2921 break;
2922 }
2923 if (ssid == CGROUP_SUBSYS_COUNT)
2924 return -EINVAL;
2925 }
2926
a9746d8d
TH
2927 cgrp = cgroup_kn_lock_live(of->kn);
2928 if (!cgrp)
2929 return -ENODEV;
f8f22e53
TH
2930
2931 for_each_subsys(ss, ssid) {
2932 if (enable & (1 << ssid)) {
667c2491 2933 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2934 enable &= ~(1 << ssid);
2935 continue;
2936 }
2937
c29adf24
TH
2938 /* unavailable or not enabled on the parent? */
2939 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2940 (cgroup_parent(cgrp) &&
667c2491 2941 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2942 ret = -ENOENT;
2943 goto out_unlock;
2944 }
f8f22e53 2945 } else if (disable & (1 << ssid)) {
667c2491 2946 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2947 disable &= ~(1 << ssid);
2948 continue;
2949 }
2950
2951 /* a child has it enabled? */
2952 cgroup_for_each_live_child(child, cgrp) {
667c2491 2953 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2954 ret = -EBUSY;
ddab2b6e 2955 goto out_unlock;
f8f22e53
TH
2956 }
2957 }
2958 }
2959 }
2960
2961 if (!enable && !disable) {
2962 ret = 0;
ddab2b6e 2963 goto out_unlock;
f8f22e53
TH
2964 }
2965
2966 /*
667c2491 2967 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2968 * with tasks so that child cgroups don't compete against tasks.
2969 */
d51f39b0 2970 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2971 ret = -EBUSY;
2972 goto out_unlock;
2973 }
2974
2975 /*
f63070d3
TH
2976 * Update subsys masks and calculate what needs to be done. More
2977 * subsystems than specified may need to be enabled or disabled
2978 * depending on subsystem dependencies.
2979 */
755bf5ee
TH
2980 old_sc = cgrp->subtree_control;
2981 old_ss = cgrp->child_subsys_mask;
2982 new_sc = (old_sc | enable) & ~disable;
2983 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2984
755bf5ee
TH
2985 css_enable = ~old_ss & new_ss;
2986 css_disable = old_ss & ~new_ss;
f63070d3
TH
2987 enable |= css_enable;
2988 disable |= css_disable;
c29adf24 2989
db6e3053
TH
2990 /*
2991 * Because css offlining is asynchronous, userland might try to
2992 * re-enable the same controller while the previous instance is
2993 * still around. In such cases, wait till it's gone using
2994 * offline_waitq.
2995 */
a966a4ed 2996 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2997 cgroup_for_each_live_child(child, cgrp) {
2998 DEFINE_WAIT(wait);
2999
3000 if (!cgroup_css(child, ss))
3001 continue;
3002
3003 cgroup_get(child);
3004 prepare_to_wait(&child->offline_waitq, &wait,
3005 TASK_UNINTERRUPTIBLE);
3006 cgroup_kn_unlock(of->kn);
3007 schedule();
3008 finish_wait(&child->offline_waitq, &wait);
3009 cgroup_put(child);
3010
3011 return restart_syscall();
3012 }
3013 }
3014
755bf5ee
TH
3015 cgrp->subtree_control = new_sc;
3016 cgrp->child_subsys_mask = new_ss;
3017
f63070d3
TH
3018 /*
3019 * Create new csses or make the existing ones visible. A css is
3020 * created invisible if it's being implicitly enabled through
3021 * dependency. An invisible css is made visible when the userland
3022 * explicitly enables it.
f8f22e53
TH
3023 */
3024 for_each_subsys(ss, ssid) {
3025 if (!(enable & (1 << ssid)))
3026 continue;
3027
3028 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3029 if (css_enable & (1 << ssid))
3030 ret = create_css(child, ss,
3031 cgrp->subtree_control & (1 << ssid));
3032 else
4df8dc90
TH
3033 ret = css_populate_dir(cgroup_css(child, ss),
3034 NULL);
f8f22e53
TH
3035 if (ret)
3036 goto err_undo_css;
3037 }
3038 }
3039
c29adf24
TH
3040 /*
3041 * At this point, cgroup_e_css() results reflect the new csses
3042 * making the following cgroup_update_dfl_csses() properly update
3043 * css associations of all tasks in the subtree.
3044 */
f8f22e53
TH
3045 ret = cgroup_update_dfl_csses(cgrp);
3046 if (ret)
3047 goto err_undo_css;
3048
f63070d3
TH
3049 /*
3050 * All tasks are migrated out of disabled csses. Kill or hide
3051 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3052 * disabled while other subsystems are still depending on it. The
3053 * css must not actively control resources and be in the vanilla
3054 * state if it's made visible again later. Controllers which may
3055 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3056 */
f8f22e53
TH
3057 for_each_subsys(ss, ssid) {
3058 if (!(disable & (1 << ssid)))
3059 continue;
3060
f63070d3 3061 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3062 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3063
3064 if (css_disable & (1 << ssid)) {
3065 kill_css(css);
3066 } else {
4df8dc90 3067 css_clear_dir(css, NULL);
b4536f0c
TH
3068 if (ss->css_reset)
3069 ss->css_reset(css);
3070 }
f63070d3 3071 }
f8f22e53
TH
3072 }
3073
56c807ba
TH
3074 /*
3075 * The effective csses of all the descendants (excluding @cgrp) may
3076 * have changed. Subsystems can optionally subscribe to this event
3077 * by implementing ->css_e_css_changed() which is invoked if any of
3078 * the effective csses seen from the css's cgroup may have changed.
3079 */
3080 for_each_subsys(ss, ssid) {
3081 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3082 struct cgroup_subsys_state *css;
3083
3084 if (!ss->css_e_css_changed || !this_css)
3085 continue;
3086
3087 css_for_each_descendant_pre(css, this_css)
3088 if (css != this_css)
3089 ss->css_e_css_changed(css);
3090 }
3091
f8f22e53
TH
3092 kernfs_activate(cgrp->kn);
3093 ret = 0;
3094out_unlock:
a9746d8d 3095 cgroup_kn_unlock(of->kn);
451af504 3096 return ret ?: nbytes;
f8f22e53
TH
3097
3098err_undo_css:
755bf5ee
TH
3099 cgrp->subtree_control = old_sc;
3100 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3101
3102 for_each_subsys(ss, ssid) {
3103 if (!(enable & (1 << ssid)))
3104 continue;
3105
3106 cgroup_for_each_live_child(child, cgrp) {
3107 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3108
3109 if (!css)
3110 continue;
3111
3112 if (css_enable & (1 << ssid))
f8f22e53 3113 kill_css(css);
f63070d3 3114 else
4df8dc90 3115 css_clear_dir(css, NULL);
f8f22e53
TH
3116 }
3117 }
3118 goto out_unlock;
3119}
3120
4a07c222 3121static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3122{
4a07c222 3123 seq_printf(seq, "populated %d\n",
27bd4dbb 3124 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3125 return 0;
3126}
3127
2bd59d48
TH
3128static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3129 size_t nbytes, loff_t off)
355e0c48 3130{
2bd59d48
TH
3131 struct cgroup *cgrp = of->kn->parent->priv;
3132 struct cftype *cft = of->kn->priv;
3133 struct cgroup_subsys_state *css;
a742c59d 3134 int ret;
355e0c48 3135
b4168640
TH
3136 if (cft->write)
3137 return cft->write(of, buf, nbytes, off);
3138
2bd59d48
TH
3139 /*
3140 * kernfs guarantees that a file isn't deleted with operations in
3141 * flight, which means that the matching css is and stays alive and
3142 * doesn't need to be pinned. The RCU locking is not necessary
3143 * either. It's just for the convenience of using cgroup_css().
3144 */
3145 rcu_read_lock();
3146 css = cgroup_css(cgrp, cft->ss);
3147 rcu_read_unlock();
a742c59d 3148
451af504 3149 if (cft->write_u64) {
a742c59d
TH
3150 unsigned long long v;
3151 ret = kstrtoull(buf, 0, &v);
3152 if (!ret)
3153 ret = cft->write_u64(css, cft, v);
3154 } else if (cft->write_s64) {
3155 long long v;
3156 ret = kstrtoll(buf, 0, &v);
3157 if (!ret)
3158 ret = cft->write_s64(css, cft, v);
e73d2c61 3159 } else {
a742c59d 3160 ret = -EINVAL;
e73d2c61 3161 }
2bd59d48 3162
a742c59d 3163 return ret ?: nbytes;
355e0c48
PM
3164}
3165
6612f05b 3166static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3167{
2bd59d48 3168 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3169}
3170
6612f05b 3171static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3172{
2bd59d48 3173 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3174}
3175
6612f05b 3176static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3177{
2bd59d48 3178 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3179}
3180
91796569 3181static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3182{
7da11279
TH
3183 struct cftype *cft = seq_cft(m);
3184 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3185
2da8ca82
TH
3186 if (cft->seq_show)
3187 return cft->seq_show(m, arg);
e73d2c61 3188
f4c753b7 3189 if (cft->read_u64)
896f5199
TH
3190 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3191 else if (cft->read_s64)
3192 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3193 else
3194 return -EINVAL;
3195 return 0;
91796569
PM
3196}
3197
2bd59d48
TH
3198static struct kernfs_ops cgroup_kf_single_ops = {
3199 .atomic_write_len = PAGE_SIZE,
3200 .write = cgroup_file_write,
3201 .seq_show = cgroup_seqfile_show,
91796569
PM
3202};
3203
2bd59d48
TH
3204static struct kernfs_ops cgroup_kf_ops = {
3205 .atomic_write_len = PAGE_SIZE,
3206 .write = cgroup_file_write,
3207 .seq_start = cgroup_seqfile_start,
3208 .seq_next = cgroup_seqfile_next,
3209 .seq_stop = cgroup_seqfile_stop,
3210 .seq_show = cgroup_seqfile_show,
3211};
ddbcc7e8
PM
3212
3213/*
3214 * cgroup_rename - Only allow simple rename of directories in place.
3215 */
2bd59d48
TH
3216static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3217 const char *new_name_str)
ddbcc7e8 3218{
2bd59d48 3219 struct cgroup *cgrp = kn->priv;
65dff759 3220 int ret;
65dff759 3221
2bd59d48 3222 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3223 return -ENOTDIR;
2bd59d48 3224 if (kn->parent != new_parent)
ddbcc7e8 3225 return -EIO;
65dff759 3226
6db8e85c
TH
3227 /*
3228 * This isn't a proper migration and its usefulness is very
aa6ec29b 3229 * limited. Disallow on the default hierarchy.
6db8e85c 3230 */
aa6ec29b 3231 if (cgroup_on_dfl(cgrp))
6db8e85c 3232 return -EPERM;
099fca32 3233
e1b2dc17 3234 /*
8353da1f 3235 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3236 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3237 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3238 */
3239 kernfs_break_active_protection(new_parent);
3240 kernfs_break_active_protection(kn);
099fca32 3241
2bd59d48 3242 mutex_lock(&cgroup_mutex);
099fca32 3243
2bd59d48 3244 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3245
2bd59d48 3246 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3247
3248 kernfs_unbreak_active_protection(kn);
3249 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3250 return ret;
099fca32
LZ
3251}
3252
49957f8e
TH
3253/* set uid and gid of cgroup dirs and files to that of the creator */
3254static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3255{
3256 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3257 .ia_uid = current_fsuid(),
3258 .ia_gid = current_fsgid(), };
3259
3260 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3261 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3262 return 0;
3263
3264 return kernfs_setattr(kn, &iattr);
3265}
3266
4df8dc90
TH
3267static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3268 struct cftype *cft)
ddbcc7e8 3269{
8d7e6fb0 3270 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3271 struct kernfs_node *kn;
3272 struct lock_class_key *key = NULL;
49957f8e 3273 int ret;
05ef1d7c 3274
2bd59d48
TH
3275#ifdef CONFIG_DEBUG_LOCK_ALLOC
3276 key = &cft->lockdep_key;
3277#endif
3278 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3279 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3280 NULL, key);
49957f8e
TH
3281 if (IS_ERR(kn))
3282 return PTR_ERR(kn);
3283
3284 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3285 if (ret) {
49957f8e 3286 kernfs_remove(kn);
f8f22e53
TH
3287 return ret;
3288 }
3289
6f60eade
TH
3290 if (cft->file_offset) {
3291 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3292
3293 kernfs_get(kn);
3294 cfile->kn = kn;
3295 list_add(&cfile->node, &css->files);
3296 }
3297
f8f22e53 3298 return 0;
ddbcc7e8
PM
3299}
3300
b1f28d31
TH
3301/**
3302 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3303 * @css: the target css
3304 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3305 * @cfts: array of cftypes to be added
3306 * @is_add: whether to add or remove
3307 *
3308 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3309 * For removals, this function never fails.
b1f28d31 3310 */
4df8dc90
TH
3311static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3312 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3313 bool is_add)
ddbcc7e8 3314{
6732ed85 3315 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3316 int ret;
3317
01f6474c 3318 lockdep_assert_held(&cgroup_mutex);
db0416b6 3319
6732ed85
TH
3320restart:
3321 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3322 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3323 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3324 continue;
05ebb6e6 3325 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3326 continue;
d51f39b0 3327 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3328 continue;
d51f39b0 3329 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3330 continue;
3331
2739d3cc 3332 if (is_add) {
4df8dc90 3333 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3334 if (ret) {
ed3d261b
JP
3335 pr_warn("%s: failed to add %s, err=%d\n",
3336 __func__, cft->name, ret);
6732ed85
TH
3337 cft_end = cft;
3338 is_add = false;
3339 goto restart;
b1f28d31 3340 }
2739d3cc
LZ
3341 } else {
3342 cgroup_rm_file(cgrp, cft);
db0416b6 3343 }
ddbcc7e8 3344 }
b1f28d31 3345 return 0;
ddbcc7e8
PM
3346}
3347
21a2d343 3348static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3349{
3350 LIST_HEAD(pending);
2bb566cb 3351 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3352 struct cgroup *root = &ss->root->cgrp;
492eb21b 3353 struct cgroup_subsys_state *css;
9ccece80 3354 int ret = 0;
8e3f6541 3355
01f6474c 3356 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3357
e8c82d20 3358 /* add/rm files for all cgroups created before */
ca8bdcaf 3359 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3360 struct cgroup *cgrp = css->cgroup;
3361
e8c82d20
LZ
3362 if (cgroup_is_dead(cgrp))
3363 continue;
3364
4df8dc90 3365 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3366 if (ret)
3367 break;
8e3f6541 3368 }
21a2d343
TH
3369
3370 if (is_add && !ret)
3371 kernfs_activate(root->kn);
9ccece80 3372 return ret;
8e3f6541
TH
3373}
3374
2da440a2 3375static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3376{
2bb566cb 3377 struct cftype *cft;
8e3f6541 3378
2bd59d48
TH
3379 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3380 /* free copy for custom atomic_write_len, see init_cftypes() */
3381 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3382 kfree(cft->kf_ops);
3383 cft->kf_ops = NULL;
2da440a2 3384 cft->ss = NULL;
a8ddc821
TH
3385
3386 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3387 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3388 }
2da440a2
TH
3389}
3390
2bd59d48 3391static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3392{
3393 struct cftype *cft;
3394
2bd59d48
TH
3395 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3396 struct kernfs_ops *kf_ops;
3397
0adb0704
TH
3398 WARN_ON(cft->ss || cft->kf_ops);
3399
2bd59d48
TH
3400 if (cft->seq_start)
3401 kf_ops = &cgroup_kf_ops;
3402 else
3403 kf_ops = &cgroup_kf_single_ops;
3404
3405 /*
3406 * Ugh... if @cft wants a custom max_write_len, we need to
3407 * make a copy of kf_ops to set its atomic_write_len.
3408 */
3409 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3410 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3411 if (!kf_ops) {
3412 cgroup_exit_cftypes(cfts);
3413 return -ENOMEM;
3414 }
3415 kf_ops->atomic_write_len = cft->max_write_len;
3416 }
8e3f6541 3417
2bd59d48 3418 cft->kf_ops = kf_ops;
2bb566cb 3419 cft->ss = ss;
2bd59d48 3420 }
2bb566cb 3421
2bd59d48 3422 return 0;
2da440a2
TH
3423}
3424
21a2d343
TH
3425static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3426{
01f6474c 3427 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3428
3429 if (!cfts || !cfts[0].ss)
3430 return -ENOENT;
3431
3432 list_del(&cfts->node);
3433 cgroup_apply_cftypes(cfts, false);
3434 cgroup_exit_cftypes(cfts);
3435 return 0;
8e3f6541 3436}
8e3f6541 3437
79578621
TH
3438/**
3439 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3440 * @cfts: zero-length name terminated array of cftypes
3441 *
2bb566cb
TH
3442 * Unregister @cfts. Files described by @cfts are removed from all
3443 * existing cgroups and all future cgroups won't have them either. This
3444 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3445 *
3446 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3447 * registered.
79578621 3448 */
2bb566cb 3449int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3450{
21a2d343 3451 int ret;
79578621 3452
01f6474c 3453 mutex_lock(&cgroup_mutex);
21a2d343 3454 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3455 mutex_unlock(&cgroup_mutex);
21a2d343 3456 return ret;
80b13586
TH
3457}
3458
8e3f6541
TH
3459/**
3460 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3461 * @ss: target cgroup subsystem
3462 * @cfts: zero-length name terminated array of cftypes
3463 *
3464 * Register @cfts to @ss. Files described by @cfts are created for all
3465 * existing cgroups to which @ss is attached and all future cgroups will
3466 * have them too. This function can be called anytime whether @ss is
3467 * attached or not.
3468 *
3469 * Returns 0 on successful registration, -errno on failure. Note that this
3470 * function currently returns 0 as long as @cfts registration is successful
3471 * even if some file creation attempts on existing cgroups fail.
3472 */
2cf669a5 3473static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3474{
9ccece80 3475 int ret;
8e3f6541 3476
fc5ed1e9 3477 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3478 return 0;
3479
dc5736ed
LZ
3480 if (!cfts || cfts[0].name[0] == '\0')
3481 return 0;
2bb566cb 3482
2bd59d48
TH
3483 ret = cgroup_init_cftypes(ss, cfts);
3484 if (ret)
3485 return ret;
79578621 3486
01f6474c 3487 mutex_lock(&cgroup_mutex);
21a2d343 3488
0adb0704 3489 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3490 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3491 if (ret)
21a2d343 3492 cgroup_rm_cftypes_locked(cfts);
79578621 3493
01f6474c 3494 mutex_unlock(&cgroup_mutex);
9ccece80 3495 return ret;
79578621
TH
3496}
3497
a8ddc821
TH
3498/**
3499 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3500 * @ss: target cgroup subsystem
3501 * @cfts: zero-length name terminated array of cftypes
3502 *
3503 * Similar to cgroup_add_cftypes() but the added files are only used for
3504 * the default hierarchy.
3505 */
3506int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3507{
3508 struct cftype *cft;
3509
3510 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3511 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3512 return cgroup_add_cftypes(ss, cfts);
3513}
3514
3515/**
3516 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3517 * @ss: target cgroup subsystem
3518 * @cfts: zero-length name terminated array of cftypes
3519 *
3520 * Similar to cgroup_add_cftypes() but the added files are only used for
3521 * the legacy hierarchies.
3522 */
2cf669a5
TH
3523int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3524{
a8ddc821
TH
3525 struct cftype *cft;
3526
e4b7037c
TH
3527 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3528 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3529 return cgroup_add_cftypes(ss, cfts);
3530}
3531
a043e3b2
LZ
3532/**
3533 * cgroup_task_count - count the number of tasks in a cgroup.
3534 * @cgrp: the cgroup in question
3535 *
3536 * Return the number of tasks in the cgroup.
3537 */
07bc356e 3538static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3539{
3540 int count = 0;
69d0206c 3541 struct cgrp_cset_link *link;
817929ec 3542
f0d9a5f1 3543 spin_lock_bh(&css_set_lock);
69d0206c
TH
3544 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3545 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3546 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3547 return count;
3548}
3549
53fa5261 3550/**
492eb21b 3551 * css_next_child - find the next child of a given css
c2931b70
TH
3552 * @pos: the current position (%NULL to initiate traversal)
3553 * @parent: css whose children to walk
53fa5261 3554 *
c2931b70 3555 * This function returns the next child of @parent and should be called
87fb54f1 3556 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3557 * that @parent and @pos are accessible. The next sibling is guaranteed to
3558 * be returned regardless of their states.
3559 *
3560 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3561 * css which finished ->css_online() is guaranteed to be visible in the
3562 * future iterations and will stay visible until the last reference is put.
3563 * A css which hasn't finished ->css_online() or already finished
3564 * ->css_offline() may show up during traversal. It's each subsystem's
3565 * responsibility to synchronize against on/offlining.
53fa5261 3566 */
c2931b70
TH
3567struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3568 struct cgroup_subsys_state *parent)
53fa5261 3569{
c2931b70 3570 struct cgroup_subsys_state *next;
53fa5261 3571
8353da1f 3572 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3573
3574 /*
de3f0341
TH
3575 * @pos could already have been unlinked from the sibling list.
3576 * Once a cgroup is removed, its ->sibling.next is no longer
3577 * updated when its next sibling changes. CSS_RELEASED is set when
3578 * @pos is taken off list, at which time its next pointer is valid,
3579 * and, as releases are serialized, the one pointed to by the next
3580 * pointer is guaranteed to not have started release yet. This
3581 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3582 * critical section, the one pointed to by its next pointer is
3583 * guaranteed to not have finished its RCU grace period even if we
3584 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3585 *
de3f0341
TH
3586 * If @pos has CSS_RELEASED set, its next pointer can't be
3587 * dereferenced; however, as each css is given a monotonically
3588 * increasing unique serial number and always appended to the
3589 * sibling list, the next one can be found by walking the parent's
3590 * children until the first css with higher serial number than
3591 * @pos's. While this path can be slower, it happens iff iteration
3592 * races against release and the race window is very small.
53fa5261 3593 */
3b287a50 3594 if (!pos) {
c2931b70
TH
3595 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3596 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3597 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3598 } else {
c2931b70 3599 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3600 if (next->serial_nr > pos->serial_nr)
3601 break;
53fa5261
TH
3602 }
3603
3b281afb
TH
3604 /*
3605 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3606 * the next sibling.
3b281afb 3607 */
c2931b70
TH
3608 if (&next->sibling != &parent->children)
3609 return next;
3b281afb 3610 return NULL;
53fa5261 3611}
53fa5261 3612
574bd9f7 3613/**
492eb21b 3614 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3615 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3616 * @root: css whose descendants to walk
574bd9f7 3617 *
492eb21b 3618 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3619 * to visit for pre-order traversal of @root's descendants. @root is
3620 * included in the iteration and the first node to be visited.
75501a6d 3621 *
87fb54f1
TH
3622 * While this function requires cgroup_mutex or RCU read locking, it
3623 * doesn't require the whole traversal to be contained in a single critical
3624 * section. This function will return the correct next descendant as long
3625 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3626 *
3627 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3628 * css which finished ->css_online() is guaranteed to be visible in the
3629 * future iterations and will stay visible until the last reference is put.
3630 * A css which hasn't finished ->css_online() or already finished
3631 * ->css_offline() may show up during traversal. It's each subsystem's
3632 * responsibility to synchronize against on/offlining.
574bd9f7 3633 */
492eb21b
TH
3634struct cgroup_subsys_state *
3635css_next_descendant_pre(struct cgroup_subsys_state *pos,
3636 struct cgroup_subsys_state *root)
574bd9f7 3637{
492eb21b 3638 struct cgroup_subsys_state *next;
574bd9f7 3639
8353da1f 3640 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3641
bd8815a6 3642 /* if first iteration, visit @root */
7805d000 3643 if (!pos)
bd8815a6 3644 return root;
574bd9f7
TH
3645
3646 /* visit the first child if exists */
492eb21b 3647 next = css_next_child(NULL, pos);
574bd9f7
TH
3648 if (next)
3649 return next;
3650
3651 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3652 while (pos != root) {
5c9d535b 3653 next = css_next_child(pos, pos->parent);
75501a6d 3654 if (next)
574bd9f7 3655 return next;
5c9d535b 3656 pos = pos->parent;
7805d000 3657 }
574bd9f7
TH
3658
3659 return NULL;
3660}
574bd9f7 3661
12a9d2fe 3662/**
492eb21b
TH
3663 * css_rightmost_descendant - return the rightmost descendant of a css
3664 * @pos: css of interest
12a9d2fe 3665 *
492eb21b
TH
3666 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3667 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3668 * subtree of @pos.
75501a6d 3669 *
87fb54f1
TH
3670 * While this function requires cgroup_mutex or RCU read locking, it
3671 * doesn't require the whole traversal to be contained in a single critical
3672 * section. This function will return the correct rightmost descendant as
3673 * long as @pos is accessible.
12a9d2fe 3674 */
492eb21b
TH
3675struct cgroup_subsys_state *
3676css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3677{
492eb21b 3678 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3679
8353da1f 3680 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3681
3682 do {
3683 last = pos;
3684 /* ->prev isn't RCU safe, walk ->next till the end */
3685 pos = NULL;
492eb21b 3686 css_for_each_child(tmp, last)
12a9d2fe
TH
3687 pos = tmp;
3688 } while (pos);
3689
3690 return last;
3691}
12a9d2fe 3692
492eb21b
TH
3693static struct cgroup_subsys_state *
3694css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3695{
492eb21b 3696 struct cgroup_subsys_state *last;
574bd9f7
TH
3697
3698 do {
3699 last = pos;
492eb21b 3700 pos = css_next_child(NULL, pos);
574bd9f7
TH
3701 } while (pos);
3702
3703 return last;
3704}
3705
3706/**
492eb21b 3707 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3708 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3709 * @root: css whose descendants to walk
574bd9f7 3710 *
492eb21b 3711 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3712 * to visit for post-order traversal of @root's descendants. @root is
3713 * included in the iteration and the last node to be visited.
75501a6d 3714 *
87fb54f1
TH
3715 * While this function requires cgroup_mutex or RCU read locking, it
3716 * doesn't require the whole traversal to be contained in a single critical
3717 * section. This function will return the correct next descendant as long
3718 * as both @pos and @cgroup are accessible and @pos is a descendant of
3719 * @cgroup.
c2931b70
TH
3720 *
3721 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3722 * css which finished ->css_online() is guaranteed to be visible in the
3723 * future iterations and will stay visible until the last reference is put.
3724 * A css which hasn't finished ->css_online() or already finished
3725 * ->css_offline() may show up during traversal. It's each subsystem's
3726 * responsibility to synchronize against on/offlining.
574bd9f7 3727 */
492eb21b
TH
3728struct cgroup_subsys_state *
3729css_next_descendant_post(struct cgroup_subsys_state *pos,
3730 struct cgroup_subsys_state *root)
574bd9f7 3731{
492eb21b 3732 struct cgroup_subsys_state *next;
574bd9f7 3733
8353da1f 3734 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3735
58b79a91
TH
3736 /* if first iteration, visit leftmost descendant which may be @root */
3737 if (!pos)
3738 return css_leftmost_descendant(root);
574bd9f7 3739
bd8815a6
TH
3740 /* if we visited @root, we're done */
3741 if (pos == root)
3742 return NULL;
3743
574bd9f7 3744 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3745 next = css_next_child(pos, pos->parent);
75501a6d 3746 if (next)
492eb21b 3747 return css_leftmost_descendant(next);
574bd9f7
TH
3748
3749 /* no sibling left, visit parent */
5c9d535b 3750 return pos->parent;
574bd9f7 3751}
574bd9f7 3752
f3d46500
TH
3753/**
3754 * css_has_online_children - does a css have online children
3755 * @css: the target css
3756 *
3757 * Returns %true if @css has any online children; otherwise, %false. This
3758 * function can be called from any context but the caller is responsible
3759 * for synchronizing against on/offlining as necessary.
3760 */
3761bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3762{
f3d46500
TH
3763 struct cgroup_subsys_state *child;
3764 bool ret = false;
cbc125ef
TH
3765
3766 rcu_read_lock();
f3d46500 3767 css_for_each_child(child, css) {
99bae5f9 3768 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3769 ret = true;
3770 break;
cbc125ef
TH
3771 }
3772 }
3773 rcu_read_unlock();
f3d46500 3774 return ret;
574bd9f7 3775}
574bd9f7 3776
0942eeee 3777/**
ecb9d535 3778 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3779 * @it: the iterator to advance
3780 *
3781 * Advance @it to the next css_set to walk.
d515876e 3782 */
ecb9d535 3783static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3784{
0f0a2b4f 3785 struct list_head *l = it->cset_pos;
d515876e
TH
3786 struct cgrp_cset_link *link;
3787 struct css_set *cset;
3788
f0d9a5f1 3789 lockdep_assert_held(&css_set_lock);
ed27b9f7 3790
d515876e
TH
3791 /* Advance to the next non-empty css_set */
3792 do {
3793 l = l->next;
0f0a2b4f
TH
3794 if (l == it->cset_head) {
3795 it->cset_pos = NULL;
ecb9d535 3796 it->task_pos = NULL;
d515876e
TH
3797 return;
3798 }
3ebb2b6e
TH
3799
3800 if (it->ss) {
3801 cset = container_of(l, struct css_set,
3802 e_cset_node[it->ss->id]);
3803 } else {
3804 link = list_entry(l, struct cgrp_cset_link, cset_link);
3805 cset = link->cset;
3806 }
0de0942d 3807 } while (!css_set_populated(cset));
c7561128 3808
0f0a2b4f 3809 it->cset_pos = l;
c7561128
TH
3810
3811 if (!list_empty(&cset->tasks))
0f0a2b4f 3812 it->task_pos = cset->tasks.next;
c7561128 3813 else
0f0a2b4f
TH
3814 it->task_pos = cset->mg_tasks.next;
3815
3816 it->tasks_head = &cset->tasks;
3817 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3818
3819 /*
3820 * We don't keep css_sets locked across iteration steps and thus
3821 * need to take steps to ensure that iteration can be resumed after
3822 * the lock is re-acquired. Iteration is performed at two levels -
3823 * css_sets and tasks in them.
3824 *
3825 * Once created, a css_set never leaves its cgroup lists, so a
3826 * pinned css_set is guaranteed to stay put and we can resume
3827 * iteration afterwards.
3828 *
3829 * Tasks may leave @cset across iteration steps. This is resolved
3830 * by registering each iterator with the css_set currently being
3831 * walked and making css_set_move_task() advance iterators whose
3832 * next task is leaving.
3833 */
3834 if (it->cur_cset) {
3835 list_del(&it->iters_node);
3836 put_css_set_locked(it->cur_cset);
3837 }
3838 get_css_set(cset);
3839 it->cur_cset = cset;
3840 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3841}
3842
ecb9d535
TH
3843static void css_task_iter_advance(struct css_task_iter *it)
3844{
3845 struct list_head *l = it->task_pos;
3846
f0d9a5f1 3847 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3848 WARN_ON_ONCE(!l);
3849
3850 /*
3851 * Advance iterator to find next entry. cset->tasks is consumed
3852 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3853 * next cset.
3854 */
3855 l = l->next;
3856
3857 if (l == it->tasks_head)
3858 l = it->mg_tasks_head->next;
3859
3860 if (l == it->mg_tasks_head)
3861 css_task_iter_advance_css_set(it);
3862 else
3863 it->task_pos = l;
3864}
3865
0942eeee 3866/**
72ec7029
TH
3867 * css_task_iter_start - initiate task iteration
3868 * @css: the css to walk tasks of
0942eeee
TH
3869 * @it: the task iterator to use
3870 *
72ec7029
TH
3871 * Initiate iteration through the tasks of @css. The caller can call
3872 * css_task_iter_next() to walk through the tasks until the function
3873 * returns NULL. On completion of iteration, css_task_iter_end() must be
3874 * called.
0942eeee 3875 */
72ec7029
TH
3876void css_task_iter_start(struct cgroup_subsys_state *css,
3877 struct css_task_iter *it)
817929ec 3878{
56fde9e0
TH
3879 /* no one should try to iterate before mounting cgroups */
3880 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3881
ed27b9f7
TH
3882 memset(it, 0, sizeof(*it));
3883
f0d9a5f1 3884 spin_lock_bh(&css_set_lock);
c59cd3d8 3885
3ebb2b6e
TH
3886 it->ss = css->ss;
3887
3888 if (it->ss)
3889 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3890 else
3891 it->cset_pos = &css->cgroup->cset_links;
3892
0f0a2b4f 3893 it->cset_head = it->cset_pos;
c59cd3d8 3894
ecb9d535 3895 css_task_iter_advance_css_set(it);
ed27b9f7 3896
f0d9a5f1 3897 spin_unlock_bh(&css_set_lock);
817929ec
PM
3898}
3899
0942eeee 3900/**
72ec7029 3901 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3902 * @it: the task iterator being iterated
3903 *
3904 * The "next" function for task iteration. @it should have been
72ec7029
TH
3905 * initialized via css_task_iter_start(). Returns NULL when the iteration
3906 * reaches the end.
0942eeee 3907 */
72ec7029 3908struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3909{
d5745675 3910 if (it->cur_task) {
ed27b9f7 3911 put_task_struct(it->cur_task);
d5745675
TH
3912 it->cur_task = NULL;
3913 }
ed27b9f7 3914
f0d9a5f1 3915 spin_lock_bh(&css_set_lock);
ed27b9f7 3916
d5745675
TH
3917 if (it->task_pos) {
3918 it->cur_task = list_entry(it->task_pos, struct task_struct,
3919 cg_list);
3920 get_task_struct(it->cur_task);
3921 css_task_iter_advance(it);
3922 }
ed27b9f7 3923
f0d9a5f1 3924 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3925
3926 return it->cur_task;
817929ec
PM
3927}
3928
0942eeee 3929/**
72ec7029 3930 * css_task_iter_end - finish task iteration
0942eeee
TH
3931 * @it: the task iterator to finish
3932 *
72ec7029 3933 * Finish task iteration started by css_task_iter_start().
0942eeee 3934 */
72ec7029 3935void css_task_iter_end(struct css_task_iter *it)
31a7df01 3936{
ed27b9f7 3937 if (it->cur_cset) {
f0d9a5f1 3938 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3939 list_del(&it->iters_node);
3940 put_css_set_locked(it->cur_cset);
f0d9a5f1 3941 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3942 }
3943
3944 if (it->cur_task)
3945 put_task_struct(it->cur_task);
31a7df01
CW
3946}
3947
3948/**
8cc99345
TH
3949 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3950 * @to: cgroup to which the tasks will be moved
3951 * @from: cgroup in which the tasks currently reside
31a7df01 3952 *
eaf797ab
TH
3953 * Locking rules between cgroup_post_fork() and the migration path
3954 * guarantee that, if a task is forking while being migrated, the new child
3955 * is guaranteed to be either visible in the source cgroup after the
3956 * parent's migration is complete or put into the target cgroup. No task
3957 * can slip out of migration through forking.
31a7df01 3958 */
8cc99345 3959int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3960{
952aaa12
TH
3961 LIST_HEAD(preloaded_csets);
3962 struct cgrp_cset_link *link;
72ec7029 3963 struct css_task_iter it;
e406d1cf 3964 struct task_struct *task;
952aaa12 3965 int ret;
31a7df01 3966
952aaa12 3967 mutex_lock(&cgroup_mutex);
31a7df01 3968
952aaa12 3969 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 3970 spin_lock_bh(&css_set_lock);
952aaa12
TH
3971 list_for_each_entry(link, &from->cset_links, cset_link)
3972 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 3973 spin_unlock_bh(&css_set_lock);
31a7df01 3974
952aaa12
TH
3975 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3976 if (ret)
3977 goto out_err;
8cc99345 3978
952aaa12
TH
3979 /*
3980 * Migrate tasks one-by-one until @form is empty. This fails iff
3981 * ->can_attach() fails.
3982 */
e406d1cf 3983 do {
9d800df1 3984 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3985 task = css_task_iter_next(&it);
3986 if (task)
3987 get_task_struct(task);
3988 css_task_iter_end(&it);
3989
3990 if (task) {
9af2ec45 3991 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3992 put_task_struct(task);
3993 }
3994 } while (task && !ret);
952aaa12
TH
3995out_err:
3996 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3997 mutex_unlock(&cgroup_mutex);
e406d1cf 3998 return ret;
8cc99345
TH
3999}
4000
bbcb81d0 4001/*
102a775e 4002 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4003 *
4004 * Reading this file can return large amounts of data if a cgroup has
4005 * *lots* of attached tasks. So it may need several calls to read(),
4006 * but we cannot guarantee that the information we produce is correct
4007 * unless we produce it entirely atomically.
4008 *
bbcb81d0 4009 */
bbcb81d0 4010
24528255
LZ
4011/* which pidlist file are we talking about? */
4012enum cgroup_filetype {
4013 CGROUP_FILE_PROCS,
4014 CGROUP_FILE_TASKS,
4015};
4016
4017/*
4018 * A pidlist is a list of pids that virtually represents the contents of one
4019 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4020 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4021 * to the cgroup.
4022 */
4023struct cgroup_pidlist {
4024 /*
4025 * used to find which pidlist is wanted. doesn't change as long as
4026 * this particular list stays in the list.
4027 */
4028 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4029 /* array of xids */
4030 pid_t *list;
4031 /* how many elements the above list has */
4032 int length;
24528255
LZ
4033 /* each of these stored in a list by its cgroup */
4034 struct list_head links;
4035 /* pointer to the cgroup we belong to, for list removal purposes */
4036 struct cgroup *owner;
b1a21367
TH
4037 /* for delayed destruction */
4038 struct delayed_work destroy_dwork;
24528255
LZ
4039};
4040
d1d9fd33
BB
4041/*
4042 * The following two functions "fix" the issue where there are more pids
4043 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4044 * TODO: replace with a kernel-wide solution to this problem
4045 */
4046#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4047static void *pidlist_allocate(int count)
4048{
4049 if (PIDLIST_TOO_LARGE(count))
4050 return vmalloc(count * sizeof(pid_t));
4051 else
4052 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4053}
b1a21367 4054
d1d9fd33
BB
4055static void pidlist_free(void *p)
4056{
58794514 4057 kvfree(p);
d1d9fd33 4058}
d1d9fd33 4059
b1a21367
TH
4060/*
4061 * Used to destroy all pidlists lingering waiting for destroy timer. None
4062 * should be left afterwards.
4063 */
4064static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4065{
4066 struct cgroup_pidlist *l, *tmp_l;
4067
4068 mutex_lock(&cgrp->pidlist_mutex);
4069 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4070 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4071 mutex_unlock(&cgrp->pidlist_mutex);
4072
4073 flush_workqueue(cgroup_pidlist_destroy_wq);
4074 BUG_ON(!list_empty(&cgrp->pidlists));
4075}
4076
4077static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4078{
4079 struct delayed_work *dwork = to_delayed_work(work);
4080 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4081 destroy_dwork);
4082 struct cgroup_pidlist *tofree = NULL;
4083
4084 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4085
4086 /*
04502365
TH
4087 * Destroy iff we didn't get queued again. The state won't change
4088 * as destroy_dwork can only be queued while locked.
b1a21367 4089 */
04502365 4090 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4091 list_del(&l->links);
4092 pidlist_free(l->list);
4093 put_pid_ns(l->key.ns);
4094 tofree = l;
4095 }
4096
b1a21367
TH
4097 mutex_unlock(&l->owner->pidlist_mutex);
4098 kfree(tofree);
4099}
4100
bbcb81d0 4101/*
102a775e 4102 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4103 * Returns the number of unique elements.
bbcb81d0 4104 */
6ee211ad 4105static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4106{
102a775e 4107 int src, dest = 1;
102a775e
BB
4108
4109 /*
4110 * we presume the 0th element is unique, so i starts at 1. trivial
4111 * edge cases first; no work needs to be done for either
4112 */
4113 if (length == 0 || length == 1)
4114 return length;
4115 /* src and dest walk down the list; dest counts unique elements */
4116 for (src = 1; src < length; src++) {
4117 /* find next unique element */
4118 while (list[src] == list[src-1]) {
4119 src++;
4120 if (src == length)
4121 goto after;
4122 }
4123 /* dest always points to where the next unique element goes */
4124 list[dest] = list[src];
4125 dest++;
4126 }
4127after:
102a775e
BB
4128 return dest;
4129}
4130
afb2bc14
TH
4131/*
4132 * The two pid files - task and cgroup.procs - guaranteed that the result
4133 * is sorted, which forced this whole pidlist fiasco. As pid order is
4134 * different per namespace, each namespace needs differently sorted list,
4135 * making it impossible to use, for example, single rbtree of member tasks
4136 * sorted by task pointer. As pidlists can be fairly large, allocating one
4137 * per open file is dangerous, so cgroup had to implement shared pool of
4138 * pidlists keyed by cgroup and namespace.
4139 *
4140 * All this extra complexity was caused by the original implementation
4141 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4142 * want to do away with it. Explicitly scramble sort order if on the
4143 * default hierarchy so that no such expectation exists in the new
4144 * interface.
afb2bc14
TH
4145 *
4146 * Scrambling is done by swapping every two consecutive bits, which is
4147 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4148 */
4149static pid_t pid_fry(pid_t pid)
4150{
4151 unsigned a = pid & 0x55555555;
4152 unsigned b = pid & 0xAAAAAAAA;
4153
4154 return (a << 1) | (b >> 1);
4155}
4156
4157static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4158{
aa6ec29b 4159 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4160 return pid_fry(pid);
4161 else
4162 return pid;
4163}
4164
102a775e
BB
4165static int cmppid(const void *a, const void *b)
4166{
4167 return *(pid_t *)a - *(pid_t *)b;
4168}
4169
afb2bc14
TH
4170static int fried_cmppid(const void *a, const void *b)
4171{
4172 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4173}
4174
e6b81710
TH
4175static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4176 enum cgroup_filetype type)
4177{
4178 struct cgroup_pidlist *l;
4179 /* don't need task_nsproxy() if we're looking at ourself */
4180 struct pid_namespace *ns = task_active_pid_ns(current);
4181
4182 lockdep_assert_held(&cgrp->pidlist_mutex);
4183
4184 list_for_each_entry(l, &cgrp->pidlists, links)
4185 if (l->key.type == type && l->key.ns == ns)
4186 return l;
4187 return NULL;
4188}
4189
72a8cb30
BB
4190/*
4191 * find the appropriate pidlist for our purpose (given procs vs tasks)
4192 * returns with the lock on that pidlist already held, and takes care
4193 * of the use count, or returns NULL with no locks held if we're out of
4194 * memory.
4195 */
e6b81710
TH
4196static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4197 enum cgroup_filetype type)
72a8cb30
BB
4198{
4199 struct cgroup_pidlist *l;
b70cc5fd 4200
e6b81710
TH
4201 lockdep_assert_held(&cgrp->pidlist_mutex);
4202
4203 l = cgroup_pidlist_find(cgrp, type);
4204 if (l)
4205 return l;
4206
72a8cb30 4207 /* entry not found; create a new one */
f4f4be2b 4208 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4209 if (!l)
72a8cb30 4210 return l;
e6b81710 4211
b1a21367 4212 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4213 l->key.type = type;
e6b81710
TH
4214 /* don't need task_nsproxy() if we're looking at ourself */
4215 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4216 l->owner = cgrp;
4217 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4218 return l;
4219}
4220
102a775e
BB
4221/*
4222 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4223 */
72a8cb30
BB
4224static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4225 struct cgroup_pidlist **lp)
102a775e
BB
4226{
4227 pid_t *array;
4228 int length;
4229 int pid, n = 0; /* used for populating the array */
72ec7029 4230 struct css_task_iter it;
817929ec 4231 struct task_struct *tsk;
102a775e
BB
4232 struct cgroup_pidlist *l;
4233
4bac00d1
TH
4234 lockdep_assert_held(&cgrp->pidlist_mutex);
4235
102a775e
BB
4236 /*
4237 * If cgroup gets more users after we read count, we won't have
4238 * enough space - tough. This race is indistinguishable to the
4239 * caller from the case that the additional cgroup users didn't
4240 * show up until sometime later on.
4241 */
4242 length = cgroup_task_count(cgrp);
d1d9fd33 4243 array = pidlist_allocate(length);
102a775e
BB
4244 if (!array)
4245 return -ENOMEM;
4246 /* now, populate the array */
9d800df1 4247 css_task_iter_start(&cgrp->self, &it);
72ec7029 4248 while ((tsk = css_task_iter_next(&it))) {
102a775e 4249 if (unlikely(n == length))
817929ec 4250 break;
102a775e 4251 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4252 if (type == CGROUP_FILE_PROCS)
4253 pid = task_tgid_vnr(tsk);
4254 else
4255 pid = task_pid_vnr(tsk);
102a775e
BB
4256 if (pid > 0) /* make sure to only use valid results */
4257 array[n++] = pid;
817929ec 4258 }
72ec7029 4259 css_task_iter_end(&it);
102a775e
BB
4260 length = n;
4261 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4262 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4263 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4264 else
4265 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4266 if (type == CGROUP_FILE_PROCS)
6ee211ad 4267 length = pidlist_uniq(array, length);
e6b81710 4268
e6b81710 4269 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4270 if (!l) {
d1d9fd33 4271 pidlist_free(array);
72a8cb30 4272 return -ENOMEM;
102a775e 4273 }
e6b81710
TH
4274
4275 /* store array, freeing old if necessary */
d1d9fd33 4276 pidlist_free(l->list);
102a775e
BB
4277 l->list = array;
4278 l->length = length;
72a8cb30 4279 *lp = l;
102a775e 4280 return 0;
bbcb81d0
PM
4281}
4282
846c7bb0 4283/**
a043e3b2 4284 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4285 * @stats: cgroupstats to fill information into
4286 * @dentry: A dentry entry belonging to the cgroup for which stats have
4287 * been requested.
a043e3b2
LZ
4288 *
4289 * Build and fill cgroupstats so that taskstats can export it to user
4290 * space.
846c7bb0
BS
4291 */
4292int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4293{
2bd59d48 4294 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4295 struct cgroup *cgrp;
72ec7029 4296 struct css_task_iter it;
846c7bb0 4297 struct task_struct *tsk;
33d283be 4298
2bd59d48
TH
4299 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4300 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4301 kernfs_type(kn) != KERNFS_DIR)
4302 return -EINVAL;
4303
bad34660
LZ
4304 mutex_lock(&cgroup_mutex);
4305
846c7bb0 4306 /*
2bd59d48 4307 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4308 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4309 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4310 */
2bd59d48
TH
4311 rcu_read_lock();
4312 cgrp = rcu_dereference(kn->priv);
bad34660 4313 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4314 rcu_read_unlock();
bad34660 4315 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4316 return -ENOENT;
4317 }
bad34660 4318 rcu_read_unlock();
846c7bb0 4319
9d800df1 4320 css_task_iter_start(&cgrp->self, &it);
72ec7029 4321 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4322 switch (tsk->state) {
4323 case TASK_RUNNING:
4324 stats->nr_running++;
4325 break;
4326 case TASK_INTERRUPTIBLE:
4327 stats->nr_sleeping++;
4328 break;
4329 case TASK_UNINTERRUPTIBLE:
4330 stats->nr_uninterruptible++;
4331 break;
4332 case TASK_STOPPED:
4333 stats->nr_stopped++;
4334 break;
4335 default:
4336 if (delayacct_is_task_waiting_on_io(tsk))
4337 stats->nr_io_wait++;
4338 break;
4339 }
4340 }
72ec7029 4341 css_task_iter_end(&it);
846c7bb0 4342
bad34660 4343 mutex_unlock(&cgroup_mutex);
2bd59d48 4344 return 0;
846c7bb0
BS
4345}
4346
8f3ff208 4347
bbcb81d0 4348/*
102a775e 4349 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4350 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4351 * in the cgroup->l->list array.
bbcb81d0 4352 */
cc31edce 4353
102a775e 4354static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4355{
cc31edce
PM
4356 /*
4357 * Initially we receive a position value that corresponds to
4358 * one more than the last pid shown (or 0 on the first call or
4359 * after a seek to the start). Use a binary-search to find the
4360 * next pid to display, if any
4361 */
2bd59d48 4362 struct kernfs_open_file *of = s->private;
7da11279 4363 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4364 struct cgroup_pidlist *l;
7da11279 4365 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4366 int index = 0, pid = *pos;
4bac00d1
TH
4367 int *iter, ret;
4368
4369 mutex_lock(&cgrp->pidlist_mutex);
4370
4371 /*
5d22444f 4372 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4373 * after open. If the matching pidlist is around, we can use that.
5d22444f 4374 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4375 * could already have been destroyed.
4376 */
5d22444f
TH
4377 if (of->priv)
4378 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4379
4380 /*
4381 * Either this is the first start() after open or the matching
4382 * pidlist has been destroyed inbetween. Create a new one.
4383 */
5d22444f
TH
4384 if (!of->priv) {
4385 ret = pidlist_array_load(cgrp, type,
4386 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4387 if (ret)
4388 return ERR_PTR(ret);
4389 }
5d22444f 4390 l = of->priv;
cc31edce 4391
cc31edce 4392 if (pid) {
102a775e 4393 int end = l->length;
20777766 4394
cc31edce
PM
4395 while (index < end) {
4396 int mid = (index + end) / 2;
afb2bc14 4397 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4398 index = mid;
4399 break;
afb2bc14 4400 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4401 index = mid + 1;
4402 else
4403 end = mid;
4404 }
4405 }
4406 /* If we're off the end of the array, we're done */
102a775e 4407 if (index >= l->length)
cc31edce
PM
4408 return NULL;
4409 /* Update the abstract position to be the actual pid that we found */
102a775e 4410 iter = l->list + index;
afb2bc14 4411 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4412 return iter;
4413}
4414
102a775e 4415static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4416{
2bd59d48 4417 struct kernfs_open_file *of = s->private;
5d22444f 4418 struct cgroup_pidlist *l = of->priv;
62236858 4419
5d22444f
TH
4420 if (l)
4421 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4422 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4423 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4424}
4425
102a775e 4426static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4427{
2bd59d48 4428 struct kernfs_open_file *of = s->private;
5d22444f 4429 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4430 pid_t *p = v;
4431 pid_t *end = l->list + l->length;
cc31edce
PM
4432 /*
4433 * Advance to the next pid in the array. If this goes off the
4434 * end, we're done
4435 */
4436 p++;
4437 if (p >= end) {
4438 return NULL;
4439 } else {
7da11279 4440 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4441 return p;
4442 }
4443}
4444
102a775e 4445static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4446{
94ff212d
JP
4447 seq_printf(s, "%d\n", *(int *)v);
4448
4449 return 0;
cc31edce 4450}
bbcb81d0 4451
182446d0
TH
4452static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4453 struct cftype *cft)
81a6a5cd 4454{
182446d0 4455 return notify_on_release(css->cgroup);
81a6a5cd
PM
4456}
4457
182446d0
TH
4458static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4459 struct cftype *cft, u64 val)
6379c106 4460{
6379c106 4461 if (val)
182446d0 4462 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4463 else
182446d0 4464 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4465 return 0;
4466}
4467
182446d0
TH
4468static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4469 struct cftype *cft)
97978e6d 4470{
182446d0 4471 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4472}
4473
182446d0
TH
4474static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4475 struct cftype *cft, u64 val)
97978e6d
DL
4476{
4477 if (val)
182446d0 4478 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4479 else
182446d0 4480 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4481 return 0;
4482}
4483
a14c6874
TH
4484/* cgroup core interface files for the default hierarchy */
4485static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4486 {
d5c56ced 4487 .name = "cgroup.procs",
6f60eade 4488 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4489 .seq_start = cgroup_pidlist_start,
4490 .seq_next = cgroup_pidlist_next,
4491 .seq_stop = cgroup_pidlist_stop,
4492 .seq_show = cgroup_pidlist_show,
5d22444f 4493 .private = CGROUP_FILE_PROCS,
acbef755 4494 .write = cgroup_procs_write,
102a775e 4495 },
f8f22e53
TH
4496 {
4497 .name = "cgroup.controllers",
a14c6874 4498 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4499 .seq_show = cgroup_root_controllers_show,
4500 },
4501 {
4502 .name = "cgroup.controllers",
a14c6874 4503 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4504 .seq_show = cgroup_controllers_show,
4505 },
4506 {
4507 .name = "cgroup.subtree_control",
f8f22e53 4508 .seq_show = cgroup_subtree_control_show,
451af504 4509 .write = cgroup_subtree_control_write,
f8f22e53 4510 },
842b597e 4511 {
4a07c222 4512 .name = "cgroup.events",
a14c6874 4513 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4514 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4515 .seq_show = cgroup_events_show,
842b597e 4516 },
a14c6874
TH
4517 { } /* terminate */
4518};
d5c56ced 4519
a14c6874
TH
4520/* cgroup core interface files for the legacy hierarchies */
4521static struct cftype cgroup_legacy_base_files[] = {
4522 {
4523 .name = "cgroup.procs",
4524 .seq_start = cgroup_pidlist_start,
4525 .seq_next = cgroup_pidlist_next,
4526 .seq_stop = cgroup_pidlist_stop,
4527 .seq_show = cgroup_pidlist_show,
4528 .private = CGROUP_FILE_PROCS,
4529 .write = cgroup_procs_write,
a14c6874
TH
4530 },
4531 {
4532 .name = "cgroup.clone_children",
4533 .read_u64 = cgroup_clone_children_read,
4534 .write_u64 = cgroup_clone_children_write,
4535 },
4536 {
4537 .name = "cgroup.sane_behavior",
4538 .flags = CFTYPE_ONLY_ON_ROOT,
4539 .seq_show = cgroup_sane_behavior_show,
4540 },
d5c56ced
TH
4541 {
4542 .name = "tasks",
6612f05b
TH
4543 .seq_start = cgroup_pidlist_start,
4544 .seq_next = cgroup_pidlist_next,
4545 .seq_stop = cgroup_pidlist_stop,
4546 .seq_show = cgroup_pidlist_show,
5d22444f 4547 .private = CGROUP_FILE_TASKS,
acbef755 4548 .write = cgroup_tasks_write,
d5c56ced
TH
4549 },
4550 {
4551 .name = "notify_on_release",
d5c56ced
TH
4552 .read_u64 = cgroup_read_notify_on_release,
4553 .write_u64 = cgroup_write_notify_on_release,
4554 },
6e6ff25b
TH
4555 {
4556 .name = "release_agent",
a14c6874 4557 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4558 .seq_show = cgroup_release_agent_show,
451af504 4559 .write = cgroup_release_agent_write,
5f469907 4560 .max_write_len = PATH_MAX - 1,
6e6ff25b 4561 },
db0416b6 4562 { } /* terminate */
bbcb81d0
PM
4563};
4564
0c21ead1
TH
4565/*
4566 * css destruction is four-stage process.
4567 *
4568 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4569 * Implemented in kill_css().
4570 *
4571 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4572 * and thus css_tryget_online() is guaranteed to fail, the css can be
4573 * offlined by invoking offline_css(). After offlining, the base ref is
4574 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4575 *
4576 * 3. When the percpu_ref reaches zero, the only possible remaining
4577 * accessors are inside RCU read sections. css_release() schedules the
4578 * RCU callback.
4579 *
4580 * 4. After the grace period, the css can be freed. Implemented in
4581 * css_free_work_fn().
4582 *
4583 * It is actually hairier because both step 2 and 4 require process context
4584 * and thus involve punting to css->destroy_work adding two additional
4585 * steps to the already complex sequence.
4586 */
35ef10da 4587static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4588{
4589 struct cgroup_subsys_state *css =
35ef10da 4590 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4591 struct cgroup_subsys *ss = css->ss;
0c21ead1 4592 struct cgroup *cgrp = css->cgroup;
6f60eade 4593 struct cgroup_file *cfile;
48ddbe19 4594
9a1049da
TH
4595 percpu_ref_exit(&css->refcnt);
4596
6f60eade
TH
4597 list_for_each_entry(cfile, &css->files, node)
4598 kernfs_put(cfile->kn);
4599
01e58659 4600 if (ss) {
9d755d33 4601 /* css free path */
01e58659
VD
4602 int id = css->id;
4603
9d755d33
TH
4604 if (css->parent)
4605 css_put(css->parent);
0ae78e0b 4606
01e58659
VD
4607 ss->css_free(css);
4608 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4609 cgroup_put(cgrp);
4610 } else {
4611 /* cgroup free path */
4612 atomic_dec(&cgrp->root->nr_cgrps);
4613 cgroup_pidlist_destroy_all(cgrp);
971ff493 4614 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4615
d51f39b0 4616 if (cgroup_parent(cgrp)) {
9d755d33
TH
4617 /*
4618 * We get a ref to the parent, and put the ref when
4619 * this cgroup is being freed, so it's guaranteed
4620 * that the parent won't be destroyed before its
4621 * children.
4622 */
d51f39b0 4623 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4624 kernfs_put(cgrp->kn);
4625 kfree(cgrp);
4626 } else {
4627 /*
4628 * This is root cgroup's refcnt reaching zero,
4629 * which indicates that the root should be
4630 * released.
4631 */
4632 cgroup_destroy_root(cgrp->root);
4633 }
4634 }
48ddbe19
TH
4635}
4636
0c21ead1 4637static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4638{
4639 struct cgroup_subsys_state *css =
0c21ead1 4640 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4641
35ef10da 4642 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4643 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4644}
4645
25e15d83 4646static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4647{
4648 struct cgroup_subsys_state *css =
25e15d83 4649 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4650 struct cgroup_subsys *ss = css->ss;
9d755d33 4651 struct cgroup *cgrp = css->cgroup;
15a4c835 4652
1fed1b2e
TH
4653 mutex_lock(&cgroup_mutex);
4654
de3f0341 4655 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4656 list_del_rcu(&css->sibling);
4657
9d755d33
TH
4658 if (ss) {
4659 /* css release path */
01e58659 4660 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4661 if (ss->css_released)
4662 ss->css_released(css);
9d755d33
TH
4663 } else {
4664 /* cgroup release path */
9d755d33
TH
4665 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4666 cgrp->id = -1;
a4189487
LZ
4667
4668 /*
4669 * There are two control paths which try to determine
4670 * cgroup from dentry without going through kernfs -
4671 * cgroupstats_build() and css_tryget_online_from_dir().
4672 * Those are supported by RCU protecting clearing of
4673 * cgrp->kn->priv backpointer.
4674 */
4675 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4676 }
d3daf28d 4677
1fed1b2e
TH
4678 mutex_unlock(&cgroup_mutex);
4679
0c21ead1 4680 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4681}
4682
d3daf28d
TH
4683static void css_release(struct percpu_ref *ref)
4684{
4685 struct cgroup_subsys_state *css =
4686 container_of(ref, struct cgroup_subsys_state, refcnt);
4687
25e15d83
TH
4688 INIT_WORK(&css->destroy_work, css_release_work_fn);
4689 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4690}
4691
ddfcadab
TH
4692static void init_and_link_css(struct cgroup_subsys_state *css,
4693 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4694{
0cb51d71
TH
4695 lockdep_assert_held(&cgroup_mutex);
4696
ddfcadab
TH
4697 cgroup_get(cgrp);
4698
d5c419b6 4699 memset(css, 0, sizeof(*css));
bd89aabc 4700 css->cgroup = cgrp;
72c97e54 4701 css->ss = ss;
d5c419b6
TH
4702 INIT_LIST_HEAD(&css->sibling);
4703 INIT_LIST_HEAD(&css->children);
6f60eade 4704 INIT_LIST_HEAD(&css->files);
0cb51d71 4705 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4706
d51f39b0
TH
4707 if (cgroup_parent(cgrp)) {
4708 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4709 css_get(css->parent);
ddfcadab 4710 }
48ddbe19 4711
ca8bdcaf 4712 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4713}
4714
2a4ac633 4715/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4716static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4717{
623f926b 4718 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4719 int ret = 0;
4720
a31f2d3f
TH
4721 lockdep_assert_held(&cgroup_mutex);
4722
92fb9748 4723 if (ss->css_online)
eb95419b 4724 ret = ss->css_online(css);
ae7f164a 4725 if (!ret) {
eb95419b 4726 css->flags |= CSS_ONLINE;
aec25020 4727 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4728 }
b1929db4 4729 return ret;
a31f2d3f
TH
4730}
4731
2a4ac633 4732/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4733static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4734{
623f926b 4735 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4736
4737 lockdep_assert_held(&cgroup_mutex);
4738
4739 if (!(css->flags & CSS_ONLINE))
4740 return;
4741
d7eeac19 4742 if (ss->css_offline)
eb95419b 4743 ss->css_offline(css);
a31f2d3f 4744
eb95419b 4745 css->flags &= ~CSS_ONLINE;
e3297803 4746 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4747
4748 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4749}
4750
c81c925a
TH
4751/**
4752 * create_css - create a cgroup_subsys_state
4753 * @cgrp: the cgroup new css will be associated with
4754 * @ss: the subsys of new css
f63070d3 4755 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4756 *
4757 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4758 * css is online and installed in @cgrp with all interface files created if
4759 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4760 */
f63070d3
TH
4761static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4762 bool visible)
c81c925a 4763{
d51f39b0 4764 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4765 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4766 struct cgroup_subsys_state *css;
4767 int err;
4768
c81c925a
TH
4769 lockdep_assert_held(&cgroup_mutex);
4770
1fed1b2e 4771 css = ss->css_alloc(parent_css);
c81c925a
TH
4772 if (IS_ERR(css))
4773 return PTR_ERR(css);
4774
ddfcadab 4775 init_and_link_css(css, ss, cgrp);
a2bed820 4776
2aad2a86 4777 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4778 if (err)
3eb59ec6 4779 goto err_free_css;
c81c925a 4780
cf780b7d 4781 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4782 if (err < 0)
4783 goto err_free_percpu_ref;
4784 css->id = err;
c81c925a 4785
f63070d3 4786 if (visible) {
4df8dc90 4787 err = css_populate_dir(css, NULL);
f63070d3
TH
4788 if (err)
4789 goto err_free_id;
4790 }
15a4c835
TH
4791
4792 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4793 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4794 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4795
4796 err = online_css(css);
4797 if (err)
1fed1b2e 4798 goto err_list_del;
94419627 4799
c81c925a 4800 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4801 cgroup_parent(parent)) {
ed3d261b 4802 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4803 current->comm, current->pid, ss->name);
c81c925a 4804 if (!strcmp(ss->name, "memory"))
ed3d261b 4805 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4806 ss->warned_broken_hierarchy = true;
4807 }
4808
4809 return 0;
4810
1fed1b2e
TH
4811err_list_del:
4812 list_del_rcu(&css->sibling);
4df8dc90 4813 css_clear_dir(css, NULL);
15a4c835
TH
4814err_free_id:
4815 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4816err_free_percpu_ref:
9a1049da 4817 percpu_ref_exit(&css->refcnt);
3eb59ec6 4818err_free_css:
a2bed820 4819 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4820 return err;
4821}
4822
b3bfd983
TH
4823static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4824 umode_t mode)
ddbcc7e8 4825{
b11cfb58 4826 struct cgroup *parent, *cgrp, *tcgrp;
a9746d8d 4827 struct cgroup_root *root;
ddbcc7e8 4828 struct cgroup_subsys *ss;
2bd59d48 4829 struct kernfs_node *kn;
b11cfb58 4830 int level, ssid, ret;
ddbcc7e8 4831
71b1fb5c
AC
4832 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4833 */
4834 if (strchr(name, '\n'))
4835 return -EINVAL;
4836
a9746d8d
TH
4837 parent = cgroup_kn_lock_live(parent_kn);
4838 if (!parent)
4839 return -ENODEV;
4840 root = parent->root;
b11cfb58 4841 level = parent->level + 1;
ddbcc7e8 4842
0a950f65 4843 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4844 cgrp = kzalloc(sizeof(*cgrp) +
4845 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
ba0f4d76
TH
4846 if (!cgrp) {
4847 ret = -ENOMEM;
4848 goto out_unlock;
0ab02ca8
LZ
4849 }
4850
2aad2a86 4851 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4852 if (ret)
4853 goto out_free_cgrp;
4854
0ab02ca8
LZ
4855 /*
4856 * Temporarily set the pointer to NULL, so idr_find() won't return
4857 * a half-baked cgroup.
4858 */
cf780b7d 4859 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4860 if (cgrp->id < 0) {
ba0f4d76 4861 ret = -ENOMEM;
9d755d33 4862 goto out_cancel_ref;
976c06bc
TH
4863 }
4864
cc31edce 4865 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4866
9d800df1 4867 cgrp->self.parent = &parent->self;
ba0f4d76 4868 cgrp->root = root;
b11cfb58
TH
4869 cgrp->level = level;
4870
4871 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4872 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4873
b6abdb0e
LZ
4874 if (notify_on_release(parent))
4875 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4876
2260e7fc
TH
4877 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4878 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4879
2bd59d48 4880 /* create the directory */
e61734c5 4881 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4882 if (IS_ERR(kn)) {
ba0f4d76
TH
4883 ret = PTR_ERR(kn);
4884 goto out_free_id;
2bd59d48
TH
4885 }
4886 cgrp->kn = kn;
ddbcc7e8 4887
4e139afc 4888 /*
6f30558f
TH
4889 * This extra ref will be put in cgroup_free_fn() and guarantees
4890 * that @cgrp->kn is always accessible.
4e139afc 4891 */
6f30558f 4892 kernfs_get(kn);
ddbcc7e8 4893
0cb51d71 4894 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4895
4e139afc 4896 /* allocation complete, commit to creation */
d5c419b6 4897 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4898 atomic_inc(&root->nr_cgrps);
59f5296b 4899 cgroup_get(parent);
415cf07a 4900
0d80255e
TH
4901 /*
4902 * @cgrp is now fully operational. If something fails after this
4903 * point, it'll be released via the normal destruction path.
4904 */
6fa4918d 4905 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4906
ba0f4d76
TH
4907 ret = cgroup_kn_set_ugid(kn);
4908 if (ret)
4909 goto out_destroy;
49957f8e 4910
4df8dc90 4911 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4912 if (ret)
4913 goto out_destroy;
628f7cd4 4914
9d403e99 4915 /* let's create and online css's */
b85d2040 4916 for_each_subsys(ss, ssid) {
f392e51c 4917 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4918 ret = create_css(cgrp, ss,
4919 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4920 if (ret)
4921 goto out_destroy;
b85d2040 4922 }
a8638030 4923 }
ddbcc7e8 4924
bd53d617
TH
4925 /*
4926 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4927 * subtree_control from the parent. Each is configured manually.
bd53d617 4928 */
667c2491
TH
4929 if (!cgroup_on_dfl(cgrp)) {
4930 cgrp->subtree_control = parent->subtree_control;
4931 cgroup_refresh_child_subsys_mask(cgrp);
4932 }
2bd59d48 4933
2bd59d48 4934 kernfs_activate(kn);
ddbcc7e8 4935
ba0f4d76
TH
4936 ret = 0;
4937 goto out_unlock;
ddbcc7e8 4938
ba0f4d76 4939out_free_id:
6fa4918d 4940 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4941out_cancel_ref:
9a1049da 4942 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4943out_free_cgrp:
bd89aabc 4944 kfree(cgrp);
ba0f4d76 4945out_unlock:
a9746d8d 4946 cgroup_kn_unlock(parent_kn);
ba0f4d76 4947 return ret;
4b8b47eb 4948
ba0f4d76 4949out_destroy:
4b8b47eb 4950 cgroup_destroy_locked(cgrp);
ba0f4d76 4951 goto out_unlock;
ddbcc7e8
PM
4952}
4953
223dbc38
TH
4954/*
4955 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4956 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4957 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4958 */
4959static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4960{
223dbc38
TH
4961 struct cgroup_subsys_state *css =
4962 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4963
f20104de 4964 mutex_lock(&cgroup_mutex);
09a503ea 4965 offline_css(css);
f20104de 4966 mutex_unlock(&cgroup_mutex);
09a503ea 4967
09a503ea 4968 css_put(css);
d3daf28d
TH
4969}
4970
223dbc38
TH
4971/* css kill confirmation processing requires process context, bounce */
4972static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4973{
4974 struct cgroup_subsys_state *css =
4975 container_of(ref, struct cgroup_subsys_state, refcnt);
4976
223dbc38 4977 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4978 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4979}
4980
f392e51c
TH
4981/**
4982 * kill_css - destroy a css
4983 * @css: css to destroy
4984 *
4985 * This function initiates destruction of @css by removing cgroup interface
4986 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4987 * asynchronously once css_tryget_online() is guaranteed to fail and when
4988 * the reference count reaches zero, @css will be released.
f392e51c
TH
4989 */
4990static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4991{
01f6474c 4992 lockdep_assert_held(&cgroup_mutex);
94419627 4993
2bd59d48
TH
4994 /*
4995 * This must happen before css is disassociated with its cgroup.
4996 * See seq_css() for details.
4997 */
4df8dc90 4998 css_clear_dir(css, NULL);
3c14f8b4 4999
edae0c33
TH
5000 /*
5001 * Killing would put the base ref, but we need to keep it alive
5002 * until after ->css_offline().
5003 */
5004 css_get(css);
5005
5006 /*
5007 * cgroup core guarantees that, by the time ->css_offline() is
5008 * invoked, no new css reference will be given out via
ec903c0c 5009 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5010 * proceed to offlining css's because percpu_ref_kill() doesn't
5011 * guarantee that the ref is seen as killed on all CPUs on return.
5012 *
5013 * Use percpu_ref_kill_and_confirm() to get notifications as each
5014 * css is confirmed to be seen as killed on all CPUs.
5015 */
5016 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5017}
5018
5019/**
5020 * cgroup_destroy_locked - the first stage of cgroup destruction
5021 * @cgrp: cgroup to be destroyed
5022 *
5023 * css's make use of percpu refcnts whose killing latency shouldn't be
5024 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5025 * guarantee that css_tryget_online() won't succeed by the time
5026 * ->css_offline() is invoked. To satisfy all the requirements,
5027 * destruction is implemented in the following two steps.
d3daf28d
TH
5028 *
5029 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5030 * userland visible parts and start killing the percpu refcnts of
5031 * css's. Set up so that the next stage will be kicked off once all
5032 * the percpu refcnts are confirmed to be killed.
5033 *
5034 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5035 * rest of destruction. Once all cgroup references are gone, the
5036 * cgroup is RCU-freed.
5037 *
5038 * This function implements s1. After this step, @cgrp is gone as far as
5039 * the userland is concerned and a new cgroup with the same name may be
5040 * created. As cgroup doesn't care about the names internally, this
5041 * doesn't cause any problem.
5042 */
42809dd4
TH
5043static int cgroup_destroy_locked(struct cgroup *cgrp)
5044 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5045{
2bd59d48 5046 struct cgroup_subsys_state *css;
1c6727af 5047 int ssid;
ddbcc7e8 5048
42809dd4
TH
5049 lockdep_assert_held(&cgroup_mutex);
5050
91486f61
TH
5051 /*
5052 * Only migration can raise populated from zero and we're already
5053 * holding cgroup_mutex.
5054 */
5055 if (cgroup_is_populated(cgrp))
ddbcc7e8 5056 return -EBUSY;
a043e3b2 5057
bb78a92f 5058 /*
d5c419b6
TH
5059 * Make sure there's no live children. We can't test emptiness of
5060 * ->self.children as dead children linger on it while being
5061 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5062 */
f3d46500 5063 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5064 return -EBUSY;
5065
455050d2
TH
5066 /*
5067 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5068 * creation by disabling cgroup_lock_live_group().
455050d2 5069 */
184faf32 5070 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5071
249f3468 5072 /* initiate massacre of all css's */
1c6727af
TH
5073 for_each_css(css, ssid, cgrp)
5074 kill_css(css);
455050d2 5075
455050d2 5076 /*
01f6474c
TH
5077 * Remove @cgrp directory along with the base files. @cgrp has an
5078 * extra ref on its kn.
f20104de 5079 */
01f6474c 5080 kernfs_remove(cgrp->kn);
f20104de 5081
d51f39b0 5082 check_for_release(cgroup_parent(cgrp));
2bd59d48 5083
249f3468 5084 /* put the base reference */
9d755d33 5085 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5086
ea15f8cc
TH
5087 return 0;
5088};
5089
2bd59d48 5090static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5091{
a9746d8d 5092 struct cgroup *cgrp;
2bd59d48 5093 int ret = 0;
42809dd4 5094
a9746d8d
TH
5095 cgrp = cgroup_kn_lock_live(kn);
5096 if (!cgrp)
5097 return 0;
42809dd4 5098
a9746d8d 5099 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5100
a9746d8d 5101 cgroup_kn_unlock(kn);
42809dd4 5102 return ret;
8e3f6541
TH
5103}
5104
2bd59d48
TH
5105static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5106 .remount_fs = cgroup_remount,
5107 .show_options = cgroup_show_options,
5108 .mkdir = cgroup_mkdir,
5109 .rmdir = cgroup_rmdir,
5110 .rename = cgroup_rename,
5111};
5112
15a4c835 5113static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5114{
ddbcc7e8 5115 struct cgroup_subsys_state *css;
cfe36bde
DC
5116
5117 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5118
648bb56d
TH
5119 mutex_lock(&cgroup_mutex);
5120
15a4c835 5121 idr_init(&ss->css_idr);
0adb0704 5122 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5123
3dd06ffa
TH
5124 /* Create the root cgroup state for this subsystem */
5125 ss->root = &cgrp_dfl_root;
5126 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5127 /* We don't handle early failures gracefully */
5128 BUG_ON(IS_ERR(css));
ddfcadab 5129 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5130
5131 /*
5132 * Root csses are never destroyed and we can't initialize
5133 * percpu_ref during early init. Disable refcnting.
5134 */
5135 css->flags |= CSS_NO_REF;
5136
15a4c835 5137 if (early) {
9395a450 5138 /* allocation can't be done safely during early init */
15a4c835
TH
5139 css->id = 1;
5140 } else {
5141 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5142 BUG_ON(css->id < 0);
5143 }
ddbcc7e8 5144
e8d55fde 5145 /* Update the init_css_set to contain a subsys
817929ec 5146 * pointer to this state - since the subsystem is
e8d55fde 5147 * newly registered, all tasks and hence the
3dd06ffa 5148 * init_css_set is in the subsystem's root cgroup. */
aec25020 5149 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5150
cb4a3167
AS
5151 have_fork_callback |= (bool)ss->fork << ss->id;
5152 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5153 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5154 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5155
e8d55fde
LZ
5156 /* At system boot, before all subsystems have been
5157 * registered, no tasks have been forked, so we don't
5158 * need to invoke fork callbacks here. */
5159 BUG_ON(!list_empty(&init_task.tasks));
5160
ae7f164a 5161 BUG_ON(online_css(css));
a8638030 5162
cf5d5941
BB
5163 mutex_unlock(&cgroup_mutex);
5164}
cf5d5941 5165
ddbcc7e8 5166/**
a043e3b2
LZ
5167 * cgroup_init_early - cgroup initialization at system boot
5168 *
5169 * Initialize cgroups at system boot, and initialize any
5170 * subsystems that request early init.
ddbcc7e8
PM
5171 */
5172int __init cgroup_init_early(void)
5173{
7b9a6ba5 5174 static struct cgroup_sb_opts __initdata opts;
30159ec7 5175 struct cgroup_subsys *ss;
ddbcc7e8 5176 int i;
30159ec7 5177
3dd06ffa 5178 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5179 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5180
a4ea1cc9 5181 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5182
3ed80a62 5183 for_each_subsys(ss, i) {
aec25020 5184 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5185 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5186 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5187 ss->id, ss->name);
073219e9
TH
5188 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5189 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5190
aec25020 5191 ss->id = i;
073219e9 5192 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5193 if (!ss->legacy_name)
5194 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5195
5196 if (ss->early_init)
15a4c835 5197 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5198 }
5199 return 0;
5200}
5201
a3e72739
TH
5202static unsigned long cgroup_disable_mask __initdata;
5203
ddbcc7e8 5204/**
a043e3b2
LZ
5205 * cgroup_init - cgroup initialization
5206 *
5207 * Register cgroup filesystem and /proc file, and initialize
5208 * any subsystems that didn't request early init.
ddbcc7e8
PM
5209 */
5210int __init cgroup_init(void)
5211{
30159ec7 5212 struct cgroup_subsys *ss;
0ac801fe 5213 unsigned long key;
035f4f51 5214 int ssid;
ddbcc7e8 5215
1ed13287 5216 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5217 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5218 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5219
54e7b4eb 5220 mutex_lock(&cgroup_mutex);
54e7b4eb 5221
82fe9b0d
TH
5222 /* Add init_css_set to the hash table */
5223 key = css_set_hash(init_css_set.subsys);
5224 hash_add(css_set_table, &init_css_set.hlist, key);
5225
3dd06ffa 5226 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5227
54e7b4eb
TH
5228 mutex_unlock(&cgroup_mutex);
5229
172a2c06 5230 for_each_subsys(ss, ssid) {
15a4c835
TH
5231 if (ss->early_init) {
5232 struct cgroup_subsys_state *css =
5233 init_css_set.subsys[ss->id];
5234
5235 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5236 GFP_KERNEL);
5237 BUG_ON(css->id < 0);
5238 } else {
5239 cgroup_init_subsys(ss, false);
5240 }
172a2c06 5241
2d8f243a
TH
5242 list_add_tail(&init_css_set.e_cset_node[ssid],
5243 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5244
5245 /*
c731ae1d
LZ
5246 * Setting dfl_root subsys_mask needs to consider the
5247 * disabled flag and cftype registration needs kmalloc,
5248 * both of which aren't available during early_init.
172a2c06 5249 */
a3e72739
TH
5250 if (cgroup_disable_mask & (1 << ssid)) {
5251 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5252 printk(KERN_INFO "Disabling %s control group subsystem\n",
5253 ss->name);
a8ddc821 5254 continue;
a3e72739 5255 }
a8ddc821
TH
5256
5257 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5258
5de4fa13
TH
5259 if (!ss->dfl_cftypes)
5260 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5261
a8ddc821
TH
5262 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5263 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5264 } else {
5265 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5266 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5267 }
295458e6
VD
5268
5269 if (ss->bind)
5270 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5271 }
5272
035f4f51
TH
5273 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5274 WARN_ON(register_filesystem(&cgroup_fs_type));
5275 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5276
2bd59d48 5277 return 0;
ddbcc7e8 5278}
b4f48b63 5279
e5fca243
TH
5280static int __init cgroup_wq_init(void)
5281{
5282 /*
5283 * There isn't much point in executing destruction path in
5284 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5285 * Use 1 for @max_active.
e5fca243
TH
5286 *
5287 * We would prefer to do this in cgroup_init() above, but that
5288 * is called before init_workqueues(): so leave this until after.
5289 */
1a11533f 5290 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5291 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5292
5293 /*
5294 * Used to destroy pidlists and separate to serve as flush domain.
5295 * Cap @max_active to 1 too.
5296 */
5297 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5298 0, 1);
5299 BUG_ON(!cgroup_pidlist_destroy_wq);
5300
e5fca243
TH
5301 return 0;
5302}
5303core_initcall(cgroup_wq_init);
5304
a424316c
PM
5305/*
5306 * proc_cgroup_show()
5307 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5308 * - Used for /proc/<pid>/cgroup.
a424316c 5309 */
006f4ac4
ZL
5310int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5311 struct pid *pid, struct task_struct *tsk)
a424316c 5312{
e61734c5 5313 char *buf, *path;
a424316c 5314 int retval;
3dd06ffa 5315 struct cgroup_root *root;
a424316c
PM
5316
5317 retval = -ENOMEM;
e61734c5 5318 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5319 if (!buf)
5320 goto out;
5321
a424316c 5322 mutex_lock(&cgroup_mutex);
f0d9a5f1 5323 spin_lock_bh(&css_set_lock);
a424316c 5324
985ed670 5325 for_each_root(root) {
a424316c 5326 struct cgroup_subsys *ss;
bd89aabc 5327 struct cgroup *cgrp;
b85d2040 5328 int ssid, count = 0;
a424316c 5329
a2dd4247 5330 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5331 continue;
5332
2c6ab6d2 5333 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5334 if (root != &cgrp_dfl_root)
5335 for_each_subsys(ss, ssid)
5336 if (root->subsys_mask & (1 << ssid))
5337 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5338 ss->legacy_name);
c6d57f33
PM
5339 if (strlen(root->name))
5340 seq_printf(m, "%sname=%s", count ? "," : "",
5341 root->name);
a424316c 5342 seq_putc(m, ':');
2e91fa7f 5343
7717f7ba 5344 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5345
5346 /*
5347 * On traditional hierarchies, all zombie tasks show up as
5348 * belonging to the root cgroup. On the default hierarchy,
5349 * while a zombie doesn't show up in "cgroup.procs" and
5350 * thus can't be migrated, its /proc/PID/cgroup keeps
5351 * reporting the cgroup it belonged to before exiting. If
5352 * the cgroup is removed before the zombie is reaped,
5353 * " (deleted)" is appended to the cgroup path.
5354 */
5355 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5356 path = cgroup_path(cgrp, buf, PATH_MAX);
5357 if (!path) {
5358 retval = -ENAMETOOLONG;
5359 goto out_unlock;
5360 }
5361 } else {
5362 path = "/";
e61734c5 5363 }
2e91fa7f 5364
e61734c5 5365 seq_puts(m, path);
2e91fa7f
TH
5366
5367 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5368 seq_puts(m, " (deleted)\n");
5369 else
5370 seq_putc(m, '\n');
a424316c
PM
5371 }
5372
006f4ac4 5373 retval = 0;
a424316c 5374out_unlock:
f0d9a5f1 5375 spin_unlock_bh(&css_set_lock);
a424316c 5376 mutex_unlock(&cgroup_mutex);
a424316c
PM
5377 kfree(buf);
5378out:
5379 return retval;
5380}
5381
a424316c
PM
5382/* Display information about each subsystem and each hierarchy */
5383static int proc_cgroupstats_show(struct seq_file *m, void *v)
5384{
30159ec7 5385 struct cgroup_subsys *ss;
a424316c 5386 int i;
a424316c 5387
8bab8dde 5388 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5389 /*
5390 * ideally we don't want subsystems moving around while we do this.
5391 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5392 * subsys/hierarchy state.
5393 */
a424316c 5394 mutex_lock(&cgroup_mutex);
30159ec7
TH
5395
5396 for_each_subsys(ss, i)
2c6ab6d2 5397 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5398 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5399 atomic_read(&ss->root->nr_cgrps),
5400 cgroup_ssid_enabled(i));
30159ec7 5401
a424316c
PM
5402 mutex_unlock(&cgroup_mutex);
5403 return 0;
5404}
5405
5406static int cgroupstats_open(struct inode *inode, struct file *file)
5407{
9dce07f1 5408 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5409}
5410
828c0950 5411static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5412 .open = cgroupstats_open,
5413 .read = seq_read,
5414 .llseek = seq_lseek,
5415 .release = single_release,
5416};
5417
7e47682e
AS
5418static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5419{
5420 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5421 return &ss_priv[i - CGROUP_CANFORK_START];
5422 return NULL;
5423}
5424
5425static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5426{
5427 void **private = subsys_canfork_priv_p(ss_priv, i);
5428 return private ? *private : NULL;
5429}
5430
b4f48b63 5431/**
eaf797ab 5432 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5433 * @child: pointer to task_struct of forking parent process.
b4f48b63 5434 *
eaf797ab
TH
5435 * A task is associated with the init_css_set until cgroup_post_fork()
5436 * attaches it to the parent's css_set. Empty cg_list indicates that
5437 * @child isn't holding reference to its css_set.
b4f48b63
PM
5438 */
5439void cgroup_fork(struct task_struct *child)
5440{
eaf797ab 5441 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5442 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5443}
5444
7e47682e
AS
5445/**
5446 * cgroup_can_fork - called on a new task before the process is exposed
5447 * @child: the task in question.
5448 *
5449 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5450 * returns an error, the fork aborts with that error code. This allows for
5451 * a cgroup subsystem to conditionally allow or deny new forks.
5452 */
5453int cgroup_can_fork(struct task_struct *child,
5454 void *ss_priv[CGROUP_CANFORK_COUNT])
5455{
5456 struct cgroup_subsys *ss;
5457 int i, j, ret;
5458
5459 for_each_subsys_which(ss, i, &have_canfork_callback) {
5460 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5461 if (ret)
5462 goto out_revert;
5463 }
5464
5465 return 0;
5466
5467out_revert:
5468 for_each_subsys(ss, j) {
5469 if (j >= i)
5470 break;
5471 if (ss->cancel_fork)
5472 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5473 }
5474
5475 return ret;
5476}
5477
5478/**
5479 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5480 * @child: the task in question
5481 *
5482 * This calls the cancel_fork() callbacks if a fork failed *after*
5483 * cgroup_can_fork() succeded.
5484 */
5485void cgroup_cancel_fork(struct task_struct *child,
5486 void *ss_priv[CGROUP_CANFORK_COUNT])
5487{
5488 struct cgroup_subsys *ss;
5489 int i;
5490
5491 for_each_subsys(ss, i)
5492 if (ss->cancel_fork)
5493 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5494}
5495
817929ec 5496/**
a043e3b2
LZ
5497 * cgroup_post_fork - called on a new task after adding it to the task list
5498 * @child: the task in question
5499 *
5edee61e
TH
5500 * Adds the task to the list running through its css_set if necessary and
5501 * call the subsystem fork() callbacks. Has to be after the task is
5502 * visible on the task list in case we race with the first call to
0942eeee 5503 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5504 * list.
a043e3b2 5505 */
7e47682e
AS
5506void cgroup_post_fork(struct task_struct *child,
5507 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5508{
30159ec7 5509 struct cgroup_subsys *ss;
5edee61e
TH
5510 int i;
5511
3ce3230a 5512 /*
251f8c03 5513 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5514 * function sets use_task_css_set_links before grabbing
5515 * tasklist_lock and we just went through tasklist_lock to add
5516 * @child, it's guaranteed that either we see the set
5517 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5518 * @child during its iteration.
5519 *
5520 * If we won the race, @child is associated with %current's
f0d9a5f1 5521 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5522 * association is stable, and, on completion of the parent's
5523 * migration, @child is visible in the source of migration or
5524 * already in the destination cgroup. This guarantee is necessary
5525 * when implementing operations which need to migrate all tasks of
5526 * a cgroup to another.
5527 *
251f8c03 5528 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5529 * will remain in init_css_set. This is safe because all tasks are
5530 * in the init_css_set before cg_links is enabled and there's no
5531 * operation which transfers all tasks out of init_css_set.
3ce3230a 5532 */
817929ec 5533 if (use_task_css_set_links) {
eaf797ab
TH
5534 struct css_set *cset;
5535
f0d9a5f1 5536 spin_lock_bh(&css_set_lock);
0e1d768f 5537 cset = task_css_set(current);
eaf797ab 5538 if (list_empty(&child->cg_list)) {
eaf797ab 5539 get_css_set(cset);
f6d7d049 5540 css_set_move_task(child, NULL, cset, false);
eaf797ab 5541 }
f0d9a5f1 5542 spin_unlock_bh(&css_set_lock);
817929ec 5543 }
5edee61e
TH
5544
5545 /*
5546 * Call ss->fork(). This must happen after @child is linked on
5547 * css_set; otherwise, @child might change state between ->fork()
5548 * and addition to css_set.
5549 */
cb4a3167 5550 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5551 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5552}
5edee61e 5553
b4f48b63
PM
5554/**
5555 * cgroup_exit - detach cgroup from exiting task
5556 * @tsk: pointer to task_struct of exiting process
5557 *
5558 * Description: Detach cgroup from @tsk and release it.
5559 *
5560 * Note that cgroups marked notify_on_release force every task in
5561 * them to take the global cgroup_mutex mutex when exiting.
5562 * This could impact scaling on very large systems. Be reluctant to
5563 * use notify_on_release cgroups where very high task exit scaling
5564 * is required on large systems.
5565 *
0e1d768f
TH
5566 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5567 * call cgroup_exit() while the task is still competent to handle
5568 * notify_on_release(), then leave the task attached to the root cgroup in
5569 * each hierarchy for the remainder of its exit. No need to bother with
5570 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5571 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5572 */
1ec41830 5573void cgroup_exit(struct task_struct *tsk)
b4f48b63 5574{
30159ec7 5575 struct cgroup_subsys *ss;
5abb8855 5576 struct css_set *cset;
d41d5a01 5577 int i;
817929ec
PM
5578
5579 /*
0e1d768f 5580 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5581 * with us, we can check css_set and cg_list without synchronization.
817929ec 5582 */
0de0942d
TH
5583 cset = task_css_set(tsk);
5584
817929ec 5585 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5586 spin_lock_bh(&css_set_lock);
f6d7d049 5587 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5588 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5589 } else {
5590 get_css_set(cset);
817929ec
PM
5591 }
5592
cb4a3167 5593 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5594 for_each_subsys_which(ss, i, &have_exit_callback)
5595 ss->exit(tsk);
5596}
30159ec7 5597
2e91fa7f
TH
5598void cgroup_free(struct task_struct *task)
5599{
5600 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5601 struct cgroup_subsys *ss;
5602 int ssid;
5603
5604 for_each_subsys_which(ss, ssid, &have_free_callback)
5605 ss->free(task);
d41d5a01 5606
2e91fa7f 5607 put_css_set(cset);
b4f48b63 5608}
697f4161 5609
bd89aabc 5610static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5611{
27bd4dbb 5612 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5613 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5614 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5615}
5616
81a6a5cd
PM
5617/*
5618 * Notify userspace when a cgroup is released, by running the
5619 * configured release agent with the name of the cgroup (path
5620 * relative to the root of cgroup file system) as the argument.
5621 *
5622 * Most likely, this user command will try to rmdir this cgroup.
5623 *
5624 * This races with the possibility that some other task will be
5625 * attached to this cgroup before it is removed, or that some other
5626 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5627 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5628 * unused, and this cgroup will be reprieved from its death sentence,
5629 * to continue to serve a useful existence. Next time it's released,
5630 * we will get notified again, if it still has 'notify_on_release' set.
5631 *
5632 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5633 * means only wait until the task is successfully execve()'d. The
5634 * separate release agent task is forked by call_usermodehelper(),
5635 * then control in this thread returns here, without waiting for the
5636 * release agent task. We don't bother to wait because the caller of
5637 * this routine has no use for the exit status of the release agent
5638 * task, so no sense holding our caller up for that.
81a6a5cd 5639 */
81a6a5cd
PM
5640static void cgroup_release_agent(struct work_struct *work)
5641{
971ff493
ZL
5642 struct cgroup *cgrp =
5643 container_of(work, struct cgroup, release_agent_work);
5644 char *pathbuf = NULL, *agentbuf = NULL, *path;
5645 char *argv[3], *envp[3];
5646
81a6a5cd 5647 mutex_lock(&cgroup_mutex);
971ff493
ZL
5648
5649 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5650 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5651 if (!pathbuf || !agentbuf)
5652 goto out;
5653
5654 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5655 if (!path)
5656 goto out;
5657
5658 argv[0] = agentbuf;
5659 argv[1] = path;
5660 argv[2] = NULL;
5661
5662 /* minimal command environment */
5663 envp[0] = "HOME=/";
5664 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5665 envp[2] = NULL;
5666
81a6a5cd 5667 mutex_unlock(&cgroup_mutex);
971ff493 5668 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5669 goto out_free;
971ff493 5670out:
81a6a5cd 5671 mutex_unlock(&cgroup_mutex);
3e2cd91a 5672out_free:
971ff493
ZL
5673 kfree(agentbuf);
5674 kfree(pathbuf);
81a6a5cd 5675}
8bab8dde
PM
5676
5677static int __init cgroup_disable(char *str)
5678{
30159ec7 5679 struct cgroup_subsys *ss;
8bab8dde 5680 char *token;
30159ec7 5681 int i;
8bab8dde
PM
5682
5683 while ((token = strsep(&str, ",")) != NULL) {
5684 if (!*token)
5685 continue;
be45c900 5686
3ed80a62 5687 for_each_subsys(ss, i) {
3e1d2eed
TH
5688 if (strcmp(token, ss->name) &&
5689 strcmp(token, ss->legacy_name))
5690 continue;
a3e72739 5691 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5692 }
5693 }
5694 return 1;
5695}
5696__setup("cgroup_disable=", cgroup_disable);
38460b48 5697
b77d7b60 5698/**
ec903c0c 5699 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5700 * @dentry: directory dentry of interest
5701 * @ss: subsystem of interest
b77d7b60 5702 *
5a17f543
TH
5703 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5704 * to get the corresponding css and return it. If such css doesn't exist
5705 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5706 */
ec903c0c
TH
5707struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5708 struct cgroup_subsys *ss)
e5d1367f 5709{
2bd59d48
TH
5710 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5711 struct cgroup_subsys_state *css = NULL;
e5d1367f 5712 struct cgroup *cgrp;
e5d1367f 5713
35cf0836 5714 /* is @dentry a cgroup dir? */
2bd59d48
TH
5715 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5716 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5717 return ERR_PTR(-EBADF);
5718
5a17f543
TH
5719 rcu_read_lock();
5720
2bd59d48
TH
5721 /*
5722 * This path doesn't originate from kernfs and @kn could already
5723 * have been or be removed at any point. @kn->priv is RCU
a4189487 5724 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5725 */
5726 cgrp = rcu_dereference(kn->priv);
5727 if (cgrp)
5728 css = cgroup_css(cgrp, ss);
5a17f543 5729
ec903c0c 5730 if (!css || !css_tryget_online(css))
5a17f543
TH
5731 css = ERR_PTR(-ENOENT);
5732
5733 rcu_read_unlock();
5734 return css;
e5d1367f 5735}
e5d1367f 5736
1cb650b9
LZ
5737/**
5738 * css_from_id - lookup css by id
5739 * @id: the cgroup id
5740 * @ss: cgroup subsys to be looked into
5741 *
5742 * Returns the css if there's valid one with @id, otherwise returns NULL.
5743 * Should be called under rcu_read_lock().
5744 */
5745struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5746{
6fa4918d 5747 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5748 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5749}
5750
16af4396
TH
5751/**
5752 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5753 * @path: path on the default hierarchy
5754 *
5755 * Find the cgroup at @path on the default hierarchy, increment its
5756 * reference count and return it. Returns pointer to the found cgroup on
5757 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5758 * if @path points to a non-directory.
5759 */
5760struct cgroup *cgroup_get_from_path(const char *path)
5761{
5762 struct kernfs_node *kn;
5763 struct cgroup *cgrp;
5764
5765 mutex_lock(&cgroup_mutex);
5766
5767 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5768 if (kn) {
5769 if (kernfs_type(kn) == KERNFS_DIR) {
5770 cgrp = kn->priv;
5771 cgroup_get(cgrp);
5772 } else {
5773 cgrp = ERR_PTR(-ENOTDIR);
5774 }
5775 kernfs_put(kn);
5776 } else {
5777 cgrp = ERR_PTR(-ENOENT);
5778 }
5779
5780 mutex_unlock(&cgroup_mutex);
5781 return cgrp;
5782}
5783EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5784
fe693435 5785#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5786static struct cgroup_subsys_state *
5787debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5788{
5789 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5790
5791 if (!css)
5792 return ERR_PTR(-ENOMEM);
5793
5794 return css;
5795}
5796
eb95419b 5797static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5798{
eb95419b 5799 kfree(css);
fe693435
PM
5800}
5801
182446d0
TH
5802static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5803 struct cftype *cft)
fe693435 5804{
182446d0 5805 return cgroup_task_count(css->cgroup);
fe693435
PM
5806}
5807
182446d0
TH
5808static u64 current_css_set_read(struct cgroup_subsys_state *css,
5809 struct cftype *cft)
fe693435
PM
5810{
5811 return (u64)(unsigned long)current->cgroups;
5812}
5813
182446d0 5814static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5815 struct cftype *cft)
fe693435
PM
5816{
5817 u64 count;
5818
5819 rcu_read_lock();
a8ad805c 5820 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5821 rcu_read_unlock();
5822 return count;
5823}
5824
2da8ca82 5825static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5826{
69d0206c 5827 struct cgrp_cset_link *link;
5abb8855 5828 struct css_set *cset;
e61734c5
TH
5829 char *name_buf;
5830
5831 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5832 if (!name_buf)
5833 return -ENOMEM;
7717f7ba 5834
f0d9a5f1 5835 spin_lock_bh(&css_set_lock);
7717f7ba 5836 rcu_read_lock();
5abb8855 5837 cset = rcu_dereference(current->cgroups);
69d0206c 5838 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5839 struct cgroup *c = link->cgrp;
7717f7ba 5840
a2dd4247 5841 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5842 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5843 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5844 }
5845 rcu_read_unlock();
f0d9a5f1 5846 spin_unlock_bh(&css_set_lock);
e61734c5 5847 kfree(name_buf);
7717f7ba
PM
5848 return 0;
5849}
5850
5851#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5852static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5853{
2da8ca82 5854 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5855 struct cgrp_cset_link *link;
7717f7ba 5856
f0d9a5f1 5857 spin_lock_bh(&css_set_lock);
182446d0 5858 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5859 struct css_set *cset = link->cset;
7717f7ba
PM
5860 struct task_struct *task;
5861 int count = 0;
c7561128 5862
5abb8855 5863 seq_printf(seq, "css_set %p\n", cset);
c7561128 5864
5abb8855 5865 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5866 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5867 goto overflow;
5868 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5869 }
5870
5871 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5872 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5873 goto overflow;
5874 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5875 }
c7561128
TH
5876 continue;
5877 overflow:
5878 seq_puts(seq, " ...\n");
7717f7ba 5879 }
f0d9a5f1 5880 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5881 return 0;
5882}
5883
182446d0 5884static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5885{
27bd4dbb 5886 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5887 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5888}
5889
5890static struct cftype debug_files[] = {
fe693435
PM
5891 {
5892 .name = "taskcount",
5893 .read_u64 = debug_taskcount_read,
5894 },
5895
5896 {
5897 .name = "current_css_set",
5898 .read_u64 = current_css_set_read,
5899 },
5900
5901 {
5902 .name = "current_css_set_refcount",
5903 .read_u64 = current_css_set_refcount_read,
5904 },
5905
7717f7ba
PM
5906 {
5907 .name = "current_css_set_cg_links",
2da8ca82 5908 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5909 },
5910
5911 {
5912 .name = "cgroup_css_links",
2da8ca82 5913 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5914 },
5915
fe693435
PM
5916 {
5917 .name = "releasable",
5918 .read_u64 = releasable_read,
5919 },
fe693435 5920
4baf6e33
TH
5921 { } /* terminate */
5922};
fe693435 5923
073219e9 5924struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5925 .css_alloc = debug_css_alloc,
5926 .css_free = debug_css_free,
5577964e 5927 .legacy_cftypes = debug_files,
fe693435
PM
5928};
5929#endif /* CONFIG_CGROUP_DEBUG */