block: rename bio bi_rw to bi_opf
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
a79a908f
AK
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
1f3fe7eb 64#include <linux/file.h>
bd1060a1 65#include <net/sock.h>
ddbcc7e8 66
b1a21367
TH
67/*
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
72 */
73#define CGROUP_PIDLIST_DESTROY_DELAY HZ
74
8d7e6fb0
TH
75#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
77
e25e2cbb
TH
78/*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
f0d9a5f1 82 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 83 * objects, and the chain of tasks off each css_set.
e25e2cbb 84 *
0e1d768f
TH
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
e25e2cbb 87 */
2219449a
TH
88#ifdef CONFIG_PROVE_RCU
89DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 90DEFINE_SPINLOCK(css_set_lock);
0e1d768f 91EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 92EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 93#else
81a6a5cd 94static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 95static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
96#endif
97
6fa4918d 98/*
15a4c835
TH
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
6fa4918d
TH
101 */
102static DEFINE_SPINLOCK(cgroup_idr_lock);
103
34c06254
TH
104/*
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
107 */
108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
69e943b7
TH
110/*
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
113 */
114static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 115
1ed13287
TH
116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
8353da1f 118#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
8353da1f 121 "cgroup_mutex or RCU read lock required");
780cd8b3 122
e5fca243
TH
123/*
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
128 */
129static struct workqueue_struct *cgroup_destroy_wq;
130
b1a21367
TH
131/*
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
134 */
135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
3ed80a62 137/* generate an array of cgroup subsystem pointers */
073219e9 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 139static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
140#include <linux/cgroup_subsys.h>
141};
073219e9
TH
142#undef SUBSYS
143
144/* array of cgroup subsystem names */
145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
147#include <linux/cgroup_subsys.h>
148};
073219e9 149#undef SUBSYS
ddbcc7e8 150
49d1dc4b
TH
151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152#define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157#include <linux/cgroup_subsys.h>
158#undef SUBSYS
159
160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161static struct static_key_true *cgroup_subsys_enabled_key[] = {
162#include <linux/cgroup_subsys.h>
163};
164#undef SUBSYS
165
166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168#include <linux/cgroup_subsys.h>
169};
170#undef SUBSYS
171
ddbcc7e8 172/*
3dd06ffa 173 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
ddbcc7e8 176 */
a2dd4247 177struct cgroup_root cgrp_dfl_root;
d0ec4230 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 179
a2dd4247
TH
180/*
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
183 */
a7165264 184static bool cgrp_dfl_visible;
ddbcc7e8 185
223ffb29 186/* Controllers blocked by the commandline in v1 */
6e5c8307 187static u16 cgroup_no_v1_mask;
223ffb29 188
5533e011 189/* some controllers are not supported in the default hierarchy */
a7165264 190static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 191
f6d635ad
TH
192/* some controllers are implicitly enabled on the default hierarchy */
193static unsigned long cgrp_dfl_implicit_ss_mask;
194
ddbcc7e8
PM
195/* The list of hierarchy roots */
196
9871bf95
TH
197static LIST_HEAD(cgroup_roots);
198static int cgroup_root_count;
ddbcc7e8 199
3417ae1f 200/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 201static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 202
794611a1 203/*
0cb51d71
TH
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
794611a1 209 */
0cb51d71 210static u64 css_serial_nr_next = 1;
794611a1 211
cb4a3167
AS
212/*
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 216 */
6e5c8307
TH
217static u16 have_fork_callback __read_mostly;
218static u16 have_exit_callback __read_mostly;
219static u16 have_free_callback __read_mostly;
ddbcc7e8 220
a79a908f
AK
221/* cgroup namespace for init task */
222struct cgroup_namespace init_cgroup_ns = {
223 .count = { .counter = 2, },
224 .user_ns = &init_user_ns,
225 .ns.ops = &cgroupns_operations,
226 .ns.inum = PROC_CGROUP_INIT_INO,
227 .root_cset = &init_css_set,
228};
229
7e47682e 230/* Ditto for the can_fork callback. */
6e5c8307 231static u16 have_canfork_callback __read_mostly;
7e47682e 232
67e9c74b 233static struct file_system_type cgroup2_fs_type;
a14c6874
TH
234static struct cftype cgroup_dfl_base_files[];
235static struct cftype cgroup_legacy_base_files[];
628f7cd4 236
6e5c8307 237static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 238static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
239static int cgroup_apply_control(struct cgroup *cgrp);
240static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 241static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 242static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
9d755d33 245static void css_release(struct percpu_ref *ref);
f8f22e53 246static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 249 bool is_add);
42809dd4 250
fc5ed1e9
TH
251/**
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
254 *
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
258 */
259static bool cgroup_ssid_enabled(int ssid)
260{
cfe02a8a
AB
261 if (CGROUP_SUBSYS_COUNT == 0)
262 return false;
263
fc5ed1e9
TH
264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265}
266
223ffb29
JW
267static bool cgroup_ssid_no_v1(int ssid)
268{
269 return cgroup_no_v1_mask & (1 << ssid);
270}
271
9e10a130
TH
272/**
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
275 *
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
279 * interface version.
280 *
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
283 *
284 * List of changed behaviors:
285 *
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
288 *
289 * - When mounting an existing superblock, mount options should match.
290 *
291 * - Remount is disallowed.
292 *
293 * - rename(2) is disallowed.
294 *
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
297 *
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
300 *
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
303 *
304 * - "cgroup.clone_children" is removed.
305 *
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
310 *
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
314 *
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
317 *
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
319 * is not created.
320 *
321 * - blkcg: blk-throttle becomes properly hierarchical.
322 *
323 * - debug: disallowed on the default hierarchy.
324 */
325static bool cgroup_on_dfl(const struct cgroup *cgrp)
326{
327 return cgrp->root == &cgrp_dfl_root;
328}
329
6fa4918d
TH
330/* IDR wrappers which synchronize using cgroup_idr_lock */
331static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
332 gfp_t gfp_mask)
333{
334 int ret;
335
336 idr_preload(gfp_mask);
54504e97 337 spin_lock_bh(&cgroup_idr_lock);
d0164adc 338 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 339 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
340 idr_preload_end();
341 return ret;
342}
343
344static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
345{
346 void *ret;
347
54504e97 348 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 349 ret = idr_replace(idr, ptr, id);
54504e97 350 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
351 return ret;
352}
353
354static void cgroup_idr_remove(struct idr *idr, int id)
355{
54504e97 356 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 357 idr_remove(idr, id);
54504e97 358 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
359}
360
d51f39b0
TH
361static struct cgroup *cgroup_parent(struct cgroup *cgrp)
362{
363 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
364
365 if (parent_css)
366 return container_of(parent_css, struct cgroup, self);
367 return NULL;
368}
369
5531dc91
TH
370/* subsystems visibly enabled on a cgroup */
371static u16 cgroup_control(struct cgroup *cgrp)
372{
373 struct cgroup *parent = cgroup_parent(cgrp);
374 u16 root_ss_mask = cgrp->root->subsys_mask;
375
376 if (parent)
377 return parent->subtree_control;
378
379 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
380 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
381 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
382 return root_ss_mask;
383}
384
385/* subsystems enabled on a cgroup */
386static u16 cgroup_ss_mask(struct cgroup *cgrp)
387{
388 struct cgroup *parent = cgroup_parent(cgrp);
389
390 if (parent)
391 return parent->subtree_ss_mask;
392
393 return cgrp->root->subsys_mask;
394}
395
95109b62
TH
396/**
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
9d800df1 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 400 *
ca8bdcaf
TH
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
406 */
407static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 408 struct cgroup_subsys *ss)
95109b62 409{
ca8bdcaf 410 if (ss)
aec25020 411 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 412 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 413 else
9d800df1 414 return &cgrp->self;
95109b62 415}
42809dd4 416
aec3dfcb
TH
417/**
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
9d800df1 420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 421 *
d0f702e6 422 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
426 */
427static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
428 struct cgroup_subsys *ss)
429{
430 lockdep_assert_held(&cgroup_mutex);
431
432 if (!ss)
9d800df1 433 return &cgrp->self;
aec3dfcb 434
eeecbd19
TH
435 /*
436 * This function is used while updating css associations and thus
5531dc91 437 * can't test the csses directly. Test ss_mask.
eeecbd19 438 */
5531dc91 439 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 440 cgrp = cgroup_parent(cgrp);
5531dc91
TH
441 if (!cgrp)
442 return NULL;
443 }
aec3dfcb
TH
444
445 return cgroup_css(cgrp, ss);
95109b62 446}
42809dd4 447
eeecbd19
TH
448/**
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
452 *
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
458 */
459struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461{
462 struct cgroup_subsys_state *css;
463
464 rcu_read_lock();
465
466 do {
467 css = cgroup_css(cgrp, ss);
468
469 if (css && css_tryget_online(css))
470 goto out_unlock;
471 cgrp = cgroup_parent(cgrp);
472 } while (cgrp);
473
474 css = init_css_set.subsys[ss->id];
475 css_get(css);
476out_unlock:
477 rcu_read_unlock();
478 return css;
479}
480
ddbcc7e8 481/* convenient tests for these bits */
54766d4a 482static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 483{
184faf32 484 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
485}
486
052c3f3a
TH
487static void cgroup_get(struct cgroup *cgrp)
488{
489 WARN_ON_ONCE(cgroup_is_dead(cgrp));
490 css_get(&cgrp->self);
491}
492
493static bool cgroup_tryget(struct cgroup *cgrp)
494{
495 return css_tryget(&cgrp->self);
496}
497
b4168640 498struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 499{
2bd59d48 500 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 501 struct cftype *cft = of_cft(of);
2bd59d48
TH
502
503 /*
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
510 */
511 if (cft->ss)
512 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
513 else
9d800df1 514 return &cgrp->self;
59f5296b 515}
b4168640 516EXPORT_SYMBOL_GPL(of_css);
59f5296b 517
e9685a03 518static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 519{
bd89aabc 520 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
521}
522
1c6727af
TH
523/**
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
aec3dfcb 529 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
530 */
531#define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
536 else
537
aec3dfcb
TH
538/**
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
543 *
544 * Should be called under cgroup_[tree_]mutex.
545 */
546#define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
549 ; \
550 else
551
30159ec7 552/**
3ed80a62 553 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 554 * @ss: the iteration cursor
780cd8b3 555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 556 */
780cd8b3 557#define for_each_subsys(ss, ssid) \
3ed80a62
TH
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 560
cb4a3167 561/**
b4e0eeaf 562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 565 * @ss_mask: the bitmask
cb4a3167
AS
566 *
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 568 * @ss_mask is set.
cb4a3167 569 */
b4e0eeaf
TH
570#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 573 (ssid) = 0; \
b4e0eeaf
TH
574 break; \
575 } \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
578 {
579
580#define while_each_subsys_mask() \
581 } \
582 } \
583} while (false)
cb4a3167 584
985ed670
TH
585/* iterate across the hierarchies */
586#define for_each_root(root) \
5549c497 587 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 588
f8f22e53
TH
589/* iterate over child cgrps, lock should be held throughout iteration */
590#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 592 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
593 cgroup_is_dead(child); })) \
594 ; \
595 else
7ae1bad9 596
ce3f1d9d
TH
597/* walk live descendants in preorder */
598#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
603 ; \
604 else
605
606/* walk live descendants in postorder */
607#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
612 ; \
613 else
614
81a6a5cd 615static void cgroup_release_agent(struct work_struct *work);
bd89aabc 616static void check_for_release(struct cgroup *cgrp);
81a6a5cd 617
69d0206c
TH
618/*
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
624 * from both sides.
625 */
626struct cgrp_cset_link {
627 /* the cgroup and css_set this link associates */
628 struct cgroup *cgrp;
629 struct css_set *cset;
630
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link;
633
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link;
817929ec
PM
636};
637
172a2c06
TH
638/*
639 * The default css_set - used by init and its children prior to any
817929ec
PM
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
644 */
5024ae29 645struct css_set init_css_set = {
172a2c06
TH
646 .refcount = ATOMIC_INIT(1),
647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
648 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
649 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
650 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
651 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 652 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 653};
817929ec 654
172a2c06 655static int css_set_count = 1; /* 1 for init_css_set */
817929ec 656
0de0942d
TH
657/**
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
660 */
661static bool css_set_populated(struct css_set *cset)
662{
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
666}
667
842b597e
TH
668/**
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
672 *
0de0942d
TH
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
677 *
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
683 */
684static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
685{
f0d9a5f1 686 lockdep_assert_held(&css_set_lock);
842b597e
TH
687
688 do {
689 bool trigger;
690
691 if (populated)
692 trigger = !cgrp->populated_cnt++;
693 else
694 trigger = !--cgrp->populated_cnt;
695
696 if (!trigger)
697 break;
698
ad2ed2b3 699 check_for_release(cgrp);
6f60eade
TH
700 cgroup_file_notify(&cgrp->events_file);
701
d51f39b0 702 cgrp = cgroup_parent(cgrp);
842b597e
TH
703 } while (cgrp);
704}
705
0de0942d
TH
706/**
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
710 *
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
713 */
714static void css_set_update_populated(struct css_set *cset, bool populated)
715{
716 struct cgrp_cset_link *link;
717
f0d9a5f1 718 lockdep_assert_held(&css_set_lock);
0de0942d
TH
719
720 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
721 cgroup_update_populated(link->cgrp, populated);
722}
723
f6d7d049
TH
724/**
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
730 *
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
734 *
ed27b9f7
TH
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
738 */
739static void css_set_move_task(struct task_struct *task,
740 struct css_set *from_cset, struct css_set *to_cset,
741 bool use_mg_tasks)
742{
f0d9a5f1 743 lockdep_assert_held(&css_set_lock);
f6d7d049 744
20b454a6
TH
745 if (to_cset && !css_set_populated(to_cset))
746 css_set_update_populated(to_cset, true);
747
f6d7d049 748 if (from_cset) {
ed27b9f7
TH
749 struct css_task_iter *it, *pos;
750
f6d7d049 751 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
752
753 /*
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
758 * for details.
759 */
760 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
761 iters_node)
762 if (it->task_pos == &task->cg_list)
763 css_task_iter_advance(it);
764
f6d7d049
TH
765 list_del_init(&task->cg_list);
766 if (!css_set_populated(from_cset))
767 css_set_update_populated(from_cset, false);
768 } else {
769 WARN_ON_ONCE(!list_empty(&task->cg_list));
770 }
771
772 if (to_cset) {
773 /*
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
778 */
779 WARN_ON_ONCE(task->flags & PF_EXITING);
780
f6d7d049
TH
781 rcu_assign_pointer(task->cgroups, to_cset);
782 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
783 &to_cset->tasks);
784 }
785}
786
7717f7ba
PM
787/*
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
791 */
472b1053 792#define CSS_SET_HASH_BITS 7
0ac801fe 793static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 794
0ac801fe 795static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 796{
0ac801fe 797 unsigned long key = 0UL;
30159ec7
TH
798 struct cgroup_subsys *ss;
799 int i;
472b1053 800
30159ec7 801 for_each_subsys(ss, i)
0ac801fe
LZ
802 key += (unsigned long)css[i];
803 key = (key >> 16) ^ key;
472b1053 804
0ac801fe 805 return key;
472b1053
LZ
806}
807
a25eb52e 808static void put_css_set_locked(struct css_set *cset)
b4f48b63 809{
69d0206c 810 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
811 struct cgroup_subsys *ss;
812 int ssid;
5abb8855 813
f0d9a5f1 814 lockdep_assert_held(&css_set_lock);
89c5509b
TH
815
816 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 817 return;
81a6a5cd 818
53254f90
TH
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss, ssid) {
2d8f243a 821 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
822 css_put(cset->subsys[ssid]);
823 }
5abb8855 824 hash_del(&cset->hlist);
2c6ab6d2
PM
825 css_set_count--;
826
69d0206c 827 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
828 list_del(&link->cset_link);
829 list_del(&link->cgrp_link);
2ceb231b
TH
830 if (cgroup_parent(link->cgrp))
831 cgroup_put(link->cgrp);
2c6ab6d2 832 kfree(link);
81a6a5cd 833 }
2c6ab6d2 834
5abb8855 835 kfree_rcu(cset, rcu_head);
b4f48b63
PM
836}
837
a25eb52e 838static void put_css_set(struct css_set *cset)
89c5509b 839{
82d6489d
DBO
840 unsigned long flags;
841
89c5509b
TH
842 /*
843 * Ensure that the refcount doesn't hit zero while any readers
844 * can see it. Similar to atomic_dec_and_lock(), but for an
845 * rwlock
846 */
847 if (atomic_add_unless(&cset->refcount, -1, 1))
848 return;
849
82d6489d 850 spin_lock_irqsave(&css_set_lock, flags);
a25eb52e 851 put_css_set_locked(cset);
82d6489d 852 spin_unlock_irqrestore(&css_set_lock, flags);
89c5509b
TH
853}
854
817929ec
PM
855/*
856 * refcounted get/put for css_set objects
857 */
5abb8855 858static inline void get_css_set(struct css_set *cset)
817929ec 859{
5abb8855 860 atomic_inc(&cset->refcount);
817929ec
PM
861}
862
b326f9d0 863/**
7717f7ba 864 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
865 * @cset: candidate css_set being tested
866 * @old_cset: existing css_set for a task
7717f7ba
PM
867 * @new_cgrp: cgroup that's being entered by the task
868 * @template: desired set of css pointers in css_set (pre-calculated)
869 *
6f4b7e63 870 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
871 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
872 */
5abb8855
TH
873static bool compare_css_sets(struct css_set *cset,
874 struct css_set *old_cset,
7717f7ba
PM
875 struct cgroup *new_cgrp,
876 struct cgroup_subsys_state *template[])
877{
878 struct list_head *l1, *l2;
879
aec3dfcb
TH
880 /*
881 * On the default hierarchy, there can be csets which are
882 * associated with the same set of cgroups but different csses.
883 * Let's first ensure that csses match.
884 */
885 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 886 return false;
7717f7ba
PM
887
888 /*
889 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
890 * different cgroups in hierarchies. As different cgroups may
891 * share the same effective css, this comparison is always
892 * necessary.
7717f7ba 893 */
69d0206c
TH
894 l1 = &cset->cgrp_links;
895 l2 = &old_cset->cgrp_links;
7717f7ba 896 while (1) {
69d0206c 897 struct cgrp_cset_link *link1, *link2;
5abb8855 898 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
899
900 l1 = l1->next;
901 l2 = l2->next;
902 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
903 if (l1 == &cset->cgrp_links) {
904 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
905 break;
906 } else {
69d0206c 907 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
908 }
909 /* Locate the cgroups associated with these links. */
69d0206c
TH
910 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
911 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
912 cgrp1 = link1->cgrp;
913 cgrp2 = link2->cgrp;
7717f7ba 914 /* Hierarchies should be linked in the same order. */
5abb8855 915 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
916
917 /*
918 * If this hierarchy is the hierarchy of the cgroup
919 * that's changing, then we need to check that this
920 * css_set points to the new cgroup; if it's any other
921 * hierarchy, then this css_set should point to the
922 * same cgroup as the old css_set.
923 */
5abb8855
TH
924 if (cgrp1->root == new_cgrp->root) {
925 if (cgrp1 != new_cgrp)
7717f7ba
PM
926 return false;
927 } else {
5abb8855 928 if (cgrp1 != cgrp2)
7717f7ba
PM
929 return false;
930 }
931 }
932 return true;
933}
934
b326f9d0
TH
935/**
936 * find_existing_css_set - init css array and find the matching css_set
937 * @old_cset: the css_set that we're using before the cgroup transition
938 * @cgrp: the cgroup that we're moving into
939 * @template: out param for the new set of csses, should be clear on entry
817929ec 940 */
5abb8855
TH
941static struct css_set *find_existing_css_set(struct css_set *old_cset,
942 struct cgroup *cgrp,
943 struct cgroup_subsys_state *template[])
b4f48b63 944{
3dd06ffa 945 struct cgroup_root *root = cgrp->root;
30159ec7 946 struct cgroup_subsys *ss;
5abb8855 947 struct css_set *cset;
0ac801fe 948 unsigned long key;
b326f9d0 949 int i;
817929ec 950
aae8aab4
BB
951 /*
952 * Build the set of subsystem state objects that we want to see in the
953 * new css_set. while subsystems can change globally, the entries here
954 * won't change, so no need for locking.
955 */
30159ec7 956 for_each_subsys(ss, i) {
f392e51c 957 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
958 /*
959 * @ss is in this hierarchy, so we want the
960 * effective css from @cgrp.
961 */
962 template[i] = cgroup_e_css(cgrp, ss);
817929ec 963 } else {
aec3dfcb
TH
964 /*
965 * @ss is not in this hierarchy, so we don't want
966 * to change the css.
967 */
5abb8855 968 template[i] = old_cset->subsys[i];
817929ec
PM
969 }
970 }
971
0ac801fe 972 key = css_set_hash(template);
5abb8855
TH
973 hash_for_each_possible(css_set_table, cset, hlist, key) {
974 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
975 continue;
976
977 /* This css_set matches what we need */
5abb8855 978 return cset;
472b1053 979 }
817929ec
PM
980
981 /* No existing cgroup group matched */
982 return NULL;
983}
984
69d0206c 985static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 986{
69d0206c 987 struct cgrp_cset_link *link, *tmp_link;
36553434 988
69d0206c
TH
989 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
990 list_del(&link->cset_link);
36553434
LZ
991 kfree(link);
992 }
993}
994
69d0206c
TH
995/**
996 * allocate_cgrp_cset_links - allocate cgrp_cset_links
997 * @count: the number of links to allocate
998 * @tmp_links: list_head the allocated links are put on
999 *
1000 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1001 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1002 */
69d0206c 1003static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1004{
69d0206c 1005 struct cgrp_cset_link *link;
817929ec 1006 int i;
69d0206c
TH
1007
1008 INIT_LIST_HEAD(tmp_links);
1009
817929ec 1010 for (i = 0; i < count; i++) {
f4f4be2b 1011 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1012 if (!link) {
69d0206c 1013 free_cgrp_cset_links(tmp_links);
817929ec
PM
1014 return -ENOMEM;
1015 }
69d0206c 1016 list_add(&link->cset_link, tmp_links);
817929ec
PM
1017 }
1018 return 0;
1019}
1020
c12f65d4
LZ
1021/**
1022 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1023 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1024 * @cset: the css_set to be linked
c12f65d4
LZ
1025 * @cgrp: the destination cgroup
1026 */
69d0206c
TH
1027static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1028 struct cgroup *cgrp)
c12f65d4 1029{
69d0206c 1030 struct cgrp_cset_link *link;
c12f65d4 1031
69d0206c 1032 BUG_ON(list_empty(tmp_links));
6803c006
TH
1033
1034 if (cgroup_on_dfl(cgrp))
1035 cset->dfl_cgrp = cgrp;
1036
69d0206c
TH
1037 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1038 link->cset = cset;
7717f7ba 1039 link->cgrp = cgrp;
842b597e 1040
7717f7ba 1041 /*
389b9c1b
TH
1042 * Always add links to the tail of the lists so that the lists are
1043 * in choronological order.
7717f7ba 1044 */
389b9c1b 1045 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1046 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1047
1048 if (cgroup_parent(cgrp))
1049 cgroup_get(cgrp);
c12f65d4
LZ
1050}
1051
b326f9d0
TH
1052/**
1053 * find_css_set - return a new css_set with one cgroup updated
1054 * @old_cset: the baseline css_set
1055 * @cgrp: the cgroup to be updated
1056 *
1057 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1058 * substituted into the appropriate hierarchy.
817929ec 1059 */
5abb8855
TH
1060static struct css_set *find_css_set(struct css_set *old_cset,
1061 struct cgroup *cgrp)
817929ec 1062{
b326f9d0 1063 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1064 struct css_set *cset;
69d0206c
TH
1065 struct list_head tmp_links;
1066 struct cgrp_cset_link *link;
2d8f243a 1067 struct cgroup_subsys *ss;
0ac801fe 1068 unsigned long key;
2d8f243a 1069 int ssid;
472b1053 1070
b326f9d0
TH
1071 lockdep_assert_held(&cgroup_mutex);
1072
817929ec
PM
1073 /* First see if we already have a cgroup group that matches
1074 * the desired set */
82d6489d 1075 spin_lock_irq(&css_set_lock);
5abb8855
TH
1076 cset = find_existing_css_set(old_cset, cgrp, template);
1077 if (cset)
1078 get_css_set(cset);
82d6489d 1079 spin_unlock_irq(&css_set_lock);
817929ec 1080
5abb8855
TH
1081 if (cset)
1082 return cset;
817929ec 1083
f4f4be2b 1084 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1085 if (!cset)
817929ec
PM
1086 return NULL;
1087
69d0206c 1088 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1089 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1090 kfree(cset);
817929ec
PM
1091 return NULL;
1092 }
1093
5abb8855 1094 atomic_set(&cset->refcount, 1);
69d0206c 1095 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1096 INIT_LIST_HEAD(&cset->tasks);
c7561128 1097 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1098 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1099 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1100 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1101 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1102
1103 /* Copy the set of subsystem state objects generated in
1104 * find_existing_css_set() */
5abb8855 1105 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1106
82d6489d 1107 spin_lock_irq(&css_set_lock);
817929ec 1108 /* Add reference counts and links from the new css_set. */
69d0206c 1109 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1110 struct cgroup *c = link->cgrp;
69d0206c 1111
7717f7ba
PM
1112 if (c->root == cgrp->root)
1113 c = cgrp;
69d0206c 1114 link_css_set(&tmp_links, cset, c);
7717f7ba 1115 }
817929ec 1116
69d0206c 1117 BUG_ON(!list_empty(&tmp_links));
817929ec 1118
817929ec 1119 css_set_count++;
472b1053 1120
2d8f243a 1121 /* Add @cset to the hash table */
5abb8855
TH
1122 key = css_set_hash(cset->subsys);
1123 hash_add(css_set_table, &cset->hlist, key);
472b1053 1124
53254f90
TH
1125 for_each_subsys(ss, ssid) {
1126 struct cgroup_subsys_state *css = cset->subsys[ssid];
1127
2d8f243a 1128 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1129 &css->cgroup->e_csets[ssid]);
1130 css_get(css);
1131 }
2d8f243a 1132
82d6489d 1133 spin_unlock_irq(&css_set_lock);
817929ec 1134
5abb8855 1135 return cset;
b4f48b63
PM
1136}
1137
3dd06ffa 1138static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1139{
3dd06ffa 1140 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1141
3dd06ffa 1142 return root_cgrp->root;
2bd59d48
TH
1143}
1144
3dd06ffa 1145static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1146{
1147 int id;
1148
1149 lockdep_assert_held(&cgroup_mutex);
1150
985ed670 1151 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1152 if (id < 0)
1153 return id;
1154
1155 root->hierarchy_id = id;
1156 return 0;
1157}
1158
3dd06ffa 1159static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1160{
1161 lockdep_assert_held(&cgroup_mutex);
1162
8c8a5502 1163 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
f2e85d57
TH
1164}
1165
3dd06ffa 1166static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1167{
1168 if (root) {
f2e85d57
TH
1169 idr_destroy(&root->cgroup_idr);
1170 kfree(root);
1171 }
1172}
1173
3dd06ffa 1174static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1175{
3dd06ffa 1176 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1177 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1178
334c3679 1179 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1180
776f02fa 1181 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1182 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1183
f2e85d57 1184 /* Rebind all subsystems back to the default hierarchy */
334c3679 1185 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1186
7717f7ba 1187 /*
f2e85d57
TH
1188 * Release all the links from cset_links to this hierarchy's
1189 * root cgroup
7717f7ba 1190 */
82d6489d 1191 spin_lock_irq(&css_set_lock);
f2e85d57
TH
1192
1193 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1194 list_del(&link->cset_link);
1195 list_del(&link->cgrp_link);
1196 kfree(link);
1197 }
f0d9a5f1 1198
82d6489d 1199 spin_unlock_irq(&css_set_lock);
f2e85d57
TH
1200
1201 if (!list_empty(&root->root_list)) {
1202 list_del(&root->root_list);
1203 cgroup_root_count--;
1204 }
1205
1206 cgroup_exit_root_id(root);
1207
1208 mutex_unlock(&cgroup_mutex);
f2e85d57 1209
2bd59d48 1210 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1211 cgroup_free_root(root);
1212}
1213
4f41fc59
SH
1214/*
1215 * look up cgroup associated with current task's cgroup namespace on the
1216 * specified hierarchy
1217 */
1218static struct cgroup *
1219current_cgns_cgroup_from_root(struct cgroup_root *root)
1220{
1221 struct cgroup *res = NULL;
1222 struct css_set *cset;
1223
1224 lockdep_assert_held(&css_set_lock);
1225
1226 rcu_read_lock();
1227
1228 cset = current->nsproxy->cgroup_ns->root_cset;
1229 if (cset == &init_css_set) {
1230 res = &root->cgrp;
1231 } else {
1232 struct cgrp_cset_link *link;
1233
1234 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1235 struct cgroup *c = link->cgrp;
1236
1237 if (c->root == root) {
1238 res = c;
1239 break;
1240 }
1241 }
1242 }
1243 rcu_read_unlock();
1244
1245 BUG_ON(!res);
1246 return res;
1247}
1248
ceb6a081
TH
1249/* look up cgroup associated with given css_set on the specified hierarchy */
1250static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1251 struct cgroup_root *root)
7717f7ba 1252{
7717f7ba
PM
1253 struct cgroup *res = NULL;
1254
96d365e0 1255 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1256 lockdep_assert_held(&css_set_lock);
96d365e0 1257
5abb8855 1258 if (cset == &init_css_set) {
3dd06ffa 1259 res = &root->cgrp;
7717f7ba 1260 } else {
69d0206c
TH
1261 struct cgrp_cset_link *link;
1262
1263 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1264 struct cgroup *c = link->cgrp;
69d0206c 1265
7717f7ba
PM
1266 if (c->root == root) {
1267 res = c;
1268 break;
1269 }
1270 }
1271 }
96d365e0 1272
7717f7ba
PM
1273 BUG_ON(!res);
1274 return res;
1275}
1276
ddbcc7e8 1277/*
ceb6a081 1278 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1279 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1280 */
1281static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1282 struct cgroup_root *root)
ceb6a081
TH
1283{
1284 /*
1285 * No need to lock the task - since we hold cgroup_mutex the
1286 * task can't change groups, so the only thing that can happen
1287 * is that it exits and its css is set back to init_css_set.
1288 */
1289 return cset_cgroup_from_root(task_css_set(task), root);
1290}
1291
ddbcc7e8 1292/*
ddbcc7e8
PM
1293 * A task must hold cgroup_mutex to modify cgroups.
1294 *
1295 * Any task can increment and decrement the count field without lock.
1296 * So in general, code holding cgroup_mutex can't rely on the count
1297 * field not changing. However, if the count goes to zero, then only
956db3ca 1298 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1299 * means that no tasks are currently attached, therefore there is no
1300 * way a task attached to that cgroup can fork (the other way to
1301 * increment the count). So code holding cgroup_mutex can safely
1302 * assume that if the count is zero, it will stay zero. Similarly, if
1303 * a task holds cgroup_mutex on a cgroup with zero count, it
1304 * knows that the cgroup won't be removed, as cgroup_rmdir()
1305 * needs that mutex.
1306 *
ddbcc7e8
PM
1307 * A cgroup can only be deleted if both its 'count' of using tasks
1308 * is zero, and its list of 'children' cgroups is empty. Since all
1309 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1310 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1311 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1312 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1313 *
1314 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1315 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1316 */
1317
2bd59d48 1318static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1319static const struct file_operations proc_cgroupstats_operations;
a424316c 1320
8d7e6fb0
TH
1321static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1322 char *buf)
ddbcc7e8 1323{
3e1d2eed
TH
1324 struct cgroup_subsys *ss = cft->ss;
1325
8d7e6fb0
TH
1326 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1327 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1328 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1329 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1330 cft->name);
8d7e6fb0
TH
1331 else
1332 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1333 return buf;
ddbcc7e8
PM
1334}
1335
f2e85d57
TH
1336/**
1337 * cgroup_file_mode - deduce file mode of a control file
1338 * @cft: the control file in question
1339 *
7dbdb199 1340 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1341 */
1342static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1343{
f2e85d57 1344 umode_t mode = 0;
65dff759 1345
f2e85d57
TH
1346 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1347 mode |= S_IRUGO;
1348
7dbdb199
TH
1349 if (cft->write_u64 || cft->write_s64 || cft->write) {
1350 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1351 mode |= S_IWUGO;
1352 else
1353 mode |= S_IWUSR;
1354 }
f2e85d57
TH
1355
1356 return mode;
65dff759
LZ
1357}
1358
af0ba678 1359/**
8699b776 1360 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1361 * @subtree_control: the new subtree_control mask to consider
5ced2518 1362 * @this_ss_mask: available subsystems
af0ba678
TH
1363 *
1364 * On the default hierarchy, a subsystem may request other subsystems to be
1365 * enabled together through its ->depends_on mask. In such cases, more
1366 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1367 *
0f060deb 1368 * This function calculates which subsystems need to be enabled if
5ced2518 1369 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1370 */
5ced2518 1371static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1372{
6e5c8307 1373 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1374 struct cgroup_subsys *ss;
1375 int ssid;
1376
1377 lockdep_assert_held(&cgroup_mutex);
1378
f6d635ad
TH
1379 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1380
af0ba678 1381 while (true) {
6e5c8307 1382 u16 new_ss_mask = cur_ss_mask;
af0ba678 1383
b4e0eeaf 1384 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1385 new_ss_mask |= ss->depends_on;
b4e0eeaf 1386 } while_each_subsys_mask();
af0ba678
TH
1387
1388 /*
1389 * Mask out subsystems which aren't available. This can
1390 * happen only if some depended-upon subsystems were bound
1391 * to non-default hierarchies.
1392 */
5ced2518 1393 new_ss_mask &= this_ss_mask;
af0ba678
TH
1394
1395 if (new_ss_mask == cur_ss_mask)
1396 break;
1397 cur_ss_mask = new_ss_mask;
1398 }
1399
0f060deb
TH
1400 return cur_ss_mask;
1401}
1402
a9746d8d
TH
1403/**
1404 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1405 * @kn: the kernfs_node being serviced
1406 *
1407 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1408 * the method finishes if locking succeeded. Note that once this function
1409 * returns the cgroup returned by cgroup_kn_lock_live() may become
1410 * inaccessible any time. If the caller intends to continue to access the
1411 * cgroup, it should pin it before invoking this function.
1412 */
1413static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1414{
a9746d8d
TH
1415 struct cgroup *cgrp;
1416
1417 if (kernfs_type(kn) == KERNFS_DIR)
1418 cgrp = kn->priv;
1419 else
1420 cgrp = kn->parent->priv;
1421
1422 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1423
1424 kernfs_unbreak_active_protection(kn);
1425 cgroup_put(cgrp);
ddbcc7e8
PM
1426}
1427
a9746d8d
TH
1428/**
1429 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1430 * @kn: the kernfs_node being serviced
945ba199 1431 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1432 *
1433 * This helper is to be used by a cgroup kernfs method currently servicing
1434 * @kn. It breaks the active protection, performs cgroup locking and
1435 * verifies that the associated cgroup is alive. Returns the cgroup if
1436 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1437 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1438 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1439 *
1440 * Any cgroup kernfs method implementation which requires locking the
1441 * associated cgroup should use this helper. It avoids nesting cgroup
1442 * locking under kernfs active protection and allows all kernfs operations
1443 * including self-removal.
1444 */
945ba199
TH
1445static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1446 bool drain_offline)
05ef1d7c 1447{
a9746d8d
TH
1448 struct cgroup *cgrp;
1449
1450 if (kernfs_type(kn) == KERNFS_DIR)
1451 cgrp = kn->priv;
1452 else
1453 cgrp = kn->parent->priv;
05ef1d7c 1454
2739d3cc 1455 /*
01f6474c 1456 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1457 * active_ref. cgroup liveliness check alone provides enough
1458 * protection against removal. Ensure @cgrp stays accessible and
1459 * break the active_ref protection.
2739d3cc 1460 */
aa32362f
LZ
1461 if (!cgroup_tryget(cgrp))
1462 return NULL;
a9746d8d
TH
1463 kernfs_break_active_protection(kn);
1464
945ba199
TH
1465 if (drain_offline)
1466 cgroup_lock_and_drain_offline(cgrp);
1467 else
1468 mutex_lock(&cgroup_mutex);
05ef1d7c 1469
a9746d8d
TH
1470 if (!cgroup_is_dead(cgrp))
1471 return cgrp;
1472
1473 cgroup_kn_unlock(kn);
1474 return NULL;
ddbcc7e8 1475}
05ef1d7c 1476
2739d3cc 1477static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1478{
2bd59d48 1479 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1480
01f6474c 1481 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1482
1483 if (cft->file_offset) {
1484 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1485 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1486
1487 spin_lock_irq(&cgroup_file_kn_lock);
1488 cfile->kn = NULL;
1489 spin_unlock_irq(&cgroup_file_kn_lock);
1490 }
1491
2bd59d48 1492 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1493}
1494
13af07df 1495/**
4df8dc90
TH
1496 * css_clear_dir - remove subsys files in a cgroup directory
1497 * @css: taget css
13af07df 1498 */
334c3679 1499static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1500{
334c3679 1501 struct cgroup *cgrp = css->cgroup;
4df8dc90 1502 struct cftype *cfts;
05ef1d7c 1503
88cb04b9
TH
1504 if (!(css->flags & CSS_VISIBLE))
1505 return;
1506
1507 css->flags &= ~CSS_VISIBLE;
1508
4df8dc90
TH
1509 list_for_each_entry(cfts, &css->ss->cfts, node)
1510 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1511}
1512
ccdca218 1513/**
4df8dc90
TH
1514 * css_populate_dir - create subsys files in a cgroup directory
1515 * @css: target css
ccdca218
TH
1516 *
1517 * On failure, no file is added.
1518 */
334c3679 1519static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1520{
334c3679 1521 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1522 struct cftype *cfts, *failed_cfts;
1523 int ret;
ccdca218 1524
03970d3c 1525 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1526 return 0;
1527
4df8dc90
TH
1528 if (!css->ss) {
1529 if (cgroup_on_dfl(cgrp))
1530 cfts = cgroup_dfl_base_files;
1531 else
1532 cfts = cgroup_legacy_base_files;
ccdca218 1533
4df8dc90
TH
1534 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1535 }
ccdca218 1536
4df8dc90
TH
1537 list_for_each_entry(cfts, &css->ss->cfts, node) {
1538 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1539 if (ret < 0) {
1540 failed_cfts = cfts;
1541 goto err;
ccdca218
TH
1542 }
1543 }
88cb04b9
TH
1544
1545 css->flags |= CSS_VISIBLE;
1546
ccdca218
TH
1547 return 0;
1548err:
4df8dc90
TH
1549 list_for_each_entry(cfts, &css->ss->cfts, node) {
1550 if (cfts == failed_cfts)
1551 break;
1552 cgroup_addrm_files(css, cgrp, cfts, false);
1553 }
ccdca218
TH
1554 return ret;
1555}
1556
6e5c8307 1557static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1558{
1ada4838 1559 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1560 struct cgroup_subsys *ss;
2d8f243a 1561 int ssid, i, ret;
ddbcc7e8 1562
ace2bee8 1563 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1564
b4e0eeaf 1565 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1566 /*
1567 * If @ss has non-root csses attached to it, can't move.
1568 * If @ss is an implicit controller, it is exempt from this
1569 * rule and can be stolen.
1570 */
1571 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1572 !ss->implicit_on_dfl)
3ed80a62 1573 return -EBUSY;
1d5be6b2 1574
5df36032 1575 /* can't move between two non-dummy roots either */
7fd8c565 1576 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1577 return -EBUSY;
b4e0eeaf 1578 } while_each_subsys_mask();
ddbcc7e8 1579
b4e0eeaf 1580 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1581 struct cgroup_root *src_root = ss->root;
1582 struct cgroup *scgrp = &src_root->cgrp;
1583 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1584 struct css_set *cset;
a8a648c4 1585
1ada4838 1586 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1587
334c3679
TH
1588 /* disable from the source */
1589 src_root->subsys_mask &= ~(1 << ssid);
1590 WARN_ON(cgroup_apply_control(scgrp));
1591 cgroup_finalize_control(scgrp, 0);
4df8dc90 1592
334c3679 1593 /* rebind */
1ada4838
TH
1594 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1595 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1596 ss->root = dst_root;
1ada4838 1597 css->cgroup = dcgrp;
73e80ed8 1598
82d6489d 1599 spin_lock_irq(&css_set_lock);
2d8f243a
TH
1600 hash_for_each(css_set_table, i, cset, hlist)
1601 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1602 &dcgrp->e_csets[ss->id]);
82d6489d 1603 spin_unlock_irq(&css_set_lock);
2d8f243a 1604
bd53d617 1605 /* default hierarchy doesn't enable controllers by default */
f392e51c 1606 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1607 if (dst_root == &cgrp_dfl_root) {
1608 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1609 } else {
1ada4838 1610 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1611 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1612 }
a8a648c4 1613
334c3679
TH
1614 ret = cgroup_apply_control(dcgrp);
1615 if (ret)
1616 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1617 ss->name, ret);
1618
5df36032
TH
1619 if (ss->bind)
1620 ss->bind(css);
b4e0eeaf 1621 } while_each_subsys_mask();
ddbcc7e8 1622
1ada4838 1623 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1624 return 0;
1625}
1626
4f41fc59
SH
1627static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1628 struct kernfs_root *kf_root)
1629{
09be4c82 1630 int len = 0;
4f41fc59
SH
1631 char *buf = NULL;
1632 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1633 struct cgroup *ns_cgroup;
1634
1635 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1636 if (!buf)
1637 return -ENOMEM;
1638
82d6489d 1639 spin_lock_irq(&css_set_lock);
4f41fc59
SH
1640 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1641 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
82d6489d 1642 spin_unlock_irq(&css_set_lock);
4f41fc59
SH
1643
1644 if (len >= PATH_MAX)
1645 len = -ERANGE;
1646 else if (len > 0) {
1647 seq_escape(sf, buf, " \t\n\\");
1648 len = 0;
1649 }
1650 kfree(buf);
1651 return len;
1652}
1653
2bd59d48
TH
1654static int cgroup_show_options(struct seq_file *seq,
1655 struct kernfs_root *kf_root)
ddbcc7e8 1656{
3dd06ffa 1657 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1658 struct cgroup_subsys *ss;
b85d2040 1659 int ssid;
ddbcc7e8 1660
d98817d4
TH
1661 if (root != &cgrp_dfl_root)
1662 for_each_subsys(ss, ssid)
1663 if (root->subsys_mask & (1 << ssid))
61e57c0c 1664 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1665 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1666 seq_puts(seq, ",noprefix");
93438629 1667 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1668 seq_puts(seq, ",xattr");
69e943b7
TH
1669
1670 spin_lock(&release_agent_path_lock);
81a6a5cd 1671 if (strlen(root->release_agent_path))
a068acf2
KC
1672 seq_show_option(seq, "release_agent",
1673 root->release_agent_path);
69e943b7
TH
1674 spin_unlock(&release_agent_path_lock);
1675
3dd06ffa 1676 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1677 seq_puts(seq, ",clone_children");
c6d57f33 1678 if (strlen(root->name))
a068acf2 1679 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1680 return 0;
1681}
1682
1683struct cgroup_sb_opts {
6e5c8307 1684 u16 subsys_mask;
69dfa00c 1685 unsigned int flags;
81a6a5cd 1686 char *release_agent;
2260e7fc 1687 bool cpuset_clone_children;
c6d57f33 1688 char *name;
2c6ab6d2
PM
1689 /* User explicitly requested empty subsystem */
1690 bool none;
ddbcc7e8
PM
1691};
1692
cf5d5941 1693static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1694{
32a8cf23
DL
1695 char *token, *o = data;
1696 bool all_ss = false, one_ss = false;
6e5c8307 1697 u16 mask = U16_MAX;
30159ec7 1698 struct cgroup_subsys *ss;
7b9a6ba5 1699 int nr_opts = 0;
30159ec7 1700 int i;
f9ab5b5b
LZ
1701
1702#ifdef CONFIG_CPUSETS
6e5c8307 1703 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1704#endif
ddbcc7e8 1705
c6d57f33 1706 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1707
1708 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1709 nr_opts++;
1710
ddbcc7e8
PM
1711 if (!*token)
1712 return -EINVAL;
32a8cf23 1713 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1714 /* Explicitly have no subsystems */
1715 opts->none = true;
32a8cf23
DL
1716 continue;
1717 }
1718 if (!strcmp(token, "all")) {
1719 /* Mutually exclusive option 'all' + subsystem name */
1720 if (one_ss)
1721 return -EINVAL;
1722 all_ss = true;
1723 continue;
1724 }
1725 if (!strcmp(token, "noprefix")) {
93438629 1726 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1727 continue;
1728 }
1729 if (!strcmp(token, "clone_children")) {
2260e7fc 1730 opts->cpuset_clone_children = true;
32a8cf23
DL
1731 continue;
1732 }
03b1cde6 1733 if (!strcmp(token, "xattr")) {
93438629 1734 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1735 continue;
1736 }
32a8cf23 1737 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1738 /* Specifying two release agents is forbidden */
1739 if (opts->release_agent)
1740 return -EINVAL;
c6d57f33 1741 opts->release_agent =
e400c285 1742 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1743 if (!opts->release_agent)
1744 return -ENOMEM;
32a8cf23
DL
1745 continue;
1746 }
1747 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1748 const char *name = token + 5;
1749 /* Can't specify an empty name */
1750 if (!strlen(name))
1751 return -EINVAL;
1752 /* Must match [\w.-]+ */
1753 for (i = 0; i < strlen(name); i++) {
1754 char c = name[i];
1755 if (isalnum(c))
1756 continue;
1757 if ((c == '.') || (c == '-') || (c == '_'))
1758 continue;
1759 return -EINVAL;
1760 }
1761 /* Specifying two names is forbidden */
1762 if (opts->name)
1763 return -EINVAL;
1764 opts->name = kstrndup(name,
e400c285 1765 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1766 GFP_KERNEL);
1767 if (!opts->name)
1768 return -ENOMEM;
32a8cf23
DL
1769
1770 continue;
1771 }
1772
30159ec7 1773 for_each_subsys(ss, i) {
3e1d2eed 1774 if (strcmp(token, ss->legacy_name))
32a8cf23 1775 continue;
fc5ed1e9 1776 if (!cgroup_ssid_enabled(i))
32a8cf23 1777 continue;
223ffb29
JW
1778 if (cgroup_ssid_no_v1(i))
1779 continue;
32a8cf23
DL
1780
1781 /* Mutually exclusive option 'all' + subsystem name */
1782 if (all_ss)
1783 return -EINVAL;
69dfa00c 1784 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1785 one_ss = true;
1786
1787 break;
1788 }
1789 if (i == CGROUP_SUBSYS_COUNT)
1790 return -ENOENT;
1791 }
1792
7b9a6ba5
TH
1793 /*
1794 * If the 'all' option was specified select all the subsystems,
1795 * otherwise if 'none', 'name=' and a subsystem name options were
1796 * not specified, let's default to 'all'
1797 */
1798 if (all_ss || (!one_ss && !opts->none && !opts->name))
1799 for_each_subsys(ss, i)
223ffb29 1800 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1801 opts->subsys_mask |= (1 << i);
1802
1803 /*
1804 * We either have to specify by name or by subsystems. (So all
1805 * empty hierarchies must have a name).
1806 */
1807 if (!opts->subsys_mask && !opts->name)
1808 return -EINVAL;
1809
f9ab5b5b
LZ
1810 /*
1811 * Option noprefix was introduced just for backward compatibility
1812 * with the old cpuset, so we allow noprefix only if mounting just
1813 * the cpuset subsystem.
1814 */
93438629 1815 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1816 return -EINVAL;
1817
2c6ab6d2 1818 /* Can't specify "none" and some subsystems */
a1a71b45 1819 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1820 return -EINVAL;
1821
ddbcc7e8
PM
1822 return 0;
1823}
1824
2bd59d48 1825static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1826{
1827 int ret = 0;
3dd06ffa 1828 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1829 struct cgroup_sb_opts opts;
6e5c8307 1830 u16 added_mask, removed_mask;
ddbcc7e8 1831
aa6ec29b
TH
1832 if (root == &cgrp_dfl_root) {
1833 pr_err("remount is not allowed\n");
873fe09e
TH
1834 return -EINVAL;
1835 }
1836
334c3679 1837 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1838
1839 /* See what subsystems are wanted */
1840 ret = parse_cgroupfs_options(data, &opts);
1841 if (ret)
1842 goto out_unlock;
1843
f392e51c 1844 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1845 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1846 task_tgid_nr(current), current->comm);
8b5a5a9d 1847
f392e51c
TH
1848 added_mask = opts.subsys_mask & ~root->subsys_mask;
1849 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1850
cf5d5941 1851 /* Don't allow flags or name to change at remount */
7450e90b 1852 if ((opts.flags ^ root->flags) ||
cf5d5941 1853 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1854 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1855 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1856 ret = -EINVAL;
1857 goto out_unlock;
1858 }
1859
f172e67c 1860 /* remounting is not allowed for populated hierarchies */
d5c419b6 1861 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1862 ret = -EBUSY;
0670e08b 1863 goto out_unlock;
cf5d5941 1864 }
ddbcc7e8 1865
5df36032 1866 ret = rebind_subsystems(root, added_mask);
3126121f 1867 if (ret)
0670e08b 1868 goto out_unlock;
ddbcc7e8 1869
334c3679 1870 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1871
69e943b7
TH
1872 if (opts.release_agent) {
1873 spin_lock(&release_agent_path_lock);
81a6a5cd 1874 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1875 spin_unlock(&release_agent_path_lock);
1876 }
ddbcc7e8 1877 out_unlock:
66bdc9cf 1878 kfree(opts.release_agent);
c6d57f33 1879 kfree(opts.name);
ddbcc7e8 1880 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1881 return ret;
1882}
1883
afeb0f9f
TH
1884/*
1885 * To reduce the fork() overhead for systems that are not actually using
1886 * their cgroups capability, we don't maintain the lists running through
1887 * each css_set to its tasks until we see the list actually used - in other
1888 * words after the first mount.
1889 */
1890static bool use_task_css_set_links __read_mostly;
1891
1892static void cgroup_enable_task_cg_lists(void)
1893{
1894 struct task_struct *p, *g;
1895
82d6489d 1896 spin_lock_irq(&css_set_lock);
afeb0f9f
TH
1897
1898 if (use_task_css_set_links)
1899 goto out_unlock;
1900
1901 use_task_css_set_links = true;
1902
1903 /*
1904 * We need tasklist_lock because RCU is not safe against
1905 * while_each_thread(). Besides, a forking task that has passed
1906 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1907 * is not guaranteed to have its child immediately visible in the
1908 * tasklist if we walk through it with RCU.
1909 */
1910 read_lock(&tasklist_lock);
1911 do_each_thread(g, p) {
afeb0f9f
TH
1912 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1913 task_css_set(p) != &init_css_set);
1914
1915 /*
1916 * We should check if the process is exiting, otherwise
1917 * it will race with cgroup_exit() in that the list
1918 * entry won't be deleted though the process has exited.
f153ad11
TH
1919 * Do it while holding siglock so that we don't end up
1920 * racing against cgroup_exit().
82d6489d
DBO
1921 *
1922 * Interrupts were already disabled while acquiring
1923 * the css_set_lock, so we do not need to disable it
1924 * again when acquiring the sighand->siglock here.
afeb0f9f 1925 */
82d6489d 1926 spin_lock(&p->sighand->siglock);
eaf797ab
TH
1927 if (!(p->flags & PF_EXITING)) {
1928 struct css_set *cset = task_css_set(p);
1929
0de0942d
TH
1930 if (!css_set_populated(cset))
1931 css_set_update_populated(cset, true);
389b9c1b 1932 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1933 get_css_set(cset);
1934 }
82d6489d 1935 spin_unlock(&p->sighand->siglock);
afeb0f9f
TH
1936 } while_each_thread(g, p);
1937 read_unlock(&tasklist_lock);
1938out_unlock:
82d6489d 1939 spin_unlock_irq(&css_set_lock);
afeb0f9f 1940}
ddbcc7e8 1941
cc31edce
PM
1942static void init_cgroup_housekeeping(struct cgroup *cgrp)
1943{
2d8f243a
TH
1944 struct cgroup_subsys *ss;
1945 int ssid;
1946
d5c419b6
TH
1947 INIT_LIST_HEAD(&cgrp->self.sibling);
1948 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1949 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1950 INIT_LIST_HEAD(&cgrp->pidlists);
1951 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1952 cgrp->self.cgroup = cgrp;
184faf32 1953 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1954
1955 for_each_subsys(ss, ssid)
1956 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1957
1958 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1959 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1960}
c6d57f33 1961
3dd06ffa 1962static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1963 struct cgroup_sb_opts *opts)
ddbcc7e8 1964{
3dd06ffa 1965 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1966
ddbcc7e8 1967 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1968 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1969 cgrp->root = root;
cc31edce 1970 init_cgroup_housekeeping(cgrp);
4e96ee8e 1971 idr_init(&root->cgroup_idr);
c6d57f33 1972
c6d57f33
PM
1973 root->flags = opts->flags;
1974 if (opts->release_agent)
1975 strcpy(root->release_agent_path, opts->release_agent);
1976 if (opts->name)
1977 strcpy(root->name, opts->name);
2260e7fc 1978 if (opts->cpuset_clone_children)
3dd06ffa 1979 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1980}
1981
6e5c8307 1982static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1983{
d427dfeb 1984 LIST_HEAD(tmp_links);
3dd06ffa 1985 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1986 struct css_set *cset;
d427dfeb 1987 int i, ret;
2c6ab6d2 1988
d427dfeb 1989 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1990
cf780b7d 1991 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1992 if (ret < 0)
2bd59d48 1993 goto out;
d427dfeb 1994 root_cgrp->id = ret;
b11cfb58 1995 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1996
2aad2a86
TH
1997 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1998 GFP_KERNEL);
9d755d33
TH
1999 if (ret)
2000 goto out;
2001
d427dfeb 2002 /*
f0d9a5f1 2003 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 2004 * but that's OK - it can only be increased by someone holding
04313591
TH
2005 * cgroup_lock, and that's us. Later rebinding may disable
2006 * controllers on the default hierarchy and thus create new csets,
2007 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 2008 */
04313591 2009 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 2010 if (ret)
9d755d33 2011 goto cancel_ref;
ddbcc7e8 2012
985ed670 2013 ret = cgroup_init_root_id(root);
ddbcc7e8 2014 if (ret)
9d755d33 2015 goto cancel_ref;
ddbcc7e8 2016
2bd59d48
TH
2017 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2018 KERNFS_ROOT_CREATE_DEACTIVATED,
2019 root_cgrp);
2020 if (IS_ERR(root->kf_root)) {
2021 ret = PTR_ERR(root->kf_root);
2022 goto exit_root_id;
2023 }
2024 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 2025
334c3679 2026 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 2027 if (ret)
2bd59d48 2028 goto destroy_root;
ddbcc7e8 2029
5df36032 2030 ret = rebind_subsystems(root, ss_mask);
d427dfeb 2031 if (ret)
2bd59d48 2032 goto destroy_root;
ddbcc7e8 2033
d427dfeb
TH
2034 /*
2035 * There must be no failure case after here, since rebinding takes
2036 * care of subsystems' refcounts, which are explicitly dropped in
2037 * the failure exit path.
2038 */
2039 list_add(&root->root_list, &cgroup_roots);
2040 cgroup_root_count++;
0df6a63f 2041
d427dfeb 2042 /*
3dd06ffa 2043 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2044 * objects.
2045 */
82d6489d 2046 spin_lock_irq(&css_set_lock);
0de0942d 2047 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2048 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2049 if (css_set_populated(cset))
2050 cgroup_update_populated(root_cgrp, true);
2051 }
82d6489d 2052 spin_unlock_irq(&css_set_lock);
ddbcc7e8 2053
d5c419b6 2054 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2055 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2056
2bd59d48 2057 kernfs_activate(root_cgrp->kn);
d427dfeb 2058 ret = 0;
2bd59d48 2059 goto out;
d427dfeb 2060
2bd59d48
TH
2061destroy_root:
2062 kernfs_destroy_root(root->kf_root);
2063 root->kf_root = NULL;
2064exit_root_id:
d427dfeb 2065 cgroup_exit_root_id(root);
9d755d33 2066cancel_ref:
9a1049da 2067 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2068out:
d427dfeb
TH
2069 free_cgrp_cset_links(&tmp_links);
2070 return ret;
ddbcc7e8
PM
2071}
2072
f7e83571 2073static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2074 int flags, const char *unused_dev_name,
f7e83571 2075 void *data)
ddbcc7e8 2076{
67e9c74b 2077 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2078 struct super_block *pinned_sb = NULL;
ed82571b 2079 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
970317aa 2080 struct cgroup_subsys *ss;
3dd06ffa 2081 struct cgroup_root *root;
ddbcc7e8 2082 struct cgroup_sb_opts opts;
2bd59d48 2083 struct dentry *dentry;
8e30e2b8 2084 int ret;
970317aa 2085 int i;
c6b3d5bc 2086 bool new_sb;
ddbcc7e8 2087
ed82571b
SH
2088 get_cgroup_ns(ns);
2089
2090 /* Check if the caller has permission to mount. */
2091 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2092 put_cgroup_ns(ns);
2093 return ERR_PTR(-EPERM);
2094 }
2095
56fde9e0
TH
2096 /*
2097 * The first time anyone tries to mount a cgroup, enable the list
2098 * linking each css_set to its tasks and fix up all existing tasks.
2099 */
2100 if (!use_task_css_set_links)
2101 cgroup_enable_task_cg_lists();
e37a06f1 2102
67e9c74b
TH
2103 if (is_v2) {
2104 if (data) {
2105 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
ed82571b 2106 put_cgroup_ns(ns);
67e9c74b
TH
2107 return ERR_PTR(-EINVAL);
2108 }
a7165264 2109 cgrp_dfl_visible = true;
67e9c74b
TH
2110 root = &cgrp_dfl_root;
2111 cgroup_get(&root->cgrp);
2112 goto out_mount;
2113 }
2114
334c3679 2115 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2116
2117 /* First find the desired set of subsystems */
ddbcc7e8 2118 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2119 if (ret)
8e30e2b8 2120 goto out_unlock;
a015edd2 2121
970317aa
LZ
2122 /*
2123 * Destruction of cgroup root is asynchronous, so subsystems may
2124 * still be dying after the previous unmount. Let's drain the
2125 * dying subsystems. We just need to ensure that the ones
2126 * unmounted previously finish dying and don't care about new ones
2127 * starting. Testing ref liveliness is good enough.
2128 */
2129 for_each_subsys(ss, i) {
2130 if (!(opts.subsys_mask & (1 << i)) ||
2131 ss->root == &cgrp_dfl_root)
2132 continue;
2133
2134 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2135 mutex_unlock(&cgroup_mutex);
2136 msleep(10);
2137 ret = restart_syscall();
2138 goto out_free;
2139 }
2140 cgroup_put(&ss->root->cgrp);
2141 }
2142
985ed670 2143 for_each_root(root) {
2bd59d48 2144 bool name_match = false;
3126121f 2145
3dd06ffa 2146 if (root == &cgrp_dfl_root)
985ed670 2147 continue;
3126121f 2148
cf5d5941 2149 /*
2bd59d48
TH
2150 * If we asked for a name then it must match. Also, if
2151 * name matches but sybsys_mask doesn't, we should fail.
2152 * Remember whether name matched.
cf5d5941 2153 */
2bd59d48
TH
2154 if (opts.name) {
2155 if (strcmp(opts.name, root->name))
2156 continue;
2157 name_match = true;
2158 }
ddbcc7e8 2159
c6d57f33 2160 /*
2bd59d48
TH
2161 * If we asked for subsystems (or explicitly for no
2162 * subsystems) then they must match.
c6d57f33 2163 */
2bd59d48 2164 if ((opts.subsys_mask || opts.none) &&
f392e51c 2165 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2166 if (!name_match)
2167 continue;
2168 ret = -EBUSY;
2169 goto out_unlock;
2170 }
873fe09e 2171
7b9a6ba5
TH
2172 if (root->flags ^ opts.flags)
2173 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2174
776f02fa 2175 /*
3a32bd72
LZ
2176 * We want to reuse @root whose lifetime is governed by its
2177 * ->cgrp. Let's check whether @root is alive and keep it
2178 * that way. As cgroup_kill_sb() can happen anytime, we
2179 * want to block it by pinning the sb so that @root doesn't
2180 * get killed before mount is complete.
2181 *
2182 * With the sb pinned, tryget_live can reliably indicate
2183 * whether @root can be reused. If it's being killed,
2184 * drain it. We can use wait_queue for the wait but this
2185 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2186 */
3a32bd72
LZ
2187 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2188 if (IS_ERR(pinned_sb) ||
2189 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2190 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2191 if (!IS_ERR_OR_NULL(pinned_sb))
2192 deactivate_super(pinned_sb);
776f02fa 2193 msleep(10);
a015edd2
TH
2194 ret = restart_syscall();
2195 goto out_free;
776f02fa 2196 }
ddbcc7e8 2197
776f02fa 2198 ret = 0;
2bd59d48 2199 goto out_unlock;
ddbcc7e8 2200 }
ddbcc7e8 2201
817929ec 2202 /*
172a2c06
TH
2203 * No such thing, create a new one. name= matching without subsys
2204 * specification is allowed for already existing hierarchies but we
2205 * can't create new one without subsys specification.
817929ec 2206 */
172a2c06
TH
2207 if (!opts.subsys_mask && !opts.none) {
2208 ret = -EINVAL;
2209 goto out_unlock;
817929ec 2210 }
817929ec 2211
726a4994
EB
2212 /* Hierarchies may only be created in the initial cgroup namespace. */
2213 if (ns != &init_cgroup_ns) {
ed82571b
SH
2214 ret = -EPERM;
2215 goto out_unlock;
2216 }
2217
172a2c06
TH
2218 root = kzalloc(sizeof(*root), GFP_KERNEL);
2219 if (!root) {
2220 ret = -ENOMEM;
2bd59d48 2221 goto out_unlock;
839ec545 2222 }
e5f6a860 2223
172a2c06
TH
2224 init_cgroup_root(root, &opts);
2225
35585573 2226 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2227 if (ret)
2228 cgroup_free_root(root);
fa3ca07e 2229
8e30e2b8 2230out_unlock:
ddbcc7e8 2231 mutex_unlock(&cgroup_mutex);
a015edd2 2232out_free:
c6d57f33
PM
2233 kfree(opts.release_agent);
2234 kfree(opts.name);
03b1cde6 2235
ed82571b
SH
2236 if (ret) {
2237 put_cgroup_ns(ns);
8e30e2b8 2238 return ERR_PTR(ret);
ed82571b 2239 }
67e9c74b 2240out_mount:
c9482a5b 2241 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2242 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2243 &new_sb);
ed82571b
SH
2244
2245 /*
2246 * In non-init cgroup namespace, instead of root cgroup's
2247 * dentry, we return the dentry corresponding to the
2248 * cgroupns->root_cgrp.
2249 */
2250 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2251 struct dentry *nsdentry;
2252 struct cgroup *cgrp;
2253
2254 mutex_lock(&cgroup_mutex);
82d6489d 2255 spin_lock_irq(&css_set_lock);
ed82571b
SH
2256
2257 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2258
82d6489d 2259 spin_unlock_irq(&css_set_lock);
ed82571b
SH
2260 mutex_unlock(&cgroup_mutex);
2261
2262 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2263 dput(dentry);
2264 dentry = nsdentry;
2265 }
2266
c6b3d5bc 2267 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2268 cgroup_put(&root->cgrp);
3a32bd72
LZ
2269
2270 /*
2271 * If @pinned_sb, we're reusing an existing root and holding an
2272 * extra ref on its sb. Mount is complete. Put the extra ref.
2273 */
2274 if (pinned_sb) {
2275 WARN_ON(new_sb);
2276 deactivate_super(pinned_sb);
2277 }
2278
ed82571b 2279 put_cgroup_ns(ns);
2bd59d48
TH
2280 return dentry;
2281}
2282
2283static void cgroup_kill_sb(struct super_block *sb)
2284{
2285 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2286 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2287
9d755d33
TH
2288 /*
2289 * If @root doesn't have any mounts or children, start killing it.
2290 * This prevents new mounts by disabling percpu_ref_tryget_live().
2291 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2292 *
2293 * And don't kill the default root.
9d755d33 2294 */
3c606d35 2295 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2296 root == &cgrp_dfl_root)
9d755d33
TH
2297 cgroup_put(&root->cgrp);
2298 else
2299 percpu_ref_kill(&root->cgrp.self.refcnt);
2300
2bd59d48 2301 kernfs_kill_sb(sb);
ddbcc7e8
PM
2302}
2303
2304static struct file_system_type cgroup_fs_type = {
2305 .name = "cgroup",
f7e83571 2306 .mount = cgroup_mount,
ddbcc7e8 2307 .kill_sb = cgroup_kill_sb,
1c53753e 2308 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8
PM
2309};
2310
67e9c74b
TH
2311static struct file_system_type cgroup2_fs_type = {
2312 .name = "cgroup2",
2313 .mount = cgroup_mount,
2314 .kill_sb = cgroup_kill_sb,
1c53753e 2315 .fs_flags = FS_USERNS_MOUNT,
67e9c74b
TH
2316};
2317
a79a908f
AK
2318static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2319 struct cgroup_namespace *ns)
2320{
2321 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2322 int ret;
2323
2324 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2325 if (ret < 0 || ret >= buflen)
2326 return NULL;
2327 return buf;
2328}
2329
2330char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2331 struct cgroup_namespace *ns)
2332{
2333 char *ret;
2334
2335 mutex_lock(&cgroup_mutex);
82d6489d 2336 spin_lock_irq(&css_set_lock);
a79a908f
AK
2337
2338 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2339
82d6489d 2340 spin_unlock_irq(&css_set_lock);
a79a908f
AK
2341 mutex_unlock(&cgroup_mutex);
2342
2343 return ret;
2344}
2345EXPORT_SYMBOL_GPL(cgroup_path_ns);
2346
857a2beb 2347/**
913ffdb5 2348 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2349 * @task: target task
857a2beb
TH
2350 * @buf: the buffer to write the path into
2351 * @buflen: the length of the buffer
2352 *
913ffdb5
TH
2353 * Determine @task's cgroup on the first (the one with the lowest non-zero
2354 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2355 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2356 * cgroup controller callbacks.
2357 *
e61734c5 2358 * Return value is the same as kernfs_path().
857a2beb 2359 */
e61734c5 2360char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2361{
3dd06ffa 2362 struct cgroup_root *root;
913ffdb5 2363 struct cgroup *cgrp;
e61734c5
TH
2364 int hierarchy_id = 1;
2365 char *path = NULL;
857a2beb
TH
2366
2367 mutex_lock(&cgroup_mutex);
82d6489d 2368 spin_lock_irq(&css_set_lock);
857a2beb 2369
913ffdb5
TH
2370 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2371
857a2beb
TH
2372 if (root) {
2373 cgrp = task_cgroup_from_root(task, root);
a79a908f 2374 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2375 } else {
2376 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2377 if (strlcpy(buf, "/", buflen) < buflen)
2378 path = buf;
857a2beb
TH
2379 }
2380
82d6489d 2381 spin_unlock_irq(&css_set_lock);
857a2beb 2382 mutex_unlock(&cgroup_mutex);
e61734c5 2383 return path;
857a2beb 2384}
913ffdb5 2385EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2386
b3dc094e 2387/* used to track tasks and other necessary states during migration */
2f7ee569 2388struct cgroup_taskset {
b3dc094e
TH
2389 /* the src and dst cset list running through cset->mg_node */
2390 struct list_head src_csets;
2391 struct list_head dst_csets;
2392
1f7dd3e5
TH
2393 /* the subsys currently being processed */
2394 int ssid;
2395
b3dc094e
TH
2396 /*
2397 * Fields for cgroup_taskset_*() iteration.
2398 *
2399 * Before migration is committed, the target migration tasks are on
2400 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2401 * the csets on ->dst_csets. ->csets point to either ->src_csets
2402 * or ->dst_csets depending on whether migration is committed.
2403 *
2404 * ->cur_csets and ->cur_task point to the current task position
2405 * during iteration.
2406 */
2407 struct list_head *csets;
2408 struct css_set *cur_cset;
2409 struct task_struct *cur_task;
2f7ee569
TH
2410};
2411
adaae5dc
TH
2412#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2413 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2414 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2415 .csets = &tset.src_csets, \
2416}
2417
2418/**
2419 * cgroup_taskset_add - try to add a migration target task to a taskset
2420 * @task: target task
2421 * @tset: target taskset
2422 *
2423 * Add @task, which is a migration target, to @tset. This function becomes
2424 * noop if @task doesn't need to be migrated. @task's css_set should have
2425 * been added as a migration source and @task->cg_list will be moved from
2426 * the css_set's tasks list to mg_tasks one.
2427 */
2428static void cgroup_taskset_add(struct task_struct *task,
2429 struct cgroup_taskset *tset)
2430{
2431 struct css_set *cset;
2432
f0d9a5f1 2433 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2434
2435 /* @task either already exited or can't exit until the end */
2436 if (task->flags & PF_EXITING)
2437 return;
2438
2439 /* leave @task alone if post_fork() hasn't linked it yet */
2440 if (list_empty(&task->cg_list))
2441 return;
2442
2443 cset = task_css_set(task);
2444 if (!cset->mg_src_cgrp)
2445 return;
2446
2447 list_move_tail(&task->cg_list, &cset->mg_tasks);
2448 if (list_empty(&cset->mg_node))
2449 list_add_tail(&cset->mg_node, &tset->src_csets);
2450 if (list_empty(&cset->mg_dst_cset->mg_node))
2451 list_move_tail(&cset->mg_dst_cset->mg_node,
2452 &tset->dst_csets);
2453}
2454
2f7ee569
TH
2455/**
2456 * cgroup_taskset_first - reset taskset and return the first task
2457 * @tset: taskset of interest
1f7dd3e5 2458 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2459 *
2460 * @tset iteration is initialized and the first task is returned.
2461 */
1f7dd3e5
TH
2462struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2463 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2464{
b3dc094e
TH
2465 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2466 tset->cur_task = NULL;
2467
1f7dd3e5 2468 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2469}
2f7ee569
TH
2470
2471/**
2472 * cgroup_taskset_next - iterate to the next task in taskset
2473 * @tset: taskset of interest
1f7dd3e5 2474 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2475 *
2476 * Return the next task in @tset. Iteration must have been initialized
2477 * with cgroup_taskset_first().
2478 */
1f7dd3e5
TH
2479struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2480 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2481{
b3dc094e
TH
2482 struct css_set *cset = tset->cur_cset;
2483 struct task_struct *task = tset->cur_task;
2f7ee569 2484
b3dc094e
TH
2485 while (&cset->mg_node != tset->csets) {
2486 if (!task)
2487 task = list_first_entry(&cset->mg_tasks,
2488 struct task_struct, cg_list);
2489 else
2490 task = list_next_entry(task, cg_list);
2f7ee569 2491
b3dc094e
TH
2492 if (&task->cg_list != &cset->mg_tasks) {
2493 tset->cur_cset = cset;
2494 tset->cur_task = task;
1f7dd3e5
TH
2495
2496 /*
2497 * This function may be called both before and
2498 * after cgroup_taskset_migrate(). The two cases
2499 * can be distinguished by looking at whether @cset
2500 * has its ->mg_dst_cset set.
2501 */
2502 if (cset->mg_dst_cset)
2503 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2504 else
2505 *dst_cssp = cset->subsys[tset->ssid];
2506
b3dc094e
TH
2507 return task;
2508 }
2f7ee569 2509
b3dc094e
TH
2510 cset = list_next_entry(cset, mg_node);
2511 task = NULL;
2512 }
2f7ee569 2513
b3dc094e 2514 return NULL;
2f7ee569 2515}
2f7ee569 2516
adaae5dc 2517/**
37ff9f8f 2518 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2519 * @tset: taget taskset
37ff9f8f 2520 * @root: cgroup root the migration is taking place on
adaae5dc 2521 *
37ff9f8f
TH
2522 * Migrate tasks in @tset as setup by migration preparation functions.
2523 * This function fails iff one of the ->can_attach callbacks fails and
2524 * guarantees that either all or none of the tasks in @tset are migrated.
2525 * @tset is consumed regardless of success.
adaae5dc
TH
2526 */
2527static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2528 struct cgroup_root *root)
adaae5dc 2529{
37ff9f8f 2530 struct cgroup_subsys *ss;
adaae5dc
TH
2531 struct task_struct *task, *tmp_task;
2532 struct css_set *cset, *tmp_cset;
37ff9f8f 2533 int ssid, failed_ssid, ret;
adaae5dc
TH
2534
2535 /* methods shouldn't be called if no task is actually migrating */
2536 if (list_empty(&tset->src_csets))
2537 return 0;
2538
2539 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2540 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2541 if (ss->can_attach) {
2542 tset->ssid = ssid;
2543 ret = ss->can_attach(tset);
adaae5dc 2544 if (ret) {
37ff9f8f 2545 failed_ssid = ssid;
adaae5dc
TH
2546 goto out_cancel_attach;
2547 }
2548 }
37ff9f8f 2549 } while_each_subsys_mask();
adaae5dc
TH
2550
2551 /*
2552 * Now that we're guaranteed success, proceed to move all tasks to
2553 * the new cgroup. There are no failure cases after here, so this
2554 * is the commit point.
2555 */
82d6489d 2556 spin_lock_irq(&css_set_lock);
adaae5dc 2557 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2558 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2559 struct css_set *from_cset = task_css_set(task);
2560 struct css_set *to_cset = cset->mg_dst_cset;
2561
2562 get_css_set(to_cset);
2563 css_set_move_task(task, from_cset, to_cset, true);
2564 put_css_set_locked(from_cset);
2565 }
adaae5dc 2566 }
82d6489d 2567 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2568
2569 /*
2570 * Migration is committed, all target tasks are now on dst_csets.
2571 * Nothing is sensitive to fork() after this point. Notify
2572 * controllers that migration is complete.
2573 */
2574 tset->csets = &tset->dst_csets;
2575
37ff9f8f
TH
2576 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2577 if (ss->attach) {
2578 tset->ssid = ssid;
2579 ss->attach(tset);
1f7dd3e5 2580 }
37ff9f8f 2581 } while_each_subsys_mask();
adaae5dc
TH
2582
2583 ret = 0;
2584 goto out_release_tset;
2585
2586out_cancel_attach:
37ff9f8f
TH
2587 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2588 if (ssid == failed_ssid)
adaae5dc 2589 break;
37ff9f8f
TH
2590 if (ss->cancel_attach) {
2591 tset->ssid = ssid;
2592 ss->cancel_attach(tset);
1f7dd3e5 2593 }
37ff9f8f 2594 } while_each_subsys_mask();
adaae5dc 2595out_release_tset:
82d6489d 2596 spin_lock_irq(&css_set_lock);
adaae5dc
TH
2597 list_splice_init(&tset->dst_csets, &tset->src_csets);
2598 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2599 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2600 list_del_init(&cset->mg_node);
2601 }
82d6489d 2602 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2603 return ret;
2604}
2605
6c694c88
TH
2606/**
2607 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2608 * @dst_cgrp: destination cgroup to test
2609 *
2610 * On the default hierarchy, except for the root, subtree_control must be
2611 * zero for migration destination cgroups with tasks so that child cgroups
2612 * don't compete against tasks.
2613 */
2614static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2615{
2616 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2617 !dst_cgrp->subtree_control;
2618}
2619
a043e3b2 2620/**
1958d2d5
TH
2621 * cgroup_migrate_finish - cleanup after attach
2622 * @preloaded_csets: list of preloaded css_sets
74a1166d 2623 *
1958d2d5
TH
2624 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2625 * those functions for details.
74a1166d 2626 */
1958d2d5 2627static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2628{
1958d2d5 2629 struct css_set *cset, *tmp_cset;
74a1166d 2630
1958d2d5
TH
2631 lockdep_assert_held(&cgroup_mutex);
2632
82d6489d 2633 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2634 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2635 cset->mg_src_cgrp = NULL;
e4857982 2636 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2637 cset->mg_dst_cset = NULL;
2638 list_del_init(&cset->mg_preload_node);
a25eb52e 2639 put_css_set_locked(cset);
1958d2d5 2640 }
82d6489d 2641 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2642}
2643
2644/**
2645 * cgroup_migrate_add_src - add a migration source css_set
2646 * @src_cset: the source css_set to add
2647 * @dst_cgrp: the destination cgroup
2648 * @preloaded_csets: list of preloaded css_sets
2649 *
2650 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2651 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2652 * up by cgroup_migrate_finish().
2653 *
1ed13287
TH
2654 * This function may be called without holding cgroup_threadgroup_rwsem
2655 * even if the target is a process. Threads may be created and destroyed
2656 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2657 * into play and the preloaded css_sets are guaranteed to cover all
2658 * migrations.
1958d2d5
TH
2659 */
2660static void cgroup_migrate_add_src(struct css_set *src_cset,
2661 struct cgroup *dst_cgrp,
2662 struct list_head *preloaded_csets)
2663{
2664 struct cgroup *src_cgrp;
2665
2666 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2667 lockdep_assert_held(&css_set_lock);
1958d2d5 2668
2b021cbf
TH
2669 /*
2670 * If ->dead, @src_set is associated with one or more dead cgroups
2671 * and doesn't contain any migratable tasks. Ignore it early so
2672 * that the rest of migration path doesn't get confused by it.
2673 */
2674 if (src_cset->dead)
2675 return;
2676
1958d2d5
TH
2677 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2678
1958d2d5
TH
2679 if (!list_empty(&src_cset->mg_preload_node))
2680 return;
2681
2682 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2683 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2684 WARN_ON(!list_empty(&src_cset->mg_tasks));
2685 WARN_ON(!list_empty(&src_cset->mg_node));
2686
2687 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2688 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2689 get_css_set(src_cset);
2690 list_add(&src_cset->mg_preload_node, preloaded_csets);
2691}
2692
2693/**
2694 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2695 * @preloaded_csets: list of preloaded source css_sets
2696 *
e4857982
TH
2697 * Tasks are about to be moved and all the source css_sets have been
2698 * preloaded to @preloaded_csets. This function looks up and pins all
2699 * destination css_sets, links each to its source, and append them to
2700 * @preloaded_csets.
1958d2d5
TH
2701 *
2702 * This function must be called after cgroup_migrate_add_src() has been
2703 * called on each migration source css_set. After migration is performed
2704 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2705 * @preloaded_csets.
2706 */
e4857982 2707static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2708{
2709 LIST_HEAD(csets);
f817de98 2710 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2711
2712 lockdep_assert_held(&cgroup_mutex);
2713
2714 /* look up the dst cset for each src cset and link it to src */
f817de98 2715 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2716 struct css_set *dst_cset;
2717
e4857982 2718 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2719 if (!dst_cset)
2720 goto err;
2721
2722 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2723
2724 /*
2725 * If src cset equals dst, it's noop. Drop the src.
2726 * cgroup_migrate() will skip the cset too. Note that we
2727 * can't handle src == dst as some nodes are used by both.
2728 */
2729 if (src_cset == dst_cset) {
2730 src_cset->mg_src_cgrp = NULL;
e4857982 2731 src_cset->mg_dst_cgrp = NULL;
f817de98 2732 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2733 put_css_set(src_cset);
2734 put_css_set(dst_cset);
f817de98
TH
2735 continue;
2736 }
2737
1958d2d5
TH
2738 src_cset->mg_dst_cset = dst_cset;
2739
2740 if (list_empty(&dst_cset->mg_preload_node))
2741 list_add(&dst_cset->mg_preload_node, &csets);
2742 else
a25eb52e 2743 put_css_set(dst_cset);
1958d2d5
TH
2744 }
2745
f817de98 2746 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2747 return 0;
2748err:
2749 cgroup_migrate_finish(&csets);
2750 return -ENOMEM;
2751}
2752
2753/**
2754 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2755 * @leader: the leader of the process or the task to migrate
2756 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2757 * @root: cgroup root migration is taking place on
1958d2d5 2758 *
37ff9f8f
TH
2759 * Migrate a process or task denoted by @leader. If migrating a process,
2760 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2761 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2762 * cgroup_migrate_prepare_dst() on the targets before invoking this
2763 * function and following up with cgroup_migrate_finish().
2764 *
2765 * As long as a controller's ->can_attach() doesn't fail, this function is
2766 * guaranteed to succeed. This means that, excluding ->can_attach()
2767 * failure, when migrating multiple targets, the success or failure can be
2768 * decided for all targets by invoking group_migrate_prepare_dst() before
2769 * actually starting migrating.
2770 */
9af2ec45 2771static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2772 struct cgroup_root *root)
74a1166d 2773{
adaae5dc
TH
2774 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2775 struct task_struct *task;
74a1166d 2776
fb5d2b4c
MSB
2777 /*
2778 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2779 * already PF_EXITING could be freed from underneath us unless we
2780 * take an rcu_read_lock.
2781 */
82d6489d 2782 spin_lock_irq(&css_set_lock);
fb5d2b4c 2783 rcu_read_lock();
9db8de37 2784 task = leader;
74a1166d 2785 do {
adaae5dc 2786 cgroup_taskset_add(task, &tset);
081aa458
LZ
2787 if (!threadgroup)
2788 break;
9db8de37 2789 } while_each_thread(leader, task);
fb5d2b4c 2790 rcu_read_unlock();
82d6489d 2791 spin_unlock_irq(&css_set_lock);
74a1166d 2792
37ff9f8f 2793 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2794}
2795
1958d2d5
TH
2796/**
2797 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2798 * @dst_cgrp: the cgroup to attach to
2799 * @leader: the task or the leader of the threadgroup to be attached
2800 * @threadgroup: attach the whole threadgroup?
2801 *
1ed13287 2802 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2803 */
2804static int cgroup_attach_task(struct cgroup *dst_cgrp,
2805 struct task_struct *leader, bool threadgroup)
2806{
2807 LIST_HEAD(preloaded_csets);
2808 struct task_struct *task;
2809 int ret;
2810
6c694c88
TH
2811 if (!cgroup_may_migrate_to(dst_cgrp))
2812 return -EBUSY;
2813
1958d2d5 2814 /* look up all src csets */
82d6489d 2815 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2816 rcu_read_lock();
2817 task = leader;
2818 do {
2819 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2820 &preloaded_csets);
2821 if (!threadgroup)
2822 break;
2823 } while_each_thread(leader, task);
2824 rcu_read_unlock();
82d6489d 2825 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2826
2827 /* prepare dst csets and commit */
e4857982 2828 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2829 if (!ret)
37ff9f8f 2830 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2831
2832 cgroup_migrate_finish(&preloaded_csets);
2833 return ret;
74a1166d
BB
2834}
2835
187fe840
TH
2836static int cgroup_procs_write_permission(struct task_struct *task,
2837 struct cgroup *dst_cgrp,
2838 struct kernfs_open_file *of)
dedf22e9
TH
2839{
2840 const struct cred *cred = current_cred();
2841 const struct cred *tcred = get_task_cred(task);
2842 int ret = 0;
2843
2844 /*
2845 * even if we're attaching all tasks in the thread group, we only
2846 * need to check permissions on one of them.
2847 */
2848 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2849 !uid_eq(cred->euid, tcred->uid) &&
2850 !uid_eq(cred->euid, tcred->suid))
2851 ret = -EACCES;
2852
187fe840
TH
2853 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2854 struct super_block *sb = of->file->f_path.dentry->d_sb;
2855 struct cgroup *cgrp;
2856 struct inode *inode;
2857
82d6489d 2858 spin_lock_irq(&css_set_lock);
187fe840 2859 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
82d6489d 2860 spin_unlock_irq(&css_set_lock);
187fe840
TH
2861
2862 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2863 cgrp = cgroup_parent(cgrp);
2864
2865 ret = -ENOMEM;
6f60eade 2866 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2867 if (inode) {
2868 ret = inode_permission(inode, MAY_WRITE);
2869 iput(inode);
2870 }
2871 }
2872
dedf22e9
TH
2873 put_cred(tcred);
2874 return ret;
2875}
2876
74a1166d
BB
2877/*
2878 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2879 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2880 * cgroup_mutex and threadgroup.
bbcb81d0 2881 */
acbef755
TH
2882static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2883 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2884{
bbcb81d0 2885 struct task_struct *tsk;
5cf1cacb 2886 struct cgroup_subsys *ss;
e76ecaee 2887 struct cgroup *cgrp;
acbef755 2888 pid_t pid;
5cf1cacb 2889 int ssid, ret;
bbcb81d0 2890
acbef755
TH
2891 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892 return -EINVAL;
2893
945ba199 2894 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2895 if (!cgrp)
74a1166d
BB
2896 return -ENODEV;
2897
3014dde7 2898 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2899 rcu_read_lock();
bbcb81d0 2900 if (pid) {
73507f33 2901 tsk = find_task_by_vpid(pid);
74a1166d 2902 if (!tsk) {
dd4b0a46 2903 ret = -ESRCH;
3014dde7 2904 goto out_unlock_rcu;
bbcb81d0 2905 }
dedf22e9 2906 } else {
b78949eb 2907 tsk = current;
dedf22e9 2908 }
cd3d0952
TH
2909
2910 if (threadgroup)
b78949eb 2911 tsk = tsk->group_leader;
c4c27fbd
MG
2912
2913 /*
14a40ffc 2914 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2915 * trapped in a cpuset, or RT worker may be born in a cgroup
2916 * with no rt_runtime allocated. Just say no.
2917 */
14a40ffc 2918 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2919 ret = -EINVAL;
3014dde7 2920 goto out_unlock_rcu;
c4c27fbd
MG
2921 }
2922
b78949eb
MSB
2923 get_task_struct(tsk);
2924 rcu_read_unlock();
2925
187fe840 2926 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2927 if (!ret)
2928 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2929
f9f9e7b7 2930 put_task_struct(tsk);
3014dde7
TH
2931 goto out_unlock_threadgroup;
2932
2933out_unlock_rcu:
2934 rcu_read_unlock();
2935out_unlock_threadgroup:
2936 percpu_up_write(&cgroup_threadgroup_rwsem);
5cf1cacb
TH
2937 for_each_subsys(ss, ssid)
2938 if (ss->post_attach)
2939 ss->post_attach();
e76ecaee 2940 cgroup_kn_unlock(of->kn);
acbef755 2941 return ret ?: nbytes;
bbcb81d0
PM
2942}
2943
7ae1bad9
TH
2944/**
2945 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2946 * @from: attach to all cgroups of a given task
2947 * @tsk: the task to be attached
2948 */
2949int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2950{
3dd06ffa 2951 struct cgroup_root *root;
7ae1bad9
TH
2952 int retval = 0;
2953
47cfcd09 2954 mutex_lock(&cgroup_mutex);
eedd0f4c 2955 percpu_down_write(&cgroup_threadgroup_rwsem);
985ed670 2956 for_each_root(root) {
96d365e0
TH
2957 struct cgroup *from_cgrp;
2958
3dd06ffa 2959 if (root == &cgrp_dfl_root)
985ed670
TH
2960 continue;
2961
82d6489d 2962 spin_lock_irq(&css_set_lock);
96d365e0 2963 from_cgrp = task_cgroup_from_root(from, root);
82d6489d 2964 spin_unlock_irq(&css_set_lock);
7ae1bad9 2965
6f4b7e63 2966 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2967 if (retval)
2968 break;
2969 }
eedd0f4c 2970 percpu_up_write(&cgroup_threadgroup_rwsem);
47cfcd09 2971 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2972
2973 return retval;
2974}
2975EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2976
acbef755
TH
2977static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2978 char *buf, size_t nbytes, loff_t off)
74a1166d 2979{
acbef755 2980 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2981}
2982
acbef755
TH
2983static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2984 char *buf, size_t nbytes, loff_t off)
af351026 2985{
acbef755 2986 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2987}
2988
451af504
TH
2989static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2990 char *buf, size_t nbytes, loff_t off)
e788e066 2991{
e76ecaee 2992 struct cgroup *cgrp;
5f469907 2993
e76ecaee 2994 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2995
945ba199 2996 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2997 if (!cgrp)
e788e066 2998 return -ENODEV;
69e943b7 2999 spin_lock(&release_agent_path_lock);
e76ecaee
TH
3000 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3001 sizeof(cgrp->root->release_agent_path));
69e943b7 3002 spin_unlock(&release_agent_path_lock);
e76ecaee 3003 cgroup_kn_unlock(of->kn);
451af504 3004 return nbytes;
e788e066
PM
3005}
3006
2da8ca82 3007static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 3008{
2da8ca82 3009 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 3010
46cfeb04 3011 spin_lock(&release_agent_path_lock);
e788e066 3012 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 3013 spin_unlock(&release_agent_path_lock);
e788e066 3014 seq_putc(seq, '\n');
e788e066
PM
3015 return 0;
3016}
3017
2da8ca82 3018static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 3019{
c1d5d42e 3020 seq_puts(seq, "0\n");
e788e066
PM
3021 return 0;
3022}
3023
6e5c8307 3024static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 3025{
f8f22e53
TH
3026 struct cgroup_subsys *ss;
3027 bool printed = false;
3028 int ssid;
a742c59d 3029
b4e0eeaf 3030 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
3031 if (printed)
3032 seq_putc(seq, ' ');
3033 seq_printf(seq, "%s", ss->name);
3034 printed = true;
b4e0eeaf 3035 } while_each_subsys_mask();
f8f22e53
TH
3036 if (printed)
3037 seq_putc(seq, '\n');
355e0c48
PM
3038}
3039
f8f22e53
TH
3040/* show controllers which are enabled from the parent */
3041static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 3042{
f8f22e53
TH
3043 struct cgroup *cgrp = seq_css(seq)->cgroup;
3044
5531dc91 3045 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 3046 return 0;
ddbcc7e8
PM
3047}
3048
f8f22e53
TH
3049/* show controllers which are enabled for a given cgroup's children */
3050static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 3051{
f8f22e53
TH
3052 struct cgroup *cgrp = seq_css(seq)->cgroup;
3053
667c2491 3054 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
3055 return 0;
3056}
3057
3058/**
3059 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3060 * @cgrp: root of the subtree to update csses for
3061 *
54962604
TH
3062 * @cgrp's control masks have changed and its subtree's css associations
3063 * need to be updated accordingly. This function looks up all css_sets
3064 * which are attached to the subtree, creates the matching updated css_sets
3065 * and migrates the tasks to the new ones.
f8f22e53
TH
3066 */
3067static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3068{
3069 LIST_HEAD(preloaded_csets);
10265075 3070 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
3071 struct cgroup_subsys_state *d_css;
3072 struct cgroup *dsct;
f8f22e53
TH
3073 struct css_set *src_cset;
3074 int ret;
3075
f8f22e53
TH
3076 lockdep_assert_held(&cgroup_mutex);
3077
3014dde7
TH
3078 percpu_down_write(&cgroup_threadgroup_rwsem);
3079
f8f22e53 3080 /* look up all csses currently attached to @cgrp's subtree */
82d6489d 3081 spin_lock_irq(&css_set_lock);
54962604 3082 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
3083 struct cgrp_cset_link *link;
3084
54962604 3085 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 3086 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
3087 &preloaded_csets);
3088 }
82d6489d 3089 spin_unlock_irq(&css_set_lock);
f8f22e53
TH
3090
3091 /* NULL dst indicates self on default hierarchy */
e4857982 3092 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
3093 if (ret)
3094 goto out_finish;
3095
82d6489d 3096 spin_lock_irq(&css_set_lock);
f8f22e53 3097 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 3098 struct task_struct *task, *ntask;
f8f22e53
TH
3099
3100 /* src_csets precede dst_csets, break on the first dst_cset */
3101 if (!src_cset->mg_src_cgrp)
3102 break;
3103
10265075
TH
3104 /* all tasks in src_csets need to be migrated */
3105 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3106 cgroup_taskset_add(task, &tset);
f8f22e53 3107 }
82d6489d 3108 spin_unlock_irq(&css_set_lock);
f8f22e53 3109
37ff9f8f 3110 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
3111out_finish:
3112 cgroup_migrate_finish(&preloaded_csets);
3014dde7 3113 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
3114 return ret;
3115}
3116
1b9b96a1 3117/**
945ba199 3118 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 3119 * @cgrp: root of the target subtree
1b9b96a1
TH
3120 *
3121 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
3122 * controller while the previous css is still around. This function grabs
3123 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3124 */
945ba199
TH
3125static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3126 __acquires(&cgroup_mutex)
1b9b96a1
TH
3127{
3128 struct cgroup *dsct;
ce3f1d9d 3129 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3130 struct cgroup_subsys *ss;
3131 int ssid;
3132
945ba199
TH
3133restart:
3134 mutex_lock(&cgroup_mutex);
1b9b96a1 3135
ce3f1d9d 3136 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3137 for_each_subsys(ss, ssid) {
3138 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3139 DEFINE_WAIT(wait);
3140
ce3f1d9d 3141 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3142 continue;
3143
3144 cgroup_get(dsct);
3145 prepare_to_wait(&dsct->offline_waitq, &wait,
3146 TASK_UNINTERRUPTIBLE);
3147
3148 mutex_unlock(&cgroup_mutex);
3149 schedule();
3150 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3151
3152 cgroup_put(dsct);
945ba199 3153 goto restart;
1b9b96a1
TH
3154 }
3155 }
1b9b96a1
TH
3156}
3157
15a27c36
TH
3158/**
3159 * cgroup_save_control - save control masks of a subtree
3160 * @cgrp: root of the target subtree
3161 *
3162 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3163 * prefixed fields for @cgrp's subtree including @cgrp itself.
3164 */
3165static void cgroup_save_control(struct cgroup *cgrp)
3166{
3167 struct cgroup *dsct;
3168 struct cgroup_subsys_state *d_css;
3169
3170 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3171 dsct->old_subtree_control = dsct->subtree_control;
3172 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3173 }
3174}
3175
3176/**
3177 * cgroup_propagate_control - refresh control masks of a subtree
3178 * @cgrp: root of the target subtree
3179 *
3180 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3181 * ->subtree_control and propagate controller availability through the
3182 * subtree so that descendants don't have unavailable controllers enabled.
3183 */
3184static void cgroup_propagate_control(struct cgroup *cgrp)
3185{
3186 struct cgroup *dsct;
3187 struct cgroup_subsys_state *d_css;
3188
3189 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3190 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3191 dsct->subtree_ss_mask =
3192 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3193 cgroup_ss_mask(dsct));
15a27c36
TH
3194 }
3195}
3196
3197/**
3198 * cgroup_restore_control - restore control masks of a subtree
3199 * @cgrp: root of the target subtree
3200 *
3201 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3202 * prefixed fields for @cgrp's subtree including @cgrp itself.
3203 */
3204static void cgroup_restore_control(struct cgroup *cgrp)
3205{
3206 struct cgroup *dsct;
3207 struct cgroup_subsys_state *d_css;
3208
3209 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3210 dsct->subtree_control = dsct->old_subtree_control;
3211 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3212 }
3213}
3214
f6d635ad
TH
3215static bool css_visible(struct cgroup_subsys_state *css)
3216{
3217 struct cgroup_subsys *ss = css->ss;
3218 struct cgroup *cgrp = css->cgroup;
3219
3220 if (cgroup_control(cgrp) & (1 << ss->id))
3221 return true;
3222 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3223 return false;
3224 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3225}
3226
bdb53bd7
TH
3227/**
3228 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3229 * @cgrp: root of the target subtree
bdb53bd7 3230 *
ce3f1d9d 3231 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3232 * visible. A css is created invisible if it's being implicitly enabled
3233 * through dependency. An invisible css is made visible when the userland
3234 * explicitly enables it.
3235 *
3236 * Returns 0 on success, -errno on failure. On failure, csses which have
3237 * been processed already aren't cleaned up. The caller is responsible for
3238 * cleaning up with cgroup_apply_control_disble().
3239 */
3240static int cgroup_apply_control_enable(struct cgroup *cgrp)
3241{
3242 struct cgroup *dsct;
ce3f1d9d 3243 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3244 struct cgroup_subsys *ss;
3245 int ssid, ret;
3246
ce3f1d9d 3247 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3248 for_each_subsys(ss, ssid) {
3249 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3250
945ba199
TH
3251 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3252
bdb53bd7
TH
3253 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3254 continue;
3255
3256 if (!css) {
3257 css = css_create(dsct, ss);
3258 if (IS_ERR(css))
3259 return PTR_ERR(css);
3260 }
3261
f6d635ad 3262 if (css_visible(css)) {
334c3679 3263 ret = css_populate_dir(css);
bdb53bd7
TH
3264 if (ret)
3265 return ret;
3266 }
3267 }
3268 }
3269
3270 return 0;
3271}
3272
12b3bb6a
TH
3273/**
3274 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3275 * @cgrp: root of the target subtree
12b3bb6a 3276 *
ce3f1d9d 3277 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3278 * cgroup_ss_mask() and cgroup_visible_mask().
3279 *
3280 * A css is hidden when the userland requests it to be disabled while other
3281 * subsystems are still depending on it. The css must not actively control
3282 * resources and be in the vanilla state if it's made visible again later.
3283 * Controllers which may be depended upon should provide ->css_reset() for
3284 * this purpose.
3285 */
3286static void cgroup_apply_control_disable(struct cgroup *cgrp)
3287{
3288 struct cgroup *dsct;
ce3f1d9d 3289 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3290 struct cgroup_subsys *ss;
3291 int ssid;
3292
ce3f1d9d 3293 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3294 for_each_subsys(ss, ssid) {
3295 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3296
945ba199
TH
3297 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3298
12b3bb6a
TH
3299 if (!css)
3300 continue;
3301
334c3679
TH
3302 if (css->parent &&
3303 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3304 kill_css(css);
f6d635ad 3305 } else if (!css_visible(css)) {
334c3679 3306 css_clear_dir(css);
12b3bb6a
TH
3307 if (ss->css_reset)
3308 ss->css_reset(css);
3309 }
3310 }
3311 }
3312}
3313
f7b2814b
TH
3314/**
3315 * cgroup_apply_control - apply control mask updates to the subtree
3316 * @cgrp: root of the target subtree
3317 *
3318 * subsystems can be enabled and disabled in a subtree using the following
3319 * steps.
3320 *
3321 * 1. Call cgroup_save_control() to stash the current state.
3322 * 2. Update ->subtree_control masks in the subtree as desired.
3323 * 3. Call cgroup_apply_control() to apply the changes.
3324 * 4. Optionally perform other related operations.
3325 * 5. Call cgroup_finalize_control() to finish up.
3326 *
3327 * This function implements step 3 and propagates the mask changes
3328 * throughout @cgrp's subtree, updates csses accordingly and perform
3329 * process migrations.
3330 */
3331static int cgroup_apply_control(struct cgroup *cgrp)
3332{
3333 int ret;
3334
3335 cgroup_propagate_control(cgrp);
3336
3337 ret = cgroup_apply_control_enable(cgrp);
3338 if (ret)
3339 return ret;
3340
3341 /*
3342 * At this point, cgroup_e_css() results reflect the new csses
3343 * making the following cgroup_update_dfl_csses() properly update
3344 * css associations of all tasks in the subtree.
3345 */
3346 ret = cgroup_update_dfl_csses(cgrp);
3347 if (ret)
3348 return ret;
3349
3350 return 0;
3351}
3352
3353/**
3354 * cgroup_finalize_control - finalize control mask update
3355 * @cgrp: root of the target subtree
3356 * @ret: the result of the update
3357 *
3358 * Finalize control mask update. See cgroup_apply_control() for more info.
3359 */
3360static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3361{
3362 if (ret) {
3363 cgroup_restore_control(cgrp);
3364 cgroup_propagate_control(cgrp);
3365 }
3366
3367 cgroup_apply_control_disable(cgrp);
3368}
3369
f8f22e53 3370/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3371static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3372 char *buf, size_t nbytes,
3373 loff_t off)
f8f22e53 3374{
6e5c8307 3375 u16 enable = 0, disable = 0;
a9746d8d 3376 struct cgroup *cgrp, *child;
f8f22e53 3377 struct cgroup_subsys *ss;
451af504 3378 char *tok;
f8f22e53
TH
3379 int ssid, ret;
3380
3381 /*
d37167ab
TH
3382 * Parse input - space separated list of subsystem names prefixed
3383 * with either + or -.
f8f22e53 3384 */
451af504
TH
3385 buf = strstrip(buf);
3386 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3387 if (tok[0] == '\0')
3388 continue;
a7165264 3389 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3390 if (!cgroup_ssid_enabled(ssid) ||
3391 strcmp(tok + 1, ss->name))
f8f22e53
TH
3392 continue;
3393
3394 if (*tok == '+') {
7d331fa9
TH
3395 enable |= 1 << ssid;
3396 disable &= ~(1 << ssid);
f8f22e53 3397 } else if (*tok == '-') {
7d331fa9
TH
3398 disable |= 1 << ssid;
3399 enable &= ~(1 << ssid);
f8f22e53
TH
3400 } else {
3401 return -EINVAL;
3402 }
3403 break;
b4e0eeaf 3404 } while_each_subsys_mask();
f8f22e53
TH
3405 if (ssid == CGROUP_SUBSYS_COUNT)
3406 return -EINVAL;
3407 }
3408
945ba199 3409 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3410 if (!cgrp)
3411 return -ENODEV;
f8f22e53
TH
3412
3413 for_each_subsys(ss, ssid) {
3414 if (enable & (1 << ssid)) {
667c2491 3415 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3416 enable &= ~(1 << ssid);
3417 continue;
3418 }
3419
5531dc91 3420 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3421 ret = -ENOENT;
3422 goto out_unlock;
3423 }
f8f22e53 3424 } else if (disable & (1 << ssid)) {
667c2491 3425 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3426 disable &= ~(1 << ssid);
3427 continue;
3428 }
3429
3430 /* a child has it enabled? */
3431 cgroup_for_each_live_child(child, cgrp) {
667c2491 3432 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3433 ret = -EBUSY;
ddab2b6e 3434 goto out_unlock;
f8f22e53
TH
3435 }
3436 }
3437 }
3438 }
3439
3440 if (!enable && !disable) {
3441 ret = 0;
ddab2b6e 3442 goto out_unlock;
f8f22e53
TH
3443 }
3444
3445 /*
667c2491 3446 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3447 * with tasks so that child cgroups don't compete against tasks.
3448 */
d51f39b0 3449 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3450 ret = -EBUSY;
3451 goto out_unlock;
3452 }
3453
15a27c36
TH
3454 /* save and update control masks and prepare csses */
3455 cgroup_save_control(cgrp);
f63070d3 3456
15a27c36
TH
3457 cgrp->subtree_control |= enable;
3458 cgrp->subtree_control &= ~disable;
c29adf24 3459
f7b2814b 3460 ret = cgroup_apply_control(cgrp);
f8f22e53 3461
f7b2814b 3462 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3463
3464 kernfs_activate(cgrp->kn);
3465 ret = 0;
3466out_unlock:
a9746d8d 3467 cgroup_kn_unlock(of->kn);
451af504 3468 return ret ?: nbytes;
f8f22e53
TH
3469}
3470
4a07c222 3471static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3472{
4a07c222 3473 seq_printf(seq, "populated %d\n",
27bd4dbb 3474 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3475 return 0;
3476}
3477
2bd59d48
TH
3478static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3479 size_t nbytes, loff_t off)
355e0c48 3480{
2bd59d48
TH
3481 struct cgroup *cgrp = of->kn->parent->priv;
3482 struct cftype *cft = of->kn->priv;
3483 struct cgroup_subsys_state *css;
a742c59d 3484 int ret;
355e0c48 3485
b4168640
TH
3486 if (cft->write)
3487 return cft->write(of, buf, nbytes, off);
3488
2bd59d48
TH
3489 /*
3490 * kernfs guarantees that a file isn't deleted with operations in
3491 * flight, which means that the matching css is and stays alive and
3492 * doesn't need to be pinned. The RCU locking is not necessary
3493 * either. It's just for the convenience of using cgroup_css().
3494 */
3495 rcu_read_lock();
3496 css = cgroup_css(cgrp, cft->ss);
3497 rcu_read_unlock();
a742c59d 3498
451af504 3499 if (cft->write_u64) {
a742c59d
TH
3500 unsigned long long v;
3501 ret = kstrtoull(buf, 0, &v);
3502 if (!ret)
3503 ret = cft->write_u64(css, cft, v);
3504 } else if (cft->write_s64) {
3505 long long v;
3506 ret = kstrtoll(buf, 0, &v);
3507 if (!ret)
3508 ret = cft->write_s64(css, cft, v);
e73d2c61 3509 } else {
a742c59d 3510 ret = -EINVAL;
e73d2c61 3511 }
2bd59d48 3512
a742c59d 3513 return ret ?: nbytes;
355e0c48
PM
3514}
3515
6612f05b 3516static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3517{
2bd59d48 3518 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3519}
3520
6612f05b 3521static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3522{
2bd59d48 3523 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3524}
3525
6612f05b 3526static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3527{
2bd59d48 3528 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3529}
3530
91796569 3531static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3532{
7da11279
TH
3533 struct cftype *cft = seq_cft(m);
3534 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3535
2da8ca82
TH
3536 if (cft->seq_show)
3537 return cft->seq_show(m, arg);
e73d2c61 3538
f4c753b7 3539 if (cft->read_u64)
896f5199
TH
3540 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3541 else if (cft->read_s64)
3542 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3543 else
3544 return -EINVAL;
3545 return 0;
91796569
PM
3546}
3547
2bd59d48
TH
3548static struct kernfs_ops cgroup_kf_single_ops = {
3549 .atomic_write_len = PAGE_SIZE,
3550 .write = cgroup_file_write,
3551 .seq_show = cgroup_seqfile_show,
91796569
PM
3552};
3553
2bd59d48
TH
3554static struct kernfs_ops cgroup_kf_ops = {
3555 .atomic_write_len = PAGE_SIZE,
3556 .write = cgroup_file_write,
3557 .seq_start = cgroup_seqfile_start,
3558 .seq_next = cgroup_seqfile_next,
3559 .seq_stop = cgroup_seqfile_stop,
3560 .seq_show = cgroup_seqfile_show,
3561};
ddbcc7e8
PM
3562
3563/*
3564 * cgroup_rename - Only allow simple rename of directories in place.
3565 */
2bd59d48
TH
3566static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3567 const char *new_name_str)
ddbcc7e8 3568{
2bd59d48 3569 struct cgroup *cgrp = kn->priv;
65dff759 3570 int ret;
65dff759 3571
2bd59d48 3572 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3573 return -ENOTDIR;
2bd59d48 3574 if (kn->parent != new_parent)
ddbcc7e8 3575 return -EIO;
65dff759 3576
6db8e85c
TH
3577 /*
3578 * This isn't a proper migration and its usefulness is very
aa6ec29b 3579 * limited. Disallow on the default hierarchy.
6db8e85c 3580 */
aa6ec29b 3581 if (cgroup_on_dfl(cgrp))
6db8e85c 3582 return -EPERM;
099fca32 3583
e1b2dc17 3584 /*
8353da1f 3585 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3586 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3587 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3588 */
3589 kernfs_break_active_protection(new_parent);
3590 kernfs_break_active_protection(kn);
099fca32 3591
2bd59d48 3592 mutex_lock(&cgroup_mutex);
099fca32 3593
2bd59d48 3594 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3595
2bd59d48 3596 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3597
3598 kernfs_unbreak_active_protection(kn);
3599 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3600 return ret;
099fca32
LZ
3601}
3602
49957f8e
TH
3603/* set uid and gid of cgroup dirs and files to that of the creator */
3604static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3605{
3606 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3607 .ia_uid = current_fsuid(),
3608 .ia_gid = current_fsgid(), };
3609
3610 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3611 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3612 return 0;
3613
3614 return kernfs_setattr(kn, &iattr);
3615}
3616
4df8dc90
TH
3617static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3618 struct cftype *cft)
ddbcc7e8 3619{
8d7e6fb0 3620 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3621 struct kernfs_node *kn;
3622 struct lock_class_key *key = NULL;
49957f8e 3623 int ret;
05ef1d7c 3624
2bd59d48
TH
3625#ifdef CONFIG_DEBUG_LOCK_ALLOC
3626 key = &cft->lockdep_key;
3627#endif
3628 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3629 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3630 NULL, key);
49957f8e
TH
3631 if (IS_ERR(kn))
3632 return PTR_ERR(kn);
3633
3634 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3635 if (ret) {
49957f8e 3636 kernfs_remove(kn);
f8f22e53
TH
3637 return ret;
3638 }
3639
6f60eade
TH
3640 if (cft->file_offset) {
3641 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3642
34c06254 3643 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3644 cfile->kn = kn;
34c06254 3645 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3646 }
3647
f8f22e53 3648 return 0;
ddbcc7e8
PM
3649}
3650
b1f28d31
TH
3651/**
3652 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3653 * @css: the target css
3654 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3655 * @cfts: array of cftypes to be added
3656 * @is_add: whether to add or remove
3657 *
3658 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3659 * For removals, this function never fails.
b1f28d31 3660 */
4df8dc90
TH
3661static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3662 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3663 bool is_add)
ddbcc7e8 3664{
6732ed85 3665 struct cftype *cft, *cft_end = NULL;
b598dde3 3666 int ret = 0;
b1f28d31 3667
01f6474c 3668 lockdep_assert_held(&cgroup_mutex);
db0416b6 3669
6732ed85
TH
3670restart:
3671 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3672 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3673 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3674 continue;
05ebb6e6 3675 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3676 continue;
d51f39b0 3677 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3678 continue;
d51f39b0 3679 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3680 continue;
3681
2739d3cc 3682 if (is_add) {
4df8dc90 3683 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3684 if (ret) {
ed3d261b
JP
3685 pr_warn("%s: failed to add %s, err=%d\n",
3686 __func__, cft->name, ret);
6732ed85
TH
3687 cft_end = cft;
3688 is_add = false;
3689 goto restart;
b1f28d31 3690 }
2739d3cc
LZ
3691 } else {
3692 cgroup_rm_file(cgrp, cft);
db0416b6 3693 }
ddbcc7e8 3694 }
b598dde3 3695 return ret;
ddbcc7e8
PM
3696}
3697
21a2d343 3698static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3699{
3700 LIST_HEAD(pending);
2bb566cb 3701 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3702 struct cgroup *root = &ss->root->cgrp;
492eb21b 3703 struct cgroup_subsys_state *css;
9ccece80 3704 int ret = 0;
8e3f6541 3705
01f6474c 3706 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3707
e8c82d20 3708 /* add/rm files for all cgroups created before */
ca8bdcaf 3709 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3710 struct cgroup *cgrp = css->cgroup;
3711
88cb04b9 3712 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3713 continue;
3714
4df8dc90 3715 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3716 if (ret)
3717 break;
8e3f6541 3718 }
21a2d343
TH
3719
3720 if (is_add && !ret)
3721 kernfs_activate(root->kn);
9ccece80 3722 return ret;
8e3f6541
TH
3723}
3724
2da440a2 3725static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3726{
2bb566cb 3727 struct cftype *cft;
8e3f6541 3728
2bd59d48
TH
3729 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3730 /* free copy for custom atomic_write_len, see init_cftypes() */
3731 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3732 kfree(cft->kf_ops);
3733 cft->kf_ops = NULL;
2da440a2 3734 cft->ss = NULL;
a8ddc821
TH
3735
3736 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3737 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3738 }
2da440a2
TH
3739}
3740
2bd59d48 3741static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3742{
3743 struct cftype *cft;
3744
2bd59d48
TH
3745 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3746 struct kernfs_ops *kf_ops;
3747
0adb0704
TH
3748 WARN_ON(cft->ss || cft->kf_ops);
3749
2bd59d48
TH
3750 if (cft->seq_start)
3751 kf_ops = &cgroup_kf_ops;
3752 else
3753 kf_ops = &cgroup_kf_single_ops;
3754
3755 /*
3756 * Ugh... if @cft wants a custom max_write_len, we need to
3757 * make a copy of kf_ops to set its atomic_write_len.
3758 */
3759 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3760 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3761 if (!kf_ops) {
3762 cgroup_exit_cftypes(cfts);
3763 return -ENOMEM;
3764 }
3765 kf_ops->atomic_write_len = cft->max_write_len;
3766 }
8e3f6541 3767
2bd59d48 3768 cft->kf_ops = kf_ops;
2bb566cb 3769 cft->ss = ss;
2bd59d48 3770 }
2bb566cb 3771
2bd59d48 3772 return 0;
2da440a2
TH
3773}
3774
21a2d343
TH
3775static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3776{
01f6474c 3777 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3778
3779 if (!cfts || !cfts[0].ss)
3780 return -ENOENT;
3781
3782 list_del(&cfts->node);
3783 cgroup_apply_cftypes(cfts, false);
3784 cgroup_exit_cftypes(cfts);
3785 return 0;
8e3f6541 3786}
8e3f6541 3787
79578621
TH
3788/**
3789 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3790 * @cfts: zero-length name terminated array of cftypes
3791 *
2bb566cb
TH
3792 * Unregister @cfts. Files described by @cfts are removed from all
3793 * existing cgroups and all future cgroups won't have them either. This
3794 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3795 *
3796 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3797 * registered.
79578621 3798 */
2bb566cb 3799int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3800{
21a2d343 3801 int ret;
79578621 3802
01f6474c 3803 mutex_lock(&cgroup_mutex);
21a2d343 3804 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3805 mutex_unlock(&cgroup_mutex);
21a2d343 3806 return ret;
80b13586
TH
3807}
3808
8e3f6541
TH
3809/**
3810 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3811 * @ss: target cgroup subsystem
3812 * @cfts: zero-length name terminated array of cftypes
3813 *
3814 * Register @cfts to @ss. Files described by @cfts are created for all
3815 * existing cgroups to which @ss is attached and all future cgroups will
3816 * have them too. This function can be called anytime whether @ss is
3817 * attached or not.
3818 *
3819 * Returns 0 on successful registration, -errno on failure. Note that this
3820 * function currently returns 0 as long as @cfts registration is successful
3821 * even if some file creation attempts on existing cgroups fail.
3822 */
2cf669a5 3823static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3824{
9ccece80 3825 int ret;
8e3f6541 3826
fc5ed1e9 3827 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3828 return 0;
3829
dc5736ed
LZ
3830 if (!cfts || cfts[0].name[0] == '\0')
3831 return 0;
2bb566cb 3832
2bd59d48
TH
3833 ret = cgroup_init_cftypes(ss, cfts);
3834 if (ret)
3835 return ret;
79578621 3836
01f6474c 3837 mutex_lock(&cgroup_mutex);
21a2d343 3838
0adb0704 3839 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3840 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3841 if (ret)
21a2d343 3842 cgroup_rm_cftypes_locked(cfts);
79578621 3843
01f6474c 3844 mutex_unlock(&cgroup_mutex);
9ccece80 3845 return ret;
79578621
TH
3846}
3847
a8ddc821
TH
3848/**
3849 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3850 * @ss: target cgroup subsystem
3851 * @cfts: zero-length name terminated array of cftypes
3852 *
3853 * Similar to cgroup_add_cftypes() but the added files are only used for
3854 * the default hierarchy.
3855 */
3856int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3857{
3858 struct cftype *cft;
3859
3860 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3861 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3862 return cgroup_add_cftypes(ss, cfts);
3863}
3864
3865/**
3866 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3867 * @ss: target cgroup subsystem
3868 * @cfts: zero-length name terminated array of cftypes
3869 *
3870 * Similar to cgroup_add_cftypes() but the added files are only used for
3871 * the legacy hierarchies.
3872 */
2cf669a5
TH
3873int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3874{
a8ddc821
TH
3875 struct cftype *cft;
3876
e4b7037c
TH
3877 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3878 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3879 return cgroup_add_cftypes(ss, cfts);
3880}
3881
34c06254
TH
3882/**
3883 * cgroup_file_notify - generate a file modified event for a cgroup_file
3884 * @cfile: target cgroup_file
3885 *
3886 * @cfile must have been obtained by setting cftype->file_offset.
3887 */
3888void cgroup_file_notify(struct cgroup_file *cfile)
3889{
3890 unsigned long flags;
3891
3892 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3893 if (cfile->kn)
3894 kernfs_notify(cfile->kn);
3895 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3896}
3897
a043e3b2
LZ
3898/**
3899 * cgroup_task_count - count the number of tasks in a cgroup.
3900 * @cgrp: the cgroup in question
3901 *
3902 * Return the number of tasks in the cgroup.
3903 */
07bc356e 3904static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3905{
3906 int count = 0;
69d0206c 3907 struct cgrp_cset_link *link;
817929ec 3908
82d6489d 3909 spin_lock_irq(&css_set_lock);
69d0206c
TH
3910 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3911 count += atomic_read(&link->cset->refcount);
82d6489d 3912 spin_unlock_irq(&css_set_lock);
bbcb81d0
PM
3913 return count;
3914}
3915
53fa5261 3916/**
492eb21b 3917 * css_next_child - find the next child of a given css
c2931b70
TH
3918 * @pos: the current position (%NULL to initiate traversal)
3919 * @parent: css whose children to walk
53fa5261 3920 *
c2931b70 3921 * This function returns the next child of @parent and should be called
87fb54f1 3922 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3923 * that @parent and @pos are accessible. The next sibling is guaranteed to
3924 * be returned regardless of their states.
3925 *
3926 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3927 * css which finished ->css_online() is guaranteed to be visible in the
3928 * future iterations and will stay visible until the last reference is put.
3929 * A css which hasn't finished ->css_online() or already finished
3930 * ->css_offline() may show up during traversal. It's each subsystem's
3931 * responsibility to synchronize against on/offlining.
53fa5261 3932 */
c2931b70
TH
3933struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3934 struct cgroup_subsys_state *parent)
53fa5261 3935{
c2931b70 3936 struct cgroup_subsys_state *next;
53fa5261 3937
8353da1f 3938 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3939
3940 /*
de3f0341
TH
3941 * @pos could already have been unlinked from the sibling list.
3942 * Once a cgroup is removed, its ->sibling.next is no longer
3943 * updated when its next sibling changes. CSS_RELEASED is set when
3944 * @pos is taken off list, at which time its next pointer is valid,
3945 * and, as releases are serialized, the one pointed to by the next
3946 * pointer is guaranteed to not have started release yet. This
3947 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3948 * critical section, the one pointed to by its next pointer is
3949 * guaranteed to not have finished its RCU grace period even if we
3950 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3951 *
de3f0341
TH
3952 * If @pos has CSS_RELEASED set, its next pointer can't be
3953 * dereferenced; however, as each css is given a monotonically
3954 * increasing unique serial number and always appended to the
3955 * sibling list, the next one can be found by walking the parent's
3956 * children until the first css with higher serial number than
3957 * @pos's. While this path can be slower, it happens iff iteration
3958 * races against release and the race window is very small.
53fa5261 3959 */
3b287a50 3960 if (!pos) {
c2931b70
TH
3961 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3962 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3963 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3964 } else {
c2931b70 3965 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3966 if (next->serial_nr > pos->serial_nr)
3967 break;
53fa5261
TH
3968 }
3969
3b281afb
TH
3970 /*
3971 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3972 * the next sibling.
3b281afb 3973 */
c2931b70
TH
3974 if (&next->sibling != &parent->children)
3975 return next;
3b281afb 3976 return NULL;
53fa5261 3977}
53fa5261 3978
574bd9f7 3979/**
492eb21b 3980 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3981 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3982 * @root: css whose descendants to walk
574bd9f7 3983 *
492eb21b 3984 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3985 * to visit for pre-order traversal of @root's descendants. @root is
3986 * included in the iteration and the first node to be visited.
75501a6d 3987 *
87fb54f1
TH
3988 * While this function requires cgroup_mutex or RCU read locking, it
3989 * doesn't require the whole traversal to be contained in a single critical
3990 * section. This function will return the correct next descendant as long
3991 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3992 *
3993 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3994 * css which finished ->css_online() is guaranteed to be visible in the
3995 * future iterations and will stay visible until the last reference is put.
3996 * A css which hasn't finished ->css_online() or already finished
3997 * ->css_offline() may show up during traversal. It's each subsystem's
3998 * responsibility to synchronize against on/offlining.
574bd9f7 3999 */
492eb21b
TH
4000struct cgroup_subsys_state *
4001css_next_descendant_pre(struct cgroup_subsys_state *pos,
4002 struct cgroup_subsys_state *root)
574bd9f7 4003{
492eb21b 4004 struct cgroup_subsys_state *next;
574bd9f7 4005
8353da1f 4006 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4007
bd8815a6 4008 /* if first iteration, visit @root */
7805d000 4009 if (!pos)
bd8815a6 4010 return root;
574bd9f7
TH
4011
4012 /* visit the first child if exists */
492eb21b 4013 next = css_next_child(NULL, pos);
574bd9f7
TH
4014 if (next)
4015 return next;
4016
4017 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 4018 while (pos != root) {
5c9d535b 4019 next = css_next_child(pos, pos->parent);
75501a6d 4020 if (next)
574bd9f7 4021 return next;
5c9d535b 4022 pos = pos->parent;
7805d000 4023 }
574bd9f7
TH
4024
4025 return NULL;
4026}
574bd9f7 4027
12a9d2fe 4028/**
492eb21b
TH
4029 * css_rightmost_descendant - return the rightmost descendant of a css
4030 * @pos: css of interest
12a9d2fe 4031 *
492eb21b
TH
4032 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4033 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 4034 * subtree of @pos.
75501a6d 4035 *
87fb54f1
TH
4036 * While this function requires cgroup_mutex or RCU read locking, it
4037 * doesn't require the whole traversal to be contained in a single critical
4038 * section. This function will return the correct rightmost descendant as
4039 * long as @pos is accessible.
12a9d2fe 4040 */
492eb21b
TH
4041struct cgroup_subsys_state *
4042css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 4043{
492eb21b 4044 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 4045
8353da1f 4046 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
4047
4048 do {
4049 last = pos;
4050 /* ->prev isn't RCU safe, walk ->next till the end */
4051 pos = NULL;
492eb21b 4052 css_for_each_child(tmp, last)
12a9d2fe
TH
4053 pos = tmp;
4054 } while (pos);
4055
4056 return last;
4057}
12a9d2fe 4058
492eb21b
TH
4059static struct cgroup_subsys_state *
4060css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4061{
492eb21b 4062 struct cgroup_subsys_state *last;
574bd9f7
TH
4063
4064 do {
4065 last = pos;
492eb21b 4066 pos = css_next_child(NULL, pos);
574bd9f7
TH
4067 } while (pos);
4068
4069 return last;
4070}
4071
4072/**
492eb21b 4073 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4074 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4075 * @root: css whose descendants to walk
574bd9f7 4076 *
492eb21b 4077 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4078 * to visit for post-order traversal of @root's descendants. @root is
4079 * included in the iteration and the last node to be visited.
75501a6d 4080 *
87fb54f1
TH
4081 * While this function requires cgroup_mutex or RCU read locking, it
4082 * doesn't require the whole traversal to be contained in a single critical
4083 * section. This function will return the correct next descendant as long
4084 * as both @pos and @cgroup are accessible and @pos is a descendant of
4085 * @cgroup.
c2931b70
TH
4086 *
4087 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4088 * css which finished ->css_online() is guaranteed to be visible in the
4089 * future iterations and will stay visible until the last reference is put.
4090 * A css which hasn't finished ->css_online() or already finished
4091 * ->css_offline() may show up during traversal. It's each subsystem's
4092 * responsibility to synchronize against on/offlining.
574bd9f7 4093 */
492eb21b
TH
4094struct cgroup_subsys_state *
4095css_next_descendant_post(struct cgroup_subsys_state *pos,
4096 struct cgroup_subsys_state *root)
574bd9f7 4097{
492eb21b 4098 struct cgroup_subsys_state *next;
574bd9f7 4099
8353da1f 4100 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4101
58b79a91
TH
4102 /* if first iteration, visit leftmost descendant which may be @root */
4103 if (!pos)
4104 return css_leftmost_descendant(root);
574bd9f7 4105
bd8815a6
TH
4106 /* if we visited @root, we're done */
4107 if (pos == root)
4108 return NULL;
4109
574bd9f7 4110 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4111 next = css_next_child(pos, pos->parent);
75501a6d 4112 if (next)
492eb21b 4113 return css_leftmost_descendant(next);
574bd9f7
TH
4114
4115 /* no sibling left, visit parent */
5c9d535b 4116 return pos->parent;
574bd9f7 4117}
574bd9f7 4118
f3d46500
TH
4119/**
4120 * css_has_online_children - does a css have online children
4121 * @css: the target css
4122 *
4123 * Returns %true if @css has any online children; otherwise, %false. This
4124 * function can be called from any context but the caller is responsible
4125 * for synchronizing against on/offlining as necessary.
4126 */
4127bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4128{
f3d46500
TH
4129 struct cgroup_subsys_state *child;
4130 bool ret = false;
cbc125ef
TH
4131
4132 rcu_read_lock();
f3d46500 4133 css_for_each_child(child, css) {
99bae5f9 4134 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4135 ret = true;
4136 break;
cbc125ef
TH
4137 }
4138 }
4139 rcu_read_unlock();
f3d46500 4140 return ret;
574bd9f7 4141}
574bd9f7 4142
0942eeee 4143/**
ecb9d535 4144 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4145 * @it: the iterator to advance
4146 *
4147 * Advance @it to the next css_set to walk.
d515876e 4148 */
ecb9d535 4149static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4150{
0f0a2b4f 4151 struct list_head *l = it->cset_pos;
d515876e
TH
4152 struct cgrp_cset_link *link;
4153 struct css_set *cset;
4154
f0d9a5f1 4155 lockdep_assert_held(&css_set_lock);
ed27b9f7 4156
d515876e
TH
4157 /* Advance to the next non-empty css_set */
4158 do {
4159 l = l->next;
0f0a2b4f
TH
4160 if (l == it->cset_head) {
4161 it->cset_pos = NULL;
ecb9d535 4162 it->task_pos = NULL;
d515876e
TH
4163 return;
4164 }
3ebb2b6e
TH
4165
4166 if (it->ss) {
4167 cset = container_of(l, struct css_set,
4168 e_cset_node[it->ss->id]);
4169 } else {
4170 link = list_entry(l, struct cgrp_cset_link, cset_link);
4171 cset = link->cset;
4172 }
0de0942d 4173 } while (!css_set_populated(cset));
c7561128 4174
0f0a2b4f 4175 it->cset_pos = l;
c7561128
TH
4176
4177 if (!list_empty(&cset->tasks))
0f0a2b4f 4178 it->task_pos = cset->tasks.next;
c7561128 4179 else
0f0a2b4f
TH
4180 it->task_pos = cset->mg_tasks.next;
4181
4182 it->tasks_head = &cset->tasks;
4183 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4184
4185 /*
4186 * We don't keep css_sets locked across iteration steps and thus
4187 * need to take steps to ensure that iteration can be resumed after
4188 * the lock is re-acquired. Iteration is performed at two levels -
4189 * css_sets and tasks in them.
4190 *
4191 * Once created, a css_set never leaves its cgroup lists, so a
4192 * pinned css_set is guaranteed to stay put and we can resume
4193 * iteration afterwards.
4194 *
4195 * Tasks may leave @cset across iteration steps. This is resolved
4196 * by registering each iterator with the css_set currently being
4197 * walked and making css_set_move_task() advance iterators whose
4198 * next task is leaving.
4199 */
4200 if (it->cur_cset) {
4201 list_del(&it->iters_node);
4202 put_css_set_locked(it->cur_cset);
4203 }
4204 get_css_set(cset);
4205 it->cur_cset = cset;
4206 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4207}
4208
ecb9d535
TH
4209static void css_task_iter_advance(struct css_task_iter *it)
4210{
4211 struct list_head *l = it->task_pos;
4212
f0d9a5f1 4213 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4214 WARN_ON_ONCE(!l);
4215
4216 /*
4217 * Advance iterator to find next entry. cset->tasks is consumed
4218 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4219 * next cset.
4220 */
4221 l = l->next;
4222
4223 if (l == it->tasks_head)
4224 l = it->mg_tasks_head->next;
4225
4226 if (l == it->mg_tasks_head)
4227 css_task_iter_advance_css_set(it);
4228 else
4229 it->task_pos = l;
4230}
4231
0942eeee 4232/**
72ec7029
TH
4233 * css_task_iter_start - initiate task iteration
4234 * @css: the css to walk tasks of
0942eeee
TH
4235 * @it: the task iterator to use
4236 *
72ec7029
TH
4237 * Initiate iteration through the tasks of @css. The caller can call
4238 * css_task_iter_next() to walk through the tasks until the function
4239 * returns NULL. On completion of iteration, css_task_iter_end() must be
4240 * called.
0942eeee 4241 */
72ec7029
TH
4242void css_task_iter_start(struct cgroup_subsys_state *css,
4243 struct css_task_iter *it)
817929ec 4244{
56fde9e0
TH
4245 /* no one should try to iterate before mounting cgroups */
4246 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4247
ed27b9f7
TH
4248 memset(it, 0, sizeof(*it));
4249
82d6489d 4250 spin_lock_irq(&css_set_lock);
c59cd3d8 4251
3ebb2b6e
TH
4252 it->ss = css->ss;
4253
4254 if (it->ss)
4255 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4256 else
4257 it->cset_pos = &css->cgroup->cset_links;
4258
0f0a2b4f 4259 it->cset_head = it->cset_pos;
c59cd3d8 4260
ecb9d535 4261 css_task_iter_advance_css_set(it);
ed27b9f7 4262
82d6489d 4263 spin_unlock_irq(&css_set_lock);
817929ec
PM
4264}
4265
0942eeee 4266/**
72ec7029 4267 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4268 * @it: the task iterator being iterated
4269 *
4270 * The "next" function for task iteration. @it should have been
72ec7029
TH
4271 * initialized via css_task_iter_start(). Returns NULL when the iteration
4272 * reaches the end.
0942eeee 4273 */
72ec7029 4274struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4275{
d5745675 4276 if (it->cur_task) {
ed27b9f7 4277 put_task_struct(it->cur_task);
d5745675
TH
4278 it->cur_task = NULL;
4279 }
ed27b9f7 4280
82d6489d 4281 spin_lock_irq(&css_set_lock);
ed27b9f7 4282
d5745675
TH
4283 if (it->task_pos) {
4284 it->cur_task = list_entry(it->task_pos, struct task_struct,
4285 cg_list);
4286 get_task_struct(it->cur_task);
4287 css_task_iter_advance(it);
4288 }
ed27b9f7 4289
82d6489d 4290 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4291
4292 return it->cur_task;
817929ec
PM
4293}
4294
0942eeee 4295/**
72ec7029 4296 * css_task_iter_end - finish task iteration
0942eeee
TH
4297 * @it: the task iterator to finish
4298 *
72ec7029 4299 * Finish task iteration started by css_task_iter_start().
0942eeee 4300 */
72ec7029 4301void css_task_iter_end(struct css_task_iter *it)
31a7df01 4302{
ed27b9f7 4303 if (it->cur_cset) {
82d6489d 4304 spin_lock_irq(&css_set_lock);
ed27b9f7
TH
4305 list_del(&it->iters_node);
4306 put_css_set_locked(it->cur_cset);
82d6489d 4307 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4308 }
4309
4310 if (it->cur_task)
4311 put_task_struct(it->cur_task);
31a7df01
CW
4312}
4313
4314/**
8cc99345
TH
4315 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4316 * @to: cgroup to which the tasks will be moved
4317 * @from: cgroup in which the tasks currently reside
31a7df01 4318 *
eaf797ab
TH
4319 * Locking rules between cgroup_post_fork() and the migration path
4320 * guarantee that, if a task is forking while being migrated, the new child
4321 * is guaranteed to be either visible in the source cgroup after the
4322 * parent's migration is complete or put into the target cgroup. No task
4323 * can slip out of migration through forking.
31a7df01 4324 */
8cc99345 4325int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4326{
952aaa12
TH
4327 LIST_HEAD(preloaded_csets);
4328 struct cgrp_cset_link *link;
72ec7029 4329 struct css_task_iter it;
e406d1cf 4330 struct task_struct *task;
952aaa12 4331 int ret;
31a7df01 4332
6c694c88
TH
4333 if (!cgroup_may_migrate_to(to))
4334 return -EBUSY;
4335
952aaa12 4336 mutex_lock(&cgroup_mutex);
31a7df01 4337
eedd0f4c
EB
4338 percpu_down_write(&cgroup_threadgroup_rwsem);
4339
952aaa12 4340 /* all tasks in @from are being moved, all csets are source */
82d6489d 4341 spin_lock_irq(&css_set_lock);
952aaa12
TH
4342 list_for_each_entry(link, &from->cset_links, cset_link)
4343 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
82d6489d 4344 spin_unlock_irq(&css_set_lock);
31a7df01 4345
e4857982 4346 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4347 if (ret)
4348 goto out_err;
8cc99345 4349
952aaa12 4350 /*
2cfa2b19 4351 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4352 * ->can_attach() fails.
4353 */
e406d1cf 4354 do {
9d800df1 4355 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4356 task = css_task_iter_next(&it);
4357 if (task)
4358 get_task_struct(task);
4359 css_task_iter_end(&it);
4360
4361 if (task) {
37ff9f8f 4362 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4363 put_task_struct(task);
4364 }
4365 } while (task && !ret);
952aaa12
TH
4366out_err:
4367 cgroup_migrate_finish(&preloaded_csets);
eedd0f4c 4368 percpu_up_write(&cgroup_threadgroup_rwsem);
47cfcd09 4369 mutex_unlock(&cgroup_mutex);
e406d1cf 4370 return ret;
8cc99345
TH
4371}
4372
bbcb81d0 4373/*
102a775e 4374 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4375 *
4376 * Reading this file can return large amounts of data if a cgroup has
4377 * *lots* of attached tasks. So it may need several calls to read(),
4378 * but we cannot guarantee that the information we produce is correct
4379 * unless we produce it entirely atomically.
4380 *
bbcb81d0 4381 */
bbcb81d0 4382
24528255
LZ
4383/* which pidlist file are we talking about? */
4384enum cgroup_filetype {
4385 CGROUP_FILE_PROCS,
4386 CGROUP_FILE_TASKS,
4387};
4388
4389/*
4390 * A pidlist is a list of pids that virtually represents the contents of one
4391 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4392 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4393 * to the cgroup.
4394 */
4395struct cgroup_pidlist {
4396 /*
4397 * used to find which pidlist is wanted. doesn't change as long as
4398 * this particular list stays in the list.
4399 */
4400 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4401 /* array of xids */
4402 pid_t *list;
4403 /* how many elements the above list has */
4404 int length;
24528255
LZ
4405 /* each of these stored in a list by its cgroup */
4406 struct list_head links;
4407 /* pointer to the cgroup we belong to, for list removal purposes */
4408 struct cgroup *owner;
b1a21367
TH
4409 /* for delayed destruction */
4410 struct delayed_work destroy_dwork;
24528255
LZ
4411};
4412
d1d9fd33
BB
4413/*
4414 * The following two functions "fix" the issue where there are more pids
4415 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4416 * TODO: replace with a kernel-wide solution to this problem
4417 */
4418#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4419static void *pidlist_allocate(int count)
4420{
4421 if (PIDLIST_TOO_LARGE(count))
4422 return vmalloc(count * sizeof(pid_t));
4423 else
4424 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4425}
b1a21367 4426
d1d9fd33
BB
4427static void pidlist_free(void *p)
4428{
58794514 4429 kvfree(p);
d1d9fd33 4430}
d1d9fd33 4431
b1a21367
TH
4432/*
4433 * Used to destroy all pidlists lingering waiting for destroy timer. None
4434 * should be left afterwards.
4435 */
4436static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4437{
4438 struct cgroup_pidlist *l, *tmp_l;
4439
4440 mutex_lock(&cgrp->pidlist_mutex);
4441 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4442 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4443 mutex_unlock(&cgrp->pidlist_mutex);
4444
4445 flush_workqueue(cgroup_pidlist_destroy_wq);
4446 BUG_ON(!list_empty(&cgrp->pidlists));
4447}
4448
4449static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4450{
4451 struct delayed_work *dwork = to_delayed_work(work);
4452 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4453 destroy_dwork);
4454 struct cgroup_pidlist *tofree = NULL;
4455
4456 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4457
4458 /*
04502365
TH
4459 * Destroy iff we didn't get queued again. The state won't change
4460 * as destroy_dwork can only be queued while locked.
b1a21367 4461 */
04502365 4462 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4463 list_del(&l->links);
4464 pidlist_free(l->list);
4465 put_pid_ns(l->key.ns);
4466 tofree = l;
4467 }
4468
b1a21367
TH
4469 mutex_unlock(&l->owner->pidlist_mutex);
4470 kfree(tofree);
4471}
4472
bbcb81d0 4473/*
102a775e 4474 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4475 * Returns the number of unique elements.
bbcb81d0 4476 */
6ee211ad 4477static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4478{
102a775e 4479 int src, dest = 1;
102a775e
BB
4480
4481 /*
4482 * we presume the 0th element is unique, so i starts at 1. trivial
4483 * edge cases first; no work needs to be done for either
4484 */
4485 if (length == 0 || length == 1)
4486 return length;
4487 /* src and dest walk down the list; dest counts unique elements */
4488 for (src = 1; src < length; src++) {
4489 /* find next unique element */
4490 while (list[src] == list[src-1]) {
4491 src++;
4492 if (src == length)
4493 goto after;
4494 }
4495 /* dest always points to where the next unique element goes */
4496 list[dest] = list[src];
4497 dest++;
4498 }
4499after:
102a775e
BB
4500 return dest;
4501}
4502
afb2bc14
TH
4503/*
4504 * The two pid files - task and cgroup.procs - guaranteed that the result
4505 * is sorted, which forced this whole pidlist fiasco. As pid order is
4506 * different per namespace, each namespace needs differently sorted list,
4507 * making it impossible to use, for example, single rbtree of member tasks
4508 * sorted by task pointer. As pidlists can be fairly large, allocating one
4509 * per open file is dangerous, so cgroup had to implement shared pool of
4510 * pidlists keyed by cgroup and namespace.
4511 *
4512 * All this extra complexity was caused by the original implementation
4513 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4514 * want to do away with it. Explicitly scramble sort order if on the
4515 * default hierarchy so that no such expectation exists in the new
4516 * interface.
afb2bc14
TH
4517 *
4518 * Scrambling is done by swapping every two consecutive bits, which is
4519 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4520 */
4521static pid_t pid_fry(pid_t pid)
4522{
4523 unsigned a = pid & 0x55555555;
4524 unsigned b = pid & 0xAAAAAAAA;
4525
4526 return (a << 1) | (b >> 1);
4527}
4528
4529static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4530{
aa6ec29b 4531 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4532 return pid_fry(pid);
4533 else
4534 return pid;
4535}
4536
102a775e
BB
4537static int cmppid(const void *a, const void *b)
4538{
4539 return *(pid_t *)a - *(pid_t *)b;
4540}
4541
afb2bc14
TH
4542static int fried_cmppid(const void *a, const void *b)
4543{
4544 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4545}
4546
e6b81710
TH
4547static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4548 enum cgroup_filetype type)
4549{
4550 struct cgroup_pidlist *l;
4551 /* don't need task_nsproxy() if we're looking at ourself */
4552 struct pid_namespace *ns = task_active_pid_ns(current);
4553
4554 lockdep_assert_held(&cgrp->pidlist_mutex);
4555
4556 list_for_each_entry(l, &cgrp->pidlists, links)
4557 if (l->key.type == type && l->key.ns == ns)
4558 return l;
4559 return NULL;
4560}
4561
72a8cb30
BB
4562/*
4563 * find the appropriate pidlist for our purpose (given procs vs tasks)
4564 * returns with the lock on that pidlist already held, and takes care
4565 * of the use count, or returns NULL with no locks held if we're out of
4566 * memory.
4567 */
e6b81710
TH
4568static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4569 enum cgroup_filetype type)
72a8cb30
BB
4570{
4571 struct cgroup_pidlist *l;
b70cc5fd 4572
e6b81710
TH
4573 lockdep_assert_held(&cgrp->pidlist_mutex);
4574
4575 l = cgroup_pidlist_find(cgrp, type);
4576 if (l)
4577 return l;
4578
72a8cb30 4579 /* entry not found; create a new one */
f4f4be2b 4580 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4581 if (!l)
72a8cb30 4582 return l;
e6b81710 4583
b1a21367 4584 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4585 l->key.type = type;
e6b81710
TH
4586 /* don't need task_nsproxy() if we're looking at ourself */
4587 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4588 l->owner = cgrp;
4589 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4590 return l;
4591}
4592
102a775e
BB
4593/*
4594 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4595 */
72a8cb30
BB
4596static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4597 struct cgroup_pidlist **lp)
102a775e
BB
4598{
4599 pid_t *array;
4600 int length;
4601 int pid, n = 0; /* used for populating the array */
72ec7029 4602 struct css_task_iter it;
817929ec 4603 struct task_struct *tsk;
102a775e
BB
4604 struct cgroup_pidlist *l;
4605
4bac00d1
TH
4606 lockdep_assert_held(&cgrp->pidlist_mutex);
4607
102a775e
BB
4608 /*
4609 * If cgroup gets more users after we read count, we won't have
4610 * enough space - tough. This race is indistinguishable to the
4611 * caller from the case that the additional cgroup users didn't
4612 * show up until sometime later on.
4613 */
4614 length = cgroup_task_count(cgrp);
d1d9fd33 4615 array = pidlist_allocate(length);
102a775e
BB
4616 if (!array)
4617 return -ENOMEM;
4618 /* now, populate the array */
9d800df1 4619 css_task_iter_start(&cgrp->self, &it);
72ec7029 4620 while ((tsk = css_task_iter_next(&it))) {
102a775e 4621 if (unlikely(n == length))
817929ec 4622 break;
102a775e 4623 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4624 if (type == CGROUP_FILE_PROCS)
4625 pid = task_tgid_vnr(tsk);
4626 else
4627 pid = task_pid_vnr(tsk);
102a775e
BB
4628 if (pid > 0) /* make sure to only use valid results */
4629 array[n++] = pid;
817929ec 4630 }
72ec7029 4631 css_task_iter_end(&it);
102a775e
BB
4632 length = n;
4633 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4634 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4635 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4636 else
4637 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4638 if (type == CGROUP_FILE_PROCS)
6ee211ad 4639 length = pidlist_uniq(array, length);
e6b81710 4640
e6b81710 4641 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4642 if (!l) {
d1d9fd33 4643 pidlist_free(array);
72a8cb30 4644 return -ENOMEM;
102a775e 4645 }
e6b81710
TH
4646
4647 /* store array, freeing old if necessary */
d1d9fd33 4648 pidlist_free(l->list);
102a775e
BB
4649 l->list = array;
4650 l->length = length;
72a8cb30 4651 *lp = l;
102a775e 4652 return 0;
bbcb81d0
PM
4653}
4654
846c7bb0 4655/**
a043e3b2 4656 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4657 * @stats: cgroupstats to fill information into
4658 * @dentry: A dentry entry belonging to the cgroup for which stats have
4659 * been requested.
a043e3b2
LZ
4660 *
4661 * Build and fill cgroupstats so that taskstats can export it to user
4662 * space.
846c7bb0
BS
4663 */
4664int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4665{
2bd59d48 4666 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4667 struct cgroup *cgrp;
72ec7029 4668 struct css_task_iter it;
846c7bb0 4669 struct task_struct *tsk;
33d283be 4670
2bd59d48
TH
4671 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4672 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4673 kernfs_type(kn) != KERNFS_DIR)
4674 return -EINVAL;
4675
bad34660
LZ
4676 mutex_lock(&cgroup_mutex);
4677
846c7bb0 4678 /*
2bd59d48 4679 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4680 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4681 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4682 */
2bd59d48
TH
4683 rcu_read_lock();
4684 cgrp = rcu_dereference(kn->priv);
bad34660 4685 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4686 rcu_read_unlock();
bad34660 4687 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4688 return -ENOENT;
4689 }
bad34660 4690 rcu_read_unlock();
846c7bb0 4691
9d800df1 4692 css_task_iter_start(&cgrp->self, &it);
72ec7029 4693 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4694 switch (tsk->state) {
4695 case TASK_RUNNING:
4696 stats->nr_running++;
4697 break;
4698 case TASK_INTERRUPTIBLE:
4699 stats->nr_sleeping++;
4700 break;
4701 case TASK_UNINTERRUPTIBLE:
4702 stats->nr_uninterruptible++;
4703 break;
4704 case TASK_STOPPED:
4705 stats->nr_stopped++;
4706 break;
4707 default:
4708 if (delayacct_is_task_waiting_on_io(tsk))
4709 stats->nr_io_wait++;
4710 break;
4711 }
4712 }
72ec7029 4713 css_task_iter_end(&it);
846c7bb0 4714
bad34660 4715 mutex_unlock(&cgroup_mutex);
2bd59d48 4716 return 0;
846c7bb0
BS
4717}
4718
8f3ff208 4719
bbcb81d0 4720/*
102a775e 4721 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4722 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4723 * in the cgroup->l->list array.
bbcb81d0 4724 */
cc31edce 4725
102a775e 4726static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4727{
cc31edce
PM
4728 /*
4729 * Initially we receive a position value that corresponds to
4730 * one more than the last pid shown (or 0 on the first call or
4731 * after a seek to the start). Use a binary-search to find the
4732 * next pid to display, if any
4733 */
2bd59d48 4734 struct kernfs_open_file *of = s->private;
7da11279 4735 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4736 struct cgroup_pidlist *l;
7da11279 4737 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4738 int index = 0, pid = *pos;
4bac00d1
TH
4739 int *iter, ret;
4740
4741 mutex_lock(&cgrp->pidlist_mutex);
4742
4743 /*
5d22444f 4744 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4745 * after open. If the matching pidlist is around, we can use that.
5d22444f 4746 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4747 * could already have been destroyed.
4748 */
5d22444f
TH
4749 if (of->priv)
4750 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4751
4752 /*
4753 * Either this is the first start() after open or the matching
4754 * pidlist has been destroyed inbetween. Create a new one.
4755 */
5d22444f
TH
4756 if (!of->priv) {
4757 ret = pidlist_array_load(cgrp, type,
4758 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4759 if (ret)
4760 return ERR_PTR(ret);
4761 }
5d22444f 4762 l = of->priv;
cc31edce 4763
cc31edce 4764 if (pid) {
102a775e 4765 int end = l->length;
20777766 4766
cc31edce
PM
4767 while (index < end) {
4768 int mid = (index + end) / 2;
afb2bc14 4769 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4770 index = mid;
4771 break;
afb2bc14 4772 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4773 index = mid + 1;
4774 else
4775 end = mid;
4776 }
4777 }
4778 /* If we're off the end of the array, we're done */
102a775e 4779 if (index >= l->length)
cc31edce
PM
4780 return NULL;
4781 /* Update the abstract position to be the actual pid that we found */
102a775e 4782 iter = l->list + index;
afb2bc14 4783 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4784 return iter;
4785}
4786
102a775e 4787static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4788{
2bd59d48 4789 struct kernfs_open_file *of = s->private;
5d22444f 4790 struct cgroup_pidlist *l = of->priv;
62236858 4791
5d22444f
TH
4792 if (l)
4793 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4794 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4795 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4796}
4797
102a775e 4798static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4799{
2bd59d48 4800 struct kernfs_open_file *of = s->private;
5d22444f 4801 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4802 pid_t *p = v;
4803 pid_t *end = l->list + l->length;
cc31edce
PM
4804 /*
4805 * Advance to the next pid in the array. If this goes off the
4806 * end, we're done
4807 */
4808 p++;
4809 if (p >= end) {
4810 return NULL;
4811 } else {
7da11279 4812 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4813 return p;
4814 }
4815}
4816
102a775e 4817static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4818{
94ff212d
JP
4819 seq_printf(s, "%d\n", *(int *)v);
4820
4821 return 0;
cc31edce 4822}
bbcb81d0 4823
182446d0
TH
4824static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4825 struct cftype *cft)
81a6a5cd 4826{
182446d0 4827 return notify_on_release(css->cgroup);
81a6a5cd
PM
4828}
4829
182446d0
TH
4830static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4831 struct cftype *cft, u64 val)
6379c106 4832{
6379c106 4833 if (val)
182446d0 4834 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4835 else
182446d0 4836 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4837 return 0;
4838}
4839
182446d0
TH
4840static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4841 struct cftype *cft)
97978e6d 4842{
182446d0 4843 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4844}
4845
182446d0
TH
4846static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4847 struct cftype *cft, u64 val)
97978e6d
DL
4848{
4849 if (val)
182446d0 4850 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4851 else
182446d0 4852 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4853 return 0;
4854}
4855
a14c6874
TH
4856/* cgroup core interface files for the default hierarchy */
4857static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4858 {
d5c56ced 4859 .name = "cgroup.procs",
6f60eade 4860 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4861 .seq_start = cgroup_pidlist_start,
4862 .seq_next = cgroup_pidlist_next,
4863 .seq_stop = cgroup_pidlist_stop,
4864 .seq_show = cgroup_pidlist_show,
5d22444f 4865 .private = CGROUP_FILE_PROCS,
acbef755 4866 .write = cgroup_procs_write,
102a775e 4867 },
f8f22e53
TH
4868 {
4869 .name = "cgroup.controllers",
f8f22e53
TH
4870 .seq_show = cgroup_controllers_show,
4871 },
4872 {
4873 .name = "cgroup.subtree_control",
f8f22e53 4874 .seq_show = cgroup_subtree_control_show,
451af504 4875 .write = cgroup_subtree_control_write,
f8f22e53 4876 },
842b597e 4877 {
4a07c222 4878 .name = "cgroup.events",
a14c6874 4879 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4880 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4881 .seq_show = cgroup_events_show,
842b597e 4882 },
a14c6874
TH
4883 { } /* terminate */
4884};
d5c56ced 4885
a14c6874
TH
4886/* cgroup core interface files for the legacy hierarchies */
4887static struct cftype cgroup_legacy_base_files[] = {
4888 {
4889 .name = "cgroup.procs",
4890 .seq_start = cgroup_pidlist_start,
4891 .seq_next = cgroup_pidlist_next,
4892 .seq_stop = cgroup_pidlist_stop,
4893 .seq_show = cgroup_pidlist_show,
4894 .private = CGROUP_FILE_PROCS,
4895 .write = cgroup_procs_write,
a14c6874
TH
4896 },
4897 {
4898 .name = "cgroup.clone_children",
4899 .read_u64 = cgroup_clone_children_read,
4900 .write_u64 = cgroup_clone_children_write,
4901 },
4902 {
4903 .name = "cgroup.sane_behavior",
4904 .flags = CFTYPE_ONLY_ON_ROOT,
4905 .seq_show = cgroup_sane_behavior_show,
4906 },
d5c56ced
TH
4907 {
4908 .name = "tasks",
6612f05b
TH
4909 .seq_start = cgroup_pidlist_start,
4910 .seq_next = cgroup_pidlist_next,
4911 .seq_stop = cgroup_pidlist_stop,
4912 .seq_show = cgroup_pidlist_show,
5d22444f 4913 .private = CGROUP_FILE_TASKS,
acbef755 4914 .write = cgroup_tasks_write,
d5c56ced
TH
4915 },
4916 {
4917 .name = "notify_on_release",
d5c56ced
TH
4918 .read_u64 = cgroup_read_notify_on_release,
4919 .write_u64 = cgroup_write_notify_on_release,
4920 },
6e6ff25b
TH
4921 {
4922 .name = "release_agent",
a14c6874 4923 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4924 .seq_show = cgroup_release_agent_show,
451af504 4925 .write = cgroup_release_agent_write,
5f469907 4926 .max_write_len = PATH_MAX - 1,
6e6ff25b 4927 },
db0416b6 4928 { } /* terminate */
bbcb81d0
PM
4929};
4930
0c21ead1
TH
4931/*
4932 * css destruction is four-stage process.
4933 *
4934 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4935 * Implemented in kill_css().
4936 *
4937 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4938 * and thus css_tryget_online() is guaranteed to fail, the css can be
4939 * offlined by invoking offline_css(). After offlining, the base ref is
4940 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4941 *
4942 * 3. When the percpu_ref reaches zero, the only possible remaining
4943 * accessors are inside RCU read sections. css_release() schedules the
4944 * RCU callback.
4945 *
4946 * 4. After the grace period, the css can be freed. Implemented in
4947 * css_free_work_fn().
4948 *
4949 * It is actually hairier because both step 2 and 4 require process context
4950 * and thus involve punting to css->destroy_work adding two additional
4951 * steps to the already complex sequence.
4952 */
35ef10da 4953static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4954{
4955 struct cgroup_subsys_state *css =
35ef10da 4956 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4957 struct cgroup_subsys *ss = css->ss;
0c21ead1 4958 struct cgroup *cgrp = css->cgroup;
48ddbe19 4959
9a1049da
TH
4960 percpu_ref_exit(&css->refcnt);
4961
01e58659 4962 if (ss) {
9d755d33 4963 /* css free path */
8bb5ef79 4964 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4965 int id = css->id;
4966
01e58659
VD
4967 ss->css_free(css);
4968 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4969 cgroup_put(cgrp);
8bb5ef79
TH
4970
4971 if (parent)
4972 css_put(parent);
9d755d33
TH
4973 } else {
4974 /* cgroup free path */
4975 atomic_dec(&cgrp->root->nr_cgrps);
4976 cgroup_pidlist_destroy_all(cgrp);
971ff493 4977 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4978
d51f39b0 4979 if (cgroup_parent(cgrp)) {
9d755d33
TH
4980 /*
4981 * We get a ref to the parent, and put the ref when
4982 * this cgroup is being freed, so it's guaranteed
4983 * that the parent won't be destroyed before its
4984 * children.
4985 */
d51f39b0 4986 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4987 kernfs_put(cgrp->kn);
4988 kfree(cgrp);
4989 } else {
4990 /*
4991 * This is root cgroup's refcnt reaching zero,
4992 * which indicates that the root should be
4993 * released.
4994 */
4995 cgroup_destroy_root(cgrp->root);
4996 }
4997 }
48ddbe19
TH
4998}
4999
0c21ead1 5000static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
5001{
5002 struct cgroup_subsys_state *css =
0c21ead1 5003 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 5004
35ef10da 5005 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 5006 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
5007}
5008
25e15d83 5009static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
5010{
5011 struct cgroup_subsys_state *css =
25e15d83 5012 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 5013 struct cgroup_subsys *ss = css->ss;
9d755d33 5014 struct cgroup *cgrp = css->cgroup;
15a4c835 5015
1fed1b2e
TH
5016 mutex_lock(&cgroup_mutex);
5017
de3f0341 5018 css->flags |= CSS_RELEASED;
1fed1b2e
TH
5019 list_del_rcu(&css->sibling);
5020
9d755d33
TH
5021 if (ss) {
5022 /* css release path */
01e58659 5023 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
5024 if (ss->css_released)
5025 ss->css_released(css);
9d755d33
TH
5026 } else {
5027 /* cgroup release path */
9d755d33
TH
5028 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5029 cgrp->id = -1;
a4189487
LZ
5030
5031 /*
5032 * There are two control paths which try to determine
5033 * cgroup from dentry without going through kernfs -
5034 * cgroupstats_build() and css_tryget_online_from_dir().
5035 * Those are supported by RCU protecting clearing of
5036 * cgrp->kn->priv backpointer.
5037 */
6cd0f5bb
TH
5038 if (cgrp->kn)
5039 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5040 NULL);
9d755d33 5041 }
d3daf28d 5042
1fed1b2e
TH
5043 mutex_unlock(&cgroup_mutex);
5044
0c21ead1 5045 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
5046}
5047
d3daf28d
TH
5048static void css_release(struct percpu_ref *ref)
5049{
5050 struct cgroup_subsys_state *css =
5051 container_of(ref, struct cgroup_subsys_state, refcnt);
5052
25e15d83
TH
5053 INIT_WORK(&css->destroy_work, css_release_work_fn);
5054 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5055}
5056
ddfcadab
TH
5057static void init_and_link_css(struct cgroup_subsys_state *css,
5058 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 5059{
0cb51d71
TH
5060 lockdep_assert_held(&cgroup_mutex);
5061
ddfcadab
TH
5062 cgroup_get(cgrp);
5063
d5c419b6 5064 memset(css, 0, sizeof(*css));
bd89aabc 5065 css->cgroup = cgrp;
72c97e54 5066 css->ss = ss;
8fa3b8d6 5067 css->id = -1;
d5c419b6
TH
5068 INIT_LIST_HEAD(&css->sibling);
5069 INIT_LIST_HEAD(&css->children);
0cb51d71 5070 css->serial_nr = css_serial_nr_next++;
aa226ff4 5071 atomic_set(&css->online_cnt, 0);
0ae78e0b 5072
d51f39b0
TH
5073 if (cgroup_parent(cgrp)) {
5074 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5075 css_get(css->parent);
ddfcadab 5076 }
48ddbe19 5077
ca8bdcaf 5078 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5079}
5080
2a4ac633 5081/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5082static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5083{
623f926b 5084 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5085 int ret = 0;
5086
a31f2d3f
TH
5087 lockdep_assert_held(&cgroup_mutex);
5088
92fb9748 5089 if (ss->css_online)
eb95419b 5090 ret = ss->css_online(css);
ae7f164a 5091 if (!ret) {
eb95419b 5092 css->flags |= CSS_ONLINE;
aec25020 5093 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5094
5095 atomic_inc(&css->online_cnt);
5096 if (css->parent)
5097 atomic_inc(&css->parent->online_cnt);
ae7f164a 5098 }
b1929db4 5099 return ret;
a31f2d3f
TH
5100}
5101
2a4ac633 5102/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5103static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5104{
623f926b 5105 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5106
5107 lockdep_assert_held(&cgroup_mutex);
5108
5109 if (!(css->flags & CSS_ONLINE))
5110 return;
5111
fa06235b
VD
5112 if (ss->css_reset)
5113 ss->css_reset(css);
5114
d7eeac19 5115 if (ss->css_offline)
eb95419b 5116 ss->css_offline(css);
a31f2d3f 5117
eb95419b 5118 css->flags &= ~CSS_ONLINE;
e3297803 5119 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5120
5121 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5122}
5123
c81c925a 5124/**
6cd0f5bb 5125 * css_create - create a cgroup_subsys_state
c81c925a
TH
5126 * @cgrp: the cgroup new css will be associated with
5127 * @ss: the subsys of new css
5128 *
5129 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5130 * css is online and installed in @cgrp. This function doesn't create the
5131 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5132 */
6cd0f5bb
TH
5133static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5134 struct cgroup_subsys *ss)
c81c925a 5135{
d51f39b0 5136 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5137 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5138 struct cgroup_subsys_state *css;
5139 int err;
5140
c81c925a
TH
5141 lockdep_assert_held(&cgroup_mutex);
5142
1fed1b2e 5143 css = ss->css_alloc(parent_css);
e7e15b87
TH
5144 if (!css)
5145 css = ERR_PTR(-ENOMEM);
c81c925a 5146 if (IS_ERR(css))
6cd0f5bb 5147 return css;
c81c925a 5148
ddfcadab 5149 init_and_link_css(css, ss, cgrp);
a2bed820 5150
2aad2a86 5151 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5152 if (err)
3eb59ec6 5153 goto err_free_css;
c81c925a 5154
cf780b7d 5155 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835 5156 if (err < 0)
b00c52da 5157 goto err_free_css;
15a4c835 5158 css->id = err;
c81c925a 5159
15a4c835 5160 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5161 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5162 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5163
5164 err = online_css(css);
5165 if (err)
1fed1b2e 5166 goto err_list_del;
94419627 5167
c81c925a 5168 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5169 cgroup_parent(parent)) {
ed3d261b 5170 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5171 current->comm, current->pid, ss->name);
c81c925a 5172 if (!strcmp(ss->name, "memory"))
ed3d261b 5173 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5174 ss->warned_broken_hierarchy = true;
5175 }
5176
6cd0f5bb 5177 return css;
c81c925a 5178
1fed1b2e
TH
5179err_list_del:
5180 list_del_rcu(&css->sibling);
3eb59ec6 5181err_free_css:
a2bed820 5182 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5183 return ERR_PTR(err);
c81c925a
TH
5184}
5185
a5bca215 5186static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5187{
a5bca215 5188 struct cgroup_root *root = parent->root;
a5bca215
TH
5189 struct cgroup *cgrp, *tcgrp;
5190 int level = parent->level + 1;
03970d3c 5191 int ret;
ddbcc7e8 5192
0a950f65 5193 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5194 cgrp = kzalloc(sizeof(*cgrp) +
5195 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5196 if (!cgrp)
5197 return ERR_PTR(-ENOMEM);
0ab02ca8 5198
2aad2a86 5199 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5200 if (ret)
5201 goto out_free_cgrp;
5202
0ab02ca8
LZ
5203 /*
5204 * Temporarily set the pointer to NULL, so idr_find() won't return
5205 * a half-baked cgroup.
5206 */
cf780b7d 5207 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5208 if (cgrp->id < 0) {
ba0f4d76 5209 ret = -ENOMEM;
9d755d33 5210 goto out_cancel_ref;
976c06bc
TH
5211 }
5212
cc31edce 5213 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5214
9d800df1 5215 cgrp->self.parent = &parent->self;
ba0f4d76 5216 cgrp->root = root;
b11cfb58
TH
5217 cgrp->level = level;
5218
5219 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5220 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5221
b6abdb0e
LZ
5222 if (notify_on_release(parent))
5223 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5224
2260e7fc
TH
5225 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5226 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5227
0cb51d71 5228 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5229
4e139afc 5230 /* allocation complete, commit to creation */
d5c419b6 5231 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5232 atomic_inc(&root->nr_cgrps);
59f5296b 5233 cgroup_get(parent);
415cf07a 5234
0d80255e
TH
5235 /*
5236 * @cgrp is now fully operational. If something fails after this
5237 * point, it'll be released via the normal destruction path.
5238 */
6fa4918d 5239 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5240
bd53d617
TH
5241 /*
5242 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5243 * subtree_control from the parent. Each is configured manually.
bd53d617 5244 */
03970d3c 5245 if (!cgroup_on_dfl(cgrp))
5531dc91 5246 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5247
5248 cgroup_propagate_control(cgrp);
5249
5250 /* @cgrp doesn't have dir yet so the following will only create csses */
5251 ret = cgroup_apply_control_enable(cgrp);
5252 if (ret)
5253 goto out_destroy;
2bd59d48 5254
a5bca215
TH
5255 return cgrp;
5256
5257out_cancel_ref:
5258 percpu_ref_exit(&cgrp->self.refcnt);
5259out_free_cgrp:
5260 kfree(cgrp);
5261 return ERR_PTR(ret);
5262out_destroy:
5263 cgroup_destroy_locked(cgrp);
5264 return ERR_PTR(ret);
5265}
5266
5267static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5268 umode_t mode)
5269{
5270 struct cgroup *parent, *cgrp;
a5bca215 5271 struct kernfs_node *kn;
03970d3c 5272 int ret;
a5bca215
TH
5273
5274 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5275 if (strchr(name, '\n'))
5276 return -EINVAL;
5277
945ba199 5278 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5279 if (!parent)
5280 return -ENODEV;
5281
5282 cgrp = cgroup_create(parent);
5283 if (IS_ERR(cgrp)) {
5284 ret = PTR_ERR(cgrp);
5285 goto out_unlock;
5286 }
5287
195e9b6c
TH
5288 /* create the directory */
5289 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5290 if (IS_ERR(kn)) {
5291 ret = PTR_ERR(kn);
5292 goto out_destroy;
5293 }
5294 cgrp->kn = kn;
5295
5296 /*
5297 * This extra ref will be put in cgroup_free_fn() and guarantees
5298 * that @cgrp->kn is always accessible.
5299 */
5300 kernfs_get(kn);
5301
5302 ret = cgroup_kn_set_ugid(kn);
5303 if (ret)
5304 goto out_destroy;
5305
334c3679 5306 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5307 if (ret)
5308 goto out_destroy;
5309
03970d3c
TH
5310 ret = cgroup_apply_control_enable(cgrp);
5311 if (ret)
5312 goto out_destroy;
195e9b6c
TH
5313
5314 /* let's create and online css's */
2bd59d48 5315 kernfs_activate(kn);
ddbcc7e8 5316
ba0f4d76
TH
5317 ret = 0;
5318 goto out_unlock;
ddbcc7e8 5319
a5bca215
TH
5320out_destroy:
5321 cgroup_destroy_locked(cgrp);
ba0f4d76 5322out_unlock:
a9746d8d 5323 cgroup_kn_unlock(parent_kn);
ba0f4d76 5324 return ret;
ddbcc7e8
PM
5325}
5326
223dbc38
TH
5327/*
5328 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5329 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5330 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5331 */
5332static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5333{
223dbc38
TH
5334 struct cgroup_subsys_state *css =
5335 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5336
f20104de 5337 mutex_lock(&cgroup_mutex);
09a503ea 5338
aa226ff4
TH
5339 do {
5340 offline_css(css);
5341 css_put(css);
5342 /* @css can't go away while we're holding cgroup_mutex */
5343 css = css->parent;
5344 } while (css && atomic_dec_and_test(&css->online_cnt));
5345
5346 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5347}
5348
223dbc38
TH
5349/* css kill confirmation processing requires process context, bounce */
5350static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5351{
5352 struct cgroup_subsys_state *css =
5353 container_of(ref, struct cgroup_subsys_state, refcnt);
5354
aa226ff4
TH
5355 if (atomic_dec_and_test(&css->online_cnt)) {
5356 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5357 queue_work(cgroup_destroy_wq, &css->destroy_work);
5358 }
d3daf28d
TH
5359}
5360
f392e51c
TH
5361/**
5362 * kill_css - destroy a css
5363 * @css: css to destroy
5364 *
5365 * This function initiates destruction of @css by removing cgroup interface
5366 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5367 * asynchronously once css_tryget_online() is guaranteed to fail and when
5368 * the reference count reaches zero, @css will be released.
f392e51c
TH
5369 */
5370static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5371{
01f6474c 5372 lockdep_assert_held(&cgroup_mutex);
94419627 5373
2bd59d48
TH
5374 /*
5375 * This must happen before css is disassociated with its cgroup.
5376 * See seq_css() for details.
5377 */
334c3679 5378 css_clear_dir(css);
3c14f8b4 5379
edae0c33
TH
5380 /*
5381 * Killing would put the base ref, but we need to keep it alive
5382 * until after ->css_offline().
5383 */
5384 css_get(css);
5385
5386 /*
5387 * cgroup core guarantees that, by the time ->css_offline() is
5388 * invoked, no new css reference will be given out via
ec903c0c 5389 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5390 * proceed to offlining css's because percpu_ref_kill() doesn't
5391 * guarantee that the ref is seen as killed on all CPUs on return.
5392 *
5393 * Use percpu_ref_kill_and_confirm() to get notifications as each
5394 * css is confirmed to be seen as killed on all CPUs.
5395 */
5396 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5397}
5398
5399/**
5400 * cgroup_destroy_locked - the first stage of cgroup destruction
5401 * @cgrp: cgroup to be destroyed
5402 *
5403 * css's make use of percpu refcnts whose killing latency shouldn't be
5404 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5405 * guarantee that css_tryget_online() won't succeed by the time
5406 * ->css_offline() is invoked. To satisfy all the requirements,
5407 * destruction is implemented in the following two steps.
d3daf28d
TH
5408 *
5409 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5410 * userland visible parts and start killing the percpu refcnts of
5411 * css's. Set up so that the next stage will be kicked off once all
5412 * the percpu refcnts are confirmed to be killed.
5413 *
5414 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5415 * rest of destruction. Once all cgroup references are gone, the
5416 * cgroup is RCU-freed.
5417 *
5418 * This function implements s1. After this step, @cgrp is gone as far as
5419 * the userland is concerned and a new cgroup with the same name may be
5420 * created. As cgroup doesn't care about the names internally, this
5421 * doesn't cause any problem.
5422 */
42809dd4
TH
5423static int cgroup_destroy_locked(struct cgroup *cgrp)
5424 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5425{
2bd59d48 5426 struct cgroup_subsys_state *css;
2b021cbf 5427 struct cgrp_cset_link *link;
1c6727af 5428 int ssid;
ddbcc7e8 5429
42809dd4
TH
5430 lockdep_assert_held(&cgroup_mutex);
5431
91486f61
TH
5432 /*
5433 * Only migration can raise populated from zero and we're already
5434 * holding cgroup_mutex.
5435 */
5436 if (cgroup_is_populated(cgrp))
ddbcc7e8 5437 return -EBUSY;
a043e3b2 5438
bb78a92f 5439 /*
d5c419b6
TH
5440 * Make sure there's no live children. We can't test emptiness of
5441 * ->self.children as dead children linger on it while being
5442 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5443 */
f3d46500 5444 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5445 return -EBUSY;
5446
455050d2 5447 /*
2b021cbf
TH
5448 * Mark @cgrp and the associated csets dead. The former prevents
5449 * further task migration and child creation by disabling
5450 * cgroup_lock_live_group(). The latter makes the csets ignored by
5451 * the migration path.
455050d2 5452 */
184faf32 5453 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5454
82d6489d 5455 spin_lock_irq(&css_set_lock);
2b021cbf
TH
5456 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5457 link->cset->dead = true;
82d6489d 5458 spin_unlock_irq(&css_set_lock);
2b021cbf 5459
249f3468 5460 /* initiate massacre of all css's */
1c6727af
TH
5461 for_each_css(css, ssid, cgrp)
5462 kill_css(css);
455050d2 5463
455050d2 5464 /*
01f6474c
TH
5465 * Remove @cgrp directory along with the base files. @cgrp has an
5466 * extra ref on its kn.
f20104de 5467 */
01f6474c 5468 kernfs_remove(cgrp->kn);
f20104de 5469
d51f39b0 5470 check_for_release(cgroup_parent(cgrp));
2bd59d48 5471
249f3468 5472 /* put the base reference */
9d755d33 5473 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5474
ea15f8cc
TH
5475 return 0;
5476};
5477
2bd59d48 5478static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5479{
a9746d8d 5480 struct cgroup *cgrp;
2bd59d48 5481 int ret = 0;
42809dd4 5482
945ba199 5483 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5484 if (!cgrp)
5485 return 0;
42809dd4 5486
a9746d8d 5487 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5488
a9746d8d 5489 cgroup_kn_unlock(kn);
42809dd4 5490 return ret;
8e3f6541
TH
5491}
5492
2bd59d48
TH
5493static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5494 .remount_fs = cgroup_remount,
5495 .show_options = cgroup_show_options,
5496 .mkdir = cgroup_mkdir,
5497 .rmdir = cgroup_rmdir,
5498 .rename = cgroup_rename,
4f41fc59 5499 .show_path = cgroup_show_path,
2bd59d48
TH
5500};
5501
15a4c835 5502static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5503{
ddbcc7e8 5504 struct cgroup_subsys_state *css;
cfe36bde 5505
a5ae9899 5506 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5507
648bb56d
TH
5508 mutex_lock(&cgroup_mutex);
5509
15a4c835 5510 idr_init(&ss->css_idr);
0adb0704 5511 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5512
3dd06ffa
TH
5513 /* Create the root cgroup state for this subsystem */
5514 ss->root = &cgrp_dfl_root;
5515 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5516 /* We don't handle early failures gracefully */
5517 BUG_ON(IS_ERR(css));
ddfcadab 5518 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5519
5520 /*
5521 * Root csses are never destroyed and we can't initialize
5522 * percpu_ref during early init. Disable refcnting.
5523 */
5524 css->flags |= CSS_NO_REF;
5525
15a4c835 5526 if (early) {
9395a450 5527 /* allocation can't be done safely during early init */
15a4c835
TH
5528 css->id = 1;
5529 } else {
5530 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5531 BUG_ON(css->id < 0);
5532 }
ddbcc7e8 5533
e8d55fde 5534 /* Update the init_css_set to contain a subsys
817929ec 5535 * pointer to this state - since the subsystem is
e8d55fde 5536 * newly registered, all tasks and hence the
3dd06ffa 5537 * init_css_set is in the subsystem's root cgroup. */
aec25020 5538 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5539
cb4a3167
AS
5540 have_fork_callback |= (bool)ss->fork << ss->id;
5541 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5542 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5543 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5544
e8d55fde
LZ
5545 /* At system boot, before all subsystems have been
5546 * registered, no tasks have been forked, so we don't
5547 * need to invoke fork callbacks here. */
5548 BUG_ON(!list_empty(&init_task.tasks));
5549
ae7f164a 5550 BUG_ON(online_css(css));
a8638030 5551
cf5d5941
BB
5552 mutex_unlock(&cgroup_mutex);
5553}
cf5d5941 5554
ddbcc7e8 5555/**
a043e3b2
LZ
5556 * cgroup_init_early - cgroup initialization at system boot
5557 *
5558 * Initialize cgroups at system boot, and initialize any
5559 * subsystems that request early init.
ddbcc7e8
PM
5560 */
5561int __init cgroup_init_early(void)
5562{
7b9a6ba5 5563 static struct cgroup_sb_opts __initdata opts;
30159ec7 5564 struct cgroup_subsys *ss;
ddbcc7e8 5565 int i;
30159ec7 5566
3dd06ffa 5567 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5568 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5569
a4ea1cc9 5570 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5571
3ed80a62 5572 for_each_subsys(ss, i) {
aec25020 5573 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5574 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5575 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5576 ss->id, ss->name);
073219e9
TH
5577 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5578 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5579
aec25020 5580 ss->id = i;
073219e9 5581 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5582 if (!ss->legacy_name)
5583 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5584
5585 if (ss->early_init)
15a4c835 5586 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5587 }
5588 return 0;
5589}
5590
6e5c8307 5591static u16 cgroup_disable_mask __initdata;
a3e72739 5592
ddbcc7e8 5593/**
a043e3b2
LZ
5594 * cgroup_init - cgroup initialization
5595 *
5596 * Register cgroup filesystem and /proc file, and initialize
5597 * any subsystems that didn't request early init.
ddbcc7e8
PM
5598 */
5599int __init cgroup_init(void)
5600{
30159ec7 5601 struct cgroup_subsys *ss;
035f4f51 5602 int ssid;
ddbcc7e8 5603
6e5c8307 5604 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5605 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5606 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5607 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5608
a79a908f
AK
5609 get_user_ns(init_cgroup_ns.user_ns);
5610
54e7b4eb 5611 mutex_lock(&cgroup_mutex);
54e7b4eb 5612
2378d8b8
TH
5613 /*
5614 * Add init_css_set to the hash table so that dfl_root can link to
5615 * it during init.
5616 */
5617 hash_add(css_set_table, &init_css_set.hlist,
5618 css_set_hash(init_css_set.subsys));
82fe9b0d 5619
3dd06ffa 5620 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5621
54e7b4eb
TH
5622 mutex_unlock(&cgroup_mutex);
5623
172a2c06 5624 for_each_subsys(ss, ssid) {
15a4c835
TH
5625 if (ss->early_init) {
5626 struct cgroup_subsys_state *css =
5627 init_css_set.subsys[ss->id];
5628
5629 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5630 GFP_KERNEL);
5631 BUG_ON(css->id < 0);
5632 } else {
5633 cgroup_init_subsys(ss, false);
5634 }
172a2c06 5635
2d8f243a
TH
5636 list_add_tail(&init_css_set.e_cset_node[ssid],
5637 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5638
5639 /*
c731ae1d
LZ
5640 * Setting dfl_root subsys_mask needs to consider the
5641 * disabled flag and cftype registration needs kmalloc,
5642 * both of which aren't available during early_init.
172a2c06 5643 */
a3e72739
TH
5644 if (cgroup_disable_mask & (1 << ssid)) {
5645 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5646 printk(KERN_INFO "Disabling %s control group subsystem\n",
5647 ss->name);
a8ddc821 5648 continue;
a3e72739 5649 }
a8ddc821 5650
223ffb29
JW
5651 if (cgroup_ssid_no_v1(ssid))
5652 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5653 ss->name);
5654
a8ddc821
TH
5655 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5656
f6d635ad
TH
5657 if (ss->implicit_on_dfl)
5658 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5659 else if (!ss->dfl_cftypes)
a7165264 5660 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5661
a8ddc821
TH
5662 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5663 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5664 } else {
5665 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5666 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5667 }
295458e6
VD
5668
5669 if (ss->bind)
5670 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5671 }
5672
2378d8b8
TH
5673 /* init_css_set.subsys[] has been updated, re-hash */
5674 hash_del(&init_css_set.hlist);
5675 hash_add(css_set_table, &init_css_set.hlist,
5676 css_set_hash(init_css_set.subsys));
5677
035f4f51
TH
5678 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5679 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5680 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5681 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5682
2bd59d48 5683 return 0;
ddbcc7e8 5684}
b4f48b63 5685
e5fca243
TH
5686static int __init cgroup_wq_init(void)
5687{
5688 /*
5689 * There isn't much point in executing destruction path in
5690 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5691 * Use 1 for @max_active.
e5fca243
TH
5692 *
5693 * We would prefer to do this in cgroup_init() above, but that
5694 * is called before init_workqueues(): so leave this until after.
5695 */
1a11533f 5696 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5697 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5698
5699 /*
5700 * Used to destroy pidlists and separate to serve as flush domain.
5701 * Cap @max_active to 1 too.
5702 */
5703 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5704 0, 1);
5705 BUG_ON(!cgroup_pidlist_destroy_wq);
5706
e5fca243
TH
5707 return 0;
5708}
5709core_initcall(cgroup_wq_init);
5710
a424316c
PM
5711/*
5712 * proc_cgroup_show()
5713 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5714 * - Used for /proc/<pid>/cgroup.
a424316c 5715 */
006f4ac4
ZL
5716int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5717 struct pid *pid, struct task_struct *tsk)
a424316c 5718{
e61734c5 5719 char *buf, *path;
a424316c 5720 int retval;
3dd06ffa 5721 struct cgroup_root *root;
a424316c
PM
5722
5723 retval = -ENOMEM;
e61734c5 5724 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5725 if (!buf)
5726 goto out;
5727
a424316c 5728 mutex_lock(&cgroup_mutex);
82d6489d 5729 spin_lock_irq(&css_set_lock);
a424316c 5730
985ed670 5731 for_each_root(root) {
a424316c 5732 struct cgroup_subsys *ss;
bd89aabc 5733 struct cgroup *cgrp;
b85d2040 5734 int ssid, count = 0;
a424316c 5735
a7165264 5736 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5737 continue;
5738
2c6ab6d2 5739 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5740 if (root != &cgrp_dfl_root)
5741 for_each_subsys(ss, ssid)
5742 if (root->subsys_mask & (1 << ssid))
5743 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5744 ss->legacy_name);
c6d57f33
PM
5745 if (strlen(root->name))
5746 seq_printf(m, "%sname=%s", count ? "," : "",
5747 root->name);
a424316c 5748 seq_putc(m, ':');
2e91fa7f 5749
7717f7ba 5750 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5751
5752 /*
5753 * On traditional hierarchies, all zombie tasks show up as
5754 * belonging to the root cgroup. On the default hierarchy,
5755 * while a zombie doesn't show up in "cgroup.procs" and
5756 * thus can't be migrated, its /proc/PID/cgroup keeps
5757 * reporting the cgroup it belonged to before exiting. If
5758 * the cgroup is removed before the zombie is reaped,
5759 * " (deleted)" is appended to the cgroup path.
5760 */
5761 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
a79a908f
AK
5762 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5763 current->nsproxy->cgroup_ns);
2e91fa7f
TH
5764 if (!path) {
5765 retval = -ENAMETOOLONG;
5766 goto out_unlock;
5767 }
5768 } else {
5769 path = "/";
e61734c5 5770 }
2e91fa7f 5771
e61734c5 5772 seq_puts(m, path);
2e91fa7f
TH
5773
5774 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5775 seq_puts(m, " (deleted)\n");
5776 else
5777 seq_putc(m, '\n');
a424316c
PM
5778 }
5779
006f4ac4 5780 retval = 0;
a424316c 5781out_unlock:
82d6489d 5782 spin_unlock_irq(&css_set_lock);
a424316c 5783 mutex_unlock(&cgroup_mutex);
a424316c
PM
5784 kfree(buf);
5785out:
5786 return retval;
5787}
5788
a424316c
PM
5789/* Display information about each subsystem and each hierarchy */
5790static int proc_cgroupstats_show(struct seq_file *m, void *v)
5791{
30159ec7 5792 struct cgroup_subsys *ss;
a424316c 5793 int i;
a424316c 5794
8bab8dde 5795 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5796 /*
5797 * ideally we don't want subsystems moving around while we do this.
5798 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5799 * subsys/hierarchy state.
5800 */
a424316c 5801 mutex_lock(&cgroup_mutex);
30159ec7
TH
5802
5803 for_each_subsys(ss, i)
2c6ab6d2 5804 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5805 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5806 atomic_read(&ss->root->nr_cgrps),
5807 cgroup_ssid_enabled(i));
30159ec7 5808
a424316c
PM
5809 mutex_unlock(&cgroup_mutex);
5810 return 0;
5811}
5812
5813static int cgroupstats_open(struct inode *inode, struct file *file)
5814{
9dce07f1 5815 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5816}
5817
828c0950 5818static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5819 .open = cgroupstats_open,
5820 .read = seq_read,
5821 .llseek = seq_lseek,
5822 .release = single_release,
5823};
5824
b4f48b63 5825/**
eaf797ab 5826 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5827 * @child: pointer to task_struct of forking parent process.
b4f48b63 5828 *
eaf797ab
TH
5829 * A task is associated with the init_css_set until cgroup_post_fork()
5830 * attaches it to the parent's css_set. Empty cg_list indicates that
5831 * @child isn't holding reference to its css_set.
b4f48b63
PM
5832 */
5833void cgroup_fork(struct task_struct *child)
5834{
eaf797ab 5835 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5836 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5837}
5838
7e47682e
AS
5839/**
5840 * cgroup_can_fork - called on a new task before the process is exposed
5841 * @child: the task in question.
5842 *
5843 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5844 * returns an error, the fork aborts with that error code. This allows for
5845 * a cgroup subsystem to conditionally allow or deny new forks.
5846 */
b53202e6 5847int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5848{
5849 struct cgroup_subsys *ss;
5850 int i, j, ret;
5851
b4e0eeaf 5852 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5853 ret = ss->can_fork(child);
7e47682e
AS
5854 if (ret)
5855 goto out_revert;
b4e0eeaf 5856 } while_each_subsys_mask();
7e47682e
AS
5857
5858 return 0;
5859
5860out_revert:
5861 for_each_subsys(ss, j) {
5862 if (j >= i)
5863 break;
5864 if (ss->cancel_fork)
b53202e6 5865 ss->cancel_fork(child);
7e47682e
AS
5866 }
5867
5868 return ret;
5869}
5870
5871/**
5872 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5873 * @child: the task in question
5874 *
5875 * This calls the cancel_fork() callbacks if a fork failed *after*
5876 * cgroup_can_fork() succeded.
5877 */
b53202e6 5878void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5879{
5880 struct cgroup_subsys *ss;
5881 int i;
5882
5883 for_each_subsys(ss, i)
5884 if (ss->cancel_fork)
b53202e6 5885 ss->cancel_fork(child);
7e47682e
AS
5886}
5887
817929ec 5888/**
a043e3b2
LZ
5889 * cgroup_post_fork - called on a new task after adding it to the task list
5890 * @child: the task in question
5891 *
5edee61e
TH
5892 * Adds the task to the list running through its css_set if necessary and
5893 * call the subsystem fork() callbacks. Has to be after the task is
5894 * visible on the task list in case we race with the first call to
0942eeee 5895 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5896 * list.
a043e3b2 5897 */
b53202e6 5898void cgroup_post_fork(struct task_struct *child)
817929ec 5899{
30159ec7 5900 struct cgroup_subsys *ss;
5edee61e
TH
5901 int i;
5902
3ce3230a 5903 /*
251f8c03 5904 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5905 * function sets use_task_css_set_links before grabbing
5906 * tasklist_lock and we just went through tasklist_lock to add
5907 * @child, it's guaranteed that either we see the set
5908 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5909 * @child during its iteration.
5910 *
5911 * If we won the race, @child is associated with %current's
f0d9a5f1 5912 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5913 * association is stable, and, on completion of the parent's
5914 * migration, @child is visible in the source of migration or
5915 * already in the destination cgroup. This guarantee is necessary
5916 * when implementing operations which need to migrate all tasks of
5917 * a cgroup to another.
5918 *
251f8c03 5919 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5920 * will remain in init_css_set. This is safe because all tasks are
5921 * in the init_css_set before cg_links is enabled and there's no
5922 * operation which transfers all tasks out of init_css_set.
3ce3230a 5923 */
817929ec 5924 if (use_task_css_set_links) {
eaf797ab
TH
5925 struct css_set *cset;
5926
82d6489d 5927 spin_lock_irq(&css_set_lock);
0e1d768f 5928 cset = task_css_set(current);
eaf797ab 5929 if (list_empty(&child->cg_list)) {
eaf797ab 5930 get_css_set(cset);
f6d7d049 5931 css_set_move_task(child, NULL, cset, false);
eaf797ab 5932 }
82d6489d 5933 spin_unlock_irq(&css_set_lock);
817929ec 5934 }
5edee61e
TH
5935
5936 /*
5937 * Call ss->fork(). This must happen after @child is linked on
5938 * css_set; otherwise, @child might change state between ->fork()
5939 * and addition to css_set.
5940 */
b4e0eeaf 5941 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5942 ss->fork(child);
b4e0eeaf 5943 } while_each_subsys_mask();
817929ec 5944}
5edee61e 5945
b4f48b63
PM
5946/**
5947 * cgroup_exit - detach cgroup from exiting task
5948 * @tsk: pointer to task_struct of exiting process
5949 *
5950 * Description: Detach cgroup from @tsk and release it.
5951 *
5952 * Note that cgroups marked notify_on_release force every task in
5953 * them to take the global cgroup_mutex mutex when exiting.
5954 * This could impact scaling on very large systems. Be reluctant to
5955 * use notify_on_release cgroups where very high task exit scaling
5956 * is required on large systems.
5957 *
0e1d768f
TH
5958 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5959 * call cgroup_exit() while the task is still competent to handle
5960 * notify_on_release(), then leave the task attached to the root cgroup in
5961 * each hierarchy for the remainder of its exit. No need to bother with
5962 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5963 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5964 */
1ec41830 5965void cgroup_exit(struct task_struct *tsk)
b4f48b63 5966{
30159ec7 5967 struct cgroup_subsys *ss;
5abb8855 5968 struct css_set *cset;
d41d5a01 5969 int i;
817929ec
PM
5970
5971 /*
0e1d768f 5972 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5973 * with us, we can check css_set and cg_list without synchronization.
817929ec 5974 */
0de0942d
TH
5975 cset = task_css_set(tsk);
5976
817929ec 5977 if (!list_empty(&tsk->cg_list)) {
82d6489d 5978 spin_lock_irq(&css_set_lock);
f6d7d049 5979 css_set_move_task(tsk, cset, NULL, false);
82d6489d 5980 spin_unlock_irq(&css_set_lock);
2e91fa7f
TH
5981 } else {
5982 get_css_set(cset);
817929ec
PM
5983 }
5984
cb4a3167 5985 /* see cgroup_post_fork() for details */
b4e0eeaf 5986 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 5987 ss->exit(tsk);
b4e0eeaf 5988 } while_each_subsys_mask();
2e91fa7f 5989}
30159ec7 5990
2e91fa7f
TH
5991void cgroup_free(struct task_struct *task)
5992{
5993 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5994 struct cgroup_subsys *ss;
5995 int ssid;
5996
b4e0eeaf 5997 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 5998 ss->free(task);
b4e0eeaf 5999 } while_each_subsys_mask();
d41d5a01 6000
2e91fa7f 6001 put_css_set(cset);
b4f48b63 6002}
697f4161 6003
bd89aabc 6004static void check_for_release(struct cgroup *cgrp)
81a6a5cd 6005{
27bd4dbb 6006 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
6007 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6008 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
6009}
6010
81a6a5cd
PM
6011/*
6012 * Notify userspace when a cgroup is released, by running the
6013 * configured release agent with the name of the cgroup (path
6014 * relative to the root of cgroup file system) as the argument.
6015 *
6016 * Most likely, this user command will try to rmdir this cgroup.
6017 *
6018 * This races with the possibility that some other task will be
6019 * attached to this cgroup before it is removed, or that some other
6020 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6021 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6022 * unused, and this cgroup will be reprieved from its death sentence,
6023 * to continue to serve a useful existence. Next time it's released,
6024 * we will get notified again, if it still has 'notify_on_release' set.
6025 *
6026 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6027 * means only wait until the task is successfully execve()'d. The
6028 * separate release agent task is forked by call_usermodehelper(),
6029 * then control in this thread returns here, without waiting for the
6030 * release agent task. We don't bother to wait because the caller of
6031 * this routine has no use for the exit status of the release agent
6032 * task, so no sense holding our caller up for that.
81a6a5cd 6033 */
81a6a5cd
PM
6034static void cgroup_release_agent(struct work_struct *work)
6035{
971ff493
ZL
6036 struct cgroup *cgrp =
6037 container_of(work, struct cgroup, release_agent_work);
6038 char *pathbuf = NULL, *agentbuf = NULL, *path;
6039 char *argv[3], *envp[3];
6040
81a6a5cd 6041 mutex_lock(&cgroup_mutex);
971ff493
ZL
6042
6043 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6044 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6045 if (!pathbuf || !agentbuf)
6046 goto out;
6047
82d6489d 6048 spin_lock_irq(&css_set_lock);
a79a908f 6049 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
82d6489d 6050 spin_unlock_irq(&css_set_lock);
971ff493
ZL
6051 if (!path)
6052 goto out;
6053
6054 argv[0] = agentbuf;
6055 argv[1] = path;
6056 argv[2] = NULL;
6057
6058 /* minimal command environment */
6059 envp[0] = "HOME=/";
6060 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6061 envp[2] = NULL;
6062
81a6a5cd 6063 mutex_unlock(&cgroup_mutex);
971ff493 6064 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 6065 goto out_free;
971ff493 6066out:
81a6a5cd 6067 mutex_unlock(&cgroup_mutex);
3e2cd91a 6068out_free:
971ff493
ZL
6069 kfree(agentbuf);
6070 kfree(pathbuf);
81a6a5cd 6071}
8bab8dde
PM
6072
6073static int __init cgroup_disable(char *str)
6074{
30159ec7 6075 struct cgroup_subsys *ss;
8bab8dde 6076 char *token;
30159ec7 6077 int i;
8bab8dde
PM
6078
6079 while ((token = strsep(&str, ",")) != NULL) {
6080 if (!*token)
6081 continue;
be45c900 6082
3ed80a62 6083 for_each_subsys(ss, i) {
3e1d2eed
TH
6084 if (strcmp(token, ss->name) &&
6085 strcmp(token, ss->legacy_name))
6086 continue;
a3e72739 6087 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
6088 }
6089 }
6090 return 1;
6091}
6092__setup("cgroup_disable=", cgroup_disable);
38460b48 6093
223ffb29
JW
6094static int __init cgroup_no_v1(char *str)
6095{
6096 struct cgroup_subsys *ss;
6097 char *token;
6098 int i;
6099
6100 while ((token = strsep(&str, ",")) != NULL) {
6101 if (!*token)
6102 continue;
6103
6104 if (!strcmp(token, "all")) {
6e5c8307 6105 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
6106 break;
6107 }
6108
6109 for_each_subsys(ss, i) {
6110 if (strcmp(token, ss->name) &&
6111 strcmp(token, ss->legacy_name))
6112 continue;
6113
6114 cgroup_no_v1_mask |= 1 << i;
6115 }
6116 }
6117 return 1;
6118}
6119__setup("cgroup_no_v1=", cgroup_no_v1);
6120
b77d7b60 6121/**
ec903c0c 6122 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6123 * @dentry: directory dentry of interest
6124 * @ss: subsystem of interest
b77d7b60 6125 *
5a17f543
TH
6126 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6127 * to get the corresponding css and return it. If such css doesn't exist
6128 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6129 */
ec903c0c
TH
6130struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6131 struct cgroup_subsys *ss)
e5d1367f 6132{
2bd59d48 6133 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6134 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6135 struct cgroup_subsys_state *css = NULL;
e5d1367f 6136 struct cgroup *cgrp;
e5d1367f 6137
35cf0836 6138 /* is @dentry a cgroup dir? */
f17fc25f
TH
6139 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6140 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6141 return ERR_PTR(-EBADF);
6142
5a17f543
TH
6143 rcu_read_lock();
6144
2bd59d48
TH
6145 /*
6146 * This path doesn't originate from kernfs and @kn could already
6147 * have been or be removed at any point. @kn->priv is RCU
a4189487 6148 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
6149 */
6150 cgrp = rcu_dereference(kn->priv);
6151 if (cgrp)
6152 css = cgroup_css(cgrp, ss);
5a17f543 6153
ec903c0c 6154 if (!css || !css_tryget_online(css))
5a17f543
TH
6155 css = ERR_PTR(-ENOENT);
6156
6157 rcu_read_unlock();
6158 return css;
e5d1367f 6159}
e5d1367f 6160
1cb650b9
LZ
6161/**
6162 * css_from_id - lookup css by id
6163 * @id: the cgroup id
6164 * @ss: cgroup subsys to be looked into
6165 *
6166 * Returns the css if there's valid one with @id, otherwise returns NULL.
6167 * Should be called under rcu_read_lock().
6168 */
6169struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6170{
6fa4918d 6171 WARN_ON_ONCE(!rcu_read_lock_held());
d6ccc55e 6172 return idr_find(&ss->css_idr, id);
e5d1367f
SE
6173}
6174
16af4396
TH
6175/**
6176 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6177 * @path: path on the default hierarchy
6178 *
6179 * Find the cgroup at @path on the default hierarchy, increment its
6180 * reference count and return it. Returns pointer to the found cgroup on
6181 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6182 * if @path points to a non-directory.
6183 */
6184struct cgroup *cgroup_get_from_path(const char *path)
6185{
6186 struct kernfs_node *kn;
6187 struct cgroup *cgrp;
6188
6189 mutex_lock(&cgroup_mutex);
6190
6191 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6192 if (kn) {
6193 if (kernfs_type(kn) == KERNFS_DIR) {
6194 cgrp = kn->priv;
6195 cgroup_get(cgrp);
6196 } else {
6197 cgrp = ERR_PTR(-ENOTDIR);
6198 }
6199 kernfs_put(kn);
6200 } else {
6201 cgrp = ERR_PTR(-ENOENT);
6202 }
6203
6204 mutex_unlock(&cgroup_mutex);
6205 return cgrp;
6206}
6207EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6208
1f3fe7eb
MKL
6209/**
6210 * cgroup_get_from_fd - get a cgroup pointer from a fd
6211 * @fd: fd obtained by open(cgroup2_dir)
6212 *
6213 * Find the cgroup from a fd which should be obtained
6214 * by opening a cgroup directory. Returns a pointer to the
6215 * cgroup on success. ERR_PTR is returned if the cgroup
6216 * cannot be found.
6217 */
6218struct cgroup *cgroup_get_from_fd(int fd)
6219{
6220 struct cgroup_subsys_state *css;
6221 struct cgroup *cgrp;
6222 struct file *f;
6223
6224 f = fget_raw(fd);
6225 if (!f)
6226 return ERR_PTR(-EBADF);
6227
6228 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6229 fput(f);
6230 if (IS_ERR(css))
6231 return ERR_CAST(css);
6232
6233 cgrp = css->cgroup;
6234 if (!cgroup_on_dfl(cgrp)) {
6235 cgroup_put(cgrp);
6236 return ERR_PTR(-EBADF);
6237 }
6238
6239 return cgrp;
6240}
6241EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6242
bd1060a1
TH
6243/*
6244 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6245 * definition in cgroup-defs.h.
6246 */
6247#ifdef CONFIG_SOCK_CGROUP_DATA
6248
6249#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6250
3fa4cc9c 6251DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6252static bool cgroup_sk_alloc_disabled __read_mostly;
6253
6254void cgroup_sk_alloc_disable(void)
6255{
6256 if (cgroup_sk_alloc_disabled)
6257 return;
6258 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6259 cgroup_sk_alloc_disabled = true;
6260}
6261
6262#else
6263
6264#define cgroup_sk_alloc_disabled false
6265
6266#endif
6267
6268void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6269{
6270 if (cgroup_sk_alloc_disabled)
6271 return;
6272
6273 rcu_read_lock();
6274
6275 while (true) {
6276 struct css_set *cset;
6277
6278 cset = task_css_set(current);
6279 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6280 skcd->val = (unsigned long)cset->dfl_cgrp;
6281 break;
6282 }
6283 cpu_relax();
6284 }
6285
6286 rcu_read_unlock();
6287}
6288
6289void cgroup_sk_free(struct sock_cgroup_data *skcd)
6290{
6291 cgroup_put(sock_cgroup_ptr(skcd));
6292}
6293
6294#endif /* CONFIG_SOCK_CGROUP_DATA */
6295
a79a908f
AK
6296/* cgroup namespaces */
6297
6298static struct cgroup_namespace *alloc_cgroup_ns(void)
6299{
6300 struct cgroup_namespace *new_ns;
6301 int ret;
6302
6303 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6304 if (!new_ns)
6305 return ERR_PTR(-ENOMEM);
6306 ret = ns_alloc_inum(&new_ns->ns);
6307 if (ret) {
6308 kfree(new_ns);
6309 return ERR_PTR(ret);
6310 }
6311 atomic_set(&new_ns->count, 1);
6312 new_ns->ns.ops = &cgroupns_operations;
6313 return new_ns;
6314}
6315
6316void free_cgroup_ns(struct cgroup_namespace *ns)
6317{
6318 put_css_set(ns->root_cset);
6319 put_user_ns(ns->user_ns);
6320 ns_free_inum(&ns->ns);
6321 kfree(ns);
6322}
6323EXPORT_SYMBOL(free_cgroup_ns);
6324
6325struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6326 struct user_namespace *user_ns,
6327 struct cgroup_namespace *old_ns)
6328{
fa5ff8a1
TH
6329 struct cgroup_namespace *new_ns;
6330 struct css_set *cset;
a79a908f
AK
6331
6332 BUG_ON(!old_ns);
6333
6334 if (!(flags & CLONE_NEWCGROUP)) {
6335 get_cgroup_ns(old_ns);
6336 return old_ns;
6337 }
6338
6339 /* Allow only sysadmin to create cgroup namespace. */
a79a908f 6340 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
fa5ff8a1 6341 return ERR_PTR(-EPERM);
a79a908f 6342
7bd88308 6343 /* It is not safe to take cgroup_mutex here */
82d6489d 6344 spin_lock_irq(&css_set_lock);
a79a908f
AK
6345 cset = task_css_set(current);
6346 get_css_set(cset);
82d6489d 6347 spin_unlock_irq(&css_set_lock);
a79a908f 6348
a79a908f 6349 new_ns = alloc_cgroup_ns();
d2202557 6350 if (IS_ERR(new_ns)) {
fa5ff8a1
TH
6351 put_css_set(cset);
6352 return new_ns;
d2202557 6353 }
a79a908f
AK
6354
6355 new_ns->user_ns = get_user_ns(user_ns);
6356 new_ns->root_cset = cset;
6357
6358 return new_ns;
a79a908f
AK
6359}
6360
6361static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6362{
6363 return container_of(ns, struct cgroup_namespace, ns);
6364}
6365
a0530e08 6366static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
a79a908f 6367{
a0530e08
AK
6368 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6369
6370 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6371 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6372 return -EPERM;
6373
6374 /* Don't need to do anything if we are attaching to our own cgroupns. */
6375 if (cgroup_ns == nsproxy->cgroup_ns)
6376 return 0;
6377
6378 get_cgroup_ns(cgroup_ns);
6379 put_cgroup_ns(nsproxy->cgroup_ns);
6380 nsproxy->cgroup_ns = cgroup_ns;
6381
6382 return 0;
a79a908f
AK
6383}
6384
6385static struct ns_common *cgroupns_get(struct task_struct *task)
6386{
6387 struct cgroup_namespace *ns = NULL;
6388 struct nsproxy *nsproxy;
6389
6390 task_lock(task);
6391 nsproxy = task->nsproxy;
6392 if (nsproxy) {
6393 ns = nsproxy->cgroup_ns;
6394 get_cgroup_ns(ns);
6395 }
6396 task_unlock(task);
6397
6398 return ns ? &ns->ns : NULL;
6399}
6400
6401static void cgroupns_put(struct ns_common *ns)
6402{
6403 put_cgroup_ns(to_cg_ns(ns));
6404}
6405
6406const struct proc_ns_operations cgroupns_operations = {
6407 .name = "cgroup",
6408 .type = CLONE_NEWCGROUP,
6409 .get = cgroupns_get,
6410 .put = cgroupns_put,
6411 .install = cgroupns_install,
6412};
6413
6414static __init int cgroup_namespaces_init(void)
6415{
6416 return 0;
6417}
6418subsys_initcall(cgroup_namespaces_init);
6419
fe693435 6420#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6421static struct cgroup_subsys_state *
6422debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6423{
6424 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6425
6426 if (!css)
6427 return ERR_PTR(-ENOMEM);
6428
6429 return css;
6430}
6431
eb95419b 6432static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6433{
eb95419b 6434 kfree(css);
fe693435
PM
6435}
6436
182446d0
TH
6437static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6438 struct cftype *cft)
fe693435 6439{
182446d0 6440 return cgroup_task_count(css->cgroup);
fe693435
PM
6441}
6442
182446d0
TH
6443static u64 current_css_set_read(struct cgroup_subsys_state *css,
6444 struct cftype *cft)
fe693435
PM
6445{
6446 return (u64)(unsigned long)current->cgroups;
6447}
6448
182446d0 6449static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6450 struct cftype *cft)
fe693435
PM
6451{
6452 u64 count;
6453
6454 rcu_read_lock();
a8ad805c 6455 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6456 rcu_read_unlock();
6457 return count;
6458}
6459
2da8ca82 6460static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6461{
69d0206c 6462 struct cgrp_cset_link *link;
5abb8855 6463 struct css_set *cset;
e61734c5
TH
6464 char *name_buf;
6465
6466 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6467 if (!name_buf)
6468 return -ENOMEM;
7717f7ba 6469
82d6489d 6470 spin_lock_irq(&css_set_lock);
7717f7ba 6471 rcu_read_lock();
5abb8855 6472 cset = rcu_dereference(current->cgroups);
69d0206c 6473 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6474 struct cgroup *c = link->cgrp;
7717f7ba 6475
a2dd4247 6476 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6477 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6478 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6479 }
6480 rcu_read_unlock();
82d6489d 6481 spin_unlock_irq(&css_set_lock);
e61734c5 6482 kfree(name_buf);
7717f7ba
PM
6483 return 0;
6484}
6485
6486#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6487static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6488{
2da8ca82 6489 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6490 struct cgrp_cset_link *link;
7717f7ba 6491
82d6489d 6492 spin_lock_irq(&css_set_lock);
182446d0 6493 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6494 struct css_set *cset = link->cset;
7717f7ba
PM
6495 struct task_struct *task;
6496 int count = 0;
c7561128 6497
5abb8855 6498 seq_printf(seq, "css_set %p\n", cset);
c7561128 6499
5abb8855 6500 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6501 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6502 goto overflow;
6503 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6504 }
6505
6506 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6507 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6508 goto overflow;
6509 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6510 }
c7561128
TH
6511 continue;
6512 overflow:
6513 seq_puts(seq, " ...\n");
7717f7ba 6514 }
82d6489d 6515 spin_unlock_irq(&css_set_lock);
7717f7ba
PM
6516 return 0;
6517}
6518
182446d0 6519static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6520{
27bd4dbb 6521 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6522 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6523}
6524
6525static struct cftype debug_files[] = {
fe693435
PM
6526 {
6527 .name = "taskcount",
6528 .read_u64 = debug_taskcount_read,
6529 },
6530
6531 {
6532 .name = "current_css_set",
6533 .read_u64 = current_css_set_read,
6534 },
6535
6536 {
6537 .name = "current_css_set_refcount",
6538 .read_u64 = current_css_set_refcount_read,
6539 },
6540
7717f7ba
PM
6541 {
6542 .name = "current_css_set_cg_links",
2da8ca82 6543 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6544 },
6545
6546 {
6547 .name = "cgroup_css_links",
2da8ca82 6548 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6549 },
6550
fe693435
PM
6551 {
6552 .name = "releasable",
6553 .read_u64 = releasable_read,
6554 },
fe693435 6555
4baf6e33
TH
6556 { } /* terminate */
6557};
fe693435 6558
073219e9 6559struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6560 .css_alloc = debug_css_alloc,
6561 .css_free = debug_css_free,
5577964e 6562 .legacy_cftypes = debug_files,
fe693435
PM
6563};
6564#endif /* CONFIG_CGROUP_DEBUG */