cgroups: fix probable race with put_css_set[_taskexit] and find_css_set
[linux-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
11 *
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
14 *
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25#include <linux/cgroup.h>
26#include <linux/errno.h>
27#include <linux/fs.h>
28#include <linux/kernel.h>
29#include <linux/list.h>
30#include <linux/mm.h>
31#include <linux/mutex.h>
32#include <linux/mount.h>
33#include <linux/pagemap.h>
a424316c 34#include <linux/proc_fs.h>
ddbcc7e8
PM
35#include <linux/rcupdate.h>
36#include <linux/sched.h>
817929ec 37#include <linux/backing-dev.h>
ddbcc7e8
PM
38#include <linux/seq_file.h>
39#include <linux/slab.h>
40#include <linux/magic.h>
41#include <linux/spinlock.h>
42#include <linux/string.h>
bbcb81d0 43#include <linux/sort.h>
81a6a5cd 44#include <linux/kmod.h>
846c7bb0
BS
45#include <linux/delayacct.h>
46#include <linux/cgroupstats.h>
472b1053 47#include <linux/hash.h>
3f8206d4 48#include <linux/namei.h>
846c7bb0 49
ddbcc7e8
PM
50#include <asm/atomic.h>
51
81a6a5cd
PM
52static DEFINE_MUTEX(cgroup_mutex);
53
ddbcc7e8
PM
54/* Generate an array of cgroup subsystem pointers */
55#define SUBSYS(_x) &_x ## _subsys,
56
57static struct cgroup_subsys *subsys[] = {
58#include <linux/cgroup_subsys.h>
59};
60
61/*
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
64 * hierarchy
65 */
66struct cgroupfs_root {
67 struct super_block *sb;
68
69 /*
70 * The bitmask of subsystems intended to be attached to this
71 * hierarchy
72 */
73 unsigned long subsys_bits;
74
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits;
77
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list;
80
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup;
83
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups;
86
87 /* A list running through the mounted hierarchies */
88 struct list_head root_list;
89
90 /* Hierarchy-specific flags */
91 unsigned long flags;
81a6a5cd 92
e788e066 93 /* The path to use for release notifications. */
81a6a5cd 94 char release_agent_path[PATH_MAX];
ddbcc7e8
PM
95};
96
97
98/*
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
102 */
103static struct cgroupfs_root rootnode;
104
105/* The list of hierarchy roots */
106
107static LIST_HEAD(roots);
817929ec 108static int root_count;
ddbcc7e8
PM
109
110/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111#define dummytop (&rootnode.top_cgroup)
112
113/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
116 * be called.
ddbcc7e8 117 */
8947f9d5 118static int need_forkexit_callback __read_mostly;
cf475ad2 119static int need_mm_owner_callback __read_mostly;
ddbcc7e8 120
ddbcc7e8 121/* convenient tests for these bits */
bd89aabc 122inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 123{
bd89aabc 124 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
125}
126
127/* bits in struct cgroupfs_root flags field */
128enum {
129 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
130};
131
e9685a03 132static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
133{
134 const int bits =
bd89aabc
PM
135 (1 << CGRP_RELEASABLE) |
136 (1 << CGRP_NOTIFY_ON_RELEASE);
137 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
138}
139
e9685a03 140static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 141{
bd89aabc 142 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
143}
144
ddbcc7e8
PM
145/*
146 * for_each_subsys() allows you to iterate on each subsystem attached to
147 * an active hierarchy
148 */
149#define for_each_subsys(_root, _ss) \
150list_for_each_entry(_ss, &_root->subsys_list, sibling)
151
152/* for_each_root() allows you to iterate across the active hierarchies */
153#define for_each_root(_root) \
154list_for_each_entry(_root, &roots, root_list)
155
81a6a5cd
PM
156/* the list of cgroups eligible for automatic release. Protected by
157 * release_list_lock */
158static LIST_HEAD(release_list);
159static DEFINE_SPINLOCK(release_list_lock);
160static void cgroup_release_agent(struct work_struct *work);
161static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 162static void check_for_release(struct cgroup *cgrp);
81a6a5cd 163
817929ec
PM
164/* Link structure for associating css_set objects with cgroups */
165struct cg_cgroup_link {
166 /*
167 * List running through cg_cgroup_links associated with a
168 * cgroup, anchored on cgroup->css_sets
169 */
bd89aabc 170 struct list_head cgrp_link_list;
817929ec
PM
171 /*
172 * List running through cg_cgroup_links pointing at a
173 * single css_set object, anchored on css_set->cg_links
174 */
175 struct list_head cg_link_list;
176 struct css_set *cg;
177};
178
179/* The default css_set - used by init and its children prior to any
180 * hierarchies being mounted. It contains a pointer to the root state
181 * for each subsystem. Also used to anchor the list of css_sets. Not
182 * reference-counted, to improve performance when child cgroups
183 * haven't been created.
184 */
185
186static struct css_set init_css_set;
187static struct cg_cgroup_link init_css_set_link;
188
189/* css_set_lock protects the list of css_set objects, and the
190 * chain of tasks off each css_set. Nests outside task->alloc_lock
191 * due to cgroup_iter_start() */
192static DEFINE_RWLOCK(css_set_lock);
193static int css_set_count;
194
472b1053
LZ
195/* hash table for cgroup groups. This improves the performance to
196 * find an existing css_set */
197#define CSS_SET_HASH_BITS 7
198#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
199static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
200
201static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
202{
203 int i;
204 int index;
205 unsigned long tmp = 0UL;
206
207 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
208 tmp += (unsigned long)css[i];
209 tmp = (tmp >> 16) ^ tmp;
210
211 index = hash_long(tmp, CSS_SET_HASH_BITS);
212
213 return &css_set_table[index];
214}
215
817929ec
PM
216/* We don't maintain the lists running through each css_set to its
217 * task until after the first call to cgroup_iter_start(). This
218 * reduces the fork()/exit() overhead for people who have cgroups
219 * compiled into their kernel but not actually in use */
8947f9d5 220static int use_task_css_set_links __read_mostly;
817929ec
PM
221
222/* When we create or destroy a css_set, the operation simply
223 * takes/releases a reference count on all the cgroups referenced
224 * by subsystems in this css_set. This can end up multiple-counting
225 * some cgroups, but that's OK - the ref-count is just a
226 * busy/not-busy indicator; ensuring that we only count each cgroup
227 * once would require taking a global lock to ensure that no
b4f48b63
PM
228 * subsystems moved between hierarchies while we were doing so.
229 *
230 * Possible TODO: decide at boot time based on the number of
231 * registered subsystems and the number of CPUs or NUMA nodes whether
232 * it's better for performance to ref-count every subsystem, or to
233 * take a global lock and only add one ref count to each hierarchy.
234 */
817929ec
PM
235
236/*
237 * unlink a css_set from the list and free it
238 */
81a6a5cd 239static void unlink_css_set(struct css_set *cg)
b4f48b63 240{
71cbb949
KM
241 struct cg_cgroup_link *link;
242 struct cg_cgroup_link *saved_link;
243
472b1053 244 hlist_del(&cg->hlist);
817929ec 245 css_set_count--;
71cbb949
KM
246
247 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
248 cg_link_list) {
817929ec 249 list_del(&link->cg_link_list);
bd89aabc 250 list_del(&link->cgrp_link_list);
817929ec
PM
251 kfree(link);
252 }
81a6a5cd
PM
253}
254
146aa1bd 255static void __put_css_set(struct css_set *cg, int taskexit)
81a6a5cd
PM
256{
257 int i;
146aa1bd
LJ
258 /*
259 * Ensure that the refcount doesn't hit zero while any readers
260 * can see it. Similar to atomic_dec_and_lock(), but for an
261 * rwlock
262 */
263 if (atomic_add_unless(&cg->refcount, -1, 1))
264 return;
265 write_lock(&css_set_lock);
266 if (!atomic_dec_and_test(&cg->refcount)) {
267 write_unlock(&css_set_lock);
268 return;
269 }
81a6a5cd 270 unlink_css_set(cg);
146aa1bd 271 write_unlock(&css_set_lock);
81a6a5cd
PM
272
273 rcu_read_lock();
274 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc
PM
275 struct cgroup *cgrp = cg->subsys[i]->cgroup;
276 if (atomic_dec_and_test(&cgrp->count) &&
277 notify_on_release(cgrp)) {
81a6a5cd 278 if (taskexit)
bd89aabc
PM
279 set_bit(CGRP_RELEASABLE, &cgrp->flags);
280 check_for_release(cgrp);
81a6a5cd
PM
281 }
282 }
283 rcu_read_unlock();
817929ec 284 kfree(cg);
b4f48b63
PM
285}
286
817929ec
PM
287/*
288 * refcounted get/put for css_set objects
289 */
290static inline void get_css_set(struct css_set *cg)
291{
146aa1bd 292 atomic_inc(&cg->refcount);
817929ec
PM
293}
294
295static inline void put_css_set(struct css_set *cg)
296{
146aa1bd 297 __put_css_set(cg, 0);
817929ec
PM
298}
299
81a6a5cd
PM
300static inline void put_css_set_taskexit(struct css_set *cg)
301{
146aa1bd 302 __put_css_set(cg, 1);
81a6a5cd
PM
303}
304
817929ec
PM
305/*
306 * find_existing_css_set() is a helper for
307 * find_css_set(), and checks to see whether an existing
472b1053 308 * css_set is suitable.
817929ec
PM
309 *
310 * oldcg: the cgroup group that we're using before the cgroup
311 * transition
312 *
bd89aabc 313 * cgrp: the cgroup that we're moving into
817929ec
PM
314 *
315 * template: location in which to build the desired set of subsystem
316 * state objects for the new cgroup group
317 */
817929ec
PM
318static struct css_set *find_existing_css_set(
319 struct css_set *oldcg,
bd89aabc 320 struct cgroup *cgrp,
817929ec 321 struct cgroup_subsys_state *template[])
b4f48b63
PM
322{
323 int i;
bd89aabc 324 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
325 struct hlist_head *hhead;
326 struct hlist_node *node;
327 struct css_set *cg;
817929ec
PM
328
329 /* Built the set of subsystem state objects that we want to
330 * see in the new css_set */
331 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 332 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
333 /* Subsystem is in this hierarchy. So we want
334 * the subsystem state from the new
335 * cgroup */
bd89aabc 336 template[i] = cgrp->subsys[i];
817929ec
PM
337 } else {
338 /* Subsystem is not in this hierarchy, so we
339 * don't want to change the subsystem state */
340 template[i] = oldcg->subsys[i];
341 }
342 }
343
472b1053
LZ
344 hhead = css_set_hash(template);
345 hlist_for_each_entry(cg, node, hhead, hlist) {
817929ec
PM
346 if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
347 /* All subsystems matched */
348 return cg;
349 }
472b1053 350 }
817929ec
PM
351
352 /* No existing cgroup group matched */
353 return NULL;
354}
355
36553434
LZ
356static void free_cg_links(struct list_head *tmp)
357{
358 struct cg_cgroup_link *link;
359 struct cg_cgroup_link *saved_link;
360
361 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
362 list_del(&link->cgrp_link_list);
363 kfree(link);
364 }
365}
366
817929ec
PM
367/*
368 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 369 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
370 * success or a negative error
371 */
817929ec
PM
372static int allocate_cg_links(int count, struct list_head *tmp)
373{
374 struct cg_cgroup_link *link;
375 int i;
376 INIT_LIST_HEAD(tmp);
377 for (i = 0; i < count; i++) {
378 link = kmalloc(sizeof(*link), GFP_KERNEL);
379 if (!link) {
36553434 380 free_cg_links(tmp);
817929ec
PM
381 return -ENOMEM;
382 }
bd89aabc 383 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
384 }
385 return 0;
386}
387
817929ec
PM
388/*
389 * find_css_set() takes an existing cgroup group and a
390 * cgroup object, and returns a css_set object that's
391 * equivalent to the old group, but with the given cgroup
392 * substituted into the appropriate hierarchy. Must be called with
393 * cgroup_mutex held
394 */
817929ec 395static struct css_set *find_css_set(
bd89aabc 396 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
397{
398 struct css_set *res;
399 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
400 int i;
401
402 struct list_head tmp_cg_links;
403 struct cg_cgroup_link *link;
404
472b1053
LZ
405 struct hlist_head *hhead;
406
817929ec
PM
407 /* First see if we already have a cgroup group that matches
408 * the desired set */
7e9abd89 409 read_lock(&css_set_lock);
bd89aabc 410 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
411 if (res)
412 get_css_set(res);
7e9abd89 413 read_unlock(&css_set_lock);
817929ec
PM
414
415 if (res)
416 return res;
417
418 res = kmalloc(sizeof(*res), GFP_KERNEL);
419 if (!res)
420 return NULL;
421
422 /* Allocate all the cg_cgroup_link objects that we'll need */
423 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
424 kfree(res);
425 return NULL;
426 }
427
146aa1bd 428 atomic_set(&res->refcount, 1);
817929ec
PM
429 INIT_LIST_HEAD(&res->cg_links);
430 INIT_LIST_HEAD(&res->tasks);
472b1053 431 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
432
433 /* Copy the set of subsystem state objects generated in
434 * find_existing_css_set() */
435 memcpy(res->subsys, template, sizeof(res->subsys));
436
437 write_lock(&css_set_lock);
438 /* Add reference counts and links from the new css_set. */
439 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
bd89aabc 440 struct cgroup *cgrp = res->subsys[i]->cgroup;
817929ec 441 struct cgroup_subsys *ss = subsys[i];
bd89aabc 442 atomic_inc(&cgrp->count);
817929ec
PM
443 /*
444 * We want to add a link once per cgroup, so we
445 * only do it for the first subsystem in each
446 * hierarchy
447 */
448 if (ss->root->subsys_list.next == &ss->sibling) {
449 BUG_ON(list_empty(&tmp_cg_links));
450 link = list_entry(tmp_cg_links.next,
451 struct cg_cgroup_link,
bd89aabc
PM
452 cgrp_link_list);
453 list_del(&link->cgrp_link_list);
454 list_add(&link->cgrp_link_list, &cgrp->css_sets);
817929ec
PM
455 link->cg = res;
456 list_add(&link->cg_link_list, &res->cg_links);
457 }
458 }
459 if (list_empty(&rootnode.subsys_list)) {
460 link = list_entry(tmp_cg_links.next,
461 struct cg_cgroup_link,
bd89aabc
PM
462 cgrp_link_list);
463 list_del(&link->cgrp_link_list);
464 list_add(&link->cgrp_link_list, &dummytop->css_sets);
817929ec
PM
465 link->cg = res;
466 list_add(&link->cg_link_list, &res->cg_links);
467 }
468
469 BUG_ON(!list_empty(&tmp_cg_links));
470
817929ec 471 css_set_count++;
472b1053
LZ
472
473 /* Add this cgroup group to the hash table */
474 hhead = css_set_hash(res->subsys);
475 hlist_add_head(&res->hlist, hhead);
476
817929ec
PM
477 write_unlock(&css_set_lock);
478
479 return res;
b4f48b63
PM
480}
481
ddbcc7e8
PM
482/*
483 * There is one global cgroup mutex. We also require taking
484 * task_lock() when dereferencing a task's cgroup subsys pointers.
485 * See "The task_lock() exception", at the end of this comment.
486 *
487 * A task must hold cgroup_mutex to modify cgroups.
488 *
489 * Any task can increment and decrement the count field without lock.
490 * So in general, code holding cgroup_mutex can't rely on the count
491 * field not changing. However, if the count goes to zero, then only
956db3ca 492 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
493 * means that no tasks are currently attached, therefore there is no
494 * way a task attached to that cgroup can fork (the other way to
495 * increment the count). So code holding cgroup_mutex can safely
496 * assume that if the count is zero, it will stay zero. Similarly, if
497 * a task holds cgroup_mutex on a cgroup with zero count, it
498 * knows that the cgroup won't be removed, as cgroup_rmdir()
499 * needs that mutex.
500 *
ddbcc7e8
PM
501 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
502 * (usually) take cgroup_mutex. These are the two most performance
503 * critical pieces of code here. The exception occurs on cgroup_exit(),
504 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
505 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
506 * to the release agent with the name of the cgroup (path relative to
507 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
508 *
509 * A cgroup can only be deleted if both its 'count' of using tasks
510 * is zero, and its list of 'children' cgroups is empty. Since all
511 * tasks in the system use _some_ cgroup, and since there is always at
512 * least one task in the system (init, pid == 1), therefore, top_cgroup
513 * always has either children cgroups and/or using tasks. So we don't
514 * need a special hack to ensure that top_cgroup cannot be deleted.
515 *
516 * The task_lock() exception
517 *
518 * The need for this exception arises from the action of
956db3ca 519 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 520 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
521 * several performance critical places that need to reference
522 * task->cgroup without the expense of grabbing a system global
523 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 524 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
525 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
526 * the task_struct routinely used for such matters.
527 *
528 * P.S. One more locking exception. RCU is used to guard the
956db3ca 529 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
530 */
531
ddbcc7e8
PM
532/**
533 * cgroup_lock - lock out any changes to cgroup structures
534 *
535 */
ddbcc7e8
PM
536void cgroup_lock(void)
537{
538 mutex_lock(&cgroup_mutex);
539}
540
541/**
542 * cgroup_unlock - release lock on cgroup changes
543 *
544 * Undo the lock taken in a previous cgroup_lock() call.
545 */
ddbcc7e8
PM
546void cgroup_unlock(void)
547{
548 mutex_unlock(&cgroup_mutex);
549}
550
551/*
552 * A couple of forward declarations required, due to cyclic reference loop:
553 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
554 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
555 * -> cgroup_mkdir.
556 */
557
558static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
559static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 560static int cgroup_populate_dir(struct cgroup *cgrp);
ddbcc7e8 561static struct inode_operations cgroup_dir_inode_operations;
a424316c
PM
562static struct file_operations proc_cgroupstats_operations;
563
564static struct backing_dev_info cgroup_backing_dev_info = {
e4ad08fe 565 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 566};
ddbcc7e8
PM
567
568static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
569{
570 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
571
572 if (inode) {
573 inode->i_mode = mode;
574 inode->i_uid = current->fsuid;
575 inode->i_gid = current->fsgid;
576 inode->i_blocks = 0;
577 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
578 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
579 }
580 return inode;
581}
582
4fca88c8
KH
583/*
584 * Call subsys's pre_destroy handler.
585 * This is called before css refcnt check.
586 */
4fca88c8
KH
587static void cgroup_call_pre_destroy(struct cgroup *cgrp)
588{
589 struct cgroup_subsys *ss;
590 for_each_subsys(cgrp->root, ss)
591 if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
592 ss->pre_destroy(ss, cgrp);
593 return;
594}
595
ddbcc7e8
PM
596static void cgroup_diput(struct dentry *dentry, struct inode *inode)
597{
598 /* is dentry a directory ? if so, kfree() associated cgroup */
599 if (S_ISDIR(inode->i_mode)) {
bd89aabc 600 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 601 struct cgroup_subsys *ss;
bd89aabc 602 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
603 /* It's possible for external users to be holding css
604 * reference counts on a cgroup; css_put() needs to
605 * be able to access the cgroup after decrementing
606 * the reference count in order to know if it needs to
607 * queue the cgroup to be handled by the release
608 * agent */
609 synchronize_rcu();
8dc4f3e1
PM
610
611 mutex_lock(&cgroup_mutex);
612 /*
613 * Release the subsystem state objects.
614 */
615 for_each_subsys(cgrp->root, ss) {
616 if (cgrp->subsys[ss->subsys_id])
617 ss->destroy(ss, cgrp);
618 }
619
620 cgrp->root->number_of_cgroups--;
621 mutex_unlock(&cgroup_mutex);
622
623 /* Drop the active superblock reference that we took when we
624 * created the cgroup */
625 deactivate_super(cgrp->root->sb);
626
bd89aabc 627 kfree(cgrp);
ddbcc7e8
PM
628 }
629 iput(inode);
630}
631
632static void remove_dir(struct dentry *d)
633{
634 struct dentry *parent = dget(d->d_parent);
635
636 d_delete(d);
637 simple_rmdir(parent->d_inode, d);
638 dput(parent);
639}
640
641static void cgroup_clear_directory(struct dentry *dentry)
642{
643 struct list_head *node;
644
645 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
646 spin_lock(&dcache_lock);
647 node = dentry->d_subdirs.next;
648 while (node != &dentry->d_subdirs) {
649 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
650 list_del_init(node);
651 if (d->d_inode) {
652 /* This should never be called on a cgroup
653 * directory with child cgroups */
654 BUG_ON(d->d_inode->i_mode & S_IFDIR);
655 d = dget_locked(d);
656 spin_unlock(&dcache_lock);
657 d_delete(d);
658 simple_unlink(dentry->d_inode, d);
659 dput(d);
660 spin_lock(&dcache_lock);
661 }
662 node = dentry->d_subdirs.next;
663 }
664 spin_unlock(&dcache_lock);
665}
666
667/*
668 * NOTE : the dentry must have been dget()'ed
669 */
670static void cgroup_d_remove_dir(struct dentry *dentry)
671{
672 cgroup_clear_directory(dentry);
673
674 spin_lock(&dcache_lock);
675 list_del_init(&dentry->d_u.d_child);
676 spin_unlock(&dcache_lock);
677 remove_dir(dentry);
678}
679
680static int rebind_subsystems(struct cgroupfs_root *root,
681 unsigned long final_bits)
682{
683 unsigned long added_bits, removed_bits;
bd89aabc 684 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
685 int i;
686
687 removed_bits = root->actual_subsys_bits & ~final_bits;
688 added_bits = final_bits & ~root->actual_subsys_bits;
689 /* Check that any added subsystems are currently free */
690 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 691 unsigned long bit = 1UL << i;
ddbcc7e8
PM
692 struct cgroup_subsys *ss = subsys[i];
693 if (!(bit & added_bits))
694 continue;
695 if (ss->root != &rootnode) {
696 /* Subsystem isn't free */
697 return -EBUSY;
698 }
699 }
700
701 /* Currently we don't handle adding/removing subsystems when
702 * any child cgroups exist. This is theoretically supportable
703 * but involves complex error handling, so it's being left until
704 * later */
bd89aabc 705 if (!list_empty(&cgrp->children))
ddbcc7e8
PM
706 return -EBUSY;
707
708 /* Process each subsystem */
709 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
710 struct cgroup_subsys *ss = subsys[i];
711 unsigned long bit = 1UL << i;
712 if (bit & added_bits) {
713 /* We're binding this subsystem to this hierarchy */
bd89aabc 714 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
715 BUG_ON(!dummytop->subsys[i]);
716 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
717 cgrp->subsys[i] = dummytop->subsys[i];
718 cgrp->subsys[i]->cgroup = cgrp;
ddbcc7e8
PM
719 list_add(&ss->sibling, &root->subsys_list);
720 rcu_assign_pointer(ss->root, root);
721 if (ss->bind)
bd89aabc 722 ss->bind(ss, cgrp);
ddbcc7e8
PM
723
724 } else if (bit & removed_bits) {
725 /* We're removing this subsystem */
bd89aabc
PM
726 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
727 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8
PM
728 if (ss->bind)
729 ss->bind(ss, dummytop);
730 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 731 cgrp->subsys[i] = NULL;
ddbcc7e8
PM
732 rcu_assign_pointer(subsys[i]->root, &rootnode);
733 list_del(&ss->sibling);
734 } else if (bit & final_bits) {
735 /* Subsystem state should already exist */
bd89aabc 736 BUG_ON(!cgrp->subsys[i]);
ddbcc7e8
PM
737 } else {
738 /* Subsystem state shouldn't exist */
bd89aabc 739 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
740 }
741 }
742 root->subsys_bits = root->actual_subsys_bits = final_bits;
743 synchronize_rcu();
744
745 return 0;
746}
747
748static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
749{
750 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
751 struct cgroup_subsys *ss;
752
753 mutex_lock(&cgroup_mutex);
754 for_each_subsys(root, ss)
755 seq_printf(seq, ",%s", ss->name);
756 if (test_bit(ROOT_NOPREFIX, &root->flags))
757 seq_puts(seq, ",noprefix");
81a6a5cd
PM
758 if (strlen(root->release_agent_path))
759 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
ddbcc7e8
PM
760 mutex_unlock(&cgroup_mutex);
761 return 0;
762}
763
764struct cgroup_sb_opts {
765 unsigned long subsys_bits;
766 unsigned long flags;
81a6a5cd 767 char *release_agent;
ddbcc7e8
PM
768};
769
770/* Convert a hierarchy specifier into a bitmask of subsystems and
771 * flags. */
772static int parse_cgroupfs_options(char *data,
773 struct cgroup_sb_opts *opts)
774{
775 char *token, *o = data ?: "all";
776
777 opts->subsys_bits = 0;
778 opts->flags = 0;
81a6a5cd 779 opts->release_agent = NULL;
ddbcc7e8
PM
780
781 while ((token = strsep(&o, ",")) != NULL) {
782 if (!*token)
783 return -EINVAL;
784 if (!strcmp(token, "all")) {
8bab8dde
PM
785 /* Add all non-disabled subsystems */
786 int i;
787 opts->subsys_bits = 0;
788 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
789 struct cgroup_subsys *ss = subsys[i];
790 if (!ss->disabled)
791 opts->subsys_bits |= 1ul << i;
792 }
ddbcc7e8
PM
793 } else if (!strcmp(token, "noprefix")) {
794 set_bit(ROOT_NOPREFIX, &opts->flags);
81a6a5cd
PM
795 } else if (!strncmp(token, "release_agent=", 14)) {
796 /* Specifying two release agents is forbidden */
797 if (opts->release_agent)
798 return -EINVAL;
799 opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
800 if (!opts->release_agent)
801 return -ENOMEM;
802 strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
803 opts->release_agent[PATH_MAX - 1] = 0;
ddbcc7e8
PM
804 } else {
805 struct cgroup_subsys *ss;
806 int i;
807 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
808 ss = subsys[i];
809 if (!strcmp(token, ss->name)) {
8bab8dde
PM
810 if (!ss->disabled)
811 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
812 break;
813 }
814 }
815 if (i == CGROUP_SUBSYS_COUNT)
816 return -ENOENT;
817 }
818 }
819
820 /* We can't have an empty hierarchy */
821 if (!opts->subsys_bits)
822 return -EINVAL;
823
824 return 0;
825}
826
827static int cgroup_remount(struct super_block *sb, int *flags, char *data)
828{
829 int ret = 0;
830 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 831 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
832 struct cgroup_sb_opts opts;
833
bd89aabc 834 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
835 mutex_lock(&cgroup_mutex);
836
837 /* See what subsystems are wanted */
838 ret = parse_cgroupfs_options(data, &opts);
839 if (ret)
840 goto out_unlock;
841
842 /* Don't allow flags to change at remount */
843 if (opts.flags != root->flags) {
844 ret = -EINVAL;
845 goto out_unlock;
846 }
847
848 ret = rebind_subsystems(root, opts.subsys_bits);
849
850 /* (re)populate subsystem files */
851 if (!ret)
bd89aabc 852 cgroup_populate_dir(cgrp);
ddbcc7e8 853
81a6a5cd
PM
854 if (opts.release_agent)
855 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 856 out_unlock:
81a6a5cd
PM
857 if (opts.release_agent)
858 kfree(opts.release_agent);
ddbcc7e8 859 mutex_unlock(&cgroup_mutex);
bd89aabc 860 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
861 return ret;
862}
863
864static struct super_operations cgroup_ops = {
865 .statfs = simple_statfs,
866 .drop_inode = generic_delete_inode,
867 .show_options = cgroup_show_options,
868 .remount_fs = cgroup_remount,
869};
870
871static void init_cgroup_root(struct cgroupfs_root *root)
872{
bd89aabc 873 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
874 INIT_LIST_HEAD(&root->subsys_list);
875 INIT_LIST_HEAD(&root->root_list);
876 root->number_of_cgroups = 1;
bd89aabc
PM
877 cgrp->root = root;
878 cgrp->top_cgroup = cgrp;
879 INIT_LIST_HEAD(&cgrp->sibling);
880 INIT_LIST_HEAD(&cgrp->children);
881 INIT_LIST_HEAD(&cgrp->css_sets);
882 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8
PM
883}
884
885static int cgroup_test_super(struct super_block *sb, void *data)
886{
887 struct cgroupfs_root *new = data;
888 struct cgroupfs_root *root = sb->s_fs_info;
889
890 /* First check subsystems */
891 if (new->subsys_bits != root->subsys_bits)
892 return 0;
893
894 /* Next check flags */
895 if (new->flags != root->flags)
896 return 0;
897
898 return 1;
899}
900
901static int cgroup_set_super(struct super_block *sb, void *data)
902{
903 int ret;
904 struct cgroupfs_root *root = data;
905
906 ret = set_anon_super(sb, NULL);
907 if (ret)
908 return ret;
909
910 sb->s_fs_info = root;
911 root->sb = sb;
912
913 sb->s_blocksize = PAGE_CACHE_SIZE;
914 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
915 sb->s_magic = CGROUP_SUPER_MAGIC;
916 sb->s_op = &cgroup_ops;
917
918 return 0;
919}
920
921static int cgroup_get_rootdir(struct super_block *sb)
922{
923 struct inode *inode =
924 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
925 struct dentry *dentry;
926
927 if (!inode)
928 return -ENOMEM;
929
ddbcc7e8
PM
930 inode->i_fop = &simple_dir_operations;
931 inode->i_op = &cgroup_dir_inode_operations;
932 /* directories start off with i_nlink == 2 (for "." entry) */
933 inc_nlink(inode);
934 dentry = d_alloc_root(inode);
935 if (!dentry) {
936 iput(inode);
937 return -ENOMEM;
938 }
939 sb->s_root = dentry;
940 return 0;
941}
942
943static int cgroup_get_sb(struct file_system_type *fs_type,
944 int flags, const char *unused_dev_name,
945 void *data, struct vfsmount *mnt)
946{
947 struct cgroup_sb_opts opts;
948 int ret = 0;
949 struct super_block *sb;
950 struct cgroupfs_root *root;
28fd5dfc 951 struct list_head tmp_cg_links;
ddbcc7e8
PM
952
953 /* First find the desired set of subsystems */
954 ret = parse_cgroupfs_options(data, &opts);
81a6a5cd
PM
955 if (ret) {
956 if (opts.release_agent)
957 kfree(opts.release_agent);
ddbcc7e8 958 return ret;
81a6a5cd 959 }
ddbcc7e8
PM
960
961 root = kzalloc(sizeof(*root), GFP_KERNEL);
f7770738
LZ
962 if (!root) {
963 if (opts.release_agent)
964 kfree(opts.release_agent);
ddbcc7e8 965 return -ENOMEM;
f7770738 966 }
ddbcc7e8
PM
967
968 init_cgroup_root(root);
969 root->subsys_bits = opts.subsys_bits;
970 root->flags = opts.flags;
81a6a5cd
PM
971 if (opts.release_agent) {
972 strcpy(root->release_agent_path, opts.release_agent);
973 kfree(opts.release_agent);
974 }
ddbcc7e8
PM
975
976 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
977
978 if (IS_ERR(sb)) {
979 kfree(root);
980 return PTR_ERR(sb);
981 }
982
983 if (sb->s_fs_info != root) {
984 /* Reusing an existing superblock */
985 BUG_ON(sb->s_root == NULL);
986 kfree(root);
987 root = NULL;
988 } else {
989 /* New superblock */
bd89aabc 990 struct cgroup *cgrp = &root->top_cgroup;
817929ec 991 struct inode *inode;
28fd5dfc 992 int i;
ddbcc7e8
PM
993
994 BUG_ON(sb->s_root != NULL);
995
996 ret = cgroup_get_rootdir(sb);
997 if (ret)
998 goto drop_new_super;
817929ec 999 inode = sb->s_root->d_inode;
ddbcc7e8 1000
817929ec 1001 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1002 mutex_lock(&cgroup_mutex);
1003
817929ec
PM
1004 /*
1005 * We're accessing css_set_count without locking
1006 * css_set_lock here, but that's OK - it can only be
1007 * increased by someone holding cgroup_lock, and
1008 * that's us. The worst that can happen is that we
1009 * have some link structures left over
1010 */
1011 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1012 if (ret) {
1013 mutex_unlock(&cgroup_mutex);
1014 mutex_unlock(&inode->i_mutex);
1015 goto drop_new_super;
1016 }
1017
ddbcc7e8
PM
1018 ret = rebind_subsystems(root, root->subsys_bits);
1019 if (ret == -EBUSY) {
1020 mutex_unlock(&cgroup_mutex);
817929ec 1021 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1022 goto drop_new_super;
1023 }
1024
1025 /* EBUSY should be the only error here */
1026 BUG_ON(ret);
1027
1028 list_add(&root->root_list, &roots);
817929ec 1029 root_count++;
ddbcc7e8
PM
1030
1031 sb->s_root->d_fsdata = &root->top_cgroup;
1032 root->top_cgroup.dentry = sb->s_root;
1033
817929ec
PM
1034 /* Link the top cgroup in this hierarchy into all
1035 * the css_set objects */
1036 write_lock(&css_set_lock);
28fd5dfc
LZ
1037 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1038 struct hlist_head *hhead = &css_set_table[i];
1039 struct hlist_node *node;
817929ec 1040 struct css_set *cg;
28fd5dfc
LZ
1041
1042 hlist_for_each_entry(cg, node, hhead, hlist) {
1043 struct cg_cgroup_link *link;
1044
1045 BUG_ON(list_empty(&tmp_cg_links));
1046 link = list_entry(tmp_cg_links.next,
1047 struct cg_cgroup_link,
1048 cgrp_link_list);
1049 list_del(&link->cgrp_link_list);
1050 link->cg = cg;
1051 list_add(&link->cgrp_link_list,
1052 &root->top_cgroup.css_sets);
1053 list_add(&link->cg_link_list, &cg->cg_links);
1054 }
1055 }
817929ec
PM
1056 write_unlock(&css_set_lock);
1057
1058 free_cg_links(&tmp_cg_links);
1059
bd89aabc
PM
1060 BUG_ON(!list_empty(&cgrp->sibling));
1061 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1062 BUG_ON(root->number_of_cgroups != 1);
1063
bd89aabc 1064 cgroup_populate_dir(cgrp);
817929ec 1065 mutex_unlock(&inode->i_mutex);
ddbcc7e8
PM
1066 mutex_unlock(&cgroup_mutex);
1067 }
1068
1069 return simple_set_mnt(mnt, sb);
1070
1071 drop_new_super:
1072 up_write(&sb->s_umount);
1073 deactivate_super(sb);
817929ec 1074 free_cg_links(&tmp_cg_links);
ddbcc7e8
PM
1075 return ret;
1076}
1077
1078static void cgroup_kill_sb(struct super_block *sb) {
1079 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1080 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1081 int ret;
71cbb949
KM
1082 struct cg_cgroup_link *link;
1083 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1084
1085 BUG_ON(!root);
1086
1087 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1088 BUG_ON(!list_empty(&cgrp->children));
1089 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1090
1091 mutex_lock(&cgroup_mutex);
1092
1093 /* Rebind all subsystems back to the default hierarchy */
1094 ret = rebind_subsystems(root, 0);
1095 /* Shouldn't be able to fail ... */
1096 BUG_ON(ret);
1097
817929ec
PM
1098 /*
1099 * Release all the links from css_sets to this hierarchy's
1100 * root cgroup
1101 */
1102 write_lock(&css_set_lock);
71cbb949
KM
1103
1104 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1105 cgrp_link_list) {
817929ec 1106 list_del(&link->cg_link_list);
bd89aabc 1107 list_del(&link->cgrp_link_list);
817929ec
PM
1108 kfree(link);
1109 }
1110 write_unlock(&css_set_lock);
1111
1112 if (!list_empty(&root->root_list)) {
ddbcc7e8 1113 list_del(&root->root_list);
817929ec
PM
1114 root_count--;
1115 }
ddbcc7e8
PM
1116 mutex_unlock(&cgroup_mutex);
1117
1118 kfree(root);
1119 kill_litter_super(sb);
1120}
1121
1122static struct file_system_type cgroup_fs_type = {
1123 .name = "cgroup",
1124 .get_sb = cgroup_get_sb,
1125 .kill_sb = cgroup_kill_sb,
1126};
1127
bd89aabc 1128static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1129{
1130 return dentry->d_fsdata;
1131}
1132
1133static inline struct cftype *__d_cft(struct dentry *dentry)
1134{
1135 return dentry->d_fsdata;
1136}
1137
a043e3b2
LZ
1138/**
1139 * cgroup_path - generate the path of a cgroup
1140 * @cgrp: the cgroup in question
1141 * @buf: the buffer to write the path into
1142 * @buflen: the length of the buffer
1143 *
1144 * Called with cgroup_mutex held. Writes path of cgroup into buf.
ddbcc7e8
PM
1145 * Returns 0 on success, -errno on error.
1146 */
bd89aabc 1147int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1148{
1149 char *start;
1150
bd89aabc 1151 if (cgrp == dummytop) {
ddbcc7e8
PM
1152 /*
1153 * Inactive subsystems have no dentry for their root
1154 * cgroup
1155 */
1156 strcpy(buf, "/");
1157 return 0;
1158 }
1159
1160 start = buf + buflen;
1161
1162 *--start = '\0';
1163 for (;;) {
bd89aabc 1164 int len = cgrp->dentry->d_name.len;
ddbcc7e8
PM
1165 if ((start -= len) < buf)
1166 return -ENAMETOOLONG;
bd89aabc
PM
1167 memcpy(start, cgrp->dentry->d_name.name, len);
1168 cgrp = cgrp->parent;
1169 if (!cgrp)
ddbcc7e8 1170 break;
bd89aabc 1171 if (!cgrp->parent)
ddbcc7e8
PM
1172 continue;
1173 if (--start < buf)
1174 return -ENAMETOOLONG;
1175 *start = '/';
1176 }
1177 memmove(buf, start, buf + buflen - start);
1178 return 0;
1179}
1180
bbcb81d0
PM
1181/*
1182 * Return the first subsystem attached to a cgroup's hierarchy, and
1183 * its subsystem id.
1184 */
1185
bd89aabc 1186static void get_first_subsys(const struct cgroup *cgrp,
bbcb81d0
PM
1187 struct cgroup_subsys_state **css, int *subsys_id)
1188{
bd89aabc 1189 const struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1190 const struct cgroup_subsys *test_ss;
1191 BUG_ON(list_empty(&root->subsys_list));
1192 test_ss = list_entry(root->subsys_list.next,
1193 struct cgroup_subsys, sibling);
1194 if (css) {
bd89aabc 1195 *css = cgrp->subsys[test_ss->subsys_id];
bbcb81d0
PM
1196 BUG_ON(!*css);
1197 }
1198 if (subsys_id)
1199 *subsys_id = test_ss->subsys_id;
1200}
1201
a043e3b2
LZ
1202/**
1203 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1204 * @cgrp: the cgroup the task is attaching to
1205 * @tsk: the task to be attached
bbcb81d0 1206 *
a043e3b2
LZ
1207 * Call holding cgroup_mutex. May take task_lock of
1208 * the task 'tsk' during call.
bbcb81d0 1209 */
956db3ca 1210int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1211{
1212 int retval = 0;
1213 struct cgroup_subsys *ss;
bd89aabc 1214 struct cgroup *oldcgrp;
817929ec
PM
1215 struct css_set *cg = tsk->cgroups;
1216 struct css_set *newcg;
bd89aabc 1217 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1218 int subsys_id;
1219
bd89aabc 1220 get_first_subsys(cgrp, NULL, &subsys_id);
bbcb81d0
PM
1221
1222 /* Nothing to do if the task is already in that cgroup */
bd89aabc
PM
1223 oldcgrp = task_cgroup(tsk, subsys_id);
1224 if (cgrp == oldcgrp)
bbcb81d0
PM
1225 return 0;
1226
1227 for_each_subsys(root, ss) {
1228 if (ss->can_attach) {
bd89aabc 1229 retval = ss->can_attach(ss, cgrp, tsk);
e18f6318 1230 if (retval)
bbcb81d0 1231 return retval;
bbcb81d0
PM
1232 }
1233 }
1234
817929ec
PM
1235 /*
1236 * Locate or allocate a new css_set for this task,
1237 * based on its final set of cgroups
1238 */
bd89aabc 1239 newcg = find_css_set(cg, cgrp);
e18f6318 1240 if (!newcg)
817929ec 1241 return -ENOMEM;
817929ec 1242
bbcb81d0
PM
1243 task_lock(tsk);
1244 if (tsk->flags & PF_EXITING) {
1245 task_unlock(tsk);
817929ec 1246 put_css_set(newcg);
bbcb81d0
PM
1247 return -ESRCH;
1248 }
817929ec 1249 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1250 task_unlock(tsk);
1251
817929ec
PM
1252 /* Update the css_set linked lists if we're using them */
1253 write_lock(&css_set_lock);
1254 if (!list_empty(&tsk->cg_list)) {
1255 list_del(&tsk->cg_list);
1256 list_add(&tsk->cg_list, &newcg->tasks);
1257 }
1258 write_unlock(&css_set_lock);
1259
bbcb81d0 1260 for_each_subsys(root, ss) {
e18f6318 1261 if (ss->attach)
bd89aabc 1262 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1263 }
bd89aabc 1264 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1265 synchronize_rcu();
817929ec 1266 put_css_set(cg);
bbcb81d0
PM
1267 return 0;
1268}
1269
1270/*
af351026
PM
1271 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1272 * held. May take task_lock of task
bbcb81d0 1273 */
af351026 1274static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1275{
bbcb81d0
PM
1276 struct task_struct *tsk;
1277 int ret;
1278
bbcb81d0
PM
1279 if (pid) {
1280 rcu_read_lock();
73507f33 1281 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1282 if (!tsk || tsk->flags & PF_EXITING) {
1283 rcu_read_unlock();
1284 return -ESRCH;
1285 }
1286 get_task_struct(tsk);
1287 rcu_read_unlock();
1288
1289 if ((current->euid) && (current->euid != tsk->uid)
1290 && (current->euid != tsk->suid)) {
1291 put_task_struct(tsk);
1292 return -EACCES;
1293 }
1294 } else {
1295 tsk = current;
1296 get_task_struct(tsk);
1297 }
1298
956db3ca 1299 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1300 put_task_struct(tsk);
1301 return ret;
1302}
1303
af351026
PM
1304static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1305{
1306 int ret;
1307 if (!cgroup_lock_live_group(cgrp))
1308 return -ENODEV;
1309 ret = attach_task_by_pid(cgrp, pid);
1310 cgroup_unlock();
1311 return ret;
1312}
1313
ddbcc7e8 1314/* The various types of files and directories in a cgroup file system */
ddbcc7e8
PM
1315enum cgroup_filetype {
1316 FILE_ROOT,
1317 FILE_DIR,
1318 FILE_TASKLIST,
81a6a5cd 1319 FILE_NOTIFY_ON_RELEASE,
81a6a5cd 1320 FILE_RELEASE_AGENT,
ddbcc7e8
PM
1321};
1322
e788e066
PM
1323/**
1324 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1325 * @cgrp: the cgroup to be checked for liveness
1326 *
84eea842
PM
1327 * On success, returns true; the lock should be later released with
1328 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1329 */
84eea842 1330bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1331{
1332 mutex_lock(&cgroup_mutex);
1333 if (cgroup_is_removed(cgrp)) {
1334 mutex_unlock(&cgroup_mutex);
1335 return false;
1336 }
1337 return true;
1338}
1339
1340static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1341 const char *buffer)
1342{
1343 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1344 if (!cgroup_lock_live_group(cgrp))
1345 return -ENODEV;
1346 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1347 cgroup_unlock();
e788e066
PM
1348 return 0;
1349}
1350
1351static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1352 struct seq_file *seq)
1353{
1354 if (!cgroup_lock_live_group(cgrp))
1355 return -ENODEV;
1356 seq_puts(seq, cgrp->root->release_agent_path);
1357 seq_putc(seq, '\n');
84eea842 1358 cgroup_unlock();
e788e066
PM
1359 return 0;
1360}
1361
84eea842
PM
1362/* A buffer size big enough for numbers or short strings */
1363#define CGROUP_LOCAL_BUFFER_SIZE 64
1364
e73d2c61 1365static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1366 struct file *file,
1367 const char __user *userbuf,
1368 size_t nbytes, loff_t *unused_ppos)
355e0c48 1369{
84eea842 1370 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1371 int retval = 0;
355e0c48
PM
1372 char *end;
1373
1374 if (!nbytes)
1375 return -EINVAL;
1376 if (nbytes >= sizeof(buffer))
1377 return -E2BIG;
1378 if (copy_from_user(buffer, userbuf, nbytes))
1379 return -EFAULT;
1380
1381 buffer[nbytes] = 0; /* nul-terminate */
b7269dfc 1382 strstrip(buffer);
e73d2c61
PM
1383 if (cft->write_u64) {
1384 u64 val = simple_strtoull(buffer, &end, 0);
1385 if (*end)
1386 return -EINVAL;
1387 retval = cft->write_u64(cgrp, cft, val);
1388 } else {
1389 s64 val = simple_strtoll(buffer, &end, 0);
1390 if (*end)
1391 return -EINVAL;
1392 retval = cft->write_s64(cgrp, cft, val);
1393 }
355e0c48
PM
1394 if (!retval)
1395 retval = nbytes;
1396 return retval;
1397}
1398
db3b1497
PM
1399static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1400 struct file *file,
1401 const char __user *userbuf,
1402 size_t nbytes, loff_t *unused_ppos)
1403{
84eea842 1404 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
1405 int retval = 0;
1406 size_t max_bytes = cft->max_write_len;
1407 char *buffer = local_buffer;
1408
1409 if (!max_bytes)
1410 max_bytes = sizeof(local_buffer) - 1;
1411 if (nbytes >= max_bytes)
1412 return -E2BIG;
1413 /* Allocate a dynamic buffer if we need one */
1414 if (nbytes >= sizeof(local_buffer)) {
1415 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1416 if (buffer == NULL)
1417 return -ENOMEM;
1418 }
5a3eb9f6
LZ
1419 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
1420 retval = -EFAULT;
1421 goto out;
1422 }
db3b1497
PM
1423
1424 buffer[nbytes] = 0; /* nul-terminate */
1425 strstrip(buffer);
1426 retval = cft->write_string(cgrp, cft, buffer);
1427 if (!retval)
1428 retval = nbytes;
5a3eb9f6 1429out:
db3b1497
PM
1430 if (buffer != local_buffer)
1431 kfree(buffer);
1432 return retval;
1433}
1434
ddbcc7e8
PM
1435static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1436 size_t nbytes, loff_t *ppos)
1437{
1438 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1439 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1440
8dc4f3e1 1441 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8 1442 return -ENODEV;
355e0c48 1443 if (cft->write)
bd89aabc 1444 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1445 if (cft->write_u64 || cft->write_s64)
1446 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
1447 if (cft->write_string)
1448 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
1449 if (cft->trigger) {
1450 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
1451 return ret ? ret : nbytes;
1452 }
355e0c48 1453 return -EINVAL;
ddbcc7e8
PM
1454}
1455
f4c753b7
PM
1456static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
1457 struct file *file,
1458 char __user *buf, size_t nbytes,
1459 loff_t *ppos)
ddbcc7e8 1460{
84eea842 1461 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 1462 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
1463 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1464
1465 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1466}
1467
e73d2c61
PM
1468static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
1469 struct file *file,
1470 char __user *buf, size_t nbytes,
1471 loff_t *ppos)
1472{
84eea842 1473 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
1474 s64 val = cft->read_s64(cgrp, cft);
1475 int len = sprintf(tmp, "%lld\n", (long long) val);
1476
1477 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1478}
1479
ddbcc7e8
PM
1480static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1481 size_t nbytes, loff_t *ppos)
1482{
1483 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 1484 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 1485
8dc4f3e1 1486 if (!cft || cgroup_is_removed(cgrp))
ddbcc7e8
PM
1487 return -ENODEV;
1488
1489 if (cft->read)
bd89aabc 1490 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
1491 if (cft->read_u64)
1492 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
1493 if (cft->read_s64)
1494 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
1495 return -EINVAL;
1496}
1497
91796569
PM
1498/*
1499 * seqfile ops/methods for returning structured data. Currently just
1500 * supports string->u64 maps, but can be extended in future.
1501 */
1502
1503struct cgroup_seqfile_state {
1504 struct cftype *cft;
1505 struct cgroup *cgroup;
1506};
1507
1508static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
1509{
1510 struct seq_file *sf = cb->state;
1511 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
1512}
1513
1514static int cgroup_seqfile_show(struct seq_file *m, void *arg)
1515{
1516 struct cgroup_seqfile_state *state = m->private;
1517 struct cftype *cft = state->cft;
29486df3
SH
1518 if (cft->read_map) {
1519 struct cgroup_map_cb cb = {
1520 .fill = cgroup_map_add,
1521 .state = m,
1522 };
1523 return cft->read_map(state->cgroup, cft, &cb);
1524 }
1525 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
1526}
1527
96930a63 1528static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
1529{
1530 struct seq_file *seq = file->private_data;
1531 kfree(seq->private);
1532 return single_release(inode, file);
1533}
1534
1535static struct file_operations cgroup_seqfile_operations = {
1536 .read = seq_read,
e788e066 1537 .write = cgroup_file_write,
91796569
PM
1538 .llseek = seq_lseek,
1539 .release = cgroup_seqfile_release,
1540};
1541
ddbcc7e8
PM
1542static int cgroup_file_open(struct inode *inode, struct file *file)
1543{
1544 int err;
1545 struct cftype *cft;
1546
1547 err = generic_file_open(inode, file);
1548 if (err)
1549 return err;
1550
1551 cft = __d_cft(file->f_dentry);
1552 if (!cft)
1553 return -ENODEV;
29486df3 1554 if (cft->read_map || cft->read_seq_string) {
91796569
PM
1555 struct cgroup_seqfile_state *state =
1556 kzalloc(sizeof(*state), GFP_USER);
1557 if (!state)
1558 return -ENOMEM;
1559 state->cft = cft;
1560 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
1561 file->f_op = &cgroup_seqfile_operations;
1562 err = single_open(file, cgroup_seqfile_show, state);
1563 if (err < 0)
1564 kfree(state);
1565 } else if (cft->open)
ddbcc7e8
PM
1566 err = cft->open(inode, file);
1567 else
1568 err = 0;
1569
1570 return err;
1571}
1572
1573static int cgroup_file_release(struct inode *inode, struct file *file)
1574{
1575 struct cftype *cft = __d_cft(file->f_dentry);
1576 if (cft->release)
1577 return cft->release(inode, file);
1578 return 0;
1579}
1580
1581/*
1582 * cgroup_rename - Only allow simple rename of directories in place.
1583 */
1584static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1585 struct inode *new_dir, struct dentry *new_dentry)
1586{
1587 if (!S_ISDIR(old_dentry->d_inode->i_mode))
1588 return -ENOTDIR;
1589 if (new_dentry->d_inode)
1590 return -EEXIST;
1591 if (old_dir != new_dir)
1592 return -EIO;
1593 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1594}
1595
1596static struct file_operations cgroup_file_operations = {
1597 .read = cgroup_file_read,
1598 .write = cgroup_file_write,
1599 .llseek = generic_file_llseek,
1600 .open = cgroup_file_open,
1601 .release = cgroup_file_release,
1602};
1603
1604static struct inode_operations cgroup_dir_inode_operations = {
1605 .lookup = simple_lookup,
1606 .mkdir = cgroup_mkdir,
1607 .rmdir = cgroup_rmdir,
1608 .rename = cgroup_rename,
1609};
1610
1611static int cgroup_create_file(struct dentry *dentry, int mode,
1612 struct super_block *sb)
1613{
1614 static struct dentry_operations cgroup_dops = {
1615 .d_iput = cgroup_diput,
1616 };
1617
1618 struct inode *inode;
1619
1620 if (!dentry)
1621 return -ENOENT;
1622 if (dentry->d_inode)
1623 return -EEXIST;
1624
1625 inode = cgroup_new_inode(mode, sb);
1626 if (!inode)
1627 return -ENOMEM;
1628
1629 if (S_ISDIR(mode)) {
1630 inode->i_op = &cgroup_dir_inode_operations;
1631 inode->i_fop = &simple_dir_operations;
1632
1633 /* start off with i_nlink == 2 (for "." entry) */
1634 inc_nlink(inode);
1635
1636 /* start with the directory inode held, so that we can
1637 * populate it without racing with another mkdir */
817929ec 1638 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
1639 } else if (S_ISREG(mode)) {
1640 inode->i_size = 0;
1641 inode->i_fop = &cgroup_file_operations;
1642 }
1643 dentry->d_op = &cgroup_dops;
1644 d_instantiate(dentry, inode);
1645 dget(dentry); /* Extra count - pin the dentry in core */
1646 return 0;
1647}
1648
1649/*
a043e3b2
LZ
1650 * cgroup_create_dir - create a directory for an object.
1651 * @cgrp: the cgroup we create the directory for. It must have a valid
1652 * ->parent field. And we are going to fill its ->dentry field.
1653 * @dentry: dentry of the new cgroup
1654 * @mode: mode to set on new directory.
ddbcc7e8 1655 */
bd89aabc 1656static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
ddbcc7e8
PM
1657 int mode)
1658{
1659 struct dentry *parent;
1660 int error = 0;
1661
bd89aabc
PM
1662 parent = cgrp->parent->dentry;
1663 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 1664 if (!error) {
bd89aabc 1665 dentry->d_fsdata = cgrp;
ddbcc7e8 1666 inc_nlink(parent->d_inode);
bd89aabc 1667 cgrp->dentry = dentry;
ddbcc7e8
PM
1668 dget(dentry);
1669 }
1670 dput(dentry);
1671
1672 return error;
1673}
1674
bd89aabc 1675int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
1676 struct cgroup_subsys *subsys,
1677 const struct cftype *cft)
1678{
bd89aabc 1679 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
1680 struct dentry *dentry;
1681 int error;
1682
1683 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 1684 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
1685 strcpy(name, subsys->name);
1686 strcat(name, ".");
1687 }
1688 strcat(name, cft->name);
1689 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1690 dentry = lookup_one_len(name, dir, strlen(name));
1691 if (!IS_ERR(dentry)) {
1692 error = cgroup_create_file(dentry, 0644 | S_IFREG,
bd89aabc 1693 cgrp->root->sb);
ddbcc7e8
PM
1694 if (!error)
1695 dentry->d_fsdata = (void *)cft;
1696 dput(dentry);
1697 } else
1698 error = PTR_ERR(dentry);
1699 return error;
1700}
1701
bd89aabc 1702int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
1703 struct cgroup_subsys *subsys,
1704 const struct cftype cft[],
1705 int count)
1706{
1707 int i, err;
1708 for (i = 0; i < count; i++) {
bd89aabc 1709 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
1710 if (err)
1711 return err;
1712 }
1713 return 0;
1714}
1715
a043e3b2
LZ
1716/**
1717 * cgroup_task_count - count the number of tasks in a cgroup.
1718 * @cgrp: the cgroup in question
1719 *
1720 * Return the number of tasks in the cgroup.
1721 */
bd89aabc 1722int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
1723{
1724 int count = 0;
71cbb949 1725 struct cg_cgroup_link *link;
817929ec
PM
1726
1727 read_lock(&css_set_lock);
71cbb949 1728 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 1729 count += atomic_read(&link->cg->refcount);
817929ec
PM
1730 }
1731 read_unlock(&css_set_lock);
bbcb81d0
PM
1732 return count;
1733}
1734
817929ec
PM
1735/*
1736 * Advance a list_head iterator. The iterator should be positioned at
1737 * the start of a css_set
1738 */
bd89aabc 1739static void cgroup_advance_iter(struct cgroup *cgrp,
817929ec
PM
1740 struct cgroup_iter *it)
1741{
1742 struct list_head *l = it->cg_link;
1743 struct cg_cgroup_link *link;
1744 struct css_set *cg;
1745
1746 /* Advance to the next non-empty css_set */
1747 do {
1748 l = l->next;
bd89aabc 1749 if (l == &cgrp->css_sets) {
817929ec
PM
1750 it->cg_link = NULL;
1751 return;
1752 }
bd89aabc 1753 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
1754 cg = link->cg;
1755 } while (list_empty(&cg->tasks));
1756 it->cg_link = l;
1757 it->task = cg->tasks.next;
1758}
1759
31a7df01
CW
1760/*
1761 * To reduce the fork() overhead for systems that are not actually
1762 * using their cgroups capability, we don't maintain the lists running
1763 * through each css_set to its tasks until we see the list actually
1764 * used - in other words after the first call to cgroup_iter_start().
1765 *
1766 * The tasklist_lock is not held here, as do_each_thread() and
1767 * while_each_thread() are protected by RCU.
1768 */
3df91fe3 1769static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
1770{
1771 struct task_struct *p, *g;
1772 write_lock(&css_set_lock);
1773 use_task_css_set_links = 1;
1774 do_each_thread(g, p) {
1775 task_lock(p);
0e04388f
LZ
1776 /*
1777 * We should check if the process is exiting, otherwise
1778 * it will race with cgroup_exit() in that the list
1779 * entry won't be deleted though the process has exited.
1780 */
1781 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
1782 list_add(&p->cg_list, &p->cgroups->tasks);
1783 task_unlock(p);
1784 } while_each_thread(g, p);
1785 write_unlock(&css_set_lock);
1786}
1787
bd89aabc 1788void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1789{
1790 /*
1791 * The first time anyone tries to iterate across a cgroup,
1792 * we need to enable the list linking each css_set to its
1793 * tasks, and fix up all existing tasks.
1794 */
31a7df01
CW
1795 if (!use_task_css_set_links)
1796 cgroup_enable_task_cg_lists();
1797
817929ec 1798 read_lock(&css_set_lock);
bd89aabc
PM
1799 it->cg_link = &cgrp->css_sets;
1800 cgroup_advance_iter(cgrp, it);
817929ec
PM
1801}
1802
bd89aabc 1803struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
1804 struct cgroup_iter *it)
1805{
1806 struct task_struct *res;
1807 struct list_head *l = it->task;
1808
1809 /* If the iterator cg is NULL, we have no tasks */
1810 if (!it->cg_link)
1811 return NULL;
1812 res = list_entry(l, struct task_struct, cg_list);
1813 /* Advance iterator to find next entry */
1814 l = l->next;
1815 if (l == &res->cgroups->tasks) {
1816 /* We reached the end of this task list - move on to
1817 * the next cg_cgroup_link */
bd89aabc 1818 cgroup_advance_iter(cgrp, it);
817929ec
PM
1819 } else {
1820 it->task = l;
1821 }
1822 return res;
1823}
1824
bd89aabc 1825void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
1826{
1827 read_unlock(&css_set_lock);
1828}
1829
31a7df01
CW
1830static inline int started_after_time(struct task_struct *t1,
1831 struct timespec *time,
1832 struct task_struct *t2)
1833{
1834 int start_diff = timespec_compare(&t1->start_time, time);
1835 if (start_diff > 0) {
1836 return 1;
1837 } else if (start_diff < 0) {
1838 return 0;
1839 } else {
1840 /*
1841 * Arbitrarily, if two processes started at the same
1842 * time, we'll say that the lower pointer value
1843 * started first. Note that t2 may have exited by now
1844 * so this may not be a valid pointer any longer, but
1845 * that's fine - it still serves to distinguish
1846 * between two tasks started (effectively) simultaneously.
1847 */
1848 return t1 > t2;
1849 }
1850}
1851
1852/*
1853 * This function is a callback from heap_insert() and is used to order
1854 * the heap.
1855 * In this case we order the heap in descending task start time.
1856 */
1857static inline int started_after(void *p1, void *p2)
1858{
1859 struct task_struct *t1 = p1;
1860 struct task_struct *t2 = p2;
1861 return started_after_time(t1, &t2->start_time, t2);
1862}
1863
1864/**
1865 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1866 * @scan: struct cgroup_scanner containing arguments for the scan
1867 *
1868 * Arguments include pointers to callback functions test_task() and
1869 * process_task().
1870 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1871 * and if it returns true, call process_task() for it also.
1872 * The test_task pointer may be NULL, meaning always true (select all tasks).
1873 * Effectively duplicates cgroup_iter_{start,next,end}()
1874 * but does not lock css_set_lock for the call to process_task().
1875 * The struct cgroup_scanner may be embedded in any structure of the caller's
1876 * creation.
1877 * It is guaranteed that process_task() will act on every task that
1878 * is a member of the cgroup for the duration of this call. This
1879 * function may or may not call process_task() for tasks that exit
1880 * or move to a different cgroup during the call, or are forked or
1881 * move into the cgroup during the call.
1882 *
1883 * Note that test_task() may be called with locks held, and may in some
1884 * situations be called multiple times for the same task, so it should
1885 * be cheap.
1886 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1887 * pre-allocated and will be used for heap operations (and its "gt" member will
1888 * be overwritten), else a temporary heap will be used (allocation of which
1889 * may cause this function to fail).
1890 */
1891int cgroup_scan_tasks(struct cgroup_scanner *scan)
1892{
1893 int retval, i;
1894 struct cgroup_iter it;
1895 struct task_struct *p, *dropped;
1896 /* Never dereference latest_task, since it's not refcounted */
1897 struct task_struct *latest_task = NULL;
1898 struct ptr_heap tmp_heap;
1899 struct ptr_heap *heap;
1900 struct timespec latest_time = { 0, 0 };
1901
1902 if (scan->heap) {
1903 /* The caller supplied our heap and pre-allocated its memory */
1904 heap = scan->heap;
1905 heap->gt = &started_after;
1906 } else {
1907 /* We need to allocate our own heap memory */
1908 heap = &tmp_heap;
1909 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
1910 if (retval)
1911 /* cannot allocate the heap */
1912 return retval;
1913 }
1914
1915 again:
1916 /*
1917 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1918 * to determine which are of interest, and using the scanner's
1919 * "process_task" callback to process any of them that need an update.
1920 * Since we don't want to hold any locks during the task updates,
1921 * gather tasks to be processed in a heap structure.
1922 * The heap is sorted by descending task start time.
1923 * If the statically-sized heap fills up, we overflow tasks that
1924 * started later, and in future iterations only consider tasks that
1925 * started after the latest task in the previous pass. This
1926 * guarantees forward progress and that we don't miss any tasks.
1927 */
1928 heap->size = 0;
1929 cgroup_iter_start(scan->cg, &it);
1930 while ((p = cgroup_iter_next(scan->cg, &it))) {
1931 /*
1932 * Only affect tasks that qualify per the caller's callback,
1933 * if he provided one
1934 */
1935 if (scan->test_task && !scan->test_task(p, scan))
1936 continue;
1937 /*
1938 * Only process tasks that started after the last task
1939 * we processed
1940 */
1941 if (!started_after_time(p, &latest_time, latest_task))
1942 continue;
1943 dropped = heap_insert(heap, p);
1944 if (dropped == NULL) {
1945 /*
1946 * The new task was inserted; the heap wasn't
1947 * previously full
1948 */
1949 get_task_struct(p);
1950 } else if (dropped != p) {
1951 /*
1952 * The new task was inserted, and pushed out a
1953 * different task
1954 */
1955 get_task_struct(p);
1956 put_task_struct(dropped);
1957 }
1958 /*
1959 * Else the new task was newer than anything already in
1960 * the heap and wasn't inserted
1961 */
1962 }
1963 cgroup_iter_end(scan->cg, &it);
1964
1965 if (heap->size) {
1966 for (i = 0; i < heap->size; i++) {
4fe91d51 1967 struct task_struct *q = heap->ptrs[i];
31a7df01 1968 if (i == 0) {
4fe91d51
PJ
1969 latest_time = q->start_time;
1970 latest_task = q;
31a7df01
CW
1971 }
1972 /* Process the task per the caller's callback */
4fe91d51
PJ
1973 scan->process_task(q, scan);
1974 put_task_struct(q);
31a7df01
CW
1975 }
1976 /*
1977 * If we had to process any tasks at all, scan again
1978 * in case some of them were in the middle of forking
1979 * children that didn't get processed.
1980 * Not the most efficient way to do it, but it avoids
1981 * having to take callback_mutex in the fork path
1982 */
1983 goto again;
1984 }
1985 if (heap == &tmp_heap)
1986 heap_free(&tmp_heap);
1987 return 0;
1988}
1989
bbcb81d0
PM
1990/*
1991 * Stuff for reading the 'tasks' file.
1992 *
1993 * Reading this file can return large amounts of data if a cgroup has
1994 * *lots* of attached tasks. So it may need several calls to read(),
1995 * but we cannot guarantee that the information we produce is correct
1996 * unless we produce it entirely atomically.
1997 *
1998 * Upon tasks file open(), a struct ctr_struct is allocated, that
1999 * will have a pointer to an array (also allocated here). The struct
2000 * ctr_struct * is stored in file->private_data. Its resources will
2001 * be freed by release() when the file is closed. The array is used
2002 * to sprintf the PIDs and then used by read().
2003 */
2004struct ctr_struct {
2005 char *buf;
2006 int bufsz;
2007};
2008
2009/*
2010 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
bd89aabc 2011 * 'cgrp'. Return actual number of pids loaded. No need to
bbcb81d0
PM
2012 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2013 * read section, so the css_set can't go away, and is
2014 * immutable after creation.
2015 */
bd89aabc 2016static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
bbcb81d0
PM
2017{
2018 int n = 0;
817929ec
PM
2019 struct cgroup_iter it;
2020 struct task_struct *tsk;
bd89aabc
PM
2021 cgroup_iter_start(cgrp, &it);
2022 while ((tsk = cgroup_iter_next(cgrp, &it))) {
817929ec
PM
2023 if (unlikely(n == npids))
2024 break;
73507f33 2025 pidarray[n++] = task_pid_vnr(tsk);
817929ec 2026 }
bd89aabc 2027 cgroup_iter_end(cgrp, &it);
bbcb81d0
PM
2028 return n;
2029}
2030
846c7bb0 2031/**
a043e3b2 2032 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2033 * @stats: cgroupstats to fill information into
2034 * @dentry: A dentry entry belonging to the cgroup for which stats have
2035 * been requested.
a043e3b2
LZ
2036 *
2037 * Build and fill cgroupstats so that taskstats can export it to user
2038 * space.
846c7bb0
BS
2039 */
2040int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2041{
2042 int ret = -EINVAL;
bd89aabc 2043 struct cgroup *cgrp;
846c7bb0
BS
2044 struct cgroup_iter it;
2045 struct task_struct *tsk;
2046 /*
2047 * Validate dentry by checking the superblock operations
2048 */
2049 if (dentry->d_sb->s_op != &cgroup_ops)
2050 goto err;
2051
2052 ret = 0;
bd89aabc 2053 cgrp = dentry->d_fsdata;
846c7bb0
BS
2054 rcu_read_lock();
2055
bd89aabc
PM
2056 cgroup_iter_start(cgrp, &it);
2057 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2058 switch (tsk->state) {
2059 case TASK_RUNNING:
2060 stats->nr_running++;
2061 break;
2062 case TASK_INTERRUPTIBLE:
2063 stats->nr_sleeping++;
2064 break;
2065 case TASK_UNINTERRUPTIBLE:
2066 stats->nr_uninterruptible++;
2067 break;
2068 case TASK_STOPPED:
2069 stats->nr_stopped++;
2070 break;
2071 default:
2072 if (delayacct_is_task_waiting_on_io(tsk))
2073 stats->nr_io_wait++;
2074 break;
2075 }
2076 }
bd89aabc 2077 cgroup_iter_end(cgrp, &it);
846c7bb0
BS
2078
2079 rcu_read_unlock();
2080err:
2081 return ret;
2082}
2083
bbcb81d0
PM
2084static int cmppid(const void *a, const void *b)
2085{
2086 return *(pid_t *)a - *(pid_t *)b;
2087}
2088
2089/*
2090 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2091 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2092 * count 'cnt' of how many chars would be written if buf were large enough.
2093 */
2094static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
2095{
2096 int cnt = 0;
2097 int i;
2098
2099 for (i = 0; i < npids; i++)
2100 cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
2101 return cnt;
2102}
2103
2104/*
2105 * Handle an open on 'tasks' file. Prepare a buffer listing the
2106 * process id's of tasks currently attached to the cgroup being opened.
2107 *
2108 * Does not require any specific cgroup mutexes, and does not take any.
2109 */
2110static int cgroup_tasks_open(struct inode *unused, struct file *file)
2111{
bd89aabc 2112 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
bbcb81d0
PM
2113 struct ctr_struct *ctr;
2114 pid_t *pidarray;
2115 int npids;
2116 char c;
2117
2118 if (!(file->f_mode & FMODE_READ))
2119 return 0;
2120
2121 ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
2122 if (!ctr)
2123 goto err0;
2124
2125 /*
2126 * If cgroup gets more users after we read count, we won't have
2127 * enough space - tough. This race is indistinguishable to the
2128 * caller from the case that the additional cgroup users didn't
2129 * show up until sometime later on.
2130 */
bd89aabc 2131 npids = cgroup_task_count(cgrp);
bbcb81d0
PM
2132 if (npids) {
2133 pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
2134 if (!pidarray)
2135 goto err1;
2136
bd89aabc 2137 npids = pid_array_load(pidarray, npids, cgrp);
bbcb81d0
PM
2138 sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2139
2140 /* Call pid_array_to_buf() twice, first just to get bufsz */
2141 ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
2142 ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
2143 if (!ctr->buf)
2144 goto err2;
2145 ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
2146
2147 kfree(pidarray);
2148 } else {
9dce07f1 2149 ctr->buf = NULL;
bbcb81d0
PM
2150 ctr->bufsz = 0;
2151 }
2152 file->private_data = ctr;
2153 return 0;
2154
2155err2:
2156 kfree(pidarray);
2157err1:
2158 kfree(ctr);
2159err0:
2160 return -ENOMEM;
2161}
2162
bd89aabc 2163static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
bbcb81d0
PM
2164 struct cftype *cft,
2165 struct file *file, char __user *buf,
2166 size_t nbytes, loff_t *ppos)
2167{
2168 struct ctr_struct *ctr = file->private_data;
2169
2170 return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
2171}
2172
2173static int cgroup_tasks_release(struct inode *unused_inode,
2174 struct file *file)
2175{
2176 struct ctr_struct *ctr;
2177
2178 if (file->f_mode & FMODE_READ) {
2179 ctr = file->private_data;
2180 kfree(ctr->buf);
2181 kfree(ctr);
2182 }
2183 return 0;
2184}
2185
bd89aabc 2186static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
2187 struct cftype *cft)
2188{
bd89aabc 2189 return notify_on_release(cgrp);
81a6a5cd
PM
2190}
2191
6379c106
PM
2192static int cgroup_write_notify_on_release(struct cgroup *cgrp,
2193 struct cftype *cft,
2194 u64 val)
2195{
2196 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
2197 if (val)
2198 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2199 else
2200 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2201 return 0;
2202}
2203
bbcb81d0
PM
2204/*
2205 * for the common functions, 'private' gives the type of file
2206 */
81a6a5cd
PM
2207static struct cftype files[] = {
2208 {
2209 .name = "tasks",
2210 .open = cgroup_tasks_open,
2211 .read = cgroup_tasks_read,
af351026 2212 .write_u64 = cgroup_tasks_write,
81a6a5cd
PM
2213 .release = cgroup_tasks_release,
2214 .private = FILE_TASKLIST,
2215 },
2216
2217 {
2218 .name = "notify_on_release",
f4c753b7 2219 .read_u64 = cgroup_read_notify_on_release,
6379c106 2220 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd
PM
2221 .private = FILE_NOTIFY_ON_RELEASE,
2222 },
81a6a5cd
PM
2223};
2224
2225static struct cftype cft_release_agent = {
2226 .name = "release_agent",
e788e066
PM
2227 .read_seq_string = cgroup_release_agent_show,
2228 .write_string = cgroup_release_agent_write,
2229 .max_write_len = PATH_MAX,
81a6a5cd 2230 .private = FILE_RELEASE_AGENT,
bbcb81d0
PM
2231};
2232
bd89aabc 2233static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
2234{
2235 int err;
2236 struct cgroup_subsys *ss;
2237
2238 /* First clear out any existing files */
bd89aabc 2239 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 2240
bd89aabc 2241 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
2242 if (err < 0)
2243 return err;
2244
bd89aabc
PM
2245 if (cgrp == cgrp->top_cgroup) {
2246 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
2247 return err;
2248 }
2249
bd89aabc
PM
2250 for_each_subsys(cgrp->root, ss) {
2251 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
2252 return err;
2253 }
2254
2255 return 0;
2256}
2257
2258static void init_cgroup_css(struct cgroup_subsys_state *css,
2259 struct cgroup_subsys *ss,
bd89aabc 2260 struct cgroup *cgrp)
ddbcc7e8 2261{
bd89aabc 2262 css->cgroup = cgrp;
ddbcc7e8
PM
2263 atomic_set(&css->refcnt, 0);
2264 css->flags = 0;
bd89aabc 2265 if (cgrp == dummytop)
ddbcc7e8 2266 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
2267 BUG_ON(cgrp->subsys[ss->subsys_id]);
2268 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
2269}
2270
2271/*
a043e3b2
LZ
2272 * cgroup_create - create a cgroup
2273 * @parent: cgroup that will be parent of the new cgroup
2274 * @dentry: dentry of the new cgroup
2275 * @mode: mode to set on new inode
ddbcc7e8 2276 *
a043e3b2 2277 * Must be called with the mutex on the parent inode held
ddbcc7e8 2278 */
ddbcc7e8
PM
2279static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2280 int mode)
2281{
bd89aabc 2282 struct cgroup *cgrp;
ddbcc7e8
PM
2283 struct cgroupfs_root *root = parent->root;
2284 int err = 0;
2285 struct cgroup_subsys *ss;
2286 struct super_block *sb = root->sb;
2287
bd89aabc
PM
2288 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2289 if (!cgrp)
ddbcc7e8
PM
2290 return -ENOMEM;
2291
2292 /* Grab a reference on the superblock so the hierarchy doesn't
2293 * get deleted on unmount if there are child cgroups. This
2294 * can be done outside cgroup_mutex, since the sb can't
2295 * disappear while someone has an open control file on the
2296 * fs */
2297 atomic_inc(&sb->s_active);
2298
2299 mutex_lock(&cgroup_mutex);
2300
bd89aabc
PM
2301 INIT_LIST_HEAD(&cgrp->sibling);
2302 INIT_LIST_HEAD(&cgrp->children);
2303 INIT_LIST_HEAD(&cgrp->css_sets);
2304 INIT_LIST_HEAD(&cgrp->release_list);
ddbcc7e8 2305
bd89aabc
PM
2306 cgrp->parent = parent;
2307 cgrp->root = parent->root;
2308 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 2309
b6abdb0e
LZ
2310 if (notify_on_release(parent))
2311 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
2312
ddbcc7e8 2313 for_each_subsys(root, ss) {
bd89aabc 2314 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
ddbcc7e8
PM
2315 if (IS_ERR(css)) {
2316 err = PTR_ERR(css);
2317 goto err_destroy;
2318 }
bd89aabc 2319 init_cgroup_css(css, ss, cgrp);
ddbcc7e8
PM
2320 }
2321
bd89aabc 2322 list_add(&cgrp->sibling, &cgrp->parent->children);
ddbcc7e8
PM
2323 root->number_of_cgroups++;
2324
bd89aabc 2325 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
2326 if (err < 0)
2327 goto err_remove;
2328
2329 /* The cgroup directory was pre-locked for us */
bd89aabc 2330 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 2331
bd89aabc 2332 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
2333 /* If err < 0, we have a half-filled directory - oh well ;) */
2334
2335 mutex_unlock(&cgroup_mutex);
bd89aabc 2336 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
2337
2338 return 0;
2339
2340 err_remove:
2341
bd89aabc 2342 list_del(&cgrp->sibling);
ddbcc7e8
PM
2343 root->number_of_cgroups--;
2344
2345 err_destroy:
2346
2347 for_each_subsys(root, ss) {
bd89aabc
PM
2348 if (cgrp->subsys[ss->subsys_id])
2349 ss->destroy(ss, cgrp);
ddbcc7e8
PM
2350 }
2351
2352 mutex_unlock(&cgroup_mutex);
2353
2354 /* Release the reference count that we took on the superblock */
2355 deactivate_super(sb);
2356
bd89aabc 2357 kfree(cgrp);
ddbcc7e8
PM
2358 return err;
2359}
2360
2361static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2362{
2363 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2364
2365 /* the vfs holds inode->i_mutex already */
2366 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2367}
2368
55b6fd01 2369static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
2370{
2371 /* Check the reference count on each subsystem. Since we
2372 * already established that there are no tasks in the
2373 * cgroup, if the css refcount is also 0, then there should
2374 * be no outstanding references, so the subsystem is safe to
2375 * destroy. We scan across all subsystems rather than using
2376 * the per-hierarchy linked list of mounted subsystems since
2377 * we can be called via check_for_release() with no
2378 * synchronization other than RCU, and the subsystem linked
2379 * list isn't RCU-safe */
2380 int i;
2381 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2382 struct cgroup_subsys *ss = subsys[i];
2383 struct cgroup_subsys_state *css;
2384 /* Skip subsystems not in this hierarchy */
bd89aabc 2385 if (ss->root != cgrp->root)
81a6a5cd 2386 continue;
bd89aabc 2387 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
2388 /* When called from check_for_release() it's possible
2389 * that by this point the cgroup has been removed
2390 * and the css deleted. But a false-positive doesn't
2391 * matter, since it can only happen if the cgroup
2392 * has been deleted and hence no longer needs the
2393 * release agent to be called anyway. */
e18f6318 2394 if (css && atomic_read(&css->refcnt))
81a6a5cd 2395 return 1;
81a6a5cd
PM
2396 }
2397 return 0;
2398}
2399
ddbcc7e8
PM
2400static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2401{
bd89aabc 2402 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
2403 struct dentry *d;
2404 struct cgroup *parent;
ddbcc7e8
PM
2405 struct super_block *sb;
2406 struct cgroupfs_root *root;
ddbcc7e8
PM
2407
2408 /* the vfs holds both inode->i_mutex already */
2409
2410 mutex_lock(&cgroup_mutex);
bd89aabc 2411 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
2412 mutex_unlock(&cgroup_mutex);
2413 return -EBUSY;
2414 }
bd89aabc 2415 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
2416 mutex_unlock(&cgroup_mutex);
2417 return -EBUSY;
2418 }
2419
bd89aabc
PM
2420 parent = cgrp->parent;
2421 root = cgrp->root;
ddbcc7e8 2422 sb = root->sb;
a043e3b2 2423
4fca88c8 2424 /*
a043e3b2
LZ
2425 * Call pre_destroy handlers of subsys. Notify subsystems
2426 * that rmdir() request comes.
4fca88c8
KH
2427 */
2428 cgroup_call_pre_destroy(cgrp);
ddbcc7e8 2429
bd89aabc 2430 if (cgroup_has_css_refs(cgrp)) {
ddbcc7e8
PM
2431 mutex_unlock(&cgroup_mutex);
2432 return -EBUSY;
2433 }
2434
81a6a5cd 2435 spin_lock(&release_list_lock);
bd89aabc
PM
2436 set_bit(CGRP_REMOVED, &cgrp->flags);
2437 if (!list_empty(&cgrp->release_list))
2438 list_del(&cgrp->release_list);
81a6a5cd 2439 spin_unlock(&release_list_lock);
ddbcc7e8 2440 /* delete my sibling from parent->children */
bd89aabc
PM
2441 list_del(&cgrp->sibling);
2442 spin_lock(&cgrp->dentry->d_lock);
2443 d = dget(cgrp->dentry);
2444 cgrp->dentry = NULL;
ddbcc7e8
PM
2445 spin_unlock(&d->d_lock);
2446
2447 cgroup_d_remove_dir(d);
2448 dput(d);
ddbcc7e8 2449
bd89aabc 2450 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
2451 check_for_release(parent);
2452
ddbcc7e8 2453 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
2454 return 0;
2455}
2456
06a11920 2457static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 2458{
ddbcc7e8 2459 struct cgroup_subsys_state *css;
cfe36bde
DC
2460
2461 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
2462
2463 /* Create the top cgroup state for this subsystem */
2464 ss->root = &rootnode;
2465 css = ss->create(ss, dummytop);
2466 /* We don't handle early failures gracefully */
2467 BUG_ON(IS_ERR(css));
2468 init_cgroup_css(css, ss, dummytop);
2469
e8d55fde 2470 /* Update the init_css_set to contain a subsys
817929ec 2471 * pointer to this state - since the subsystem is
e8d55fde
LZ
2472 * newly registered, all tasks and hence the
2473 * init_css_set is in the subsystem's top cgroup. */
2474 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
2475
2476 need_forkexit_callback |= ss->fork || ss->exit;
cf475ad2 2477 need_mm_owner_callback |= !!ss->mm_owner_changed;
ddbcc7e8 2478
e8d55fde
LZ
2479 /* At system boot, before all subsystems have been
2480 * registered, no tasks have been forked, so we don't
2481 * need to invoke fork callbacks here. */
2482 BUG_ON(!list_empty(&init_task.tasks));
2483
ddbcc7e8
PM
2484 ss->active = 1;
2485}
2486
2487/**
a043e3b2
LZ
2488 * cgroup_init_early - cgroup initialization at system boot
2489 *
2490 * Initialize cgroups at system boot, and initialize any
2491 * subsystems that request early init.
ddbcc7e8
PM
2492 */
2493int __init cgroup_init_early(void)
2494{
2495 int i;
146aa1bd 2496 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
2497 INIT_LIST_HEAD(&init_css_set.cg_links);
2498 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 2499 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 2500 css_set_count = 1;
ddbcc7e8
PM
2501 init_cgroup_root(&rootnode);
2502 list_add(&rootnode.root_list, &roots);
817929ec
PM
2503 root_count = 1;
2504 init_task.cgroups = &init_css_set;
2505
2506 init_css_set_link.cg = &init_css_set;
bd89aabc 2507 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
2508 &rootnode.top_cgroup.css_sets);
2509 list_add(&init_css_set_link.cg_link_list,
2510 &init_css_set.cg_links);
ddbcc7e8 2511
472b1053
LZ
2512 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
2513 INIT_HLIST_HEAD(&css_set_table[i]);
2514
ddbcc7e8
PM
2515 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2516 struct cgroup_subsys *ss = subsys[i];
2517
2518 BUG_ON(!ss->name);
2519 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2520 BUG_ON(!ss->create);
2521 BUG_ON(!ss->destroy);
2522 if (ss->subsys_id != i) {
cfe36bde 2523 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
2524 ss->name, ss->subsys_id);
2525 BUG();
2526 }
2527
2528 if (ss->early_init)
2529 cgroup_init_subsys(ss);
2530 }
2531 return 0;
2532}
2533
2534/**
a043e3b2
LZ
2535 * cgroup_init - cgroup initialization
2536 *
2537 * Register cgroup filesystem and /proc file, and initialize
2538 * any subsystems that didn't request early init.
ddbcc7e8
PM
2539 */
2540int __init cgroup_init(void)
2541{
2542 int err;
2543 int i;
472b1053 2544 struct hlist_head *hhead;
a424316c
PM
2545
2546 err = bdi_init(&cgroup_backing_dev_info);
2547 if (err)
2548 return err;
ddbcc7e8
PM
2549
2550 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2551 struct cgroup_subsys *ss = subsys[i];
2552 if (!ss->early_init)
2553 cgroup_init_subsys(ss);
2554 }
2555
472b1053
LZ
2556 /* Add init_css_set to the hash table */
2557 hhead = css_set_hash(init_css_set.subsys);
2558 hlist_add_head(&init_css_set.hlist, hhead);
2559
ddbcc7e8
PM
2560 err = register_filesystem(&cgroup_fs_type);
2561 if (err < 0)
2562 goto out;
2563
46ae220b 2564 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 2565
ddbcc7e8 2566out:
a424316c
PM
2567 if (err)
2568 bdi_destroy(&cgroup_backing_dev_info);
2569
ddbcc7e8
PM
2570 return err;
2571}
b4f48b63 2572
a424316c
PM
2573/*
2574 * proc_cgroup_show()
2575 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2576 * - Used for /proc/<pid>/cgroup.
2577 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2578 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 2579 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
2580 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2581 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2582 * cgroup to top_cgroup.
2583 */
2584
2585/* TODO: Use a proper seq_file iterator */
2586static int proc_cgroup_show(struct seq_file *m, void *v)
2587{
2588 struct pid *pid;
2589 struct task_struct *tsk;
2590 char *buf;
2591 int retval;
2592 struct cgroupfs_root *root;
2593
2594 retval = -ENOMEM;
2595 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2596 if (!buf)
2597 goto out;
2598
2599 retval = -ESRCH;
2600 pid = m->private;
2601 tsk = get_pid_task(pid, PIDTYPE_PID);
2602 if (!tsk)
2603 goto out_free;
2604
2605 retval = 0;
2606
2607 mutex_lock(&cgroup_mutex);
2608
2609 for_each_root(root) {
2610 struct cgroup_subsys *ss;
bd89aabc 2611 struct cgroup *cgrp;
a424316c
PM
2612 int subsys_id;
2613 int count = 0;
2614
2615 /* Skip this hierarchy if it has no active subsystems */
2616 if (!root->actual_subsys_bits)
2617 continue;
b6c3006d 2618 seq_printf(m, "%lu:", root->subsys_bits);
a424316c
PM
2619 for_each_subsys(root, ss)
2620 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2621 seq_putc(m, ':');
2622 get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
bd89aabc
PM
2623 cgrp = task_cgroup(tsk, subsys_id);
2624 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
2625 if (retval < 0)
2626 goto out_unlock;
2627 seq_puts(m, buf);
2628 seq_putc(m, '\n');
2629 }
2630
2631out_unlock:
2632 mutex_unlock(&cgroup_mutex);
2633 put_task_struct(tsk);
2634out_free:
2635 kfree(buf);
2636out:
2637 return retval;
2638}
2639
2640static int cgroup_open(struct inode *inode, struct file *file)
2641{
2642 struct pid *pid = PROC_I(inode)->pid;
2643 return single_open(file, proc_cgroup_show, pid);
2644}
2645
2646struct file_operations proc_cgroup_operations = {
2647 .open = cgroup_open,
2648 .read = seq_read,
2649 .llseek = seq_lseek,
2650 .release = single_release,
2651};
2652
2653/* Display information about each subsystem and each hierarchy */
2654static int proc_cgroupstats_show(struct seq_file *m, void *v)
2655{
2656 int i;
a424316c 2657
8bab8dde 2658 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
a424316c 2659 mutex_lock(&cgroup_mutex);
a424316c
PM
2660 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2661 struct cgroup_subsys *ss = subsys[i];
8bab8dde 2662 seq_printf(m, "%s\t%lu\t%d\t%d\n",
817929ec 2663 ss->name, ss->root->subsys_bits,
8bab8dde 2664 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
2665 }
2666 mutex_unlock(&cgroup_mutex);
2667 return 0;
2668}
2669
2670static int cgroupstats_open(struct inode *inode, struct file *file)
2671{
9dce07f1 2672 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
2673}
2674
2675static struct file_operations proc_cgroupstats_operations = {
2676 .open = cgroupstats_open,
2677 .read = seq_read,
2678 .llseek = seq_lseek,
2679 .release = single_release,
2680};
2681
b4f48b63
PM
2682/**
2683 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 2684 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
2685 *
2686 * Description: A task inherits its parent's cgroup at fork().
2687 *
2688 * A pointer to the shared css_set was automatically copied in
2689 * fork.c by dup_task_struct(). However, we ignore that copy, since
2690 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 2691 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
2692 * have already changed current->cgroups, allowing the previously
2693 * referenced cgroup group to be removed and freed.
b4f48b63
PM
2694 *
2695 * At the point that cgroup_fork() is called, 'current' is the parent
2696 * task, and the passed argument 'child' points to the child task.
2697 */
2698void cgroup_fork(struct task_struct *child)
2699{
817929ec
PM
2700 task_lock(current);
2701 child->cgroups = current->cgroups;
2702 get_css_set(child->cgroups);
2703 task_unlock(current);
2704 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
2705}
2706
2707/**
a043e3b2
LZ
2708 * cgroup_fork_callbacks - run fork callbacks
2709 * @child: the new task
2710 *
2711 * Called on a new task very soon before adding it to the
2712 * tasklist. No need to take any locks since no-one can
2713 * be operating on this task.
b4f48b63
PM
2714 */
2715void cgroup_fork_callbacks(struct task_struct *child)
2716{
2717 if (need_forkexit_callback) {
2718 int i;
2719 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2720 struct cgroup_subsys *ss = subsys[i];
2721 if (ss->fork)
2722 ss->fork(ss, child);
2723 }
2724 }
2725}
2726
cf475ad2
BS
2727#ifdef CONFIG_MM_OWNER
2728/**
2729 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2730 * @p: the new owner
2731 *
2732 * Called on every change to mm->owner. mm_init_owner() does not
2733 * invoke this routine, since it assigns the mm->owner the first time
2734 * and does not change it.
9363b9f2
BS
2735 *
2736 * The callbacks are invoked with mmap_sem held in read mode.
cf475ad2
BS
2737 */
2738void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
2739{
31a78f23 2740 struct cgroup *oldcgrp, *newcgrp = NULL;
cf475ad2
BS
2741
2742 if (need_mm_owner_callback) {
2743 int i;
2744 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2745 struct cgroup_subsys *ss = subsys[i];
2746 oldcgrp = task_cgroup(old, ss->subsys_id);
31a78f23
BS
2747 if (new)
2748 newcgrp = task_cgroup(new, ss->subsys_id);
cf475ad2
BS
2749 if (oldcgrp == newcgrp)
2750 continue;
2751 if (ss->mm_owner_changed)
9363b9f2 2752 ss->mm_owner_changed(ss, oldcgrp, newcgrp, new);
cf475ad2
BS
2753 }
2754 }
2755}
2756#endif /* CONFIG_MM_OWNER */
2757
817929ec 2758/**
a043e3b2
LZ
2759 * cgroup_post_fork - called on a new task after adding it to the task list
2760 * @child: the task in question
2761 *
2762 * Adds the task to the list running through its css_set if necessary.
2763 * Has to be after the task is visible on the task list in case we race
2764 * with the first call to cgroup_iter_start() - to guarantee that the
2765 * new task ends up on its list.
2766 */
817929ec
PM
2767void cgroup_post_fork(struct task_struct *child)
2768{
2769 if (use_task_css_set_links) {
2770 write_lock(&css_set_lock);
2771 if (list_empty(&child->cg_list))
2772 list_add(&child->cg_list, &child->cgroups->tasks);
2773 write_unlock(&css_set_lock);
2774 }
2775}
b4f48b63
PM
2776/**
2777 * cgroup_exit - detach cgroup from exiting task
2778 * @tsk: pointer to task_struct of exiting process
a043e3b2 2779 * @run_callback: run exit callbacks?
b4f48b63
PM
2780 *
2781 * Description: Detach cgroup from @tsk and release it.
2782 *
2783 * Note that cgroups marked notify_on_release force every task in
2784 * them to take the global cgroup_mutex mutex when exiting.
2785 * This could impact scaling on very large systems. Be reluctant to
2786 * use notify_on_release cgroups where very high task exit scaling
2787 * is required on large systems.
2788 *
2789 * the_top_cgroup_hack:
2790 *
2791 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2792 *
2793 * We call cgroup_exit() while the task is still competent to
2794 * handle notify_on_release(), then leave the task attached to the
2795 * root cgroup in each hierarchy for the remainder of its exit.
2796 *
2797 * To do this properly, we would increment the reference count on
2798 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2799 * code we would add a second cgroup function call, to drop that
2800 * reference. This would just create an unnecessary hot spot on
2801 * the top_cgroup reference count, to no avail.
2802 *
2803 * Normally, holding a reference to a cgroup without bumping its
2804 * count is unsafe. The cgroup could go away, or someone could
2805 * attach us to a different cgroup, decrementing the count on
2806 * the first cgroup that we never incremented. But in this case,
2807 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
2808 * which wards off any cgroup_attach_task() attempts, or task is a failed
2809 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
2810 */
2811void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2812{
2813 int i;
817929ec 2814 struct css_set *cg;
b4f48b63
PM
2815
2816 if (run_callbacks && need_forkexit_callback) {
2817 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2818 struct cgroup_subsys *ss = subsys[i];
2819 if (ss->exit)
2820 ss->exit(ss, tsk);
2821 }
2822 }
817929ec
PM
2823
2824 /*
2825 * Unlink from the css_set task list if necessary.
2826 * Optimistically check cg_list before taking
2827 * css_set_lock
2828 */
2829 if (!list_empty(&tsk->cg_list)) {
2830 write_lock(&css_set_lock);
2831 if (!list_empty(&tsk->cg_list))
2832 list_del(&tsk->cg_list);
2833 write_unlock(&css_set_lock);
2834 }
2835
b4f48b63
PM
2836 /* Reassign the task to the init_css_set. */
2837 task_lock(tsk);
817929ec
PM
2838 cg = tsk->cgroups;
2839 tsk->cgroups = &init_css_set;
b4f48b63 2840 task_unlock(tsk);
817929ec 2841 if (cg)
81a6a5cd 2842 put_css_set_taskexit(cg);
b4f48b63 2843}
697f4161
PM
2844
2845/**
a043e3b2
LZ
2846 * cgroup_clone - clone the cgroup the given subsystem is attached to
2847 * @tsk: the task to be moved
2848 * @subsys: the given subsystem
e885dcde 2849 * @nodename: the name for the new cgroup
a043e3b2
LZ
2850 *
2851 * Duplicate the current cgroup in the hierarchy that the given
2852 * subsystem is attached to, and move this task into the new
2853 * child.
697f4161 2854 */
e885dcde
SH
2855int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
2856 char *nodename)
697f4161
PM
2857{
2858 struct dentry *dentry;
2859 int ret = 0;
697f4161
PM
2860 struct cgroup *parent, *child;
2861 struct inode *inode;
2862 struct css_set *cg;
2863 struct cgroupfs_root *root;
2864 struct cgroup_subsys *ss;
2865
2866 /* We shouldn't be called by an unregistered subsystem */
2867 BUG_ON(!subsys->active);
2868
2869 /* First figure out what hierarchy and cgroup we're dealing
2870 * with, and pin them so we can drop cgroup_mutex */
2871 mutex_lock(&cgroup_mutex);
2872 again:
2873 root = subsys->root;
2874 if (root == &rootnode) {
2875 printk(KERN_INFO
2876 "Not cloning cgroup for unused subsystem %s\n",
2877 subsys->name);
2878 mutex_unlock(&cgroup_mutex);
2879 return 0;
2880 }
817929ec 2881 cg = tsk->cgroups;
697f4161
PM
2882 parent = task_cgroup(tsk, subsys->subsys_id);
2883
697f4161
PM
2884 /* Pin the hierarchy */
2885 atomic_inc(&parent->root->sb->s_active);
2886
817929ec
PM
2887 /* Keep the cgroup alive */
2888 get_css_set(cg);
697f4161
PM
2889 mutex_unlock(&cgroup_mutex);
2890
2891 /* Now do the VFS work to create a cgroup */
2892 inode = parent->dentry->d_inode;
2893
2894 /* Hold the parent directory mutex across this operation to
2895 * stop anyone else deleting the new cgroup */
2896 mutex_lock(&inode->i_mutex);
2897 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2898 if (IS_ERR(dentry)) {
2899 printk(KERN_INFO
cfe36bde 2900 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
2901 PTR_ERR(dentry));
2902 ret = PTR_ERR(dentry);
2903 goto out_release;
2904 }
2905
2906 /* Create the cgroup directory, which also creates the cgroup */
2907 ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
bd89aabc 2908 child = __d_cgrp(dentry);
697f4161
PM
2909 dput(dentry);
2910 if (ret) {
2911 printk(KERN_INFO
2912 "Failed to create cgroup %s: %d\n", nodename,
2913 ret);
2914 goto out_release;
2915 }
2916
2917 if (!child) {
2918 printk(KERN_INFO
2919 "Couldn't find new cgroup %s\n", nodename);
2920 ret = -ENOMEM;
2921 goto out_release;
2922 }
2923
2924 /* The cgroup now exists. Retake cgroup_mutex and check
2925 * that we're still in the same state that we thought we
2926 * were. */
2927 mutex_lock(&cgroup_mutex);
2928 if ((root != subsys->root) ||
2929 (parent != task_cgroup(tsk, subsys->subsys_id))) {
2930 /* Aargh, we raced ... */
2931 mutex_unlock(&inode->i_mutex);
817929ec 2932 put_css_set(cg);
697f4161
PM
2933
2934 deactivate_super(parent->root->sb);
2935 /* The cgroup is still accessible in the VFS, but
2936 * we're not going to try to rmdir() it at this
2937 * point. */
2938 printk(KERN_INFO
2939 "Race in cgroup_clone() - leaking cgroup %s\n",
2940 nodename);
2941 goto again;
2942 }
2943
2944 /* do any required auto-setup */
2945 for_each_subsys(root, ss) {
2946 if (ss->post_clone)
2947 ss->post_clone(ss, child);
2948 }
2949
2950 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 2951 ret = cgroup_attach_task(child, tsk);
697f4161
PM
2952 mutex_unlock(&cgroup_mutex);
2953
2954 out_release:
2955 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
2956
2957 mutex_lock(&cgroup_mutex);
817929ec 2958 put_css_set(cg);
81a6a5cd 2959 mutex_unlock(&cgroup_mutex);
697f4161
PM
2960 deactivate_super(parent->root->sb);
2961 return ret;
2962}
2963
a043e3b2
LZ
2964/**
2965 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2966 * @cgrp: the cgroup in question
2967 *
2968 * See if @cgrp is a descendant of the current task's cgroup in
2969 * the appropriate hierarchy.
697f4161
PM
2970 *
2971 * If we are sending in dummytop, then presumably we are creating
2972 * the top cgroup in the subsystem.
2973 *
2974 * Called only by the ns (nsproxy) cgroup.
2975 */
bd89aabc 2976int cgroup_is_descendant(const struct cgroup *cgrp)
697f4161
PM
2977{
2978 int ret;
2979 struct cgroup *target;
2980 int subsys_id;
2981
bd89aabc 2982 if (cgrp == dummytop)
697f4161
PM
2983 return 1;
2984
bd89aabc 2985 get_first_subsys(cgrp, NULL, &subsys_id);
697f4161 2986 target = task_cgroup(current, subsys_id);
bd89aabc
PM
2987 while (cgrp != target && cgrp!= cgrp->top_cgroup)
2988 cgrp = cgrp->parent;
2989 ret = (cgrp == target);
697f4161
PM
2990 return ret;
2991}
81a6a5cd 2992
bd89aabc 2993static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
2994{
2995 /* All of these checks rely on RCU to keep the cgroup
2996 * structure alive */
bd89aabc
PM
2997 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2998 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
2999 /* Control Group is currently removeable. If it's not
3000 * already queued for a userspace notification, queue
3001 * it now */
3002 int need_schedule_work = 0;
3003 spin_lock(&release_list_lock);
bd89aabc
PM
3004 if (!cgroup_is_removed(cgrp) &&
3005 list_empty(&cgrp->release_list)) {
3006 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
3007 need_schedule_work = 1;
3008 }
3009 spin_unlock(&release_list_lock);
3010 if (need_schedule_work)
3011 schedule_work(&release_agent_work);
3012 }
3013}
3014
3015void __css_put(struct cgroup_subsys_state *css)
3016{
bd89aabc 3017 struct cgroup *cgrp = css->cgroup;
81a6a5cd 3018 rcu_read_lock();
bd89aabc
PM
3019 if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
3020 set_bit(CGRP_RELEASABLE, &cgrp->flags);
3021 check_for_release(cgrp);
81a6a5cd
PM
3022 }
3023 rcu_read_unlock();
3024}
3025
3026/*
3027 * Notify userspace when a cgroup is released, by running the
3028 * configured release agent with the name of the cgroup (path
3029 * relative to the root of cgroup file system) as the argument.
3030 *
3031 * Most likely, this user command will try to rmdir this cgroup.
3032 *
3033 * This races with the possibility that some other task will be
3034 * attached to this cgroup before it is removed, or that some other
3035 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3036 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3037 * unused, and this cgroup will be reprieved from its death sentence,
3038 * to continue to serve a useful existence. Next time it's released,
3039 * we will get notified again, if it still has 'notify_on_release' set.
3040 *
3041 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3042 * means only wait until the task is successfully execve()'d. The
3043 * separate release agent task is forked by call_usermodehelper(),
3044 * then control in this thread returns here, without waiting for the
3045 * release agent task. We don't bother to wait because the caller of
3046 * this routine has no use for the exit status of the release agent
3047 * task, so no sense holding our caller up for that.
81a6a5cd 3048 */
81a6a5cd
PM
3049static void cgroup_release_agent(struct work_struct *work)
3050{
3051 BUG_ON(work != &release_agent_work);
3052 mutex_lock(&cgroup_mutex);
3053 spin_lock(&release_list_lock);
3054 while (!list_empty(&release_list)) {
3055 char *argv[3], *envp[3];
3056 int i;
e788e066 3057 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 3058 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
3059 struct cgroup,
3060 release_list);
bd89aabc 3061 list_del_init(&cgrp->release_list);
81a6a5cd
PM
3062 spin_unlock(&release_list_lock);
3063 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
3064 if (!pathbuf)
3065 goto continue_free;
3066 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
3067 goto continue_free;
3068 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
3069 if (!agentbuf)
3070 goto continue_free;
81a6a5cd
PM
3071
3072 i = 0;
e788e066
PM
3073 argv[i++] = agentbuf;
3074 argv[i++] = pathbuf;
81a6a5cd
PM
3075 argv[i] = NULL;
3076
3077 i = 0;
3078 /* minimal command environment */
3079 envp[i++] = "HOME=/";
3080 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3081 envp[i] = NULL;
3082
3083 /* Drop the lock while we invoke the usermode helper,
3084 * since the exec could involve hitting disk and hence
3085 * be a slow process */
3086 mutex_unlock(&cgroup_mutex);
3087 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 3088 mutex_lock(&cgroup_mutex);
e788e066
PM
3089 continue_free:
3090 kfree(pathbuf);
3091 kfree(agentbuf);
81a6a5cd
PM
3092 spin_lock(&release_list_lock);
3093 }
3094 spin_unlock(&release_list_lock);
3095 mutex_unlock(&cgroup_mutex);
3096}
8bab8dde
PM
3097
3098static int __init cgroup_disable(char *str)
3099{
3100 int i;
3101 char *token;
3102
3103 while ((token = strsep(&str, ",")) != NULL) {
3104 if (!*token)
3105 continue;
3106
3107 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3108 struct cgroup_subsys *ss = subsys[i];
3109
3110 if (!strcmp(token, ss->name)) {
3111 ss->disabled = 1;
3112 printk(KERN_INFO "Disabling %s control group"
3113 " subsystem\n", ss->name);
3114 break;
3115 }
3116 }
3117 }
3118 return 1;
3119}
3120__setup("cgroup_disable=", cgroup_disable);