cgroup: improve old cgroup handling in cgroup_attach_proc()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
472b1053 55#include <linux/hash.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
d846687d 62#include <linux/flex_array.h> /* used in cgroup_attach_proc */
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
81a6a5cd 82static DEFINE_MUTEX(cgroup_mutex);
e25e2cbb 83static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 84
aae8aab4
BB
85/*
86 * Generate an array of cgroup subsystem pointers. At boot time, this is
87 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
88 * registered after that. The mutable section of this array is protected by
89 * cgroup_mutex.
90 */
ddbcc7e8 91#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 92static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
93#include <linux/cgroup_subsys.h>
94};
95
c6d57f33
PM
96#define MAX_CGROUP_ROOT_NAMELEN 64
97
ddbcc7e8
PM
98/*
99 * A cgroupfs_root represents the root of a cgroup hierarchy,
100 * and may be associated with a superblock to form an active
101 * hierarchy
102 */
103struct cgroupfs_root {
104 struct super_block *sb;
105
106 /*
107 * The bitmask of subsystems intended to be attached to this
108 * hierarchy
109 */
110 unsigned long subsys_bits;
111
2c6ab6d2
PM
112 /* Unique id for this hierarchy. */
113 int hierarchy_id;
114
ddbcc7e8
PM
115 /* The bitmask of subsystems currently attached to this hierarchy */
116 unsigned long actual_subsys_bits;
117
118 /* A list running through the attached subsystems */
119 struct list_head subsys_list;
120
121 /* The root cgroup for this hierarchy */
122 struct cgroup top_cgroup;
123
124 /* Tracks how many cgroups are currently defined in hierarchy.*/
125 int number_of_cgroups;
126
e5f6a860 127 /* A list running through the active hierarchies */
ddbcc7e8
PM
128 struct list_head root_list;
129
130 /* Hierarchy-specific flags */
131 unsigned long flags;
81a6a5cd 132
e788e066 133 /* The path to use for release notifications. */
81a6a5cd 134 char release_agent_path[PATH_MAX];
c6d57f33
PM
135
136 /* The name for this hierarchy - may be empty */
137 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
138};
139
ddbcc7e8
PM
140/*
141 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
142 * subsystems that are otherwise unattached - it never has more than a
143 * single cgroup, and all tasks are part of that cgroup.
144 */
145static struct cgroupfs_root rootnode;
146
38460b48
KH
147/*
148 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
149 * cgroup_subsys->use_id != 0.
150 */
151#define CSS_ID_MAX (65535)
152struct css_id {
153 /*
154 * The css to which this ID points. This pointer is set to valid value
155 * after cgroup is populated. If cgroup is removed, this will be NULL.
156 * This pointer is expected to be RCU-safe because destroy()
157 * is called after synchronize_rcu(). But for safe use, css_is_removed()
158 * css_tryget() should be used for avoiding race.
159 */
2c392b8c 160 struct cgroup_subsys_state __rcu *css;
38460b48
KH
161 /*
162 * ID of this css.
163 */
164 unsigned short id;
165 /*
166 * Depth in hierarchy which this ID belongs to.
167 */
168 unsigned short depth;
169 /*
170 * ID is freed by RCU. (and lookup routine is RCU safe.)
171 */
172 struct rcu_head rcu_head;
173 /*
174 * Hierarchy of CSS ID belongs to.
175 */
176 unsigned short stack[0]; /* Array of Length (depth+1) */
177};
178
0dea1168 179/*
25985edc 180 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
181 */
182struct cgroup_event {
183 /*
184 * Cgroup which the event belongs to.
185 */
186 struct cgroup *cgrp;
187 /*
188 * Control file which the event associated.
189 */
190 struct cftype *cft;
191 /*
192 * eventfd to signal userspace about the event.
193 */
194 struct eventfd_ctx *eventfd;
195 /*
196 * Each of these stored in a list by the cgroup.
197 */
198 struct list_head list;
199 /*
200 * All fields below needed to unregister event when
201 * userspace closes eventfd.
202 */
203 poll_table pt;
204 wait_queue_head_t *wqh;
205 wait_queue_t wait;
206 struct work_struct remove;
207};
38460b48 208
ddbcc7e8
PM
209/* The list of hierarchy roots */
210
211static LIST_HEAD(roots);
817929ec 212static int root_count;
ddbcc7e8 213
2c6ab6d2
PM
214static DEFINE_IDA(hierarchy_ida);
215static int next_hierarchy_id;
216static DEFINE_SPINLOCK(hierarchy_id_lock);
217
ddbcc7e8
PM
218/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
219#define dummytop (&rootnode.top_cgroup)
220
221/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
222 * check for fork/exit handlers to call. This avoids us having to do
223 * extra work in the fork/exit path if none of the subsystems need to
224 * be called.
ddbcc7e8 225 */
8947f9d5 226static int need_forkexit_callback __read_mostly;
ddbcc7e8 227
d11c563d
PM
228#ifdef CONFIG_PROVE_LOCKING
229int cgroup_lock_is_held(void)
230{
231 return lockdep_is_held(&cgroup_mutex);
232}
233#else /* #ifdef CONFIG_PROVE_LOCKING */
234int cgroup_lock_is_held(void)
235{
236 return mutex_is_locked(&cgroup_mutex);
237}
238#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
239
240EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
241
ddbcc7e8 242/* convenient tests for these bits */
bd89aabc 243inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 244{
bd89aabc 245 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
246}
247
248/* bits in struct cgroupfs_root flags field */
249enum {
250 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
251};
252
e9685a03 253static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
254{
255 const int bits =
bd89aabc
PM
256 (1 << CGRP_RELEASABLE) |
257 (1 << CGRP_NOTIFY_ON_RELEASE);
258 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
259}
260
e9685a03 261static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 262{
bd89aabc 263 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
264}
265
97978e6d
DL
266static int clone_children(const struct cgroup *cgrp)
267{
268 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
269}
270
ddbcc7e8
PM
271/*
272 * for_each_subsys() allows you to iterate on each subsystem attached to
273 * an active hierarchy
274 */
275#define for_each_subsys(_root, _ss) \
276list_for_each_entry(_ss, &_root->subsys_list, sibling)
277
e5f6a860
LZ
278/* for_each_active_root() allows you to iterate across the active hierarchies */
279#define for_each_active_root(_root) \
ddbcc7e8
PM
280list_for_each_entry(_root, &roots, root_list)
281
81a6a5cd
PM
282/* the list of cgroups eligible for automatic release. Protected by
283 * release_list_lock */
284static LIST_HEAD(release_list);
cdcc136f 285static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
286static void cgroup_release_agent(struct work_struct *work);
287static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 288static void check_for_release(struct cgroup *cgrp);
81a6a5cd 289
817929ec
PM
290/* Link structure for associating css_set objects with cgroups */
291struct cg_cgroup_link {
292 /*
293 * List running through cg_cgroup_links associated with a
294 * cgroup, anchored on cgroup->css_sets
295 */
bd89aabc 296 struct list_head cgrp_link_list;
7717f7ba 297 struct cgroup *cgrp;
817929ec
PM
298 /*
299 * List running through cg_cgroup_links pointing at a
300 * single css_set object, anchored on css_set->cg_links
301 */
302 struct list_head cg_link_list;
303 struct css_set *cg;
304};
305
306/* The default css_set - used by init and its children prior to any
307 * hierarchies being mounted. It contains a pointer to the root state
308 * for each subsystem. Also used to anchor the list of css_sets. Not
309 * reference-counted, to improve performance when child cgroups
310 * haven't been created.
311 */
312
313static struct css_set init_css_set;
314static struct cg_cgroup_link init_css_set_link;
315
e6a1105b
BB
316static int cgroup_init_idr(struct cgroup_subsys *ss,
317 struct cgroup_subsys_state *css);
38460b48 318
817929ec
PM
319/* css_set_lock protects the list of css_set objects, and the
320 * chain of tasks off each css_set. Nests outside task->alloc_lock
321 * due to cgroup_iter_start() */
322static DEFINE_RWLOCK(css_set_lock);
323static int css_set_count;
324
7717f7ba
PM
325/*
326 * hash table for cgroup groups. This improves the performance to find
327 * an existing css_set. This hash doesn't (currently) take into
328 * account cgroups in empty hierarchies.
329 */
472b1053
LZ
330#define CSS_SET_HASH_BITS 7
331#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
332static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
333
334static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
335{
336 int i;
337 int index;
338 unsigned long tmp = 0UL;
339
340 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
341 tmp += (unsigned long)css[i];
342 tmp = (tmp >> 16) ^ tmp;
343
344 index = hash_long(tmp, CSS_SET_HASH_BITS);
345
346 return &css_set_table[index];
347}
348
817929ec
PM
349/* We don't maintain the lists running through each css_set to its
350 * task until after the first call to cgroup_iter_start(). This
351 * reduces the fork()/exit() overhead for people who have cgroups
352 * compiled into their kernel but not actually in use */
8947f9d5 353static int use_task_css_set_links __read_mostly;
817929ec 354
2c6ab6d2 355static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 356{
71cbb949
KM
357 struct cg_cgroup_link *link;
358 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
359 /*
360 * Ensure that the refcount doesn't hit zero while any readers
361 * can see it. Similar to atomic_dec_and_lock(), but for an
362 * rwlock
363 */
364 if (atomic_add_unless(&cg->refcount, -1, 1))
365 return;
366 write_lock(&css_set_lock);
367 if (!atomic_dec_and_test(&cg->refcount)) {
368 write_unlock(&css_set_lock);
369 return;
370 }
81a6a5cd 371
2c6ab6d2
PM
372 /* This css_set is dead. unlink it and release cgroup refcounts */
373 hlist_del(&cg->hlist);
374 css_set_count--;
375
376 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
377 cg_link_list) {
378 struct cgroup *cgrp = link->cgrp;
379 list_del(&link->cg_link_list);
380 list_del(&link->cgrp_link_list);
bd89aabc
PM
381 if (atomic_dec_and_test(&cgrp->count) &&
382 notify_on_release(cgrp)) {
81a6a5cd 383 if (taskexit)
bd89aabc
PM
384 set_bit(CGRP_RELEASABLE, &cgrp->flags);
385 check_for_release(cgrp);
81a6a5cd 386 }
2c6ab6d2
PM
387
388 kfree(link);
81a6a5cd 389 }
2c6ab6d2
PM
390
391 write_unlock(&css_set_lock);
30088ad8 392 kfree_rcu(cg, rcu_head);
b4f48b63
PM
393}
394
817929ec
PM
395/*
396 * refcounted get/put for css_set objects
397 */
398static inline void get_css_set(struct css_set *cg)
399{
146aa1bd 400 atomic_inc(&cg->refcount);
817929ec
PM
401}
402
403static inline void put_css_set(struct css_set *cg)
404{
146aa1bd 405 __put_css_set(cg, 0);
817929ec
PM
406}
407
81a6a5cd
PM
408static inline void put_css_set_taskexit(struct css_set *cg)
409{
146aa1bd 410 __put_css_set(cg, 1);
81a6a5cd
PM
411}
412
7717f7ba
PM
413/*
414 * compare_css_sets - helper function for find_existing_css_set().
415 * @cg: candidate css_set being tested
416 * @old_cg: existing css_set for a task
417 * @new_cgrp: cgroup that's being entered by the task
418 * @template: desired set of css pointers in css_set (pre-calculated)
419 *
420 * Returns true if "cg" matches "old_cg" except for the hierarchy
421 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
422 */
423static bool compare_css_sets(struct css_set *cg,
424 struct css_set *old_cg,
425 struct cgroup *new_cgrp,
426 struct cgroup_subsys_state *template[])
427{
428 struct list_head *l1, *l2;
429
430 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
431 /* Not all subsystems matched */
432 return false;
433 }
434
435 /*
436 * Compare cgroup pointers in order to distinguish between
437 * different cgroups in heirarchies with no subsystems. We
438 * could get by with just this check alone (and skip the
439 * memcmp above) but on most setups the memcmp check will
440 * avoid the need for this more expensive check on almost all
441 * candidates.
442 */
443
444 l1 = &cg->cg_links;
445 l2 = &old_cg->cg_links;
446 while (1) {
447 struct cg_cgroup_link *cgl1, *cgl2;
448 struct cgroup *cg1, *cg2;
449
450 l1 = l1->next;
451 l2 = l2->next;
452 /* See if we reached the end - both lists are equal length. */
453 if (l1 == &cg->cg_links) {
454 BUG_ON(l2 != &old_cg->cg_links);
455 break;
456 } else {
457 BUG_ON(l2 == &old_cg->cg_links);
458 }
459 /* Locate the cgroups associated with these links. */
460 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
461 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
462 cg1 = cgl1->cgrp;
463 cg2 = cgl2->cgrp;
464 /* Hierarchies should be linked in the same order. */
465 BUG_ON(cg1->root != cg2->root);
466
467 /*
468 * If this hierarchy is the hierarchy of the cgroup
469 * that's changing, then we need to check that this
470 * css_set points to the new cgroup; if it's any other
471 * hierarchy, then this css_set should point to the
472 * same cgroup as the old css_set.
473 */
474 if (cg1->root == new_cgrp->root) {
475 if (cg1 != new_cgrp)
476 return false;
477 } else {
478 if (cg1 != cg2)
479 return false;
480 }
481 }
482 return true;
483}
484
817929ec
PM
485/*
486 * find_existing_css_set() is a helper for
487 * find_css_set(), and checks to see whether an existing
472b1053 488 * css_set is suitable.
817929ec
PM
489 *
490 * oldcg: the cgroup group that we're using before the cgroup
491 * transition
492 *
bd89aabc 493 * cgrp: the cgroup that we're moving into
817929ec
PM
494 *
495 * template: location in which to build the desired set of subsystem
496 * state objects for the new cgroup group
497 */
817929ec
PM
498static struct css_set *find_existing_css_set(
499 struct css_set *oldcg,
bd89aabc 500 struct cgroup *cgrp,
817929ec 501 struct cgroup_subsys_state *template[])
b4f48b63
PM
502{
503 int i;
bd89aabc 504 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
505 struct hlist_head *hhead;
506 struct hlist_node *node;
507 struct css_set *cg;
817929ec 508
aae8aab4
BB
509 /*
510 * Build the set of subsystem state objects that we want to see in the
511 * new css_set. while subsystems can change globally, the entries here
512 * won't change, so no need for locking.
513 */
817929ec 514 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 515 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
516 /* Subsystem is in this hierarchy. So we want
517 * the subsystem state from the new
518 * cgroup */
bd89aabc 519 template[i] = cgrp->subsys[i];
817929ec
PM
520 } else {
521 /* Subsystem is not in this hierarchy, so we
522 * don't want to change the subsystem state */
523 template[i] = oldcg->subsys[i];
524 }
525 }
526
472b1053
LZ
527 hhead = css_set_hash(template);
528 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
529 if (!compare_css_sets(cg, oldcg, cgrp, template))
530 continue;
531
532 /* This css_set matches what we need */
533 return cg;
472b1053 534 }
817929ec
PM
535
536 /* No existing cgroup group matched */
537 return NULL;
538}
539
36553434
LZ
540static void free_cg_links(struct list_head *tmp)
541{
542 struct cg_cgroup_link *link;
543 struct cg_cgroup_link *saved_link;
544
545 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
546 list_del(&link->cgrp_link_list);
547 kfree(link);
548 }
549}
550
817929ec
PM
551/*
552 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 553 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
554 * success or a negative error
555 */
817929ec
PM
556static int allocate_cg_links(int count, struct list_head *tmp)
557{
558 struct cg_cgroup_link *link;
559 int i;
560 INIT_LIST_HEAD(tmp);
561 for (i = 0; i < count; i++) {
562 link = kmalloc(sizeof(*link), GFP_KERNEL);
563 if (!link) {
36553434 564 free_cg_links(tmp);
817929ec
PM
565 return -ENOMEM;
566 }
bd89aabc 567 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
568 }
569 return 0;
570}
571
c12f65d4
LZ
572/**
573 * link_css_set - a helper function to link a css_set to a cgroup
574 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
575 * @cg: the css_set to be linked
576 * @cgrp: the destination cgroup
577 */
578static void link_css_set(struct list_head *tmp_cg_links,
579 struct css_set *cg, struct cgroup *cgrp)
580{
581 struct cg_cgroup_link *link;
582
583 BUG_ON(list_empty(tmp_cg_links));
584 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
585 cgrp_link_list);
586 link->cg = cg;
7717f7ba 587 link->cgrp = cgrp;
2c6ab6d2 588 atomic_inc(&cgrp->count);
c12f65d4 589 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
590 /*
591 * Always add links to the tail of the list so that the list
592 * is sorted by order of hierarchy creation
593 */
594 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
595}
596
817929ec
PM
597/*
598 * find_css_set() takes an existing cgroup group and a
599 * cgroup object, and returns a css_set object that's
600 * equivalent to the old group, but with the given cgroup
601 * substituted into the appropriate hierarchy. Must be called with
602 * cgroup_mutex held
603 */
817929ec 604static struct css_set *find_css_set(
bd89aabc 605 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
606{
607 struct css_set *res;
608 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
609
610 struct list_head tmp_cg_links;
817929ec 611
472b1053 612 struct hlist_head *hhead;
7717f7ba 613 struct cg_cgroup_link *link;
472b1053 614
817929ec
PM
615 /* First see if we already have a cgroup group that matches
616 * the desired set */
7e9abd89 617 read_lock(&css_set_lock);
bd89aabc 618 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
619 if (res)
620 get_css_set(res);
7e9abd89 621 read_unlock(&css_set_lock);
817929ec
PM
622
623 if (res)
624 return res;
625
626 res = kmalloc(sizeof(*res), GFP_KERNEL);
627 if (!res)
628 return NULL;
629
630 /* Allocate all the cg_cgroup_link objects that we'll need */
631 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
632 kfree(res);
633 return NULL;
634 }
635
146aa1bd 636 atomic_set(&res->refcount, 1);
817929ec
PM
637 INIT_LIST_HEAD(&res->cg_links);
638 INIT_LIST_HEAD(&res->tasks);
472b1053 639 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
640
641 /* Copy the set of subsystem state objects generated in
642 * find_existing_css_set() */
643 memcpy(res->subsys, template, sizeof(res->subsys));
644
645 write_lock(&css_set_lock);
646 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
647 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
648 struct cgroup *c = link->cgrp;
649 if (c->root == cgrp->root)
650 c = cgrp;
651 link_css_set(&tmp_cg_links, res, c);
652 }
817929ec
PM
653
654 BUG_ON(!list_empty(&tmp_cg_links));
655
817929ec 656 css_set_count++;
472b1053
LZ
657
658 /* Add this cgroup group to the hash table */
659 hhead = css_set_hash(res->subsys);
660 hlist_add_head(&res->hlist, hhead);
661
817929ec
PM
662 write_unlock(&css_set_lock);
663
664 return res;
b4f48b63
PM
665}
666
7717f7ba
PM
667/*
668 * Return the cgroup for "task" from the given hierarchy. Must be
669 * called with cgroup_mutex held.
670 */
671static struct cgroup *task_cgroup_from_root(struct task_struct *task,
672 struct cgroupfs_root *root)
673{
674 struct css_set *css;
675 struct cgroup *res = NULL;
676
677 BUG_ON(!mutex_is_locked(&cgroup_mutex));
678 read_lock(&css_set_lock);
679 /*
680 * No need to lock the task - since we hold cgroup_mutex the
681 * task can't change groups, so the only thing that can happen
682 * is that it exits and its css is set back to init_css_set.
683 */
684 css = task->cgroups;
685 if (css == &init_css_set) {
686 res = &root->top_cgroup;
687 } else {
688 struct cg_cgroup_link *link;
689 list_for_each_entry(link, &css->cg_links, cg_link_list) {
690 struct cgroup *c = link->cgrp;
691 if (c->root == root) {
692 res = c;
693 break;
694 }
695 }
696 }
697 read_unlock(&css_set_lock);
698 BUG_ON(!res);
699 return res;
700}
701
ddbcc7e8
PM
702/*
703 * There is one global cgroup mutex. We also require taking
704 * task_lock() when dereferencing a task's cgroup subsys pointers.
705 * See "The task_lock() exception", at the end of this comment.
706 *
707 * A task must hold cgroup_mutex to modify cgroups.
708 *
709 * Any task can increment and decrement the count field without lock.
710 * So in general, code holding cgroup_mutex can't rely on the count
711 * field not changing. However, if the count goes to zero, then only
956db3ca 712 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
713 * means that no tasks are currently attached, therefore there is no
714 * way a task attached to that cgroup can fork (the other way to
715 * increment the count). So code holding cgroup_mutex can safely
716 * assume that if the count is zero, it will stay zero. Similarly, if
717 * a task holds cgroup_mutex on a cgroup with zero count, it
718 * knows that the cgroup won't be removed, as cgroup_rmdir()
719 * needs that mutex.
720 *
ddbcc7e8
PM
721 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
722 * (usually) take cgroup_mutex. These are the two most performance
723 * critical pieces of code here. The exception occurs on cgroup_exit(),
724 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
725 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
726 * to the release agent with the name of the cgroup (path relative to
727 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
728 *
729 * A cgroup can only be deleted if both its 'count' of using tasks
730 * is zero, and its list of 'children' cgroups is empty. Since all
731 * tasks in the system use _some_ cgroup, and since there is always at
732 * least one task in the system (init, pid == 1), therefore, top_cgroup
733 * always has either children cgroups and/or using tasks. So we don't
734 * need a special hack to ensure that top_cgroup cannot be deleted.
735 *
736 * The task_lock() exception
737 *
738 * The need for this exception arises from the action of
956db3ca 739 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 740 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
741 * several performance critical places that need to reference
742 * task->cgroup without the expense of grabbing a system global
743 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 744 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
745 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
746 * the task_struct routinely used for such matters.
747 *
748 * P.S. One more locking exception. RCU is used to guard the
956db3ca 749 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
750 */
751
ddbcc7e8
PM
752/**
753 * cgroup_lock - lock out any changes to cgroup structures
754 *
755 */
ddbcc7e8
PM
756void cgroup_lock(void)
757{
758 mutex_lock(&cgroup_mutex);
759}
67523c48 760EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
761
762/**
763 * cgroup_unlock - release lock on cgroup changes
764 *
765 * Undo the lock taken in a previous cgroup_lock() call.
766 */
ddbcc7e8
PM
767void cgroup_unlock(void)
768{
769 mutex_unlock(&cgroup_mutex);
770}
67523c48 771EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
772
773/*
774 * A couple of forward declarations required, due to cyclic reference loop:
775 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
776 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
777 * -> cgroup_mkdir.
778 */
779
780static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
c72a04e3 781static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 782static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 783static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 784static const struct inode_operations cgroup_dir_inode_operations;
828c0950 785static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
786
787static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 788 .name = "cgroup",
e4ad08fe 789 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 790};
ddbcc7e8 791
38460b48
KH
792static int alloc_css_id(struct cgroup_subsys *ss,
793 struct cgroup *parent, struct cgroup *child);
794
ddbcc7e8
PM
795static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
796{
797 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
798
799 if (inode) {
85fe4025 800 inode->i_ino = get_next_ino();
ddbcc7e8 801 inode->i_mode = mode;
76aac0e9
DH
802 inode->i_uid = current_fsuid();
803 inode->i_gid = current_fsgid();
ddbcc7e8
PM
804 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
805 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
806 }
807 return inode;
808}
809
4fca88c8
KH
810/*
811 * Call subsys's pre_destroy handler.
812 * This is called before css refcnt check.
813 */
ec64f515 814static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
815{
816 struct cgroup_subsys *ss;
ec64f515
KH
817 int ret = 0;
818
4fca88c8 819 for_each_subsys(cgrp->root, ss)
ec64f515
KH
820 if (ss->pre_destroy) {
821 ret = ss->pre_destroy(ss, cgrp);
822 if (ret)
4ab78683 823 break;
ec64f515 824 }
0dea1168 825
ec64f515 826 return ret;
4fca88c8
KH
827}
828
ddbcc7e8
PM
829static void cgroup_diput(struct dentry *dentry, struct inode *inode)
830{
831 /* is dentry a directory ? if so, kfree() associated cgroup */
832 if (S_ISDIR(inode->i_mode)) {
bd89aabc 833 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 834 struct cgroup_subsys *ss;
bd89aabc 835 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
836 /* It's possible for external users to be holding css
837 * reference counts on a cgroup; css_put() needs to
838 * be able to access the cgroup after decrementing
839 * the reference count in order to know if it needs to
840 * queue the cgroup to be handled by the release
841 * agent */
842 synchronize_rcu();
8dc4f3e1
PM
843
844 mutex_lock(&cgroup_mutex);
845 /*
846 * Release the subsystem state objects.
847 */
75139b82
LZ
848 for_each_subsys(cgrp->root, ss)
849 ss->destroy(ss, cgrp);
8dc4f3e1
PM
850
851 cgrp->root->number_of_cgroups--;
852 mutex_unlock(&cgroup_mutex);
853
a47295e6
PM
854 /*
855 * Drop the active superblock reference that we took when we
856 * created the cgroup
857 */
8dc4f3e1
PM
858 deactivate_super(cgrp->root->sb);
859
72a8cb30
BB
860 /*
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
863 */
864 BUG_ON(!list_empty(&cgrp->pidlists));
865
f2da1c40 866 kfree_rcu(cgrp, rcu_head);
ddbcc7e8
PM
867 }
868 iput(inode);
869}
870
c72a04e3
AV
871static int cgroup_delete(const struct dentry *d)
872{
873 return 1;
874}
875
ddbcc7e8
PM
876static void remove_dir(struct dentry *d)
877{
878 struct dentry *parent = dget(d->d_parent);
879
880 d_delete(d);
881 simple_rmdir(parent->d_inode, d);
882 dput(parent);
883}
884
885static void cgroup_clear_directory(struct dentry *dentry)
886{
887 struct list_head *node;
888
889 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2fd6b7f5 890 spin_lock(&dentry->d_lock);
ddbcc7e8
PM
891 node = dentry->d_subdirs.next;
892 while (node != &dentry->d_subdirs) {
893 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
2fd6b7f5
NP
894
895 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8
PM
896 list_del_init(node);
897 if (d->d_inode) {
898 /* This should never be called on a cgroup
899 * directory with child cgroups */
900 BUG_ON(d->d_inode->i_mode & S_IFDIR);
dc0474be 901 dget_dlock(d);
2fd6b7f5
NP
902 spin_unlock(&d->d_lock);
903 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
904 d_delete(d);
905 simple_unlink(dentry->d_inode, d);
906 dput(d);
2fd6b7f5
NP
907 spin_lock(&dentry->d_lock);
908 } else
909 spin_unlock(&d->d_lock);
ddbcc7e8
PM
910 node = dentry->d_subdirs.next;
911 }
2fd6b7f5 912 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
913}
914
915/*
916 * NOTE : the dentry must have been dget()'ed
917 */
918static void cgroup_d_remove_dir(struct dentry *dentry)
919{
2fd6b7f5
NP
920 struct dentry *parent;
921
ddbcc7e8
PM
922 cgroup_clear_directory(dentry);
923
2fd6b7f5
NP
924 parent = dentry->d_parent;
925 spin_lock(&parent->d_lock);
3ec762ad 926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 927 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
928 spin_unlock(&dentry->d_lock);
929 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
930 remove_dir(dentry);
931}
932
ec64f515
KH
933/*
934 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
935 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
936 * reference to css->refcnt. In general, this refcnt is expected to goes down
937 * to zero, soon.
938 *
88703267 939 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515
KH
940 */
941DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
942
88703267 943static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 944{
88703267 945 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
946 wake_up_all(&cgroup_rmdir_waitq);
947}
948
88703267
KH
949void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
950{
951 css_get(css);
952}
953
954void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
955{
956 cgroup_wakeup_rmdir_waiter(css->cgroup);
957 css_put(css);
958}
959
aae8aab4 960/*
cf5d5941
BB
961 * Call with cgroup_mutex held. Drops reference counts on modules, including
962 * any duplicate ones that parse_cgroupfs_options took. If this function
963 * returns an error, no reference counts are touched.
aae8aab4 964 */
ddbcc7e8
PM
965static int rebind_subsystems(struct cgroupfs_root *root,
966 unsigned long final_bits)
967{
968 unsigned long added_bits, removed_bits;
bd89aabc 969 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
970 int i;
971
aae8aab4 972 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 973 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 974
ddbcc7e8
PM
975 removed_bits = root->actual_subsys_bits & ~final_bits;
976 added_bits = final_bits & ~root->actual_subsys_bits;
977 /* Check that any added subsystems are currently free */
978 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 979 unsigned long bit = 1UL << i;
ddbcc7e8
PM
980 struct cgroup_subsys *ss = subsys[i];
981 if (!(bit & added_bits))
982 continue;
aae8aab4
BB
983 /*
984 * Nobody should tell us to do a subsys that doesn't exist:
985 * parse_cgroupfs_options should catch that case and refcounts
986 * ensure that subsystems won't disappear once selected.
987 */
988 BUG_ON(ss == NULL);
ddbcc7e8
PM
989 if (ss->root != &rootnode) {
990 /* Subsystem isn't free */
991 return -EBUSY;
992 }
993 }
994
995 /* Currently we don't handle adding/removing subsystems when
996 * any child cgroups exist. This is theoretically supportable
997 * but involves complex error handling, so it's being left until
998 * later */
307257cf 999 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1000 return -EBUSY;
1001
1002 /* Process each subsystem */
1003 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1004 struct cgroup_subsys *ss = subsys[i];
1005 unsigned long bit = 1UL << i;
1006 if (bit & added_bits) {
1007 /* We're binding this subsystem to this hierarchy */
aae8aab4 1008 BUG_ON(ss == NULL);
bd89aabc 1009 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1010 BUG_ON(!dummytop->subsys[i]);
1011 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 1012 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
1013 cgrp->subsys[i] = dummytop->subsys[i];
1014 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1015 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1016 ss->root = root;
ddbcc7e8 1017 if (ss->bind)
bd89aabc 1018 ss->bind(ss, cgrp);
999cd8a4 1019 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 1020 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1021 } else if (bit & removed_bits) {
1022 /* We're removing this subsystem */
aae8aab4 1023 BUG_ON(ss == NULL);
bd89aabc
PM
1024 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1025 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1026 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
1027 if (ss->bind)
1028 ss->bind(ss, dummytop);
1029 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1030 cgrp->subsys[i] = NULL;
b2aa30f7 1031 subsys[i]->root = &rootnode;
33a68ac1 1032 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1033 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1034 /* subsystem is now free - drop reference on module */
1035 module_put(ss->module);
ddbcc7e8
PM
1036 } else if (bit & final_bits) {
1037 /* Subsystem state should already exist */
aae8aab4 1038 BUG_ON(ss == NULL);
bd89aabc 1039 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1040 /*
1041 * a refcount was taken, but we already had one, so
1042 * drop the extra reference.
1043 */
1044 module_put(ss->module);
1045#ifdef CONFIG_MODULE_UNLOAD
1046 BUG_ON(ss->module && !module_refcount(ss->module));
1047#endif
ddbcc7e8
PM
1048 } else {
1049 /* Subsystem state shouldn't exist */
bd89aabc 1050 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1051 }
1052 }
1053 root->subsys_bits = root->actual_subsys_bits = final_bits;
1054 synchronize_rcu();
1055
1056 return 0;
1057}
1058
1059static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1060{
1061 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1062 struct cgroup_subsys *ss;
1063
e25e2cbb 1064 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1065 for_each_subsys(root, ss)
1066 seq_printf(seq, ",%s", ss->name);
1067 if (test_bit(ROOT_NOPREFIX, &root->flags))
1068 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1069 if (strlen(root->release_agent_path))
1070 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1071 if (clone_children(&root->top_cgroup))
1072 seq_puts(seq, ",clone_children");
c6d57f33
PM
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1075 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1076 return 0;
1077}
1078
1079struct cgroup_sb_opts {
1080 unsigned long subsys_bits;
1081 unsigned long flags;
81a6a5cd 1082 char *release_agent;
97978e6d 1083 bool clone_children;
c6d57f33 1084 char *name;
2c6ab6d2
PM
1085 /* User explicitly requested empty subsystem */
1086 bool none;
c6d57f33
PM
1087
1088 struct cgroupfs_root *new_root;
2c6ab6d2 1089
ddbcc7e8
PM
1090};
1091
aae8aab4
BB
1092/*
1093 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1094 * with cgroup_mutex held to protect the subsys[] array. This function takes
1095 * refcounts on subsystems to be used, unless it returns error, in which case
1096 * no refcounts are taken.
aae8aab4 1097 */
cf5d5941 1098static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1099{
32a8cf23
DL
1100 char *token, *o = data;
1101 bool all_ss = false, one_ss = false;
f9ab5b5b 1102 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1103 int i;
1104 bool module_pin_failed = false;
f9ab5b5b 1105
aae8aab4
BB
1106 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1107
f9ab5b5b
LZ
1108#ifdef CONFIG_CPUSETS
1109 mask = ~(1UL << cpuset_subsys_id);
1110#endif
ddbcc7e8 1111
c6d57f33 1112 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1113
1114 while ((token = strsep(&o, ",")) != NULL) {
1115 if (!*token)
1116 return -EINVAL;
32a8cf23 1117 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1118 /* Explicitly have no subsystems */
1119 opts->none = true;
32a8cf23
DL
1120 continue;
1121 }
1122 if (!strcmp(token, "all")) {
1123 /* Mutually exclusive option 'all' + subsystem name */
1124 if (one_ss)
1125 return -EINVAL;
1126 all_ss = true;
1127 continue;
1128 }
1129 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1130 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
97978e6d 1134 opts->clone_children = true;
32a8cf23
DL
1135 continue;
1136 }
1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
1173 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1174 struct cgroup_subsys *ss = subsys[i];
1175 if (ss == NULL)
1176 continue;
1177 if (strcmp(token, ss->name))
1178 continue;
1179 if (ss->disabled)
1180 continue;
1181
1182 /* Mutually exclusive option 'all' + subsystem name */
1183 if (all_ss)
1184 return -EINVAL;
1185 set_bit(i, &opts->subsys_bits);
1186 one_ss = true;
1187
1188 break;
1189 }
1190 if (i == CGROUP_SUBSYS_COUNT)
1191 return -ENOENT;
1192 }
1193
1194 /*
1195 * If the 'all' option was specified select all the subsystems,
1196 * otherwise 'all, 'none' and a subsystem name options were not
1197 * specified, let's default to 'all'
1198 */
1199 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1200 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1201 struct cgroup_subsys *ss = subsys[i];
1202 if (ss == NULL)
1203 continue;
1204 if (ss->disabled)
1205 continue;
1206 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1207 }
1208 }
1209
2c6ab6d2
PM
1210 /* Consistency checks */
1211
f9ab5b5b
LZ
1212 /*
1213 * Option noprefix was introduced just for backward compatibility
1214 * with the old cpuset, so we allow noprefix only if mounting just
1215 * the cpuset subsystem.
1216 */
1217 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1218 (opts->subsys_bits & mask))
1219 return -EINVAL;
1220
2c6ab6d2
PM
1221
1222 /* Can't specify "none" and some subsystems */
1223 if (opts->subsys_bits && opts->none)
1224 return -EINVAL;
1225
1226 /*
1227 * We either have to specify by name or by subsystems. (So all
1228 * empty hierarchies must have a name).
1229 */
c6d57f33 1230 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1231 return -EINVAL;
1232
cf5d5941
BB
1233 /*
1234 * Grab references on all the modules we'll need, so the subsystems
1235 * don't dance around before rebind_subsystems attaches them. This may
1236 * take duplicate reference counts on a subsystem that's already used,
1237 * but rebind_subsystems handles this case.
1238 */
1239 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1240 unsigned long bit = 1UL << i;
1241
1242 if (!(bit & opts->subsys_bits))
1243 continue;
1244 if (!try_module_get(subsys[i]->module)) {
1245 module_pin_failed = true;
1246 break;
1247 }
1248 }
1249 if (module_pin_failed) {
1250 /*
1251 * oops, one of the modules was going away. this means that we
1252 * raced with a module_delete call, and to the user this is
1253 * essentially a "subsystem doesn't exist" case.
1254 */
1255 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1256 /* drop refcounts only on the ones we took */
1257 unsigned long bit = 1UL << i;
1258
1259 if (!(bit & opts->subsys_bits))
1260 continue;
1261 module_put(subsys[i]->module);
1262 }
1263 return -ENOENT;
1264 }
1265
ddbcc7e8
PM
1266 return 0;
1267}
1268
cf5d5941
BB
1269static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1270{
1271 int i;
1272 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1273 unsigned long bit = 1UL << i;
1274
1275 if (!(bit & subsys_bits))
1276 continue;
1277 module_put(subsys[i]->module);
1278 }
1279}
1280
ddbcc7e8
PM
1281static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1282{
1283 int ret = 0;
1284 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1285 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1286 struct cgroup_sb_opts opts;
1287
bd89aabc 1288 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1289 mutex_lock(&cgroup_mutex);
e25e2cbb 1290 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1291
1292 /* See what subsystems are wanted */
1293 ret = parse_cgroupfs_options(data, &opts);
1294 if (ret)
1295 goto out_unlock;
1296
cf5d5941
BB
1297 /* Don't allow flags or name to change at remount */
1298 if (opts.flags != root->flags ||
1299 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1300 ret = -EINVAL;
cf5d5941 1301 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1302 goto out_unlock;
1303 }
1304
ddbcc7e8 1305 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1306 if (ret) {
1307 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1308 goto out_unlock;
cf5d5941 1309 }
ddbcc7e8
PM
1310
1311 /* (re)populate subsystem files */
0670e08b 1312 cgroup_populate_dir(cgrp);
ddbcc7e8 1313
81a6a5cd
PM
1314 if (opts.release_agent)
1315 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1316 out_unlock:
66bdc9cf 1317 kfree(opts.release_agent);
c6d57f33 1318 kfree(opts.name);
e25e2cbb 1319 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1320 mutex_unlock(&cgroup_mutex);
bd89aabc 1321 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1322 return ret;
1323}
1324
b87221de 1325static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1326 .statfs = simple_statfs,
1327 .drop_inode = generic_delete_inode,
1328 .show_options = cgroup_show_options,
1329 .remount_fs = cgroup_remount,
1330};
1331
cc31edce
PM
1332static void init_cgroup_housekeeping(struct cgroup *cgrp)
1333{
1334 INIT_LIST_HEAD(&cgrp->sibling);
1335 INIT_LIST_HEAD(&cgrp->children);
1336 INIT_LIST_HEAD(&cgrp->css_sets);
1337 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1338 INIT_LIST_HEAD(&cgrp->pidlists);
1339 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1340 INIT_LIST_HEAD(&cgrp->event_list);
1341 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1342}
c6d57f33 1343
ddbcc7e8
PM
1344static void init_cgroup_root(struct cgroupfs_root *root)
1345{
bd89aabc 1346 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1347 INIT_LIST_HEAD(&root->subsys_list);
1348 INIT_LIST_HEAD(&root->root_list);
1349 root->number_of_cgroups = 1;
bd89aabc
PM
1350 cgrp->root = root;
1351 cgrp->top_cgroup = cgrp;
cc31edce 1352 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1353}
1354
2c6ab6d2
PM
1355static bool init_root_id(struct cgroupfs_root *root)
1356{
1357 int ret = 0;
1358
1359 do {
1360 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1361 return false;
1362 spin_lock(&hierarchy_id_lock);
1363 /* Try to allocate the next unused ID */
1364 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1365 &root->hierarchy_id);
1366 if (ret == -ENOSPC)
1367 /* Try again starting from 0 */
1368 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1369 if (!ret) {
1370 next_hierarchy_id = root->hierarchy_id + 1;
1371 } else if (ret != -EAGAIN) {
1372 /* Can only get here if the 31-bit IDR is full ... */
1373 BUG_ON(ret);
1374 }
1375 spin_unlock(&hierarchy_id_lock);
1376 } while (ret);
1377 return true;
1378}
1379
ddbcc7e8
PM
1380static int cgroup_test_super(struct super_block *sb, void *data)
1381{
c6d57f33 1382 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1383 struct cgroupfs_root *root = sb->s_fs_info;
1384
c6d57f33
PM
1385 /* If we asked for a name then it must match */
1386 if (opts->name && strcmp(opts->name, root->name))
1387 return 0;
ddbcc7e8 1388
2c6ab6d2
PM
1389 /*
1390 * If we asked for subsystems (or explicitly for no
1391 * subsystems) then they must match
1392 */
1393 if ((opts->subsys_bits || opts->none)
1394 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1395 return 0;
1396
1397 return 1;
1398}
1399
c6d57f33
PM
1400static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1401{
1402 struct cgroupfs_root *root;
1403
2c6ab6d2 1404 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1405 return NULL;
1406
1407 root = kzalloc(sizeof(*root), GFP_KERNEL);
1408 if (!root)
1409 return ERR_PTR(-ENOMEM);
1410
2c6ab6d2
PM
1411 if (!init_root_id(root)) {
1412 kfree(root);
1413 return ERR_PTR(-ENOMEM);
1414 }
c6d57f33 1415 init_cgroup_root(root);
2c6ab6d2 1416
c6d57f33
PM
1417 root->subsys_bits = opts->subsys_bits;
1418 root->flags = opts->flags;
1419 if (opts->release_agent)
1420 strcpy(root->release_agent_path, opts->release_agent);
1421 if (opts->name)
1422 strcpy(root->name, opts->name);
97978e6d
DL
1423 if (opts->clone_children)
1424 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1425 return root;
1426}
1427
2c6ab6d2
PM
1428static void cgroup_drop_root(struct cgroupfs_root *root)
1429{
1430 if (!root)
1431 return;
1432
1433 BUG_ON(!root->hierarchy_id);
1434 spin_lock(&hierarchy_id_lock);
1435 ida_remove(&hierarchy_ida, root->hierarchy_id);
1436 spin_unlock(&hierarchy_id_lock);
1437 kfree(root);
1438}
1439
ddbcc7e8
PM
1440static int cgroup_set_super(struct super_block *sb, void *data)
1441{
1442 int ret;
c6d57f33
PM
1443 struct cgroup_sb_opts *opts = data;
1444
1445 /* If we don't have a new root, we can't set up a new sb */
1446 if (!opts->new_root)
1447 return -EINVAL;
1448
2c6ab6d2 1449 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1450
1451 ret = set_anon_super(sb, NULL);
1452 if (ret)
1453 return ret;
1454
c6d57f33
PM
1455 sb->s_fs_info = opts->new_root;
1456 opts->new_root->sb = sb;
ddbcc7e8
PM
1457
1458 sb->s_blocksize = PAGE_CACHE_SIZE;
1459 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1460 sb->s_magic = CGROUP_SUPER_MAGIC;
1461 sb->s_op = &cgroup_ops;
1462
1463 return 0;
1464}
1465
1466static int cgroup_get_rootdir(struct super_block *sb)
1467{
0df6a63f
AV
1468 static const struct dentry_operations cgroup_dops = {
1469 .d_iput = cgroup_diput,
c72a04e3 1470 .d_delete = cgroup_delete,
0df6a63f
AV
1471 };
1472
ddbcc7e8
PM
1473 struct inode *inode =
1474 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1475 struct dentry *dentry;
1476
1477 if (!inode)
1478 return -ENOMEM;
1479
ddbcc7e8
PM
1480 inode->i_fop = &simple_dir_operations;
1481 inode->i_op = &cgroup_dir_inode_operations;
1482 /* directories start off with i_nlink == 2 (for "." entry) */
1483 inc_nlink(inode);
1484 dentry = d_alloc_root(inode);
1485 if (!dentry) {
1486 iput(inode);
1487 return -ENOMEM;
1488 }
1489 sb->s_root = dentry;
0df6a63f
AV
1490 /* for everything else we want ->d_op set */
1491 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1492 return 0;
1493}
1494
f7e83571 1495static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1496 int flags, const char *unused_dev_name,
f7e83571 1497 void *data)
ddbcc7e8
PM
1498{
1499 struct cgroup_sb_opts opts;
c6d57f33 1500 struct cgroupfs_root *root;
ddbcc7e8
PM
1501 int ret = 0;
1502 struct super_block *sb;
c6d57f33 1503 struct cgroupfs_root *new_root;
e25e2cbb 1504 struct inode *inode;
ddbcc7e8
PM
1505
1506 /* First find the desired set of subsystems */
aae8aab4 1507 mutex_lock(&cgroup_mutex);
ddbcc7e8 1508 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1509 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1510 if (ret)
1511 goto out_err;
ddbcc7e8 1512
c6d57f33
PM
1513 /*
1514 * Allocate a new cgroup root. We may not need it if we're
1515 * reusing an existing hierarchy.
1516 */
1517 new_root = cgroup_root_from_opts(&opts);
1518 if (IS_ERR(new_root)) {
1519 ret = PTR_ERR(new_root);
cf5d5941 1520 goto drop_modules;
81a6a5cd 1521 }
c6d57f33 1522 opts.new_root = new_root;
ddbcc7e8 1523
c6d57f33
PM
1524 /* Locate an existing or new sb for this hierarchy */
1525 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1526 if (IS_ERR(sb)) {
c6d57f33 1527 ret = PTR_ERR(sb);
2c6ab6d2 1528 cgroup_drop_root(opts.new_root);
cf5d5941 1529 goto drop_modules;
ddbcc7e8
PM
1530 }
1531
c6d57f33
PM
1532 root = sb->s_fs_info;
1533 BUG_ON(!root);
1534 if (root == opts.new_root) {
1535 /* We used the new root structure, so this is a new hierarchy */
1536 struct list_head tmp_cg_links;
c12f65d4 1537 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1538 struct cgroupfs_root *existing_root;
2ce9738b 1539 const struct cred *cred;
28fd5dfc 1540 int i;
ddbcc7e8
PM
1541
1542 BUG_ON(sb->s_root != NULL);
1543
1544 ret = cgroup_get_rootdir(sb);
1545 if (ret)
1546 goto drop_new_super;
817929ec 1547 inode = sb->s_root->d_inode;
ddbcc7e8 1548
817929ec 1549 mutex_lock(&inode->i_mutex);
ddbcc7e8 1550 mutex_lock(&cgroup_mutex);
e25e2cbb 1551 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1552
e25e2cbb
TH
1553 /* Check for name clashes with existing mounts */
1554 ret = -EBUSY;
1555 if (strlen(root->name))
1556 for_each_active_root(existing_root)
1557 if (!strcmp(existing_root->name, root->name))
1558 goto unlock_drop;
c6d57f33 1559
817929ec
PM
1560 /*
1561 * We're accessing css_set_count without locking
1562 * css_set_lock here, but that's OK - it can only be
1563 * increased by someone holding cgroup_lock, and
1564 * that's us. The worst that can happen is that we
1565 * have some link structures left over
1566 */
1567 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1568 if (ret)
1569 goto unlock_drop;
817929ec 1570
ddbcc7e8
PM
1571 ret = rebind_subsystems(root, root->subsys_bits);
1572 if (ret == -EBUSY) {
c6d57f33 1573 free_cg_links(&tmp_cg_links);
e25e2cbb 1574 goto unlock_drop;
ddbcc7e8 1575 }
cf5d5941
BB
1576 /*
1577 * There must be no failure case after here, since rebinding
1578 * takes care of subsystems' refcounts, which are explicitly
1579 * dropped in the failure exit path.
1580 */
ddbcc7e8
PM
1581
1582 /* EBUSY should be the only error here */
1583 BUG_ON(ret);
1584
1585 list_add(&root->root_list, &roots);
817929ec 1586 root_count++;
ddbcc7e8 1587
c12f65d4 1588 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1589 root->top_cgroup.dentry = sb->s_root;
1590
817929ec
PM
1591 /* Link the top cgroup in this hierarchy into all
1592 * the css_set objects */
1593 write_lock(&css_set_lock);
28fd5dfc
LZ
1594 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1595 struct hlist_head *hhead = &css_set_table[i];
1596 struct hlist_node *node;
817929ec 1597 struct css_set *cg;
28fd5dfc 1598
c12f65d4
LZ
1599 hlist_for_each_entry(cg, node, hhead, hlist)
1600 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1601 }
817929ec
PM
1602 write_unlock(&css_set_lock);
1603
1604 free_cg_links(&tmp_cg_links);
1605
c12f65d4
LZ
1606 BUG_ON(!list_empty(&root_cgrp->sibling));
1607 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1608 BUG_ON(root->number_of_cgroups != 1);
1609
2ce9738b 1610 cred = override_creds(&init_cred);
c12f65d4 1611 cgroup_populate_dir(root_cgrp);
2ce9738b 1612 revert_creds(cred);
e25e2cbb 1613 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1614 mutex_unlock(&cgroup_mutex);
34f77a90 1615 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1616 } else {
1617 /*
1618 * We re-used an existing hierarchy - the new root (if
1619 * any) is not needed
1620 */
2c6ab6d2 1621 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1622 /* no subsys rebinding, so refcounts don't change */
1623 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1624 }
1625
c6d57f33
PM
1626 kfree(opts.release_agent);
1627 kfree(opts.name);
f7e83571 1628 return dget(sb->s_root);
ddbcc7e8 1629
e25e2cbb
TH
1630 unlock_drop:
1631 mutex_unlock(&cgroup_root_mutex);
1632 mutex_unlock(&cgroup_mutex);
1633 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1634 drop_new_super:
6f5bbff9 1635 deactivate_locked_super(sb);
cf5d5941
BB
1636 drop_modules:
1637 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1638 out_err:
1639 kfree(opts.release_agent);
1640 kfree(opts.name);
f7e83571 1641 return ERR_PTR(ret);
ddbcc7e8
PM
1642}
1643
1644static void cgroup_kill_sb(struct super_block *sb) {
1645 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1646 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1647 int ret;
71cbb949
KM
1648 struct cg_cgroup_link *link;
1649 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1650
1651 BUG_ON(!root);
1652
1653 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1654 BUG_ON(!list_empty(&cgrp->children));
1655 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1656
1657 mutex_lock(&cgroup_mutex);
e25e2cbb 1658 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1659
1660 /* Rebind all subsystems back to the default hierarchy */
1661 ret = rebind_subsystems(root, 0);
1662 /* Shouldn't be able to fail ... */
1663 BUG_ON(ret);
1664
817929ec
PM
1665 /*
1666 * Release all the links from css_sets to this hierarchy's
1667 * root cgroup
1668 */
1669 write_lock(&css_set_lock);
71cbb949
KM
1670
1671 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1672 cgrp_link_list) {
817929ec 1673 list_del(&link->cg_link_list);
bd89aabc 1674 list_del(&link->cgrp_link_list);
817929ec
PM
1675 kfree(link);
1676 }
1677 write_unlock(&css_set_lock);
1678
839ec545
PM
1679 if (!list_empty(&root->root_list)) {
1680 list_del(&root->root_list);
1681 root_count--;
1682 }
e5f6a860 1683
e25e2cbb 1684 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1685 mutex_unlock(&cgroup_mutex);
1686
ddbcc7e8 1687 kill_litter_super(sb);
2c6ab6d2 1688 cgroup_drop_root(root);
ddbcc7e8
PM
1689}
1690
1691static struct file_system_type cgroup_fs_type = {
1692 .name = "cgroup",
f7e83571 1693 .mount = cgroup_mount,
ddbcc7e8
PM
1694 .kill_sb = cgroup_kill_sb,
1695};
1696
676db4af
GK
1697static struct kobject *cgroup_kobj;
1698
bd89aabc 1699static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1700{
1701 return dentry->d_fsdata;
1702}
1703
1704static inline struct cftype *__d_cft(struct dentry *dentry)
1705{
1706 return dentry->d_fsdata;
1707}
1708
a043e3b2
LZ
1709/**
1710 * cgroup_path - generate the path of a cgroup
1711 * @cgrp: the cgroup in question
1712 * @buf: the buffer to write the path into
1713 * @buflen: the length of the buffer
1714 *
a47295e6
PM
1715 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1716 * reference. Writes path of cgroup into buf. Returns 0 on success,
1717 * -errno on error.
ddbcc7e8 1718 */
bd89aabc 1719int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1720{
1721 char *start;
9a9686b6 1722 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1723 cgroup_lock_is_held());
ddbcc7e8 1724
a47295e6 1725 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1726 /*
1727 * Inactive subsystems have no dentry for their root
1728 * cgroup
1729 */
1730 strcpy(buf, "/");
1731 return 0;
1732 }
1733
1734 start = buf + buflen;
1735
1736 *--start = '\0';
1737 for (;;) {
a47295e6 1738 int len = dentry->d_name.len;
9a9686b6 1739
ddbcc7e8
PM
1740 if ((start -= len) < buf)
1741 return -ENAMETOOLONG;
9a9686b6 1742 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1743 cgrp = cgrp->parent;
1744 if (!cgrp)
ddbcc7e8 1745 break;
9a9686b6
LZ
1746
1747 dentry = rcu_dereference_check(cgrp->dentry,
9a9686b6 1748 cgroup_lock_is_held());
bd89aabc 1749 if (!cgrp->parent)
ddbcc7e8
PM
1750 continue;
1751 if (--start < buf)
1752 return -ENAMETOOLONG;
1753 *start = '/';
1754 }
1755 memmove(buf, start, buf + buflen - start);
1756 return 0;
1757}
67523c48 1758EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1759
134d3373
TH
1760struct task_and_cgroup {
1761 struct task_struct *task;
1762 struct cgroup *cgrp;
1763};
1764
74a1166d
BB
1765/*
1766 * cgroup_task_migrate - move a task from one cgroup to another.
1767 *
1768 * 'guarantee' is set if the caller promises that a new css_set for the task
1769 * will already exist. If not set, this function might sleep, and can fail with
cd3d0952 1770 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
74a1166d
BB
1771 */
1772static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1773 struct task_struct *tsk, bool guarantee)
1774{
1775 struct css_set *oldcg;
1776 struct css_set *newcg;
1777
1778 /*
1779 * get old css_set. we need to take task_lock and refcount it, because
1780 * an exiting task can change its css_set to init_css_set and drop its
1781 * old one without taking cgroup_mutex.
1782 */
1783 task_lock(tsk);
1784 oldcg = tsk->cgroups;
1785 get_css_set(oldcg);
1786 task_unlock(tsk);
1787
1788 /* locate or allocate a new css_set for this task. */
1789 if (guarantee) {
1790 /* we know the css_set we want already exists. */
1791 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1792 read_lock(&css_set_lock);
1793 newcg = find_existing_css_set(oldcg, cgrp, template);
1794 BUG_ON(!newcg);
1795 get_css_set(newcg);
1796 read_unlock(&css_set_lock);
1797 } else {
1798 might_sleep();
1799 /* find_css_set will give us newcg already referenced. */
1800 newcg = find_css_set(oldcg, cgrp);
1801 if (!newcg) {
1802 put_css_set(oldcg);
1803 return -ENOMEM;
1804 }
1805 }
1806 put_css_set(oldcg);
1807
cd3d0952 1808 /* @tsk can't exit as its threadgroup is locked */
74a1166d 1809 task_lock(tsk);
cd3d0952 1810 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d
BB
1811 rcu_assign_pointer(tsk->cgroups, newcg);
1812 task_unlock(tsk);
1813
1814 /* Update the css_set linked lists if we're using them */
1815 write_lock(&css_set_lock);
1816 if (!list_empty(&tsk->cg_list))
1817 list_move(&tsk->cg_list, &newcg->tasks);
1818 write_unlock(&css_set_lock);
1819
1820 /*
1821 * We just gained a reference on oldcg by taking it from the task. As
1822 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1823 * it here; it will be freed under RCU.
1824 */
1825 put_css_set(oldcg);
1826
1827 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1828 return 0;
1829}
1830
a043e3b2
LZ
1831/**
1832 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1833 * @cgrp: the cgroup the task is attaching to
1834 * @tsk: the task to be attached
bbcb81d0 1835 *
cd3d0952
TH
1836 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1837 * @tsk during call.
bbcb81d0 1838 */
956db3ca 1839int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0 1840{
74a1166d 1841 int retval;
2468c723 1842 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1843 struct cgroup *oldcgrp;
bd89aabc 1844 struct cgroupfs_root *root = cgrp->root;
bbcb81d0 1845
cd3d0952
TH
1846 /* @tsk either already exited or can't exit until the end */
1847 if (tsk->flags & PF_EXITING)
1848 return -ESRCH;
1849
bbcb81d0 1850 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1851 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1852 if (cgrp == oldcgrp)
bbcb81d0
PM
1853 return 0;
1854
1855 for_each_subsys(root, ss) {
1856 if (ss->can_attach) {
f780bdb7 1857 retval = ss->can_attach(ss, cgrp, tsk);
2468c723
DN
1858 if (retval) {
1859 /*
1860 * Remember on which subsystem the can_attach()
1861 * failed, so that we only call cancel_attach()
1862 * against the subsystems whose can_attach()
1863 * succeeded. (See below)
1864 */
1865 failed_ss = ss;
1866 goto out;
1867 }
bbcb81d0 1868 }
f780bdb7
BB
1869 if (ss->can_attach_task) {
1870 retval = ss->can_attach_task(cgrp, tsk);
1871 if (retval) {
1872 failed_ss = ss;
1873 goto out;
1874 }
1875 }
bbcb81d0
PM
1876 }
1877
74a1166d
BB
1878 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1879 if (retval)
2468c723 1880 goto out;
817929ec 1881
bbcb81d0 1882 for_each_subsys(root, ss) {
f780bdb7
BB
1883 if (ss->pre_attach)
1884 ss->pre_attach(cgrp);
1885 if (ss->attach_task)
1886 ss->attach_task(cgrp, tsk);
e18f6318 1887 if (ss->attach)
f780bdb7 1888 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1889 }
74a1166d 1890
bbcb81d0 1891 synchronize_rcu();
ec64f515
KH
1892
1893 /*
1894 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1895 * is no longer empty.
1896 */
88703267 1897 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1898out:
1899 if (retval) {
1900 for_each_subsys(root, ss) {
1901 if (ss == failed_ss)
1902 /*
1903 * This subsystem was the one that failed the
1904 * can_attach() check earlier, so we don't need
1905 * to call cancel_attach() against it or any
1906 * remaining subsystems.
1907 */
1908 break;
1909 if (ss->cancel_attach)
f780bdb7 1910 ss->cancel_attach(ss, cgrp, tsk);
2468c723
DN
1911 }
1912 }
1913 return retval;
bbcb81d0
PM
1914}
1915
d7926ee3 1916/**
31583bb0
MT
1917 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1918 * @from: attach to all cgroups of a given task
d7926ee3
SS
1919 * @tsk: the task to be attached
1920 */
31583bb0 1921int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1922{
1923 struct cgroupfs_root *root;
d7926ee3
SS
1924 int retval = 0;
1925
1926 cgroup_lock();
1927 for_each_active_root(root) {
31583bb0
MT
1928 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1929
1930 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1931 if (retval)
1932 break;
1933 }
1934 cgroup_unlock();
1935
1936 return retval;
1937}
31583bb0 1938EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1939
bbcb81d0 1940/*
74a1166d
BB
1941 * cgroup_attach_proc works in two stages, the first of which prefetches all
1942 * new css_sets needed (to make sure we have enough memory before committing
1943 * to the move) and stores them in a list of entries of the following type.
1944 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1945 */
1946struct cg_list_entry {
1947 struct css_set *cg;
1948 struct list_head links;
1949};
1950
1951static bool css_set_check_fetched(struct cgroup *cgrp,
1952 struct task_struct *tsk, struct css_set *cg,
1953 struct list_head *newcg_list)
1954{
1955 struct css_set *newcg;
1956 struct cg_list_entry *cg_entry;
1957 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1958
1959 read_lock(&css_set_lock);
1960 newcg = find_existing_css_set(cg, cgrp, template);
1961 if (newcg)
1962 get_css_set(newcg);
1963 read_unlock(&css_set_lock);
1964
1965 /* doesn't exist at all? */
1966 if (!newcg)
1967 return false;
1968 /* see if it's already in the list */
1969 list_for_each_entry(cg_entry, newcg_list, links) {
1970 if (cg_entry->cg == newcg) {
1971 put_css_set(newcg);
1972 return true;
1973 }
1974 }
1975
1976 /* not found */
1977 put_css_set(newcg);
1978 return false;
1979}
1980
1981/*
1982 * Find the new css_set and store it in the list in preparation for moving the
1983 * given task to the given cgroup. Returns 0 or -ENOMEM.
1984 */
1985static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1986 struct list_head *newcg_list)
1987{
1988 struct css_set *newcg;
1989 struct cg_list_entry *cg_entry;
1990
1991 /* ensure a new css_set will exist for this thread */
1992 newcg = find_css_set(cg, cgrp);
1993 if (!newcg)
1994 return -ENOMEM;
1995 /* add it to the list */
1996 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1997 if (!cg_entry) {
1998 put_css_set(newcg);
1999 return -ENOMEM;
2000 }
2001 cg_entry->cg = newcg;
2002 list_add(&cg_entry->links, newcg_list);
2003 return 0;
2004}
2005
2006/**
2007 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2008 * @cgrp: the cgroup to attach to
2009 * @leader: the threadgroup leader task_struct of the group to be attached
2010 *
257058ae
TH
2011 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2012 * task_lock of each thread in leader's threadgroup individually in turn.
74a1166d
BB
2013 */
2014int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2015{
134d3373 2016 int retval, i, group_size, nr_migrating_tasks;
74a1166d
BB
2017 struct cgroup_subsys *ss, *failed_ss = NULL;
2018 bool cancel_failed_ss = false;
2019 /* guaranteed to be initialized later, but the compiler needs this */
74a1166d
BB
2020 struct css_set *oldcg;
2021 struct cgroupfs_root *root = cgrp->root;
2022 /* threadgroup list cursor and array */
2023 struct task_struct *tsk;
134d3373 2024 struct task_and_cgroup *tc;
d846687d 2025 struct flex_array *group;
74a1166d
BB
2026 /*
2027 * we need to make sure we have css_sets for all the tasks we're
2028 * going to move -before- we actually start moving them, so that in
2029 * case we get an ENOMEM we can bail out before making any changes.
2030 */
2031 struct list_head newcg_list;
2032 struct cg_list_entry *cg_entry, *temp_nobe;
2033
2034 /*
2035 * step 0: in order to do expensive, possibly blocking operations for
2036 * every thread, we cannot iterate the thread group list, since it needs
2037 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
2038 * group - group_rwsem prevents new threads from appearing, and if
2039 * threads exit, this will just be an over-estimate.
74a1166d
BB
2040 */
2041 group_size = get_nr_threads(leader);
d846687d 2042 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2043 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2044 if (!group)
2045 return -ENOMEM;
d846687d
BB
2046 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2047 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2048 if (retval)
2049 goto out_free_group_list;
74a1166d
BB
2050
2051 /* prevent changes to the threadgroup list while we take a snapshot. */
33ef6b69 2052 read_lock(&tasklist_lock);
74a1166d
BB
2053 if (!thread_group_leader(leader)) {
2054 /*
2055 * a race with de_thread from another thread's exec() may strip
2056 * us of our leadership, making while_each_thread unsafe to use
2057 * on this task. if this happens, there is no choice but to
2058 * throw this task away and try again (from cgroup_procs_write);
2059 * this is "double-double-toil-and-trouble-check locking".
2060 */
33ef6b69 2061 read_unlock(&tasklist_lock);
74a1166d
BB
2062 retval = -EAGAIN;
2063 goto out_free_group_list;
2064 }
2065 /* take a reference on each task in the group to go in the array. */
2066 tsk = leader;
134d3373 2067 i = nr_migrating_tasks = 0;
74a1166d 2068 do {
134d3373
TH
2069 struct task_and_cgroup ent;
2070
cd3d0952
TH
2071 /* @tsk either already exited or can't exit until the end */
2072 if (tsk->flags & PF_EXITING)
2073 continue;
2074
74a1166d
BB
2075 /* as per above, nr_threads may decrease, but not increase. */
2076 BUG_ON(i >= group_size);
2077 get_task_struct(tsk);
d846687d
BB
2078 /*
2079 * saying GFP_ATOMIC has no effect here because we did prealloc
2080 * earlier, but it's good form to communicate our expectations.
2081 */
134d3373
TH
2082 ent.task = tsk;
2083 ent.cgrp = task_cgroup_from_root(tsk, root);
2084 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2085 BUG_ON(retval != 0);
74a1166d 2086 i++;
134d3373
TH
2087 if (ent.cgrp != cgrp)
2088 nr_migrating_tasks++;
74a1166d
BB
2089 } while_each_thread(leader, tsk);
2090 /* remember the number of threads in the array for later. */
2091 group_size = i;
33ef6b69 2092 read_unlock(&tasklist_lock);
74a1166d 2093
134d3373
TH
2094 /* methods shouldn't be called if no task is actually migrating */
2095 retval = 0;
2096 if (!nr_migrating_tasks)
2097 goto out_put_tasks;
2098
74a1166d
BB
2099 /*
2100 * step 1: check that we can legitimately attach to the cgroup.
2101 */
2102 for_each_subsys(root, ss) {
2103 if (ss->can_attach) {
2104 retval = ss->can_attach(ss, cgrp, leader);
2105 if (retval) {
2106 failed_ss = ss;
2107 goto out_cancel_attach;
2108 }
2109 }
2110 /* a callback to be run on every thread in the threadgroup. */
2111 if (ss->can_attach_task) {
2112 /* run on each task in the threadgroup. */
2113 for (i = 0; i < group_size; i++) {
134d3373
TH
2114 tc = flex_array_get(group, i);
2115 if (tc->cgrp == cgrp)
2116 continue;
2117 retval = ss->can_attach_task(cgrp, tc->task);
74a1166d
BB
2118 if (retval) {
2119 failed_ss = ss;
2120 cancel_failed_ss = true;
2121 goto out_cancel_attach;
2122 }
2123 }
2124 }
2125 }
2126
2127 /*
2128 * step 2: make sure css_sets exist for all threads to be migrated.
2129 * we use find_css_set, which allocates a new one if necessary.
2130 */
2131 INIT_LIST_HEAD(&newcg_list);
2132 for (i = 0; i < group_size; i++) {
134d3373 2133 tc = flex_array_get(group, i);
74a1166d 2134 /* nothing to do if this task is already in the cgroup */
134d3373 2135 if (tc->cgrp == cgrp)
74a1166d
BB
2136 continue;
2137 /* get old css_set pointer */
134d3373
TH
2138 task_lock(tc->task);
2139 oldcg = tc->task->cgroups;
74a1166d 2140 get_css_set(oldcg);
134d3373 2141 task_unlock(tc->task);
74a1166d 2142 /* see if the new one for us is already in the list? */
134d3373 2143 if (css_set_check_fetched(cgrp, tc->task, oldcg, &newcg_list)) {
74a1166d
BB
2144 /* was already there, nothing to do. */
2145 put_css_set(oldcg);
2146 } else {
2147 /* we don't already have it. get new one. */
2148 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2149 put_css_set(oldcg);
2150 if (retval)
2151 goto out_list_teardown;
2152 }
2153 }
2154
2155 /*
2156 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2157 * to move all tasks to the new cgroup, calling ss->attach_task for each
2158 * one along the way. there are no failure cases after here, so this is
2159 * the commit point.
2160 */
2161 for_each_subsys(root, ss) {
2162 if (ss->pre_attach)
2163 ss->pre_attach(cgrp);
2164 }
2165 for (i = 0; i < group_size; i++) {
134d3373 2166 tc = flex_array_get(group, i);
74a1166d 2167 /* leave current thread as it is if it's already there */
134d3373 2168 if (tc->cgrp == cgrp)
74a1166d 2169 continue;
134d3373 2170 retval = cgroup_task_migrate(cgrp, tc->cgrp, tc->task, true);
cd3d0952
TH
2171 BUG_ON(retval);
2172 /* attach each task to each subsystem */
2173 for_each_subsys(root, ss) {
2174 if (ss->attach_task)
134d3373 2175 ss->attach_task(cgrp, tc->task);
77ceab8e 2176 }
74a1166d
BB
2177 }
2178 /* nothing is sensitive to fork() after this point. */
2179
2180 /*
2181 * step 4: do expensive, non-thread-specific subsystem callbacks.
2182 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2183 * being moved, this call will need to be reworked to communicate that.
2184 */
2185 for_each_subsys(root, ss) {
134d3373
TH
2186 if (ss->attach) {
2187 tc = flex_array_get(group, 0);
2188 ss->attach(ss, cgrp, tc->cgrp, tc->task);
2189 }
74a1166d
BB
2190 }
2191
2192 /*
2193 * step 5: success! and cleanup
2194 */
2195 synchronize_rcu();
2196 cgroup_wakeup_rmdir_waiter(cgrp);
2197 retval = 0;
2198out_list_teardown:
2199 /* clean up the list of prefetched css_sets. */
2200 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2201 list_del(&cg_entry->links);
2202 put_css_set(cg_entry->cg);
2203 kfree(cg_entry);
2204 }
2205out_cancel_attach:
2206 /* same deal as in cgroup_attach_task */
2207 if (retval) {
2208 for_each_subsys(root, ss) {
2209 if (ss == failed_ss) {
2210 if (cancel_failed_ss && ss->cancel_attach)
2211 ss->cancel_attach(ss, cgrp, leader);
2212 break;
2213 }
2214 if (ss->cancel_attach)
2215 ss->cancel_attach(ss, cgrp, leader);
2216 }
2217 }
134d3373 2218out_put_tasks:
74a1166d 2219 /* clean up the array of referenced threads in the group. */
d846687d 2220 for (i = 0; i < group_size; i++) {
134d3373
TH
2221 tc = flex_array_get(group, i);
2222 put_task_struct(tc->task);
d846687d 2223 }
74a1166d 2224out_free_group_list:
d846687d 2225 flex_array_free(group);
74a1166d
BB
2226 return retval;
2227}
2228
2229/*
2230 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2231 * function to attach either it or all tasks in its threadgroup. Will lock
2232 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2233 */
74a1166d 2234static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2235{
bbcb81d0 2236 struct task_struct *tsk;
c69e8d9c 2237 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2238 int ret;
2239
74a1166d
BB
2240 if (!cgroup_lock_live_group(cgrp))
2241 return -ENODEV;
2242
bbcb81d0
PM
2243 if (pid) {
2244 rcu_read_lock();
73507f33 2245 tsk = find_task_by_vpid(pid);
74a1166d
BB
2246 if (!tsk) {
2247 rcu_read_unlock();
2248 cgroup_unlock();
2249 return -ESRCH;
2250 }
2251 if (threadgroup) {
2252 /*
2253 * RCU protects this access, since tsk was found in the
2254 * tid map. a race with de_thread may cause group_leader
2255 * to stop being the leader, but cgroup_attach_proc will
2256 * detect it later.
2257 */
2258 tsk = tsk->group_leader;
bbcb81d0 2259 }
74a1166d
BB
2260 /*
2261 * even if we're attaching all tasks in the thread group, we
2262 * only need to check permissions on one of them.
2263 */
c69e8d9c
DH
2264 tcred = __task_cred(tsk);
2265 if (cred->euid &&
2266 cred->euid != tcred->uid &&
2267 cred->euid != tcred->suid) {
2268 rcu_read_unlock();
74a1166d 2269 cgroup_unlock();
bbcb81d0
PM
2270 return -EACCES;
2271 }
c69e8d9c
DH
2272 get_task_struct(tsk);
2273 rcu_read_unlock();
bbcb81d0 2274 } else {
74a1166d
BB
2275 if (threadgroup)
2276 tsk = current->group_leader;
2277 else
2278 tsk = current;
bbcb81d0
PM
2279 get_task_struct(tsk);
2280 }
2281
cd3d0952
TH
2282 threadgroup_lock(tsk);
2283
2284 if (threadgroup)
74a1166d 2285 ret = cgroup_attach_proc(cgrp, tsk);
cd3d0952 2286 else
74a1166d 2287 ret = cgroup_attach_task(cgrp, tsk);
cd3d0952
TH
2288
2289 threadgroup_unlock(tsk);
2290
bbcb81d0 2291 put_task_struct(tsk);
74a1166d 2292 cgroup_unlock();
bbcb81d0
PM
2293 return ret;
2294}
2295
af351026 2296static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2297{
2298 return attach_task_by_pid(cgrp, pid, false);
2299}
2300
2301static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026
PM
2302{
2303 int ret;
74a1166d
BB
2304 do {
2305 /*
2306 * attach_proc fails with -EAGAIN if threadgroup leadership
2307 * changes in the middle of the operation, in which case we need
2308 * to find the task_struct for the new leader and start over.
2309 */
2310 ret = attach_task_by_pid(cgrp, tgid, true);
2311 } while (ret == -EAGAIN);
af351026
PM
2312 return ret;
2313}
2314
e788e066
PM
2315/**
2316 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2317 * @cgrp: the cgroup to be checked for liveness
2318 *
84eea842
PM
2319 * On success, returns true; the lock should be later released with
2320 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 2321 */
84eea842 2322bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
2323{
2324 mutex_lock(&cgroup_mutex);
2325 if (cgroup_is_removed(cgrp)) {
2326 mutex_unlock(&cgroup_mutex);
2327 return false;
2328 }
2329 return true;
2330}
67523c48 2331EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
2332
2333static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2334 const char *buffer)
2335{
2336 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2337 if (strlen(buffer) >= PATH_MAX)
2338 return -EINVAL;
e788e066
PM
2339 if (!cgroup_lock_live_group(cgrp))
2340 return -ENODEV;
e25e2cbb 2341 mutex_lock(&cgroup_root_mutex);
e788e066 2342 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2343 mutex_unlock(&cgroup_root_mutex);
84eea842 2344 cgroup_unlock();
e788e066
PM
2345 return 0;
2346}
2347
2348static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2349 struct seq_file *seq)
2350{
2351 if (!cgroup_lock_live_group(cgrp))
2352 return -ENODEV;
2353 seq_puts(seq, cgrp->root->release_agent_path);
2354 seq_putc(seq, '\n');
84eea842 2355 cgroup_unlock();
e788e066
PM
2356 return 0;
2357}
2358
84eea842
PM
2359/* A buffer size big enough for numbers or short strings */
2360#define CGROUP_LOCAL_BUFFER_SIZE 64
2361
e73d2c61 2362static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2363 struct file *file,
2364 const char __user *userbuf,
2365 size_t nbytes, loff_t *unused_ppos)
355e0c48 2366{
84eea842 2367 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2368 int retval = 0;
355e0c48
PM
2369 char *end;
2370
2371 if (!nbytes)
2372 return -EINVAL;
2373 if (nbytes >= sizeof(buffer))
2374 return -E2BIG;
2375 if (copy_from_user(buffer, userbuf, nbytes))
2376 return -EFAULT;
2377
2378 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2379 if (cft->write_u64) {
478988d3 2380 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2381 if (*end)
2382 return -EINVAL;
2383 retval = cft->write_u64(cgrp, cft, val);
2384 } else {
478988d3 2385 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2386 if (*end)
2387 return -EINVAL;
2388 retval = cft->write_s64(cgrp, cft, val);
2389 }
355e0c48
PM
2390 if (!retval)
2391 retval = nbytes;
2392 return retval;
2393}
2394
db3b1497
PM
2395static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2396 struct file *file,
2397 const char __user *userbuf,
2398 size_t nbytes, loff_t *unused_ppos)
2399{
84eea842 2400 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2401 int retval = 0;
2402 size_t max_bytes = cft->max_write_len;
2403 char *buffer = local_buffer;
2404
2405 if (!max_bytes)
2406 max_bytes = sizeof(local_buffer) - 1;
2407 if (nbytes >= max_bytes)
2408 return -E2BIG;
2409 /* Allocate a dynamic buffer if we need one */
2410 if (nbytes >= sizeof(local_buffer)) {
2411 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2412 if (buffer == NULL)
2413 return -ENOMEM;
2414 }
5a3eb9f6
LZ
2415 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2416 retval = -EFAULT;
2417 goto out;
2418 }
db3b1497
PM
2419
2420 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2421 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2422 if (!retval)
2423 retval = nbytes;
5a3eb9f6 2424out:
db3b1497
PM
2425 if (buffer != local_buffer)
2426 kfree(buffer);
2427 return retval;
2428}
2429
ddbcc7e8
PM
2430static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2431 size_t nbytes, loff_t *ppos)
2432{
2433 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2434 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2435
75139b82 2436 if (cgroup_is_removed(cgrp))
ddbcc7e8 2437 return -ENODEV;
355e0c48 2438 if (cft->write)
bd89aabc 2439 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2440 if (cft->write_u64 || cft->write_s64)
2441 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2442 if (cft->write_string)
2443 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2444 if (cft->trigger) {
2445 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2446 return ret ? ret : nbytes;
2447 }
355e0c48 2448 return -EINVAL;
ddbcc7e8
PM
2449}
2450
f4c753b7
PM
2451static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2452 struct file *file,
2453 char __user *buf, size_t nbytes,
2454 loff_t *ppos)
ddbcc7e8 2455{
84eea842 2456 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2457 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2458 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2459
2460 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2461}
2462
e73d2c61
PM
2463static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2464 struct file *file,
2465 char __user *buf, size_t nbytes,
2466 loff_t *ppos)
2467{
84eea842 2468 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2469 s64 val = cft->read_s64(cgrp, cft);
2470 int len = sprintf(tmp, "%lld\n", (long long) val);
2471
2472 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2473}
2474
ddbcc7e8
PM
2475static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2476 size_t nbytes, loff_t *ppos)
2477{
2478 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2479 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2480
75139b82 2481 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2482 return -ENODEV;
2483
2484 if (cft->read)
bd89aabc 2485 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2486 if (cft->read_u64)
2487 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2488 if (cft->read_s64)
2489 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2490 return -EINVAL;
2491}
2492
91796569
PM
2493/*
2494 * seqfile ops/methods for returning structured data. Currently just
2495 * supports string->u64 maps, but can be extended in future.
2496 */
2497
2498struct cgroup_seqfile_state {
2499 struct cftype *cft;
2500 struct cgroup *cgroup;
2501};
2502
2503static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2504{
2505 struct seq_file *sf = cb->state;
2506 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2507}
2508
2509static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2510{
2511 struct cgroup_seqfile_state *state = m->private;
2512 struct cftype *cft = state->cft;
29486df3
SH
2513 if (cft->read_map) {
2514 struct cgroup_map_cb cb = {
2515 .fill = cgroup_map_add,
2516 .state = m,
2517 };
2518 return cft->read_map(state->cgroup, cft, &cb);
2519 }
2520 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2521}
2522
96930a63 2523static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2524{
2525 struct seq_file *seq = file->private_data;
2526 kfree(seq->private);
2527 return single_release(inode, file);
2528}
2529
828c0950 2530static const struct file_operations cgroup_seqfile_operations = {
91796569 2531 .read = seq_read,
e788e066 2532 .write = cgroup_file_write,
91796569
PM
2533 .llseek = seq_lseek,
2534 .release = cgroup_seqfile_release,
2535};
2536
ddbcc7e8
PM
2537static int cgroup_file_open(struct inode *inode, struct file *file)
2538{
2539 int err;
2540 struct cftype *cft;
2541
2542 err = generic_file_open(inode, file);
2543 if (err)
2544 return err;
ddbcc7e8 2545 cft = __d_cft(file->f_dentry);
75139b82 2546
29486df3 2547 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2548 struct cgroup_seqfile_state *state =
2549 kzalloc(sizeof(*state), GFP_USER);
2550 if (!state)
2551 return -ENOMEM;
2552 state->cft = cft;
2553 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2554 file->f_op = &cgroup_seqfile_operations;
2555 err = single_open(file, cgroup_seqfile_show, state);
2556 if (err < 0)
2557 kfree(state);
2558 } else if (cft->open)
ddbcc7e8
PM
2559 err = cft->open(inode, file);
2560 else
2561 err = 0;
2562
2563 return err;
2564}
2565
2566static int cgroup_file_release(struct inode *inode, struct file *file)
2567{
2568 struct cftype *cft = __d_cft(file->f_dentry);
2569 if (cft->release)
2570 return cft->release(inode, file);
2571 return 0;
2572}
2573
2574/*
2575 * cgroup_rename - Only allow simple rename of directories in place.
2576 */
2577static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2578 struct inode *new_dir, struct dentry *new_dentry)
2579{
2580 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2581 return -ENOTDIR;
2582 if (new_dentry->d_inode)
2583 return -EEXIST;
2584 if (old_dir != new_dir)
2585 return -EIO;
2586 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2587}
2588
828c0950 2589static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2590 .read = cgroup_file_read,
2591 .write = cgroup_file_write,
2592 .llseek = generic_file_llseek,
2593 .open = cgroup_file_open,
2594 .release = cgroup_file_release,
2595};
2596
6e1d5dcc 2597static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2598 .lookup = cgroup_lookup,
ddbcc7e8
PM
2599 .mkdir = cgroup_mkdir,
2600 .rmdir = cgroup_rmdir,
2601 .rename = cgroup_rename,
2602};
2603
c72a04e3
AV
2604static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2605{
2606 if (dentry->d_name.len > NAME_MAX)
2607 return ERR_PTR(-ENAMETOOLONG);
2608 d_add(dentry, NULL);
2609 return NULL;
2610}
2611
0dea1168
KS
2612/*
2613 * Check if a file is a control file
2614 */
2615static inline struct cftype *__file_cft(struct file *file)
2616{
2617 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2618 return ERR_PTR(-EINVAL);
2619 return __d_cft(file->f_dentry);
2620}
2621
5adcee1d
NP
2622static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2623 struct super_block *sb)
2624{
ddbcc7e8
PM
2625 struct inode *inode;
2626
2627 if (!dentry)
2628 return -ENOENT;
2629 if (dentry->d_inode)
2630 return -EEXIST;
2631
2632 inode = cgroup_new_inode(mode, sb);
2633 if (!inode)
2634 return -ENOMEM;
2635
2636 if (S_ISDIR(mode)) {
2637 inode->i_op = &cgroup_dir_inode_operations;
2638 inode->i_fop = &simple_dir_operations;
2639
2640 /* start off with i_nlink == 2 (for "." entry) */
2641 inc_nlink(inode);
2642
2643 /* start with the directory inode held, so that we can
2644 * populate it without racing with another mkdir */
817929ec 2645 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2646 } else if (S_ISREG(mode)) {
2647 inode->i_size = 0;
2648 inode->i_fop = &cgroup_file_operations;
2649 }
ddbcc7e8
PM
2650 d_instantiate(dentry, inode);
2651 dget(dentry); /* Extra count - pin the dentry in core */
2652 return 0;
2653}
2654
2655/*
a043e3b2
LZ
2656 * cgroup_create_dir - create a directory for an object.
2657 * @cgrp: the cgroup we create the directory for. It must have a valid
2658 * ->parent field. And we are going to fill its ->dentry field.
2659 * @dentry: dentry of the new cgroup
2660 * @mode: mode to set on new directory.
ddbcc7e8 2661 */
bd89aabc 2662static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 2663 mode_t mode)
ddbcc7e8
PM
2664{
2665 struct dentry *parent;
2666 int error = 0;
2667
bd89aabc
PM
2668 parent = cgrp->parent->dentry;
2669 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2670 if (!error) {
bd89aabc 2671 dentry->d_fsdata = cgrp;
ddbcc7e8 2672 inc_nlink(parent->d_inode);
a47295e6 2673 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2674 dget(dentry);
2675 }
2676 dput(dentry);
2677
2678 return error;
2679}
2680
099fca32
LZ
2681/**
2682 * cgroup_file_mode - deduce file mode of a control file
2683 * @cft: the control file in question
2684 *
2685 * returns cft->mode if ->mode is not 0
2686 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2687 * returns S_IRUGO if it has only a read handler
2688 * returns S_IWUSR if it has only a write hander
2689 */
2690static mode_t cgroup_file_mode(const struct cftype *cft)
2691{
2692 mode_t mode = 0;
2693
2694 if (cft->mode)
2695 return cft->mode;
2696
2697 if (cft->read || cft->read_u64 || cft->read_s64 ||
2698 cft->read_map || cft->read_seq_string)
2699 mode |= S_IRUGO;
2700
2701 if (cft->write || cft->write_u64 || cft->write_s64 ||
2702 cft->write_string || cft->trigger)
2703 mode |= S_IWUSR;
2704
2705 return mode;
2706}
2707
bd89aabc 2708int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2709 struct cgroup_subsys *subsys,
2710 const struct cftype *cft)
2711{
bd89aabc 2712 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2713 struct dentry *dentry;
2714 int error;
099fca32 2715 mode_t mode;
ddbcc7e8
PM
2716
2717 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2718 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2719 strcpy(name, subsys->name);
2720 strcat(name, ".");
2721 }
2722 strcat(name, cft->name);
2723 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2724 dentry = lookup_one_len(name, dir, strlen(name));
2725 if (!IS_ERR(dentry)) {
099fca32
LZ
2726 mode = cgroup_file_mode(cft);
2727 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2728 cgrp->root->sb);
ddbcc7e8
PM
2729 if (!error)
2730 dentry->d_fsdata = (void *)cft;
2731 dput(dentry);
2732 } else
2733 error = PTR_ERR(dentry);
2734 return error;
2735}
e6a1105b 2736EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2737
bd89aabc 2738int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2739 struct cgroup_subsys *subsys,
2740 const struct cftype cft[],
2741 int count)
2742{
2743 int i, err;
2744 for (i = 0; i < count; i++) {
bd89aabc 2745 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2746 if (err)
2747 return err;
2748 }
2749 return 0;
2750}
e6a1105b 2751EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2752
a043e3b2
LZ
2753/**
2754 * cgroup_task_count - count the number of tasks in a cgroup.
2755 * @cgrp: the cgroup in question
2756 *
2757 * Return the number of tasks in the cgroup.
2758 */
bd89aabc 2759int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2760{
2761 int count = 0;
71cbb949 2762 struct cg_cgroup_link *link;
817929ec
PM
2763
2764 read_lock(&css_set_lock);
71cbb949 2765 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2766 count += atomic_read(&link->cg->refcount);
817929ec
PM
2767 }
2768 read_unlock(&css_set_lock);
bbcb81d0
PM
2769 return count;
2770}
2771
817929ec
PM
2772/*
2773 * Advance a list_head iterator. The iterator should be positioned at
2774 * the start of a css_set
2775 */
bd89aabc 2776static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2777 struct cgroup_iter *it)
817929ec
PM
2778{
2779 struct list_head *l = it->cg_link;
2780 struct cg_cgroup_link *link;
2781 struct css_set *cg;
2782
2783 /* Advance to the next non-empty css_set */
2784 do {
2785 l = l->next;
bd89aabc 2786 if (l == &cgrp->css_sets) {
817929ec
PM
2787 it->cg_link = NULL;
2788 return;
2789 }
bd89aabc 2790 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2791 cg = link->cg;
2792 } while (list_empty(&cg->tasks));
2793 it->cg_link = l;
2794 it->task = cg->tasks.next;
2795}
2796
31a7df01
CW
2797/*
2798 * To reduce the fork() overhead for systems that are not actually
2799 * using their cgroups capability, we don't maintain the lists running
2800 * through each css_set to its tasks until we see the list actually
2801 * used - in other words after the first call to cgroup_iter_start().
2802 *
2803 * The tasklist_lock is not held here, as do_each_thread() and
2804 * while_each_thread() are protected by RCU.
2805 */
3df91fe3 2806static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2807{
2808 struct task_struct *p, *g;
2809 write_lock(&css_set_lock);
2810 use_task_css_set_links = 1;
2811 do_each_thread(g, p) {
2812 task_lock(p);
0e04388f
LZ
2813 /*
2814 * We should check if the process is exiting, otherwise
2815 * it will race with cgroup_exit() in that the list
2816 * entry won't be deleted though the process has exited.
2817 */
2818 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2819 list_add(&p->cg_list, &p->cgroups->tasks);
2820 task_unlock(p);
2821 } while_each_thread(g, p);
2822 write_unlock(&css_set_lock);
2823}
2824
bd89aabc 2825void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2826{
2827 /*
2828 * The first time anyone tries to iterate across a cgroup,
2829 * we need to enable the list linking each css_set to its
2830 * tasks, and fix up all existing tasks.
2831 */
31a7df01
CW
2832 if (!use_task_css_set_links)
2833 cgroup_enable_task_cg_lists();
2834
817929ec 2835 read_lock(&css_set_lock);
bd89aabc
PM
2836 it->cg_link = &cgrp->css_sets;
2837 cgroup_advance_iter(cgrp, it);
817929ec
PM
2838}
2839
bd89aabc 2840struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2841 struct cgroup_iter *it)
2842{
2843 struct task_struct *res;
2844 struct list_head *l = it->task;
2019f634 2845 struct cg_cgroup_link *link;
817929ec
PM
2846
2847 /* If the iterator cg is NULL, we have no tasks */
2848 if (!it->cg_link)
2849 return NULL;
2850 res = list_entry(l, struct task_struct, cg_list);
2851 /* Advance iterator to find next entry */
2852 l = l->next;
2019f634
LJ
2853 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2854 if (l == &link->cg->tasks) {
817929ec
PM
2855 /* We reached the end of this task list - move on to
2856 * the next cg_cgroup_link */
bd89aabc 2857 cgroup_advance_iter(cgrp, it);
817929ec
PM
2858 } else {
2859 it->task = l;
2860 }
2861 return res;
2862}
2863
bd89aabc 2864void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2865{
2866 read_unlock(&css_set_lock);
2867}
2868
31a7df01
CW
2869static inline int started_after_time(struct task_struct *t1,
2870 struct timespec *time,
2871 struct task_struct *t2)
2872{
2873 int start_diff = timespec_compare(&t1->start_time, time);
2874 if (start_diff > 0) {
2875 return 1;
2876 } else if (start_diff < 0) {
2877 return 0;
2878 } else {
2879 /*
2880 * Arbitrarily, if two processes started at the same
2881 * time, we'll say that the lower pointer value
2882 * started first. Note that t2 may have exited by now
2883 * so this may not be a valid pointer any longer, but
2884 * that's fine - it still serves to distinguish
2885 * between two tasks started (effectively) simultaneously.
2886 */
2887 return t1 > t2;
2888 }
2889}
2890
2891/*
2892 * This function is a callback from heap_insert() and is used to order
2893 * the heap.
2894 * In this case we order the heap in descending task start time.
2895 */
2896static inline int started_after(void *p1, void *p2)
2897{
2898 struct task_struct *t1 = p1;
2899 struct task_struct *t2 = p2;
2900 return started_after_time(t1, &t2->start_time, t2);
2901}
2902
2903/**
2904 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2905 * @scan: struct cgroup_scanner containing arguments for the scan
2906 *
2907 * Arguments include pointers to callback functions test_task() and
2908 * process_task().
2909 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2910 * and if it returns true, call process_task() for it also.
2911 * The test_task pointer may be NULL, meaning always true (select all tasks).
2912 * Effectively duplicates cgroup_iter_{start,next,end}()
2913 * but does not lock css_set_lock for the call to process_task().
2914 * The struct cgroup_scanner may be embedded in any structure of the caller's
2915 * creation.
2916 * It is guaranteed that process_task() will act on every task that
2917 * is a member of the cgroup for the duration of this call. This
2918 * function may or may not call process_task() for tasks that exit
2919 * or move to a different cgroup during the call, or are forked or
2920 * move into the cgroup during the call.
2921 *
2922 * Note that test_task() may be called with locks held, and may in some
2923 * situations be called multiple times for the same task, so it should
2924 * be cheap.
2925 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2926 * pre-allocated and will be used for heap operations (and its "gt" member will
2927 * be overwritten), else a temporary heap will be used (allocation of which
2928 * may cause this function to fail).
2929 */
2930int cgroup_scan_tasks(struct cgroup_scanner *scan)
2931{
2932 int retval, i;
2933 struct cgroup_iter it;
2934 struct task_struct *p, *dropped;
2935 /* Never dereference latest_task, since it's not refcounted */
2936 struct task_struct *latest_task = NULL;
2937 struct ptr_heap tmp_heap;
2938 struct ptr_heap *heap;
2939 struct timespec latest_time = { 0, 0 };
2940
2941 if (scan->heap) {
2942 /* The caller supplied our heap and pre-allocated its memory */
2943 heap = scan->heap;
2944 heap->gt = &started_after;
2945 } else {
2946 /* We need to allocate our own heap memory */
2947 heap = &tmp_heap;
2948 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2949 if (retval)
2950 /* cannot allocate the heap */
2951 return retval;
2952 }
2953
2954 again:
2955 /*
2956 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2957 * to determine which are of interest, and using the scanner's
2958 * "process_task" callback to process any of them that need an update.
2959 * Since we don't want to hold any locks during the task updates,
2960 * gather tasks to be processed in a heap structure.
2961 * The heap is sorted by descending task start time.
2962 * If the statically-sized heap fills up, we overflow tasks that
2963 * started later, and in future iterations only consider tasks that
2964 * started after the latest task in the previous pass. This
2965 * guarantees forward progress and that we don't miss any tasks.
2966 */
2967 heap->size = 0;
2968 cgroup_iter_start(scan->cg, &it);
2969 while ((p = cgroup_iter_next(scan->cg, &it))) {
2970 /*
2971 * Only affect tasks that qualify per the caller's callback,
2972 * if he provided one
2973 */
2974 if (scan->test_task && !scan->test_task(p, scan))
2975 continue;
2976 /*
2977 * Only process tasks that started after the last task
2978 * we processed
2979 */
2980 if (!started_after_time(p, &latest_time, latest_task))
2981 continue;
2982 dropped = heap_insert(heap, p);
2983 if (dropped == NULL) {
2984 /*
2985 * The new task was inserted; the heap wasn't
2986 * previously full
2987 */
2988 get_task_struct(p);
2989 } else if (dropped != p) {
2990 /*
2991 * The new task was inserted, and pushed out a
2992 * different task
2993 */
2994 get_task_struct(p);
2995 put_task_struct(dropped);
2996 }
2997 /*
2998 * Else the new task was newer than anything already in
2999 * the heap and wasn't inserted
3000 */
3001 }
3002 cgroup_iter_end(scan->cg, &it);
3003
3004 if (heap->size) {
3005 for (i = 0; i < heap->size; i++) {
4fe91d51 3006 struct task_struct *q = heap->ptrs[i];
31a7df01 3007 if (i == 0) {
4fe91d51
PJ
3008 latest_time = q->start_time;
3009 latest_task = q;
31a7df01
CW
3010 }
3011 /* Process the task per the caller's callback */
4fe91d51
PJ
3012 scan->process_task(q, scan);
3013 put_task_struct(q);
31a7df01
CW
3014 }
3015 /*
3016 * If we had to process any tasks at all, scan again
3017 * in case some of them were in the middle of forking
3018 * children that didn't get processed.
3019 * Not the most efficient way to do it, but it avoids
3020 * having to take callback_mutex in the fork path
3021 */
3022 goto again;
3023 }
3024 if (heap == &tmp_heap)
3025 heap_free(&tmp_heap);
3026 return 0;
3027}
3028
bbcb81d0 3029/*
102a775e 3030 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3031 *
3032 * Reading this file can return large amounts of data if a cgroup has
3033 * *lots* of attached tasks. So it may need several calls to read(),
3034 * but we cannot guarantee that the information we produce is correct
3035 * unless we produce it entirely atomically.
3036 *
bbcb81d0 3037 */
bbcb81d0 3038
d1d9fd33
BB
3039/*
3040 * The following two functions "fix" the issue where there are more pids
3041 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3042 * TODO: replace with a kernel-wide solution to this problem
3043 */
3044#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3045static void *pidlist_allocate(int count)
3046{
3047 if (PIDLIST_TOO_LARGE(count))
3048 return vmalloc(count * sizeof(pid_t));
3049 else
3050 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3051}
3052static void pidlist_free(void *p)
3053{
3054 if (is_vmalloc_addr(p))
3055 vfree(p);
3056 else
3057 kfree(p);
3058}
3059static void *pidlist_resize(void *p, int newcount)
3060{
3061 void *newlist;
3062 /* note: if new alloc fails, old p will still be valid either way */
3063 if (is_vmalloc_addr(p)) {
3064 newlist = vmalloc(newcount * sizeof(pid_t));
3065 if (!newlist)
3066 return NULL;
3067 memcpy(newlist, p, newcount * sizeof(pid_t));
3068 vfree(p);
3069 } else {
3070 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3071 }
3072 return newlist;
3073}
3074
bbcb81d0 3075/*
102a775e
BB
3076 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3077 * If the new stripped list is sufficiently smaller and there's enough memory
3078 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3079 * number of unique elements.
bbcb81d0 3080 */
102a775e
BB
3081/* is the size difference enough that we should re-allocate the array? */
3082#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3083static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 3084{
102a775e
BB
3085 int src, dest = 1;
3086 pid_t *list = *p;
3087 pid_t *newlist;
3088
3089 /*
3090 * we presume the 0th element is unique, so i starts at 1. trivial
3091 * edge cases first; no work needs to be done for either
3092 */
3093 if (length == 0 || length == 1)
3094 return length;
3095 /* src and dest walk down the list; dest counts unique elements */
3096 for (src = 1; src < length; src++) {
3097 /* find next unique element */
3098 while (list[src] == list[src-1]) {
3099 src++;
3100 if (src == length)
3101 goto after;
3102 }
3103 /* dest always points to where the next unique element goes */
3104 list[dest] = list[src];
3105 dest++;
3106 }
3107after:
3108 /*
3109 * if the length difference is large enough, we want to allocate a
3110 * smaller buffer to save memory. if this fails due to out of memory,
3111 * we'll just stay with what we've got.
3112 */
3113 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 3114 newlist = pidlist_resize(list, dest);
102a775e
BB
3115 if (newlist)
3116 *p = newlist;
3117 }
3118 return dest;
3119}
3120
3121static int cmppid(const void *a, const void *b)
3122{
3123 return *(pid_t *)a - *(pid_t *)b;
3124}
3125
72a8cb30
BB
3126/*
3127 * find the appropriate pidlist for our purpose (given procs vs tasks)
3128 * returns with the lock on that pidlist already held, and takes care
3129 * of the use count, or returns NULL with no locks held if we're out of
3130 * memory.
3131 */
3132static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3133 enum cgroup_filetype type)
3134{
3135 struct cgroup_pidlist *l;
3136 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
3137 struct pid_namespace *ns = current->nsproxy->pid_ns;
3138
72a8cb30
BB
3139 /*
3140 * We can't drop the pidlist_mutex before taking the l->mutex in case
3141 * the last ref-holder is trying to remove l from the list at the same
3142 * time. Holding the pidlist_mutex precludes somebody taking whichever
3143 * list we find out from under us - compare release_pid_array().
3144 */
3145 mutex_lock(&cgrp->pidlist_mutex);
3146 list_for_each_entry(l, &cgrp->pidlists, links) {
3147 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3148 /* make sure l doesn't vanish out from under us */
3149 down_write(&l->mutex);
3150 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3151 return l;
3152 }
3153 }
3154 /* entry not found; create a new one */
3155 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3156 if (!l) {
3157 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3158 return l;
3159 }
3160 init_rwsem(&l->mutex);
3161 down_write(&l->mutex);
3162 l->key.type = type;
b70cc5fd 3163 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3164 l->use_count = 0; /* don't increment here */
3165 l->list = NULL;
3166 l->owner = cgrp;
3167 list_add(&l->links, &cgrp->pidlists);
3168 mutex_unlock(&cgrp->pidlist_mutex);
3169 return l;
3170}
3171
102a775e
BB
3172/*
3173 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3174 */
72a8cb30
BB
3175static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3176 struct cgroup_pidlist **lp)
102a775e
BB
3177{
3178 pid_t *array;
3179 int length;
3180 int pid, n = 0; /* used for populating the array */
817929ec
PM
3181 struct cgroup_iter it;
3182 struct task_struct *tsk;
102a775e
BB
3183 struct cgroup_pidlist *l;
3184
3185 /*
3186 * If cgroup gets more users after we read count, we won't have
3187 * enough space - tough. This race is indistinguishable to the
3188 * caller from the case that the additional cgroup users didn't
3189 * show up until sometime later on.
3190 */
3191 length = cgroup_task_count(cgrp);
d1d9fd33 3192 array = pidlist_allocate(length);
102a775e
BB
3193 if (!array)
3194 return -ENOMEM;
3195 /* now, populate the array */
bd89aabc
PM
3196 cgroup_iter_start(cgrp, &it);
3197 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3198 if (unlikely(n == length))
817929ec 3199 break;
102a775e 3200 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3201 if (type == CGROUP_FILE_PROCS)
3202 pid = task_tgid_vnr(tsk);
3203 else
3204 pid = task_pid_vnr(tsk);
102a775e
BB
3205 if (pid > 0) /* make sure to only use valid results */
3206 array[n++] = pid;
817929ec 3207 }
bd89aabc 3208 cgroup_iter_end(cgrp, &it);
102a775e
BB
3209 length = n;
3210 /* now sort & (if procs) strip out duplicates */
3211 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3212 if (type == CGROUP_FILE_PROCS)
102a775e 3213 length = pidlist_uniq(&array, length);
72a8cb30
BB
3214 l = cgroup_pidlist_find(cgrp, type);
3215 if (!l) {
d1d9fd33 3216 pidlist_free(array);
72a8cb30 3217 return -ENOMEM;
102a775e 3218 }
72a8cb30 3219 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3220 pidlist_free(l->list);
102a775e
BB
3221 l->list = array;
3222 l->length = length;
3223 l->use_count++;
3224 up_write(&l->mutex);
72a8cb30 3225 *lp = l;
102a775e 3226 return 0;
bbcb81d0
PM
3227}
3228
846c7bb0 3229/**
a043e3b2 3230 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3231 * @stats: cgroupstats to fill information into
3232 * @dentry: A dentry entry belonging to the cgroup for which stats have
3233 * been requested.
a043e3b2
LZ
3234 *
3235 * Build and fill cgroupstats so that taskstats can export it to user
3236 * space.
846c7bb0
BS
3237 */
3238int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3239{
3240 int ret = -EINVAL;
bd89aabc 3241 struct cgroup *cgrp;
846c7bb0
BS
3242 struct cgroup_iter it;
3243 struct task_struct *tsk;
33d283be 3244
846c7bb0 3245 /*
33d283be
LZ
3246 * Validate dentry by checking the superblock operations,
3247 * and make sure it's a directory.
846c7bb0 3248 */
33d283be
LZ
3249 if (dentry->d_sb->s_op != &cgroup_ops ||
3250 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3251 goto err;
3252
3253 ret = 0;
bd89aabc 3254 cgrp = dentry->d_fsdata;
846c7bb0 3255
bd89aabc
PM
3256 cgroup_iter_start(cgrp, &it);
3257 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3258 switch (tsk->state) {
3259 case TASK_RUNNING:
3260 stats->nr_running++;
3261 break;
3262 case TASK_INTERRUPTIBLE:
3263 stats->nr_sleeping++;
3264 break;
3265 case TASK_UNINTERRUPTIBLE:
3266 stats->nr_uninterruptible++;
3267 break;
3268 case TASK_STOPPED:
3269 stats->nr_stopped++;
3270 break;
3271 default:
3272 if (delayacct_is_task_waiting_on_io(tsk))
3273 stats->nr_io_wait++;
3274 break;
3275 }
3276 }
bd89aabc 3277 cgroup_iter_end(cgrp, &it);
846c7bb0 3278
846c7bb0
BS
3279err:
3280 return ret;
3281}
3282
8f3ff208 3283
bbcb81d0 3284/*
102a775e 3285 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3286 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3287 * in the cgroup->l->list array.
bbcb81d0 3288 */
cc31edce 3289
102a775e 3290static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3291{
cc31edce
PM
3292 /*
3293 * Initially we receive a position value that corresponds to
3294 * one more than the last pid shown (or 0 on the first call or
3295 * after a seek to the start). Use a binary-search to find the
3296 * next pid to display, if any
3297 */
102a775e 3298 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3299 int index = 0, pid = *pos;
3300 int *iter;
3301
102a775e 3302 down_read(&l->mutex);
cc31edce 3303 if (pid) {
102a775e 3304 int end = l->length;
20777766 3305
cc31edce
PM
3306 while (index < end) {
3307 int mid = (index + end) / 2;
102a775e 3308 if (l->list[mid] == pid) {
cc31edce
PM
3309 index = mid;
3310 break;
102a775e 3311 } else if (l->list[mid] <= pid)
cc31edce
PM
3312 index = mid + 1;
3313 else
3314 end = mid;
3315 }
3316 }
3317 /* If we're off the end of the array, we're done */
102a775e 3318 if (index >= l->length)
cc31edce
PM
3319 return NULL;
3320 /* Update the abstract position to be the actual pid that we found */
102a775e 3321 iter = l->list + index;
cc31edce
PM
3322 *pos = *iter;
3323 return iter;
3324}
3325
102a775e 3326static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3327{
102a775e
BB
3328 struct cgroup_pidlist *l = s->private;
3329 up_read(&l->mutex);
cc31edce
PM
3330}
3331
102a775e 3332static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3333{
102a775e
BB
3334 struct cgroup_pidlist *l = s->private;
3335 pid_t *p = v;
3336 pid_t *end = l->list + l->length;
cc31edce
PM
3337 /*
3338 * Advance to the next pid in the array. If this goes off the
3339 * end, we're done
3340 */
3341 p++;
3342 if (p >= end) {
3343 return NULL;
3344 } else {
3345 *pos = *p;
3346 return p;
3347 }
3348}
3349
102a775e 3350static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3351{
3352 return seq_printf(s, "%d\n", *(int *)v);
3353}
bbcb81d0 3354
102a775e
BB
3355/*
3356 * seq_operations functions for iterating on pidlists through seq_file -
3357 * independent of whether it's tasks or procs
3358 */
3359static const struct seq_operations cgroup_pidlist_seq_operations = {
3360 .start = cgroup_pidlist_start,
3361 .stop = cgroup_pidlist_stop,
3362 .next = cgroup_pidlist_next,
3363 .show = cgroup_pidlist_show,
cc31edce
PM
3364};
3365
102a775e 3366static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3367{
72a8cb30
BB
3368 /*
3369 * the case where we're the last user of this particular pidlist will
3370 * have us remove it from the cgroup's list, which entails taking the
3371 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3372 * pidlist_mutex, we have to take pidlist_mutex first.
3373 */
3374 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3375 down_write(&l->mutex);
3376 BUG_ON(!l->use_count);
3377 if (!--l->use_count) {
72a8cb30
BB
3378 /* we're the last user if refcount is 0; remove and free */
3379 list_del(&l->links);
3380 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3381 pidlist_free(l->list);
72a8cb30
BB
3382 put_pid_ns(l->key.ns);
3383 up_write(&l->mutex);
3384 kfree(l);
3385 return;
cc31edce 3386 }
72a8cb30 3387 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3388 up_write(&l->mutex);
bbcb81d0
PM
3389}
3390
102a775e 3391static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3392{
102a775e 3393 struct cgroup_pidlist *l;
cc31edce
PM
3394 if (!(file->f_mode & FMODE_READ))
3395 return 0;
102a775e
BB
3396 /*
3397 * the seq_file will only be initialized if the file was opened for
3398 * reading; hence we check if it's not null only in that case.
3399 */
3400 l = ((struct seq_file *)file->private_data)->private;
3401 cgroup_release_pid_array(l);
cc31edce
PM
3402 return seq_release(inode, file);
3403}
3404
102a775e 3405static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3406 .read = seq_read,
3407 .llseek = seq_lseek,
3408 .write = cgroup_file_write,
102a775e 3409 .release = cgroup_pidlist_release,
cc31edce
PM
3410};
3411
bbcb81d0 3412/*
102a775e
BB
3413 * The following functions handle opens on a file that displays a pidlist
3414 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3415 * in the cgroup.
bbcb81d0 3416 */
102a775e 3417/* helper function for the two below it */
72a8cb30 3418static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3419{
bd89aabc 3420 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3421 struct cgroup_pidlist *l;
cc31edce 3422 int retval;
bbcb81d0 3423
cc31edce 3424 /* Nothing to do for write-only files */
bbcb81d0
PM
3425 if (!(file->f_mode & FMODE_READ))
3426 return 0;
3427
102a775e 3428 /* have the array populated */
72a8cb30 3429 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3430 if (retval)
3431 return retval;
3432 /* configure file information */
3433 file->f_op = &cgroup_pidlist_operations;
cc31edce 3434
102a775e 3435 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3436 if (retval) {
102a775e 3437 cgroup_release_pid_array(l);
cc31edce 3438 return retval;
bbcb81d0 3439 }
102a775e 3440 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3441 return 0;
3442}
102a775e
BB
3443static int cgroup_tasks_open(struct inode *unused, struct file *file)
3444{
72a8cb30 3445 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3446}
3447static int cgroup_procs_open(struct inode *unused, struct file *file)
3448{
72a8cb30 3449 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3450}
bbcb81d0 3451
bd89aabc 3452static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3453 struct cftype *cft)
3454{
bd89aabc 3455 return notify_on_release(cgrp);
81a6a5cd
PM
3456}
3457
6379c106
PM
3458static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3459 struct cftype *cft,
3460 u64 val)
3461{
3462 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3463 if (val)
3464 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3465 else
3466 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3467 return 0;
3468}
3469
0dea1168
KS
3470/*
3471 * Unregister event and free resources.
3472 *
3473 * Gets called from workqueue.
3474 */
3475static void cgroup_event_remove(struct work_struct *work)
3476{
3477 struct cgroup_event *event = container_of(work, struct cgroup_event,
3478 remove);
3479 struct cgroup *cgrp = event->cgrp;
3480
0dea1168
KS
3481 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3482
3483 eventfd_ctx_put(event->eventfd);
0dea1168 3484 kfree(event);
a0a4db54 3485 dput(cgrp->dentry);
0dea1168
KS
3486}
3487
3488/*
3489 * Gets called on POLLHUP on eventfd when user closes it.
3490 *
3491 * Called with wqh->lock held and interrupts disabled.
3492 */
3493static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3494 int sync, void *key)
3495{
3496 struct cgroup_event *event = container_of(wait,
3497 struct cgroup_event, wait);
3498 struct cgroup *cgrp = event->cgrp;
3499 unsigned long flags = (unsigned long)key;
3500
3501 if (flags & POLLHUP) {
a93d2f17 3502 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3503 spin_lock(&cgrp->event_list_lock);
3504 list_del(&event->list);
3505 spin_unlock(&cgrp->event_list_lock);
3506 /*
3507 * We are in atomic context, but cgroup_event_remove() may
3508 * sleep, so we have to call it in workqueue.
3509 */
3510 schedule_work(&event->remove);
3511 }
3512
3513 return 0;
3514}
3515
3516static void cgroup_event_ptable_queue_proc(struct file *file,
3517 wait_queue_head_t *wqh, poll_table *pt)
3518{
3519 struct cgroup_event *event = container_of(pt,
3520 struct cgroup_event, pt);
3521
3522 event->wqh = wqh;
3523 add_wait_queue(wqh, &event->wait);
3524}
3525
3526/*
3527 * Parse input and register new cgroup event handler.
3528 *
3529 * Input must be in format '<event_fd> <control_fd> <args>'.
3530 * Interpretation of args is defined by control file implementation.
3531 */
3532static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3533 const char *buffer)
3534{
3535 struct cgroup_event *event = NULL;
3536 unsigned int efd, cfd;
3537 struct file *efile = NULL;
3538 struct file *cfile = NULL;
3539 char *endp;
3540 int ret;
3541
3542 efd = simple_strtoul(buffer, &endp, 10);
3543 if (*endp != ' ')
3544 return -EINVAL;
3545 buffer = endp + 1;
3546
3547 cfd = simple_strtoul(buffer, &endp, 10);
3548 if ((*endp != ' ') && (*endp != '\0'))
3549 return -EINVAL;
3550 buffer = endp + 1;
3551
3552 event = kzalloc(sizeof(*event), GFP_KERNEL);
3553 if (!event)
3554 return -ENOMEM;
3555 event->cgrp = cgrp;
3556 INIT_LIST_HEAD(&event->list);
3557 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3558 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3559 INIT_WORK(&event->remove, cgroup_event_remove);
3560
3561 efile = eventfd_fget(efd);
3562 if (IS_ERR(efile)) {
3563 ret = PTR_ERR(efile);
3564 goto fail;
3565 }
3566
3567 event->eventfd = eventfd_ctx_fileget(efile);
3568 if (IS_ERR(event->eventfd)) {
3569 ret = PTR_ERR(event->eventfd);
3570 goto fail;
3571 }
3572
3573 cfile = fget(cfd);
3574 if (!cfile) {
3575 ret = -EBADF;
3576 goto fail;
3577 }
3578
3579 /* the process need read permission on control file */
3bfa784a
AV
3580 /* AV: shouldn't we check that it's been opened for read instead? */
3581 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
0dea1168
KS
3582 if (ret < 0)
3583 goto fail;
3584
3585 event->cft = __file_cft(cfile);
3586 if (IS_ERR(event->cft)) {
3587 ret = PTR_ERR(event->cft);
3588 goto fail;
3589 }
3590
3591 if (!event->cft->register_event || !event->cft->unregister_event) {
3592 ret = -EINVAL;
3593 goto fail;
3594 }
3595
3596 ret = event->cft->register_event(cgrp, event->cft,
3597 event->eventfd, buffer);
3598 if (ret)
3599 goto fail;
3600
3601 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3602 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3603 ret = 0;
3604 goto fail;
3605 }
3606
a0a4db54
KS
3607 /*
3608 * Events should be removed after rmdir of cgroup directory, but before
3609 * destroying subsystem state objects. Let's take reference to cgroup
3610 * directory dentry to do that.
3611 */
3612 dget(cgrp->dentry);
3613
0dea1168
KS
3614 spin_lock(&cgrp->event_list_lock);
3615 list_add(&event->list, &cgrp->event_list);
3616 spin_unlock(&cgrp->event_list_lock);
3617
3618 fput(cfile);
3619 fput(efile);
3620
3621 return 0;
3622
3623fail:
3624 if (cfile)
3625 fput(cfile);
3626
3627 if (event && event->eventfd && !IS_ERR(event->eventfd))
3628 eventfd_ctx_put(event->eventfd);
3629
3630 if (!IS_ERR_OR_NULL(efile))
3631 fput(efile);
3632
3633 kfree(event);
3634
3635 return ret;
3636}
3637
97978e6d
DL
3638static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3639 struct cftype *cft)
3640{
3641 return clone_children(cgrp);
3642}
3643
3644static int cgroup_clone_children_write(struct cgroup *cgrp,
3645 struct cftype *cft,
3646 u64 val)
3647{
3648 if (val)
3649 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3650 else
3651 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3652 return 0;
3653}
3654
bbcb81d0
PM
3655/*
3656 * for the common functions, 'private' gives the type of file
3657 */
102a775e
BB
3658/* for hysterical raisins, we can't put this on the older files */
3659#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3660static struct cftype files[] = {
3661 {
3662 .name = "tasks",
3663 .open = cgroup_tasks_open,
af351026 3664 .write_u64 = cgroup_tasks_write,
102a775e 3665 .release = cgroup_pidlist_release,
099fca32 3666 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3667 },
102a775e
BB
3668 {
3669 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3670 .open = cgroup_procs_open,
74a1166d 3671 .write_u64 = cgroup_procs_write,
102a775e 3672 .release = cgroup_pidlist_release,
74a1166d 3673 .mode = S_IRUGO | S_IWUSR,
102a775e 3674 },
81a6a5cd
PM
3675 {
3676 .name = "notify_on_release",
f4c753b7 3677 .read_u64 = cgroup_read_notify_on_release,
6379c106 3678 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3679 },
0dea1168
KS
3680 {
3681 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3682 .write_string = cgroup_write_event_control,
3683 .mode = S_IWUGO,
3684 },
97978e6d
DL
3685 {
3686 .name = "cgroup.clone_children",
3687 .read_u64 = cgroup_clone_children_read,
3688 .write_u64 = cgroup_clone_children_write,
3689 },
81a6a5cd
PM
3690};
3691
3692static struct cftype cft_release_agent = {
3693 .name = "release_agent",
e788e066
PM
3694 .read_seq_string = cgroup_release_agent_show,
3695 .write_string = cgroup_release_agent_write,
3696 .max_write_len = PATH_MAX,
bbcb81d0
PM
3697};
3698
bd89aabc 3699static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3700{
3701 int err;
3702 struct cgroup_subsys *ss;
3703
3704 /* First clear out any existing files */
bd89aabc 3705 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 3706
bd89aabc 3707 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3708 if (err < 0)
3709 return err;
3710
bd89aabc
PM
3711 if (cgrp == cgrp->top_cgroup) {
3712 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3713 return err;
3714 }
3715
bd89aabc
PM
3716 for_each_subsys(cgrp->root, ss) {
3717 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3718 return err;
3719 }
38460b48
KH
3720 /* This cgroup is ready now */
3721 for_each_subsys(cgrp->root, ss) {
3722 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3723 /*
3724 * Update id->css pointer and make this css visible from
3725 * CSS ID functions. This pointer will be dereferened
3726 * from RCU-read-side without locks.
3727 */
3728 if (css->id)
3729 rcu_assign_pointer(css->id->css, css);
3730 }
ddbcc7e8
PM
3731
3732 return 0;
3733}
3734
3735static void init_cgroup_css(struct cgroup_subsys_state *css,
3736 struct cgroup_subsys *ss,
bd89aabc 3737 struct cgroup *cgrp)
ddbcc7e8 3738{
bd89aabc 3739 css->cgroup = cgrp;
e7c5ec91 3740 atomic_set(&css->refcnt, 1);
ddbcc7e8 3741 css->flags = 0;
38460b48 3742 css->id = NULL;
bd89aabc 3743 if (cgrp == dummytop)
ddbcc7e8 3744 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3745 BUG_ON(cgrp->subsys[ss->subsys_id]);
3746 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3747}
3748
999cd8a4
PM
3749static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3750{
3751 /* We need to take each hierarchy_mutex in a consistent order */
3752 int i;
3753
aae8aab4
BB
3754 /*
3755 * No worry about a race with rebind_subsystems that might mess up the
3756 * locking order, since both parties are under cgroup_mutex.
3757 */
999cd8a4
PM
3758 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3759 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3760 if (ss == NULL)
3761 continue;
999cd8a4 3762 if (ss->root == root)
cfebe563 3763 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3764 }
3765}
3766
3767static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3768{
3769 int i;
3770
3771 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3772 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3773 if (ss == NULL)
3774 continue;
999cd8a4
PM
3775 if (ss->root == root)
3776 mutex_unlock(&ss->hierarchy_mutex);
3777 }
3778}
3779
ddbcc7e8 3780/*
a043e3b2
LZ
3781 * cgroup_create - create a cgroup
3782 * @parent: cgroup that will be parent of the new cgroup
3783 * @dentry: dentry of the new cgroup
3784 * @mode: mode to set on new inode
ddbcc7e8 3785 *
a043e3b2 3786 * Must be called with the mutex on the parent inode held
ddbcc7e8 3787 */
ddbcc7e8 3788static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 3789 mode_t mode)
ddbcc7e8 3790{
bd89aabc 3791 struct cgroup *cgrp;
ddbcc7e8
PM
3792 struct cgroupfs_root *root = parent->root;
3793 int err = 0;
3794 struct cgroup_subsys *ss;
3795 struct super_block *sb = root->sb;
3796
bd89aabc
PM
3797 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3798 if (!cgrp)
ddbcc7e8
PM
3799 return -ENOMEM;
3800
3801 /* Grab a reference on the superblock so the hierarchy doesn't
3802 * get deleted on unmount if there are child cgroups. This
3803 * can be done outside cgroup_mutex, since the sb can't
3804 * disappear while someone has an open control file on the
3805 * fs */
3806 atomic_inc(&sb->s_active);
3807
3808 mutex_lock(&cgroup_mutex);
3809
cc31edce 3810 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3811
bd89aabc
PM
3812 cgrp->parent = parent;
3813 cgrp->root = parent->root;
3814 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3815
b6abdb0e
LZ
3816 if (notify_on_release(parent))
3817 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3818
97978e6d
DL
3819 if (clone_children(parent))
3820 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3821
ddbcc7e8 3822 for_each_subsys(root, ss) {
bd89aabc 3823 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
4528fd05 3824
ddbcc7e8
PM
3825 if (IS_ERR(css)) {
3826 err = PTR_ERR(css);
3827 goto err_destroy;
3828 }
bd89aabc 3829 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3830 if (ss->use_id) {
3831 err = alloc_css_id(ss, parent, cgrp);
3832 if (err)
38460b48 3833 goto err_destroy;
4528fd05 3834 }
38460b48 3835 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d
DL
3836 if (clone_children(parent) && ss->post_clone)
3837 ss->post_clone(ss, cgrp);
ddbcc7e8
PM
3838 }
3839
999cd8a4 3840 cgroup_lock_hierarchy(root);
bd89aabc 3841 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3842 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3843 root->number_of_cgroups++;
3844
bd89aabc 3845 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3846 if (err < 0)
3847 goto err_remove;
3848
3849 /* The cgroup directory was pre-locked for us */
bd89aabc 3850 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3851
bd89aabc 3852 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3853 /* If err < 0, we have a half-filled directory - oh well ;) */
3854
3855 mutex_unlock(&cgroup_mutex);
bd89aabc 3856 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3857
3858 return 0;
3859
3860 err_remove:
3861
baef99a0 3862 cgroup_lock_hierarchy(root);
bd89aabc 3863 list_del(&cgrp->sibling);
baef99a0 3864 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3865 root->number_of_cgroups--;
3866
3867 err_destroy:
3868
3869 for_each_subsys(root, ss) {
bd89aabc
PM
3870 if (cgrp->subsys[ss->subsys_id])
3871 ss->destroy(ss, cgrp);
ddbcc7e8
PM
3872 }
3873
3874 mutex_unlock(&cgroup_mutex);
3875
3876 /* Release the reference count that we took on the superblock */
3877 deactivate_super(sb);
3878
bd89aabc 3879 kfree(cgrp);
ddbcc7e8
PM
3880 return err;
3881}
3882
3883static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3884{
3885 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3886
3887 /* the vfs holds inode->i_mutex already */
3888 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3889}
3890
55b6fd01 3891static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3892{
3893 /* Check the reference count on each subsystem. Since we
3894 * already established that there are no tasks in the
e7c5ec91 3895 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3896 * be no outstanding references, so the subsystem is safe to
3897 * destroy. We scan across all subsystems rather than using
3898 * the per-hierarchy linked list of mounted subsystems since
3899 * we can be called via check_for_release() with no
3900 * synchronization other than RCU, and the subsystem linked
3901 * list isn't RCU-safe */
3902 int i;
aae8aab4
BB
3903 /*
3904 * We won't need to lock the subsys array, because the subsystems
3905 * we're concerned about aren't going anywhere since our cgroup root
3906 * has a reference on them.
3907 */
81a6a5cd
PM
3908 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3909 struct cgroup_subsys *ss = subsys[i];
3910 struct cgroup_subsys_state *css;
aae8aab4
BB
3911 /* Skip subsystems not present or not in this hierarchy */
3912 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3913 continue;
bd89aabc 3914 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3915 /* When called from check_for_release() it's possible
3916 * that by this point the cgroup has been removed
3917 * and the css deleted. But a false-positive doesn't
3918 * matter, since it can only happen if the cgroup
3919 * has been deleted and hence no longer needs the
3920 * release agent to be called anyway. */
e7c5ec91 3921 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3922 return 1;
81a6a5cd
PM
3923 }
3924 return 0;
3925}
3926
e7c5ec91
PM
3927/*
3928 * Atomically mark all (or else none) of the cgroup's CSS objects as
3929 * CSS_REMOVED. Return true on success, or false if the cgroup has
3930 * busy subsystems. Call with cgroup_mutex held
3931 */
3932
3933static int cgroup_clear_css_refs(struct cgroup *cgrp)
3934{
3935 struct cgroup_subsys *ss;
3936 unsigned long flags;
3937 bool failed = false;
3938 local_irq_save(flags);
3939 for_each_subsys(cgrp->root, ss) {
3940 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3941 int refcnt;
804b3c28 3942 while (1) {
e7c5ec91
PM
3943 /* We can only remove a CSS with a refcnt==1 */
3944 refcnt = atomic_read(&css->refcnt);
3945 if (refcnt > 1) {
3946 failed = true;
3947 goto done;
3948 }
3949 BUG_ON(!refcnt);
3950 /*
3951 * Drop the refcnt to 0 while we check other
3952 * subsystems. This will cause any racing
3953 * css_tryget() to spin until we set the
3954 * CSS_REMOVED bits or abort
3955 */
804b3c28
PM
3956 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3957 break;
3958 cpu_relax();
3959 }
e7c5ec91
PM
3960 }
3961 done:
3962 for_each_subsys(cgrp->root, ss) {
3963 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3964 if (failed) {
3965 /*
3966 * Restore old refcnt if we previously managed
3967 * to clear it from 1 to 0
3968 */
3969 if (!atomic_read(&css->refcnt))
3970 atomic_set(&css->refcnt, 1);
3971 } else {
3972 /* Commit the fact that the CSS is removed */
3973 set_bit(CSS_REMOVED, &css->flags);
3974 }
3975 }
3976 local_irq_restore(flags);
3977 return !failed;
3978}
3979
ddbcc7e8
PM
3980static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3981{
bd89aabc 3982 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3983 struct dentry *d;
3984 struct cgroup *parent;
ec64f515 3985 DEFINE_WAIT(wait);
4ab78683 3986 struct cgroup_event *event, *tmp;
ec64f515 3987 int ret;
ddbcc7e8
PM
3988
3989 /* the vfs holds both inode->i_mutex already */
ec64f515 3990again:
ddbcc7e8 3991 mutex_lock(&cgroup_mutex);
bd89aabc 3992 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3993 mutex_unlock(&cgroup_mutex);
3994 return -EBUSY;
3995 }
bd89aabc 3996 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3997 mutex_unlock(&cgroup_mutex);
3998 return -EBUSY;
3999 }
3fa59dfb 4000 mutex_unlock(&cgroup_mutex);
a043e3b2 4001
88703267
KH
4002 /*
4003 * In general, subsystem has no css->refcnt after pre_destroy(). But
4004 * in racy cases, subsystem may have to get css->refcnt after
4005 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4006 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4007 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4008 * and subsystem's reference count handling. Please see css_get/put
4009 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4010 */
4011 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4012
4fca88c8 4013 /*
a043e3b2
LZ
4014 * Call pre_destroy handlers of subsys. Notify subsystems
4015 * that rmdir() request comes.
4fca88c8 4016 */
ec64f515 4017 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
4018 if (ret) {
4019 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 4020 return ret;
88703267 4021 }
ddbcc7e8 4022
3fa59dfb
KH
4023 mutex_lock(&cgroup_mutex);
4024 parent = cgrp->parent;
ec64f515 4025 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 4026 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
4027 mutex_unlock(&cgroup_mutex);
4028 return -EBUSY;
4029 }
ec64f515 4030 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
4031 if (!cgroup_clear_css_refs(cgrp)) {
4032 mutex_unlock(&cgroup_mutex);
88703267
KH
4033 /*
4034 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4035 * prepare_to_wait(), we need to check this flag.
4036 */
4037 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4038 schedule();
ec64f515
KH
4039 finish_wait(&cgroup_rmdir_waitq, &wait);
4040 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4041 if (signal_pending(current))
4042 return -EINTR;
4043 goto again;
4044 }
4045 /* NO css_tryget() can success after here. */
4046 finish_wait(&cgroup_rmdir_waitq, &wait);
4047 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 4048
cdcc136f 4049 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4050 set_bit(CGRP_REMOVED, &cgrp->flags);
4051 if (!list_empty(&cgrp->release_list))
8d258797 4052 list_del_init(&cgrp->release_list);
cdcc136f 4053 raw_spin_unlock(&release_list_lock);
999cd8a4
PM
4054
4055 cgroup_lock_hierarchy(cgrp->root);
4056 /* delete this cgroup from parent->children */
8d258797 4057 list_del_init(&cgrp->sibling);
999cd8a4
PM
4058 cgroup_unlock_hierarchy(cgrp->root);
4059
bd89aabc 4060 d = dget(cgrp->dentry);
ddbcc7e8
PM
4061
4062 cgroup_d_remove_dir(d);
4063 dput(d);
ddbcc7e8 4064
bd89aabc 4065 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4066 check_for_release(parent);
4067
4ab78683
KS
4068 /*
4069 * Unregister events and notify userspace.
4070 * Notify userspace about cgroup removing only after rmdir of cgroup
4071 * directory to avoid race between userspace and kernelspace
4072 */
4073 spin_lock(&cgrp->event_list_lock);
4074 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4075 list_del(&event->list);
4076 remove_wait_queue(event->wqh, &event->wait);
4077 eventfd_signal(event->eventfd, 1);
4078 schedule_work(&event->remove);
4079 }
4080 spin_unlock(&cgrp->event_list_lock);
4081
ddbcc7e8 4082 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4083 return 0;
4084}
4085
06a11920 4086static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4087{
ddbcc7e8 4088 struct cgroup_subsys_state *css;
cfe36bde
DC
4089
4090 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
4091
4092 /* Create the top cgroup state for this subsystem */
33a68ac1 4093 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
4094 ss->root = &rootnode;
4095 css = ss->create(ss, dummytop);
4096 /* We don't handle early failures gracefully */
4097 BUG_ON(IS_ERR(css));
4098 init_cgroup_css(css, ss, dummytop);
4099
e8d55fde 4100 /* Update the init_css_set to contain a subsys
817929ec 4101 * pointer to this state - since the subsystem is
e8d55fde
LZ
4102 * newly registered, all tasks and hence the
4103 * init_css_set is in the subsystem's top cgroup. */
4104 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
4105
4106 need_forkexit_callback |= ss->fork || ss->exit;
4107
e8d55fde
LZ
4108 /* At system boot, before all subsystems have been
4109 * registered, no tasks have been forked, so we don't
4110 * need to invoke fork callbacks here. */
4111 BUG_ON(!list_empty(&init_task.tasks));
4112
999cd8a4 4113 mutex_init(&ss->hierarchy_mutex);
cfebe563 4114 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 4115 ss->active = 1;
e6a1105b
BB
4116
4117 /* this function shouldn't be used with modular subsystems, since they
4118 * need to register a subsys_id, among other things */
4119 BUG_ON(ss->module);
4120}
4121
4122/**
4123 * cgroup_load_subsys: load and register a modular subsystem at runtime
4124 * @ss: the subsystem to load
4125 *
4126 * This function should be called in a modular subsystem's initcall. If the
88393161 4127 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4128 * up for use. If the subsystem is built-in anyway, work is delegated to the
4129 * simpler cgroup_init_subsys.
4130 */
4131int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4132{
4133 int i;
4134 struct cgroup_subsys_state *css;
4135
4136 /* check name and function validity */
4137 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4138 ss->create == NULL || ss->destroy == NULL)
4139 return -EINVAL;
4140
4141 /*
4142 * we don't support callbacks in modular subsystems. this check is
4143 * before the ss->module check for consistency; a subsystem that could
4144 * be a module should still have no callbacks even if the user isn't
4145 * compiling it as one.
4146 */
4147 if (ss->fork || ss->exit)
4148 return -EINVAL;
4149
4150 /*
4151 * an optionally modular subsystem is built-in: we want to do nothing,
4152 * since cgroup_init_subsys will have already taken care of it.
4153 */
4154 if (ss->module == NULL) {
4155 /* a few sanity checks */
4156 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4157 BUG_ON(subsys[ss->subsys_id] != ss);
4158 return 0;
4159 }
4160
4161 /*
4162 * need to register a subsys id before anything else - for example,
4163 * init_cgroup_css needs it.
4164 */
4165 mutex_lock(&cgroup_mutex);
4166 /* find the first empty slot in the array */
4167 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4168 if (subsys[i] == NULL)
4169 break;
4170 }
4171 if (i == CGROUP_SUBSYS_COUNT) {
4172 /* maximum number of subsystems already registered! */
4173 mutex_unlock(&cgroup_mutex);
4174 return -EBUSY;
4175 }
4176 /* assign ourselves the subsys_id */
4177 ss->subsys_id = i;
4178 subsys[i] = ss;
4179
4180 /*
4181 * no ss->create seems to need anything important in the ss struct, so
4182 * this can happen first (i.e. before the rootnode attachment).
4183 */
4184 css = ss->create(ss, dummytop);
4185 if (IS_ERR(css)) {
4186 /* failure case - need to deassign the subsys[] slot. */
4187 subsys[i] = NULL;
4188 mutex_unlock(&cgroup_mutex);
4189 return PTR_ERR(css);
4190 }
4191
4192 list_add(&ss->sibling, &rootnode.subsys_list);
4193 ss->root = &rootnode;
4194
4195 /* our new subsystem will be attached to the dummy hierarchy. */
4196 init_cgroup_css(css, ss, dummytop);
4197 /* init_idr must be after init_cgroup_css because it sets css->id. */
4198 if (ss->use_id) {
4199 int ret = cgroup_init_idr(ss, css);
4200 if (ret) {
4201 dummytop->subsys[ss->subsys_id] = NULL;
4202 ss->destroy(ss, dummytop);
4203 subsys[i] = NULL;
4204 mutex_unlock(&cgroup_mutex);
4205 return ret;
4206 }
4207 }
4208
4209 /*
4210 * Now we need to entangle the css into the existing css_sets. unlike
4211 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4212 * will need a new pointer to it; done by iterating the css_set_table.
4213 * furthermore, modifying the existing css_sets will corrupt the hash
4214 * table state, so each changed css_set will need its hash recomputed.
4215 * this is all done under the css_set_lock.
4216 */
4217 write_lock(&css_set_lock);
4218 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4219 struct css_set *cg;
4220 struct hlist_node *node, *tmp;
4221 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4222
4223 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4224 /* skip entries that we already rehashed */
4225 if (cg->subsys[ss->subsys_id])
4226 continue;
4227 /* remove existing entry */
4228 hlist_del(&cg->hlist);
4229 /* set new value */
4230 cg->subsys[ss->subsys_id] = css;
4231 /* recompute hash and restore entry */
4232 new_bucket = css_set_hash(cg->subsys);
4233 hlist_add_head(&cg->hlist, new_bucket);
4234 }
4235 }
4236 write_unlock(&css_set_lock);
4237
4238 mutex_init(&ss->hierarchy_mutex);
4239 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4240 ss->active = 1;
4241
e6a1105b
BB
4242 /* success! */
4243 mutex_unlock(&cgroup_mutex);
4244 return 0;
ddbcc7e8 4245}
e6a1105b 4246EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4247
cf5d5941
BB
4248/**
4249 * cgroup_unload_subsys: unload a modular subsystem
4250 * @ss: the subsystem to unload
4251 *
4252 * This function should be called in a modular subsystem's exitcall. When this
4253 * function is invoked, the refcount on the subsystem's module will be 0, so
4254 * the subsystem will not be attached to any hierarchy.
4255 */
4256void cgroup_unload_subsys(struct cgroup_subsys *ss)
4257{
4258 struct cg_cgroup_link *link;
4259 struct hlist_head *hhead;
4260
4261 BUG_ON(ss->module == NULL);
4262
4263 /*
4264 * we shouldn't be called if the subsystem is in use, and the use of
4265 * try_module_get in parse_cgroupfs_options should ensure that it
4266 * doesn't start being used while we're killing it off.
4267 */
4268 BUG_ON(ss->root != &rootnode);
4269
4270 mutex_lock(&cgroup_mutex);
4271 /* deassign the subsys_id */
4272 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4273 subsys[ss->subsys_id] = NULL;
4274
4275 /* remove subsystem from rootnode's list of subsystems */
8d258797 4276 list_del_init(&ss->sibling);
cf5d5941
BB
4277
4278 /*
4279 * disentangle the css from all css_sets attached to the dummytop. as
4280 * in loading, we need to pay our respects to the hashtable gods.
4281 */
4282 write_lock(&css_set_lock);
4283 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4284 struct css_set *cg = link->cg;
4285
4286 hlist_del(&cg->hlist);
4287 BUG_ON(!cg->subsys[ss->subsys_id]);
4288 cg->subsys[ss->subsys_id] = NULL;
4289 hhead = css_set_hash(cg->subsys);
4290 hlist_add_head(&cg->hlist, hhead);
4291 }
4292 write_unlock(&css_set_lock);
4293
4294 /*
4295 * remove subsystem's css from the dummytop and free it - need to free
4296 * before marking as null because ss->destroy needs the cgrp->subsys
4297 * pointer to find their state. note that this also takes care of
4298 * freeing the css_id.
4299 */
4300 ss->destroy(ss, dummytop);
4301 dummytop->subsys[ss->subsys_id] = NULL;
4302
4303 mutex_unlock(&cgroup_mutex);
4304}
4305EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4306
ddbcc7e8 4307/**
a043e3b2
LZ
4308 * cgroup_init_early - cgroup initialization at system boot
4309 *
4310 * Initialize cgroups at system boot, and initialize any
4311 * subsystems that request early init.
ddbcc7e8
PM
4312 */
4313int __init cgroup_init_early(void)
4314{
4315 int i;
146aa1bd 4316 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4317 INIT_LIST_HEAD(&init_css_set.cg_links);
4318 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4319 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4320 css_set_count = 1;
ddbcc7e8 4321 init_cgroup_root(&rootnode);
817929ec
PM
4322 root_count = 1;
4323 init_task.cgroups = &init_css_set;
4324
4325 init_css_set_link.cg = &init_css_set;
7717f7ba 4326 init_css_set_link.cgrp = dummytop;
bd89aabc 4327 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4328 &rootnode.top_cgroup.css_sets);
4329 list_add(&init_css_set_link.cg_link_list,
4330 &init_css_set.cg_links);
ddbcc7e8 4331
472b1053
LZ
4332 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4333 INIT_HLIST_HEAD(&css_set_table[i]);
4334
aae8aab4
BB
4335 /* at bootup time, we don't worry about modular subsystems */
4336 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4337 struct cgroup_subsys *ss = subsys[i];
4338
4339 BUG_ON(!ss->name);
4340 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4341 BUG_ON(!ss->create);
4342 BUG_ON(!ss->destroy);
4343 if (ss->subsys_id != i) {
cfe36bde 4344 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4345 ss->name, ss->subsys_id);
4346 BUG();
4347 }
4348
4349 if (ss->early_init)
4350 cgroup_init_subsys(ss);
4351 }
4352 return 0;
4353}
4354
4355/**
a043e3b2
LZ
4356 * cgroup_init - cgroup initialization
4357 *
4358 * Register cgroup filesystem and /proc file, and initialize
4359 * any subsystems that didn't request early init.
ddbcc7e8
PM
4360 */
4361int __init cgroup_init(void)
4362{
4363 int err;
4364 int i;
472b1053 4365 struct hlist_head *hhead;
a424316c
PM
4366
4367 err = bdi_init(&cgroup_backing_dev_info);
4368 if (err)
4369 return err;
ddbcc7e8 4370
aae8aab4
BB
4371 /* at bootup time, we don't worry about modular subsystems */
4372 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4373 struct cgroup_subsys *ss = subsys[i];
4374 if (!ss->early_init)
4375 cgroup_init_subsys(ss);
38460b48 4376 if (ss->use_id)
e6a1105b 4377 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4378 }
4379
472b1053
LZ
4380 /* Add init_css_set to the hash table */
4381 hhead = css_set_hash(init_css_set.subsys);
4382 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 4383 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
4384
4385 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4386 if (!cgroup_kobj) {
4387 err = -ENOMEM;
4388 goto out;
4389 }
4390
ddbcc7e8 4391 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4392 if (err < 0) {
4393 kobject_put(cgroup_kobj);
ddbcc7e8 4394 goto out;
676db4af 4395 }
ddbcc7e8 4396
46ae220b 4397 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4398
ddbcc7e8 4399out:
a424316c
PM
4400 if (err)
4401 bdi_destroy(&cgroup_backing_dev_info);
4402
ddbcc7e8
PM
4403 return err;
4404}
b4f48b63 4405
a424316c
PM
4406/*
4407 * proc_cgroup_show()
4408 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4409 * - Used for /proc/<pid>/cgroup.
4410 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4411 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4412 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4413 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4414 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4415 * cgroup to top_cgroup.
4416 */
4417
4418/* TODO: Use a proper seq_file iterator */
4419static int proc_cgroup_show(struct seq_file *m, void *v)
4420{
4421 struct pid *pid;
4422 struct task_struct *tsk;
4423 char *buf;
4424 int retval;
4425 struct cgroupfs_root *root;
4426
4427 retval = -ENOMEM;
4428 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4429 if (!buf)
4430 goto out;
4431
4432 retval = -ESRCH;
4433 pid = m->private;
4434 tsk = get_pid_task(pid, PIDTYPE_PID);
4435 if (!tsk)
4436 goto out_free;
4437
4438 retval = 0;
4439
4440 mutex_lock(&cgroup_mutex);
4441
e5f6a860 4442 for_each_active_root(root) {
a424316c 4443 struct cgroup_subsys *ss;
bd89aabc 4444 struct cgroup *cgrp;
a424316c
PM
4445 int count = 0;
4446
2c6ab6d2 4447 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4448 for_each_subsys(root, ss)
4449 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4450 if (strlen(root->name))
4451 seq_printf(m, "%sname=%s", count ? "," : "",
4452 root->name);
a424316c 4453 seq_putc(m, ':');
7717f7ba 4454 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4455 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4456 if (retval < 0)
4457 goto out_unlock;
4458 seq_puts(m, buf);
4459 seq_putc(m, '\n');
4460 }
4461
4462out_unlock:
4463 mutex_unlock(&cgroup_mutex);
4464 put_task_struct(tsk);
4465out_free:
4466 kfree(buf);
4467out:
4468 return retval;
4469}
4470
4471static int cgroup_open(struct inode *inode, struct file *file)
4472{
4473 struct pid *pid = PROC_I(inode)->pid;
4474 return single_open(file, proc_cgroup_show, pid);
4475}
4476
828c0950 4477const struct file_operations proc_cgroup_operations = {
a424316c
PM
4478 .open = cgroup_open,
4479 .read = seq_read,
4480 .llseek = seq_lseek,
4481 .release = single_release,
4482};
4483
4484/* Display information about each subsystem and each hierarchy */
4485static int proc_cgroupstats_show(struct seq_file *m, void *v)
4486{
4487 int i;
a424316c 4488
8bab8dde 4489 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4490 /*
4491 * ideally we don't want subsystems moving around while we do this.
4492 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4493 * subsys/hierarchy state.
4494 */
a424316c 4495 mutex_lock(&cgroup_mutex);
a424316c
PM
4496 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4497 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4498 if (ss == NULL)
4499 continue;
2c6ab6d2
PM
4500 seq_printf(m, "%s\t%d\t%d\t%d\n",
4501 ss->name, ss->root->hierarchy_id,
8bab8dde 4502 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4503 }
4504 mutex_unlock(&cgroup_mutex);
4505 return 0;
4506}
4507
4508static int cgroupstats_open(struct inode *inode, struct file *file)
4509{
9dce07f1 4510 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4511}
4512
828c0950 4513static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4514 .open = cgroupstats_open,
4515 .read = seq_read,
4516 .llseek = seq_lseek,
4517 .release = single_release,
4518};
4519
b4f48b63
PM
4520/**
4521 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4522 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4523 *
4524 * Description: A task inherits its parent's cgroup at fork().
4525 *
4526 * A pointer to the shared css_set was automatically copied in
4527 * fork.c by dup_task_struct(). However, we ignore that copy, since
4528 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 4529 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
4530 * have already changed current->cgroups, allowing the previously
4531 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4532 *
4533 * At the point that cgroup_fork() is called, 'current' is the parent
4534 * task, and the passed argument 'child' points to the child task.
4535 */
4536void cgroup_fork(struct task_struct *child)
4537{
817929ec
PM
4538 task_lock(current);
4539 child->cgroups = current->cgroups;
4540 get_css_set(child->cgroups);
4541 task_unlock(current);
4542 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4543}
4544
4545/**
a043e3b2
LZ
4546 * cgroup_fork_callbacks - run fork callbacks
4547 * @child: the new task
4548 *
4549 * Called on a new task very soon before adding it to the
4550 * tasklist. No need to take any locks since no-one can
4551 * be operating on this task.
b4f48b63
PM
4552 */
4553void cgroup_fork_callbacks(struct task_struct *child)
4554{
4555 if (need_forkexit_callback) {
4556 int i;
aae8aab4
BB
4557 /*
4558 * forkexit callbacks are only supported for builtin
4559 * subsystems, and the builtin section of the subsys array is
4560 * immutable, so we don't need to lock the subsys array here.
4561 */
4562 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4563 struct cgroup_subsys *ss = subsys[i];
4564 if (ss->fork)
4565 ss->fork(ss, child);
4566 }
4567 }
4568}
4569
817929ec 4570/**
a043e3b2
LZ
4571 * cgroup_post_fork - called on a new task after adding it to the task list
4572 * @child: the task in question
4573 *
4574 * Adds the task to the list running through its css_set if necessary.
4575 * Has to be after the task is visible on the task list in case we race
4576 * with the first call to cgroup_iter_start() - to guarantee that the
4577 * new task ends up on its list.
4578 */
817929ec
PM
4579void cgroup_post_fork(struct task_struct *child)
4580{
4581 if (use_task_css_set_links) {
4582 write_lock(&css_set_lock);
b12b533f 4583 task_lock(child);
817929ec
PM
4584 if (list_empty(&child->cg_list))
4585 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 4586 task_unlock(child);
817929ec
PM
4587 write_unlock(&css_set_lock);
4588 }
4589}
b4f48b63
PM
4590/**
4591 * cgroup_exit - detach cgroup from exiting task
4592 * @tsk: pointer to task_struct of exiting process
a043e3b2 4593 * @run_callback: run exit callbacks?
b4f48b63
PM
4594 *
4595 * Description: Detach cgroup from @tsk and release it.
4596 *
4597 * Note that cgroups marked notify_on_release force every task in
4598 * them to take the global cgroup_mutex mutex when exiting.
4599 * This could impact scaling on very large systems. Be reluctant to
4600 * use notify_on_release cgroups where very high task exit scaling
4601 * is required on large systems.
4602 *
4603 * the_top_cgroup_hack:
4604 *
4605 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4606 *
4607 * We call cgroup_exit() while the task is still competent to
4608 * handle notify_on_release(), then leave the task attached to the
4609 * root cgroup in each hierarchy for the remainder of its exit.
4610 *
4611 * To do this properly, we would increment the reference count on
4612 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4613 * code we would add a second cgroup function call, to drop that
4614 * reference. This would just create an unnecessary hot spot on
4615 * the top_cgroup reference count, to no avail.
4616 *
4617 * Normally, holding a reference to a cgroup without bumping its
4618 * count is unsafe. The cgroup could go away, or someone could
4619 * attach us to a different cgroup, decrementing the count on
4620 * the first cgroup that we never incremented. But in this case,
4621 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4622 * which wards off any cgroup_attach_task() attempts, or task is a failed
4623 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4624 */
4625void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4626{
817929ec 4627 struct css_set *cg;
d41d5a01 4628 int i;
817929ec
PM
4629
4630 /*
4631 * Unlink from the css_set task list if necessary.
4632 * Optimistically check cg_list before taking
4633 * css_set_lock
4634 */
4635 if (!list_empty(&tsk->cg_list)) {
4636 write_lock(&css_set_lock);
4637 if (!list_empty(&tsk->cg_list))
8d258797 4638 list_del_init(&tsk->cg_list);
817929ec
PM
4639 write_unlock(&css_set_lock);
4640 }
4641
b4f48b63
PM
4642 /* Reassign the task to the init_css_set. */
4643 task_lock(tsk);
817929ec
PM
4644 cg = tsk->cgroups;
4645 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4646
4647 if (run_callbacks && need_forkexit_callback) {
4648 /*
4649 * modular subsystems can't use callbacks, so no need to lock
4650 * the subsys array
4651 */
4652 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4653 struct cgroup_subsys *ss = subsys[i];
4654 if (ss->exit) {
4655 struct cgroup *old_cgrp =
4656 rcu_dereference_raw(cg->subsys[i])->cgroup;
4657 struct cgroup *cgrp = task_cgroup(tsk, i);
4658 ss->exit(ss, cgrp, old_cgrp, tsk);
4659 }
4660 }
4661 }
b4f48b63 4662 task_unlock(tsk);
d41d5a01 4663
817929ec 4664 if (cg)
81a6a5cd 4665 put_css_set_taskexit(cg);
b4f48b63 4666}
697f4161 4667
a043e3b2 4668/**
313e924c 4669 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4670 * @cgrp: the cgroup in question
313e924c 4671 * @task: the task in question
a043e3b2 4672 *
313e924c
GN
4673 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4674 * hierarchy.
697f4161
PM
4675 *
4676 * If we are sending in dummytop, then presumably we are creating
4677 * the top cgroup in the subsystem.
4678 *
4679 * Called only by the ns (nsproxy) cgroup.
4680 */
313e924c 4681int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4682{
4683 int ret;
4684 struct cgroup *target;
697f4161 4685
bd89aabc 4686 if (cgrp == dummytop)
697f4161
PM
4687 return 1;
4688
7717f7ba 4689 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4690 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4691 cgrp = cgrp->parent;
4692 ret = (cgrp == target);
697f4161
PM
4693 return ret;
4694}
81a6a5cd 4695
bd89aabc 4696static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4697{
4698 /* All of these checks rely on RCU to keep the cgroup
4699 * structure alive */
bd89aabc
PM
4700 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4701 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4702 /* Control Group is currently removeable. If it's not
4703 * already queued for a userspace notification, queue
4704 * it now */
4705 int need_schedule_work = 0;
cdcc136f 4706 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4707 if (!cgroup_is_removed(cgrp) &&
4708 list_empty(&cgrp->release_list)) {
4709 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4710 need_schedule_work = 1;
4711 }
cdcc136f 4712 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4713 if (need_schedule_work)
4714 schedule_work(&release_agent_work);
4715 }
4716}
4717
d7b9fff7
DN
4718/* Caller must verify that the css is not for root cgroup */
4719void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4720{
bd89aabc 4721 struct cgroup *cgrp = css->cgroup;
3dece834 4722 int val;
81a6a5cd 4723 rcu_read_lock();
d7b9fff7 4724 val = atomic_sub_return(count, &css->refcnt);
3dece834 4725 if (val == 1) {
ec64f515
KH
4726 if (notify_on_release(cgrp)) {
4727 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4728 check_for_release(cgrp);
4729 }
88703267 4730 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4731 }
4732 rcu_read_unlock();
3dece834 4733 WARN_ON_ONCE(val < 1);
81a6a5cd 4734}
67523c48 4735EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4736
4737/*
4738 * Notify userspace when a cgroup is released, by running the
4739 * configured release agent with the name of the cgroup (path
4740 * relative to the root of cgroup file system) as the argument.
4741 *
4742 * Most likely, this user command will try to rmdir this cgroup.
4743 *
4744 * This races with the possibility that some other task will be
4745 * attached to this cgroup before it is removed, or that some other
4746 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4747 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4748 * unused, and this cgroup will be reprieved from its death sentence,
4749 * to continue to serve a useful existence. Next time it's released,
4750 * we will get notified again, if it still has 'notify_on_release' set.
4751 *
4752 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4753 * means only wait until the task is successfully execve()'d. The
4754 * separate release agent task is forked by call_usermodehelper(),
4755 * then control in this thread returns here, without waiting for the
4756 * release agent task. We don't bother to wait because the caller of
4757 * this routine has no use for the exit status of the release agent
4758 * task, so no sense holding our caller up for that.
81a6a5cd 4759 */
81a6a5cd
PM
4760static void cgroup_release_agent(struct work_struct *work)
4761{
4762 BUG_ON(work != &release_agent_work);
4763 mutex_lock(&cgroup_mutex);
cdcc136f 4764 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4765 while (!list_empty(&release_list)) {
4766 char *argv[3], *envp[3];
4767 int i;
e788e066 4768 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4769 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4770 struct cgroup,
4771 release_list);
bd89aabc 4772 list_del_init(&cgrp->release_list);
cdcc136f 4773 raw_spin_unlock(&release_list_lock);
81a6a5cd 4774 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4775 if (!pathbuf)
4776 goto continue_free;
4777 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4778 goto continue_free;
4779 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4780 if (!agentbuf)
4781 goto continue_free;
81a6a5cd
PM
4782
4783 i = 0;
e788e066
PM
4784 argv[i++] = agentbuf;
4785 argv[i++] = pathbuf;
81a6a5cd
PM
4786 argv[i] = NULL;
4787
4788 i = 0;
4789 /* minimal command environment */
4790 envp[i++] = "HOME=/";
4791 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4792 envp[i] = NULL;
4793
4794 /* Drop the lock while we invoke the usermode helper,
4795 * since the exec could involve hitting disk and hence
4796 * be a slow process */
4797 mutex_unlock(&cgroup_mutex);
4798 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4799 mutex_lock(&cgroup_mutex);
e788e066
PM
4800 continue_free:
4801 kfree(pathbuf);
4802 kfree(agentbuf);
cdcc136f 4803 raw_spin_lock(&release_list_lock);
81a6a5cd 4804 }
cdcc136f 4805 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4806 mutex_unlock(&cgroup_mutex);
4807}
8bab8dde
PM
4808
4809static int __init cgroup_disable(char *str)
4810{
4811 int i;
4812 char *token;
4813
4814 while ((token = strsep(&str, ",")) != NULL) {
4815 if (!*token)
4816 continue;
aae8aab4
BB
4817 /*
4818 * cgroup_disable, being at boot time, can't know about module
4819 * subsystems, so we don't worry about them.
4820 */
4821 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4822 struct cgroup_subsys *ss = subsys[i];
4823
4824 if (!strcmp(token, ss->name)) {
4825 ss->disabled = 1;
4826 printk(KERN_INFO "Disabling %s control group"
4827 " subsystem\n", ss->name);
4828 break;
4829 }
4830 }
4831 }
4832 return 1;
4833}
4834__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4835
4836/*
4837 * Functons for CSS ID.
4838 */
4839
4840/*
4841 *To get ID other than 0, this should be called when !cgroup_is_removed().
4842 */
4843unsigned short css_id(struct cgroup_subsys_state *css)
4844{
7f0f1546
KH
4845 struct css_id *cssid;
4846
4847 /*
4848 * This css_id() can return correct value when somone has refcnt
4849 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4850 * it's unchanged until freed.
4851 */
d8bf4ca9 4852 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4853
4854 if (cssid)
4855 return cssid->id;
4856 return 0;
4857}
67523c48 4858EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4859
4860unsigned short css_depth(struct cgroup_subsys_state *css)
4861{
7f0f1546
KH
4862 struct css_id *cssid;
4863
d8bf4ca9 4864 cssid = rcu_dereference_check(css->id, atomic_read(&css->refcnt));
38460b48
KH
4865
4866 if (cssid)
4867 return cssid->depth;
4868 return 0;
4869}
67523c48 4870EXPORT_SYMBOL_GPL(css_depth);
38460b48 4871
747388d7
KH
4872/**
4873 * css_is_ancestor - test "root" css is an ancestor of "child"
4874 * @child: the css to be tested.
4875 * @root: the css supporsed to be an ancestor of the child.
4876 *
4877 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4878 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4879 * But, considering usual usage, the csses should be valid objects after test.
4880 * Assuming that the caller will do some action to the child if this returns
4881 * returns true, the caller must take "child";s reference count.
4882 * If "child" is valid object and this returns true, "root" is valid, too.
4883 */
4884
38460b48 4885bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4886 const struct cgroup_subsys_state *root)
38460b48 4887{
747388d7
KH
4888 struct css_id *child_id;
4889 struct css_id *root_id;
4890 bool ret = true;
38460b48 4891
747388d7
KH
4892 rcu_read_lock();
4893 child_id = rcu_dereference(child->id);
4894 root_id = rcu_dereference(root->id);
4895 if (!child_id
4896 || !root_id
4897 || (child_id->depth < root_id->depth)
4898 || (child_id->stack[root_id->depth] != root_id->id))
4899 ret = false;
4900 rcu_read_unlock();
4901 return ret;
38460b48
KH
4902}
4903
38460b48
KH
4904void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4905{
4906 struct css_id *id = css->id;
4907 /* When this is called before css_id initialization, id can be NULL */
4908 if (!id)
4909 return;
4910
4911 BUG_ON(!ss->use_id);
4912
4913 rcu_assign_pointer(id->css, NULL);
4914 rcu_assign_pointer(css->id, NULL);
c1e2ee2d 4915 write_lock(&ss->id_lock);
38460b48 4916 idr_remove(&ss->idr, id->id);
c1e2ee2d 4917 write_unlock(&ss->id_lock);
025cea99 4918 kfree_rcu(id, rcu_head);
38460b48 4919}
67523c48 4920EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4921
4922/*
4923 * This is called by init or create(). Then, calls to this function are
4924 * always serialized (By cgroup_mutex() at create()).
4925 */
4926
4927static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4928{
4929 struct css_id *newid;
4930 int myid, error, size;
4931
4932 BUG_ON(!ss->use_id);
4933
4934 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4935 newid = kzalloc(size, GFP_KERNEL);
4936 if (!newid)
4937 return ERR_PTR(-ENOMEM);
4938 /* get id */
4939 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4940 error = -ENOMEM;
4941 goto err_out;
4942 }
c1e2ee2d 4943 write_lock(&ss->id_lock);
38460b48
KH
4944 /* Don't use 0. allocates an ID of 1-65535 */
4945 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
c1e2ee2d 4946 write_unlock(&ss->id_lock);
38460b48
KH
4947
4948 /* Returns error when there are no free spaces for new ID.*/
4949 if (error) {
4950 error = -ENOSPC;
4951 goto err_out;
4952 }
4953 if (myid > CSS_ID_MAX)
4954 goto remove_idr;
4955
4956 newid->id = myid;
4957 newid->depth = depth;
4958 return newid;
4959remove_idr:
4960 error = -ENOSPC;
c1e2ee2d 4961 write_lock(&ss->id_lock);
38460b48 4962 idr_remove(&ss->idr, myid);
c1e2ee2d 4963 write_unlock(&ss->id_lock);
38460b48
KH
4964err_out:
4965 kfree(newid);
4966 return ERR_PTR(error);
4967
4968}
4969
e6a1105b
BB
4970static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4971 struct cgroup_subsys_state *rootcss)
38460b48
KH
4972{
4973 struct css_id *newid;
38460b48 4974
c1e2ee2d 4975 rwlock_init(&ss->id_lock);
38460b48
KH
4976 idr_init(&ss->idr);
4977
38460b48
KH
4978 newid = get_new_cssid(ss, 0);
4979 if (IS_ERR(newid))
4980 return PTR_ERR(newid);
4981
4982 newid->stack[0] = newid->id;
4983 newid->css = rootcss;
4984 rootcss->id = newid;
4985 return 0;
4986}
4987
4988static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4989 struct cgroup *child)
4990{
4991 int subsys_id, i, depth = 0;
4992 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 4993 struct css_id *child_id, *parent_id;
38460b48
KH
4994
4995 subsys_id = ss->subsys_id;
4996 parent_css = parent->subsys[subsys_id];
4997 child_css = child->subsys[subsys_id];
38460b48 4998 parent_id = parent_css->id;
94b3dd0f 4999 depth = parent_id->depth + 1;
38460b48
KH
5000
5001 child_id = get_new_cssid(ss, depth);
5002 if (IS_ERR(child_id))
5003 return PTR_ERR(child_id);
5004
5005 for (i = 0; i < depth; i++)
5006 child_id->stack[i] = parent_id->stack[i];
5007 child_id->stack[depth] = child_id->id;
5008 /*
5009 * child_id->css pointer will be set after this cgroup is available
5010 * see cgroup_populate_dir()
5011 */
5012 rcu_assign_pointer(child_css->id, child_id);
5013
5014 return 0;
5015}
5016
5017/**
5018 * css_lookup - lookup css by id
5019 * @ss: cgroup subsys to be looked into.
5020 * @id: the id
5021 *
5022 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5023 * NULL if not. Should be called under rcu_read_lock()
5024 */
5025struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5026{
5027 struct css_id *cssid = NULL;
5028
5029 BUG_ON(!ss->use_id);
5030 cssid = idr_find(&ss->idr, id);
5031
5032 if (unlikely(!cssid))
5033 return NULL;
5034
5035 return rcu_dereference(cssid->css);
5036}
67523c48 5037EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5038
5039/**
5040 * css_get_next - lookup next cgroup under specified hierarchy.
5041 * @ss: pointer to subsystem
5042 * @id: current position of iteration.
5043 * @root: pointer to css. search tree under this.
5044 * @foundid: position of found object.
5045 *
5046 * Search next css under the specified hierarchy of rootid. Calling under
5047 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5048 */
5049struct cgroup_subsys_state *
5050css_get_next(struct cgroup_subsys *ss, int id,
5051 struct cgroup_subsys_state *root, int *foundid)
5052{
5053 struct cgroup_subsys_state *ret = NULL;
5054 struct css_id *tmp;
5055 int tmpid;
5056 int rootid = css_id(root);
5057 int depth = css_depth(root);
5058
5059 if (!rootid)
5060 return NULL;
5061
5062 BUG_ON(!ss->use_id);
5063 /* fill start point for scan */
5064 tmpid = id;
5065 while (1) {
5066 /*
5067 * scan next entry from bitmap(tree), tmpid is updated after
5068 * idr_get_next().
5069 */
c1e2ee2d 5070 read_lock(&ss->id_lock);
38460b48 5071 tmp = idr_get_next(&ss->idr, &tmpid);
c1e2ee2d 5072 read_unlock(&ss->id_lock);
38460b48
KH
5073
5074 if (!tmp)
5075 break;
5076 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5077 ret = rcu_dereference(tmp->css);
5078 if (ret) {
5079 *foundid = tmpid;
5080 break;
5081 }
5082 }
5083 /* continue to scan from next id */
5084 tmpid = tmpid + 1;
5085 }
5086 return ret;
5087}
5088
e5d1367f
SE
5089/*
5090 * get corresponding css from file open on cgroupfs directory
5091 */
5092struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5093{
5094 struct cgroup *cgrp;
5095 struct inode *inode;
5096 struct cgroup_subsys_state *css;
5097
5098 inode = f->f_dentry->d_inode;
5099 /* check in cgroup filesystem dir */
5100 if (inode->i_op != &cgroup_dir_inode_operations)
5101 return ERR_PTR(-EBADF);
5102
5103 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5104 return ERR_PTR(-EINVAL);
5105
5106 /* get cgroup */
5107 cgrp = __d_cgrp(f->f_dentry);
5108 css = cgrp->subsys[id];
5109 return css ? css : ERR_PTR(-ENOENT);
5110}
5111
fe693435
PM
5112#ifdef CONFIG_CGROUP_DEBUG
5113static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5114 struct cgroup *cont)
5115{
5116 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5117
5118 if (!css)
5119 return ERR_PTR(-ENOMEM);
5120
5121 return css;
5122}
5123
5124static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5125{
5126 kfree(cont->subsys[debug_subsys_id]);
5127}
5128
5129static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5130{
5131 return atomic_read(&cont->count);
5132}
5133
5134static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5135{
5136 return cgroup_task_count(cont);
5137}
5138
5139static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5140{
5141 return (u64)(unsigned long)current->cgroups;
5142}
5143
5144static u64 current_css_set_refcount_read(struct cgroup *cont,
5145 struct cftype *cft)
5146{
5147 u64 count;
5148
5149 rcu_read_lock();
5150 count = atomic_read(&current->cgroups->refcount);
5151 rcu_read_unlock();
5152 return count;
5153}
5154
7717f7ba
PM
5155static int current_css_set_cg_links_read(struct cgroup *cont,
5156 struct cftype *cft,
5157 struct seq_file *seq)
5158{
5159 struct cg_cgroup_link *link;
5160 struct css_set *cg;
5161
5162 read_lock(&css_set_lock);
5163 rcu_read_lock();
5164 cg = rcu_dereference(current->cgroups);
5165 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5166 struct cgroup *c = link->cgrp;
5167 const char *name;
5168
5169 if (c->dentry)
5170 name = c->dentry->d_name.name;
5171 else
5172 name = "?";
2c6ab6d2
PM
5173 seq_printf(seq, "Root %d group %s\n",
5174 c->root->hierarchy_id, name);
7717f7ba
PM
5175 }
5176 rcu_read_unlock();
5177 read_unlock(&css_set_lock);
5178 return 0;
5179}
5180
5181#define MAX_TASKS_SHOWN_PER_CSS 25
5182static int cgroup_css_links_read(struct cgroup *cont,
5183 struct cftype *cft,
5184 struct seq_file *seq)
5185{
5186 struct cg_cgroup_link *link;
5187
5188 read_lock(&css_set_lock);
5189 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5190 struct css_set *cg = link->cg;
5191 struct task_struct *task;
5192 int count = 0;
5193 seq_printf(seq, "css_set %p\n", cg);
5194 list_for_each_entry(task, &cg->tasks, cg_list) {
5195 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5196 seq_puts(seq, " ...\n");
5197 break;
5198 } else {
5199 seq_printf(seq, " task %d\n",
5200 task_pid_vnr(task));
5201 }
5202 }
5203 }
5204 read_unlock(&css_set_lock);
5205 return 0;
5206}
5207
fe693435
PM
5208static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5209{
5210 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5211}
5212
5213static struct cftype debug_files[] = {
5214 {
5215 .name = "cgroup_refcount",
5216 .read_u64 = cgroup_refcount_read,
5217 },
5218 {
5219 .name = "taskcount",
5220 .read_u64 = debug_taskcount_read,
5221 },
5222
5223 {
5224 .name = "current_css_set",
5225 .read_u64 = current_css_set_read,
5226 },
5227
5228 {
5229 .name = "current_css_set_refcount",
5230 .read_u64 = current_css_set_refcount_read,
5231 },
5232
7717f7ba
PM
5233 {
5234 .name = "current_css_set_cg_links",
5235 .read_seq_string = current_css_set_cg_links_read,
5236 },
5237
5238 {
5239 .name = "cgroup_css_links",
5240 .read_seq_string = cgroup_css_links_read,
5241 },
5242
fe693435
PM
5243 {
5244 .name = "releasable",
5245 .read_u64 = releasable_read,
5246 },
5247};
5248
5249static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5250{
5251 return cgroup_add_files(cont, ss, debug_files,
5252 ARRAY_SIZE(debug_files));
5253}
5254
5255struct cgroup_subsys debug_subsys = {
5256 .name = "debug",
5257 .create = debug_create,
5258 .destroy = debug_destroy,
5259 .populate = debug_populate,
5260 .subsys_id = debug_subsys_id,
5261};
5262#endif /* CONFIG_CGROUP_DEBUG */