Merge tag 'trace-v4.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
bd1060a1 61#include <net/sock.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
34c06254
TH
100/*
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
103 */
104static DEFINE_SPINLOCK(cgroup_file_kn_lock);
105
69e943b7
TH
106/*
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
109 */
110static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 111
1ed13287
TH
112struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
113
8353da1f 114#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
8353da1f 117 "cgroup_mutex or RCU read lock required");
780cd8b3 118
e5fca243
TH
119/*
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
124 */
125static struct workqueue_struct *cgroup_destroy_wq;
126
b1a21367
TH
127/*
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
130 */
131static struct workqueue_struct *cgroup_pidlist_destroy_wq;
132
3ed80a62 133/* generate an array of cgroup subsystem pointers */
073219e9 134#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 135static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
136#include <linux/cgroup_subsys.h>
137};
073219e9
TH
138#undef SUBSYS
139
140/* array of cgroup subsystem names */
141#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
143#include <linux/cgroup_subsys.h>
144};
073219e9 145#undef SUBSYS
ddbcc7e8 146
49d1dc4b
TH
147/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148#define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153#include <linux/cgroup_subsys.h>
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157static struct static_key_true *cgroup_subsys_enabled_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
162#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164#include <linux/cgroup_subsys.h>
165};
166#undef SUBSYS
167
ddbcc7e8 168/*
3dd06ffa 169 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
ddbcc7e8 172 */
a2dd4247 173struct cgroup_root cgrp_dfl_root;
d0ec4230 174EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 175
a2dd4247
TH
176/*
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
179 */
180static bool cgrp_dfl_root_visible;
ddbcc7e8 181
5533e011 182/* some controllers are not supported in the default hierarchy */
8ab456ac 183static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 184
ddbcc7e8
PM
185/* The list of hierarchy roots */
186
9871bf95
TH
187static LIST_HEAD(cgroup_roots);
188static int cgroup_root_count;
ddbcc7e8 189
3417ae1f 190/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 191static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 192
794611a1 193/*
0cb51d71
TH
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
794611a1 199 */
0cb51d71 200static u64 css_serial_nr_next = 1;
794611a1 201
cb4a3167
AS
202/*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 206 */
cb4a3167
AS
207static unsigned long have_fork_callback __read_mostly;
208static unsigned long have_exit_callback __read_mostly;
afcf6c8b 209static unsigned long have_free_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
67e9c74b 214static struct file_system_type cgroup2_fs_type;
a14c6874
TH
215static struct cftype cgroup_dfl_base_files[];
216static struct cftype cgroup_legacy_base_files[];
628f7cd4 217
3dd06ffa 218static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 219 unsigned long ss_mask);
ed27b9f7 220static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 221static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
222static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
223 bool visible);
9d755d33 224static void css_release(struct percpu_ref *ref);
f8f22e53 225static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
226static int cgroup_addrm_files(struct cgroup_subsys_state *css,
227 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 228 bool is_add);
42809dd4 229
fc5ed1e9
TH
230/**
231 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
232 * @ssid: subsys ID of interest
233 *
234 * cgroup_subsys_enabled() can only be used with literal subsys names which
235 * is fine for individual subsystems but unsuitable for cgroup core. This
236 * is slower static_key_enabled() based test indexed by @ssid.
237 */
238static bool cgroup_ssid_enabled(int ssid)
239{
240 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
241}
242
9e10a130
TH
243/**
244 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
245 * @cgrp: the cgroup of interest
246 *
247 * The default hierarchy is the v2 interface of cgroup and this function
248 * can be used to test whether a cgroup is on the default hierarchy for
249 * cases where a subsystem should behave differnetly depending on the
250 * interface version.
251 *
252 * The set of behaviors which change on the default hierarchy are still
253 * being determined and the mount option is prefixed with __DEVEL__.
254 *
255 * List of changed behaviors:
256 *
257 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
258 * and "name" are disallowed.
259 *
260 * - When mounting an existing superblock, mount options should match.
261 *
262 * - Remount is disallowed.
263 *
264 * - rename(2) is disallowed.
265 *
266 * - "tasks" is removed. Everything should be at process granularity. Use
267 * "cgroup.procs" instead.
268 *
269 * - "cgroup.procs" is not sorted. pids will be unique unless they got
270 * recycled inbetween reads.
271 *
272 * - "release_agent" and "notify_on_release" are removed. Replacement
273 * notification mechanism will be implemented.
274 *
275 * - "cgroup.clone_children" is removed.
276 *
277 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
278 * and its descendants contain no task; otherwise, 1. The file also
279 * generates kernfs notification which can be monitored through poll and
280 * [di]notify when the value of the file changes.
281 *
282 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
283 * take masks of ancestors with non-empty cpus/mems, instead of being
284 * moved to an ancestor.
285 *
286 * - cpuset: a task can be moved into an empty cpuset, and again it takes
287 * masks of ancestors.
288 *
289 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
290 * is not created.
291 *
292 * - blkcg: blk-throttle becomes properly hierarchical.
293 *
294 * - debug: disallowed on the default hierarchy.
295 */
296static bool cgroup_on_dfl(const struct cgroup *cgrp)
297{
298 return cgrp->root == &cgrp_dfl_root;
299}
300
6fa4918d
TH
301/* IDR wrappers which synchronize using cgroup_idr_lock */
302static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
303 gfp_t gfp_mask)
304{
305 int ret;
306
307 idr_preload(gfp_mask);
54504e97 308 spin_lock_bh(&cgroup_idr_lock);
d0164adc 309 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 310 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
311 idr_preload_end();
312 return ret;
313}
314
315static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
316{
317 void *ret;
318
54504e97 319 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 320 ret = idr_replace(idr, ptr, id);
54504e97 321 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
322 return ret;
323}
324
325static void cgroup_idr_remove(struct idr *idr, int id)
326{
54504e97 327 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 328 idr_remove(idr, id);
54504e97 329 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
330}
331
d51f39b0
TH
332static struct cgroup *cgroup_parent(struct cgroup *cgrp)
333{
334 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
335
336 if (parent_css)
337 return container_of(parent_css, struct cgroup, self);
338 return NULL;
339}
340
95109b62
TH
341/**
342 * cgroup_css - obtain a cgroup's css for the specified subsystem
343 * @cgrp: the cgroup of interest
9d800df1 344 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 345 *
ca8bdcaf
TH
346 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
347 * function must be called either under cgroup_mutex or rcu_read_lock() and
348 * the caller is responsible for pinning the returned css if it wants to
349 * keep accessing it outside the said locks. This function may return
350 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
351 */
352static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 353 struct cgroup_subsys *ss)
95109b62 354{
ca8bdcaf 355 if (ss)
aec25020 356 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 357 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 358 else
9d800df1 359 return &cgrp->self;
95109b62 360}
42809dd4 361
aec3dfcb
TH
362/**
363 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
364 * @cgrp: the cgroup of interest
9d800df1 365 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 366 *
d0f702e6 367 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
368 * as the matching css of the nearest ancestor including self which has @ss
369 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
370 * function is guaranteed to return non-NULL css.
371 */
372static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
373 struct cgroup_subsys *ss)
374{
375 lockdep_assert_held(&cgroup_mutex);
376
377 if (!ss)
9d800df1 378 return &cgrp->self;
aec3dfcb
TH
379
380 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
381 return NULL;
382
eeecbd19
TH
383 /*
384 * This function is used while updating css associations and thus
385 * can't test the csses directly. Use ->child_subsys_mask.
386 */
d51f39b0
TH
387 while (cgroup_parent(cgrp) &&
388 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
389 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
390
391 return cgroup_css(cgrp, ss);
95109b62 392}
42809dd4 393
eeecbd19
TH
394/**
395 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
396 * @cgrp: the cgroup of interest
397 * @ss: the subsystem of interest
398 *
399 * Find and get the effective css of @cgrp for @ss. The effective css is
400 * defined as the matching css of the nearest ancestor including self which
401 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
402 * the root css is returned, so this function always returns a valid css.
403 * The returned css must be put using css_put().
404 */
405struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
406 struct cgroup_subsys *ss)
407{
408 struct cgroup_subsys_state *css;
409
410 rcu_read_lock();
411
412 do {
413 css = cgroup_css(cgrp, ss);
414
415 if (css && css_tryget_online(css))
416 goto out_unlock;
417 cgrp = cgroup_parent(cgrp);
418 } while (cgrp);
419
420 css = init_css_set.subsys[ss->id];
421 css_get(css);
422out_unlock:
423 rcu_read_unlock();
424 return css;
425}
426
ddbcc7e8 427/* convenient tests for these bits */
54766d4a 428static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 429{
184faf32 430 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
431}
432
052c3f3a
TH
433static void cgroup_get(struct cgroup *cgrp)
434{
435 WARN_ON_ONCE(cgroup_is_dead(cgrp));
436 css_get(&cgrp->self);
437}
438
439static bool cgroup_tryget(struct cgroup *cgrp)
440{
441 return css_tryget(&cgrp->self);
442}
443
b4168640 444struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 445{
2bd59d48 446 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 447 struct cftype *cft = of_cft(of);
2bd59d48
TH
448
449 /*
450 * This is open and unprotected implementation of cgroup_css().
451 * seq_css() is only called from a kernfs file operation which has
452 * an active reference on the file. Because all the subsystem
453 * files are drained before a css is disassociated with a cgroup,
454 * the matching css from the cgroup's subsys table is guaranteed to
455 * be and stay valid until the enclosing operation is complete.
456 */
457 if (cft->ss)
458 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
459 else
9d800df1 460 return &cgrp->self;
59f5296b 461}
b4168640 462EXPORT_SYMBOL_GPL(of_css);
59f5296b 463
e9685a03 464static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 465{
bd89aabc 466 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
467}
468
1c6727af
TH
469/**
470 * for_each_css - iterate all css's of a cgroup
471 * @css: the iteration cursor
472 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
473 * @cgrp: the target cgroup to iterate css's of
474 *
aec3dfcb 475 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
476 */
477#define for_each_css(css, ssid, cgrp) \
478 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
479 if (!((css) = rcu_dereference_check( \
480 (cgrp)->subsys[(ssid)], \
481 lockdep_is_held(&cgroup_mutex)))) { } \
482 else
483
aec3dfcb
TH
484/**
485 * for_each_e_css - iterate all effective css's of a cgroup
486 * @css: the iteration cursor
487 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
488 * @cgrp: the target cgroup to iterate css's of
489 *
490 * Should be called under cgroup_[tree_]mutex.
491 */
492#define for_each_e_css(css, ssid, cgrp) \
493 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
494 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
495 ; \
496 else
497
30159ec7 498/**
3ed80a62 499 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 500 * @ss: the iteration cursor
780cd8b3 501 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 502 */
780cd8b3 503#define for_each_subsys(ss, ssid) \
3ed80a62
TH
504 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
505 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 506
cb4a3167
AS
507/**
508 * for_each_subsys_which - filter for_each_subsys with a bitmask
509 * @ss: the iteration cursor
510 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
511 * @ss_maskp: a pointer to the bitmask
512 *
513 * The block will only run for cases where the ssid-th bit (1 << ssid) of
514 * mask is set to 1.
515 */
516#define for_each_subsys_which(ss, ssid, ss_maskp) \
517 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 518 (ssid) = 0; \
cb4a3167
AS
519 else \
520 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
521 if (((ss) = cgroup_subsys[ssid]) && false) \
522 break; \
523 else
524
985ed670
TH
525/* iterate across the hierarchies */
526#define for_each_root(root) \
5549c497 527 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 528
f8f22e53
TH
529/* iterate over child cgrps, lock should be held throughout iteration */
530#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 531 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 532 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
533 cgroup_is_dead(child); })) \
534 ; \
535 else
7ae1bad9 536
81a6a5cd 537static void cgroup_release_agent(struct work_struct *work);
bd89aabc 538static void check_for_release(struct cgroup *cgrp);
81a6a5cd 539
69d0206c
TH
540/*
541 * A cgroup can be associated with multiple css_sets as different tasks may
542 * belong to different cgroups on different hierarchies. In the other
543 * direction, a css_set is naturally associated with multiple cgroups.
544 * This M:N relationship is represented by the following link structure
545 * which exists for each association and allows traversing the associations
546 * from both sides.
547 */
548struct cgrp_cset_link {
549 /* the cgroup and css_set this link associates */
550 struct cgroup *cgrp;
551 struct css_set *cset;
552
553 /* list of cgrp_cset_links anchored at cgrp->cset_links */
554 struct list_head cset_link;
555
556 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
557 struct list_head cgrp_link;
817929ec
PM
558};
559
172a2c06
TH
560/*
561 * The default css_set - used by init and its children prior to any
817929ec
PM
562 * hierarchies being mounted. It contains a pointer to the root state
563 * for each subsystem. Also used to anchor the list of css_sets. Not
564 * reference-counted, to improve performance when child cgroups
565 * haven't been created.
566 */
5024ae29 567struct css_set init_css_set = {
172a2c06
TH
568 .refcount = ATOMIC_INIT(1),
569 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
570 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
571 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
572 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
573 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 574 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 575};
817929ec 576
172a2c06 577static int css_set_count = 1; /* 1 for init_css_set */
817929ec 578
0de0942d
TH
579/**
580 * css_set_populated - does a css_set contain any tasks?
581 * @cset: target css_set
582 */
583static bool css_set_populated(struct css_set *cset)
584{
f0d9a5f1 585 lockdep_assert_held(&css_set_lock);
0de0942d
TH
586
587 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
588}
589
842b597e
TH
590/**
591 * cgroup_update_populated - updated populated count of a cgroup
592 * @cgrp: the target cgroup
593 * @populated: inc or dec populated count
594 *
0de0942d
TH
595 * One of the css_sets associated with @cgrp is either getting its first
596 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
597 * count is propagated towards root so that a given cgroup's populated_cnt
598 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
599 *
600 * @cgrp's interface file "cgroup.populated" is zero if
601 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
602 * changes from or to zero, userland is notified that the content of the
603 * interface file has changed. This can be used to detect when @cgrp and
604 * its descendants become populated or empty.
605 */
606static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
607{
f0d9a5f1 608 lockdep_assert_held(&css_set_lock);
842b597e
TH
609
610 do {
611 bool trigger;
612
613 if (populated)
614 trigger = !cgrp->populated_cnt++;
615 else
616 trigger = !--cgrp->populated_cnt;
617
618 if (!trigger)
619 break;
620
ad2ed2b3 621 check_for_release(cgrp);
6f60eade
TH
622 cgroup_file_notify(&cgrp->events_file);
623
d51f39b0 624 cgrp = cgroup_parent(cgrp);
842b597e
TH
625 } while (cgrp);
626}
627
0de0942d
TH
628/**
629 * css_set_update_populated - update populated state of a css_set
630 * @cset: target css_set
631 * @populated: whether @cset is populated or depopulated
632 *
633 * @cset is either getting the first task or losing the last. Update the
634 * ->populated_cnt of all associated cgroups accordingly.
635 */
636static void css_set_update_populated(struct css_set *cset, bool populated)
637{
638 struct cgrp_cset_link *link;
639
f0d9a5f1 640 lockdep_assert_held(&css_set_lock);
0de0942d
TH
641
642 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
643 cgroup_update_populated(link->cgrp, populated);
644}
645
f6d7d049
TH
646/**
647 * css_set_move_task - move a task from one css_set to another
648 * @task: task being moved
649 * @from_cset: css_set @task currently belongs to (may be NULL)
650 * @to_cset: new css_set @task is being moved to (may be NULL)
651 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
652 *
653 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
654 * css_set, @from_cset can be NULL. If @task is being disassociated
655 * instead of moved, @to_cset can be NULL.
656 *
ed27b9f7
TH
657 * This function automatically handles populated_cnt updates and
658 * css_task_iter adjustments but the caller is responsible for managing
659 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
660 */
661static void css_set_move_task(struct task_struct *task,
662 struct css_set *from_cset, struct css_set *to_cset,
663 bool use_mg_tasks)
664{
f0d9a5f1 665 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
666
667 if (from_cset) {
ed27b9f7
TH
668 struct css_task_iter *it, *pos;
669
f6d7d049 670 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
671
672 /*
673 * @task is leaving, advance task iterators which are
674 * pointing to it so that they can resume at the next
675 * position. Advancing an iterator might remove it from
676 * the list, use safe walk. See css_task_iter_advance*()
677 * for details.
678 */
679 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
680 iters_node)
681 if (it->task_pos == &task->cg_list)
682 css_task_iter_advance(it);
683
f6d7d049
TH
684 list_del_init(&task->cg_list);
685 if (!css_set_populated(from_cset))
686 css_set_update_populated(from_cset, false);
687 } else {
688 WARN_ON_ONCE(!list_empty(&task->cg_list));
689 }
690
691 if (to_cset) {
692 /*
693 * We are synchronized through cgroup_threadgroup_rwsem
694 * against PF_EXITING setting such that we can't race
695 * against cgroup_exit() changing the css_set to
696 * init_css_set and dropping the old one.
697 */
698 WARN_ON_ONCE(task->flags & PF_EXITING);
699
700 if (!css_set_populated(to_cset))
701 css_set_update_populated(to_cset, true);
702 rcu_assign_pointer(task->cgroups, to_cset);
703 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
704 &to_cset->tasks);
705 }
706}
707
7717f7ba
PM
708/*
709 * hash table for cgroup groups. This improves the performance to find
710 * an existing css_set. This hash doesn't (currently) take into
711 * account cgroups in empty hierarchies.
712 */
472b1053 713#define CSS_SET_HASH_BITS 7
0ac801fe 714static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 715
0ac801fe 716static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 717{
0ac801fe 718 unsigned long key = 0UL;
30159ec7
TH
719 struct cgroup_subsys *ss;
720 int i;
472b1053 721
30159ec7 722 for_each_subsys(ss, i)
0ac801fe
LZ
723 key += (unsigned long)css[i];
724 key = (key >> 16) ^ key;
472b1053 725
0ac801fe 726 return key;
472b1053
LZ
727}
728
a25eb52e 729static void put_css_set_locked(struct css_set *cset)
b4f48b63 730{
69d0206c 731 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
732 struct cgroup_subsys *ss;
733 int ssid;
5abb8855 734
f0d9a5f1 735 lockdep_assert_held(&css_set_lock);
89c5509b
TH
736
737 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 738 return;
81a6a5cd 739
53254f90
TH
740 /* This css_set is dead. unlink it and release cgroup and css refs */
741 for_each_subsys(ss, ssid) {
2d8f243a 742 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
743 css_put(cset->subsys[ssid]);
744 }
5abb8855 745 hash_del(&cset->hlist);
2c6ab6d2
PM
746 css_set_count--;
747
69d0206c 748 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
749 list_del(&link->cset_link);
750 list_del(&link->cgrp_link);
2ceb231b
TH
751 if (cgroup_parent(link->cgrp))
752 cgroup_put(link->cgrp);
2c6ab6d2 753 kfree(link);
81a6a5cd 754 }
2c6ab6d2 755
5abb8855 756 kfree_rcu(cset, rcu_head);
b4f48b63
PM
757}
758
a25eb52e 759static void put_css_set(struct css_set *cset)
89c5509b
TH
760{
761 /*
762 * Ensure that the refcount doesn't hit zero while any readers
763 * can see it. Similar to atomic_dec_and_lock(), but for an
764 * rwlock
765 */
766 if (atomic_add_unless(&cset->refcount, -1, 1))
767 return;
768
f0d9a5f1 769 spin_lock_bh(&css_set_lock);
a25eb52e 770 put_css_set_locked(cset);
f0d9a5f1 771 spin_unlock_bh(&css_set_lock);
89c5509b
TH
772}
773
817929ec
PM
774/*
775 * refcounted get/put for css_set objects
776 */
5abb8855 777static inline void get_css_set(struct css_set *cset)
817929ec 778{
5abb8855 779 atomic_inc(&cset->refcount);
817929ec
PM
780}
781
b326f9d0 782/**
7717f7ba 783 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
784 * @cset: candidate css_set being tested
785 * @old_cset: existing css_set for a task
7717f7ba
PM
786 * @new_cgrp: cgroup that's being entered by the task
787 * @template: desired set of css pointers in css_set (pre-calculated)
788 *
6f4b7e63 789 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
790 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
791 */
5abb8855
TH
792static bool compare_css_sets(struct css_set *cset,
793 struct css_set *old_cset,
7717f7ba
PM
794 struct cgroup *new_cgrp,
795 struct cgroup_subsys_state *template[])
796{
797 struct list_head *l1, *l2;
798
aec3dfcb
TH
799 /*
800 * On the default hierarchy, there can be csets which are
801 * associated with the same set of cgroups but different csses.
802 * Let's first ensure that csses match.
803 */
804 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 805 return false;
7717f7ba
PM
806
807 /*
808 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
809 * different cgroups in hierarchies. As different cgroups may
810 * share the same effective css, this comparison is always
811 * necessary.
7717f7ba 812 */
69d0206c
TH
813 l1 = &cset->cgrp_links;
814 l2 = &old_cset->cgrp_links;
7717f7ba 815 while (1) {
69d0206c 816 struct cgrp_cset_link *link1, *link2;
5abb8855 817 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
818
819 l1 = l1->next;
820 l2 = l2->next;
821 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
822 if (l1 == &cset->cgrp_links) {
823 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
824 break;
825 } else {
69d0206c 826 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
827 }
828 /* Locate the cgroups associated with these links. */
69d0206c
TH
829 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
830 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
831 cgrp1 = link1->cgrp;
832 cgrp2 = link2->cgrp;
7717f7ba 833 /* Hierarchies should be linked in the same order. */
5abb8855 834 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
835
836 /*
837 * If this hierarchy is the hierarchy of the cgroup
838 * that's changing, then we need to check that this
839 * css_set points to the new cgroup; if it's any other
840 * hierarchy, then this css_set should point to the
841 * same cgroup as the old css_set.
842 */
5abb8855
TH
843 if (cgrp1->root == new_cgrp->root) {
844 if (cgrp1 != new_cgrp)
7717f7ba
PM
845 return false;
846 } else {
5abb8855 847 if (cgrp1 != cgrp2)
7717f7ba
PM
848 return false;
849 }
850 }
851 return true;
852}
853
b326f9d0
TH
854/**
855 * find_existing_css_set - init css array and find the matching css_set
856 * @old_cset: the css_set that we're using before the cgroup transition
857 * @cgrp: the cgroup that we're moving into
858 * @template: out param for the new set of csses, should be clear on entry
817929ec 859 */
5abb8855
TH
860static struct css_set *find_existing_css_set(struct css_set *old_cset,
861 struct cgroup *cgrp,
862 struct cgroup_subsys_state *template[])
b4f48b63 863{
3dd06ffa 864 struct cgroup_root *root = cgrp->root;
30159ec7 865 struct cgroup_subsys *ss;
5abb8855 866 struct css_set *cset;
0ac801fe 867 unsigned long key;
b326f9d0 868 int i;
817929ec 869
aae8aab4
BB
870 /*
871 * Build the set of subsystem state objects that we want to see in the
872 * new css_set. while subsystems can change globally, the entries here
873 * won't change, so no need for locking.
874 */
30159ec7 875 for_each_subsys(ss, i) {
f392e51c 876 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
877 /*
878 * @ss is in this hierarchy, so we want the
879 * effective css from @cgrp.
880 */
881 template[i] = cgroup_e_css(cgrp, ss);
817929ec 882 } else {
aec3dfcb
TH
883 /*
884 * @ss is not in this hierarchy, so we don't want
885 * to change the css.
886 */
5abb8855 887 template[i] = old_cset->subsys[i];
817929ec
PM
888 }
889 }
890
0ac801fe 891 key = css_set_hash(template);
5abb8855
TH
892 hash_for_each_possible(css_set_table, cset, hlist, key) {
893 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
894 continue;
895
896 /* This css_set matches what we need */
5abb8855 897 return cset;
472b1053 898 }
817929ec
PM
899
900 /* No existing cgroup group matched */
901 return NULL;
902}
903
69d0206c 904static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 905{
69d0206c 906 struct cgrp_cset_link *link, *tmp_link;
36553434 907
69d0206c
TH
908 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
909 list_del(&link->cset_link);
36553434
LZ
910 kfree(link);
911 }
912}
913
69d0206c
TH
914/**
915 * allocate_cgrp_cset_links - allocate cgrp_cset_links
916 * @count: the number of links to allocate
917 * @tmp_links: list_head the allocated links are put on
918 *
919 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
920 * through ->cset_link. Returns 0 on success or -errno.
817929ec 921 */
69d0206c 922static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 923{
69d0206c 924 struct cgrp_cset_link *link;
817929ec 925 int i;
69d0206c
TH
926
927 INIT_LIST_HEAD(tmp_links);
928
817929ec 929 for (i = 0; i < count; i++) {
f4f4be2b 930 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 931 if (!link) {
69d0206c 932 free_cgrp_cset_links(tmp_links);
817929ec
PM
933 return -ENOMEM;
934 }
69d0206c 935 list_add(&link->cset_link, tmp_links);
817929ec
PM
936 }
937 return 0;
938}
939
c12f65d4
LZ
940/**
941 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 942 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 943 * @cset: the css_set to be linked
c12f65d4
LZ
944 * @cgrp: the destination cgroup
945 */
69d0206c
TH
946static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
947 struct cgroup *cgrp)
c12f65d4 948{
69d0206c 949 struct cgrp_cset_link *link;
c12f65d4 950
69d0206c 951 BUG_ON(list_empty(tmp_links));
6803c006
TH
952
953 if (cgroup_on_dfl(cgrp))
954 cset->dfl_cgrp = cgrp;
955
69d0206c
TH
956 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
957 link->cset = cset;
7717f7ba 958 link->cgrp = cgrp;
842b597e 959
7717f7ba 960 /*
389b9c1b
TH
961 * Always add links to the tail of the lists so that the lists are
962 * in choronological order.
7717f7ba 963 */
389b9c1b 964 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 965 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
966
967 if (cgroup_parent(cgrp))
968 cgroup_get(cgrp);
c12f65d4
LZ
969}
970
b326f9d0
TH
971/**
972 * find_css_set - return a new css_set with one cgroup updated
973 * @old_cset: the baseline css_set
974 * @cgrp: the cgroup to be updated
975 *
976 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
977 * substituted into the appropriate hierarchy.
817929ec 978 */
5abb8855
TH
979static struct css_set *find_css_set(struct css_set *old_cset,
980 struct cgroup *cgrp)
817929ec 981{
b326f9d0 982 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 983 struct css_set *cset;
69d0206c
TH
984 struct list_head tmp_links;
985 struct cgrp_cset_link *link;
2d8f243a 986 struct cgroup_subsys *ss;
0ac801fe 987 unsigned long key;
2d8f243a 988 int ssid;
472b1053 989
b326f9d0
TH
990 lockdep_assert_held(&cgroup_mutex);
991
817929ec
PM
992 /* First see if we already have a cgroup group that matches
993 * the desired set */
f0d9a5f1 994 spin_lock_bh(&css_set_lock);
5abb8855
TH
995 cset = find_existing_css_set(old_cset, cgrp, template);
996 if (cset)
997 get_css_set(cset);
f0d9a5f1 998 spin_unlock_bh(&css_set_lock);
817929ec 999
5abb8855
TH
1000 if (cset)
1001 return cset;
817929ec 1002
f4f4be2b 1003 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1004 if (!cset)
817929ec
PM
1005 return NULL;
1006
69d0206c 1007 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1008 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1009 kfree(cset);
817929ec
PM
1010 return NULL;
1011 }
1012
5abb8855 1013 atomic_set(&cset->refcount, 1);
69d0206c 1014 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1015 INIT_LIST_HEAD(&cset->tasks);
c7561128 1016 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1017 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1018 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1019 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1020 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1021
1022 /* Copy the set of subsystem state objects generated in
1023 * find_existing_css_set() */
5abb8855 1024 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1025
f0d9a5f1 1026 spin_lock_bh(&css_set_lock);
817929ec 1027 /* Add reference counts and links from the new css_set. */
69d0206c 1028 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1029 struct cgroup *c = link->cgrp;
69d0206c 1030
7717f7ba
PM
1031 if (c->root == cgrp->root)
1032 c = cgrp;
69d0206c 1033 link_css_set(&tmp_links, cset, c);
7717f7ba 1034 }
817929ec 1035
69d0206c 1036 BUG_ON(!list_empty(&tmp_links));
817929ec 1037
817929ec 1038 css_set_count++;
472b1053 1039
2d8f243a 1040 /* Add @cset to the hash table */
5abb8855
TH
1041 key = css_set_hash(cset->subsys);
1042 hash_add(css_set_table, &cset->hlist, key);
472b1053 1043
53254f90
TH
1044 for_each_subsys(ss, ssid) {
1045 struct cgroup_subsys_state *css = cset->subsys[ssid];
1046
2d8f243a 1047 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1048 &css->cgroup->e_csets[ssid]);
1049 css_get(css);
1050 }
2d8f243a 1051
f0d9a5f1 1052 spin_unlock_bh(&css_set_lock);
817929ec 1053
5abb8855 1054 return cset;
b4f48b63
PM
1055}
1056
3dd06ffa 1057static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1058{
3dd06ffa 1059 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1060
3dd06ffa 1061 return root_cgrp->root;
2bd59d48
TH
1062}
1063
3dd06ffa 1064static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1065{
1066 int id;
1067
1068 lockdep_assert_held(&cgroup_mutex);
1069
985ed670 1070 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1071 if (id < 0)
1072 return id;
1073
1074 root->hierarchy_id = id;
1075 return 0;
1076}
1077
3dd06ffa 1078static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1079{
1080 lockdep_assert_held(&cgroup_mutex);
1081
1082 if (root->hierarchy_id) {
1083 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1084 root->hierarchy_id = 0;
1085 }
1086}
1087
3dd06ffa 1088static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1089{
1090 if (root) {
d0f702e6 1091 /* hierarchy ID should already have been released */
f2e85d57
TH
1092 WARN_ON_ONCE(root->hierarchy_id);
1093
1094 idr_destroy(&root->cgroup_idr);
1095 kfree(root);
1096 }
1097}
1098
3dd06ffa 1099static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1100{
3dd06ffa 1101 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1102 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1103
2bd59d48 1104 mutex_lock(&cgroup_mutex);
f2e85d57 1105
776f02fa 1106 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1107 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1108
f2e85d57 1109 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1110 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1111
7717f7ba 1112 /*
f2e85d57
TH
1113 * Release all the links from cset_links to this hierarchy's
1114 * root cgroup
7717f7ba 1115 */
f0d9a5f1 1116 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1117
1118 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1119 list_del(&link->cset_link);
1120 list_del(&link->cgrp_link);
1121 kfree(link);
1122 }
f0d9a5f1
TH
1123
1124 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1125
1126 if (!list_empty(&root->root_list)) {
1127 list_del(&root->root_list);
1128 cgroup_root_count--;
1129 }
1130
1131 cgroup_exit_root_id(root);
1132
1133 mutex_unlock(&cgroup_mutex);
f2e85d57 1134
2bd59d48 1135 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1136 cgroup_free_root(root);
1137}
1138
ceb6a081
TH
1139/* look up cgroup associated with given css_set on the specified hierarchy */
1140static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1141 struct cgroup_root *root)
7717f7ba 1142{
7717f7ba
PM
1143 struct cgroup *res = NULL;
1144
96d365e0 1145 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1146 lockdep_assert_held(&css_set_lock);
96d365e0 1147
5abb8855 1148 if (cset == &init_css_set) {
3dd06ffa 1149 res = &root->cgrp;
7717f7ba 1150 } else {
69d0206c
TH
1151 struct cgrp_cset_link *link;
1152
1153 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1154 struct cgroup *c = link->cgrp;
69d0206c 1155
7717f7ba
PM
1156 if (c->root == root) {
1157 res = c;
1158 break;
1159 }
1160 }
1161 }
96d365e0 1162
7717f7ba
PM
1163 BUG_ON(!res);
1164 return res;
1165}
1166
ddbcc7e8 1167/*
ceb6a081 1168 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1169 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1170 */
1171static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1172 struct cgroup_root *root)
ceb6a081
TH
1173{
1174 /*
1175 * No need to lock the task - since we hold cgroup_mutex the
1176 * task can't change groups, so the only thing that can happen
1177 * is that it exits and its css is set back to init_css_set.
1178 */
1179 return cset_cgroup_from_root(task_css_set(task), root);
1180}
1181
ddbcc7e8 1182/*
ddbcc7e8
PM
1183 * A task must hold cgroup_mutex to modify cgroups.
1184 *
1185 * Any task can increment and decrement the count field without lock.
1186 * So in general, code holding cgroup_mutex can't rely on the count
1187 * field not changing. However, if the count goes to zero, then only
956db3ca 1188 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1189 * means that no tasks are currently attached, therefore there is no
1190 * way a task attached to that cgroup can fork (the other way to
1191 * increment the count). So code holding cgroup_mutex can safely
1192 * assume that if the count is zero, it will stay zero. Similarly, if
1193 * a task holds cgroup_mutex on a cgroup with zero count, it
1194 * knows that the cgroup won't be removed, as cgroup_rmdir()
1195 * needs that mutex.
1196 *
ddbcc7e8
PM
1197 * A cgroup can only be deleted if both its 'count' of using tasks
1198 * is zero, and its list of 'children' cgroups is empty. Since all
1199 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1200 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1201 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1202 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1203 *
1204 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1205 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1206 */
1207
2bd59d48 1208static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1209static const struct file_operations proc_cgroupstats_operations;
a424316c 1210
8d7e6fb0
TH
1211static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1212 char *buf)
ddbcc7e8 1213{
3e1d2eed
TH
1214 struct cgroup_subsys *ss = cft->ss;
1215
8d7e6fb0
TH
1216 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1217 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1218 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1219 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1220 cft->name);
8d7e6fb0
TH
1221 else
1222 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1223 return buf;
ddbcc7e8
PM
1224}
1225
f2e85d57
TH
1226/**
1227 * cgroup_file_mode - deduce file mode of a control file
1228 * @cft: the control file in question
1229 *
7dbdb199 1230 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1231 */
1232static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1233{
f2e85d57 1234 umode_t mode = 0;
65dff759 1235
f2e85d57
TH
1236 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1237 mode |= S_IRUGO;
1238
7dbdb199
TH
1239 if (cft->write_u64 || cft->write_s64 || cft->write) {
1240 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1241 mode |= S_IWUGO;
1242 else
1243 mode |= S_IWUSR;
1244 }
f2e85d57
TH
1245
1246 return mode;
65dff759
LZ
1247}
1248
af0ba678 1249/**
0f060deb 1250 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1251 * @cgrp: the target cgroup
0f060deb 1252 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1253 *
1254 * On the default hierarchy, a subsystem may request other subsystems to be
1255 * enabled together through its ->depends_on mask. In such cases, more
1256 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1257 *
0f060deb
TH
1258 * This function calculates which subsystems need to be enabled if
1259 * @subtree_control is to be applied to @cgrp. The returned mask is always
1260 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1261 */
8ab456ac
AS
1262static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1263 unsigned long subtree_control)
667c2491 1264{
af0ba678 1265 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1266 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1267 struct cgroup_subsys *ss;
1268 int ssid;
1269
1270 lockdep_assert_held(&cgroup_mutex);
1271
0f060deb
TH
1272 if (!cgroup_on_dfl(cgrp))
1273 return cur_ss_mask;
af0ba678
TH
1274
1275 while (true) {
8ab456ac 1276 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1277
a966a4ed
AS
1278 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1279 new_ss_mask |= ss->depends_on;
af0ba678
TH
1280
1281 /*
1282 * Mask out subsystems which aren't available. This can
1283 * happen only if some depended-upon subsystems were bound
1284 * to non-default hierarchies.
1285 */
1286 if (parent)
1287 new_ss_mask &= parent->child_subsys_mask;
1288 else
1289 new_ss_mask &= cgrp->root->subsys_mask;
1290
1291 if (new_ss_mask == cur_ss_mask)
1292 break;
1293 cur_ss_mask = new_ss_mask;
1294 }
1295
0f060deb
TH
1296 return cur_ss_mask;
1297}
1298
1299/**
1300 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1301 * @cgrp: the target cgroup
1302 *
1303 * Update @cgrp->child_subsys_mask according to the current
1304 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1305 */
1306static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1307{
1308 cgrp->child_subsys_mask =
1309 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1310}
1311
a9746d8d
TH
1312/**
1313 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1314 * @kn: the kernfs_node being serviced
1315 *
1316 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1317 * the method finishes if locking succeeded. Note that once this function
1318 * returns the cgroup returned by cgroup_kn_lock_live() may become
1319 * inaccessible any time. If the caller intends to continue to access the
1320 * cgroup, it should pin it before invoking this function.
1321 */
1322static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1323{
a9746d8d
TH
1324 struct cgroup *cgrp;
1325
1326 if (kernfs_type(kn) == KERNFS_DIR)
1327 cgrp = kn->priv;
1328 else
1329 cgrp = kn->parent->priv;
1330
1331 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1332
1333 kernfs_unbreak_active_protection(kn);
1334 cgroup_put(cgrp);
ddbcc7e8
PM
1335}
1336
a9746d8d
TH
1337/**
1338 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1339 * @kn: the kernfs_node being serviced
1340 *
1341 * This helper is to be used by a cgroup kernfs method currently servicing
1342 * @kn. It breaks the active protection, performs cgroup locking and
1343 * verifies that the associated cgroup is alive. Returns the cgroup if
1344 * alive; otherwise, %NULL. A successful return should be undone by a
1345 * matching cgroup_kn_unlock() invocation.
1346 *
1347 * Any cgroup kernfs method implementation which requires locking the
1348 * associated cgroup should use this helper. It avoids nesting cgroup
1349 * locking under kernfs active protection and allows all kernfs operations
1350 * including self-removal.
1351 */
1352static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1353{
a9746d8d
TH
1354 struct cgroup *cgrp;
1355
1356 if (kernfs_type(kn) == KERNFS_DIR)
1357 cgrp = kn->priv;
1358 else
1359 cgrp = kn->parent->priv;
05ef1d7c 1360
2739d3cc 1361 /*
01f6474c 1362 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1363 * active_ref. cgroup liveliness check alone provides enough
1364 * protection against removal. Ensure @cgrp stays accessible and
1365 * break the active_ref protection.
2739d3cc 1366 */
aa32362f
LZ
1367 if (!cgroup_tryget(cgrp))
1368 return NULL;
a9746d8d
TH
1369 kernfs_break_active_protection(kn);
1370
2bd59d48 1371 mutex_lock(&cgroup_mutex);
05ef1d7c 1372
a9746d8d
TH
1373 if (!cgroup_is_dead(cgrp))
1374 return cgrp;
1375
1376 cgroup_kn_unlock(kn);
1377 return NULL;
ddbcc7e8 1378}
05ef1d7c 1379
2739d3cc 1380static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1381{
2bd59d48 1382 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1383
01f6474c 1384 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1385
1386 if (cft->file_offset) {
1387 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1388 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1389
1390 spin_lock_irq(&cgroup_file_kn_lock);
1391 cfile->kn = NULL;
1392 spin_unlock_irq(&cgroup_file_kn_lock);
1393 }
1394
2bd59d48 1395 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1396}
1397
13af07df 1398/**
4df8dc90
TH
1399 * css_clear_dir - remove subsys files in a cgroup directory
1400 * @css: taget css
1401 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1402 */
4df8dc90
TH
1403static void css_clear_dir(struct cgroup_subsys_state *css,
1404 struct cgroup *cgrp_override)
05ef1d7c 1405{
4df8dc90
TH
1406 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1407 struct cftype *cfts;
05ef1d7c 1408
4df8dc90
TH
1409 list_for_each_entry(cfts, &css->ss->cfts, node)
1410 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1411}
1412
ccdca218 1413/**
4df8dc90
TH
1414 * css_populate_dir - create subsys files in a cgroup directory
1415 * @css: target css
1416 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1417 *
1418 * On failure, no file is added.
1419 */
4df8dc90
TH
1420static int css_populate_dir(struct cgroup_subsys_state *css,
1421 struct cgroup *cgrp_override)
ccdca218 1422{
4df8dc90
TH
1423 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1424 struct cftype *cfts, *failed_cfts;
1425 int ret;
ccdca218 1426
4df8dc90
TH
1427 if (!css->ss) {
1428 if (cgroup_on_dfl(cgrp))
1429 cfts = cgroup_dfl_base_files;
1430 else
1431 cfts = cgroup_legacy_base_files;
ccdca218 1432
4df8dc90
TH
1433 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1434 }
ccdca218 1435
4df8dc90
TH
1436 list_for_each_entry(cfts, &css->ss->cfts, node) {
1437 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1438 if (ret < 0) {
1439 failed_cfts = cfts;
1440 goto err;
ccdca218
TH
1441 }
1442 }
1443 return 0;
1444err:
4df8dc90
TH
1445 list_for_each_entry(cfts, &css->ss->cfts, node) {
1446 if (cfts == failed_cfts)
1447 break;
1448 cgroup_addrm_files(css, cgrp, cfts, false);
1449 }
ccdca218
TH
1450 return ret;
1451}
1452
8ab456ac
AS
1453static int rebind_subsystems(struct cgroup_root *dst_root,
1454 unsigned long ss_mask)
ddbcc7e8 1455{
1ada4838 1456 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1457 struct cgroup_subsys *ss;
8ab456ac 1458 unsigned long tmp_ss_mask;
2d8f243a 1459 int ssid, i, ret;
ddbcc7e8 1460
ace2bee8 1461 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1462
a966a4ed 1463 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1464 /* if @ss has non-root csses attached to it, can't move */
1465 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1466 return -EBUSY;
1d5be6b2 1467
5df36032 1468 /* can't move between two non-dummy roots either */
7fd8c565 1469 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1470 return -EBUSY;
ddbcc7e8
PM
1471 }
1472
5533e011
TH
1473 /* skip creating root files on dfl_root for inhibited subsystems */
1474 tmp_ss_mask = ss_mask;
1475 if (dst_root == &cgrp_dfl_root)
1476 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1477
4df8dc90
TH
1478 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1479 struct cgroup *scgrp = &ss->root->cgrp;
1480 int tssid;
1481
1482 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1483 if (!ret)
1484 continue;
ddbcc7e8 1485
a2dd4247
TH
1486 /*
1487 * Rebinding back to the default root is not allowed to
1488 * fail. Using both default and non-default roots should
1489 * be rare. Moving subsystems back and forth even more so.
1490 * Just warn about it and continue.
1491 */
4df8dc90
TH
1492 if (dst_root == &cgrp_dfl_root) {
1493 if (cgrp_dfl_root_visible) {
1494 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1495 ret, ss_mask);
1496 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1497 }
1498 continue;
a2dd4247 1499 }
4df8dc90
TH
1500
1501 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1502 if (tssid == ssid)
1503 break;
1504 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1505 }
1506 return ret;
5df36032 1507 }
3126121f
TH
1508
1509 /*
1510 * Nothing can fail from this point on. Remove files for the
1511 * removed subsystems and rebind each subsystem.
1512 */
a966a4ed 1513 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1514 struct cgroup_root *src_root = ss->root;
1515 struct cgroup *scgrp = &src_root->cgrp;
1516 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1517 struct css_set *cset;
a8a648c4 1518
1ada4838 1519 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1520
4df8dc90
TH
1521 css_clear_dir(css, NULL);
1522
1ada4838
TH
1523 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1524 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1525 ss->root = dst_root;
1ada4838 1526 css->cgroup = dcgrp;
73e80ed8 1527
f0d9a5f1 1528 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1529 hash_for_each(css_set_table, i, cset, hlist)
1530 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1531 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1532 spin_unlock_bh(&css_set_lock);
2d8f243a 1533
f392e51c 1534 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1535 scgrp->subtree_control &= ~(1 << ssid);
1536 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1537
bd53d617 1538 /* default hierarchy doesn't enable controllers by default */
f392e51c 1539 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1540 if (dst_root == &cgrp_dfl_root) {
1541 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1542 } else {
1ada4838
TH
1543 dcgrp->subtree_control |= 1 << ssid;
1544 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1545 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1546 }
a8a648c4 1547
5df36032
TH
1548 if (ss->bind)
1549 ss->bind(css);
ddbcc7e8 1550 }
ddbcc7e8 1551
1ada4838 1552 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1553 return 0;
1554}
1555
2bd59d48
TH
1556static int cgroup_show_options(struct seq_file *seq,
1557 struct kernfs_root *kf_root)
ddbcc7e8 1558{
3dd06ffa 1559 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1560 struct cgroup_subsys *ss;
b85d2040 1561 int ssid;
ddbcc7e8 1562
d98817d4
TH
1563 if (root != &cgrp_dfl_root)
1564 for_each_subsys(ss, ssid)
1565 if (root->subsys_mask & (1 << ssid))
61e57c0c 1566 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1567 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1568 seq_puts(seq, ",noprefix");
93438629 1569 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1570 seq_puts(seq, ",xattr");
69e943b7
TH
1571
1572 spin_lock(&release_agent_path_lock);
81a6a5cd 1573 if (strlen(root->release_agent_path))
a068acf2
KC
1574 seq_show_option(seq, "release_agent",
1575 root->release_agent_path);
69e943b7
TH
1576 spin_unlock(&release_agent_path_lock);
1577
3dd06ffa 1578 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1579 seq_puts(seq, ",clone_children");
c6d57f33 1580 if (strlen(root->name))
a068acf2 1581 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1582 return 0;
1583}
1584
1585struct cgroup_sb_opts {
8ab456ac 1586 unsigned long subsys_mask;
69dfa00c 1587 unsigned int flags;
81a6a5cd 1588 char *release_agent;
2260e7fc 1589 bool cpuset_clone_children;
c6d57f33 1590 char *name;
2c6ab6d2
PM
1591 /* User explicitly requested empty subsystem */
1592 bool none;
ddbcc7e8
PM
1593};
1594
cf5d5941 1595static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1596{
32a8cf23
DL
1597 char *token, *o = data;
1598 bool all_ss = false, one_ss = false;
8ab456ac 1599 unsigned long mask = -1UL;
30159ec7 1600 struct cgroup_subsys *ss;
7b9a6ba5 1601 int nr_opts = 0;
30159ec7 1602 int i;
f9ab5b5b
LZ
1603
1604#ifdef CONFIG_CPUSETS
69dfa00c 1605 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1606#endif
ddbcc7e8 1607
c6d57f33 1608 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1609
1610 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1611 nr_opts++;
1612
ddbcc7e8
PM
1613 if (!*token)
1614 return -EINVAL;
32a8cf23 1615 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1616 /* Explicitly have no subsystems */
1617 opts->none = true;
32a8cf23
DL
1618 continue;
1619 }
1620 if (!strcmp(token, "all")) {
1621 /* Mutually exclusive option 'all' + subsystem name */
1622 if (one_ss)
1623 return -EINVAL;
1624 all_ss = true;
1625 continue;
1626 }
1627 if (!strcmp(token, "noprefix")) {
93438629 1628 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1629 continue;
1630 }
1631 if (!strcmp(token, "clone_children")) {
2260e7fc 1632 opts->cpuset_clone_children = true;
32a8cf23
DL
1633 continue;
1634 }
03b1cde6 1635 if (!strcmp(token, "xattr")) {
93438629 1636 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1637 continue;
1638 }
32a8cf23 1639 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1640 /* Specifying two release agents is forbidden */
1641 if (opts->release_agent)
1642 return -EINVAL;
c6d57f33 1643 opts->release_agent =
e400c285 1644 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1645 if (!opts->release_agent)
1646 return -ENOMEM;
32a8cf23
DL
1647 continue;
1648 }
1649 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1650 const char *name = token + 5;
1651 /* Can't specify an empty name */
1652 if (!strlen(name))
1653 return -EINVAL;
1654 /* Must match [\w.-]+ */
1655 for (i = 0; i < strlen(name); i++) {
1656 char c = name[i];
1657 if (isalnum(c))
1658 continue;
1659 if ((c == '.') || (c == '-') || (c == '_'))
1660 continue;
1661 return -EINVAL;
1662 }
1663 /* Specifying two names is forbidden */
1664 if (opts->name)
1665 return -EINVAL;
1666 opts->name = kstrndup(name,
e400c285 1667 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1668 GFP_KERNEL);
1669 if (!opts->name)
1670 return -ENOMEM;
32a8cf23
DL
1671
1672 continue;
1673 }
1674
30159ec7 1675 for_each_subsys(ss, i) {
3e1d2eed 1676 if (strcmp(token, ss->legacy_name))
32a8cf23 1677 continue;
fc5ed1e9 1678 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1679 continue;
1680
1681 /* Mutually exclusive option 'all' + subsystem name */
1682 if (all_ss)
1683 return -EINVAL;
69dfa00c 1684 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1685 one_ss = true;
1686
1687 break;
1688 }
1689 if (i == CGROUP_SUBSYS_COUNT)
1690 return -ENOENT;
1691 }
1692
7b9a6ba5
TH
1693 /*
1694 * If the 'all' option was specified select all the subsystems,
1695 * otherwise if 'none', 'name=' and a subsystem name options were
1696 * not specified, let's default to 'all'
1697 */
1698 if (all_ss || (!one_ss && !opts->none && !opts->name))
1699 for_each_subsys(ss, i)
fc5ed1e9 1700 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1701 opts->subsys_mask |= (1 << i);
1702
1703 /*
1704 * We either have to specify by name or by subsystems. (So all
1705 * empty hierarchies must have a name).
1706 */
1707 if (!opts->subsys_mask && !opts->name)
1708 return -EINVAL;
1709
f9ab5b5b
LZ
1710 /*
1711 * Option noprefix was introduced just for backward compatibility
1712 * with the old cpuset, so we allow noprefix only if mounting just
1713 * the cpuset subsystem.
1714 */
93438629 1715 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1716 return -EINVAL;
1717
2c6ab6d2 1718 /* Can't specify "none" and some subsystems */
a1a71b45 1719 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1720 return -EINVAL;
1721
ddbcc7e8
PM
1722 return 0;
1723}
1724
2bd59d48 1725static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1726{
1727 int ret = 0;
3dd06ffa 1728 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1729 struct cgroup_sb_opts opts;
8ab456ac 1730 unsigned long added_mask, removed_mask;
ddbcc7e8 1731
aa6ec29b
TH
1732 if (root == &cgrp_dfl_root) {
1733 pr_err("remount is not allowed\n");
873fe09e
TH
1734 return -EINVAL;
1735 }
1736
ddbcc7e8
PM
1737 mutex_lock(&cgroup_mutex);
1738
1739 /* See what subsystems are wanted */
1740 ret = parse_cgroupfs_options(data, &opts);
1741 if (ret)
1742 goto out_unlock;
1743
f392e51c 1744 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1745 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1746 task_tgid_nr(current), current->comm);
8b5a5a9d 1747
f392e51c
TH
1748 added_mask = opts.subsys_mask & ~root->subsys_mask;
1749 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1750
cf5d5941 1751 /* Don't allow flags or name to change at remount */
7450e90b 1752 if ((opts.flags ^ root->flags) ||
cf5d5941 1753 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1754 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1755 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1756 ret = -EINVAL;
1757 goto out_unlock;
1758 }
1759
f172e67c 1760 /* remounting is not allowed for populated hierarchies */
d5c419b6 1761 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1762 ret = -EBUSY;
0670e08b 1763 goto out_unlock;
cf5d5941 1764 }
ddbcc7e8 1765
5df36032 1766 ret = rebind_subsystems(root, added_mask);
3126121f 1767 if (ret)
0670e08b 1768 goto out_unlock;
ddbcc7e8 1769
3dd06ffa 1770 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1771
69e943b7
TH
1772 if (opts.release_agent) {
1773 spin_lock(&release_agent_path_lock);
81a6a5cd 1774 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1775 spin_unlock(&release_agent_path_lock);
1776 }
ddbcc7e8 1777 out_unlock:
66bdc9cf 1778 kfree(opts.release_agent);
c6d57f33 1779 kfree(opts.name);
ddbcc7e8 1780 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1781 return ret;
1782}
1783
afeb0f9f
TH
1784/*
1785 * To reduce the fork() overhead for systems that are not actually using
1786 * their cgroups capability, we don't maintain the lists running through
1787 * each css_set to its tasks until we see the list actually used - in other
1788 * words after the first mount.
1789 */
1790static bool use_task_css_set_links __read_mostly;
1791
1792static void cgroup_enable_task_cg_lists(void)
1793{
1794 struct task_struct *p, *g;
1795
f0d9a5f1 1796 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1797
1798 if (use_task_css_set_links)
1799 goto out_unlock;
1800
1801 use_task_css_set_links = true;
1802
1803 /*
1804 * We need tasklist_lock because RCU is not safe against
1805 * while_each_thread(). Besides, a forking task that has passed
1806 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1807 * is not guaranteed to have its child immediately visible in the
1808 * tasklist if we walk through it with RCU.
1809 */
1810 read_lock(&tasklist_lock);
1811 do_each_thread(g, p) {
afeb0f9f
TH
1812 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1813 task_css_set(p) != &init_css_set);
1814
1815 /*
1816 * We should check if the process is exiting, otherwise
1817 * it will race with cgroup_exit() in that the list
1818 * entry won't be deleted though the process has exited.
f153ad11
TH
1819 * Do it while holding siglock so that we don't end up
1820 * racing against cgroup_exit().
afeb0f9f 1821 */
f153ad11 1822 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1823 if (!(p->flags & PF_EXITING)) {
1824 struct css_set *cset = task_css_set(p);
1825
0de0942d
TH
1826 if (!css_set_populated(cset))
1827 css_set_update_populated(cset, true);
389b9c1b 1828 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1829 get_css_set(cset);
1830 }
f153ad11 1831 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1832 } while_each_thread(g, p);
1833 read_unlock(&tasklist_lock);
1834out_unlock:
f0d9a5f1 1835 spin_unlock_bh(&css_set_lock);
afeb0f9f 1836}
ddbcc7e8 1837
cc31edce
PM
1838static void init_cgroup_housekeeping(struct cgroup *cgrp)
1839{
2d8f243a
TH
1840 struct cgroup_subsys *ss;
1841 int ssid;
1842
d5c419b6
TH
1843 INIT_LIST_HEAD(&cgrp->self.sibling);
1844 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1845 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1846 INIT_LIST_HEAD(&cgrp->pidlists);
1847 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1848 cgrp->self.cgroup = cgrp;
184faf32 1849 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1850
1851 for_each_subsys(ss, ssid)
1852 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1853
1854 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1855 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1856}
c6d57f33 1857
3dd06ffa 1858static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1859 struct cgroup_sb_opts *opts)
ddbcc7e8 1860{
3dd06ffa 1861 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1862
ddbcc7e8 1863 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1864 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1865 cgrp->root = root;
cc31edce 1866 init_cgroup_housekeeping(cgrp);
4e96ee8e 1867 idr_init(&root->cgroup_idr);
c6d57f33 1868
c6d57f33
PM
1869 root->flags = opts->flags;
1870 if (opts->release_agent)
1871 strcpy(root->release_agent_path, opts->release_agent);
1872 if (opts->name)
1873 strcpy(root->name, opts->name);
2260e7fc 1874 if (opts->cpuset_clone_children)
3dd06ffa 1875 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1876}
1877
8ab456ac 1878static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1879{
d427dfeb 1880 LIST_HEAD(tmp_links);
3dd06ffa 1881 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1882 struct css_set *cset;
d427dfeb 1883 int i, ret;
2c6ab6d2 1884
d427dfeb 1885 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1886
cf780b7d 1887 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1888 if (ret < 0)
2bd59d48 1889 goto out;
d427dfeb 1890 root_cgrp->id = ret;
b11cfb58 1891 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1892
2aad2a86
TH
1893 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1894 GFP_KERNEL);
9d755d33
TH
1895 if (ret)
1896 goto out;
1897
d427dfeb 1898 /*
f0d9a5f1 1899 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1900 * but that's OK - it can only be increased by someone holding
1901 * cgroup_lock, and that's us. The worst that can happen is that we
1902 * have some link structures left over
1903 */
1904 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1905 if (ret)
9d755d33 1906 goto cancel_ref;
ddbcc7e8 1907
985ed670 1908 ret = cgroup_init_root_id(root);
ddbcc7e8 1909 if (ret)
9d755d33 1910 goto cancel_ref;
ddbcc7e8 1911
2bd59d48
TH
1912 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1913 KERNFS_ROOT_CREATE_DEACTIVATED,
1914 root_cgrp);
1915 if (IS_ERR(root->kf_root)) {
1916 ret = PTR_ERR(root->kf_root);
1917 goto exit_root_id;
1918 }
1919 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1920
4df8dc90 1921 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1922 if (ret)
2bd59d48 1923 goto destroy_root;
ddbcc7e8 1924
5df36032 1925 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1926 if (ret)
2bd59d48 1927 goto destroy_root;
ddbcc7e8 1928
d427dfeb
TH
1929 /*
1930 * There must be no failure case after here, since rebinding takes
1931 * care of subsystems' refcounts, which are explicitly dropped in
1932 * the failure exit path.
1933 */
1934 list_add(&root->root_list, &cgroup_roots);
1935 cgroup_root_count++;
0df6a63f 1936
d427dfeb 1937 /*
3dd06ffa 1938 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1939 * objects.
1940 */
f0d9a5f1 1941 spin_lock_bh(&css_set_lock);
0de0942d 1942 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1943 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1944 if (css_set_populated(cset))
1945 cgroup_update_populated(root_cgrp, true);
1946 }
f0d9a5f1 1947 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1948
d5c419b6 1949 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1950 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1951
2bd59d48 1952 kernfs_activate(root_cgrp->kn);
d427dfeb 1953 ret = 0;
2bd59d48 1954 goto out;
d427dfeb 1955
2bd59d48
TH
1956destroy_root:
1957 kernfs_destroy_root(root->kf_root);
1958 root->kf_root = NULL;
1959exit_root_id:
d427dfeb 1960 cgroup_exit_root_id(root);
9d755d33 1961cancel_ref:
9a1049da 1962 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1963out:
d427dfeb
TH
1964 free_cgrp_cset_links(&tmp_links);
1965 return ret;
ddbcc7e8
PM
1966}
1967
f7e83571 1968static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1969 int flags, const char *unused_dev_name,
f7e83571 1970 void *data)
ddbcc7e8 1971{
67e9c74b 1972 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 1973 struct super_block *pinned_sb = NULL;
970317aa 1974 struct cgroup_subsys *ss;
3dd06ffa 1975 struct cgroup_root *root;
ddbcc7e8 1976 struct cgroup_sb_opts opts;
2bd59d48 1977 struct dentry *dentry;
8e30e2b8 1978 int ret;
970317aa 1979 int i;
c6b3d5bc 1980 bool new_sb;
ddbcc7e8 1981
56fde9e0
TH
1982 /*
1983 * The first time anyone tries to mount a cgroup, enable the list
1984 * linking each css_set to its tasks and fix up all existing tasks.
1985 */
1986 if (!use_task_css_set_links)
1987 cgroup_enable_task_cg_lists();
e37a06f1 1988
67e9c74b
TH
1989 if (is_v2) {
1990 if (data) {
1991 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
1992 return ERR_PTR(-EINVAL);
1993 }
1994 cgrp_dfl_root_visible = true;
1995 root = &cgrp_dfl_root;
1996 cgroup_get(&root->cgrp);
1997 goto out_mount;
1998 }
1999
aae8aab4 2000 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2001
2002 /* First find the desired set of subsystems */
ddbcc7e8 2003 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2004 if (ret)
8e30e2b8 2005 goto out_unlock;
a015edd2 2006
970317aa
LZ
2007 /*
2008 * Destruction of cgroup root is asynchronous, so subsystems may
2009 * still be dying after the previous unmount. Let's drain the
2010 * dying subsystems. We just need to ensure that the ones
2011 * unmounted previously finish dying and don't care about new ones
2012 * starting. Testing ref liveliness is good enough.
2013 */
2014 for_each_subsys(ss, i) {
2015 if (!(opts.subsys_mask & (1 << i)) ||
2016 ss->root == &cgrp_dfl_root)
2017 continue;
2018
2019 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2020 mutex_unlock(&cgroup_mutex);
2021 msleep(10);
2022 ret = restart_syscall();
2023 goto out_free;
2024 }
2025 cgroup_put(&ss->root->cgrp);
2026 }
2027
985ed670 2028 for_each_root(root) {
2bd59d48 2029 bool name_match = false;
3126121f 2030
3dd06ffa 2031 if (root == &cgrp_dfl_root)
985ed670 2032 continue;
3126121f 2033
cf5d5941 2034 /*
2bd59d48
TH
2035 * If we asked for a name then it must match. Also, if
2036 * name matches but sybsys_mask doesn't, we should fail.
2037 * Remember whether name matched.
cf5d5941 2038 */
2bd59d48
TH
2039 if (opts.name) {
2040 if (strcmp(opts.name, root->name))
2041 continue;
2042 name_match = true;
2043 }
ddbcc7e8 2044
c6d57f33 2045 /*
2bd59d48
TH
2046 * If we asked for subsystems (or explicitly for no
2047 * subsystems) then they must match.
c6d57f33 2048 */
2bd59d48 2049 if ((opts.subsys_mask || opts.none) &&
f392e51c 2050 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2051 if (!name_match)
2052 continue;
2053 ret = -EBUSY;
2054 goto out_unlock;
2055 }
873fe09e 2056
7b9a6ba5
TH
2057 if (root->flags ^ opts.flags)
2058 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2059
776f02fa 2060 /*
3a32bd72
LZ
2061 * We want to reuse @root whose lifetime is governed by its
2062 * ->cgrp. Let's check whether @root is alive and keep it
2063 * that way. As cgroup_kill_sb() can happen anytime, we
2064 * want to block it by pinning the sb so that @root doesn't
2065 * get killed before mount is complete.
2066 *
2067 * With the sb pinned, tryget_live can reliably indicate
2068 * whether @root can be reused. If it's being killed,
2069 * drain it. We can use wait_queue for the wait but this
2070 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2071 */
3a32bd72
LZ
2072 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2073 if (IS_ERR(pinned_sb) ||
2074 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2075 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2076 if (!IS_ERR_OR_NULL(pinned_sb))
2077 deactivate_super(pinned_sb);
776f02fa 2078 msleep(10);
a015edd2
TH
2079 ret = restart_syscall();
2080 goto out_free;
776f02fa 2081 }
ddbcc7e8 2082
776f02fa 2083 ret = 0;
2bd59d48 2084 goto out_unlock;
ddbcc7e8 2085 }
ddbcc7e8 2086
817929ec 2087 /*
172a2c06
TH
2088 * No such thing, create a new one. name= matching without subsys
2089 * specification is allowed for already existing hierarchies but we
2090 * can't create new one without subsys specification.
817929ec 2091 */
172a2c06
TH
2092 if (!opts.subsys_mask && !opts.none) {
2093 ret = -EINVAL;
2094 goto out_unlock;
817929ec 2095 }
817929ec 2096
172a2c06
TH
2097 root = kzalloc(sizeof(*root), GFP_KERNEL);
2098 if (!root) {
2099 ret = -ENOMEM;
2bd59d48 2100 goto out_unlock;
839ec545 2101 }
e5f6a860 2102
172a2c06
TH
2103 init_cgroup_root(root, &opts);
2104
35585573 2105 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2106 if (ret)
2107 cgroup_free_root(root);
fa3ca07e 2108
8e30e2b8 2109out_unlock:
ddbcc7e8 2110 mutex_unlock(&cgroup_mutex);
a015edd2 2111out_free:
c6d57f33
PM
2112 kfree(opts.release_agent);
2113 kfree(opts.name);
03b1cde6 2114
2bd59d48 2115 if (ret)
8e30e2b8 2116 return ERR_PTR(ret);
67e9c74b 2117out_mount:
c9482a5b 2118 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2119 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2120 &new_sb);
c6b3d5bc 2121 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2122 cgroup_put(&root->cgrp);
3a32bd72
LZ
2123
2124 /*
2125 * If @pinned_sb, we're reusing an existing root and holding an
2126 * extra ref on its sb. Mount is complete. Put the extra ref.
2127 */
2128 if (pinned_sb) {
2129 WARN_ON(new_sb);
2130 deactivate_super(pinned_sb);
2131 }
2132
2bd59d48
TH
2133 return dentry;
2134}
2135
2136static void cgroup_kill_sb(struct super_block *sb)
2137{
2138 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2139 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2140
9d755d33
TH
2141 /*
2142 * If @root doesn't have any mounts or children, start killing it.
2143 * This prevents new mounts by disabling percpu_ref_tryget_live().
2144 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2145 *
2146 * And don't kill the default root.
9d755d33 2147 */
3c606d35 2148 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2149 root == &cgrp_dfl_root)
9d755d33
TH
2150 cgroup_put(&root->cgrp);
2151 else
2152 percpu_ref_kill(&root->cgrp.self.refcnt);
2153
2bd59d48 2154 kernfs_kill_sb(sb);
ddbcc7e8
PM
2155}
2156
2157static struct file_system_type cgroup_fs_type = {
2158 .name = "cgroup",
f7e83571 2159 .mount = cgroup_mount,
ddbcc7e8
PM
2160 .kill_sb = cgroup_kill_sb,
2161};
2162
67e9c74b
TH
2163static struct file_system_type cgroup2_fs_type = {
2164 .name = "cgroup2",
2165 .mount = cgroup_mount,
2166 .kill_sb = cgroup_kill_sb,
2167};
2168
857a2beb 2169/**
913ffdb5 2170 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2171 * @task: target task
857a2beb
TH
2172 * @buf: the buffer to write the path into
2173 * @buflen: the length of the buffer
2174 *
913ffdb5
TH
2175 * Determine @task's cgroup on the first (the one with the lowest non-zero
2176 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2177 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2178 * cgroup controller callbacks.
2179 *
e61734c5 2180 * Return value is the same as kernfs_path().
857a2beb 2181 */
e61734c5 2182char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2183{
3dd06ffa 2184 struct cgroup_root *root;
913ffdb5 2185 struct cgroup *cgrp;
e61734c5
TH
2186 int hierarchy_id = 1;
2187 char *path = NULL;
857a2beb
TH
2188
2189 mutex_lock(&cgroup_mutex);
f0d9a5f1 2190 spin_lock_bh(&css_set_lock);
857a2beb 2191
913ffdb5
TH
2192 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2193
857a2beb
TH
2194 if (root) {
2195 cgrp = task_cgroup_from_root(task, root);
e61734c5 2196 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2197 } else {
2198 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2199 if (strlcpy(buf, "/", buflen) < buflen)
2200 path = buf;
857a2beb
TH
2201 }
2202
f0d9a5f1 2203 spin_unlock_bh(&css_set_lock);
857a2beb 2204 mutex_unlock(&cgroup_mutex);
e61734c5 2205 return path;
857a2beb 2206}
913ffdb5 2207EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2208
b3dc094e 2209/* used to track tasks and other necessary states during migration */
2f7ee569 2210struct cgroup_taskset {
b3dc094e
TH
2211 /* the src and dst cset list running through cset->mg_node */
2212 struct list_head src_csets;
2213 struct list_head dst_csets;
2214
1f7dd3e5
TH
2215 /* the subsys currently being processed */
2216 int ssid;
2217
b3dc094e
TH
2218 /*
2219 * Fields for cgroup_taskset_*() iteration.
2220 *
2221 * Before migration is committed, the target migration tasks are on
2222 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2223 * the csets on ->dst_csets. ->csets point to either ->src_csets
2224 * or ->dst_csets depending on whether migration is committed.
2225 *
2226 * ->cur_csets and ->cur_task point to the current task position
2227 * during iteration.
2228 */
2229 struct list_head *csets;
2230 struct css_set *cur_cset;
2231 struct task_struct *cur_task;
2f7ee569
TH
2232};
2233
adaae5dc
TH
2234#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2235 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2236 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2237 .csets = &tset.src_csets, \
2238}
2239
2240/**
2241 * cgroup_taskset_add - try to add a migration target task to a taskset
2242 * @task: target task
2243 * @tset: target taskset
2244 *
2245 * Add @task, which is a migration target, to @tset. This function becomes
2246 * noop if @task doesn't need to be migrated. @task's css_set should have
2247 * been added as a migration source and @task->cg_list will be moved from
2248 * the css_set's tasks list to mg_tasks one.
2249 */
2250static void cgroup_taskset_add(struct task_struct *task,
2251 struct cgroup_taskset *tset)
2252{
2253 struct css_set *cset;
2254
f0d9a5f1 2255 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2256
2257 /* @task either already exited or can't exit until the end */
2258 if (task->flags & PF_EXITING)
2259 return;
2260
2261 /* leave @task alone if post_fork() hasn't linked it yet */
2262 if (list_empty(&task->cg_list))
2263 return;
2264
2265 cset = task_css_set(task);
2266 if (!cset->mg_src_cgrp)
2267 return;
2268
2269 list_move_tail(&task->cg_list, &cset->mg_tasks);
2270 if (list_empty(&cset->mg_node))
2271 list_add_tail(&cset->mg_node, &tset->src_csets);
2272 if (list_empty(&cset->mg_dst_cset->mg_node))
2273 list_move_tail(&cset->mg_dst_cset->mg_node,
2274 &tset->dst_csets);
2275}
2276
2f7ee569
TH
2277/**
2278 * cgroup_taskset_first - reset taskset and return the first task
2279 * @tset: taskset of interest
1f7dd3e5 2280 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2281 *
2282 * @tset iteration is initialized and the first task is returned.
2283 */
1f7dd3e5
TH
2284struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2285 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2286{
b3dc094e
TH
2287 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2288 tset->cur_task = NULL;
2289
1f7dd3e5 2290 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2291}
2f7ee569
TH
2292
2293/**
2294 * cgroup_taskset_next - iterate to the next task in taskset
2295 * @tset: taskset of interest
1f7dd3e5 2296 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2297 *
2298 * Return the next task in @tset. Iteration must have been initialized
2299 * with cgroup_taskset_first().
2300 */
1f7dd3e5
TH
2301struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2302 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2303{
b3dc094e
TH
2304 struct css_set *cset = tset->cur_cset;
2305 struct task_struct *task = tset->cur_task;
2f7ee569 2306
b3dc094e
TH
2307 while (&cset->mg_node != tset->csets) {
2308 if (!task)
2309 task = list_first_entry(&cset->mg_tasks,
2310 struct task_struct, cg_list);
2311 else
2312 task = list_next_entry(task, cg_list);
2f7ee569 2313
b3dc094e
TH
2314 if (&task->cg_list != &cset->mg_tasks) {
2315 tset->cur_cset = cset;
2316 tset->cur_task = task;
1f7dd3e5
TH
2317
2318 /*
2319 * This function may be called both before and
2320 * after cgroup_taskset_migrate(). The two cases
2321 * can be distinguished by looking at whether @cset
2322 * has its ->mg_dst_cset set.
2323 */
2324 if (cset->mg_dst_cset)
2325 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2326 else
2327 *dst_cssp = cset->subsys[tset->ssid];
2328
b3dc094e
TH
2329 return task;
2330 }
2f7ee569 2331
b3dc094e
TH
2332 cset = list_next_entry(cset, mg_node);
2333 task = NULL;
2334 }
2f7ee569 2335
b3dc094e 2336 return NULL;
2f7ee569 2337}
2f7ee569 2338
adaae5dc
TH
2339/**
2340 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2341 * @tset: taget taskset
2342 * @dst_cgrp: destination cgroup
2343 *
2344 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2345 * ->can_attach callbacks fails and guarantees that either all or none of
2346 * the tasks in @tset are migrated. @tset is consumed regardless of
2347 * success.
2348 */
2349static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2350 struct cgroup *dst_cgrp)
2351{
2352 struct cgroup_subsys_state *css, *failed_css = NULL;
2353 struct task_struct *task, *tmp_task;
2354 struct css_set *cset, *tmp_cset;
2355 int i, ret;
2356
2357 /* methods shouldn't be called if no task is actually migrating */
2358 if (list_empty(&tset->src_csets))
2359 return 0;
2360
2361 /* check that we can legitimately attach to the cgroup */
2362 for_each_e_css(css, i, dst_cgrp) {
2363 if (css->ss->can_attach) {
1f7dd3e5
TH
2364 tset->ssid = i;
2365 ret = css->ss->can_attach(tset);
adaae5dc
TH
2366 if (ret) {
2367 failed_css = css;
2368 goto out_cancel_attach;
2369 }
2370 }
2371 }
2372
2373 /*
2374 * Now that we're guaranteed success, proceed to move all tasks to
2375 * the new cgroup. There are no failure cases after here, so this
2376 * is the commit point.
2377 */
f0d9a5f1 2378 spin_lock_bh(&css_set_lock);
adaae5dc 2379 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2380 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2381 struct css_set *from_cset = task_css_set(task);
2382 struct css_set *to_cset = cset->mg_dst_cset;
2383
2384 get_css_set(to_cset);
2385 css_set_move_task(task, from_cset, to_cset, true);
2386 put_css_set_locked(from_cset);
2387 }
adaae5dc 2388 }
f0d9a5f1 2389 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2390
2391 /*
2392 * Migration is committed, all target tasks are now on dst_csets.
2393 * Nothing is sensitive to fork() after this point. Notify
2394 * controllers that migration is complete.
2395 */
2396 tset->csets = &tset->dst_csets;
2397
1f7dd3e5
TH
2398 for_each_e_css(css, i, dst_cgrp) {
2399 if (css->ss->attach) {
2400 tset->ssid = i;
2401 css->ss->attach(tset);
2402 }
2403 }
adaae5dc
TH
2404
2405 ret = 0;
2406 goto out_release_tset;
2407
2408out_cancel_attach:
2409 for_each_e_css(css, i, dst_cgrp) {
2410 if (css == failed_css)
2411 break;
1f7dd3e5
TH
2412 if (css->ss->cancel_attach) {
2413 tset->ssid = i;
2414 css->ss->cancel_attach(tset);
2415 }
adaae5dc
TH
2416 }
2417out_release_tset:
f0d9a5f1 2418 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2419 list_splice_init(&tset->dst_csets, &tset->src_csets);
2420 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2421 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2422 list_del_init(&cset->mg_node);
2423 }
f0d9a5f1 2424 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2425 return ret;
2426}
2427
a043e3b2 2428/**
1958d2d5
TH
2429 * cgroup_migrate_finish - cleanup after attach
2430 * @preloaded_csets: list of preloaded css_sets
74a1166d 2431 *
1958d2d5
TH
2432 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2433 * those functions for details.
74a1166d 2434 */
1958d2d5 2435static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2436{
1958d2d5 2437 struct css_set *cset, *tmp_cset;
74a1166d 2438
1958d2d5
TH
2439 lockdep_assert_held(&cgroup_mutex);
2440
f0d9a5f1 2441 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2442 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2443 cset->mg_src_cgrp = NULL;
2444 cset->mg_dst_cset = NULL;
2445 list_del_init(&cset->mg_preload_node);
a25eb52e 2446 put_css_set_locked(cset);
1958d2d5 2447 }
f0d9a5f1 2448 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2449}
2450
2451/**
2452 * cgroup_migrate_add_src - add a migration source css_set
2453 * @src_cset: the source css_set to add
2454 * @dst_cgrp: the destination cgroup
2455 * @preloaded_csets: list of preloaded css_sets
2456 *
2457 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2458 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2459 * up by cgroup_migrate_finish().
2460 *
1ed13287
TH
2461 * This function may be called without holding cgroup_threadgroup_rwsem
2462 * even if the target is a process. Threads may be created and destroyed
2463 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2464 * into play and the preloaded css_sets are guaranteed to cover all
2465 * migrations.
1958d2d5
TH
2466 */
2467static void cgroup_migrate_add_src(struct css_set *src_cset,
2468 struct cgroup *dst_cgrp,
2469 struct list_head *preloaded_csets)
2470{
2471 struct cgroup *src_cgrp;
2472
2473 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2474 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2475
2476 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2477
1958d2d5
TH
2478 if (!list_empty(&src_cset->mg_preload_node))
2479 return;
2480
2481 WARN_ON(src_cset->mg_src_cgrp);
2482 WARN_ON(!list_empty(&src_cset->mg_tasks));
2483 WARN_ON(!list_empty(&src_cset->mg_node));
2484
2485 src_cset->mg_src_cgrp = src_cgrp;
2486 get_css_set(src_cset);
2487 list_add(&src_cset->mg_preload_node, preloaded_csets);
2488}
2489
2490/**
2491 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2492 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2493 * @preloaded_csets: list of preloaded source css_sets
2494 *
2495 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2496 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2497 * pins all destination css_sets, links each to its source, and append them
2498 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2499 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2500 *
2501 * This function must be called after cgroup_migrate_add_src() has been
2502 * called on each migration source css_set. After migration is performed
2503 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2504 * @preloaded_csets.
2505 */
2506static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2507 struct list_head *preloaded_csets)
2508{
2509 LIST_HEAD(csets);
f817de98 2510 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2511
2512 lockdep_assert_held(&cgroup_mutex);
2513
f8f22e53
TH
2514 /*
2515 * Except for the root, child_subsys_mask must be zero for a cgroup
2516 * with tasks so that child cgroups don't compete against tasks.
2517 */
d51f39b0 2518 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2519 dst_cgrp->child_subsys_mask)
2520 return -EBUSY;
2521
1958d2d5 2522 /* look up the dst cset for each src cset and link it to src */
f817de98 2523 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2524 struct css_set *dst_cset;
2525
f817de98
TH
2526 dst_cset = find_css_set(src_cset,
2527 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2528 if (!dst_cset)
2529 goto err;
2530
2531 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2532
2533 /*
2534 * If src cset equals dst, it's noop. Drop the src.
2535 * cgroup_migrate() will skip the cset too. Note that we
2536 * can't handle src == dst as some nodes are used by both.
2537 */
2538 if (src_cset == dst_cset) {
2539 src_cset->mg_src_cgrp = NULL;
2540 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2541 put_css_set(src_cset);
2542 put_css_set(dst_cset);
f817de98
TH
2543 continue;
2544 }
2545
1958d2d5
TH
2546 src_cset->mg_dst_cset = dst_cset;
2547
2548 if (list_empty(&dst_cset->mg_preload_node))
2549 list_add(&dst_cset->mg_preload_node, &csets);
2550 else
a25eb52e 2551 put_css_set(dst_cset);
1958d2d5
TH
2552 }
2553
f817de98 2554 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2555 return 0;
2556err:
2557 cgroup_migrate_finish(&csets);
2558 return -ENOMEM;
2559}
2560
2561/**
2562 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2563 * @leader: the leader of the process or the task to migrate
2564 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2565 * @cgrp: the destination cgroup
1958d2d5
TH
2566 *
2567 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2568 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2569 * caller is also responsible for invoking cgroup_migrate_add_src() and
2570 * cgroup_migrate_prepare_dst() on the targets before invoking this
2571 * function and following up with cgroup_migrate_finish().
2572 *
2573 * As long as a controller's ->can_attach() doesn't fail, this function is
2574 * guaranteed to succeed. This means that, excluding ->can_attach()
2575 * failure, when migrating multiple targets, the success or failure can be
2576 * decided for all targets by invoking group_migrate_prepare_dst() before
2577 * actually starting migrating.
2578 */
9af2ec45
TH
2579static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2580 struct cgroup *cgrp)
74a1166d 2581{
adaae5dc
TH
2582 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2583 struct task_struct *task;
74a1166d 2584
fb5d2b4c
MSB
2585 /*
2586 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2587 * already PF_EXITING could be freed from underneath us unless we
2588 * take an rcu_read_lock.
2589 */
f0d9a5f1 2590 spin_lock_bh(&css_set_lock);
fb5d2b4c 2591 rcu_read_lock();
9db8de37 2592 task = leader;
74a1166d 2593 do {
adaae5dc 2594 cgroup_taskset_add(task, &tset);
081aa458
LZ
2595 if (!threadgroup)
2596 break;
9db8de37 2597 } while_each_thread(leader, task);
fb5d2b4c 2598 rcu_read_unlock();
f0d9a5f1 2599 spin_unlock_bh(&css_set_lock);
74a1166d 2600
adaae5dc 2601 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2602}
2603
1958d2d5
TH
2604/**
2605 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2606 * @dst_cgrp: the cgroup to attach to
2607 * @leader: the task or the leader of the threadgroup to be attached
2608 * @threadgroup: attach the whole threadgroup?
2609 *
1ed13287 2610 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2611 */
2612static int cgroup_attach_task(struct cgroup *dst_cgrp,
2613 struct task_struct *leader, bool threadgroup)
2614{
2615 LIST_HEAD(preloaded_csets);
2616 struct task_struct *task;
2617 int ret;
2618
2619 /* look up all src csets */
f0d9a5f1 2620 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2621 rcu_read_lock();
2622 task = leader;
2623 do {
2624 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2625 &preloaded_csets);
2626 if (!threadgroup)
2627 break;
2628 } while_each_thread(leader, task);
2629 rcu_read_unlock();
f0d9a5f1 2630 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2631
2632 /* prepare dst csets and commit */
2633 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2634 if (!ret)
9af2ec45 2635 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2636
2637 cgroup_migrate_finish(&preloaded_csets);
2638 return ret;
74a1166d
BB
2639}
2640
187fe840
TH
2641static int cgroup_procs_write_permission(struct task_struct *task,
2642 struct cgroup *dst_cgrp,
2643 struct kernfs_open_file *of)
dedf22e9
TH
2644{
2645 const struct cred *cred = current_cred();
2646 const struct cred *tcred = get_task_cred(task);
2647 int ret = 0;
2648
2649 /*
2650 * even if we're attaching all tasks in the thread group, we only
2651 * need to check permissions on one of them.
2652 */
2653 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2654 !uid_eq(cred->euid, tcred->uid) &&
2655 !uid_eq(cred->euid, tcred->suid))
2656 ret = -EACCES;
2657
187fe840
TH
2658 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2659 struct super_block *sb = of->file->f_path.dentry->d_sb;
2660 struct cgroup *cgrp;
2661 struct inode *inode;
2662
f0d9a5f1 2663 spin_lock_bh(&css_set_lock);
187fe840 2664 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2665 spin_unlock_bh(&css_set_lock);
187fe840
TH
2666
2667 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2668 cgrp = cgroup_parent(cgrp);
2669
2670 ret = -ENOMEM;
6f60eade 2671 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2672 if (inode) {
2673 ret = inode_permission(inode, MAY_WRITE);
2674 iput(inode);
2675 }
2676 }
2677
dedf22e9
TH
2678 put_cred(tcred);
2679 return ret;
2680}
2681
74a1166d
BB
2682/*
2683 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2684 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2685 * cgroup_mutex and threadgroup.
bbcb81d0 2686 */
acbef755
TH
2687static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2688 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2689{
bbcb81d0 2690 struct task_struct *tsk;
e76ecaee 2691 struct cgroup *cgrp;
acbef755 2692 pid_t pid;
bbcb81d0
PM
2693 int ret;
2694
acbef755
TH
2695 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2696 return -EINVAL;
2697
e76ecaee
TH
2698 cgrp = cgroup_kn_lock_live(of->kn);
2699 if (!cgrp)
74a1166d
BB
2700 return -ENODEV;
2701
3014dde7 2702 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2703 rcu_read_lock();
bbcb81d0 2704 if (pid) {
73507f33 2705 tsk = find_task_by_vpid(pid);
74a1166d 2706 if (!tsk) {
dd4b0a46 2707 ret = -ESRCH;
3014dde7 2708 goto out_unlock_rcu;
bbcb81d0 2709 }
dedf22e9 2710 } else {
b78949eb 2711 tsk = current;
dedf22e9 2712 }
cd3d0952
TH
2713
2714 if (threadgroup)
b78949eb 2715 tsk = tsk->group_leader;
c4c27fbd
MG
2716
2717 /*
14a40ffc 2718 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2719 * trapped in a cpuset, or RT worker may be born in a cgroup
2720 * with no rt_runtime allocated. Just say no.
2721 */
14a40ffc 2722 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2723 ret = -EINVAL;
3014dde7 2724 goto out_unlock_rcu;
c4c27fbd
MG
2725 }
2726
b78949eb
MSB
2727 get_task_struct(tsk);
2728 rcu_read_unlock();
2729
187fe840 2730 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2731 if (!ret)
2732 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2733
f9f9e7b7 2734 put_task_struct(tsk);
3014dde7
TH
2735 goto out_unlock_threadgroup;
2736
2737out_unlock_rcu:
2738 rcu_read_unlock();
2739out_unlock_threadgroup:
2740 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2741 cgroup_kn_unlock(of->kn);
acbef755 2742 return ret ?: nbytes;
bbcb81d0
PM
2743}
2744
7ae1bad9
TH
2745/**
2746 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2747 * @from: attach to all cgroups of a given task
2748 * @tsk: the task to be attached
2749 */
2750int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2751{
3dd06ffa 2752 struct cgroup_root *root;
7ae1bad9
TH
2753 int retval = 0;
2754
47cfcd09 2755 mutex_lock(&cgroup_mutex);
985ed670 2756 for_each_root(root) {
96d365e0
TH
2757 struct cgroup *from_cgrp;
2758
3dd06ffa 2759 if (root == &cgrp_dfl_root)
985ed670
TH
2760 continue;
2761
f0d9a5f1 2762 spin_lock_bh(&css_set_lock);
96d365e0 2763 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2764 spin_unlock_bh(&css_set_lock);
7ae1bad9 2765
6f4b7e63 2766 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2767 if (retval)
2768 break;
2769 }
47cfcd09 2770 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2771
2772 return retval;
2773}
2774EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2775
acbef755
TH
2776static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2777 char *buf, size_t nbytes, loff_t off)
74a1166d 2778{
acbef755 2779 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2780}
2781
acbef755
TH
2782static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2783 char *buf, size_t nbytes, loff_t off)
af351026 2784{
acbef755 2785 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2786}
2787
451af504
TH
2788static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2789 char *buf, size_t nbytes, loff_t off)
e788e066 2790{
e76ecaee 2791 struct cgroup *cgrp;
5f469907 2792
e76ecaee 2793 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2794
e76ecaee
TH
2795 cgrp = cgroup_kn_lock_live(of->kn);
2796 if (!cgrp)
e788e066 2797 return -ENODEV;
69e943b7 2798 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2799 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2800 sizeof(cgrp->root->release_agent_path));
69e943b7 2801 spin_unlock(&release_agent_path_lock);
e76ecaee 2802 cgroup_kn_unlock(of->kn);
451af504 2803 return nbytes;
e788e066
PM
2804}
2805
2da8ca82 2806static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2807{
2da8ca82 2808 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2809
46cfeb04 2810 spin_lock(&release_agent_path_lock);
e788e066 2811 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2812 spin_unlock(&release_agent_path_lock);
e788e066 2813 seq_putc(seq, '\n');
e788e066
PM
2814 return 0;
2815}
2816
2da8ca82 2817static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2818{
c1d5d42e 2819 seq_puts(seq, "0\n");
e788e066
PM
2820 return 0;
2821}
2822
8ab456ac 2823static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2824{
f8f22e53
TH
2825 struct cgroup_subsys *ss;
2826 bool printed = false;
2827 int ssid;
a742c59d 2828
a966a4ed
AS
2829 for_each_subsys_which(ss, ssid, &ss_mask) {
2830 if (printed)
2831 seq_putc(seq, ' ');
2832 seq_printf(seq, "%s", ss->name);
2833 printed = true;
e73d2c61 2834 }
f8f22e53
TH
2835 if (printed)
2836 seq_putc(seq, '\n');
355e0c48
PM
2837}
2838
f8f22e53
TH
2839/* show controllers which are currently attached to the default hierarchy */
2840static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2841{
f8f22e53
TH
2842 struct cgroup *cgrp = seq_css(seq)->cgroup;
2843
5533e011
TH
2844 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2845 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2846 return 0;
db3b1497
PM
2847}
2848
f8f22e53
TH
2849/* show controllers which are enabled from the parent */
2850static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2851{
f8f22e53
TH
2852 struct cgroup *cgrp = seq_css(seq)->cgroup;
2853
667c2491 2854 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2855 return 0;
ddbcc7e8
PM
2856}
2857
f8f22e53
TH
2858/* show controllers which are enabled for a given cgroup's children */
2859static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2860{
f8f22e53
TH
2861 struct cgroup *cgrp = seq_css(seq)->cgroup;
2862
667c2491 2863 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2864 return 0;
2865}
2866
2867/**
2868 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2869 * @cgrp: root of the subtree to update csses for
2870 *
2871 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2872 * css associations need to be updated accordingly. This function looks up
2873 * all css_sets which are attached to the subtree, creates the matching
2874 * updated css_sets and migrates the tasks to the new ones.
2875 */
2876static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2877{
2878 LIST_HEAD(preloaded_csets);
10265075 2879 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2880 struct cgroup_subsys_state *css;
2881 struct css_set *src_cset;
2882 int ret;
2883
f8f22e53
TH
2884 lockdep_assert_held(&cgroup_mutex);
2885
3014dde7
TH
2886 percpu_down_write(&cgroup_threadgroup_rwsem);
2887
f8f22e53 2888 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2889 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2890 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2891 struct cgrp_cset_link *link;
2892
2893 /* self is not affected by child_subsys_mask change */
2894 if (css->cgroup == cgrp)
2895 continue;
2896
2897 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2898 cgroup_migrate_add_src(link->cset, cgrp,
2899 &preloaded_csets);
2900 }
f0d9a5f1 2901 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2902
2903 /* NULL dst indicates self on default hierarchy */
2904 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2905 if (ret)
2906 goto out_finish;
2907
f0d9a5f1 2908 spin_lock_bh(&css_set_lock);
f8f22e53 2909 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2910 struct task_struct *task, *ntask;
f8f22e53
TH
2911
2912 /* src_csets precede dst_csets, break on the first dst_cset */
2913 if (!src_cset->mg_src_cgrp)
2914 break;
2915
10265075
TH
2916 /* all tasks in src_csets need to be migrated */
2917 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2918 cgroup_taskset_add(task, &tset);
f8f22e53 2919 }
f0d9a5f1 2920 spin_unlock_bh(&css_set_lock);
f8f22e53 2921
10265075 2922 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2923out_finish:
2924 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2925 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2926 return ret;
2927}
2928
2929/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2930static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2931 char *buf, size_t nbytes,
2932 loff_t off)
f8f22e53 2933{
8ab456ac
AS
2934 unsigned long enable = 0, disable = 0;
2935 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2936 struct cgroup *cgrp, *child;
f8f22e53 2937 struct cgroup_subsys *ss;
451af504 2938 char *tok;
f8f22e53
TH
2939 int ssid, ret;
2940
2941 /*
d37167ab
TH
2942 * Parse input - space separated list of subsystem names prefixed
2943 * with either + or -.
f8f22e53 2944 */
451af504
TH
2945 buf = strstrip(buf);
2946 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2947 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2948
d37167ab
TH
2949 if (tok[0] == '\0')
2950 continue;
a966a4ed 2951 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2952 if (!cgroup_ssid_enabled(ssid) ||
2953 strcmp(tok + 1, ss->name))
f8f22e53
TH
2954 continue;
2955
2956 if (*tok == '+') {
7d331fa9
TH
2957 enable |= 1 << ssid;
2958 disable &= ~(1 << ssid);
f8f22e53 2959 } else if (*tok == '-') {
7d331fa9
TH
2960 disable |= 1 << ssid;
2961 enable &= ~(1 << ssid);
f8f22e53
TH
2962 } else {
2963 return -EINVAL;
2964 }
2965 break;
2966 }
2967 if (ssid == CGROUP_SUBSYS_COUNT)
2968 return -EINVAL;
2969 }
2970
a9746d8d
TH
2971 cgrp = cgroup_kn_lock_live(of->kn);
2972 if (!cgrp)
2973 return -ENODEV;
f8f22e53
TH
2974
2975 for_each_subsys(ss, ssid) {
2976 if (enable & (1 << ssid)) {
667c2491 2977 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2978 enable &= ~(1 << ssid);
2979 continue;
2980 }
2981
c29adf24
TH
2982 /* unavailable or not enabled on the parent? */
2983 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2984 (cgroup_parent(cgrp) &&
667c2491 2985 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2986 ret = -ENOENT;
2987 goto out_unlock;
2988 }
f8f22e53 2989 } else if (disable & (1 << ssid)) {
667c2491 2990 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2991 disable &= ~(1 << ssid);
2992 continue;
2993 }
2994
2995 /* a child has it enabled? */
2996 cgroup_for_each_live_child(child, cgrp) {
667c2491 2997 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2998 ret = -EBUSY;
ddab2b6e 2999 goto out_unlock;
f8f22e53
TH
3000 }
3001 }
3002 }
3003 }
3004
3005 if (!enable && !disable) {
3006 ret = 0;
ddab2b6e 3007 goto out_unlock;
f8f22e53
TH
3008 }
3009
3010 /*
667c2491 3011 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3012 * with tasks so that child cgroups don't compete against tasks.
3013 */
d51f39b0 3014 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3015 ret = -EBUSY;
3016 goto out_unlock;
3017 }
3018
3019 /*
f63070d3
TH
3020 * Update subsys masks and calculate what needs to be done. More
3021 * subsystems than specified may need to be enabled or disabled
3022 * depending on subsystem dependencies.
3023 */
755bf5ee
TH
3024 old_sc = cgrp->subtree_control;
3025 old_ss = cgrp->child_subsys_mask;
3026 new_sc = (old_sc | enable) & ~disable;
3027 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3028
755bf5ee
TH
3029 css_enable = ~old_ss & new_ss;
3030 css_disable = old_ss & ~new_ss;
f63070d3
TH
3031 enable |= css_enable;
3032 disable |= css_disable;
c29adf24 3033
db6e3053
TH
3034 /*
3035 * Because css offlining is asynchronous, userland might try to
3036 * re-enable the same controller while the previous instance is
3037 * still around. In such cases, wait till it's gone using
3038 * offline_waitq.
3039 */
a966a4ed 3040 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3041 cgroup_for_each_live_child(child, cgrp) {
3042 DEFINE_WAIT(wait);
3043
3044 if (!cgroup_css(child, ss))
3045 continue;
3046
3047 cgroup_get(child);
3048 prepare_to_wait(&child->offline_waitq, &wait,
3049 TASK_UNINTERRUPTIBLE);
3050 cgroup_kn_unlock(of->kn);
3051 schedule();
3052 finish_wait(&child->offline_waitq, &wait);
3053 cgroup_put(child);
3054
3055 return restart_syscall();
3056 }
3057 }
3058
755bf5ee
TH
3059 cgrp->subtree_control = new_sc;
3060 cgrp->child_subsys_mask = new_ss;
3061
f63070d3
TH
3062 /*
3063 * Create new csses or make the existing ones visible. A css is
3064 * created invisible if it's being implicitly enabled through
3065 * dependency. An invisible css is made visible when the userland
3066 * explicitly enables it.
f8f22e53
TH
3067 */
3068 for_each_subsys(ss, ssid) {
3069 if (!(enable & (1 << ssid)))
3070 continue;
3071
3072 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3073 if (css_enable & (1 << ssid))
3074 ret = create_css(child, ss,
3075 cgrp->subtree_control & (1 << ssid));
3076 else
4df8dc90
TH
3077 ret = css_populate_dir(cgroup_css(child, ss),
3078 NULL);
f8f22e53
TH
3079 if (ret)
3080 goto err_undo_css;
3081 }
3082 }
3083
c29adf24
TH
3084 /*
3085 * At this point, cgroup_e_css() results reflect the new csses
3086 * making the following cgroup_update_dfl_csses() properly update
3087 * css associations of all tasks in the subtree.
3088 */
f8f22e53
TH
3089 ret = cgroup_update_dfl_csses(cgrp);
3090 if (ret)
3091 goto err_undo_css;
3092
f63070d3
TH
3093 /*
3094 * All tasks are migrated out of disabled csses. Kill or hide
3095 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3096 * disabled while other subsystems are still depending on it. The
3097 * css must not actively control resources and be in the vanilla
3098 * state if it's made visible again later. Controllers which may
3099 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3100 */
f8f22e53
TH
3101 for_each_subsys(ss, ssid) {
3102 if (!(disable & (1 << ssid)))
3103 continue;
3104
f63070d3 3105 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3106 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3107
3108 if (css_disable & (1 << ssid)) {
3109 kill_css(css);
3110 } else {
4df8dc90 3111 css_clear_dir(css, NULL);
b4536f0c
TH
3112 if (ss->css_reset)
3113 ss->css_reset(css);
3114 }
f63070d3 3115 }
f8f22e53
TH
3116 }
3117
56c807ba
TH
3118 /*
3119 * The effective csses of all the descendants (excluding @cgrp) may
3120 * have changed. Subsystems can optionally subscribe to this event
3121 * by implementing ->css_e_css_changed() which is invoked if any of
3122 * the effective csses seen from the css's cgroup may have changed.
3123 */
3124 for_each_subsys(ss, ssid) {
3125 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3126 struct cgroup_subsys_state *css;
3127
3128 if (!ss->css_e_css_changed || !this_css)
3129 continue;
3130
3131 css_for_each_descendant_pre(css, this_css)
3132 if (css != this_css)
3133 ss->css_e_css_changed(css);
3134 }
3135
f8f22e53
TH
3136 kernfs_activate(cgrp->kn);
3137 ret = 0;
3138out_unlock:
a9746d8d 3139 cgroup_kn_unlock(of->kn);
451af504 3140 return ret ?: nbytes;
f8f22e53
TH
3141
3142err_undo_css:
755bf5ee
TH
3143 cgrp->subtree_control = old_sc;
3144 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3145
3146 for_each_subsys(ss, ssid) {
3147 if (!(enable & (1 << ssid)))
3148 continue;
3149
3150 cgroup_for_each_live_child(child, cgrp) {
3151 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3152
3153 if (!css)
3154 continue;
3155
3156 if (css_enable & (1 << ssid))
f8f22e53 3157 kill_css(css);
f63070d3 3158 else
4df8dc90 3159 css_clear_dir(css, NULL);
f8f22e53
TH
3160 }
3161 }
3162 goto out_unlock;
3163}
3164
4a07c222 3165static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3166{
4a07c222 3167 seq_printf(seq, "populated %d\n",
27bd4dbb 3168 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3169 return 0;
3170}
3171
2bd59d48
TH
3172static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3173 size_t nbytes, loff_t off)
355e0c48 3174{
2bd59d48
TH
3175 struct cgroup *cgrp = of->kn->parent->priv;
3176 struct cftype *cft = of->kn->priv;
3177 struct cgroup_subsys_state *css;
a742c59d 3178 int ret;
355e0c48 3179
b4168640
TH
3180 if (cft->write)
3181 return cft->write(of, buf, nbytes, off);
3182
2bd59d48
TH
3183 /*
3184 * kernfs guarantees that a file isn't deleted with operations in
3185 * flight, which means that the matching css is and stays alive and
3186 * doesn't need to be pinned. The RCU locking is not necessary
3187 * either. It's just for the convenience of using cgroup_css().
3188 */
3189 rcu_read_lock();
3190 css = cgroup_css(cgrp, cft->ss);
3191 rcu_read_unlock();
a742c59d 3192
451af504 3193 if (cft->write_u64) {
a742c59d
TH
3194 unsigned long long v;
3195 ret = kstrtoull(buf, 0, &v);
3196 if (!ret)
3197 ret = cft->write_u64(css, cft, v);
3198 } else if (cft->write_s64) {
3199 long long v;
3200 ret = kstrtoll(buf, 0, &v);
3201 if (!ret)
3202 ret = cft->write_s64(css, cft, v);
e73d2c61 3203 } else {
a742c59d 3204 ret = -EINVAL;
e73d2c61 3205 }
2bd59d48 3206
a742c59d 3207 return ret ?: nbytes;
355e0c48
PM
3208}
3209
6612f05b 3210static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3211{
2bd59d48 3212 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3213}
3214
6612f05b 3215static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3216{
2bd59d48 3217 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3218}
3219
6612f05b 3220static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3221{
2bd59d48 3222 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3223}
3224
91796569 3225static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3226{
7da11279
TH
3227 struct cftype *cft = seq_cft(m);
3228 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3229
2da8ca82
TH
3230 if (cft->seq_show)
3231 return cft->seq_show(m, arg);
e73d2c61 3232
f4c753b7 3233 if (cft->read_u64)
896f5199
TH
3234 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3235 else if (cft->read_s64)
3236 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3237 else
3238 return -EINVAL;
3239 return 0;
91796569
PM
3240}
3241
2bd59d48
TH
3242static struct kernfs_ops cgroup_kf_single_ops = {
3243 .atomic_write_len = PAGE_SIZE,
3244 .write = cgroup_file_write,
3245 .seq_show = cgroup_seqfile_show,
91796569
PM
3246};
3247
2bd59d48
TH
3248static struct kernfs_ops cgroup_kf_ops = {
3249 .atomic_write_len = PAGE_SIZE,
3250 .write = cgroup_file_write,
3251 .seq_start = cgroup_seqfile_start,
3252 .seq_next = cgroup_seqfile_next,
3253 .seq_stop = cgroup_seqfile_stop,
3254 .seq_show = cgroup_seqfile_show,
3255};
ddbcc7e8
PM
3256
3257/*
3258 * cgroup_rename - Only allow simple rename of directories in place.
3259 */
2bd59d48
TH
3260static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3261 const char *new_name_str)
ddbcc7e8 3262{
2bd59d48 3263 struct cgroup *cgrp = kn->priv;
65dff759 3264 int ret;
65dff759 3265
2bd59d48 3266 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3267 return -ENOTDIR;
2bd59d48 3268 if (kn->parent != new_parent)
ddbcc7e8 3269 return -EIO;
65dff759 3270
6db8e85c
TH
3271 /*
3272 * This isn't a proper migration and its usefulness is very
aa6ec29b 3273 * limited. Disallow on the default hierarchy.
6db8e85c 3274 */
aa6ec29b 3275 if (cgroup_on_dfl(cgrp))
6db8e85c 3276 return -EPERM;
099fca32 3277
e1b2dc17 3278 /*
8353da1f 3279 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3280 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3281 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3282 */
3283 kernfs_break_active_protection(new_parent);
3284 kernfs_break_active_protection(kn);
099fca32 3285
2bd59d48 3286 mutex_lock(&cgroup_mutex);
099fca32 3287
2bd59d48 3288 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3289
2bd59d48 3290 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3291
3292 kernfs_unbreak_active_protection(kn);
3293 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3294 return ret;
099fca32
LZ
3295}
3296
49957f8e
TH
3297/* set uid and gid of cgroup dirs and files to that of the creator */
3298static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3299{
3300 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3301 .ia_uid = current_fsuid(),
3302 .ia_gid = current_fsgid(), };
3303
3304 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3305 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3306 return 0;
3307
3308 return kernfs_setattr(kn, &iattr);
3309}
3310
4df8dc90
TH
3311static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3312 struct cftype *cft)
ddbcc7e8 3313{
8d7e6fb0 3314 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3315 struct kernfs_node *kn;
3316 struct lock_class_key *key = NULL;
49957f8e 3317 int ret;
05ef1d7c 3318
2bd59d48
TH
3319#ifdef CONFIG_DEBUG_LOCK_ALLOC
3320 key = &cft->lockdep_key;
3321#endif
3322 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3323 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3324 NULL, key);
49957f8e
TH
3325 if (IS_ERR(kn))
3326 return PTR_ERR(kn);
3327
3328 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3329 if (ret) {
49957f8e 3330 kernfs_remove(kn);
f8f22e53
TH
3331 return ret;
3332 }
3333
6f60eade
TH
3334 if (cft->file_offset) {
3335 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3336
34c06254 3337 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3338 cfile->kn = kn;
34c06254 3339 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3340 }
3341
f8f22e53 3342 return 0;
ddbcc7e8
PM
3343}
3344
b1f28d31
TH
3345/**
3346 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3347 * @css: the target css
3348 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3349 * @cfts: array of cftypes to be added
3350 * @is_add: whether to add or remove
3351 *
3352 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3353 * For removals, this function never fails.
b1f28d31 3354 */
4df8dc90
TH
3355static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3356 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3357 bool is_add)
ddbcc7e8 3358{
6732ed85 3359 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3360 int ret;
3361
01f6474c 3362 lockdep_assert_held(&cgroup_mutex);
db0416b6 3363
6732ed85
TH
3364restart:
3365 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3366 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3367 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3368 continue;
05ebb6e6 3369 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3370 continue;
d51f39b0 3371 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3372 continue;
d51f39b0 3373 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3374 continue;
3375
2739d3cc 3376 if (is_add) {
4df8dc90 3377 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3378 if (ret) {
ed3d261b
JP
3379 pr_warn("%s: failed to add %s, err=%d\n",
3380 __func__, cft->name, ret);
6732ed85
TH
3381 cft_end = cft;
3382 is_add = false;
3383 goto restart;
b1f28d31 3384 }
2739d3cc
LZ
3385 } else {
3386 cgroup_rm_file(cgrp, cft);
db0416b6 3387 }
ddbcc7e8 3388 }
b1f28d31 3389 return 0;
ddbcc7e8
PM
3390}
3391
21a2d343 3392static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3393{
3394 LIST_HEAD(pending);
2bb566cb 3395 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3396 struct cgroup *root = &ss->root->cgrp;
492eb21b 3397 struct cgroup_subsys_state *css;
9ccece80 3398 int ret = 0;
8e3f6541 3399
01f6474c 3400 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3401
e8c82d20 3402 /* add/rm files for all cgroups created before */
ca8bdcaf 3403 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3404 struct cgroup *cgrp = css->cgroup;
3405
e8c82d20
LZ
3406 if (cgroup_is_dead(cgrp))
3407 continue;
3408
4df8dc90 3409 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3410 if (ret)
3411 break;
8e3f6541 3412 }
21a2d343
TH
3413
3414 if (is_add && !ret)
3415 kernfs_activate(root->kn);
9ccece80 3416 return ret;
8e3f6541
TH
3417}
3418
2da440a2 3419static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3420{
2bb566cb 3421 struct cftype *cft;
8e3f6541 3422
2bd59d48
TH
3423 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3424 /* free copy for custom atomic_write_len, see init_cftypes() */
3425 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3426 kfree(cft->kf_ops);
3427 cft->kf_ops = NULL;
2da440a2 3428 cft->ss = NULL;
a8ddc821
TH
3429
3430 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3431 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3432 }
2da440a2
TH
3433}
3434
2bd59d48 3435static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3436{
3437 struct cftype *cft;
3438
2bd59d48
TH
3439 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3440 struct kernfs_ops *kf_ops;
3441
0adb0704
TH
3442 WARN_ON(cft->ss || cft->kf_ops);
3443
2bd59d48
TH
3444 if (cft->seq_start)
3445 kf_ops = &cgroup_kf_ops;
3446 else
3447 kf_ops = &cgroup_kf_single_ops;
3448
3449 /*
3450 * Ugh... if @cft wants a custom max_write_len, we need to
3451 * make a copy of kf_ops to set its atomic_write_len.
3452 */
3453 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3454 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3455 if (!kf_ops) {
3456 cgroup_exit_cftypes(cfts);
3457 return -ENOMEM;
3458 }
3459 kf_ops->atomic_write_len = cft->max_write_len;
3460 }
8e3f6541 3461
2bd59d48 3462 cft->kf_ops = kf_ops;
2bb566cb 3463 cft->ss = ss;
2bd59d48 3464 }
2bb566cb 3465
2bd59d48 3466 return 0;
2da440a2
TH
3467}
3468
21a2d343
TH
3469static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3470{
01f6474c 3471 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3472
3473 if (!cfts || !cfts[0].ss)
3474 return -ENOENT;
3475
3476 list_del(&cfts->node);
3477 cgroup_apply_cftypes(cfts, false);
3478 cgroup_exit_cftypes(cfts);
3479 return 0;
8e3f6541 3480}
8e3f6541 3481
79578621
TH
3482/**
3483 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3484 * @cfts: zero-length name terminated array of cftypes
3485 *
2bb566cb
TH
3486 * Unregister @cfts. Files described by @cfts are removed from all
3487 * existing cgroups and all future cgroups won't have them either. This
3488 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3489 *
3490 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3491 * registered.
79578621 3492 */
2bb566cb 3493int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3494{
21a2d343 3495 int ret;
79578621 3496
01f6474c 3497 mutex_lock(&cgroup_mutex);
21a2d343 3498 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3499 mutex_unlock(&cgroup_mutex);
21a2d343 3500 return ret;
80b13586
TH
3501}
3502
8e3f6541
TH
3503/**
3504 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3505 * @ss: target cgroup subsystem
3506 * @cfts: zero-length name terminated array of cftypes
3507 *
3508 * Register @cfts to @ss. Files described by @cfts are created for all
3509 * existing cgroups to which @ss is attached and all future cgroups will
3510 * have them too. This function can be called anytime whether @ss is
3511 * attached or not.
3512 *
3513 * Returns 0 on successful registration, -errno on failure. Note that this
3514 * function currently returns 0 as long as @cfts registration is successful
3515 * even if some file creation attempts on existing cgroups fail.
3516 */
2cf669a5 3517static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3518{
9ccece80 3519 int ret;
8e3f6541 3520
fc5ed1e9 3521 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3522 return 0;
3523
dc5736ed
LZ
3524 if (!cfts || cfts[0].name[0] == '\0')
3525 return 0;
2bb566cb 3526
2bd59d48
TH
3527 ret = cgroup_init_cftypes(ss, cfts);
3528 if (ret)
3529 return ret;
79578621 3530
01f6474c 3531 mutex_lock(&cgroup_mutex);
21a2d343 3532
0adb0704 3533 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3534 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3535 if (ret)
21a2d343 3536 cgroup_rm_cftypes_locked(cfts);
79578621 3537
01f6474c 3538 mutex_unlock(&cgroup_mutex);
9ccece80 3539 return ret;
79578621
TH
3540}
3541
a8ddc821
TH
3542/**
3543 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3544 * @ss: target cgroup subsystem
3545 * @cfts: zero-length name terminated array of cftypes
3546 *
3547 * Similar to cgroup_add_cftypes() but the added files are only used for
3548 * the default hierarchy.
3549 */
3550int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3551{
3552 struct cftype *cft;
3553
3554 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3555 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3556 return cgroup_add_cftypes(ss, cfts);
3557}
3558
3559/**
3560 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3561 * @ss: target cgroup subsystem
3562 * @cfts: zero-length name terminated array of cftypes
3563 *
3564 * Similar to cgroup_add_cftypes() but the added files are only used for
3565 * the legacy hierarchies.
3566 */
2cf669a5
TH
3567int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3568{
a8ddc821
TH
3569 struct cftype *cft;
3570
e4b7037c
TH
3571 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3572 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3573 return cgroup_add_cftypes(ss, cfts);
3574}
3575
34c06254
TH
3576/**
3577 * cgroup_file_notify - generate a file modified event for a cgroup_file
3578 * @cfile: target cgroup_file
3579 *
3580 * @cfile must have been obtained by setting cftype->file_offset.
3581 */
3582void cgroup_file_notify(struct cgroup_file *cfile)
3583{
3584 unsigned long flags;
3585
3586 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3587 if (cfile->kn)
3588 kernfs_notify(cfile->kn);
3589 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3590}
3591
a043e3b2
LZ
3592/**
3593 * cgroup_task_count - count the number of tasks in a cgroup.
3594 * @cgrp: the cgroup in question
3595 *
3596 * Return the number of tasks in the cgroup.
3597 */
07bc356e 3598static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3599{
3600 int count = 0;
69d0206c 3601 struct cgrp_cset_link *link;
817929ec 3602
f0d9a5f1 3603 spin_lock_bh(&css_set_lock);
69d0206c
TH
3604 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3605 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3606 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3607 return count;
3608}
3609
53fa5261 3610/**
492eb21b 3611 * css_next_child - find the next child of a given css
c2931b70
TH
3612 * @pos: the current position (%NULL to initiate traversal)
3613 * @parent: css whose children to walk
53fa5261 3614 *
c2931b70 3615 * This function returns the next child of @parent and should be called
87fb54f1 3616 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3617 * that @parent and @pos are accessible. The next sibling is guaranteed to
3618 * be returned regardless of their states.
3619 *
3620 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3621 * css which finished ->css_online() is guaranteed to be visible in the
3622 * future iterations and will stay visible until the last reference is put.
3623 * A css which hasn't finished ->css_online() or already finished
3624 * ->css_offline() may show up during traversal. It's each subsystem's
3625 * responsibility to synchronize against on/offlining.
53fa5261 3626 */
c2931b70
TH
3627struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3628 struct cgroup_subsys_state *parent)
53fa5261 3629{
c2931b70 3630 struct cgroup_subsys_state *next;
53fa5261 3631
8353da1f 3632 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3633
3634 /*
de3f0341
TH
3635 * @pos could already have been unlinked from the sibling list.
3636 * Once a cgroup is removed, its ->sibling.next is no longer
3637 * updated when its next sibling changes. CSS_RELEASED is set when
3638 * @pos is taken off list, at which time its next pointer is valid,
3639 * and, as releases are serialized, the one pointed to by the next
3640 * pointer is guaranteed to not have started release yet. This
3641 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3642 * critical section, the one pointed to by its next pointer is
3643 * guaranteed to not have finished its RCU grace period even if we
3644 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3645 *
de3f0341
TH
3646 * If @pos has CSS_RELEASED set, its next pointer can't be
3647 * dereferenced; however, as each css is given a monotonically
3648 * increasing unique serial number and always appended to the
3649 * sibling list, the next one can be found by walking the parent's
3650 * children until the first css with higher serial number than
3651 * @pos's. While this path can be slower, it happens iff iteration
3652 * races against release and the race window is very small.
53fa5261 3653 */
3b287a50 3654 if (!pos) {
c2931b70
TH
3655 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3656 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3657 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3658 } else {
c2931b70 3659 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3660 if (next->serial_nr > pos->serial_nr)
3661 break;
53fa5261
TH
3662 }
3663
3b281afb
TH
3664 /*
3665 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3666 * the next sibling.
3b281afb 3667 */
c2931b70
TH
3668 if (&next->sibling != &parent->children)
3669 return next;
3b281afb 3670 return NULL;
53fa5261 3671}
53fa5261 3672
574bd9f7 3673/**
492eb21b 3674 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3675 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3676 * @root: css whose descendants to walk
574bd9f7 3677 *
492eb21b 3678 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3679 * to visit for pre-order traversal of @root's descendants. @root is
3680 * included in the iteration and the first node to be visited.
75501a6d 3681 *
87fb54f1
TH
3682 * While this function requires cgroup_mutex or RCU read locking, it
3683 * doesn't require the whole traversal to be contained in a single critical
3684 * section. This function will return the correct next descendant as long
3685 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3686 *
3687 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3688 * css which finished ->css_online() is guaranteed to be visible in the
3689 * future iterations and will stay visible until the last reference is put.
3690 * A css which hasn't finished ->css_online() or already finished
3691 * ->css_offline() may show up during traversal. It's each subsystem's
3692 * responsibility to synchronize against on/offlining.
574bd9f7 3693 */
492eb21b
TH
3694struct cgroup_subsys_state *
3695css_next_descendant_pre(struct cgroup_subsys_state *pos,
3696 struct cgroup_subsys_state *root)
574bd9f7 3697{
492eb21b 3698 struct cgroup_subsys_state *next;
574bd9f7 3699
8353da1f 3700 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3701
bd8815a6 3702 /* if first iteration, visit @root */
7805d000 3703 if (!pos)
bd8815a6 3704 return root;
574bd9f7
TH
3705
3706 /* visit the first child if exists */
492eb21b 3707 next = css_next_child(NULL, pos);
574bd9f7
TH
3708 if (next)
3709 return next;
3710
3711 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3712 while (pos != root) {
5c9d535b 3713 next = css_next_child(pos, pos->parent);
75501a6d 3714 if (next)
574bd9f7 3715 return next;
5c9d535b 3716 pos = pos->parent;
7805d000 3717 }
574bd9f7
TH
3718
3719 return NULL;
3720}
574bd9f7 3721
12a9d2fe 3722/**
492eb21b
TH
3723 * css_rightmost_descendant - return the rightmost descendant of a css
3724 * @pos: css of interest
12a9d2fe 3725 *
492eb21b
TH
3726 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3727 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3728 * subtree of @pos.
75501a6d 3729 *
87fb54f1
TH
3730 * While this function requires cgroup_mutex or RCU read locking, it
3731 * doesn't require the whole traversal to be contained in a single critical
3732 * section. This function will return the correct rightmost descendant as
3733 * long as @pos is accessible.
12a9d2fe 3734 */
492eb21b
TH
3735struct cgroup_subsys_state *
3736css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3737{
492eb21b 3738 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3739
8353da1f 3740 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3741
3742 do {
3743 last = pos;
3744 /* ->prev isn't RCU safe, walk ->next till the end */
3745 pos = NULL;
492eb21b 3746 css_for_each_child(tmp, last)
12a9d2fe
TH
3747 pos = tmp;
3748 } while (pos);
3749
3750 return last;
3751}
12a9d2fe 3752
492eb21b
TH
3753static struct cgroup_subsys_state *
3754css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3755{
492eb21b 3756 struct cgroup_subsys_state *last;
574bd9f7
TH
3757
3758 do {
3759 last = pos;
492eb21b 3760 pos = css_next_child(NULL, pos);
574bd9f7
TH
3761 } while (pos);
3762
3763 return last;
3764}
3765
3766/**
492eb21b 3767 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3768 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3769 * @root: css whose descendants to walk
574bd9f7 3770 *
492eb21b 3771 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3772 * to visit for post-order traversal of @root's descendants. @root is
3773 * included in the iteration and the last node to be visited.
75501a6d 3774 *
87fb54f1
TH
3775 * While this function requires cgroup_mutex or RCU read locking, it
3776 * doesn't require the whole traversal to be contained in a single critical
3777 * section. This function will return the correct next descendant as long
3778 * as both @pos and @cgroup are accessible and @pos is a descendant of
3779 * @cgroup.
c2931b70
TH
3780 *
3781 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3782 * css which finished ->css_online() is guaranteed to be visible in the
3783 * future iterations and will stay visible until the last reference is put.
3784 * A css which hasn't finished ->css_online() or already finished
3785 * ->css_offline() may show up during traversal. It's each subsystem's
3786 * responsibility to synchronize against on/offlining.
574bd9f7 3787 */
492eb21b
TH
3788struct cgroup_subsys_state *
3789css_next_descendant_post(struct cgroup_subsys_state *pos,
3790 struct cgroup_subsys_state *root)
574bd9f7 3791{
492eb21b 3792 struct cgroup_subsys_state *next;
574bd9f7 3793
8353da1f 3794 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3795
58b79a91
TH
3796 /* if first iteration, visit leftmost descendant which may be @root */
3797 if (!pos)
3798 return css_leftmost_descendant(root);
574bd9f7 3799
bd8815a6
TH
3800 /* if we visited @root, we're done */
3801 if (pos == root)
3802 return NULL;
3803
574bd9f7 3804 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3805 next = css_next_child(pos, pos->parent);
75501a6d 3806 if (next)
492eb21b 3807 return css_leftmost_descendant(next);
574bd9f7
TH
3808
3809 /* no sibling left, visit parent */
5c9d535b 3810 return pos->parent;
574bd9f7 3811}
574bd9f7 3812
f3d46500
TH
3813/**
3814 * css_has_online_children - does a css have online children
3815 * @css: the target css
3816 *
3817 * Returns %true if @css has any online children; otherwise, %false. This
3818 * function can be called from any context but the caller is responsible
3819 * for synchronizing against on/offlining as necessary.
3820 */
3821bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3822{
f3d46500
TH
3823 struct cgroup_subsys_state *child;
3824 bool ret = false;
cbc125ef
TH
3825
3826 rcu_read_lock();
f3d46500 3827 css_for_each_child(child, css) {
99bae5f9 3828 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3829 ret = true;
3830 break;
cbc125ef
TH
3831 }
3832 }
3833 rcu_read_unlock();
f3d46500 3834 return ret;
574bd9f7 3835}
574bd9f7 3836
0942eeee 3837/**
ecb9d535 3838 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3839 * @it: the iterator to advance
3840 *
3841 * Advance @it to the next css_set to walk.
d515876e 3842 */
ecb9d535 3843static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3844{
0f0a2b4f 3845 struct list_head *l = it->cset_pos;
d515876e
TH
3846 struct cgrp_cset_link *link;
3847 struct css_set *cset;
3848
f0d9a5f1 3849 lockdep_assert_held(&css_set_lock);
ed27b9f7 3850
d515876e
TH
3851 /* Advance to the next non-empty css_set */
3852 do {
3853 l = l->next;
0f0a2b4f
TH
3854 if (l == it->cset_head) {
3855 it->cset_pos = NULL;
ecb9d535 3856 it->task_pos = NULL;
d515876e
TH
3857 return;
3858 }
3ebb2b6e
TH
3859
3860 if (it->ss) {
3861 cset = container_of(l, struct css_set,
3862 e_cset_node[it->ss->id]);
3863 } else {
3864 link = list_entry(l, struct cgrp_cset_link, cset_link);
3865 cset = link->cset;
3866 }
0de0942d 3867 } while (!css_set_populated(cset));
c7561128 3868
0f0a2b4f 3869 it->cset_pos = l;
c7561128
TH
3870
3871 if (!list_empty(&cset->tasks))
0f0a2b4f 3872 it->task_pos = cset->tasks.next;
c7561128 3873 else
0f0a2b4f
TH
3874 it->task_pos = cset->mg_tasks.next;
3875
3876 it->tasks_head = &cset->tasks;
3877 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3878
3879 /*
3880 * We don't keep css_sets locked across iteration steps and thus
3881 * need to take steps to ensure that iteration can be resumed after
3882 * the lock is re-acquired. Iteration is performed at two levels -
3883 * css_sets and tasks in them.
3884 *
3885 * Once created, a css_set never leaves its cgroup lists, so a
3886 * pinned css_set is guaranteed to stay put and we can resume
3887 * iteration afterwards.
3888 *
3889 * Tasks may leave @cset across iteration steps. This is resolved
3890 * by registering each iterator with the css_set currently being
3891 * walked and making css_set_move_task() advance iterators whose
3892 * next task is leaving.
3893 */
3894 if (it->cur_cset) {
3895 list_del(&it->iters_node);
3896 put_css_set_locked(it->cur_cset);
3897 }
3898 get_css_set(cset);
3899 it->cur_cset = cset;
3900 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3901}
3902
ecb9d535
TH
3903static void css_task_iter_advance(struct css_task_iter *it)
3904{
3905 struct list_head *l = it->task_pos;
3906
f0d9a5f1 3907 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3908 WARN_ON_ONCE(!l);
3909
3910 /*
3911 * Advance iterator to find next entry. cset->tasks is consumed
3912 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3913 * next cset.
3914 */
3915 l = l->next;
3916
3917 if (l == it->tasks_head)
3918 l = it->mg_tasks_head->next;
3919
3920 if (l == it->mg_tasks_head)
3921 css_task_iter_advance_css_set(it);
3922 else
3923 it->task_pos = l;
3924}
3925
0942eeee 3926/**
72ec7029
TH
3927 * css_task_iter_start - initiate task iteration
3928 * @css: the css to walk tasks of
0942eeee
TH
3929 * @it: the task iterator to use
3930 *
72ec7029
TH
3931 * Initiate iteration through the tasks of @css. The caller can call
3932 * css_task_iter_next() to walk through the tasks until the function
3933 * returns NULL. On completion of iteration, css_task_iter_end() must be
3934 * called.
0942eeee 3935 */
72ec7029
TH
3936void css_task_iter_start(struct cgroup_subsys_state *css,
3937 struct css_task_iter *it)
817929ec 3938{
56fde9e0
TH
3939 /* no one should try to iterate before mounting cgroups */
3940 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3941
ed27b9f7
TH
3942 memset(it, 0, sizeof(*it));
3943
f0d9a5f1 3944 spin_lock_bh(&css_set_lock);
c59cd3d8 3945
3ebb2b6e
TH
3946 it->ss = css->ss;
3947
3948 if (it->ss)
3949 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3950 else
3951 it->cset_pos = &css->cgroup->cset_links;
3952
0f0a2b4f 3953 it->cset_head = it->cset_pos;
c59cd3d8 3954
ecb9d535 3955 css_task_iter_advance_css_set(it);
ed27b9f7 3956
f0d9a5f1 3957 spin_unlock_bh(&css_set_lock);
817929ec
PM
3958}
3959
0942eeee 3960/**
72ec7029 3961 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3962 * @it: the task iterator being iterated
3963 *
3964 * The "next" function for task iteration. @it should have been
72ec7029
TH
3965 * initialized via css_task_iter_start(). Returns NULL when the iteration
3966 * reaches the end.
0942eeee 3967 */
72ec7029 3968struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3969{
d5745675 3970 if (it->cur_task) {
ed27b9f7 3971 put_task_struct(it->cur_task);
d5745675
TH
3972 it->cur_task = NULL;
3973 }
ed27b9f7 3974
f0d9a5f1 3975 spin_lock_bh(&css_set_lock);
ed27b9f7 3976
d5745675
TH
3977 if (it->task_pos) {
3978 it->cur_task = list_entry(it->task_pos, struct task_struct,
3979 cg_list);
3980 get_task_struct(it->cur_task);
3981 css_task_iter_advance(it);
3982 }
ed27b9f7 3983
f0d9a5f1 3984 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3985
3986 return it->cur_task;
817929ec
PM
3987}
3988
0942eeee 3989/**
72ec7029 3990 * css_task_iter_end - finish task iteration
0942eeee
TH
3991 * @it: the task iterator to finish
3992 *
72ec7029 3993 * Finish task iteration started by css_task_iter_start().
0942eeee 3994 */
72ec7029 3995void css_task_iter_end(struct css_task_iter *it)
31a7df01 3996{
ed27b9f7 3997 if (it->cur_cset) {
f0d9a5f1 3998 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3999 list_del(&it->iters_node);
4000 put_css_set_locked(it->cur_cset);
f0d9a5f1 4001 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4002 }
4003
4004 if (it->cur_task)
4005 put_task_struct(it->cur_task);
31a7df01
CW
4006}
4007
4008/**
8cc99345
TH
4009 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4010 * @to: cgroup to which the tasks will be moved
4011 * @from: cgroup in which the tasks currently reside
31a7df01 4012 *
eaf797ab
TH
4013 * Locking rules between cgroup_post_fork() and the migration path
4014 * guarantee that, if a task is forking while being migrated, the new child
4015 * is guaranteed to be either visible in the source cgroup after the
4016 * parent's migration is complete or put into the target cgroup. No task
4017 * can slip out of migration through forking.
31a7df01 4018 */
8cc99345 4019int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4020{
952aaa12
TH
4021 LIST_HEAD(preloaded_csets);
4022 struct cgrp_cset_link *link;
72ec7029 4023 struct css_task_iter it;
e406d1cf 4024 struct task_struct *task;
952aaa12 4025 int ret;
31a7df01 4026
952aaa12 4027 mutex_lock(&cgroup_mutex);
31a7df01 4028
952aaa12 4029 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4030 spin_lock_bh(&css_set_lock);
952aaa12
TH
4031 list_for_each_entry(link, &from->cset_links, cset_link)
4032 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4033 spin_unlock_bh(&css_set_lock);
31a7df01 4034
952aaa12
TH
4035 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4036 if (ret)
4037 goto out_err;
8cc99345 4038
952aaa12 4039 /*
2cfa2b19 4040 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4041 * ->can_attach() fails.
4042 */
e406d1cf 4043 do {
9d800df1 4044 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4045 task = css_task_iter_next(&it);
4046 if (task)
4047 get_task_struct(task);
4048 css_task_iter_end(&it);
4049
4050 if (task) {
9af2ec45 4051 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4052 put_task_struct(task);
4053 }
4054 } while (task && !ret);
952aaa12
TH
4055out_err:
4056 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4057 mutex_unlock(&cgroup_mutex);
e406d1cf 4058 return ret;
8cc99345
TH
4059}
4060
bbcb81d0 4061/*
102a775e 4062 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4063 *
4064 * Reading this file can return large amounts of data if a cgroup has
4065 * *lots* of attached tasks. So it may need several calls to read(),
4066 * but we cannot guarantee that the information we produce is correct
4067 * unless we produce it entirely atomically.
4068 *
bbcb81d0 4069 */
bbcb81d0 4070
24528255
LZ
4071/* which pidlist file are we talking about? */
4072enum cgroup_filetype {
4073 CGROUP_FILE_PROCS,
4074 CGROUP_FILE_TASKS,
4075};
4076
4077/*
4078 * A pidlist is a list of pids that virtually represents the contents of one
4079 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4080 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4081 * to the cgroup.
4082 */
4083struct cgroup_pidlist {
4084 /*
4085 * used to find which pidlist is wanted. doesn't change as long as
4086 * this particular list stays in the list.
4087 */
4088 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4089 /* array of xids */
4090 pid_t *list;
4091 /* how many elements the above list has */
4092 int length;
24528255
LZ
4093 /* each of these stored in a list by its cgroup */
4094 struct list_head links;
4095 /* pointer to the cgroup we belong to, for list removal purposes */
4096 struct cgroup *owner;
b1a21367
TH
4097 /* for delayed destruction */
4098 struct delayed_work destroy_dwork;
24528255
LZ
4099};
4100
d1d9fd33
BB
4101/*
4102 * The following two functions "fix" the issue where there are more pids
4103 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4104 * TODO: replace with a kernel-wide solution to this problem
4105 */
4106#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4107static void *pidlist_allocate(int count)
4108{
4109 if (PIDLIST_TOO_LARGE(count))
4110 return vmalloc(count * sizeof(pid_t));
4111 else
4112 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4113}
b1a21367 4114
d1d9fd33
BB
4115static void pidlist_free(void *p)
4116{
58794514 4117 kvfree(p);
d1d9fd33 4118}
d1d9fd33 4119
b1a21367
TH
4120/*
4121 * Used to destroy all pidlists lingering waiting for destroy timer. None
4122 * should be left afterwards.
4123 */
4124static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4125{
4126 struct cgroup_pidlist *l, *tmp_l;
4127
4128 mutex_lock(&cgrp->pidlist_mutex);
4129 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4130 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4131 mutex_unlock(&cgrp->pidlist_mutex);
4132
4133 flush_workqueue(cgroup_pidlist_destroy_wq);
4134 BUG_ON(!list_empty(&cgrp->pidlists));
4135}
4136
4137static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4138{
4139 struct delayed_work *dwork = to_delayed_work(work);
4140 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4141 destroy_dwork);
4142 struct cgroup_pidlist *tofree = NULL;
4143
4144 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4145
4146 /*
04502365
TH
4147 * Destroy iff we didn't get queued again. The state won't change
4148 * as destroy_dwork can only be queued while locked.
b1a21367 4149 */
04502365 4150 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4151 list_del(&l->links);
4152 pidlist_free(l->list);
4153 put_pid_ns(l->key.ns);
4154 tofree = l;
4155 }
4156
b1a21367
TH
4157 mutex_unlock(&l->owner->pidlist_mutex);
4158 kfree(tofree);
4159}
4160
bbcb81d0 4161/*
102a775e 4162 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4163 * Returns the number of unique elements.
bbcb81d0 4164 */
6ee211ad 4165static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4166{
102a775e 4167 int src, dest = 1;
102a775e
BB
4168
4169 /*
4170 * we presume the 0th element is unique, so i starts at 1. trivial
4171 * edge cases first; no work needs to be done for either
4172 */
4173 if (length == 0 || length == 1)
4174 return length;
4175 /* src and dest walk down the list; dest counts unique elements */
4176 for (src = 1; src < length; src++) {
4177 /* find next unique element */
4178 while (list[src] == list[src-1]) {
4179 src++;
4180 if (src == length)
4181 goto after;
4182 }
4183 /* dest always points to where the next unique element goes */
4184 list[dest] = list[src];
4185 dest++;
4186 }
4187after:
102a775e
BB
4188 return dest;
4189}
4190
afb2bc14
TH
4191/*
4192 * The two pid files - task and cgroup.procs - guaranteed that the result
4193 * is sorted, which forced this whole pidlist fiasco. As pid order is
4194 * different per namespace, each namespace needs differently sorted list,
4195 * making it impossible to use, for example, single rbtree of member tasks
4196 * sorted by task pointer. As pidlists can be fairly large, allocating one
4197 * per open file is dangerous, so cgroup had to implement shared pool of
4198 * pidlists keyed by cgroup and namespace.
4199 *
4200 * All this extra complexity was caused by the original implementation
4201 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4202 * want to do away with it. Explicitly scramble sort order if on the
4203 * default hierarchy so that no such expectation exists in the new
4204 * interface.
afb2bc14
TH
4205 *
4206 * Scrambling is done by swapping every two consecutive bits, which is
4207 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4208 */
4209static pid_t pid_fry(pid_t pid)
4210{
4211 unsigned a = pid & 0x55555555;
4212 unsigned b = pid & 0xAAAAAAAA;
4213
4214 return (a << 1) | (b >> 1);
4215}
4216
4217static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4218{
aa6ec29b 4219 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4220 return pid_fry(pid);
4221 else
4222 return pid;
4223}
4224
102a775e
BB
4225static int cmppid(const void *a, const void *b)
4226{
4227 return *(pid_t *)a - *(pid_t *)b;
4228}
4229
afb2bc14
TH
4230static int fried_cmppid(const void *a, const void *b)
4231{
4232 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4233}
4234
e6b81710
TH
4235static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4236 enum cgroup_filetype type)
4237{
4238 struct cgroup_pidlist *l;
4239 /* don't need task_nsproxy() if we're looking at ourself */
4240 struct pid_namespace *ns = task_active_pid_ns(current);
4241
4242 lockdep_assert_held(&cgrp->pidlist_mutex);
4243
4244 list_for_each_entry(l, &cgrp->pidlists, links)
4245 if (l->key.type == type && l->key.ns == ns)
4246 return l;
4247 return NULL;
4248}
4249
72a8cb30
BB
4250/*
4251 * find the appropriate pidlist for our purpose (given procs vs tasks)
4252 * returns with the lock on that pidlist already held, and takes care
4253 * of the use count, or returns NULL with no locks held if we're out of
4254 * memory.
4255 */
e6b81710
TH
4256static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4257 enum cgroup_filetype type)
72a8cb30
BB
4258{
4259 struct cgroup_pidlist *l;
b70cc5fd 4260
e6b81710
TH
4261 lockdep_assert_held(&cgrp->pidlist_mutex);
4262
4263 l = cgroup_pidlist_find(cgrp, type);
4264 if (l)
4265 return l;
4266
72a8cb30 4267 /* entry not found; create a new one */
f4f4be2b 4268 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4269 if (!l)
72a8cb30 4270 return l;
e6b81710 4271
b1a21367 4272 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4273 l->key.type = type;
e6b81710
TH
4274 /* don't need task_nsproxy() if we're looking at ourself */
4275 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4276 l->owner = cgrp;
4277 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4278 return l;
4279}
4280
102a775e
BB
4281/*
4282 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4283 */
72a8cb30
BB
4284static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4285 struct cgroup_pidlist **lp)
102a775e
BB
4286{
4287 pid_t *array;
4288 int length;
4289 int pid, n = 0; /* used for populating the array */
72ec7029 4290 struct css_task_iter it;
817929ec 4291 struct task_struct *tsk;
102a775e
BB
4292 struct cgroup_pidlist *l;
4293
4bac00d1
TH
4294 lockdep_assert_held(&cgrp->pidlist_mutex);
4295
102a775e
BB
4296 /*
4297 * If cgroup gets more users after we read count, we won't have
4298 * enough space - tough. This race is indistinguishable to the
4299 * caller from the case that the additional cgroup users didn't
4300 * show up until sometime later on.
4301 */
4302 length = cgroup_task_count(cgrp);
d1d9fd33 4303 array = pidlist_allocate(length);
102a775e
BB
4304 if (!array)
4305 return -ENOMEM;
4306 /* now, populate the array */
9d800df1 4307 css_task_iter_start(&cgrp->self, &it);
72ec7029 4308 while ((tsk = css_task_iter_next(&it))) {
102a775e 4309 if (unlikely(n == length))
817929ec 4310 break;
102a775e 4311 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4312 if (type == CGROUP_FILE_PROCS)
4313 pid = task_tgid_vnr(tsk);
4314 else
4315 pid = task_pid_vnr(tsk);
102a775e
BB
4316 if (pid > 0) /* make sure to only use valid results */
4317 array[n++] = pid;
817929ec 4318 }
72ec7029 4319 css_task_iter_end(&it);
102a775e
BB
4320 length = n;
4321 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4322 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4323 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4324 else
4325 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4326 if (type == CGROUP_FILE_PROCS)
6ee211ad 4327 length = pidlist_uniq(array, length);
e6b81710 4328
e6b81710 4329 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4330 if (!l) {
d1d9fd33 4331 pidlist_free(array);
72a8cb30 4332 return -ENOMEM;
102a775e 4333 }
e6b81710
TH
4334
4335 /* store array, freeing old if necessary */
d1d9fd33 4336 pidlist_free(l->list);
102a775e
BB
4337 l->list = array;
4338 l->length = length;
72a8cb30 4339 *lp = l;
102a775e 4340 return 0;
bbcb81d0
PM
4341}
4342
846c7bb0 4343/**
a043e3b2 4344 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4345 * @stats: cgroupstats to fill information into
4346 * @dentry: A dentry entry belonging to the cgroup for which stats have
4347 * been requested.
a043e3b2
LZ
4348 *
4349 * Build and fill cgroupstats so that taskstats can export it to user
4350 * space.
846c7bb0
BS
4351 */
4352int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4353{
2bd59d48 4354 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4355 struct cgroup *cgrp;
72ec7029 4356 struct css_task_iter it;
846c7bb0 4357 struct task_struct *tsk;
33d283be 4358
2bd59d48
TH
4359 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4360 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4361 kernfs_type(kn) != KERNFS_DIR)
4362 return -EINVAL;
4363
bad34660
LZ
4364 mutex_lock(&cgroup_mutex);
4365
846c7bb0 4366 /*
2bd59d48 4367 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4368 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4369 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4370 */
2bd59d48
TH
4371 rcu_read_lock();
4372 cgrp = rcu_dereference(kn->priv);
bad34660 4373 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4374 rcu_read_unlock();
bad34660 4375 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4376 return -ENOENT;
4377 }
bad34660 4378 rcu_read_unlock();
846c7bb0 4379
9d800df1 4380 css_task_iter_start(&cgrp->self, &it);
72ec7029 4381 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4382 switch (tsk->state) {
4383 case TASK_RUNNING:
4384 stats->nr_running++;
4385 break;
4386 case TASK_INTERRUPTIBLE:
4387 stats->nr_sleeping++;
4388 break;
4389 case TASK_UNINTERRUPTIBLE:
4390 stats->nr_uninterruptible++;
4391 break;
4392 case TASK_STOPPED:
4393 stats->nr_stopped++;
4394 break;
4395 default:
4396 if (delayacct_is_task_waiting_on_io(tsk))
4397 stats->nr_io_wait++;
4398 break;
4399 }
4400 }
72ec7029 4401 css_task_iter_end(&it);
846c7bb0 4402
bad34660 4403 mutex_unlock(&cgroup_mutex);
2bd59d48 4404 return 0;
846c7bb0
BS
4405}
4406
8f3ff208 4407
bbcb81d0 4408/*
102a775e 4409 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4410 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4411 * in the cgroup->l->list array.
bbcb81d0 4412 */
cc31edce 4413
102a775e 4414static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4415{
cc31edce
PM
4416 /*
4417 * Initially we receive a position value that corresponds to
4418 * one more than the last pid shown (or 0 on the first call or
4419 * after a seek to the start). Use a binary-search to find the
4420 * next pid to display, if any
4421 */
2bd59d48 4422 struct kernfs_open_file *of = s->private;
7da11279 4423 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4424 struct cgroup_pidlist *l;
7da11279 4425 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4426 int index = 0, pid = *pos;
4bac00d1
TH
4427 int *iter, ret;
4428
4429 mutex_lock(&cgrp->pidlist_mutex);
4430
4431 /*
5d22444f 4432 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4433 * after open. If the matching pidlist is around, we can use that.
5d22444f 4434 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4435 * could already have been destroyed.
4436 */
5d22444f
TH
4437 if (of->priv)
4438 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4439
4440 /*
4441 * Either this is the first start() after open or the matching
4442 * pidlist has been destroyed inbetween. Create a new one.
4443 */
5d22444f
TH
4444 if (!of->priv) {
4445 ret = pidlist_array_load(cgrp, type,
4446 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4447 if (ret)
4448 return ERR_PTR(ret);
4449 }
5d22444f 4450 l = of->priv;
cc31edce 4451
cc31edce 4452 if (pid) {
102a775e 4453 int end = l->length;
20777766 4454
cc31edce
PM
4455 while (index < end) {
4456 int mid = (index + end) / 2;
afb2bc14 4457 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4458 index = mid;
4459 break;
afb2bc14 4460 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4461 index = mid + 1;
4462 else
4463 end = mid;
4464 }
4465 }
4466 /* If we're off the end of the array, we're done */
102a775e 4467 if (index >= l->length)
cc31edce
PM
4468 return NULL;
4469 /* Update the abstract position to be the actual pid that we found */
102a775e 4470 iter = l->list + index;
afb2bc14 4471 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4472 return iter;
4473}
4474
102a775e 4475static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4476{
2bd59d48 4477 struct kernfs_open_file *of = s->private;
5d22444f 4478 struct cgroup_pidlist *l = of->priv;
62236858 4479
5d22444f
TH
4480 if (l)
4481 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4482 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4483 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4484}
4485
102a775e 4486static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4487{
2bd59d48 4488 struct kernfs_open_file *of = s->private;
5d22444f 4489 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4490 pid_t *p = v;
4491 pid_t *end = l->list + l->length;
cc31edce
PM
4492 /*
4493 * Advance to the next pid in the array. If this goes off the
4494 * end, we're done
4495 */
4496 p++;
4497 if (p >= end) {
4498 return NULL;
4499 } else {
7da11279 4500 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4501 return p;
4502 }
4503}
4504
102a775e 4505static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4506{
94ff212d
JP
4507 seq_printf(s, "%d\n", *(int *)v);
4508
4509 return 0;
cc31edce 4510}
bbcb81d0 4511
182446d0
TH
4512static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4513 struct cftype *cft)
81a6a5cd 4514{
182446d0 4515 return notify_on_release(css->cgroup);
81a6a5cd
PM
4516}
4517
182446d0
TH
4518static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4519 struct cftype *cft, u64 val)
6379c106 4520{
6379c106 4521 if (val)
182446d0 4522 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4523 else
182446d0 4524 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4525 return 0;
4526}
4527
182446d0
TH
4528static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4529 struct cftype *cft)
97978e6d 4530{
182446d0 4531 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4532}
4533
182446d0
TH
4534static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4535 struct cftype *cft, u64 val)
97978e6d
DL
4536{
4537 if (val)
182446d0 4538 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4539 else
182446d0 4540 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4541 return 0;
4542}
4543
a14c6874
TH
4544/* cgroup core interface files for the default hierarchy */
4545static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4546 {
d5c56ced 4547 .name = "cgroup.procs",
6f60eade 4548 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4549 .seq_start = cgroup_pidlist_start,
4550 .seq_next = cgroup_pidlist_next,
4551 .seq_stop = cgroup_pidlist_stop,
4552 .seq_show = cgroup_pidlist_show,
5d22444f 4553 .private = CGROUP_FILE_PROCS,
acbef755 4554 .write = cgroup_procs_write,
102a775e 4555 },
f8f22e53
TH
4556 {
4557 .name = "cgroup.controllers",
a14c6874 4558 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4559 .seq_show = cgroup_root_controllers_show,
4560 },
4561 {
4562 .name = "cgroup.controllers",
a14c6874 4563 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4564 .seq_show = cgroup_controllers_show,
4565 },
4566 {
4567 .name = "cgroup.subtree_control",
f8f22e53 4568 .seq_show = cgroup_subtree_control_show,
451af504 4569 .write = cgroup_subtree_control_write,
f8f22e53 4570 },
842b597e 4571 {
4a07c222 4572 .name = "cgroup.events",
a14c6874 4573 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4574 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4575 .seq_show = cgroup_events_show,
842b597e 4576 },
a14c6874
TH
4577 { } /* terminate */
4578};
d5c56ced 4579
a14c6874
TH
4580/* cgroup core interface files for the legacy hierarchies */
4581static struct cftype cgroup_legacy_base_files[] = {
4582 {
4583 .name = "cgroup.procs",
4584 .seq_start = cgroup_pidlist_start,
4585 .seq_next = cgroup_pidlist_next,
4586 .seq_stop = cgroup_pidlist_stop,
4587 .seq_show = cgroup_pidlist_show,
4588 .private = CGROUP_FILE_PROCS,
4589 .write = cgroup_procs_write,
a14c6874
TH
4590 },
4591 {
4592 .name = "cgroup.clone_children",
4593 .read_u64 = cgroup_clone_children_read,
4594 .write_u64 = cgroup_clone_children_write,
4595 },
4596 {
4597 .name = "cgroup.sane_behavior",
4598 .flags = CFTYPE_ONLY_ON_ROOT,
4599 .seq_show = cgroup_sane_behavior_show,
4600 },
d5c56ced
TH
4601 {
4602 .name = "tasks",
6612f05b
TH
4603 .seq_start = cgroup_pidlist_start,
4604 .seq_next = cgroup_pidlist_next,
4605 .seq_stop = cgroup_pidlist_stop,
4606 .seq_show = cgroup_pidlist_show,
5d22444f 4607 .private = CGROUP_FILE_TASKS,
acbef755 4608 .write = cgroup_tasks_write,
d5c56ced
TH
4609 },
4610 {
4611 .name = "notify_on_release",
d5c56ced
TH
4612 .read_u64 = cgroup_read_notify_on_release,
4613 .write_u64 = cgroup_write_notify_on_release,
4614 },
6e6ff25b
TH
4615 {
4616 .name = "release_agent",
a14c6874 4617 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4618 .seq_show = cgroup_release_agent_show,
451af504 4619 .write = cgroup_release_agent_write,
5f469907 4620 .max_write_len = PATH_MAX - 1,
6e6ff25b 4621 },
db0416b6 4622 { } /* terminate */
bbcb81d0
PM
4623};
4624
0c21ead1
TH
4625/*
4626 * css destruction is four-stage process.
4627 *
4628 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4629 * Implemented in kill_css().
4630 *
4631 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4632 * and thus css_tryget_online() is guaranteed to fail, the css can be
4633 * offlined by invoking offline_css(). After offlining, the base ref is
4634 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4635 *
4636 * 3. When the percpu_ref reaches zero, the only possible remaining
4637 * accessors are inside RCU read sections. css_release() schedules the
4638 * RCU callback.
4639 *
4640 * 4. After the grace period, the css can be freed. Implemented in
4641 * css_free_work_fn().
4642 *
4643 * It is actually hairier because both step 2 and 4 require process context
4644 * and thus involve punting to css->destroy_work adding two additional
4645 * steps to the already complex sequence.
4646 */
35ef10da 4647static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4648{
4649 struct cgroup_subsys_state *css =
35ef10da 4650 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4651 struct cgroup_subsys *ss = css->ss;
0c21ead1 4652 struct cgroup *cgrp = css->cgroup;
48ddbe19 4653
9a1049da
TH
4654 percpu_ref_exit(&css->refcnt);
4655
01e58659 4656 if (ss) {
9d755d33 4657 /* css free path */
01e58659
VD
4658 int id = css->id;
4659
9d755d33
TH
4660 if (css->parent)
4661 css_put(css->parent);
0ae78e0b 4662
01e58659
VD
4663 ss->css_free(css);
4664 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4665 cgroup_put(cgrp);
4666 } else {
4667 /* cgroup free path */
4668 atomic_dec(&cgrp->root->nr_cgrps);
4669 cgroup_pidlist_destroy_all(cgrp);
971ff493 4670 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4671
d51f39b0 4672 if (cgroup_parent(cgrp)) {
9d755d33
TH
4673 /*
4674 * We get a ref to the parent, and put the ref when
4675 * this cgroup is being freed, so it's guaranteed
4676 * that the parent won't be destroyed before its
4677 * children.
4678 */
d51f39b0 4679 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4680 kernfs_put(cgrp->kn);
4681 kfree(cgrp);
4682 } else {
4683 /*
4684 * This is root cgroup's refcnt reaching zero,
4685 * which indicates that the root should be
4686 * released.
4687 */
4688 cgroup_destroy_root(cgrp->root);
4689 }
4690 }
48ddbe19
TH
4691}
4692
0c21ead1 4693static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4694{
4695 struct cgroup_subsys_state *css =
0c21ead1 4696 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4697
35ef10da 4698 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4699 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4700}
4701
25e15d83 4702static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4703{
4704 struct cgroup_subsys_state *css =
25e15d83 4705 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4706 struct cgroup_subsys *ss = css->ss;
9d755d33 4707 struct cgroup *cgrp = css->cgroup;
15a4c835 4708
1fed1b2e
TH
4709 mutex_lock(&cgroup_mutex);
4710
de3f0341 4711 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4712 list_del_rcu(&css->sibling);
4713
9d755d33
TH
4714 if (ss) {
4715 /* css release path */
01e58659 4716 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4717 if (ss->css_released)
4718 ss->css_released(css);
9d755d33
TH
4719 } else {
4720 /* cgroup release path */
9d755d33
TH
4721 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4722 cgrp->id = -1;
a4189487
LZ
4723
4724 /*
4725 * There are two control paths which try to determine
4726 * cgroup from dentry without going through kernfs -
4727 * cgroupstats_build() and css_tryget_online_from_dir().
4728 * Those are supported by RCU protecting clearing of
4729 * cgrp->kn->priv backpointer.
4730 */
4731 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4732 }
d3daf28d 4733
1fed1b2e
TH
4734 mutex_unlock(&cgroup_mutex);
4735
0c21ead1 4736 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4737}
4738
d3daf28d
TH
4739static void css_release(struct percpu_ref *ref)
4740{
4741 struct cgroup_subsys_state *css =
4742 container_of(ref, struct cgroup_subsys_state, refcnt);
4743
25e15d83
TH
4744 INIT_WORK(&css->destroy_work, css_release_work_fn);
4745 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4746}
4747
ddfcadab
TH
4748static void init_and_link_css(struct cgroup_subsys_state *css,
4749 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4750{
0cb51d71
TH
4751 lockdep_assert_held(&cgroup_mutex);
4752
ddfcadab
TH
4753 cgroup_get(cgrp);
4754
d5c419b6 4755 memset(css, 0, sizeof(*css));
bd89aabc 4756 css->cgroup = cgrp;
72c97e54 4757 css->ss = ss;
d5c419b6
TH
4758 INIT_LIST_HEAD(&css->sibling);
4759 INIT_LIST_HEAD(&css->children);
0cb51d71 4760 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4761
d51f39b0
TH
4762 if (cgroup_parent(cgrp)) {
4763 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4764 css_get(css->parent);
ddfcadab 4765 }
48ddbe19 4766
ca8bdcaf 4767 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4768}
4769
2a4ac633 4770/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4771static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4772{
623f926b 4773 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4774 int ret = 0;
4775
a31f2d3f
TH
4776 lockdep_assert_held(&cgroup_mutex);
4777
92fb9748 4778 if (ss->css_online)
eb95419b 4779 ret = ss->css_online(css);
ae7f164a 4780 if (!ret) {
eb95419b 4781 css->flags |= CSS_ONLINE;
aec25020 4782 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4783 }
b1929db4 4784 return ret;
a31f2d3f
TH
4785}
4786
2a4ac633 4787/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4788static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4789{
623f926b 4790 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4791
4792 lockdep_assert_held(&cgroup_mutex);
4793
4794 if (!(css->flags & CSS_ONLINE))
4795 return;
4796
d7eeac19 4797 if (ss->css_offline)
eb95419b 4798 ss->css_offline(css);
a31f2d3f 4799
eb95419b 4800 css->flags &= ~CSS_ONLINE;
e3297803 4801 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4802
4803 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4804}
4805
c81c925a
TH
4806/**
4807 * create_css - create a cgroup_subsys_state
4808 * @cgrp: the cgroup new css will be associated with
4809 * @ss: the subsys of new css
f63070d3 4810 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4811 *
4812 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4813 * css is online and installed in @cgrp with all interface files created if
4814 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4815 */
f63070d3
TH
4816static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4817 bool visible)
c81c925a 4818{
d51f39b0 4819 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4820 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4821 struct cgroup_subsys_state *css;
4822 int err;
4823
c81c925a
TH
4824 lockdep_assert_held(&cgroup_mutex);
4825
1fed1b2e 4826 css = ss->css_alloc(parent_css);
c81c925a
TH
4827 if (IS_ERR(css))
4828 return PTR_ERR(css);
4829
ddfcadab 4830 init_and_link_css(css, ss, cgrp);
a2bed820 4831
2aad2a86 4832 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4833 if (err)
3eb59ec6 4834 goto err_free_css;
c81c925a 4835
cf780b7d 4836 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4837 if (err < 0)
4838 goto err_free_percpu_ref;
4839 css->id = err;
c81c925a 4840
f63070d3 4841 if (visible) {
4df8dc90 4842 err = css_populate_dir(css, NULL);
f63070d3
TH
4843 if (err)
4844 goto err_free_id;
4845 }
15a4c835
TH
4846
4847 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4848 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4849 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4850
4851 err = online_css(css);
4852 if (err)
1fed1b2e 4853 goto err_list_del;
94419627 4854
c81c925a 4855 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4856 cgroup_parent(parent)) {
ed3d261b 4857 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4858 current->comm, current->pid, ss->name);
c81c925a 4859 if (!strcmp(ss->name, "memory"))
ed3d261b 4860 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4861 ss->warned_broken_hierarchy = true;
4862 }
4863
4864 return 0;
4865
1fed1b2e
TH
4866err_list_del:
4867 list_del_rcu(&css->sibling);
4df8dc90 4868 css_clear_dir(css, NULL);
15a4c835
TH
4869err_free_id:
4870 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4871err_free_percpu_ref:
9a1049da 4872 percpu_ref_exit(&css->refcnt);
3eb59ec6 4873err_free_css:
a2bed820 4874 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4875 return err;
4876}
4877
b3bfd983
TH
4878static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4879 umode_t mode)
ddbcc7e8 4880{
b11cfb58 4881 struct cgroup *parent, *cgrp, *tcgrp;
a9746d8d 4882 struct cgroup_root *root;
ddbcc7e8 4883 struct cgroup_subsys *ss;
2bd59d48 4884 struct kernfs_node *kn;
b11cfb58 4885 int level, ssid, ret;
ddbcc7e8 4886
71b1fb5c
AC
4887 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4888 */
4889 if (strchr(name, '\n'))
4890 return -EINVAL;
4891
a9746d8d
TH
4892 parent = cgroup_kn_lock_live(parent_kn);
4893 if (!parent)
4894 return -ENODEV;
4895 root = parent->root;
b11cfb58 4896 level = parent->level + 1;
ddbcc7e8 4897
0a950f65 4898 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4899 cgrp = kzalloc(sizeof(*cgrp) +
4900 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
ba0f4d76
TH
4901 if (!cgrp) {
4902 ret = -ENOMEM;
4903 goto out_unlock;
0ab02ca8
LZ
4904 }
4905
2aad2a86 4906 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4907 if (ret)
4908 goto out_free_cgrp;
4909
0ab02ca8
LZ
4910 /*
4911 * Temporarily set the pointer to NULL, so idr_find() won't return
4912 * a half-baked cgroup.
4913 */
cf780b7d 4914 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4915 if (cgrp->id < 0) {
ba0f4d76 4916 ret = -ENOMEM;
9d755d33 4917 goto out_cancel_ref;
976c06bc
TH
4918 }
4919
cc31edce 4920 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4921
9d800df1 4922 cgrp->self.parent = &parent->self;
ba0f4d76 4923 cgrp->root = root;
b11cfb58
TH
4924 cgrp->level = level;
4925
4926 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4927 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4928
b6abdb0e
LZ
4929 if (notify_on_release(parent))
4930 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4931
2260e7fc
TH
4932 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4933 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4934
2bd59d48 4935 /* create the directory */
e61734c5 4936 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4937 if (IS_ERR(kn)) {
ba0f4d76
TH
4938 ret = PTR_ERR(kn);
4939 goto out_free_id;
2bd59d48
TH
4940 }
4941 cgrp->kn = kn;
ddbcc7e8 4942
4e139afc 4943 /*
6f30558f
TH
4944 * This extra ref will be put in cgroup_free_fn() and guarantees
4945 * that @cgrp->kn is always accessible.
4e139afc 4946 */
6f30558f 4947 kernfs_get(kn);
ddbcc7e8 4948
0cb51d71 4949 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4950
4e139afc 4951 /* allocation complete, commit to creation */
d5c419b6 4952 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4953 atomic_inc(&root->nr_cgrps);
59f5296b 4954 cgroup_get(parent);
415cf07a 4955
0d80255e
TH
4956 /*
4957 * @cgrp is now fully operational. If something fails after this
4958 * point, it'll be released via the normal destruction path.
4959 */
6fa4918d 4960 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4961
ba0f4d76
TH
4962 ret = cgroup_kn_set_ugid(kn);
4963 if (ret)
4964 goto out_destroy;
49957f8e 4965
4df8dc90 4966 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4967 if (ret)
4968 goto out_destroy;
628f7cd4 4969
9d403e99 4970 /* let's create and online css's */
b85d2040 4971 for_each_subsys(ss, ssid) {
f392e51c 4972 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4973 ret = create_css(cgrp, ss,
4974 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4975 if (ret)
4976 goto out_destroy;
b85d2040 4977 }
a8638030 4978 }
ddbcc7e8 4979
bd53d617
TH
4980 /*
4981 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4982 * subtree_control from the parent. Each is configured manually.
bd53d617 4983 */
667c2491
TH
4984 if (!cgroup_on_dfl(cgrp)) {
4985 cgrp->subtree_control = parent->subtree_control;
4986 cgroup_refresh_child_subsys_mask(cgrp);
4987 }
2bd59d48 4988
2bd59d48 4989 kernfs_activate(kn);
ddbcc7e8 4990
ba0f4d76
TH
4991 ret = 0;
4992 goto out_unlock;
ddbcc7e8 4993
ba0f4d76 4994out_free_id:
6fa4918d 4995 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4996out_cancel_ref:
9a1049da 4997 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4998out_free_cgrp:
bd89aabc 4999 kfree(cgrp);
ba0f4d76 5000out_unlock:
a9746d8d 5001 cgroup_kn_unlock(parent_kn);
ba0f4d76 5002 return ret;
4b8b47eb 5003
ba0f4d76 5004out_destroy:
4b8b47eb 5005 cgroup_destroy_locked(cgrp);
ba0f4d76 5006 goto out_unlock;
ddbcc7e8
PM
5007}
5008
223dbc38
TH
5009/*
5010 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5011 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5012 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5013 */
5014static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5015{
223dbc38
TH
5016 struct cgroup_subsys_state *css =
5017 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5018
f20104de 5019 mutex_lock(&cgroup_mutex);
09a503ea 5020 offline_css(css);
f20104de 5021 mutex_unlock(&cgroup_mutex);
09a503ea 5022
09a503ea 5023 css_put(css);
d3daf28d
TH
5024}
5025
223dbc38
TH
5026/* css kill confirmation processing requires process context, bounce */
5027static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5028{
5029 struct cgroup_subsys_state *css =
5030 container_of(ref, struct cgroup_subsys_state, refcnt);
5031
223dbc38 5032 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 5033 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5034}
5035
f392e51c
TH
5036/**
5037 * kill_css - destroy a css
5038 * @css: css to destroy
5039 *
5040 * This function initiates destruction of @css by removing cgroup interface
5041 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5042 * asynchronously once css_tryget_online() is guaranteed to fail and when
5043 * the reference count reaches zero, @css will be released.
f392e51c
TH
5044 */
5045static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5046{
01f6474c 5047 lockdep_assert_held(&cgroup_mutex);
94419627 5048
2bd59d48
TH
5049 /*
5050 * This must happen before css is disassociated with its cgroup.
5051 * See seq_css() for details.
5052 */
4df8dc90 5053 css_clear_dir(css, NULL);
3c14f8b4 5054
edae0c33
TH
5055 /*
5056 * Killing would put the base ref, but we need to keep it alive
5057 * until after ->css_offline().
5058 */
5059 css_get(css);
5060
5061 /*
5062 * cgroup core guarantees that, by the time ->css_offline() is
5063 * invoked, no new css reference will be given out via
ec903c0c 5064 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5065 * proceed to offlining css's because percpu_ref_kill() doesn't
5066 * guarantee that the ref is seen as killed on all CPUs on return.
5067 *
5068 * Use percpu_ref_kill_and_confirm() to get notifications as each
5069 * css is confirmed to be seen as killed on all CPUs.
5070 */
5071 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5072}
5073
5074/**
5075 * cgroup_destroy_locked - the first stage of cgroup destruction
5076 * @cgrp: cgroup to be destroyed
5077 *
5078 * css's make use of percpu refcnts whose killing latency shouldn't be
5079 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5080 * guarantee that css_tryget_online() won't succeed by the time
5081 * ->css_offline() is invoked. To satisfy all the requirements,
5082 * destruction is implemented in the following two steps.
d3daf28d
TH
5083 *
5084 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5085 * userland visible parts and start killing the percpu refcnts of
5086 * css's. Set up so that the next stage will be kicked off once all
5087 * the percpu refcnts are confirmed to be killed.
5088 *
5089 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5090 * rest of destruction. Once all cgroup references are gone, the
5091 * cgroup is RCU-freed.
5092 *
5093 * This function implements s1. After this step, @cgrp is gone as far as
5094 * the userland is concerned and a new cgroup with the same name may be
5095 * created. As cgroup doesn't care about the names internally, this
5096 * doesn't cause any problem.
5097 */
42809dd4
TH
5098static int cgroup_destroy_locked(struct cgroup *cgrp)
5099 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5100{
2bd59d48 5101 struct cgroup_subsys_state *css;
1c6727af 5102 int ssid;
ddbcc7e8 5103
42809dd4
TH
5104 lockdep_assert_held(&cgroup_mutex);
5105
91486f61
TH
5106 /*
5107 * Only migration can raise populated from zero and we're already
5108 * holding cgroup_mutex.
5109 */
5110 if (cgroup_is_populated(cgrp))
ddbcc7e8 5111 return -EBUSY;
a043e3b2 5112
bb78a92f 5113 /*
d5c419b6
TH
5114 * Make sure there's no live children. We can't test emptiness of
5115 * ->self.children as dead children linger on it while being
5116 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5117 */
f3d46500 5118 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5119 return -EBUSY;
5120
455050d2
TH
5121 /*
5122 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5123 * creation by disabling cgroup_lock_live_group().
455050d2 5124 */
184faf32 5125 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5126
249f3468 5127 /* initiate massacre of all css's */
1c6727af
TH
5128 for_each_css(css, ssid, cgrp)
5129 kill_css(css);
455050d2 5130
455050d2 5131 /*
01f6474c
TH
5132 * Remove @cgrp directory along with the base files. @cgrp has an
5133 * extra ref on its kn.
f20104de 5134 */
01f6474c 5135 kernfs_remove(cgrp->kn);
f20104de 5136
d51f39b0 5137 check_for_release(cgroup_parent(cgrp));
2bd59d48 5138
249f3468 5139 /* put the base reference */
9d755d33 5140 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5141
ea15f8cc
TH
5142 return 0;
5143};
5144
2bd59d48 5145static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5146{
a9746d8d 5147 struct cgroup *cgrp;
2bd59d48 5148 int ret = 0;
42809dd4 5149
a9746d8d
TH
5150 cgrp = cgroup_kn_lock_live(kn);
5151 if (!cgrp)
5152 return 0;
42809dd4 5153
a9746d8d 5154 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5155
a9746d8d 5156 cgroup_kn_unlock(kn);
42809dd4 5157 return ret;
8e3f6541
TH
5158}
5159
2bd59d48
TH
5160static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5161 .remount_fs = cgroup_remount,
5162 .show_options = cgroup_show_options,
5163 .mkdir = cgroup_mkdir,
5164 .rmdir = cgroup_rmdir,
5165 .rename = cgroup_rename,
5166};
5167
15a4c835 5168static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5169{
ddbcc7e8 5170 struct cgroup_subsys_state *css;
cfe36bde 5171
a5ae9899 5172 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5173
648bb56d
TH
5174 mutex_lock(&cgroup_mutex);
5175
15a4c835 5176 idr_init(&ss->css_idr);
0adb0704 5177 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5178
3dd06ffa
TH
5179 /* Create the root cgroup state for this subsystem */
5180 ss->root = &cgrp_dfl_root;
5181 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5182 /* We don't handle early failures gracefully */
5183 BUG_ON(IS_ERR(css));
ddfcadab 5184 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5185
5186 /*
5187 * Root csses are never destroyed and we can't initialize
5188 * percpu_ref during early init. Disable refcnting.
5189 */
5190 css->flags |= CSS_NO_REF;
5191
15a4c835 5192 if (early) {
9395a450 5193 /* allocation can't be done safely during early init */
15a4c835
TH
5194 css->id = 1;
5195 } else {
5196 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5197 BUG_ON(css->id < 0);
5198 }
ddbcc7e8 5199
e8d55fde 5200 /* Update the init_css_set to contain a subsys
817929ec 5201 * pointer to this state - since the subsystem is
e8d55fde 5202 * newly registered, all tasks and hence the
3dd06ffa 5203 * init_css_set is in the subsystem's root cgroup. */
aec25020 5204 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5205
cb4a3167
AS
5206 have_fork_callback |= (bool)ss->fork << ss->id;
5207 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5208 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5209 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5210
e8d55fde
LZ
5211 /* At system boot, before all subsystems have been
5212 * registered, no tasks have been forked, so we don't
5213 * need to invoke fork callbacks here. */
5214 BUG_ON(!list_empty(&init_task.tasks));
5215
ae7f164a 5216 BUG_ON(online_css(css));
a8638030 5217
cf5d5941
BB
5218 mutex_unlock(&cgroup_mutex);
5219}
cf5d5941 5220
ddbcc7e8 5221/**
a043e3b2
LZ
5222 * cgroup_init_early - cgroup initialization at system boot
5223 *
5224 * Initialize cgroups at system boot, and initialize any
5225 * subsystems that request early init.
ddbcc7e8
PM
5226 */
5227int __init cgroup_init_early(void)
5228{
7b9a6ba5 5229 static struct cgroup_sb_opts __initdata opts;
30159ec7 5230 struct cgroup_subsys *ss;
ddbcc7e8 5231 int i;
30159ec7 5232
3dd06ffa 5233 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5234 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5235
a4ea1cc9 5236 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5237
3ed80a62 5238 for_each_subsys(ss, i) {
aec25020 5239 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5240 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5241 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5242 ss->id, ss->name);
073219e9
TH
5243 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5244 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5245
aec25020 5246 ss->id = i;
073219e9 5247 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5248 if (!ss->legacy_name)
5249 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5250
5251 if (ss->early_init)
15a4c835 5252 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5253 }
5254 return 0;
5255}
5256
a3e72739
TH
5257static unsigned long cgroup_disable_mask __initdata;
5258
ddbcc7e8 5259/**
a043e3b2
LZ
5260 * cgroup_init - cgroup initialization
5261 *
5262 * Register cgroup filesystem and /proc file, and initialize
5263 * any subsystems that didn't request early init.
ddbcc7e8
PM
5264 */
5265int __init cgroup_init(void)
5266{
30159ec7 5267 struct cgroup_subsys *ss;
0ac801fe 5268 unsigned long key;
035f4f51 5269 int ssid;
ddbcc7e8 5270
1ed13287 5271 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5272 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5273 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5274
54e7b4eb 5275 mutex_lock(&cgroup_mutex);
54e7b4eb 5276
82fe9b0d
TH
5277 /* Add init_css_set to the hash table */
5278 key = css_set_hash(init_css_set.subsys);
5279 hash_add(css_set_table, &init_css_set.hlist, key);
5280
3dd06ffa 5281 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5282
54e7b4eb
TH
5283 mutex_unlock(&cgroup_mutex);
5284
172a2c06 5285 for_each_subsys(ss, ssid) {
15a4c835
TH
5286 if (ss->early_init) {
5287 struct cgroup_subsys_state *css =
5288 init_css_set.subsys[ss->id];
5289
5290 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5291 GFP_KERNEL);
5292 BUG_ON(css->id < 0);
5293 } else {
5294 cgroup_init_subsys(ss, false);
5295 }
172a2c06 5296
2d8f243a
TH
5297 list_add_tail(&init_css_set.e_cset_node[ssid],
5298 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5299
5300 /*
c731ae1d
LZ
5301 * Setting dfl_root subsys_mask needs to consider the
5302 * disabled flag and cftype registration needs kmalloc,
5303 * both of which aren't available during early_init.
172a2c06 5304 */
a3e72739
TH
5305 if (cgroup_disable_mask & (1 << ssid)) {
5306 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5307 printk(KERN_INFO "Disabling %s control group subsystem\n",
5308 ss->name);
a8ddc821 5309 continue;
a3e72739 5310 }
a8ddc821
TH
5311
5312 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5313
5de4fa13
TH
5314 if (!ss->dfl_cftypes)
5315 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5316
a8ddc821
TH
5317 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5318 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5319 } else {
5320 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5321 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5322 }
295458e6
VD
5323
5324 if (ss->bind)
5325 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5326 }
5327
035f4f51
TH
5328 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5329 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5330 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5331 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5332
2bd59d48 5333 return 0;
ddbcc7e8 5334}
b4f48b63 5335
e5fca243
TH
5336static int __init cgroup_wq_init(void)
5337{
5338 /*
5339 * There isn't much point in executing destruction path in
5340 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5341 * Use 1 for @max_active.
e5fca243
TH
5342 *
5343 * We would prefer to do this in cgroup_init() above, but that
5344 * is called before init_workqueues(): so leave this until after.
5345 */
1a11533f 5346 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5347 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5348
5349 /*
5350 * Used to destroy pidlists and separate to serve as flush domain.
5351 * Cap @max_active to 1 too.
5352 */
5353 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5354 0, 1);
5355 BUG_ON(!cgroup_pidlist_destroy_wq);
5356
e5fca243
TH
5357 return 0;
5358}
5359core_initcall(cgroup_wq_init);
5360
a424316c
PM
5361/*
5362 * proc_cgroup_show()
5363 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5364 * - Used for /proc/<pid>/cgroup.
a424316c 5365 */
006f4ac4
ZL
5366int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5367 struct pid *pid, struct task_struct *tsk)
a424316c 5368{
e61734c5 5369 char *buf, *path;
a424316c 5370 int retval;
3dd06ffa 5371 struct cgroup_root *root;
a424316c
PM
5372
5373 retval = -ENOMEM;
e61734c5 5374 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5375 if (!buf)
5376 goto out;
5377
a424316c 5378 mutex_lock(&cgroup_mutex);
f0d9a5f1 5379 spin_lock_bh(&css_set_lock);
a424316c 5380
985ed670 5381 for_each_root(root) {
a424316c 5382 struct cgroup_subsys *ss;
bd89aabc 5383 struct cgroup *cgrp;
b85d2040 5384 int ssid, count = 0;
a424316c 5385
a2dd4247 5386 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5387 continue;
5388
2c6ab6d2 5389 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5390 if (root != &cgrp_dfl_root)
5391 for_each_subsys(ss, ssid)
5392 if (root->subsys_mask & (1 << ssid))
5393 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5394 ss->legacy_name);
c6d57f33
PM
5395 if (strlen(root->name))
5396 seq_printf(m, "%sname=%s", count ? "," : "",
5397 root->name);
a424316c 5398 seq_putc(m, ':');
2e91fa7f 5399
7717f7ba 5400 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5401
5402 /*
5403 * On traditional hierarchies, all zombie tasks show up as
5404 * belonging to the root cgroup. On the default hierarchy,
5405 * while a zombie doesn't show up in "cgroup.procs" and
5406 * thus can't be migrated, its /proc/PID/cgroup keeps
5407 * reporting the cgroup it belonged to before exiting. If
5408 * the cgroup is removed before the zombie is reaped,
5409 * " (deleted)" is appended to the cgroup path.
5410 */
5411 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5412 path = cgroup_path(cgrp, buf, PATH_MAX);
5413 if (!path) {
5414 retval = -ENAMETOOLONG;
5415 goto out_unlock;
5416 }
5417 } else {
5418 path = "/";
e61734c5 5419 }
2e91fa7f 5420
e61734c5 5421 seq_puts(m, path);
2e91fa7f
TH
5422
5423 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5424 seq_puts(m, " (deleted)\n");
5425 else
5426 seq_putc(m, '\n');
a424316c
PM
5427 }
5428
006f4ac4 5429 retval = 0;
a424316c 5430out_unlock:
f0d9a5f1 5431 spin_unlock_bh(&css_set_lock);
a424316c 5432 mutex_unlock(&cgroup_mutex);
a424316c
PM
5433 kfree(buf);
5434out:
5435 return retval;
5436}
5437
a424316c
PM
5438/* Display information about each subsystem and each hierarchy */
5439static int proc_cgroupstats_show(struct seq_file *m, void *v)
5440{
30159ec7 5441 struct cgroup_subsys *ss;
a424316c 5442 int i;
a424316c 5443
8bab8dde 5444 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5445 /*
5446 * ideally we don't want subsystems moving around while we do this.
5447 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5448 * subsys/hierarchy state.
5449 */
a424316c 5450 mutex_lock(&cgroup_mutex);
30159ec7
TH
5451
5452 for_each_subsys(ss, i)
2c6ab6d2 5453 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5454 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5455 atomic_read(&ss->root->nr_cgrps),
5456 cgroup_ssid_enabled(i));
30159ec7 5457
a424316c
PM
5458 mutex_unlock(&cgroup_mutex);
5459 return 0;
5460}
5461
5462static int cgroupstats_open(struct inode *inode, struct file *file)
5463{
9dce07f1 5464 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5465}
5466
828c0950 5467static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5468 .open = cgroupstats_open,
5469 .read = seq_read,
5470 .llseek = seq_lseek,
5471 .release = single_release,
5472};
5473
b4f48b63 5474/**
eaf797ab 5475 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5476 * @child: pointer to task_struct of forking parent process.
b4f48b63 5477 *
eaf797ab
TH
5478 * A task is associated with the init_css_set until cgroup_post_fork()
5479 * attaches it to the parent's css_set. Empty cg_list indicates that
5480 * @child isn't holding reference to its css_set.
b4f48b63
PM
5481 */
5482void cgroup_fork(struct task_struct *child)
5483{
eaf797ab 5484 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5485 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5486}
5487
7e47682e
AS
5488/**
5489 * cgroup_can_fork - called on a new task before the process is exposed
5490 * @child: the task in question.
5491 *
5492 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5493 * returns an error, the fork aborts with that error code. This allows for
5494 * a cgroup subsystem to conditionally allow or deny new forks.
5495 */
b53202e6 5496int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5497{
5498 struct cgroup_subsys *ss;
5499 int i, j, ret;
5500
5501 for_each_subsys_which(ss, i, &have_canfork_callback) {
b53202e6 5502 ret = ss->can_fork(child);
7e47682e
AS
5503 if (ret)
5504 goto out_revert;
5505 }
5506
5507 return 0;
5508
5509out_revert:
5510 for_each_subsys(ss, j) {
5511 if (j >= i)
5512 break;
5513 if (ss->cancel_fork)
b53202e6 5514 ss->cancel_fork(child);
7e47682e
AS
5515 }
5516
5517 return ret;
5518}
5519
5520/**
5521 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5522 * @child: the task in question
5523 *
5524 * This calls the cancel_fork() callbacks if a fork failed *after*
5525 * cgroup_can_fork() succeded.
5526 */
b53202e6 5527void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5528{
5529 struct cgroup_subsys *ss;
5530 int i;
5531
5532 for_each_subsys(ss, i)
5533 if (ss->cancel_fork)
b53202e6 5534 ss->cancel_fork(child);
7e47682e
AS
5535}
5536
817929ec 5537/**
a043e3b2
LZ
5538 * cgroup_post_fork - called on a new task after adding it to the task list
5539 * @child: the task in question
5540 *
5edee61e
TH
5541 * Adds the task to the list running through its css_set if necessary and
5542 * call the subsystem fork() callbacks. Has to be after the task is
5543 * visible on the task list in case we race with the first call to
0942eeee 5544 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5545 * list.
a043e3b2 5546 */
b53202e6 5547void cgroup_post_fork(struct task_struct *child)
817929ec 5548{
30159ec7 5549 struct cgroup_subsys *ss;
5edee61e
TH
5550 int i;
5551
3ce3230a 5552 /*
251f8c03 5553 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5554 * function sets use_task_css_set_links before grabbing
5555 * tasklist_lock and we just went through tasklist_lock to add
5556 * @child, it's guaranteed that either we see the set
5557 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5558 * @child during its iteration.
5559 *
5560 * If we won the race, @child is associated with %current's
f0d9a5f1 5561 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5562 * association is stable, and, on completion of the parent's
5563 * migration, @child is visible in the source of migration or
5564 * already in the destination cgroup. This guarantee is necessary
5565 * when implementing operations which need to migrate all tasks of
5566 * a cgroup to another.
5567 *
251f8c03 5568 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5569 * will remain in init_css_set. This is safe because all tasks are
5570 * in the init_css_set before cg_links is enabled and there's no
5571 * operation which transfers all tasks out of init_css_set.
3ce3230a 5572 */
817929ec 5573 if (use_task_css_set_links) {
eaf797ab
TH
5574 struct css_set *cset;
5575
f0d9a5f1 5576 spin_lock_bh(&css_set_lock);
0e1d768f 5577 cset = task_css_set(current);
eaf797ab 5578 if (list_empty(&child->cg_list)) {
eaf797ab 5579 get_css_set(cset);
f6d7d049 5580 css_set_move_task(child, NULL, cset, false);
eaf797ab 5581 }
f0d9a5f1 5582 spin_unlock_bh(&css_set_lock);
817929ec 5583 }
5edee61e
TH
5584
5585 /*
5586 * Call ss->fork(). This must happen after @child is linked on
5587 * css_set; otherwise, @child might change state between ->fork()
5588 * and addition to css_set.
5589 */
cb4a3167 5590 for_each_subsys_which(ss, i, &have_fork_callback)
b53202e6 5591 ss->fork(child);
817929ec 5592}
5edee61e 5593
b4f48b63
PM
5594/**
5595 * cgroup_exit - detach cgroup from exiting task
5596 * @tsk: pointer to task_struct of exiting process
5597 *
5598 * Description: Detach cgroup from @tsk and release it.
5599 *
5600 * Note that cgroups marked notify_on_release force every task in
5601 * them to take the global cgroup_mutex mutex when exiting.
5602 * This could impact scaling on very large systems. Be reluctant to
5603 * use notify_on_release cgroups where very high task exit scaling
5604 * is required on large systems.
5605 *
0e1d768f
TH
5606 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5607 * call cgroup_exit() while the task is still competent to handle
5608 * notify_on_release(), then leave the task attached to the root cgroup in
5609 * each hierarchy for the remainder of its exit. No need to bother with
5610 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5611 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5612 */
1ec41830 5613void cgroup_exit(struct task_struct *tsk)
b4f48b63 5614{
30159ec7 5615 struct cgroup_subsys *ss;
5abb8855 5616 struct css_set *cset;
d41d5a01 5617 int i;
817929ec
PM
5618
5619 /*
0e1d768f 5620 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5621 * with us, we can check css_set and cg_list without synchronization.
817929ec 5622 */
0de0942d
TH
5623 cset = task_css_set(tsk);
5624
817929ec 5625 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5626 spin_lock_bh(&css_set_lock);
f6d7d049 5627 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5628 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5629 } else {
5630 get_css_set(cset);
817929ec
PM
5631 }
5632
cb4a3167 5633 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5634 for_each_subsys_which(ss, i, &have_exit_callback)
5635 ss->exit(tsk);
5636}
30159ec7 5637
2e91fa7f
TH
5638void cgroup_free(struct task_struct *task)
5639{
5640 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5641 struct cgroup_subsys *ss;
5642 int ssid;
5643
5644 for_each_subsys_which(ss, ssid, &have_free_callback)
5645 ss->free(task);
d41d5a01 5646
2e91fa7f 5647 put_css_set(cset);
b4f48b63 5648}
697f4161 5649
bd89aabc 5650static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5651{
27bd4dbb 5652 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5653 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5654 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5655}
5656
81a6a5cd
PM
5657/*
5658 * Notify userspace when a cgroup is released, by running the
5659 * configured release agent with the name of the cgroup (path
5660 * relative to the root of cgroup file system) as the argument.
5661 *
5662 * Most likely, this user command will try to rmdir this cgroup.
5663 *
5664 * This races with the possibility that some other task will be
5665 * attached to this cgroup before it is removed, or that some other
5666 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5667 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5668 * unused, and this cgroup will be reprieved from its death sentence,
5669 * to continue to serve a useful existence. Next time it's released,
5670 * we will get notified again, if it still has 'notify_on_release' set.
5671 *
5672 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5673 * means only wait until the task is successfully execve()'d. The
5674 * separate release agent task is forked by call_usermodehelper(),
5675 * then control in this thread returns here, without waiting for the
5676 * release agent task. We don't bother to wait because the caller of
5677 * this routine has no use for the exit status of the release agent
5678 * task, so no sense holding our caller up for that.
81a6a5cd 5679 */
81a6a5cd
PM
5680static void cgroup_release_agent(struct work_struct *work)
5681{
971ff493
ZL
5682 struct cgroup *cgrp =
5683 container_of(work, struct cgroup, release_agent_work);
5684 char *pathbuf = NULL, *agentbuf = NULL, *path;
5685 char *argv[3], *envp[3];
5686
81a6a5cd 5687 mutex_lock(&cgroup_mutex);
971ff493
ZL
5688
5689 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5690 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5691 if (!pathbuf || !agentbuf)
5692 goto out;
5693
5694 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5695 if (!path)
5696 goto out;
5697
5698 argv[0] = agentbuf;
5699 argv[1] = path;
5700 argv[2] = NULL;
5701
5702 /* minimal command environment */
5703 envp[0] = "HOME=/";
5704 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5705 envp[2] = NULL;
5706
81a6a5cd 5707 mutex_unlock(&cgroup_mutex);
971ff493 5708 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5709 goto out_free;
971ff493 5710out:
81a6a5cd 5711 mutex_unlock(&cgroup_mutex);
3e2cd91a 5712out_free:
971ff493
ZL
5713 kfree(agentbuf);
5714 kfree(pathbuf);
81a6a5cd 5715}
8bab8dde
PM
5716
5717static int __init cgroup_disable(char *str)
5718{
30159ec7 5719 struct cgroup_subsys *ss;
8bab8dde 5720 char *token;
30159ec7 5721 int i;
8bab8dde
PM
5722
5723 while ((token = strsep(&str, ",")) != NULL) {
5724 if (!*token)
5725 continue;
be45c900 5726
3ed80a62 5727 for_each_subsys(ss, i) {
3e1d2eed
TH
5728 if (strcmp(token, ss->name) &&
5729 strcmp(token, ss->legacy_name))
5730 continue;
a3e72739 5731 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5732 }
5733 }
5734 return 1;
5735}
5736__setup("cgroup_disable=", cgroup_disable);
38460b48 5737
b77d7b60 5738/**
ec903c0c 5739 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5740 * @dentry: directory dentry of interest
5741 * @ss: subsystem of interest
b77d7b60 5742 *
5a17f543
TH
5743 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5744 * to get the corresponding css and return it. If such css doesn't exist
5745 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5746 */
ec903c0c
TH
5747struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5748 struct cgroup_subsys *ss)
e5d1367f 5749{
2bd59d48
TH
5750 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5751 struct cgroup_subsys_state *css = NULL;
e5d1367f 5752 struct cgroup *cgrp;
e5d1367f 5753
35cf0836 5754 /* is @dentry a cgroup dir? */
2bd59d48
TH
5755 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5756 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5757 return ERR_PTR(-EBADF);
5758
5a17f543
TH
5759 rcu_read_lock();
5760
2bd59d48
TH
5761 /*
5762 * This path doesn't originate from kernfs and @kn could already
5763 * have been or be removed at any point. @kn->priv is RCU
a4189487 5764 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5765 */
5766 cgrp = rcu_dereference(kn->priv);
5767 if (cgrp)
5768 css = cgroup_css(cgrp, ss);
5a17f543 5769
ec903c0c 5770 if (!css || !css_tryget_online(css))
5a17f543
TH
5771 css = ERR_PTR(-ENOENT);
5772
5773 rcu_read_unlock();
5774 return css;
e5d1367f 5775}
e5d1367f 5776
1cb650b9
LZ
5777/**
5778 * css_from_id - lookup css by id
5779 * @id: the cgroup id
5780 * @ss: cgroup subsys to be looked into
5781 *
5782 * Returns the css if there's valid one with @id, otherwise returns NULL.
5783 * Should be called under rcu_read_lock().
5784 */
5785struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5786{
6fa4918d 5787 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5788 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5789}
5790
16af4396
TH
5791/**
5792 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5793 * @path: path on the default hierarchy
5794 *
5795 * Find the cgroup at @path on the default hierarchy, increment its
5796 * reference count and return it. Returns pointer to the found cgroup on
5797 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5798 * if @path points to a non-directory.
5799 */
5800struct cgroup *cgroup_get_from_path(const char *path)
5801{
5802 struct kernfs_node *kn;
5803 struct cgroup *cgrp;
5804
5805 mutex_lock(&cgroup_mutex);
5806
5807 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5808 if (kn) {
5809 if (kernfs_type(kn) == KERNFS_DIR) {
5810 cgrp = kn->priv;
5811 cgroup_get(cgrp);
5812 } else {
5813 cgrp = ERR_PTR(-ENOTDIR);
5814 }
5815 kernfs_put(kn);
5816 } else {
5817 cgrp = ERR_PTR(-ENOENT);
5818 }
5819
5820 mutex_unlock(&cgroup_mutex);
5821 return cgrp;
5822}
5823EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5824
bd1060a1
TH
5825/*
5826 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5827 * definition in cgroup-defs.h.
5828 */
5829#ifdef CONFIG_SOCK_CGROUP_DATA
5830
5831#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5832
3fa4cc9c 5833DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
5834static bool cgroup_sk_alloc_disabled __read_mostly;
5835
5836void cgroup_sk_alloc_disable(void)
5837{
5838 if (cgroup_sk_alloc_disabled)
5839 return;
5840 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5841 cgroup_sk_alloc_disabled = true;
5842}
5843
5844#else
5845
5846#define cgroup_sk_alloc_disabled false
5847
5848#endif
5849
5850void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5851{
5852 if (cgroup_sk_alloc_disabled)
5853 return;
5854
5855 rcu_read_lock();
5856
5857 while (true) {
5858 struct css_set *cset;
5859
5860 cset = task_css_set(current);
5861 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5862 skcd->val = (unsigned long)cset->dfl_cgrp;
5863 break;
5864 }
5865 cpu_relax();
5866 }
5867
5868 rcu_read_unlock();
5869}
5870
5871void cgroup_sk_free(struct sock_cgroup_data *skcd)
5872{
5873 cgroup_put(sock_cgroup_ptr(skcd));
5874}
5875
5876#endif /* CONFIG_SOCK_CGROUP_DATA */
5877
fe693435 5878#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5879static struct cgroup_subsys_state *
5880debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5881{
5882 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5883
5884 if (!css)
5885 return ERR_PTR(-ENOMEM);
5886
5887 return css;
5888}
5889
eb95419b 5890static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5891{
eb95419b 5892 kfree(css);
fe693435
PM
5893}
5894
182446d0
TH
5895static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5896 struct cftype *cft)
fe693435 5897{
182446d0 5898 return cgroup_task_count(css->cgroup);
fe693435
PM
5899}
5900
182446d0
TH
5901static u64 current_css_set_read(struct cgroup_subsys_state *css,
5902 struct cftype *cft)
fe693435
PM
5903{
5904 return (u64)(unsigned long)current->cgroups;
5905}
5906
182446d0 5907static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5908 struct cftype *cft)
fe693435
PM
5909{
5910 u64 count;
5911
5912 rcu_read_lock();
a8ad805c 5913 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5914 rcu_read_unlock();
5915 return count;
5916}
5917
2da8ca82 5918static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5919{
69d0206c 5920 struct cgrp_cset_link *link;
5abb8855 5921 struct css_set *cset;
e61734c5
TH
5922 char *name_buf;
5923
5924 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5925 if (!name_buf)
5926 return -ENOMEM;
7717f7ba 5927
f0d9a5f1 5928 spin_lock_bh(&css_set_lock);
7717f7ba 5929 rcu_read_lock();
5abb8855 5930 cset = rcu_dereference(current->cgroups);
69d0206c 5931 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5932 struct cgroup *c = link->cgrp;
7717f7ba 5933
a2dd4247 5934 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5935 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5936 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5937 }
5938 rcu_read_unlock();
f0d9a5f1 5939 spin_unlock_bh(&css_set_lock);
e61734c5 5940 kfree(name_buf);
7717f7ba
PM
5941 return 0;
5942}
5943
5944#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5945static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5946{
2da8ca82 5947 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5948 struct cgrp_cset_link *link;
7717f7ba 5949
f0d9a5f1 5950 spin_lock_bh(&css_set_lock);
182446d0 5951 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5952 struct css_set *cset = link->cset;
7717f7ba
PM
5953 struct task_struct *task;
5954 int count = 0;
c7561128 5955
5abb8855 5956 seq_printf(seq, "css_set %p\n", cset);
c7561128 5957
5abb8855 5958 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5959 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5960 goto overflow;
5961 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5962 }
5963
5964 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5965 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5966 goto overflow;
5967 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5968 }
c7561128
TH
5969 continue;
5970 overflow:
5971 seq_puts(seq, " ...\n");
7717f7ba 5972 }
f0d9a5f1 5973 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5974 return 0;
5975}
5976
182446d0 5977static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5978{
27bd4dbb 5979 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5980 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5981}
5982
5983static struct cftype debug_files[] = {
fe693435
PM
5984 {
5985 .name = "taskcount",
5986 .read_u64 = debug_taskcount_read,
5987 },
5988
5989 {
5990 .name = "current_css_set",
5991 .read_u64 = current_css_set_read,
5992 },
5993
5994 {
5995 .name = "current_css_set_refcount",
5996 .read_u64 = current_css_set_refcount_read,
5997 },
5998
7717f7ba
PM
5999 {
6000 .name = "current_css_set_cg_links",
2da8ca82 6001 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6002 },
6003
6004 {
6005 .name = "cgroup_css_links",
2da8ca82 6006 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6007 },
6008
fe693435
PM
6009 {
6010 .name = "releasable",
6011 .read_u64 = releasable_read,
6012 },
fe693435 6013
4baf6e33
TH
6014 { } /* terminate */
6015};
fe693435 6016
073219e9 6017struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6018 .css_alloc = debug_css_alloc,
6019 .css_free = debug_css_free,
5577964e 6020 .legacy_cftypes = debug_files,
fe693435
PM
6021};
6022#endif /* CONFIG_CGROUP_DEBUG */