cgroup: implement cgroup_has_tasks() and unexport cgroup_task_count()
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8
PM
44#include <linux/spinlock.h>
45#include <linux/string.h>
bbcb81d0 46#include <linux/sort.h>
81a6a5cd 47#include <linux/kmod.h>
846c7bb0
BS
48#include <linux/delayacct.h>
49#include <linux/cgroupstats.h>
0ac801fe 50#include <linux/hashtable.h>
096b7fe0 51#include <linux/pid_namespace.h>
2c6ab6d2 52#include <linux/idr.h>
d1d9fd33 53#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 54#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 55#include <linux/kthread.h>
776f02fa 56#include <linux/delay.h>
846c7bb0 57
60063497 58#include <linux/atomic.h>
ddbcc7e8 59
b1a21367
TH
60/*
61 * pidlists linger the following amount before being destroyed. The goal
62 * is avoiding frequent destruction in the middle of consecutive read calls
63 * Expiring in the middle is a performance problem not a correctness one.
64 * 1 sec should be enough.
65 */
66#define CGROUP_PIDLIST_DESTROY_DELAY HZ
67
8d7e6fb0
TH
68#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
69 MAX_CFTYPE_NAME + 2)
70
ace2bee8
TH
71/*
72 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
73 * creation/removal and hierarchy changing operations including cgroup
74 * creation, removal, css association and controller rebinding. This outer
75 * lock is needed mainly to resolve the circular dependency between kernfs
76 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
77 */
78static DEFINE_MUTEX(cgroup_tree_mutex);
79
e25e2cbb
TH
80/*
81 * cgroup_mutex is the master lock. Any modification to cgroup or its
82 * hierarchy must be performed while holding it.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
8af01f56 86EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 87#else
81a6a5cd 88static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
89#endif
90
69e943b7
TH
91/*
92 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
93 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
94 */
95static DEFINE_SPINLOCK(release_agent_path_lock);
96
ace2bee8 97#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 98 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 99 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 100 lockdep_is_held(&cgroup_mutex), \
ace2bee8 101 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 102
e5fca243
TH
103/*
104 * cgroup destruction makes heavy use of work items and there can be a lot
105 * of concurrent destructions. Use a separate workqueue so that cgroup
106 * destruction work items don't end up filling up max_active of system_wq
107 * which may lead to deadlock.
108 */
109static struct workqueue_struct *cgroup_destroy_wq;
110
b1a21367
TH
111/*
112 * pidlist destructions need to be flushed on cgroup destruction. Use a
113 * separate workqueue as flush domain.
114 */
115static struct workqueue_struct *cgroup_pidlist_destroy_wq;
116
3ed80a62 117/* generate an array of cgroup subsystem pointers */
073219e9 118#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 119static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
120#include <linux/cgroup_subsys.h>
121};
073219e9
TH
122#undef SUBSYS
123
124/* array of cgroup subsystem names */
125#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
126static const char *cgroup_subsys_name[] = {
127#include <linux/cgroup_subsys.h>
128};
129#undef SUBSYS
ddbcc7e8 130
ddbcc7e8 131/*
9871bf95
TH
132 * The dummy hierarchy, reserved for the subsystems that are otherwise
133 * unattached - it never has more than a single cgroup, and all tasks are
134 * part of that cgroup.
ddbcc7e8 135 */
9871bf95
TH
136static struct cgroupfs_root cgroup_dummy_root;
137
138/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
139static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
140
141/* The list of hierarchy roots */
142
9871bf95
TH
143static LIST_HEAD(cgroup_roots);
144static int cgroup_root_count;
ddbcc7e8 145
3417ae1f 146/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 147static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 148
794611a1
LZ
149/*
150 * Assign a monotonically increasing serial number to cgroups. It
151 * guarantees cgroups with bigger numbers are newer than those with smaller
152 * numbers. Also, as cgroups are always appended to the parent's
153 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
154 * the ascending serial number order on the list. Protected by
155 * cgroup_mutex.
794611a1 156 */
00356bd5 157static u64 cgroup_serial_nr_next = 1;
794611a1 158
ddbcc7e8 159/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
160 * check for fork/exit handlers to call. This avoids us having to do
161 * extra work in the fork/exit path if none of the subsystems need to
162 * be called.
ddbcc7e8 163 */
8947f9d5 164static int need_forkexit_callback __read_mostly;
ddbcc7e8 165
628f7cd4
TH
166static struct cftype cgroup_base_files[];
167
59f5296b 168static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
169static int rebind_subsystems(struct cgroupfs_root *root,
170 unsigned long added_mask, unsigned removed_mask);
f20104de 171static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 172static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
173static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
174 bool is_add);
b1a21367 175static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 176
95109b62
TH
177/**
178 * cgroup_css - obtain a cgroup's css for the specified subsystem
179 * @cgrp: the cgroup of interest
ca8bdcaf 180 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 181 *
ca8bdcaf
TH
182 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
183 * function must be called either under cgroup_mutex or rcu_read_lock() and
184 * the caller is responsible for pinning the returned css if it wants to
185 * keep accessing it outside the said locks. This function may return
186 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
187 */
188static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 189 struct cgroup_subsys *ss)
95109b62 190{
ca8bdcaf 191 if (ss)
aec25020 192 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
193 lockdep_is_held(&cgroup_tree_mutex) ||
194 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
195 else
196 return &cgrp->dummy_css;
95109b62 197}
42809dd4 198
ddbcc7e8 199/* convenient tests for these bits */
54766d4a 200static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 201{
54766d4a 202 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
203}
204
59f5296b
TH
205struct cgroup_subsys_state *seq_css(struct seq_file *seq)
206{
2bd59d48
TH
207 struct kernfs_open_file *of = seq->private;
208 struct cgroup *cgrp = of->kn->parent->priv;
209 struct cftype *cft = seq_cft(seq);
210
211 /*
212 * This is open and unprotected implementation of cgroup_css().
213 * seq_css() is only called from a kernfs file operation which has
214 * an active reference on the file. Because all the subsystem
215 * files are drained before a css is disassociated with a cgroup,
216 * the matching css from the cgroup's subsys table is guaranteed to
217 * be and stay valid until the enclosing operation is complete.
218 */
219 if (cft->ss)
220 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
221 else
222 return &cgrp->dummy_css;
59f5296b
TH
223}
224EXPORT_SYMBOL_GPL(seq_css);
225
78574cf9
LZ
226/**
227 * cgroup_is_descendant - test ancestry
228 * @cgrp: the cgroup to be tested
229 * @ancestor: possible ancestor of @cgrp
230 *
231 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
232 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
233 * and @ancestor are accessible.
234 */
235bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
236{
237 while (cgrp) {
238 if (cgrp == ancestor)
239 return true;
240 cgrp = cgrp->parent;
241 }
242 return false;
243}
244EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 245
e9685a03 246static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
247{
248 const int bits =
bd89aabc
PM
249 (1 << CGRP_RELEASABLE) |
250 (1 << CGRP_NOTIFY_ON_RELEASE);
251 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
252}
253
e9685a03 254static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 255{
bd89aabc 256 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
257}
258
1c6727af
TH
259/**
260 * for_each_css - iterate all css's of a cgroup
261 * @css: the iteration cursor
262 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
263 * @cgrp: the target cgroup to iterate css's of
264 *
265 * Should be called under cgroup_mutex.
266 */
267#define for_each_css(css, ssid, cgrp) \
268 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
269 if (!((css) = rcu_dereference_check( \
270 (cgrp)->subsys[(ssid)], \
ace2bee8 271 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
272 lockdep_is_held(&cgroup_mutex)))) { } \
273 else
274
30159ec7 275/**
3ed80a62 276 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 277 * @ss: the iteration cursor
780cd8b3 278 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 279 */
780cd8b3 280#define for_each_subsys(ss, ssid) \
3ed80a62
TH
281 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
282 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 283
5549c497
TH
284/* iterate across the active hierarchies */
285#define for_each_active_root(root) \
286 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
0942eeee
TH
343/*
344 * css_set_lock protects the list of css_set objects, and the chain of
345 * tasks off each css_set. Nests outside task->alloc_lock due to
72ec7029 346 * css_task_iter_start().
0942eeee 347 */
817929ec
PM
348static DEFINE_RWLOCK(css_set_lock);
349static int css_set_count;
350
7717f7ba
PM
351/*
352 * hash table for cgroup groups. This improves the performance to find
353 * an existing css_set. This hash doesn't (currently) take into
354 * account cgroups in empty hierarchies.
355 */
472b1053 356#define CSS_SET_HASH_BITS 7
0ac801fe 357static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 358
0ac801fe 359static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 360{
0ac801fe 361 unsigned long key = 0UL;
30159ec7
TH
362 struct cgroup_subsys *ss;
363 int i;
472b1053 364
30159ec7 365 for_each_subsys(ss, i)
0ac801fe
LZ
366 key += (unsigned long)css[i];
367 key = (key >> 16) ^ key;
472b1053 368
0ac801fe 369 return key;
472b1053
LZ
370}
371
5abb8855 372static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 373{
69d0206c 374 struct cgrp_cset_link *link, *tmp_link;
5abb8855 375
146aa1bd
LJ
376 /*
377 * Ensure that the refcount doesn't hit zero while any readers
378 * can see it. Similar to atomic_dec_and_lock(), but for an
379 * rwlock
380 */
5abb8855 381 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
382 return;
383 write_lock(&css_set_lock);
5abb8855 384 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
385 write_unlock(&css_set_lock);
386 return;
387 }
81a6a5cd 388
2c6ab6d2 389 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 390 hash_del(&cset->hlist);
2c6ab6d2
PM
391 css_set_count--;
392
69d0206c 393 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 394 struct cgroup *cgrp = link->cgrp;
5abb8855 395
69d0206c
TH
396 list_del(&link->cset_link);
397 list_del(&link->cgrp_link);
71b5707e 398
ddd69148 399 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 400 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 401 if (taskexit)
bd89aabc
PM
402 set_bit(CGRP_RELEASABLE, &cgrp->flags);
403 check_for_release(cgrp);
81a6a5cd 404 }
2c6ab6d2
PM
405
406 kfree(link);
81a6a5cd 407 }
2c6ab6d2
PM
408
409 write_unlock(&css_set_lock);
5abb8855 410 kfree_rcu(cset, rcu_head);
b4f48b63
PM
411}
412
817929ec
PM
413/*
414 * refcounted get/put for css_set objects
415 */
5abb8855 416static inline void get_css_set(struct css_set *cset)
817929ec 417{
5abb8855 418 atomic_inc(&cset->refcount);
817929ec
PM
419}
420
5abb8855 421static inline void put_css_set(struct css_set *cset)
817929ec 422{
5abb8855 423 __put_css_set(cset, 0);
817929ec
PM
424}
425
5abb8855 426static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 427{
5abb8855 428 __put_css_set(cset, 1);
81a6a5cd
PM
429}
430
b326f9d0 431/**
7717f7ba 432 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
433 * @cset: candidate css_set being tested
434 * @old_cset: existing css_set for a task
7717f7ba
PM
435 * @new_cgrp: cgroup that's being entered by the task
436 * @template: desired set of css pointers in css_set (pre-calculated)
437 *
6f4b7e63 438 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
439 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
440 */
5abb8855
TH
441static bool compare_css_sets(struct css_set *cset,
442 struct css_set *old_cset,
7717f7ba
PM
443 struct cgroup *new_cgrp,
444 struct cgroup_subsys_state *template[])
445{
446 struct list_head *l1, *l2;
447
5abb8855 448 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
449 /* Not all subsystems matched */
450 return false;
451 }
452
453 /*
454 * Compare cgroup pointers in order to distinguish between
455 * different cgroups in heirarchies with no subsystems. We
456 * could get by with just this check alone (and skip the
457 * memcmp above) but on most setups the memcmp check will
458 * avoid the need for this more expensive check on almost all
459 * candidates.
460 */
461
69d0206c
TH
462 l1 = &cset->cgrp_links;
463 l2 = &old_cset->cgrp_links;
7717f7ba 464 while (1) {
69d0206c 465 struct cgrp_cset_link *link1, *link2;
5abb8855 466 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
467
468 l1 = l1->next;
469 l2 = l2->next;
470 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
471 if (l1 == &cset->cgrp_links) {
472 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
473 break;
474 } else {
69d0206c 475 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
476 }
477 /* Locate the cgroups associated with these links. */
69d0206c
TH
478 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
479 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
480 cgrp1 = link1->cgrp;
481 cgrp2 = link2->cgrp;
7717f7ba 482 /* Hierarchies should be linked in the same order. */
5abb8855 483 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
484
485 /*
486 * If this hierarchy is the hierarchy of the cgroup
487 * that's changing, then we need to check that this
488 * css_set points to the new cgroup; if it's any other
489 * hierarchy, then this css_set should point to the
490 * same cgroup as the old css_set.
491 */
5abb8855
TH
492 if (cgrp1->root == new_cgrp->root) {
493 if (cgrp1 != new_cgrp)
7717f7ba
PM
494 return false;
495 } else {
5abb8855 496 if (cgrp1 != cgrp2)
7717f7ba
PM
497 return false;
498 }
499 }
500 return true;
501}
502
b326f9d0
TH
503/**
504 * find_existing_css_set - init css array and find the matching css_set
505 * @old_cset: the css_set that we're using before the cgroup transition
506 * @cgrp: the cgroup that we're moving into
507 * @template: out param for the new set of csses, should be clear on entry
817929ec 508 */
5abb8855
TH
509static struct css_set *find_existing_css_set(struct css_set *old_cset,
510 struct cgroup *cgrp,
511 struct cgroup_subsys_state *template[])
b4f48b63 512{
bd89aabc 513 struct cgroupfs_root *root = cgrp->root;
30159ec7 514 struct cgroup_subsys *ss;
5abb8855 515 struct css_set *cset;
0ac801fe 516 unsigned long key;
b326f9d0 517 int i;
817929ec 518
aae8aab4
BB
519 /*
520 * Build the set of subsystem state objects that we want to see in the
521 * new css_set. while subsystems can change globally, the entries here
522 * won't change, so no need for locking.
523 */
30159ec7 524 for_each_subsys(ss, i) {
a1a71b45 525 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
526 /* Subsystem is in this hierarchy. So we want
527 * the subsystem state from the new
528 * cgroup */
ca8bdcaf 529 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
530 } else {
531 /* Subsystem is not in this hierarchy, so we
532 * don't want to change the subsystem state */
5abb8855 533 template[i] = old_cset->subsys[i];
817929ec
PM
534 }
535 }
536
0ac801fe 537 key = css_set_hash(template);
5abb8855
TH
538 hash_for_each_possible(css_set_table, cset, hlist, key) {
539 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
540 continue;
541
542 /* This css_set matches what we need */
5abb8855 543 return cset;
472b1053 544 }
817929ec
PM
545
546 /* No existing cgroup group matched */
547 return NULL;
548}
549
69d0206c 550static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 551{
69d0206c 552 struct cgrp_cset_link *link, *tmp_link;
36553434 553
69d0206c
TH
554 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
555 list_del(&link->cset_link);
36553434
LZ
556 kfree(link);
557 }
558}
559
69d0206c
TH
560/**
561 * allocate_cgrp_cset_links - allocate cgrp_cset_links
562 * @count: the number of links to allocate
563 * @tmp_links: list_head the allocated links are put on
564 *
565 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
566 * through ->cset_link. Returns 0 on success or -errno.
817929ec 567 */
69d0206c 568static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 569{
69d0206c 570 struct cgrp_cset_link *link;
817929ec 571 int i;
69d0206c
TH
572
573 INIT_LIST_HEAD(tmp_links);
574
817929ec 575 for (i = 0; i < count; i++) {
f4f4be2b 576 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 577 if (!link) {
69d0206c 578 free_cgrp_cset_links(tmp_links);
817929ec
PM
579 return -ENOMEM;
580 }
69d0206c 581 list_add(&link->cset_link, tmp_links);
817929ec
PM
582 }
583 return 0;
584}
585
c12f65d4
LZ
586/**
587 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 588 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 589 * @cset: the css_set to be linked
c12f65d4
LZ
590 * @cgrp: the destination cgroup
591 */
69d0206c
TH
592static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
593 struct cgroup *cgrp)
c12f65d4 594{
69d0206c 595 struct cgrp_cset_link *link;
c12f65d4 596
69d0206c
TH
597 BUG_ON(list_empty(tmp_links));
598 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
599 link->cset = cset;
7717f7ba 600 link->cgrp = cgrp;
69d0206c 601 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
602 /*
603 * Always add links to the tail of the list so that the list
604 * is sorted by order of hierarchy creation
605 */
69d0206c 606 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
607}
608
b326f9d0
TH
609/**
610 * find_css_set - return a new css_set with one cgroup updated
611 * @old_cset: the baseline css_set
612 * @cgrp: the cgroup to be updated
613 *
614 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
615 * substituted into the appropriate hierarchy.
817929ec 616 */
5abb8855
TH
617static struct css_set *find_css_set(struct css_set *old_cset,
618 struct cgroup *cgrp)
817929ec 619{
b326f9d0 620 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 621 struct css_set *cset;
69d0206c
TH
622 struct list_head tmp_links;
623 struct cgrp_cset_link *link;
0ac801fe 624 unsigned long key;
472b1053 625
b326f9d0
TH
626 lockdep_assert_held(&cgroup_mutex);
627
817929ec
PM
628 /* First see if we already have a cgroup group that matches
629 * the desired set */
7e9abd89 630 read_lock(&css_set_lock);
5abb8855
TH
631 cset = find_existing_css_set(old_cset, cgrp, template);
632 if (cset)
633 get_css_set(cset);
7e9abd89 634 read_unlock(&css_set_lock);
817929ec 635
5abb8855
TH
636 if (cset)
637 return cset;
817929ec 638
f4f4be2b 639 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 640 if (!cset)
817929ec
PM
641 return NULL;
642
69d0206c 643 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 644 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 645 kfree(cset);
817929ec
PM
646 return NULL;
647 }
648
5abb8855 649 atomic_set(&cset->refcount, 1);
69d0206c 650 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
651 INIT_LIST_HEAD(&cset->tasks);
652 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
653
654 /* Copy the set of subsystem state objects generated in
655 * find_existing_css_set() */
5abb8855 656 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
657
658 write_lock(&css_set_lock);
659 /* Add reference counts and links from the new css_set. */
69d0206c 660 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 661 struct cgroup *c = link->cgrp;
69d0206c 662
7717f7ba
PM
663 if (c->root == cgrp->root)
664 c = cgrp;
69d0206c 665 link_css_set(&tmp_links, cset, c);
7717f7ba 666 }
817929ec 667
69d0206c 668 BUG_ON(!list_empty(&tmp_links));
817929ec 669
817929ec 670 css_set_count++;
472b1053
LZ
671
672 /* Add this cgroup group to the hash table */
5abb8855
TH
673 key = css_set_hash(cset->subsys);
674 hash_add(css_set_table, &cset->hlist, key);
472b1053 675
817929ec
PM
676 write_unlock(&css_set_lock);
677
5abb8855 678 return cset;
b4f48b63
PM
679}
680
2bd59d48
TH
681static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
682{
683 struct cgroup *top_cgrp = kf_root->kn->priv;
684
685 return top_cgrp->root;
686}
687
f2e85d57
TH
688static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
689{
690 int id;
691
692 lockdep_assert_held(&cgroup_mutex);
693
694 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
695 GFP_KERNEL);
696 if (id < 0)
697 return id;
698
699 root->hierarchy_id = id;
700 return 0;
701}
702
703static void cgroup_exit_root_id(struct cgroupfs_root *root)
704{
705 lockdep_assert_held(&cgroup_mutex);
706
707 if (root->hierarchy_id) {
708 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
709 root->hierarchy_id = 0;
710 }
711}
712
713static void cgroup_free_root(struct cgroupfs_root *root)
714{
715 if (root) {
716 /* hierarhcy ID shoulid already have been released */
717 WARN_ON_ONCE(root->hierarchy_id);
718
719 idr_destroy(&root->cgroup_idr);
720 kfree(root);
721 }
722}
723
776f02fa 724static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 725{
f2e85d57
TH
726 struct cgroup *cgrp = &root->top_cgroup;
727 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 728
2bd59d48 729 mutex_lock(&cgroup_tree_mutex);
2bd59d48 730 mutex_lock(&cgroup_mutex);
f2e85d57 731
776f02fa 732 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
733 BUG_ON(!list_empty(&cgrp->children));
734
f2e85d57 735 /* Rebind all subsystems back to the default hierarchy */
35585573 736 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
737
738 /*
739 * Release all the links from cset_links to this hierarchy's
740 * root cgroup
741 */
742 write_lock(&css_set_lock);
743
744 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
745 list_del(&link->cset_link);
746 list_del(&link->cgrp_link);
747 kfree(link);
748 }
749 write_unlock(&css_set_lock);
750
751 if (!list_empty(&root->root_list)) {
752 list_del(&root->root_list);
753 cgroup_root_count--;
754 }
755
756 cgroup_exit_root_id(root);
757
758 mutex_unlock(&cgroup_mutex);
759 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 760
2bd59d48 761 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
762 cgroup_free_root(root);
763}
764
7717f7ba
PM
765/*
766 * Return the cgroup for "task" from the given hierarchy. Must be
767 * called with cgroup_mutex held.
768 */
769static struct cgroup *task_cgroup_from_root(struct task_struct *task,
770 struct cgroupfs_root *root)
771{
5abb8855 772 struct css_set *cset;
7717f7ba
PM
773 struct cgroup *res = NULL;
774
775 BUG_ON(!mutex_is_locked(&cgroup_mutex));
776 read_lock(&css_set_lock);
777 /*
778 * No need to lock the task - since we hold cgroup_mutex the
779 * task can't change groups, so the only thing that can happen
780 * is that it exits and its css is set back to init_css_set.
781 */
a8ad805c 782 cset = task_css_set(task);
5abb8855 783 if (cset == &init_css_set) {
7717f7ba
PM
784 res = &root->top_cgroup;
785 } else {
69d0206c
TH
786 struct cgrp_cset_link *link;
787
788 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 789 struct cgroup *c = link->cgrp;
69d0206c 790
7717f7ba
PM
791 if (c->root == root) {
792 res = c;
793 break;
794 }
795 }
796 }
797 read_unlock(&css_set_lock);
798 BUG_ON(!res);
799 return res;
800}
801
ddbcc7e8
PM
802/*
803 * There is one global cgroup mutex. We also require taking
804 * task_lock() when dereferencing a task's cgroup subsys pointers.
805 * See "The task_lock() exception", at the end of this comment.
806 *
807 * A task must hold cgroup_mutex to modify cgroups.
808 *
809 * Any task can increment and decrement the count field without lock.
810 * So in general, code holding cgroup_mutex can't rely on the count
811 * field not changing. However, if the count goes to zero, then only
956db3ca 812 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
813 * means that no tasks are currently attached, therefore there is no
814 * way a task attached to that cgroup can fork (the other way to
815 * increment the count). So code holding cgroup_mutex can safely
816 * assume that if the count is zero, it will stay zero. Similarly, if
817 * a task holds cgroup_mutex on a cgroup with zero count, it
818 * knows that the cgroup won't be removed, as cgroup_rmdir()
819 * needs that mutex.
820 *
ddbcc7e8
PM
821 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
822 * (usually) take cgroup_mutex. These are the two most performance
823 * critical pieces of code here. The exception occurs on cgroup_exit(),
824 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
825 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
826 * to the release agent with the name of the cgroup (path relative to
827 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
828 *
829 * A cgroup can only be deleted if both its 'count' of using tasks
830 * is zero, and its list of 'children' cgroups is empty. Since all
831 * tasks in the system use _some_ cgroup, and since there is always at
832 * least one task in the system (init, pid == 1), therefore, top_cgroup
833 * always has either children cgroups and/or using tasks. So we don't
834 * need a special hack to ensure that top_cgroup cannot be deleted.
835 *
836 * The task_lock() exception
837 *
838 * The need for this exception arises from the action of
d0b2fdd2 839 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 840 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
841 * several performance critical places that need to reference
842 * task->cgroup without the expense of grabbing a system global
843 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 844 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
845 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
846 * the task_struct routinely used for such matters.
847 *
848 * P.S. One more locking exception. RCU is used to guard the
956db3ca 849 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
850 */
851
628f7cd4 852static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 853static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 854static const struct file_operations proc_cgroupstats_operations;
a424316c 855
8d7e6fb0
TH
856static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
857 char *buf)
858{
859 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
860 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
861 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
862 cft->ss->name, cft->name);
863 else
864 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
865 return buf;
866}
867
f2e85d57
TH
868/**
869 * cgroup_file_mode - deduce file mode of a control file
870 * @cft: the control file in question
871 *
872 * returns cft->mode if ->mode is not 0
873 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
874 * returns S_IRUGO if it has only a read handler
875 * returns S_IWUSR if it has only a write hander
876 */
877static umode_t cgroup_file_mode(const struct cftype *cft)
878{
879 umode_t mode = 0;
880
881 if (cft->mode)
882 return cft->mode;
883
884 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
885 mode |= S_IRUGO;
886
887 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
888 cft->trigger)
889 mode |= S_IWUSR;
890
891 return mode;
892}
893
be445626
LZ
894static void cgroup_free_fn(struct work_struct *work)
895{
ea15f8cc 896 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 897
3c9c825b 898 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 899 cgroup_pidlist_destroy_all(cgrp);
be445626 900
776f02fa
TH
901 if (cgrp->parent) {
902 /*
903 * We get a ref to the parent, and put the ref when this
904 * cgroup is being freed, so it's guaranteed that the
905 * parent won't be destroyed before its children.
906 */
907 cgroup_put(cgrp->parent);
908 kernfs_put(cgrp->kn);
909 kfree(cgrp);
910 } else {
911 /*
912 * This is top cgroup's refcnt reaching zero, which
913 * indicates that the root should be released.
914 */
915 cgroup_destroy_root(cgrp->root);
916 }
be445626
LZ
917}
918
919static void cgroup_free_rcu(struct rcu_head *head)
920{
921 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
922
ea15f8cc 923 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 924 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
925}
926
59f5296b
TH
927static void cgroup_get(struct cgroup *cgrp)
928{
2bd59d48
TH
929 WARN_ON_ONCE(cgroup_is_dead(cgrp));
930 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
931 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
932}
933
59f5296b
TH
934static void cgroup_put(struct cgroup *cgrp)
935{
2bd59d48
TH
936 if (!atomic_dec_and_test(&cgrp->refcnt))
937 return;
776f02fa 938 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 939 return;
59f5296b 940
2bd59d48
TH
941 /*
942 * XXX: cgrp->id is only used to look up css's. As cgroup and
943 * css's lifetimes will be decoupled, it should be made
944 * per-subsystem and moved to css->id so that lookups are
945 * successful until the target css is released.
946 */
947 mutex_lock(&cgroup_mutex);
948 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
949 mutex_unlock(&cgroup_mutex);
950 cgrp->id = -1;
ddbcc7e8 951
2bd59d48 952 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
953}
954
2739d3cc 955static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 956{
2bd59d48 957 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 958
ace2bee8 959 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 960 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
961}
962
13af07df 963/**
628f7cd4 964 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 965 * @cgrp: target cgroup
13af07df
AR
966 * @subsys_mask: mask of the subsystem ids whose files should be removed
967 */
628f7cd4 968static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 969{
13af07df 970 struct cgroup_subsys *ss;
b420ba7d 971 int i;
05ef1d7c 972
b420ba7d 973 for_each_subsys(ss, i) {
0adb0704 974 struct cftype *cfts;
b420ba7d
TH
975
976 if (!test_bit(i, &subsys_mask))
13af07df 977 continue;
0adb0704
TH
978 list_for_each_entry(cfts, &ss->cfts, node)
979 cgroup_addrm_files(cgrp, cfts, false);
13af07df 980 }
ddbcc7e8
PM
981}
982
ddbcc7e8 983static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 984 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 985{
bd89aabc 986 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 987 struct cgroup_subsys *ss;
3126121f 988 int i, ret;
ddbcc7e8 989
ace2bee8
TH
990 lockdep_assert_held(&cgroup_tree_mutex);
991 lockdep_assert_held(&cgroup_mutex);
aae8aab4 992
ddbcc7e8 993 /* Check that any added subsystems are currently free */
3ed80a62
TH
994 for_each_subsys(ss, i)
995 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
996 return -EBUSY;
ddbcc7e8 997
3126121f
TH
998 ret = cgroup_populate_dir(cgrp, added_mask);
999 if (ret)
3ed80a62 1000 return ret;
3126121f
TH
1001
1002 /*
1003 * Nothing can fail from this point on. Remove files for the
1004 * removed subsystems and rebind each subsystem.
1005 */
4ac06017 1006 mutex_unlock(&cgroup_mutex);
3126121f 1007 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1008 mutex_lock(&cgroup_mutex);
ddbcc7e8 1009
30159ec7 1010 for_each_subsys(ss, i) {
ddbcc7e8 1011 unsigned long bit = 1UL << i;
30159ec7 1012
a1a71b45 1013 if (bit & added_mask) {
ddbcc7e8 1014 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1015 BUG_ON(cgroup_css(cgrp, ss));
1016 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1017 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1018
73e80ed8 1019 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1020 cgroup_css(cgroup_dummy_top, ss));
1021 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1022
b2aa30f7 1023 ss->root = root;
ddbcc7e8 1024 if (ss->bind)
ca8bdcaf 1025 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1026
cf5d5941 1027 /* refcount was already taken, and we're keeping it */
a8a648c4 1028 root->subsys_mask |= bit;
a1a71b45 1029 } else if (bit & removed_mask) {
ddbcc7e8 1030 /* We're removing this subsystem */
ca8bdcaf
TH
1031 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1032 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1033
ddbcc7e8 1034 if (ss->bind)
ca8bdcaf 1035 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1036
ca8bdcaf 1037 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1038 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1039
9871bf95 1040 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1041 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1042 }
1043 }
ddbcc7e8 1044
2bd59d48 1045 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1046 return 0;
1047}
1048
2bd59d48
TH
1049static int cgroup_show_options(struct seq_file *seq,
1050 struct kernfs_root *kf_root)
ddbcc7e8 1051{
2bd59d48 1052 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1053 struct cgroup_subsys *ss;
b85d2040 1054 int ssid;
ddbcc7e8 1055
b85d2040
TH
1056 for_each_subsys(ss, ssid)
1057 if (root->subsys_mask & (1 << ssid))
1058 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1059 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1060 seq_puts(seq, ",sane_behavior");
93438629 1061 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1062 seq_puts(seq, ",noprefix");
93438629 1063 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1064 seq_puts(seq, ",xattr");
69e943b7
TH
1065
1066 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1067 if (strlen(root->release_agent_path))
1068 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1069 spin_unlock(&release_agent_path_lock);
1070
2260e7fc 1071 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1072 seq_puts(seq, ",clone_children");
c6d57f33
PM
1073 if (strlen(root->name))
1074 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1075 return 0;
1076}
1077
1078struct cgroup_sb_opts {
a1a71b45 1079 unsigned long subsys_mask;
ddbcc7e8 1080 unsigned long flags;
81a6a5cd 1081 char *release_agent;
2260e7fc 1082 bool cpuset_clone_children;
c6d57f33 1083 char *name;
2c6ab6d2
PM
1084 /* User explicitly requested empty subsystem */
1085 bool none;
ddbcc7e8
PM
1086};
1087
aae8aab4 1088/*
9871bf95
TH
1089 * Convert a hierarchy specifier into a bitmask of subsystems and
1090 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1091 * array. This function takes refcounts on subsystems to be used, unless it
1092 * returns error, in which case no refcounts are taken.
aae8aab4 1093 */
cf5d5941 1094static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1095{
32a8cf23
DL
1096 char *token, *o = data;
1097 bool all_ss = false, one_ss = false;
f9ab5b5b 1098 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1099 struct cgroup_subsys *ss;
1100 int i;
f9ab5b5b 1101
aae8aab4
BB
1102 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1103
f9ab5b5b 1104#ifdef CONFIG_CPUSETS
073219e9 1105 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1106#endif
ddbcc7e8 1107
c6d57f33 1108 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1109
1110 while ((token = strsep(&o, ",")) != NULL) {
1111 if (!*token)
1112 return -EINVAL;
32a8cf23 1113 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1114 /* Explicitly have no subsystems */
1115 opts->none = true;
32a8cf23
DL
1116 continue;
1117 }
1118 if (!strcmp(token, "all")) {
1119 /* Mutually exclusive option 'all' + subsystem name */
1120 if (one_ss)
1121 return -EINVAL;
1122 all_ss = true;
1123 continue;
1124 }
873fe09e
TH
1125 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1126 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1127 continue;
1128 }
32a8cf23 1129 if (!strcmp(token, "noprefix")) {
93438629 1130 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1131 continue;
1132 }
1133 if (!strcmp(token, "clone_children")) {
2260e7fc 1134 opts->cpuset_clone_children = true;
32a8cf23
DL
1135 continue;
1136 }
03b1cde6 1137 if (!strcmp(token, "xattr")) {
93438629 1138 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1139 continue;
1140 }
32a8cf23 1141 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1142 /* Specifying two release agents is forbidden */
1143 if (opts->release_agent)
1144 return -EINVAL;
c6d57f33 1145 opts->release_agent =
e400c285 1146 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1147 if (!opts->release_agent)
1148 return -ENOMEM;
32a8cf23
DL
1149 continue;
1150 }
1151 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1152 const char *name = token + 5;
1153 /* Can't specify an empty name */
1154 if (!strlen(name))
1155 return -EINVAL;
1156 /* Must match [\w.-]+ */
1157 for (i = 0; i < strlen(name); i++) {
1158 char c = name[i];
1159 if (isalnum(c))
1160 continue;
1161 if ((c == '.') || (c == '-') || (c == '_'))
1162 continue;
1163 return -EINVAL;
1164 }
1165 /* Specifying two names is forbidden */
1166 if (opts->name)
1167 return -EINVAL;
1168 opts->name = kstrndup(name,
e400c285 1169 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1170 GFP_KERNEL);
1171 if (!opts->name)
1172 return -ENOMEM;
32a8cf23
DL
1173
1174 continue;
1175 }
1176
30159ec7 1177 for_each_subsys(ss, i) {
32a8cf23
DL
1178 if (strcmp(token, ss->name))
1179 continue;
1180 if (ss->disabled)
1181 continue;
1182
1183 /* Mutually exclusive option 'all' + subsystem name */
1184 if (all_ss)
1185 return -EINVAL;
a1a71b45 1186 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1187 one_ss = true;
1188
1189 break;
1190 }
1191 if (i == CGROUP_SUBSYS_COUNT)
1192 return -ENOENT;
1193 }
1194
1195 /*
1196 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1197 * otherwise if 'none', 'name=' and a subsystem name options
1198 * were not specified, let's default to 'all'
32a8cf23 1199 */
30159ec7
TH
1200 if (all_ss || (!one_ss && !opts->none && !opts->name))
1201 for_each_subsys(ss, i)
1202 if (!ss->disabled)
1203 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1204
2c6ab6d2
PM
1205 /* Consistency checks */
1206
873fe09e
TH
1207 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1208 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1209
d3ba07c3
TH
1210 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1211 opts->cpuset_clone_children || opts->release_agent ||
1212 opts->name) {
1213 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1214 return -EINVAL;
1215 }
873fe09e
TH
1216 }
1217
f9ab5b5b
LZ
1218 /*
1219 * Option noprefix was introduced just for backward compatibility
1220 * with the old cpuset, so we allow noprefix only if mounting just
1221 * the cpuset subsystem.
1222 */
93438629 1223 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1224 return -EINVAL;
1225
2c6ab6d2
PM
1226
1227 /* Can't specify "none" and some subsystems */
a1a71b45 1228 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1229 return -EINVAL;
1230
1231 /*
1232 * We either have to specify by name or by subsystems. (So all
1233 * empty hierarchies must have a name).
1234 */
a1a71b45 1235 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1236 return -EINVAL;
1237
1238 return 0;
1239}
1240
2bd59d48 1241static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1242{
1243 int ret = 0;
2bd59d48 1244 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1245 struct cgroup_sb_opts opts;
a1a71b45 1246 unsigned long added_mask, removed_mask;
ddbcc7e8 1247
873fe09e
TH
1248 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1249 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1250 return -EINVAL;
1251 }
1252
ace2bee8 1253 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1254 mutex_lock(&cgroup_mutex);
1255
1256 /* See what subsystems are wanted */
1257 ret = parse_cgroupfs_options(data, &opts);
1258 if (ret)
1259 goto out_unlock;
1260
a8a648c4 1261 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1262 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1263 task_tgid_nr(current), current->comm);
1264
a1a71b45
AR
1265 added_mask = opts.subsys_mask & ~root->subsys_mask;
1266 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1267
cf5d5941 1268 /* Don't allow flags or name to change at remount */
0ce6cba3 1269 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1270 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1271 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1272 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1273 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1274 ret = -EINVAL;
1275 goto out_unlock;
1276 }
1277
f172e67c 1278 /* remounting is not allowed for populated hierarchies */
3c9c825b 1279 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1280 ret = -EBUSY;
0670e08b 1281 goto out_unlock;
cf5d5941 1282 }
ddbcc7e8 1283
a8a648c4 1284 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1285 if (ret)
0670e08b 1286 goto out_unlock;
ddbcc7e8 1287
69e943b7
TH
1288 if (opts.release_agent) {
1289 spin_lock(&release_agent_path_lock);
81a6a5cd 1290 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1291 spin_unlock(&release_agent_path_lock);
1292 }
ddbcc7e8 1293 out_unlock:
66bdc9cf 1294 kfree(opts.release_agent);
c6d57f33 1295 kfree(opts.name);
ddbcc7e8 1296 mutex_unlock(&cgroup_mutex);
ace2bee8 1297 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1298 return ret;
1299}
1300
afeb0f9f
TH
1301/*
1302 * To reduce the fork() overhead for systems that are not actually using
1303 * their cgroups capability, we don't maintain the lists running through
1304 * each css_set to its tasks until we see the list actually used - in other
1305 * words after the first mount.
1306 */
1307static bool use_task_css_set_links __read_mostly;
1308
1309static void cgroup_enable_task_cg_lists(void)
1310{
1311 struct task_struct *p, *g;
1312
1313 write_lock(&css_set_lock);
1314
1315 if (use_task_css_set_links)
1316 goto out_unlock;
1317
1318 use_task_css_set_links = true;
1319
1320 /*
1321 * We need tasklist_lock because RCU is not safe against
1322 * while_each_thread(). Besides, a forking task that has passed
1323 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1324 * is not guaranteed to have its child immediately visible in the
1325 * tasklist if we walk through it with RCU.
1326 */
1327 read_lock(&tasklist_lock);
1328 do_each_thread(g, p) {
1329 task_lock(p);
1330
1331 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1332 task_css_set(p) != &init_css_set);
1333
1334 /*
1335 * We should check if the process is exiting, otherwise
1336 * it will race with cgroup_exit() in that the list
1337 * entry won't be deleted though the process has exited.
1338 */
1339 if (!(p->flags & PF_EXITING))
1340 list_add(&p->cg_list, &task_css_set(p)->tasks);
1341
1342 task_unlock(p);
1343 } while_each_thread(g, p);
1344 read_unlock(&tasklist_lock);
1345out_unlock:
1346 write_unlock(&css_set_lock);
1347}
1348
cc31edce
PM
1349static void init_cgroup_housekeeping(struct cgroup *cgrp)
1350{
2bd59d48 1351 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1352 INIT_LIST_HEAD(&cgrp->sibling);
1353 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1354 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1355 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1356 INIT_LIST_HEAD(&cgrp->pidlists);
1357 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1358 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1359}
c6d57f33 1360
ddbcc7e8
PM
1361static void init_cgroup_root(struct cgroupfs_root *root)
1362{
bd89aabc 1363 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1364
ddbcc7e8 1365 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1366 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1367 cgrp->root = root;
cc31edce 1368 init_cgroup_housekeeping(cgrp);
4e96ee8e 1369 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1370}
1371
c6d57f33
PM
1372static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1373{
1374 struct cgroupfs_root *root;
1375
a1a71b45 1376 if (!opts->subsys_mask && !opts->none)
2bd59d48 1377 return ERR_PTR(-EINVAL);
c6d57f33
PM
1378
1379 root = kzalloc(sizeof(*root), GFP_KERNEL);
1380 if (!root)
1381 return ERR_PTR(-ENOMEM);
1382
1383 init_cgroup_root(root);
2c6ab6d2 1384
c6d57f33
PM
1385 root->flags = opts->flags;
1386 if (opts->release_agent)
1387 strcpy(root->release_agent_path, opts->release_agent);
1388 if (opts->name)
1389 strcpy(root->name, opts->name);
2260e7fc
TH
1390 if (opts->cpuset_clone_children)
1391 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1392 return root;
1393}
1394
35585573 1395static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1396{
1397 LIST_HEAD(tmp_links);
d427dfeb 1398 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1399 struct css_set *cset;
d427dfeb
TH
1400 int i, ret;
1401
1402 lockdep_assert_held(&cgroup_tree_mutex);
1403 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1404
1405 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1406 if (ret < 0)
2bd59d48 1407 goto out;
d427dfeb
TH
1408 root_cgrp->id = ret;
1409
d427dfeb
TH
1410 /*
1411 * We're accessing css_set_count without locking css_set_lock here,
1412 * but that's OK - it can only be increased by someone holding
1413 * cgroup_lock, and that's us. The worst that can happen is that we
1414 * have some link structures left over
1415 */
1416 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1417 if (ret)
2bd59d48 1418 goto out;
d427dfeb
TH
1419
1420 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1421 ret = cgroup_init_root_id(root, 2, 0);
1422 if (ret)
2bd59d48 1423 goto out;
d427dfeb 1424
2bd59d48
TH
1425 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1426 KERNFS_ROOT_CREATE_DEACTIVATED,
1427 root_cgrp);
1428 if (IS_ERR(root->kf_root)) {
1429 ret = PTR_ERR(root->kf_root);
1430 goto exit_root_id;
1431 }
1432 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1433
1434 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1435 if (ret)
2bd59d48 1436 goto destroy_root;
d427dfeb 1437
35585573 1438 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1439 if (ret)
2bd59d48 1440 goto destroy_root;
d427dfeb
TH
1441
1442 /*
1443 * There must be no failure case after here, since rebinding takes
1444 * care of subsystems' refcounts, which are explicitly dropped in
1445 * the failure exit path.
1446 */
1447 list_add(&root->root_list, &cgroup_roots);
1448 cgroup_root_count++;
1449
1450 /*
1451 * Link the top cgroup in this hierarchy into all the css_set
1452 * objects.
1453 */
1454 write_lock(&css_set_lock);
1455 hash_for_each(css_set_table, i, cset, hlist)
1456 link_css_set(&tmp_links, cset, root_cgrp);
1457 write_unlock(&css_set_lock);
1458
1459 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1460 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1461
2bd59d48 1462 kernfs_activate(root_cgrp->kn);
d427dfeb 1463 ret = 0;
2bd59d48 1464 goto out;
d427dfeb 1465
2bd59d48
TH
1466destroy_root:
1467 kernfs_destroy_root(root->kf_root);
1468 root->kf_root = NULL;
1469exit_root_id:
d427dfeb 1470 cgroup_exit_root_id(root);
2bd59d48 1471out:
d427dfeb
TH
1472 free_cgrp_cset_links(&tmp_links);
1473 return ret;
1474}
1475
f7e83571 1476static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1477 int flags, const char *unused_dev_name,
f7e83571 1478 void *data)
ddbcc7e8 1479{
2bd59d48 1480 struct cgroupfs_root *root;
ddbcc7e8 1481 struct cgroup_sb_opts opts;
2bd59d48 1482 struct dentry *dentry;
8e30e2b8 1483 int ret;
56fde9e0
TH
1484
1485 /*
1486 * The first time anyone tries to mount a cgroup, enable the list
1487 * linking each css_set to its tasks and fix up all existing tasks.
1488 */
1489 if (!use_task_css_set_links)
1490 cgroup_enable_task_cg_lists();
776f02fa 1491retry:
8e30e2b8 1492 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1493 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1494
1495 /* First find the desired set of subsystems */
ddbcc7e8 1496 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1497 if (ret)
8e30e2b8 1498 goto out_unlock;
ddbcc7e8 1499
2bd59d48
TH
1500 /* look for a matching existing root */
1501 for_each_active_root(root) {
1502 bool name_match = false;
ddbcc7e8 1503
2bd59d48
TH
1504 /*
1505 * If we asked for a name then it must match. Also, if
1506 * name matches but sybsys_mask doesn't, we should fail.
1507 * Remember whether name matched.
1508 */
1509 if (opts.name) {
1510 if (strcmp(opts.name, root->name))
1511 continue;
1512 name_match = true;
1513 }
ddbcc7e8 1514
c6d57f33 1515 /*
2bd59d48
TH
1516 * If we asked for subsystems (or explicitly for no
1517 * subsystems) then they must match.
c6d57f33 1518 */
2bd59d48
TH
1519 if ((opts.subsys_mask || opts.none) &&
1520 (opts.subsys_mask != root->subsys_mask)) {
1521 if (!name_match)
1522 continue;
1523 ret = -EBUSY;
1524 goto out_unlock;
1525 }
873fe09e 1526
c7ba8287 1527 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1528 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1529 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1530 ret = -EINVAL;
8e30e2b8 1531 goto out_unlock;
2a0ff3fb
JL
1532 } else {
1533 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1534 }
873fe09e 1535 }
2bd59d48 1536
776f02fa
TH
1537 /*
1538 * A root's lifetime is governed by its top cgroup. Zero
1539 * ref indicate that the root is being destroyed. Wait for
1540 * destruction to complete so that the subsystems are free.
1541 * We can use wait_queue for the wait but this path is
1542 * super cold. Let's just sleep for a bit and retry.
1543 */
1544 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1545 mutex_unlock(&cgroup_mutex);
1546 mutex_unlock(&cgroup_tree_mutex);
1547 msleep(10);
1548 goto retry;
1549 }
1550
1551 ret = 0;
2bd59d48 1552 goto out_unlock;
ddbcc7e8
PM
1553 }
1554
2bd59d48
TH
1555 /* no such thing, create a new one */
1556 root = cgroup_root_from_opts(&opts);
1557 if (IS_ERR(root)) {
1558 ret = PTR_ERR(root);
1559 goto out_unlock;
1560 }
1561
35585573 1562 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1563 if (ret)
1564 cgroup_free_root(root);
1565
8e30e2b8 1566out_unlock:
e25e2cbb 1567 mutex_unlock(&cgroup_mutex);
ace2bee8 1568 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1569
c6d57f33
PM
1570 kfree(opts.release_agent);
1571 kfree(opts.name);
8e30e2b8 1572
2bd59d48 1573 if (ret)
8e30e2b8 1574 return ERR_PTR(ret);
2bd59d48
TH
1575
1576 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1577 if (IS_ERR(dentry))
776f02fa 1578 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1579 return dentry;
1580}
1581
1582static void cgroup_kill_sb(struct super_block *sb)
1583{
1584 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1585 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1586
776f02fa 1587 cgroup_put(&root->top_cgroup);
2bd59d48 1588 kernfs_kill_sb(sb);
ddbcc7e8
PM
1589}
1590
ddbcc7e8
PM
1591static struct file_system_type cgroup_fs_type = {
1592 .name = "cgroup",
f7e83571 1593 .mount = cgroup_mount,
ddbcc7e8
PM
1594 .kill_sb = cgroup_kill_sb,
1595};
1596
676db4af
GK
1597static struct kobject *cgroup_kobj;
1598
857a2beb 1599/**
913ffdb5 1600 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1601 * @task: target task
857a2beb
TH
1602 * @buf: the buffer to write the path into
1603 * @buflen: the length of the buffer
1604 *
913ffdb5
TH
1605 * Determine @task's cgroup on the first (the one with the lowest non-zero
1606 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1607 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1608 * cgroup controller callbacks.
1609 *
e61734c5 1610 * Return value is the same as kernfs_path().
857a2beb 1611 */
e61734c5 1612char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1613{
1614 struct cgroupfs_root *root;
913ffdb5 1615 struct cgroup *cgrp;
e61734c5
TH
1616 int hierarchy_id = 1;
1617 char *path = NULL;
857a2beb
TH
1618
1619 mutex_lock(&cgroup_mutex);
1620
913ffdb5
TH
1621 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1622
857a2beb
TH
1623 if (root) {
1624 cgrp = task_cgroup_from_root(task, root);
e61734c5 1625 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1626 } else {
1627 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1628 if (strlcpy(buf, "/", buflen) < buflen)
1629 path = buf;
857a2beb
TH
1630 }
1631
1632 mutex_unlock(&cgroup_mutex);
e61734c5 1633 return path;
857a2beb 1634}
913ffdb5 1635EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1636
2f7ee569
TH
1637/*
1638 * Control Group taskset
1639 */
134d3373
TH
1640struct task_and_cgroup {
1641 struct task_struct *task;
1642 struct cgroup *cgrp;
6f4b7e63 1643 struct css_set *cset;
134d3373
TH
1644};
1645
2f7ee569
TH
1646struct cgroup_taskset {
1647 struct task_and_cgroup single;
1648 struct flex_array *tc_array;
1649 int tc_array_len;
1650 int idx;
1651 struct cgroup *cur_cgrp;
1652};
1653
1654/**
1655 * cgroup_taskset_first - reset taskset and return the first task
1656 * @tset: taskset of interest
1657 *
1658 * @tset iteration is initialized and the first task is returned.
1659 */
1660struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1661{
1662 if (tset->tc_array) {
1663 tset->idx = 0;
1664 return cgroup_taskset_next(tset);
1665 } else {
1666 tset->cur_cgrp = tset->single.cgrp;
1667 return tset->single.task;
1668 }
1669}
1670EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1671
1672/**
1673 * cgroup_taskset_next - iterate to the next task in taskset
1674 * @tset: taskset of interest
1675 *
1676 * Return the next task in @tset. Iteration must have been initialized
1677 * with cgroup_taskset_first().
1678 */
1679struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1680{
1681 struct task_and_cgroup *tc;
1682
1683 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1684 return NULL;
1685
1686 tc = flex_array_get(tset->tc_array, tset->idx++);
1687 tset->cur_cgrp = tc->cgrp;
1688 return tc->task;
1689}
1690EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1691
1692/**
d99c8727 1693 * cgroup_taskset_cur_css - return the matching css for the current task
2f7ee569 1694 * @tset: taskset of interest
d99c8727 1695 * @subsys_id: the ID of the target subsystem
2f7ee569 1696 *
d99c8727
TH
1697 * Return the css for the current (last returned) task of @tset for
1698 * subsystem specified by @subsys_id. This function must be preceded by
1699 * either cgroup_taskset_first() or cgroup_taskset_next().
2f7ee569 1700 */
d99c8727
TH
1701struct cgroup_subsys_state *cgroup_taskset_cur_css(struct cgroup_taskset *tset,
1702 int subsys_id)
2f7ee569 1703{
ca8bdcaf 1704 return cgroup_css(tset->cur_cgrp, cgroup_subsys[subsys_id]);
2f7ee569 1705}
d99c8727 1706EXPORT_SYMBOL_GPL(cgroup_taskset_cur_css);
2f7ee569
TH
1707
1708/**
1709 * cgroup_taskset_size - return the number of tasks in taskset
1710 * @tset: taskset of interest
1711 */
1712int cgroup_taskset_size(struct cgroup_taskset *tset)
1713{
1714 return tset->tc_array ? tset->tc_array_len : 1;
1715}
1716EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1717
1718
74a1166d
BB
1719/*
1720 * cgroup_task_migrate - move a task from one cgroup to another.
1721 *
d0b2fdd2 1722 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1723 */
5abb8855
TH
1724static void cgroup_task_migrate(struct cgroup *old_cgrp,
1725 struct task_struct *tsk,
1726 struct css_set *new_cset)
74a1166d 1727{
5abb8855 1728 struct css_set *old_cset;
74a1166d
BB
1729
1730 /*
026085ef
MSB
1731 * We are synchronized through threadgroup_lock() against PF_EXITING
1732 * setting such that we can't race against cgroup_exit() changing the
1733 * css_set to init_css_set and dropping the old one.
74a1166d 1734 */
c84cdf75 1735 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1736 old_cset = task_css_set(tsk);
74a1166d 1737
74a1166d 1738 task_lock(tsk);
5abb8855 1739 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1740 task_unlock(tsk);
1741
74a1166d 1742 write_lock(&css_set_lock);
56fde9e0 1743 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1744 write_unlock(&css_set_lock);
1745
1746 /*
5abb8855
TH
1747 * We just gained a reference on old_cset by taking it from the
1748 * task. As trading it for new_cset is protected by cgroup_mutex,
1749 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1750 */
5abb8855
TH
1751 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1752 put_css_set(old_cset);
74a1166d
BB
1753}
1754
a043e3b2 1755/**
081aa458 1756 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1757 * @cgrp: the cgroup to attach to
081aa458
LZ
1758 * @tsk: the task or the leader of the threadgroup to be attached
1759 * @threadgroup: attach the whole threadgroup?
74a1166d 1760 *
257058ae 1761 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1762 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1763 */
47cfcd09
TH
1764static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1765 bool threadgroup)
74a1166d
BB
1766{
1767 int retval, i, group_size;
74a1166d 1768 struct cgroupfs_root *root = cgrp->root;
1c6727af 1769 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1770 /* threadgroup list cursor and array */
081aa458 1771 struct task_struct *leader = tsk;
134d3373 1772 struct task_and_cgroup *tc;
d846687d 1773 struct flex_array *group;
2f7ee569 1774 struct cgroup_taskset tset = { };
74a1166d
BB
1775
1776 /*
1777 * step 0: in order to do expensive, possibly blocking operations for
1778 * every thread, we cannot iterate the thread group list, since it needs
1779 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1780 * group - group_rwsem prevents new threads from appearing, and if
1781 * threads exit, this will just be an over-estimate.
74a1166d 1782 */
081aa458
LZ
1783 if (threadgroup)
1784 group_size = get_nr_threads(tsk);
1785 else
1786 group_size = 1;
d846687d 1787 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1788 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1789 if (!group)
1790 return -ENOMEM;
d846687d 1791 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 1792 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
1793 if (retval)
1794 goto out_free_group_list;
74a1166d 1795
74a1166d 1796 i = 0;
fb5d2b4c
MSB
1797 /*
1798 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1799 * already PF_EXITING could be freed from underneath us unless we
1800 * take an rcu_read_lock.
1801 */
1802 rcu_read_lock();
74a1166d 1803 do {
134d3373
TH
1804 struct task_and_cgroup ent;
1805
cd3d0952
TH
1806 /* @tsk either already exited or can't exit until the end */
1807 if (tsk->flags & PF_EXITING)
ea84753c 1808 goto next;
cd3d0952 1809
74a1166d
BB
1810 /* as per above, nr_threads may decrease, but not increase. */
1811 BUG_ON(i >= group_size);
134d3373
TH
1812 ent.task = tsk;
1813 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
1814 /* nothing to do if this task is already in the cgroup */
1815 if (ent.cgrp == cgrp)
ea84753c 1816 goto next;
61d1d219
MSB
1817 /*
1818 * saying GFP_ATOMIC has no effect here because we did prealloc
1819 * earlier, but it's good form to communicate our expectations.
1820 */
134d3373 1821 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 1822 BUG_ON(retval != 0);
74a1166d 1823 i++;
ea84753c 1824 next:
081aa458
LZ
1825 if (!threadgroup)
1826 break;
74a1166d 1827 } while_each_thread(leader, tsk);
fb5d2b4c 1828 rcu_read_unlock();
74a1166d
BB
1829 /* remember the number of threads in the array for later. */
1830 group_size = i;
2f7ee569
TH
1831 tset.tc_array = group;
1832 tset.tc_array_len = group_size;
74a1166d 1833
134d3373
TH
1834 /* methods shouldn't be called if no task is actually migrating */
1835 retval = 0;
892a2b90 1836 if (!group_size)
b07ef774 1837 goto out_free_group_list;
134d3373 1838
74a1166d
BB
1839 /*
1840 * step 1: check that we can legitimately attach to the cgroup.
1841 */
1c6727af
TH
1842 for_each_css(css, i, cgrp) {
1843 if (css->ss->can_attach) {
1844 retval = css->ss->can_attach(css, &tset);
74a1166d 1845 if (retval) {
1c6727af 1846 failed_css = css;
74a1166d
BB
1847 goto out_cancel_attach;
1848 }
1849 }
74a1166d
BB
1850 }
1851
1852 /*
1853 * step 2: make sure css_sets exist for all threads to be migrated.
1854 * we use find_css_set, which allocates a new one if necessary.
1855 */
74a1166d 1856 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1857 struct css_set *old_cset;
1858
134d3373 1859 tc = flex_array_get(group, i);
a8ad805c 1860 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1861 tc->cset = find_css_set(old_cset, cgrp);
1862 if (!tc->cset) {
61d1d219
MSB
1863 retval = -ENOMEM;
1864 goto out_put_css_set_refs;
74a1166d
BB
1865 }
1866 }
1867
1868 /*
494c167c
TH
1869 * step 3: now that we're guaranteed success wrt the css_sets,
1870 * proceed to move all tasks to the new cgroup. There are no
1871 * failure cases after here, so this is the commit point.
74a1166d 1872 */
74a1166d 1873 for (i = 0; i < group_size; i++) {
134d3373 1874 tc = flex_array_get(group, i);
6f4b7e63 1875 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d
BB
1876 }
1877 /* nothing is sensitive to fork() after this point. */
1878
1879 /*
494c167c 1880 * step 4: do subsystem attach callbacks.
74a1166d 1881 */
1c6727af
TH
1882 for_each_css(css, i, cgrp)
1883 if (css->ss->attach)
1884 css->ss->attach(css, &tset);
74a1166d
BB
1885
1886 /*
1887 * step 5: success! and cleanup
1888 */
74a1166d 1889 retval = 0;
61d1d219
MSB
1890out_put_css_set_refs:
1891 if (retval) {
1892 for (i = 0; i < group_size; i++) {
1893 tc = flex_array_get(group, i);
6f4b7e63 1894 if (!tc->cset)
61d1d219 1895 break;
6f4b7e63 1896 put_css_set(tc->cset);
61d1d219 1897 }
74a1166d
BB
1898 }
1899out_cancel_attach:
74a1166d 1900 if (retval) {
1c6727af
TH
1901 for_each_css(css, i, cgrp) {
1902 if (css == failed_css)
74a1166d 1903 break;
1c6727af
TH
1904 if (css->ss->cancel_attach)
1905 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1906 }
1907 }
74a1166d 1908out_free_group_list:
d846687d 1909 flex_array_free(group);
74a1166d
BB
1910 return retval;
1911}
1912
1913/*
1914 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1915 * function to attach either it or all tasks in its threadgroup. Will lock
1916 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1917 */
74a1166d 1918static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1919{
bbcb81d0 1920 struct task_struct *tsk;
c69e8d9c 1921 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1922 int ret;
1923
74a1166d
BB
1924 if (!cgroup_lock_live_group(cgrp))
1925 return -ENODEV;
1926
b78949eb
MSB
1927retry_find_task:
1928 rcu_read_lock();
bbcb81d0 1929 if (pid) {
73507f33 1930 tsk = find_task_by_vpid(pid);
74a1166d
BB
1931 if (!tsk) {
1932 rcu_read_unlock();
dd4b0a46 1933 ret = -ESRCH;
b78949eb 1934 goto out_unlock_cgroup;
bbcb81d0 1935 }
74a1166d
BB
1936 /*
1937 * even if we're attaching all tasks in the thread group, we
1938 * only need to check permissions on one of them.
1939 */
c69e8d9c 1940 tcred = __task_cred(tsk);
14a590c3
EB
1941 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1942 !uid_eq(cred->euid, tcred->uid) &&
1943 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1944 rcu_read_unlock();
b78949eb
MSB
1945 ret = -EACCES;
1946 goto out_unlock_cgroup;
bbcb81d0 1947 }
b78949eb
MSB
1948 } else
1949 tsk = current;
cd3d0952
TH
1950
1951 if (threadgroup)
b78949eb 1952 tsk = tsk->group_leader;
c4c27fbd
MG
1953
1954 /*
14a40ffc 1955 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1956 * trapped in a cpuset, or RT worker may be born in a cgroup
1957 * with no rt_runtime allocated. Just say no.
1958 */
14a40ffc 1959 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1960 ret = -EINVAL;
1961 rcu_read_unlock();
1962 goto out_unlock_cgroup;
1963 }
1964
b78949eb
MSB
1965 get_task_struct(tsk);
1966 rcu_read_unlock();
1967
1968 threadgroup_lock(tsk);
1969 if (threadgroup) {
1970 if (!thread_group_leader(tsk)) {
1971 /*
1972 * a race with de_thread from another thread's exec()
1973 * may strip us of our leadership, if this happens,
1974 * there is no choice but to throw this task away and
1975 * try again; this is
1976 * "double-double-toil-and-trouble-check locking".
1977 */
1978 threadgroup_unlock(tsk);
1979 put_task_struct(tsk);
1980 goto retry_find_task;
1981 }
081aa458
LZ
1982 }
1983
1984 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1985
cd3d0952
TH
1986 threadgroup_unlock(tsk);
1987
bbcb81d0 1988 put_task_struct(tsk);
b78949eb 1989out_unlock_cgroup:
47cfcd09 1990 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1991 return ret;
1992}
1993
7ae1bad9
TH
1994/**
1995 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1996 * @from: attach to all cgroups of a given task
1997 * @tsk: the task to be attached
1998 */
1999int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2000{
2001 struct cgroupfs_root *root;
2002 int retval = 0;
2003
47cfcd09 2004 mutex_lock(&cgroup_mutex);
7ae1bad9 2005 for_each_active_root(root) {
6f4b7e63 2006 struct cgroup *from_cgrp = task_cgroup_from_root(from, root);
7ae1bad9 2007
6f4b7e63 2008 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2009 if (retval)
2010 break;
2011 }
47cfcd09 2012 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2013
2014 return retval;
2015}
2016EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2017
182446d0
TH
2018static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2019 struct cftype *cft, u64 pid)
74a1166d 2020{
182446d0 2021 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2022}
2023
182446d0
TH
2024static int cgroup_procs_write(struct cgroup_subsys_state *css,
2025 struct cftype *cft, u64 tgid)
af351026 2026{
182446d0 2027 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2028}
2029
182446d0
TH
2030static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2031 struct cftype *cft, const char *buffer)
e788e066 2032{
5f469907
TH
2033 struct cgroupfs_root *root = css->cgroup->root;
2034
2035 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2036 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2037 return -ENODEV;
69e943b7 2038 spin_lock(&release_agent_path_lock);
5f469907
TH
2039 strlcpy(root->release_agent_path, buffer,
2040 sizeof(root->release_agent_path));
69e943b7 2041 spin_unlock(&release_agent_path_lock);
47cfcd09 2042 mutex_unlock(&cgroup_mutex);
e788e066
PM
2043 return 0;
2044}
2045
2da8ca82 2046static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2047{
2da8ca82 2048 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2049
e788e066
PM
2050 if (!cgroup_lock_live_group(cgrp))
2051 return -ENODEV;
2052 seq_puts(seq, cgrp->root->release_agent_path);
2053 seq_putc(seq, '\n');
47cfcd09 2054 mutex_unlock(&cgroup_mutex);
e788e066
PM
2055 return 0;
2056}
2057
2da8ca82 2058static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2059{
2da8ca82
TH
2060 struct cgroup *cgrp = seq_css(seq)->cgroup;
2061
2062 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2063 return 0;
2064}
2065
2bd59d48
TH
2066static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2067 size_t nbytes, loff_t off)
355e0c48 2068{
2bd59d48
TH
2069 struct cgroup *cgrp = of->kn->parent->priv;
2070 struct cftype *cft = of->kn->priv;
2071 struct cgroup_subsys_state *css;
a742c59d 2072 int ret;
355e0c48 2073
2bd59d48
TH
2074 /*
2075 * kernfs guarantees that a file isn't deleted with operations in
2076 * flight, which means that the matching css is and stays alive and
2077 * doesn't need to be pinned. The RCU locking is not necessary
2078 * either. It's just for the convenience of using cgroup_css().
2079 */
2080 rcu_read_lock();
2081 css = cgroup_css(cgrp, cft->ss);
2082 rcu_read_unlock();
a742c59d
TH
2083
2084 if (cft->write_string) {
2085 ret = cft->write_string(css, cft, strstrip(buf));
2086 } else if (cft->write_u64) {
2087 unsigned long long v;
2088 ret = kstrtoull(buf, 0, &v);
2089 if (!ret)
2090 ret = cft->write_u64(css, cft, v);
2091 } else if (cft->write_s64) {
2092 long long v;
2093 ret = kstrtoll(buf, 0, &v);
2094 if (!ret)
2095 ret = cft->write_s64(css, cft, v);
2096 } else if (cft->trigger) {
2097 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2098 } else {
a742c59d 2099 ret = -EINVAL;
e73d2c61 2100 }
2bd59d48 2101
a742c59d 2102 return ret ?: nbytes;
355e0c48
PM
2103}
2104
6612f05b 2105static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2106{
2bd59d48 2107 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2108}
2109
6612f05b 2110static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2111{
2bd59d48 2112 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2113}
2114
6612f05b 2115static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2116{
2bd59d48 2117 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2118}
2119
91796569 2120static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2121{
7da11279
TH
2122 struct cftype *cft = seq_cft(m);
2123 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2124
2da8ca82
TH
2125 if (cft->seq_show)
2126 return cft->seq_show(m, arg);
e73d2c61 2127
f4c753b7 2128 if (cft->read_u64)
896f5199
TH
2129 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2130 else if (cft->read_s64)
2131 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2132 else
2133 return -EINVAL;
2134 return 0;
91796569
PM
2135}
2136
2bd59d48
TH
2137static struct kernfs_ops cgroup_kf_single_ops = {
2138 .atomic_write_len = PAGE_SIZE,
2139 .write = cgroup_file_write,
2140 .seq_show = cgroup_seqfile_show,
91796569
PM
2141};
2142
2bd59d48
TH
2143static struct kernfs_ops cgroup_kf_ops = {
2144 .atomic_write_len = PAGE_SIZE,
2145 .write = cgroup_file_write,
2146 .seq_start = cgroup_seqfile_start,
2147 .seq_next = cgroup_seqfile_next,
2148 .seq_stop = cgroup_seqfile_stop,
2149 .seq_show = cgroup_seqfile_show,
2150};
ddbcc7e8
PM
2151
2152/*
2153 * cgroup_rename - Only allow simple rename of directories in place.
2154 */
2bd59d48
TH
2155static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2156 const char *new_name_str)
ddbcc7e8 2157{
2bd59d48 2158 struct cgroup *cgrp = kn->priv;
2bd59d48 2159 int ret;
65dff759 2160
2bd59d48 2161 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2162 return -ENOTDIR;
2bd59d48 2163 if (kn->parent != new_parent)
ddbcc7e8 2164 return -EIO;
65dff759 2165
6db8e85c
TH
2166 /*
2167 * This isn't a proper migration and its usefulness is very
2168 * limited. Disallow if sane_behavior.
2169 */
2170 if (cgroup_sane_behavior(cgrp))
2171 return -EPERM;
2172
2bd59d48
TH
2173 mutex_lock(&cgroup_tree_mutex);
2174 mutex_lock(&cgroup_mutex);
2175
2176 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2177
2bd59d48
TH
2178 mutex_unlock(&cgroup_mutex);
2179 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2180 return ret;
ddbcc7e8
PM
2181}
2182
2bb566cb 2183static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2184{
8d7e6fb0 2185 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2186 struct kernfs_node *kn;
2187 struct lock_class_key *key = NULL;
05ef1d7c 2188
2bd59d48
TH
2189#ifdef CONFIG_DEBUG_LOCK_ALLOC
2190 key = &cft->lockdep_key;
2191#endif
2192 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2193 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2194 NULL, false, key);
2195 if (IS_ERR(kn))
2196 return PTR_ERR(kn);
2197 return 0;
ddbcc7e8
PM
2198}
2199
b1f28d31
TH
2200/**
2201 * cgroup_addrm_files - add or remove files to a cgroup directory
2202 * @cgrp: the target cgroup
b1f28d31
TH
2203 * @cfts: array of cftypes to be added
2204 * @is_add: whether to add or remove
2205 *
2206 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2207 * For removals, this function never fails. If addition fails, this
2208 * function doesn't remove files already added. The caller is responsible
2209 * for cleaning up.
b1f28d31 2210 */
2bb566cb
TH
2211static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2212 bool is_add)
ddbcc7e8 2213{
03b1cde6 2214 struct cftype *cft;
b1f28d31
TH
2215 int ret;
2216
ace2bee8 2217 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2218
2219 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2220 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2221 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2222 continue;
f33fddc2
G
2223 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2224 continue;
2225 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2226 continue;
2227
2739d3cc 2228 if (is_add) {
2bb566cb 2229 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2230 if (ret) {
2739d3cc 2231 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2232 cft->name, ret);
2233 return ret;
2234 }
2739d3cc
LZ
2235 } else {
2236 cgroup_rm_file(cgrp, cft);
db0416b6 2237 }
ddbcc7e8 2238 }
b1f28d31 2239 return 0;
ddbcc7e8
PM
2240}
2241
21a2d343 2242static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2243{
2244 LIST_HEAD(pending);
2bb566cb 2245 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2246 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2247 struct cgroup_subsys_state *css;
9ccece80 2248 int ret = 0;
8e3f6541 2249
21a2d343 2250 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2251
21a2d343
TH
2252 /* don't bother if @ss isn't attached */
2253 if (ss->root == &cgroup_dummy_root)
9ccece80 2254 return 0;
e8c82d20 2255
e8c82d20 2256 /* add/rm files for all cgroups created before */
ca8bdcaf 2257 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2258 struct cgroup *cgrp = css->cgroup;
2259
e8c82d20
LZ
2260 if (cgroup_is_dead(cgrp))
2261 continue;
2262
21a2d343 2263 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2264 if (ret)
2265 break;
8e3f6541 2266 }
21a2d343
TH
2267
2268 if (is_add && !ret)
2269 kernfs_activate(root->kn);
9ccece80 2270 return ret;
8e3f6541
TH
2271}
2272
2da440a2
TH
2273static void cgroup_exit_cftypes(struct cftype *cfts)
2274{
2275 struct cftype *cft;
2276
2bd59d48
TH
2277 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2278 /* free copy for custom atomic_write_len, see init_cftypes() */
2279 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2280 kfree(cft->kf_ops);
2281 cft->kf_ops = NULL;
2da440a2 2282 cft->ss = NULL;
2bd59d48 2283 }
2da440a2
TH
2284}
2285
2bd59d48 2286static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2287{
2288 struct cftype *cft;
2289
2bd59d48
TH
2290 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2291 struct kernfs_ops *kf_ops;
2292
0adb0704
TH
2293 WARN_ON(cft->ss || cft->kf_ops);
2294
2bd59d48
TH
2295 if (cft->seq_start)
2296 kf_ops = &cgroup_kf_ops;
2297 else
2298 kf_ops = &cgroup_kf_single_ops;
2299
2300 /*
2301 * Ugh... if @cft wants a custom max_write_len, we need to
2302 * make a copy of kf_ops to set its atomic_write_len.
2303 */
2304 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2305 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2306 if (!kf_ops) {
2307 cgroup_exit_cftypes(cfts);
2308 return -ENOMEM;
2309 }
2310 kf_ops->atomic_write_len = cft->max_write_len;
2311 }
2312
2313 cft->kf_ops = kf_ops;
2da440a2 2314 cft->ss = ss;
2bd59d48
TH
2315 }
2316
2317 return 0;
2da440a2
TH
2318}
2319
21a2d343
TH
2320static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2321{
2322 lockdep_assert_held(&cgroup_tree_mutex);
2323
2324 if (!cfts || !cfts[0].ss)
2325 return -ENOENT;
2326
2327 list_del(&cfts->node);
2328 cgroup_apply_cftypes(cfts, false);
2329 cgroup_exit_cftypes(cfts);
2330 return 0;
2331}
2332
80b13586
TH
2333/**
2334 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2335 * @cfts: zero-length name terminated array of cftypes
2336 *
2337 * Unregister @cfts. Files described by @cfts are removed from all
2338 * existing cgroups and all future cgroups won't have them either. This
2339 * function can be called anytime whether @cfts' subsys is attached or not.
2340 *
2341 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2342 * registered.
2343 */
2344int cgroup_rm_cftypes(struct cftype *cfts)
2345{
21a2d343 2346 int ret;
80b13586 2347
21a2d343
TH
2348 mutex_lock(&cgroup_tree_mutex);
2349 ret = cgroup_rm_cftypes_locked(cfts);
2350 mutex_unlock(&cgroup_tree_mutex);
2351 return ret;
80b13586
TH
2352}
2353
8e3f6541
TH
2354/**
2355 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2356 * @ss: target cgroup subsystem
2357 * @cfts: zero-length name terminated array of cftypes
2358 *
2359 * Register @cfts to @ss. Files described by @cfts are created for all
2360 * existing cgroups to which @ss is attached and all future cgroups will
2361 * have them too. This function can be called anytime whether @ss is
2362 * attached or not.
2363 *
2364 * Returns 0 on successful registration, -errno on failure. Note that this
2365 * function currently returns 0 as long as @cfts registration is successful
2366 * even if some file creation attempts on existing cgroups fail.
2367 */
03b1cde6 2368int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2369{
9ccece80 2370 int ret;
8e3f6541 2371
2bd59d48
TH
2372 ret = cgroup_init_cftypes(ss, cfts);
2373 if (ret)
2374 return ret;
2bb566cb 2375
21a2d343
TH
2376 mutex_lock(&cgroup_tree_mutex);
2377
0adb0704 2378 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2379 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2380 if (ret)
21a2d343
TH
2381 cgroup_rm_cftypes_locked(cfts);
2382
2383 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2384 return ret;
8e3f6541
TH
2385}
2386EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2387
a043e3b2
LZ
2388/**
2389 * cgroup_task_count - count the number of tasks in a cgroup.
2390 * @cgrp: the cgroup in question
2391 *
2392 * Return the number of tasks in the cgroup.
2393 */
07bc356e 2394static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2395{
2396 int count = 0;
69d0206c 2397 struct cgrp_cset_link *link;
817929ec
PM
2398
2399 read_lock(&css_set_lock);
69d0206c
TH
2400 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2401 count += atomic_read(&link->cset->refcount);
817929ec 2402 read_unlock(&css_set_lock);
bbcb81d0
PM
2403 return count;
2404}
2405
53fa5261 2406/**
492eb21b
TH
2407 * css_next_child - find the next child of a given css
2408 * @pos_css: the current position (%NULL to initiate traversal)
2409 * @parent_css: css whose children to walk
53fa5261 2410 *
492eb21b 2411 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2412 * under either cgroup_mutex or RCU read lock. The only requirement is
2413 * that @parent_css and @pos_css are accessible. The next sibling is
2414 * guaranteed to be returned regardless of their states.
53fa5261 2415 */
492eb21b
TH
2416struct cgroup_subsys_state *
2417css_next_child(struct cgroup_subsys_state *pos_css,
2418 struct cgroup_subsys_state *parent_css)
53fa5261 2419{
492eb21b
TH
2420 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2421 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2422 struct cgroup *next;
2423
ace2bee8 2424 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2425
2426 /*
2427 * @pos could already have been removed. Once a cgroup is removed,
2428 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2429 * changes. As CGRP_DEAD assertion is serialized and happens
2430 * before the cgroup is taken off the ->sibling list, if we see it
2431 * unasserted, it's guaranteed that the next sibling hasn't
2432 * finished its grace period even if it's already removed, and thus
2433 * safe to dereference from this RCU critical section. If
2434 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2435 * to be visible as %true here.
3b287a50
TH
2436 *
2437 * If @pos is dead, its next pointer can't be dereferenced;
2438 * however, as each cgroup is given a monotonically increasing
2439 * unique serial number and always appended to the sibling list,
2440 * the next one can be found by walking the parent's children until
2441 * we see a cgroup with higher serial number than @pos's. While
2442 * this path can be slower, it's taken only when either the current
2443 * cgroup is removed or iteration and removal race.
53fa5261 2444 */
3b287a50
TH
2445 if (!pos) {
2446 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2447 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2448 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2449 } else {
2450 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2451 if (next->serial_nr > pos->serial_nr)
2452 break;
53fa5261
TH
2453 }
2454
492eb21b
TH
2455 if (&next->sibling == &cgrp->children)
2456 return NULL;
2457
ca8bdcaf 2458 return cgroup_css(next, parent_css->ss);
53fa5261 2459}
492eb21b 2460EXPORT_SYMBOL_GPL(css_next_child);
53fa5261 2461
574bd9f7 2462/**
492eb21b 2463 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2464 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2465 * @root: css whose descendants to walk
574bd9f7 2466 *
492eb21b 2467 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2468 * to visit for pre-order traversal of @root's descendants. @root is
2469 * included in the iteration and the first node to be visited.
75501a6d 2470 *
87fb54f1
TH
2471 * While this function requires cgroup_mutex or RCU read locking, it
2472 * doesn't require the whole traversal to be contained in a single critical
2473 * section. This function will return the correct next descendant as long
2474 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2475 */
492eb21b
TH
2476struct cgroup_subsys_state *
2477css_next_descendant_pre(struct cgroup_subsys_state *pos,
2478 struct cgroup_subsys_state *root)
574bd9f7 2479{
492eb21b 2480 struct cgroup_subsys_state *next;
574bd9f7 2481
ace2bee8 2482 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2483
bd8815a6 2484 /* if first iteration, visit @root */
7805d000 2485 if (!pos)
bd8815a6 2486 return root;
574bd9f7
TH
2487
2488 /* visit the first child if exists */
492eb21b 2489 next = css_next_child(NULL, pos);
574bd9f7
TH
2490 if (next)
2491 return next;
2492
2493 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2494 while (pos != root) {
2495 next = css_next_child(pos, css_parent(pos));
75501a6d 2496 if (next)
574bd9f7 2497 return next;
492eb21b 2498 pos = css_parent(pos);
7805d000 2499 }
574bd9f7
TH
2500
2501 return NULL;
2502}
492eb21b 2503EXPORT_SYMBOL_GPL(css_next_descendant_pre);
574bd9f7 2504
12a9d2fe 2505/**
492eb21b
TH
2506 * css_rightmost_descendant - return the rightmost descendant of a css
2507 * @pos: css of interest
12a9d2fe 2508 *
492eb21b
TH
2509 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2510 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2511 * subtree of @pos.
75501a6d 2512 *
87fb54f1
TH
2513 * While this function requires cgroup_mutex or RCU read locking, it
2514 * doesn't require the whole traversal to be contained in a single critical
2515 * section. This function will return the correct rightmost descendant as
2516 * long as @pos is accessible.
12a9d2fe 2517 */
492eb21b
TH
2518struct cgroup_subsys_state *
2519css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2520{
492eb21b 2521 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2522
ace2bee8 2523 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2524
2525 do {
2526 last = pos;
2527 /* ->prev isn't RCU safe, walk ->next till the end */
2528 pos = NULL;
492eb21b 2529 css_for_each_child(tmp, last)
12a9d2fe
TH
2530 pos = tmp;
2531 } while (pos);
2532
2533 return last;
2534}
492eb21b 2535EXPORT_SYMBOL_GPL(css_rightmost_descendant);
12a9d2fe 2536
492eb21b
TH
2537static struct cgroup_subsys_state *
2538css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2539{
492eb21b 2540 struct cgroup_subsys_state *last;
574bd9f7
TH
2541
2542 do {
2543 last = pos;
492eb21b 2544 pos = css_next_child(NULL, pos);
574bd9f7
TH
2545 } while (pos);
2546
2547 return last;
2548}
2549
2550/**
492eb21b 2551 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2552 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2553 * @root: css whose descendants to walk
574bd9f7 2554 *
492eb21b 2555 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2556 * to visit for post-order traversal of @root's descendants. @root is
2557 * included in the iteration and the last node to be visited.
75501a6d 2558 *
87fb54f1
TH
2559 * While this function requires cgroup_mutex or RCU read locking, it
2560 * doesn't require the whole traversal to be contained in a single critical
2561 * section. This function will return the correct next descendant as long
2562 * as both @pos and @cgroup are accessible and @pos is a descendant of
2563 * @cgroup.
574bd9f7 2564 */
492eb21b
TH
2565struct cgroup_subsys_state *
2566css_next_descendant_post(struct cgroup_subsys_state *pos,
2567 struct cgroup_subsys_state *root)
574bd9f7 2568{
492eb21b 2569 struct cgroup_subsys_state *next;
574bd9f7 2570
ace2bee8 2571 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2572
58b79a91
TH
2573 /* if first iteration, visit leftmost descendant which may be @root */
2574 if (!pos)
2575 return css_leftmost_descendant(root);
574bd9f7 2576
bd8815a6
TH
2577 /* if we visited @root, we're done */
2578 if (pos == root)
2579 return NULL;
2580
574bd9f7 2581 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2582 next = css_next_child(pos, css_parent(pos));
75501a6d 2583 if (next)
492eb21b 2584 return css_leftmost_descendant(next);
574bd9f7
TH
2585
2586 /* no sibling left, visit parent */
bd8815a6 2587 return css_parent(pos);
574bd9f7 2588}
492eb21b 2589EXPORT_SYMBOL_GPL(css_next_descendant_post);
574bd9f7 2590
0942eeee 2591/**
72ec7029 2592 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2593 * @it: the iterator to advance
2594 *
2595 * Advance @it to the next css_set to walk.
d515876e 2596 */
72ec7029 2597static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2598{
2599 struct list_head *l = it->cset_link;
2600 struct cgrp_cset_link *link;
2601 struct css_set *cset;
2602
2603 /* Advance to the next non-empty css_set */
2604 do {
2605 l = l->next;
72ec7029 2606 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2607 it->cset_link = NULL;
2608 return;
2609 }
2610 link = list_entry(l, struct cgrp_cset_link, cset_link);
2611 cset = link->cset;
2612 } while (list_empty(&cset->tasks));
2613 it->cset_link = l;
2614 it->task = cset->tasks.next;
2615}
2616
0942eeee 2617/**
72ec7029
TH
2618 * css_task_iter_start - initiate task iteration
2619 * @css: the css to walk tasks of
0942eeee
TH
2620 * @it: the task iterator to use
2621 *
72ec7029
TH
2622 * Initiate iteration through the tasks of @css. The caller can call
2623 * css_task_iter_next() to walk through the tasks until the function
2624 * returns NULL. On completion of iteration, css_task_iter_end() must be
2625 * called.
0942eeee
TH
2626 *
2627 * Note that this function acquires a lock which is released when the
2628 * iteration finishes. The caller can't sleep while iteration is in
2629 * progress.
2630 */
72ec7029
TH
2631void css_task_iter_start(struct cgroup_subsys_state *css,
2632 struct css_task_iter *it)
c6ca5750 2633 __acquires(css_set_lock)
817929ec 2634{
56fde9e0
TH
2635 /* no one should try to iterate before mounting cgroups */
2636 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2637
817929ec 2638 read_lock(&css_set_lock);
c59cd3d8 2639
72ec7029
TH
2640 it->origin_css = css;
2641 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2642
72ec7029 2643 css_advance_task_iter(it);
817929ec
PM
2644}
2645
0942eeee 2646/**
72ec7029 2647 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2648 * @it: the task iterator being iterated
2649 *
2650 * The "next" function for task iteration. @it should have been
72ec7029
TH
2651 * initialized via css_task_iter_start(). Returns NULL when the iteration
2652 * reaches the end.
0942eeee 2653 */
72ec7029 2654struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2655{
2656 struct task_struct *res;
2657 struct list_head *l = it->task;
69d0206c 2658 struct cgrp_cset_link *link;
817929ec
PM
2659
2660 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2661 if (!it->cset_link)
817929ec
PM
2662 return NULL;
2663 res = list_entry(l, struct task_struct, cg_list);
2664 /* Advance iterator to find next entry */
2665 l = l->next;
69d0206c
TH
2666 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2667 if (l == &link->cset->tasks) {
0942eeee
TH
2668 /*
2669 * We reached the end of this task list - move on to the
2670 * next cgrp_cset_link.
2671 */
72ec7029 2672 css_advance_task_iter(it);
817929ec
PM
2673 } else {
2674 it->task = l;
2675 }
2676 return res;
2677}
2678
0942eeee 2679/**
72ec7029 2680 * css_task_iter_end - finish task iteration
0942eeee
TH
2681 * @it: the task iterator to finish
2682 *
72ec7029 2683 * Finish task iteration started by css_task_iter_start().
0942eeee 2684 */
72ec7029 2685void css_task_iter_end(struct css_task_iter *it)
c6ca5750 2686 __releases(css_set_lock)
817929ec
PM
2687{
2688 read_unlock(&css_set_lock);
2689}
2690
31a7df01
CW
2691static inline int started_after_time(struct task_struct *t1,
2692 struct timespec *time,
2693 struct task_struct *t2)
2694{
2695 int start_diff = timespec_compare(&t1->start_time, time);
2696 if (start_diff > 0) {
2697 return 1;
2698 } else if (start_diff < 0) {
2699 return 0;
2700 } else {
2701 /*
2702 * Arbitrarily, if two processes started at the same
2703 * time, we'll say that the lower pointer value
2704 * started first. Note that t2 may have exited by now
2705 * so this may not be a valid pointer any longer, but
2706 * that's fine - it still serves to distinguish
2707 * between two tasks started (effectively) simultaneously.
2708 */
2709 return t1 > t2;
2710 }
2711}
2712
2713/*
2714 * This function is a callback from heap_insert() and is used to order
2715 * the heap.
2716 * In this case we order the heap in descending task start time.
2717 */
2718static inline int started_after(void *p1, void *p2)
2719{
2720 struct task_struct *t1 = p1;
2721 struct task_struct *t2 = p2;
2722 return started_after_time(t1, &t2->start_time, t2);
2723}
2724
2725/**
72ec7029
TH
2726 * css_scan_tasks - iterate though all the tasks in a css
2727 * @css: the css to iterate tasks of
e535837b
TH
2728 * @test: optional test callback
2729 * @process: process callback
2730 * @data: data passed to @test and @process
2731 * @heap: optional pre-allocated heap used for task iteration
31a7df01 2732 *
72ec7029
TH
2733 * Iterate through all the tasks in @css, calling @test for each, and if it
2734 * returns %true, call @process for it also.
31a7df01 2735 *
e535837b 2736 * @test may be NULL, meaning always true (select all tasks), which
72ec7029 2737 * effectively duplicates css_task_iter_{start,next,end}() but does not
e535837b
TH
2738 * lock css_set_lock for the call to @process.
2739 *
2740 * It is guaranteed that @process will act on every task that is a member
72ec7029
TH
2741 * of @css for the duration of this call. This function may or may not
2742 * call @process for tasks that exit or move to a different css during the
2743 * call, or are forked or move into the css during the call.
31a7df01 2744 *
e535837b
TH
2745 * Note that @test may be called with locks held, and may in some
2746 * situations be called multiple times for the same task, so it should be
2747 * cheap.
31a7df01 2748 *
e535837b
TH
2749 * If @heap is non-NULL, a heap has been pre-allocated and will be used for
2750 * heap operations (and its "gt" member will be overwritten), else a
2751 * temporary heap will be used (allocation of which may cause this function
2752 * to fail).
31a7df01 2753 */
72ec7029
TH
2754int css_scan_tasks(struct cgroup_subsys_state *css,
2755 bool (*test)(struct task_struct *, void *),
2756 void (*process)(struct task_struct *, void *),
2757 void *data, struct ptr_heap *heap)
31a7df01
CW
2758{
2759 int retval, i;
72ec7029 2760 struct css_task_iter it;
31a7df01
CW
2761 struct task_struct *p, *dropped;
2762 /* Never dereference latest_task, since it's not refcounted */
2763 struct task_struct *latest_task = NULL;
2764 struct ptr_heap tmp_heap;
31a7df01
CW
2765 struct timespec latest_time = { 0, 0 };
2766
e535837b 2767 if (heap) {
31a7df01 2768 /* The caller supplied our heap and pre-allocated its memory */
31a7df01
CW
2769 heap->gt = &started_after;
2770 } else {
2771 /* We need to allocate our own heap memory */
2772 heap = &tmp_heap;
2773 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2774 if (retval)
2775 /* cannot allocate the heap */
2776 return retval;
2777 }
2778
2779 again:
2780 /*
72ec7029 2781 * Scan tasks in the css, using the @test callback to determine
e535837b
TH
2782 * which are of interest, and invoking @process callback on the
2783 * ones which need an update. Since we don't want to hold any
2784 * locks during the task updates, gather tasks to be processed in a
2785 * heap structure. The heap is sorted by descending task start
2786 * time. If the statically-sized heap fills up, we overflow tasks
2787 * that started later, and in future iterations only consider tasks
2788 * that started after the latest task in the previous pass. This
31a7df01
CW
2789 * guarantees forward progress and that we don't miss any tasks.
2790 */
2791 heap->size = 0;
72ec7029
TH
2792 css_task_iter_start(css, &it);
2793 while ((p = css_task_iter_next(&it))) {
31a7df01
CW
2794 /*
2795 * Only affect tasks that qualify per the caller's callback,
2796 * if he provided one
2797 */
e535837b 2798 if (test && !test(p, data))
31a7df01
CW
2799 continue;
2800 /*
2801 * Only process tasks that started after the last task
2802 * we processed
2803 */
2804 if (!started_after_time(p, &latest_time, latest_task))
2805 continue;
2806 dropped = heap_insert(heap, p);
2807 if (dropped == NULL) {
2808 /*
2809 * The new task was inserted; the heap wasn't
2810 * previously full
2811 */
2812 get_task_struct(p);
2813 } else if (dropped != p) {
2814 /*
2815 * The new task was inserted, and pushed out a
2816 * different task
2817 */
2818 get_task_struct(p);
2819 put_task_struct(dropped);
2820 }
2821 /*
2822 * Else the new task was newer than anything already in
2823 * the heap and wasn't inserted
2824 */
2825 }
72ec7029 2826 css_task_iter_end(&it);
31a7df01
CW
2827
2828 if (heap->size) {
2829 for (i = 0; i < heap->size; i++) {
4fe91d51 2830 struct task_struct *q = heap->ptrs[i];
31a7df01 2831 if (i == 0) {
4fe91d51
PJ
2832 latest_time = q->start_time;
2833 latest_task = q;
31a7df01
CW
2834 }
2835 /* Process the task per the caller's callback */
e535837b 2836 process(q, data);
4fe91d51 2837 put_task_struct(q);
31a7df01
CW
2838 }
2839 /*
2840 * If we had to process any tasks at all, scan again
2841 * in case some of them were in the middle of forking
2842 * children that didn't get processed.
2843 * Not the most efficient way to do it, but it avoids
2844 * having to take callback_mutex in the fork path
2845 */
2846 goto again;
2847 }
2848 if (heap == &tmp_heap)
2849 heap_free(&tmp_heap);
2850 return 0;
2851}
2852
e535837b 2853static void cgroup_transfer_one_task(struct task_struct *task, void *data)
8cc99345 2854{
e535837b 2855 struct cgroup *new_cgroup = data;
8cc99345 2856
47cfcd09 2857 mutex_lock(&cgroup_mutex);
8cc99345 2858 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 2859 mutex_unlock(&cgroup_mutex);
8cc99345
TH
2860}
2861
2862/**
2863 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2864 * @to: cgroup to which the tasks will be moved
2865 * @from: cgroup in which the tasks currently reside
2866 */
2867int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2868{
72ec7029
TH
2869 return css_scan_tasks(&from->dummy_css, NULL, cgroup_transfer_one_task,
2870 to, NULL);
8cc99345
TH
2871}
2872
bbcb81d0 2873/*
102a775e 2874 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2875 *
2876 * Reading this file can return large amounts of data if a cgroup has
2877 * *lots* of attached tasks. So it may need several calls to read(),
2878 * but we cannot guarantee that the information we produce is correct
2879 * unless we produce it entirely atomically.
2880 *
bbcb81d0 2881 */
bbcb81d0 2882
24528255
LZ
2883/* which pidlist file are we talking about? */
2884enum cgroup_filetype {
2885 CGROUP_FILE_PROCS,
2886 CGROUP_FILE_TASKS,
2887};
2888
2889/*
2890 * A pidlist is a list of pids that virtually represents the contents of one
2891 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2892 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2893 * to the cgroup.
2894 */
2895struct cgroup_pidlist {
2896 /*
2897 * used to find which pidlist is wanted. doesn't change as long as
2898 * this particular list stays in the list.
2899 */
2900 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2901 /* array of xids */
2902 pid_t *list;
2903 /* how many elements the above list has */
2904 int length;
24528255
LZ
2905 /* each of these stored in a list by its cgroup */
2906 struct list_head links;
2907 /* pointer to the cgroup we belong to, for list removal purposes */
2908 struct cgroup *owner;
b1a21367
TH
2909 /* for delayed destruction */
2910 struct delayed_work destroy_dwork;
24528255
LZ
2911};
2912
d1d9fd33
BB
2913/*
2914 * The following two functions "fix" the issue where there are more pids
2915 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2916 * TODO: replace with a kernel-wide solution to this problem
2917 */
2918#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2919static void *pidlist_allocate(int count)
2920{
2921 if (PIDLIST_TOO_LARGE(count))
2922 return vmalloc(count * sizeof(pid_t));
2923 else
2924 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2925}
b1a21367 2926
d1d9fd33
BB
2927static void pidlist_free(void *p)
2928{
2929 if (is_vmalloc_addr(p))
2930 vfree(p);
2931 else
2932 kfree(p);
2933}
d1d9fd33 2934
b1a21367
TH
2935/*
2936 * Used to destroy all pidlists lingering waiting for destroy timer. None
2937 * should be left afterwards.
2938 */
2939static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2940{
2941 struct cgroup_pidlist *l, *tmp_l;
2942
2943 mutex_lock(&cgrp->pidlist_mutex);
2944 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2945 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2946 mutex_unlock(&cgrp->pidlist_mutex);
2947
2948 flush_workqueue(cgroup_pidlist_destroy_wq);
2949 BUG_ON(!list_empty(&cgrp->pidlists));
2950}
2951
2952static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2953{
2954 struct delayed_work *dwork = to_delayed_work(work);
2955 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2956 destroy_dwork);
2957 struct cgroup_pidlist *tofree = NULL;
2958
2959 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2960
2961 /*
04502365
TH
2962 * Destroy iff we didn't get queued again. The state won't change
2963 * as destroy_dwork can only be queued while locked.
b1a21367 2964 */
04502365 2965 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2966 list_del(&l->links);
2967 pidlist_free(l->list);
2968 put_pid_ns(l->key.ns);
2969 tofree = l;
2970 }
2971
b1a21367
TH
2972 mutex_unlock(&l->owner->pidlist_mutex);
2973 kfree(tofree);
2974}
2975
bbcb81d0 2976/*
102a775e 2977 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2978 * Returns the number of unique elements.
bbcb81d0 2979 */
6ee211ad 2980static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2981{
102a775e 2982 int src, dest = 1;
102a775e
BB
2983
2984 /*
2985 * we presume the 0th element is unique, so i starts at 1. trivial
2986 * edge cases first; no work needs to be done for either
2987 */
2988 if (length == 0 || length == 1)
2989 return length;
2990 /* src and dest walk down the list; dest counts unique elements */
2991 for (src = 1; src < length; src++) {
2992 /* find next unique element */
2993 while (list[src] == list[src-1]) {
2994 src++;
2995 if (src == length)
2996 goto after;
2997 }
2998 /* dest always points to where the next unique element goes */
2999 list[dest] = list[src];
3000 dest++;
3001 }
3002after:
102a775e
BB
3003 return dest;
3004}
3005
afb2bc14
TH
3006/*
3007 * The two pid files - task and cgroup.procs - guaranteed that the result
3008 * is sorted, which forced this whole pidlist fiasco. As pid order is
3009 * different per namespace, each namespace needs differently sorted list,
3010 * making it impossible to use, for example, single rbtree of member tasks
3011 * sorted by task pointer. As pidlists can be fairly large, allocating one
3012 * per open file is dangerous, so cgroup had to implement shared pool of
3013 * pidlists keyed by cgroup and namespace.
3014 *
3015 * All this extra complexity was caused by the original implementation
3016 * committing to an entirely unnecessary property. In the long term, we
3017 * want to do away with it. Explicitly scramble sort order if
3018 * sane_behavior so that no such expectation exists in the new interface.
3019 *
3020 * Scrambling is done by swapping every two consecutive bits, which is
3021 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3022 */
3023static pid_t pid_fry(pid_t pid)
3024{
3025 unsigned a = pid & 0x55555555;
3026 unsigned b = pid & 0xAAAAAAAA;
3027
3028 return (a << 1) | (b >> 1);
3029}
3030
3031static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3032{
3033 if (cgroup_sane_behavior(cgrp))
3034 return pid_fry(pid);
3035 else
3036 return pid;
3037}
3038
102a775e
BB
3039static int cmppid(const void *a, const void *b)
3040{
3041 return *(pid_t *)a - *(pid_t *)b;
3042}
3043
afb2bc14
TH
3044static int fried_cmppid(const void *a, const void *b)
3045{
3046 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3047}
3048
e6b81710
TH
3049static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3050 enum cgroup_filetype type)
3051{
3052 struct cgroup_pidlist *l;
3053 /* don't need task_nsproxy() if we're looking at ourself */
3054 struct pid_namespace *ns = task_active_pid_ns(current);
3055
3056 lockdep_assert_held(&cgrp->pidlist_mutex);
3057
3058 list_for_each_entry(l, &cgrp->pidlists, links)
3059 if (l->key.type == type && l->key.ns == ns)
3060 return l;
3061 return NULL;
3062}
3063
72a8cb30
BB
3064/*
3065 * find the appropriate pidlist for our purpose (given procs vs tasks)
3066 * returns with the lock on that pidlist already held, and takes care
3067 * of the use count, or returns NULL with no locks held if we're out of
3068 * memory.
3069 */
e6b81710
TH
3070static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3071 enum cgroup_filetype type)
72a8cb30
BB
3072{
3073 struct cgroup_pidlist *l;
b70cc5fd 3074
e6b81710
TH
3075 lockdep_assert_held(&cgrp->pidlist_mutex);
3076
3077 l = cgroup_pidlist_find(cgrp, type);
3078 if (l)
3079 return l;
3080
72a8cb30 3081 /* entry not found; create a new one */
f4f4be2b 3082 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3083 if (!l)
72a8cb30 3084 return l;
e6b81710 3085
b1a21367 3086 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3087 l->key.type = type;
e6b81710
TH
3088 /* don't need task_nsproxy() if we're looking at ourself */
3089 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3090 l->owner = cgrp;
3091 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3092 return l;
3093}
3094
102a775e
BB
3095/*
3096 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3097 */
72a8cb30
BB
3098static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3099 struct cgroup_pidlist **lp)
102a775e
BB
3100{
3101 pid_t *array;
3102 int length;
3103 int pid, n = 0; /* used for populating the array */
72ec7029 3104 struct css_task_iter it;
817929ec 3105 struct task_struct *tsk;
102a775e
BB
3106 struct cgroup_pidlist *l;
3107
4bac00d1
TH
3108 lockdep_assert_held(&cgrp->pidlist_mutex);
3109
102a775e
BB
3110 /*
3111 * If cgroup gets more users after we read count, we won't have
3112 * enough space - tough. This race is indistinguishable to the
3113 * caller from the case that the additional cgroup users didn't
3114 * show up until sometime later on.
3115 */
3116 length = cgroup_task_count(cgrp);
d1d9fd33 3117 array = pidlist_allocate(length);
102a775e
BB
3118 if (!array)
3119 return -ENOMEM;
3120 /* now, populate the array */
72ec7029
TH
3121 css_task_iter_start(&cgrp->dummy_css, &it);
3122 while ((tsk = css_task_iter_next(&it))) {
102a775e 3123 if (unlikely(n == length))
817929ec 3124 break;
102a775e 3125 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3126 if (type == CGROUP_FILE_PROCS)
3127 pid = task_tgid_vnr(tsk);
3128 else
3129 pid = task_pid_vnr(tsk);
102a775e
BB
3130 if (pid > 0) /* make sure to only use valid results */
3131 array[n++] = pid;
817929ec 3132 }
72ec7029 3133 css_task_iter_end(&it);
102a775e
BB
3134 length = n;
3135 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3136 if (cgroup_sane_behavior(cgrp))
3137 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3138 else
3139 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3140 if (type == CGROUP_FILE_PROCS)
6ee211ad 3141 length = pidlist_uniq(array, length);
e6b81710 3142
e6b81710 3143 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3144 if (!l) {
e6b81710 3145 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3146 pidlist_free(array);
72a8cb30 3147 return -ENOMEM;
102a775e 3148 }
e6b81710
TH
3149
3150 /* store array, freeing old if necessary */
d1d9fd33 3151 pidlist_free(l->list);
102a775e
BB
3152 l->list = array;
3153 l->length = length;
72a8cb30 3154 *lp = l;
102a775e 3155 return 0;
bbcb81d0
PM
3156}
3157
846c7bb0 3158/**
a043e3b2 3159 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3160 * @stats: cgroupstats to fill information into
3161 * @dentry: A dentry entry belonging to the cgroup for which stats have
3162 * been requested.
a043e3b2
LZ
3163 *
3164 * Build and fill cgroupstats so that taskstats can export it to user
3165 * space.
846c7bb0
BS
3166 */
3167int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3168{
2bd59d48 3169 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3170 struct cgroup *cgrp;
72ec7029 3171 struct css_task_iter it;
846c7bb0 3172 struct task_struct *tsk;
33d283be 3173
2bd59d48
TH
3174 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3175 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3176 kernfs_type(kn) != KERNFS_DIR)
3177 return -EINVAL;
3178
846c7bb0 3179 /*
2bd59d48
TH
3180 * We aren't being called from kernfs and there's no guarantee on
3181 * @kn->priv's validity. For this and css_tryget_from_dir(),
3182 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3183 */
2bd59d48
TH
3184 rcu_read_lock();
3185 cgrp = rcu_dereference(kn->priv);
3186 if (!cgrp) {
3187 rcu_read_unlock();
3188 return -ENOENT;
3189 }
846c7bb0 3190
72ec7029
TH
3191 css_task_iter_start(&cgrp->dummy_css, &it);
3192 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3193 switch (tsk->state) {
3194 case TASK_RUNNING:
3195 stats->nr_running++;
3196 break;
3197 case TASK_INTERRUPTIBLE:
3198 stats->nr_sleeping++;
3199 break;
3200 case TASK_UNINTERRUPTIBLE:
3201 stats->nr_uninterruptible++;
3202 break;
3203 case TASK_STOPPED:
3204 stats->nr_stopped++;
3205 break;
3206 default:
3207 if (delayacct_is_task_waiting_on_io(tsk))
3208 stats->nr_io_wait++;
3209 break;
3210 }
3211 }
72ec7029 3212 css_task_iter_end(&it);
846c7bb0 3213
2bd59d48
TH
3214 rcu_read_unlock();
3215 return 0;
846c7bb0
BS
3216}
3217
8f3ff208 3218
bbcb81d0 3219/*
102a775e 3220 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3221 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3222 * in the cgroup->l->list array.
bbcb81d0 3223 */
cc31edce 3224
102a775e 3225static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3226{
cc31edce
PM
3227 /*
3228 * Initially we receive a position value that corresponds to
3229 * one more than the last pid shown (or 0 on the first call or
3230 * after a seek to the start). Use a binary-search to find the
3231 * next pid to display, if any
3232 */
2bd59d48 3233 struct kernfs_open_file *of = s->private;
7da11279 3234 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3235 struct cgroup_pidlist *l;
7da11279 3236 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3237 int index = 0, pid = *pos;
4bac00d1
TH
3238 int *iter, ret;
3239
3240 mutex_lock(&cgrp->pidlist_mutex);
3241
3242 /*
5d22444f 3243 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3244 * after open. If the matching pidlist is around, we can use that.
5d22444f 3245 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3246 * could already have been destroyed.
3247 */
5d22444f
TH
3248 if (of->priv)
3249 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3250
3251 /*
3252 * Either this is the first start() after open or the matching
3253 * pidlist has been destroyed inbetween. Create a new one.
3254 */
5d22444f
TH
3255 if (!of->priv) {
3256 ret = pidlist_array_load(cgrp, type,
3257 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3258 if (ret)
3259 return ERR_PTR(ret);
3260 }
5d22444f 3261 l = of->priv;
cc31edce 3262
cc31edce 3263 if (pid) {
102a775e 3264 int end = l->length;
20777766 3265
cc31edce
PM
3266 while (index < end) {
3267 int mid = (index + end) / 2;
afb2bc14 3268 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3269 index = mid;
3270 break;
afb2bc14 3271 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3272 index = mid + 1;
3273 else
3274 end = mid;
3275 }
3276 }
3277 /* If we're off the end of the array, we're done */
102a775e 3278 if (index >= l->length)
cc31edce
PM
3279 return NULL;
3280 /* Update the abstract position to be the actual pid that we found */
102a775e 3281 iter = l->list + index;
afb2bc14 3282 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3283 return iter;
3284}
3285
102a775e 3286static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3287{
2bd59d48 3288 struct kernfs_open_file *of = s->private;
5d22444f 3289 struct cgroup_pidlist *l = of->priv;
62236858 3290
5d22444f
TH
3291 if (l)
3292 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3293 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3294 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3295}
3296
102a775e 3297static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3298{
2bd59d48 3299 struct kernfs_open_file *of = s->private;
5d22444f 3300 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3301 pid_t *p = v;
3302 pid_t *end = l->list + l->length;
cc31edce
PM
3303 /*
3304 * Advance to the next pid in the array. If this goes off the
3305 * end, we're done
3306 */
3307 p++;
3308 if (p >= end) {
3309 return NULL;
3310 } else {
7da11279 3311 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3312 return p;
3313 }
3314}
3315
102a775e 3316static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3317{
3318 return seq_printf(s, "%d\n", *(int *)v);
3319}
bbcb81d0 3320
102a775e
BB
3321/*
3322 * seq_operations functions for iterating on pidlists through seq_file -
3323 * independent of whether it's tasks or procs
3324 */
3325static const struct seq_operations cgroup_pidlist_seq_operations = {
3326 .start = cgroup_pidlist_start,
3327 .stop = cgroup_pidlist_stop,
3328 .next = cgroup_pidlist_next,
3329 .show = cgroup_pidlist_show,
cc31edce
PM
3330};
3331
182446d0
TH
3332static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3333 struct cftype *cft)
81a6a5cd 3334{
182446d0 3335 return notify_on_release(css->cgroup);
81a6a5cd
PM
3336}
3337
182446d0
TH
3338static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3339 struct cftype *cft, u64 val)
6379c106 3340{
182446d0 3341 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3342 if (val)
182446d0 3343 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3344 else
182446d0 3345 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3346 return 0;
3347}
3348
182446d0
TH
3349static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3350 struct cftype *cft)
97978e6d 3351{
182446d0 3352 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3353}
3354
182446d0
TH
3355static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3356 struct cftype *cft, u64 val)
97978e6d
DL
3357{
3358 if (val)
182446d0 3359 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3360 else
182446d0 3361 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3362 return 0;
3363}
3364
d5c56ced 3365static struct cftype cgroup_base_files[] = {
81a6a5cd 3366 {
d5c56ced 3367 .name = "cgroup.procs",
6612f05b
TH
3368 .seq_start = cgroup_pidlist_start,
3369 .seq_next = cgroup_pidlist_next,
3370 .seq_stop = cgroup_pidlist_stop,
3371 .seq_show = cgroup_pidlist_show,
5d22444f 3372 .private = CGROUP_FILE_PROCS,
74a1166d 3373 .write_u64 = cgroup_procs_write,
74a1166d 3374 .mode = S_IRUGO | S_IWUSR,
102a775e 3375 },
97978e6d
DL
3376 {
3377 .name = "cgroup.clone_children",
873fe09e 3378 .flags = CFTYPE_INSANE,
97978e6d
DL
3379 .read_u64 = cgroup_clone_children_read,
3380 .write_u64 = cgroup_clone_children_write,
3381 },
873fe09e
TH
3382 {
3383 .name = "cgroup.sane_behavior",
3384 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3385 .seq_show = cgroup_sane_behavior_show,
873fe09e 3386 },
d5c56ced
TH
3387
3388 /*
3389 * Historical crazy stuff. These don't have "cgroup." prefix and
3390 * don't exist if sane_behavior. If you're depending on these, be
3391 * prepared to be burned.
3392 */
3393 {
3394 .name = "tasks",
3395 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3396 .seq_start = cgroup_pidlist_start,
3397 .seq_next = cgroup_pidlist_next,
3398 .seq_stop = cgroup_pidlist_stop,
3399 .seq_show = cgroup_pidlist_show,
5d22444f 3400 .private = CGROUP_FILE_TASKS,
d5c56ced 3401 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3402 .mode = S_IRUGO | S_IWUSR,
3403 },
3404 {
3405 .name = "notify_on_release",
3406 .flags = CFTYPE_INSANE,
3407 .read_u64 = cgroup_read_notify_on_release,
3408 .write_u64 = cgroup_write_notify_on_release,
3409 },
6e6ff25b
TH
3410 {
3411 .name = "release_agent",
cc5943a7 3412 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3413 .seq_show = cgroup_release_agent_show,
6e6ff25b 3414 .write_string = cgroup_release_agent_write,
5f469907 3415 .max_write_len = PATH_MAX - 1,
6e6ff25b 3416 },
db0416b6 3417 { } /* terminate */
bbcb81d0
PM
3418};
3419
13af07df 3420/**
628f7cd4 3421 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3422 * @cgrp: target cgroup
13af07df 3423 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3424 *
3425 * On failure, no file is added.
13af07df 3426 */
628f7cd4 3427static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3428{
ddbcc7e8 3429 struct cgroup_subsys *ss;
b420ba7d 3430 int i, ret = 0;
bbcb81d0 3431
8e3f6541 3432 /* process cftsets of each subsystem */
b420ba7d 3433 for_each_subsys(ss, i) {
0adb0704 3434 struct cftype *cfts;
b420ba7d
TH
3435
3436 if (!test_bit(i, &subsys_mask))
13af07df 3437 continue;
8e3f6541 3438
0adb0704
TH
3439 list_for_each_entry(cfts, &ss->cfts, node) {
3440 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3441 if (ret < 0)
3442 goto err;
3443 }
ddbcc7e8 3444 }
ddbcc7e8 3445 return 0;
bee55099
TH
3446err:
3447 cgroup_clear_dir(cgrp, subsys_mask);
3448 return ret;
ddbcc7e8
PM
3449}
3450
0c21ead1
TH
3451/*
3452 * css destruction is four-stage process.
3453 *
3454 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3455 * Implemented in kill_css().
3456 *
3457 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3458 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3459 * by invoking offline_css(). After offlining, the base ref is put.
3460 * Implemented in css_killed_work_fn().
3461 *
3462 * 3. When the percpu_ref reaches zero, the only possible remaining
3463 * accessors are inside RCU read sections. css_release() schedules the
3464 * RCU callback.
3465 *
3466 * 4. After the grace period, the css can be freed. Implemented in
3467 * css_free_work_fn().
3468 *
3469 * It is actually hairier because both step 2 and 4 require process context
3470 * and thus involve punting to css->destroy_work adding two additional
3471 * steps to the already complex sequence.
3472 */
35ef10da 3473static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3474{
3475 struct cgroup_subsys_state *css =
35ef10da 3476 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3477 struct cgroup *cgrp = css->cgroup;
48ddbe19 3478
0ae78e0b
TH
3479 if (css->parent)
3480 css_put(css->parent);
3481
0c21ead1 3482 css->ss->css_free(css);
2bd59d48 3483 cgroup_put(cgrp);
48ddbe19
TH
3484}
3485
0c21ead1 3486static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3487{
3488 struct cgroup_subsys_state *css =
0c21ead1 3489 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3490
35ef10da 3491 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3492 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3493}
3494
d3daf28d
TH
3495static void css_release(struct percpu_ref *ref)
3496{
3497 struct cgroup_subsys_state *css =
3498 container_of(ref, struct cgroup_subsys_state, refcnt);
3499
aec25020 3500 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3501 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3502}
3503
623f926b
TH
3504static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3505 struct cgroup *cgrp)
ddbcc7e8 3506{
bd89aabc 3507 css->cgroup = cgrp;
72c97e54 3508 css->ss = ss;
ddbcc7e8 3509 css->flags = 0;
0ae78e0b
TH
3510
3511 if (cgrp->parent)
ca8bdcaf 3512 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3513 else
38b53aba 3514 css->flags |= CSS_ROOT;
48ddbe19 3515
ca8bdcaf 3516 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3517}
3518
2a4ac633 3519/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3520static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3521{
623f926b 3522 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3523 int ret = 0;
3524
ace2bee8 3525 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3526 lockdep_assert_held(&cgroup_mutex);
3527
92fb9748 3528 if (ss->css_online)
eb95419b 3529 ret = ss->css_online(css);
ae7f164a 3530 if (!ret) {
eb95419b 3531 css->flags |= CSS_ONLINE;
f20104de 3532 css->cgroup->nr_css++;
aec25020 3533 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3534 }
b1929db4 3535 return ret;
a31f2d3f
TH
3536}
3537
2a4ac633 3538/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3539static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3540{
623f926b 3541 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3542
ace2bee8 3543 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3544 lockdep_assert_held(&cgroup_mutex);
3545
3546 if (!(css->flags & CSS_ONLINE))
3547 return;
3548
d7eeac19 3549 if (ss->css_offline)
eb95419b 3550 ss->css_offline(css);
a31f2d3f 3551
eb95419b 3552 css->flags &= ~CSS_ONLINE;
09a503ea 3553 css->cgroup->nr_css--;
aec25020 3554 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3555}
3556
c81c925a
TH
3557/**
3558 * create_css - create a cgroup_subsys_state
3559 * @cgrp: the cgroup new css will be associated with
3560 * @ss: the subsys of new css
3561 *
3562 * Create a new css associated with @cgrp - @ss pair. On success, the new
3563 * css is online and installed in @cgrp with all interface files created.
3564 * Returns 0 on success, -errno on failure.
3565 */
3566static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3567{
3568 struct cgroup *parent = cgrp->parent;
3569 struct cgroup_subsys_state *css;
3570 int err;
3571
c81c925a
TH
3572 lockdep_assert_held(&cgroup_mutex);
3573
3574 css = ss->css_alloc(cgroup_css(parent, ss));
3575 if (IS_ERR(css))
3576 return PTR_ERR(css);
3577
3578 err = percpu_ref_init(&css->refcnt, css_release);
3579 if (err)
3580 goto err_free;
3581
3582 init_css(css, ss, cgrp);
3583
aec25020 3584 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3585 if (err)
3586 goto err_free;
3587
3588 err = online_css(css);
3589 if (err)
3590 goto err_free;
3591
59f5296b 3592 cgroup_get(cgrp);
c81c925a
TH
3593 css_get(css->parent);
3594
3595 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3596 parent->parent) {
3597 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3598 current->comm, current->pid, ss->name);
3599 if (!strcmp(ss->name, "memory"))
3600 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3601 ss->warned_broken_hierarchy = true;
3602 }
3603
3604 return 0;
3605
3606err_free:
3607 percpu_ref_cancel_init(&css->refcnt);
3608 ss->css_free(css);
3609 return err;
3610}
3611
2bd59d48 3612/**
a043e3b2
LZ
3613 * cgroup_create - create a cgroup
3614 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3615 * @name: name of the new cgroup
2bd59d48 3616 * @mode: mode to set on new cgroup
ddbcc7e8 3617 */
e61734c5 3618static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3619 umode_t mode)
ddbcc7e8 3620{
bd89aabc 3621 struct cgroup *cgrp;
ddbcc7e8 3622 struct cgroupfs_root *root = parent->root;
b58c8998 3623 int ssid, err;
ddbcc7e8 3624 struct cgroup_subsys *ss;
2bd59d48 3625 struct kernfs_node *kn;
ddbcc7e8 3626
0a950f65 3627 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3628 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3629 if (!cgrp)
ddbcc7e8
PM
3630 return -ENOMEM;
3631
ace2bee8
TH
3632 mutex_lock(&cgroup_tree_mutex);
3633
976c06bc
TH
3634 /*
3635 * Only live parents can have children. Note that the liveliness
3636 * check isn't strictly necessary because cgroup_mkdir() and
3637 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3638 * anyway so that locking is contained inside cgroup proper and we
3639 * don't get nasty surprises if we ever grow another caller.
3640 */
3641 if (!cgroup_lock_live_group(parent)) {
3642 err = -ENODEV;
ace2bee8 3643 goto err_unlock_tree;
0ab02ca8
LZ
3644 }
3645
3646 /*
3647 * Temporarily set the pointer to NULL, so idr_find() won't return
3648 * a half-baked cgroup.
3649 */
3650 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3651 if (cgrp->id < 0) {
3652 err = -ENOMEM;
3653 goto err_unlock;
976c06bc
TH
3654 }
3655
cc31edce 3656 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3657
bd89aabc 3658 cgrp->parent = parent;
0ae78e0b 3659 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3660 cgrp->root = parent->root;
ddbcc7e8 3661
b6abdb0e
LZ
3662 if (notify_on_release(parent))
3663 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3664
2260e7fc
TH
3665 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3666 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3667
2bd59d48 3668 /* create the directory */
e61734c5 3669 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3670 if (IS_ERR(kn)) {
3671 err = PTR_ERR(kn);
0ab02ca8 3672 goto err_free_id;
2bd59d48
TH
3673 }
3674 cgrp->kn = kn;
ddbcc7e8 3675
6f30558f
TH
3676 /*
3677 * This extra ref will be put in cgroup_free_fn() and guarantees
3678 * that @cgrp->kn is always accessible.
3679 */
3680 kernfs_get(kn);
3681
00356bd5 3682 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3683
4e139afc 3684 /* allocation complete, commit to creation */
4e139afc 3685 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3686 atomic_inc(&root->nr_cgrps);
59f5296b 3687 cgroup_get(parent);
415cf07a 3688
0d80255e
TH
3689 /*
3690 * @cgrp is now fully operational. If something fails after this
3691 * point, it'll be released via the normal destruction path.
3692 */
4e96ee8e
LZ
3693 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3694
2bb566cb 3695 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3696 if (err)
3697 goto err_destroy;
3698
9d403e99 3699 /* let's create and online css's */
b85d2040
TH
3700 for_each_subsys(ss, ssid) {
3701 if (root->subsys_mask & (1 << ssid)) {
3702 err = create_css(cgrp, ss);
3703 if (err)
3704 goto err_destroy;
3705 }
a8638030 3706 }
ddbcc7e8 3707
2bd59d48
TH
3708 kernfs_activate(kn);
3709
ddbcc7e8 3710 mutex_unlock(&cgroup_mutex);
ace2bee8 3711 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3712
3713 return 0;
3714
0a950f65 3715err_free_id:
4e96ee8e 3716 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3717err_unlock:
3718 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3719err_unlock_tree:
3720 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3721 kfree(cgrp);
ddbcc7e8 3722 return err;
4b8b47eb
TH
3723
3724err_destroy:
3725 cgroup_destroy_locked(cgrp);
3726 mutex_unlock(&cgroup_mutex);
ace2bee8 3727 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3728 return err;
ddbcc7e8
PM
3729}
3730
2bd59d48
TH
3731static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3732 umode_t mode)
ddbcc7e8 3733{
2bd59d48 3734 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3735
2bd59d48 3736 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3737}
3738
223dbc38
TH
3739/*
3740 * This is called when the refcnt of a css is confirmed to be killed.
3741 * css_tryget() is now guaranteed to fail.
3742 */
3743static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3744{
223dbc38
TH
3745 struct cgroup_subsys_state *css =
3746 container_of(work, struct cgroup_subsys_state, destroy_work);
3747 struct cgroup *cgrp = css->cgroup;
d3daf28d 3748
ace2bee8 3749 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3750 mutex_lock(&cgroup_mutex);
3751
09a503ea
TH
3752 /*
3753 * css_tryget() is guaranteed to fail now. Tell subsystems to
3754 * initate destruction.
3755 */
3756 offline_css(css);
3757
f20104de
TH
3758 /*
3759 * If @cgrp is marked dead, it's waiting for refs of all css's to
3760 * be disabled before proceeding to the second phase of cgroup
3761 * destruction. If we are the last one, kick it off.
3762 */
09a503ea 3763 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3764 cgroup_destroy_css_killed(cgrp);
3765
3766 mutex_unlock(&cgroup_mutex);
ace2bee8 3767 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3768
3769 /*
3770 * Put the css refs from kill_css(). Each css holds an extra
3771 * reference to the cgroup's dentry and cgroup removal proceeds
3772 * regardless of css refs. On the last put of each css, whenever
3773 * that may be, the extra dentry ref is put so that dentry
3774 * destruction happens only after all css's are released.
3775 */
3776 css_put(css);
d3daf28d
TH
3777}
3778
223dbc38
TH
3779/* css kill confirmation processing requires process context, bounce */
3780static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3781{
3782 struct cgroup_subsys_state *css =
3783 container_of(ref, struct cgroup_subsys_state, refcnt);
3784
223dbc38 3785 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3786 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3787}
3788
edae0c33
TH
3789/**
3790 * kill_css - destroy a css
3791 * @css: css to destroy
3792 *
3c14f8b4
TH
3793 * This function initiates destruction of @css by removing cgroup interface
3794 * files and putting its base reference. ->css_offline() will be invoked
3795 * asynchronously once css_tryget() is guaranteed to fail and when the
3796 * reference count reaches zero, @css will be released.
edae0c33
TH
3797 */
3798static void kill_css(struct cgroup_subsys_state *css)
3799{
2bd59d48
TH
3800 /*
3801 * This must happen before css is disassociated with its cgroup.
3802 * See seq_css() for details.
3803 */
aec25020 3804 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3805
edae0c33
TH
3806 /*
3807 * Killing would put the base ref, but we need to keep it alive
3808 * until after ->css_offline().
3809 */
3810 css_get(css);
3811
3812 /*
3813 * cgroup core guarantees that, by the time ->css_offline() is
3814 * invoked, no new css reference will be given out via
3815 * css_tryget(). We can't simply call percpu_ref_kill() and
3816 * proceed to offlining css's because percpu_ref_kill() doesn't
3817 * guarantee that the ref is seen as killed on all CPUs on return.
3818 *
3819 * Use percpu_ref_kill_and_confirm() to get notifications as each
3820 * css is confirmed to be seen as killed on all CPUs.
3821 */
3822 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3823}
3824
3825/**
3826 * cgroup_destroy_locked - the first stage of cgroup destruction
3827 * @cgrp: cgroup to be destroyed
3828 *
3829 * css's make use of percpu refcnts whose killing latency shouldn't be
3830 * exposed to userland and are RCU protected. Also, cgroup core needs to
3831 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3832 * invoked. To satisfy all the requirements, destruction is implemented in
3833 * the following two steps.
3834 *
3835 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3836 * userland visible parts and start killing the percpu refcnts of
3837 * css's. Set up so that the next stage will be kicked off once all
3838 * the percpu refcnts are confirmed to be killed.
3839 *
3840 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3841 * rest of destruction. Once all cgroup references are gone, the
3842 * cgroup is RCU-freed.
3843 *
3844 * This function implements s1. After this step, @cgrp is gone as far as
3845 * the userland is concerned and a new cgroup with the same name may be
3846 * created. As cgroup doesn't care about the names internally, this
3847 * doesn't cause any problem.
3848 */
42809dd4
TH
3849static int cgroup_destroy_locked(struct cgroup *cgrp)
3850 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3851{
bb78a92f 3852 struct cgroup *child;
2bd59d48 3853 struct cgroup_subsys_state *css;
ddd69148 3854 bool empty;
1c6727af 3855 int ssid;
ddbcc7e8 3856
ace2bee8 3857 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3858 lockdep_assert_held(&cgroup_mutex);
3859
ddd69148 3860 /*
6f3d828f
TH
3861 * css_set_lock synchronizes access to ->cset_links and prevents
3862 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
3863 */
3864 read_lock(&css_set_lock);
bb78a92f 3865 empty = list_empty(&cgrp->cset_links);
ddd69148
TH
3866 read_unlock(&css_set_lock);
3867 if (!empty)
ddbcc7e8 3868 return -EBUSY;
a043e3b2 3869
bb78a92f
HD
3870 /*
3871 * Make sure there's no live children. We can't test ->children
3872 * emptiness as dead children linger on it while being destroyed;
3873 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3874 */
3875 empty = true;
3876 rcu_read_lock();
3877 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3878 empty = cgroup_is_dead(child);
3879 if (!empty)
3880 break;
3881 }
3882 rcu_read_unlock();
3883 if (!empty)
3884 return -EBUSY;
3885
88703267 3886 /*
edae0c33
TH
3887 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3888 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3889 * percpu refs of all css's are confirmed to be killed. This
3890 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3891 */
4ac06017 3892 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3893 for_each_css(css, ssid, cgrp)
3894 kill_css(css);
4ac06017 3895 mutex_lock(&cgroup_mutex);
455050d2
TH
3896
3897 /*
3898 * Mark @cgrp dead. This prevents further task migration and child
3899 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3900 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3901 * resume iteration after dropping RCU read lock. See
492eb21b 3902 * css_next_child() for details.
455050d2 3903 */
54766d4a 3904 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3905
455050d2
TH
3906 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3907 raw_spin_lock(&release_list_lock);
3908 if (!list_empty(&cgrp->release_list))
3909 list_del_init(&cgrp->release_list);
3910 raw_spin_unlock(&release_list_lock);
3911
3912 /*
f20104de
TH
3913 * If @cgrp has css's attached, the second stage of cgroup
3914 * destruction is kicked off from css_killed_work_fn() after the
3915 * refs of all attached css's are killed. If @cgrp doesn't have
3916 * any css, we kick it off here.
3917 */
3918 if (!cgrp->nr_css)
3919 cgroup_destroy_css_killed(cgrp);
3920
2bd59d48
TH
3921 /* remove @cgrp directory along with the base files */
3922 mutex_unlock(&cgroup_mutex);
3923
455050d2 3924 /*
2bd59d48
TH
3925 * There are two control paths which try to determine cgroup from
3926 * dentry without going through kernfs - cgroupstats_build() and
3927 * css_tryget_from_dir(). Those are supported by RCU protecting
3928 * clearing of cgrp->kn->priv backpointer, which should happen
3929 * after all files under it have been removed.
455050d2 3930 */
6f30558f 3931 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3932 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3933
4ac06017 3934 mutex_lock(&cgroup_mutex);
455050d2 3935
ea15f8cc
TH
3936 return 0;
3937};
3938
d3daf28d 3939/**
f20104de 3940 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3941 * @work: cgroup->destroy_free_work
3942 *
3943 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3944 * destroyed after all css's are offlined and performs the rest of
3945 * destruction. This is the second step of destruction described in the
3946 * comment above cgroup_destroy_locked().
d3daf28d 3947 */
f20104de 3948static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3949{
ea15f8cc 3950 struct cgroup *parent = cgrp->parent;
ea15f8cc 3951
ace2bee8 3952 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3953 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3954
999cd8a4 3955 /* delete this cgroup from parent->children */
eb6fd504 3956 list_del_rcu(&cgrp->sibling);
ed957793 3957
59f5296b 3958 cgroup_put(cgrp);
ddbcc7e8 3959
bd89aabc 3960 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3961 check_for_release(parent);
ddbcc7e8
PM
3962}
3963
2bd59d48 3964static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3965{
2bd59d48
TH
3966 struct cgroup *cgrp = kn->priv;
3967 int ret = 0;
3968
3969 /*
3970 * This is self-destruction but @kn can't be removed while this
3971 * callback is in progress. Let's break active protection. Once
3972 * the protection is broken, @cgrp can be destroyed at any point.
3973 * Pin it so that it stays accessible.
3974 */
3975 cgroup_get(cgrp);
3976 kernfs_break_active_protection(kn);
42809dd4 3977
ace2bee8 3978 mutex_lock(&cgroup_tree_mutex);
42809dd4 3979 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3980
3981 /*
3982 * @cgrp might already have been destroyed while we're trying to
3983 * grab the mutexes.
3984 */
3985 if (!cgroup_is_dead(cgrp))
3986 ret = cgroup_destroy_locked(cgrp);
3987
42809dd4 3988 mutex_unlock(&cgroup_mutex);
ace2bee8 3989 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3990
2bd59d48
TH
3991 kernfs_unbreak_active_protection(kn);
3992 cgroup_put(cgrp);
42809dd4
TH
3993 return ret;
3994}
3995
2bd59d48
TH
3996static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3997 .remount_fs = cgroup_remount,
3998 .show_options = cgroup_show_options,
3999 .mkdir = cgroup_mkdir,
4000 .rmdir = cgroup_rmdir,
4001 .rename = cgroup_rename,
4002};
4003
06a11920 4004static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4005{
ddbcc7e8 4006 struct cgroup_subsys_state *css;
cfe36bde
DC
4007
4008 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4009
ace2bee8 4010 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
4011 mutex_lock(&cgroup_mutex);
4012
0adb0704 4013 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4014
ddbcc7e8 4015 /* Create the top cgroup state for this subsystem */
9871bf95 4016 ss->root = &cgroup_dummy_root;
ca8bdcaf 4017 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
4018 /* We don't handle early failures gracefully */
4019 BUG_ON(IS_ERR(css));
623f926b 4020 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 4021
e8d55fde 4022 /* Update the init_css_set to contain a subsys
817929ec 4023 * pointer to this state - since the subsystem is
e8d55fde
LZ
4024 * newly registered, all tasks and hence the
4025 * init_css_set is in the subsystem's top cgroup. */
aec25020 4026 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4027
4028 need_forkexit_callback |= ss->fork || ss->exit;
4029
e8d55fde
LZ
4030 /* At system boot, before all subsystems have been
4031 * registered, no tasks have been forked, so we don't
4032 * need to invoke fork callbacks here. */
4033 BUG_ON(!list_empty(&init_task.tasks));
4034
ae7f164a 4035 BUG_ON(online_css(css));
a8638030 4036
648bb56d 4037 mutex_unlock(&cgroup_mutex);
ace2bee8 4038 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
4039}
4040
ddbcc7e8 4041/**
a043e3b2
LZ
4042 * cgroup_init_early - cgroup initialization at system boot
4043 *
4044 * Initialize cgroups at system boot, and initialize any
4045 * subsystems that request early init.
ddbcc7e8
PM
4046 */
4047int __init cgroup_init_early(void)
4048{
30159ec7 4049 struct cgroup_subsys *ss;
ddbcc7e8 4050 int i;
30159ec7 4051
146aa1bd 4052 atomic_set(&init_css_set.refcount, 1);
69d0206c 4053 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4054 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4055 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4056 css_set_count = 1;
9871bf95
TH
4057 init_cgroup_root(&cgroup_dummy_root);
4058 cgroup_root_count = 1;
a4ea1cc9 4059 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4060
69d0206c 4061 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
4062 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
4063 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 4064 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4065
3ed80a62 4066 for_each_subsys(ss, i) {
aec25020 4067 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4068 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4069 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4070 ss->id, ss->name);
073219e9
TH
4071 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4072 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4073
aec25020 4074 ss->id = i;
073219e9 4075 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4076
4077 if (ss->early_init)
4078 cgroup_init_subsys(ss);
4079 }
4080 return 0;
4081}
4082
4083/**
a043e3b2
LZ
4084 * cgroup_init - cgroup initialization
4085 *
4086 * Register cgroup filesystem and /proc file, and initialize
4087 * any subsystems that didn't request early init.
ddbcc7e8
PM
4088 */
4089int __init cgroup_init(void)
4090{
30159ec7 4091 struct cgroup_subsys *ss;
0ac801fe 4092 unsigned long key;
30159ec7 4093 int i, err;
a424316c 4094
2bd59d48 4095 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 4096
3ed80a62 4097 for_each_subsys(ss, i) {
ddbcc7e8
PM
4098 if (!ss->early_init)
4099 cgroup_init_subsys(ss);
de00ffa5
TH
4100
4101 /*
4102 * cftype registration needs kmalloc and can't be done
4103 * during early_init. Register base cftypes separately.
4104 */
4105 if (ss->base_cftypes)
4106 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
4107 }
4108
fa3ca07e 4109 /* allocate id for the dummy hierarchy */
54e7b4eb 4110 mutex_lock(&cgroup_mutex);
54e7b4eb 4111
82fe9b0d
TH
4112 /* Add init_css_set to the hash table */
4113 key = css_set_hash(init_css_set.subsys);
4114 hash_add(css_set_table, &init_css_set.hlist, key);
4115
fc76df70 4116 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 4117
4e96ee8e
LZ
4118 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
4119 0, 1, GFP_KERNEL);
4120 BUG_ON(err < 0);
4121
54e7b4eb
TH
4122 mutex_unlock(&cgroup_mutex);
4123
676db4af 4124 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4125 if (!cgroup_kobj)
4126 return -ENOMEM;
676db4af 4127
ddbcc7e8 4128 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4129 if (err < 0) {
4130 kobject_put(cgroup_kobj);
2bd59d48 4131 return err;
676db4af 4132 }
ddbcc7e8 4133
46ae220b 4134 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4135 return 0;
ddbcc7e8 4136}
b4f48b63 4137
e5fca243
TH
4138static int __init cgroup_wq_init(void)
4139{
4140 /*
4141 * There isn't much point in executing destruction path in
4142 * parallel. Good chunk is serialized with cgroup_mutex anyway.
ab3f5faa
HD
4143 *
4144 * XXX: Must be ordered to make sure parent is offlined after
4145 * children. The ordering requirement is for memcg where a
4146 * parent's offline may wait for a child's leading to deadlock. In
4147 * the long term, this should be fixed from memcg side.
e5fca243
TH
4148 *
4149 * We would prefer to do this in cgroup_init() above, but that
4150 * is called before init_workqueues(): so leave this until after.
4151 */
ab3f5faa 4152 cgroup_destroy_wq = alloc_ordered_workqueue("cgroup_destroy", 0);
e5fca243 4153 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4154
4155 /*
4156 * Used to destroy pidlists and separate to serve as flush domain.
4157 * Cap @max_active to 1 too.
4158 */
4159 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4160 0, 1);
4161 BUG_ON(!cgroup_pidlist_destroy_wq);
4162
e5fca243
TH
4163 return 0;
4164}
4165core_initcall(cgroup_wq_init);
4166
a424316c
PM
4167/*
4168 * proc_cgroup_show()
4169 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4170 * - Used for /proc/<pid>/cgroup.
4171 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4172 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4173 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4174 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4175 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4176 * cgroup to top_cgroup.
4177 */
4178
4179/* TODO: Use a proper seq_file iterator */
8d8b97ba 4180int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4181{
4182 struct pid *pid;
4183 struct task_struct *tsk;
e61734c5 4184 char *buf, *path;
a424316c
PM
4185 int retval;
4186 struct cgroupfs_root *root;
4187
4188 retval = -ENOMEM;
e61734c5 4189 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4190 if (!buf)
4191 goto out;
4192
4193 retval = -ESRCH;
4194 pid = m->private;
4195 tsk = get_pid_task(pid, PIDTYPE_PID);
4196 if (!tsk)
4197 goto out_free;
4198
4199 retval = 0;
4200
4201 mutex_lock(&cgroup_mutex);
4202
e5f6a860 4203 for_each_active_root(root) {
a424316c 4204 struct cgroup_subsys *ss;
bd89aabc 4205 struct cgroup *cgrp;
b85d2040 4206 int ssid, count = 0;
a424316c 4207
2c6ab6d2 4208 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4209 for_each_subsys(ss, ssid)
4210 if (root->subsys_mask & (1 << ssid))
4211 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4212 if (strlen(root->name))
4213 seq_printf(m, "%sname=%s", count ? "," : "",
4214 root->name);
a424316c 4215 seq_putc(m, ':');
7717f7ba 4216 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4217 path = cgroup_path(cgrp, buf, PATH_MAX);
4218 if (!path) {
4219 retval = -ENAMETOOLONG;
a424316c 4220 goto out_unlock;
e61734c5
TH
4221 }
4222 seq_puts(m, path);
a424316c
PM
4223 seq_putc(m, '\n');
4224 }
4225
4226out_unlock:
4227 mutex_unlock(&cgroup_mutex);
4228 put_task_struct(tsk);
4229out_free:
4230 kfree(buf);
4231out:
4232 return retval;
4233}
4234
a424316c
PM
4235/* Display information about each subsystem and each hierarchy */
4236static int proc_cgroupstats_show(struct seq_file *m, void *v)
4237{
30159ec7 4238 struct cgroup_subsys *ss;
a424316c 4239 int i;
a424316c 4240
8bab8dde 4241 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4242 /*
4243 * ideally we don't want subsystems moving around while we do this.
4244 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4245 * subsys/hierarchy state.
4246 */
a424316c 4247 mutex_lock(&cgroup_mutex);
30159ec7
TH
4248
4249 for_each_subsys(ss, i)
2c6ab6d2
PM
4250 seq_printf(m, "%s\t%d\t%d\t%d\n",
4251 ss->name, ss->root->hierarchy_id,
3c9c825b 4252 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4253
a424316c
PM
4254 mutex_unlock(&cgroup_mutex);
4255 return 0;
4256}
4257
4258static int cgroupstats_open(struct inode *inode, struct file *file)
4259{
9dce07f1 4260 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4261}
4262
828c0950 4263static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4264 .open = cgroupstats_open,
4265 .read = seq_read,
4266 .llseek = seq_lseek,
4267 .release = single_release,
4268};
4269
b4f48b63
PM
4270/**
4271 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4272 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4273 *
4274 * Description: A task inherits its parent's cgroup at fork().
4275 *
4276 * A pointer to the shared css_set was automatically copied in
4277 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4278 * it was not made under the protection of RCU or cgroup_mutex, so
4279 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4280 * have already changed current->cgroups, allowing the previously
4281 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4282 *
4283 * At the point that cgroup_fork() is called, 'current' is the parent
4284 * task, and the passed argument 'child' points to the child task.
4285 */
4286void cgroup_fork(struct task_struct *child)
4287{
9bb71308 4288 task_lock(current);
a8ad805c 4289 get_css_set(task_css_set(current));
817929ec 4290 child->cgroups = current->cgroups;
9bb71308 4291 task_unlock(current);
817929ec 4292 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4293}
4294
817929ec 4295/**
a043e3b2
LZ
4296 * cgroup_post_fork - called on a new task after adding it to the task list
4297 * @child: the task in question
4298 *
5edee61e
TH
4299 * Adds the task to the list running through its css_set if necessary and
4300 * call the subsystem fork() callbacks. Has to be after the task is
4301 * visible on the task list in case we race with the first call to
0942eeee 4302 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4303 * list.
a043e3b2 4304 */
817929ec
PM
4305void cgroup_post_fork(struct task_struct *child)
4306{
30159ec7 4307 struct cgroup_subsys *ss;
5edee61e
TH
4308 int i;
4309
3ce3230a
FW
4310 /*
4311 * use_task_css_set_links is set to 1 before we walk the tasklist
4312 * under the tasklist_lock and we read it here after we added the child
4313 * to the tasklist under the tasklist_lock as well. If the child wasn't
4314 * yet in the tasklist when we walked through it from
4315 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4316 * should be visible now due to the paired locking and barriers implied
4317 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4318 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4319 * lock on fork.
4320 */
817929ec
PM
4321 if (use_task_css_set_links) {
4322 write_lock(&css_set_lock);
d8783832
TH
4323 task_lock(child);
4324 if (list_empty(&child->cg_list))
a8ad805c 4325 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4326 task_unlock(child);
817929ec
PM
4327 write_unlock(&css_set_lock);
4328 }
5edee61e
TH
4329
4330 /*
4331 * Call ss->fork(). This must happen after @child is linked on
4332 * css_set; otherwise, @child might change state between ->fork()
4333 * and addition to css_set.
4334 */
4335 if (need_forkexit_callback) {
3ed80a62 4336 for_each_subsys(ss, i)
5edee61e
TH
4337 if (ss->fork)
4338 ss->fork(child);
5edee61e 4339 }
817929ec 4340}
5edee61e 4341
b4f48b63
PM
4342/**
4343 * cgroup_exit - detach cgroup from exiting task
4344 * @tsk: pointer to task_struct of exiting process
a043e3b2 4345 * @run_callback: run exit callbacks?
b4f48b63
PM
4346 *
4347 * Description: Detach cgroup from @tsk and release it.
4348 *
4349 * Note that cgroups marked notify_on_release force every task in
4350 * them to take the global cgroup_mutex mutex when exiting.
4351 * This could impact scaling on very large systems. Be reluctant to
4352 * use notify_on_release cgroups where very high task exit scaling
4353 * is required on large systems.
4354 *
4355 * the_top_cgroup_hack:
4356 *
4357 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4358 *
4359 * We call cgroup_exit() while the task is still competent to
4360 * handle notify_on_release(), then leave the task attached to the
4361 * root cgroup in each hierarchy for the remainder of its exit.
4362 *
4363 * To do this properly, we would increment the reference count on
4364 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4365 * code we would add a second cgroup function call, to drop that
4366 * reference. This would just create an unnecessary hot spot on
4367 * the top_cgroup reference count, to no avail.
4368 *
4369 * Normally, holding a reference to a cgroup without bumping its
4370 * count is unsafe. The cgroup could go away, or someone could
4371 * attach us to a different cgroup, decrementing the count on
4372 * the first cgroup that we never incremented. But in this case,
4373 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4374 * which wards off any cgroup_attach_task() attempts, or task is a failed
4375 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4376 */
4377void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4378{
30159ec7 4379 struct cgroup_subsys *ss;
5abb8855 4380 struct css_set *cset;
d41d5a01 4381 int i;
817929ec
PM
4382
4383 /*
4384 * Unlink from the css_set task list if necessary.
4385 * Optimistically check cg_list before taking
4386 * css_set_lock
4387 */
4388 if (!list_empty(&tsk->cg_list)) {
4389 write_lock(&css_set_lock);
4390 if (!list_empty(&tsk->cg_list))
8d258797 4391 list_del_init(&tsk->cg_list);
817929ec
PM
4392 write_unlock(&css_set_lock);
4393 }
4394
b4f48b63
PM
4395 /* Reassign the task to the init_css_set. */
4396 task_lock(tsk);
a8ad805c
TH
4397 cset = task_css_set(tsk);
4398 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4399
4400 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4401 /* see cgroup_post_fork() for details */
4402 for_each_subsys(ss, i) {
d41d5a01 4403 if (ss->exit) {
eb95419b
TH
4404 struct cgroup_subsys_state *old_css = cset->subsys[i];
4405 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4406
eb95419b 4407 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4408 }
4409 }
4410 }
b4f48b63 4411 task_unlock(tsk);
d41d5a01 4412
5abb8855 4413 put_css_set_taskexit(cset);
b4f48b63 4414}
697f4161 4415
bd89aabc 4416static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4417{
f50daa70 4418 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4419 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4420 /*
4421 * Control Group is currently removeable. If it's not
81a6a5cd 4422 * already queued for a userspace notification, queue
f50daa70
LZ
4423 * it now
4424 */
81a6a5cd 4425 int need_schedule_work = 0;
f50daa70 4426
cdcc136f 4427 raw_spin_lock(&release_list_lock);
54766d4a 4428 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4429 list_empty(&cgrp->release_list)) {
4430 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4431 need_schedule_work = 1;
4432 }
cdcc136f 4433 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4434 if (need_schedule_work)
4435 schedule_work(&release_agent_work);
4436 }
4437}
4438
81a6a5cd
PM
4439/*
4440 * Notify userspace when a cgroup is released, by running the
4441 * configured release agent with the name of the cgroup (path
4442 * relative to the root of cgroup file system) as the argument.
4443 *
4444 * Most likely, this user command will try to rmdir this cgroup.
4445 *
4446 * This races with the possibility that some other task will be
4447 * attached to this cgroup before it is removed, or that some other
4448 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4449 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4450 * unused, and this cgroup will be reprieved from its death sentence,
4451 * to continue to serve a useful existence. Next time it's released,
4452 * we will get notified again, if it still has 'notify_on_release' set.
4453 *
4454 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4455 * means only wait until the task is successfully execve()'d. The
4456 * separate release agent task is forked by call_usermodehelper(),
4457 * then control in this thread returns here, without waiting for the
4458 * release agent task. We don't bother to wait because the caller of
4459 * this routine has no use for the exit status of the release agent
4460 * task, so no sense holding our caller up for that.
81a6a5cd 4461 */
81a6a5cd
PM
4462static void cgroup_release_agent(struct work_struct *work)
4463{
4464 BUG_ON(work != &release_agent_work);
4465 mutex_lock(&cgroup_mutex);
cdcc136f 4466 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4467 while (!list_empty(&release_list)) {
4468 char *argv[3], *envp[3];
4469 int i;
e61734c5 4470 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4471 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4472 struct cgroup,
4473 release_list);
bd89aabc 4474 list_del_init(&cgrp->release_list);
cdcc136f 4475 raw_spin_unlock(&release_list_lock);
e61734c5 4476 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4477 if (!pathbuf)
4478 goto continue_free;
e61734c5
TH
4479 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4480 if (!path)
e788e066
PM
4481 goto continue_free;
4482 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4483 if (!agentbuf)
4484 goto continue_free;
81a6a5cd
PM
4485
4486 i = 0;
e788e066 4487 argv[i++] = agentbuf;
e61734c5 4488 argv[i++] = path;
81a6a5cd
PM
4489 argv[i] = NULL;
4490
4491 i = 0;
4492 /* minimal command environment */
4493 envp[i++] = "HOME=/";
4494 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4495 envp[i] = NULL;
4496
4497 /* Drop the lock while we invoke the usermode helper,
4498 * since the exec could involve hitting disk and hence
4499 * be a slow process */
4500 mutex_unlock(&cgroup_mutex);
4501 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4502 mutex_lock(&cgroup_mutex);
e788e066
PM
4503 continue_free:
4504 kfree(pathbuf);
4505 kfree(agentbuf);
cdcc136f 4506 raw_spin_lock(&release_list_lock);
81a6a5cd 4507 }
cdcc136f 4508 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4509 mutex_unlock(&cgroup_mutex);
4510}
8bab8dde
PM
4511
4512static int __init cgroup_disable(char *str)
4513{
30159ec7 4514 struct cgroup_subsys *ss;
8bab8dde 4515 char *token;
30159ec7 4516 int i;
8bab8dde
PM
4517
4518 while ((token = strsep(&str, ",")) != NULL) {
4519 if (!*token)
4520 continue;
be45c900 4521
3ed80a62 4522 for_each_subsys(ss, i) {
8bab8dde
PM
4523 if (!strcmp(token, ss->name)) {
4524 ss->disabled = 1;
4525 printk(KERN_INFO "Disabling %s control group"
4526 " subsystem\n", ss->name);
4527 break;
4528 }
4529 }
4530 }
4531 return 1;
4532}
4533__setup("cgroup_disable=", cgroup_disable);
38460b48 4534
b77d7b60 4535/**
5a17f543 4536 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4537 * @dentry: directory dentry of interest
4538 * @ss: subsystem of interest
b77d7b60 4539 *
5a17f543
TH
4540 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4541 * to get the corresponding css and return it. If such css doesn't exist
4542 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4543 */
5a17f543
TH
4544struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4545 struct cgroup_subsys *ss)
e5d1367f 4546{
2bd59d48
TH
4547 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4548 struct cgroup_subsys_state *css = NULL;
e5d1367f 4549 struct cgroup *cgrp;
b77d7b60 4550
35cf0836 4551 /* is @dentry a cgroup dir? */
2bd59d48
TH
4552 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4553 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4554 return ERR_PTR(-EBADF);
4555
5a17f543
TH
4556 rcu_read_lock();
4557
2bd59d48
TH
4558 /*
4559 * This path doesn't originate from kernfs and @kn could already
4560 * have been or be removed at any point. @kn->priv is RCU
4561 * protected for this access. See destroy_locked() for details.
4562 */
4563 cgrp = rcu_dereference(kn->priv);
4564 if (cgrp)
4565 css = cgroup_css(cgrp, ss);
5a17f543
TH
4566
4567 if (!css || !css_tryget(css))
4568 css = ERR_PTR(-ENOENT);
4569
4570 rcu_read_unlock();
4571 return css;
e5d1367f 4572}
e5d1367f 4573
1cb650b9
LZ
4574/**
4575 * css_from_id - lookup css by id
4576 * @id: the cgroup id
4577 * @ss: cgroup subsys to be looked into
4578 *
4579 * Returns the css if there's valid one with @id, otherwise returns NULL.
4580 * Should be called under rcu_read_lock().
4581 */
4582struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4583{
4584 struct cgroup *cgrp;
4585
ace2bee8 4586 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4587
4588 cgrp = idr_find(&ss->root->cgroup_idr, id);
4589 if (cgrp)
d1625964 4590 return cgroup_css(cgrp, ss);
1cb650b9 4591 return NULL;
e5d1367f
SE
4592}
4593
fe693435 4594#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4595static struct cgroup_subsys_state *
4596debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4597{
4598 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4599
4600 if (!css)
4601 return ERR_PTR(-ENOMEM);
4602
4603 return css;
4604}
4605
eb95419b 4606static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4607{
eb95419b 4608 kfree(css);
fe693435
PM
4609}
4610
182446d0
TH
4611static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4612 struct cftype *cft)
fe693435 4613{
182446d0 4614 return cgroup_task_count(css->cgroup);
fe693435
PM
4615}
4616
182446d0
TH
4617static u64 current_css_set_read(struct cgroup_subsys_state *css,
4618 struct cftype *cft)
fe693435
PM
4619{
4620 return (u64)(unsigned long)current->cgroups;
4621}
4622
182446d0 4623static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4624 struct cftype *cft)
fe693435
PM
4625{
4626 u64 count;
4627
4628 rcu_read_lock();
a8ad805c 4629 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4630 rcu_read_unlock();
4631 return count;
4632}
4633
2da8ca82 4634static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4635{
69d0206c 4636 struct cgrp_cset_link *link;
5abb8855 4637 struct css_set *cset;
e61734c5
TH
4638 char *name_buf;
4639
4640 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4641 if (!name_buf)
4642 return -ENOMEM;
7717f7ba
PM
4643
4644 read_lock(&css_set_lock);
4645 rcu_read_lock();
5abb8855 4646 cset = rcu_dereference(current->cgroups);
69d0206c 4647 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4648 struct cgroup *c = link->cgrp;
59f5296b
TH
4649 const char *name = "?";
4650
e61734c5
TH
4651 if (c != cgroup_dummy_top) {
4652 cgroup_name(c, name_buf, NAME_MAX + 1);
4653 name = name_buf;
4654 }
7717f7ba 4655
2c6ab6d2
PM
4656 seq_printf(seq, "Root %d group %s\n",
4657 c->root->hierarchy_id, name);
7717f7ba
PM
4658 }
4659 rcu_read_unlock();
4660 read_unlock(&css_set_lock);
e61734c5 4661 kfree(name_buf);
7717f7ba
PM
4662 return 0;
4663}
4664
4665#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4666static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4667{
2da8ca82 4668 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4669 struct cgrp_cset_link *link;
7717f7ba
PM
4670
4671 read_lock(&css_set_lock);
182446d0 4672 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4673 struct css_set *cset = link->cset;
7717f7ba
PM
4674 struct task_struct *task;
4675 int count = 0;
5abb8855
TH
4676 seq_printf(seq, "css_set %p\n", cset);
4677 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4678 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4679 seq_puts(seq, " ...\n");
4680 break;
4681 } else {
4682 seq_printf(seq, " task %d\n",
4683 task_pid_vnr(task));
4684 }
4685 }
4686 }
4687 read_unlock(&css_set_lock);
4688 return 0;
4689}
4690
182446d0 4691static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4692{
182446d0 4693 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4694}
4695
4696static struct cftype debug_files[] = {
fe693435
PM
4697 {
4698 .name = "taskcount",
4699 .read_u64 = debug_taskcount_read,
4700 },
4701
4702 {
4703 .name = "current_css_set",
4704 .read_u64 = current_css_set_read,
4705 },
4706
4707 {
4708 .name = "current_css_set_refcount",
4709 .read_u64 = current_css_set_refcount_read,
4710 },
4711
7717f7ba
PM
4712 {
4713 .name = "current_css_set_cg_links",
2da8ca82 4714 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4715 },
4716
4717 {
4718 .name = "cgroup_css_links",
2da8ca82 4719 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4720 },
4721
fe693435
PM
4722 {
4723 .name = "releasable",
4724 .read_u64 = releasable_read,
4725 },
fe693435 4726
4baf6e33
TH
4727 { } /* terminate */
4728};
fe693435 4729
073219e9 4730struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4731 .css_alloc = debug_css_alloc,
4732 .css_free = debug_css_free,
4baf6e33 4733 .base_cftypes = debug_files,
fe693435
PM
4734};
4735#endif /* CONFIG_CGROUP_DEBUG */