Merge tag 'module_init-alternate_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm...
[linux-2.6-block.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
d59cfc09 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
d59cfc09
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
110 rcu_lockdep_assert(rcu_read_lock_held() || \
111 lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
ddbcc7e8 142/*
3dd06ffa 143 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
ddbcc7e8 146 */
a2dd4247 147struct cgroup_root cgrp_dfl_root;
9871bf95 148
a2dd4247
TH
149/*
150 * The default hierarchy always exists but is hidden until mounted for the
151 * first time. This is for backward compatibility.
152 */
153static bool cgrp_dfl_root_visible;
ddbcc7e8 154
a8ddc821
TH
155/*
156 * Set by the boot param of the same name and makes subsystems with NULL
157 * ->dfl_files to use ->legacy_files on the default hierarchy.
158 */
159static bool cgroup_legacy_files_on_dfl;
160
5533e011 161/* some controllers are not supported in the default hierarchy */
8ab456ac 162static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 163
ddbcc7e8
PM
164/* The list of hierarchy roots */
165
9871bf95
TH
166static LIST_HEAD(cgroup_roots);
167static int cgroup_root_count;
ddbcc7e8 168
3417ae1f 169/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 170static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 171
794611a1 172/*
0cb51d71
TH
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
794611a1 178 */
0cb51d71 179static u64 css_serial_nr_next = 1;
794611a1 180
cb4a3167
AS
181/*
182 * These bitmask flags indicate whether tasks in the fork and exit paths have
183 * fork/exit handlers to call. This avoids us having to do extra work in the
184 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 185 */
cb4a3167
AS
186static unsigned long have_fork_callback __read_mostly;
187static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 188
a14c6874
TH
189static struct cftype cgroup_dfl_base_files[];
190static struct cftype cgroup_legacy_base_files[];
628f7cd4 191
3dd06ffa 192static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 193 unsigned long ss_mask);
42809dd4 194static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
195static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
196 bool visible);
9d755d33 197static void css_release(struct percpu_ref *ref);
f8f22e53 198static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
199static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
200 bool is_add);
42809dd4 201
6fa4918d
TH
202/* IDR wrappers which synchronize using cgroup_idr_lock */
203static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
204 gfp_t gfp_mask)
205{
206 int ret;
207
208 idr_preload(gfp_mask);
54504e97 209 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 210 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 211 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
212 idr_preload_end();
213 return ret;
214}
215
216static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
217{
218 void *ret;
219
54504e97 220 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 221 ret = idr_replace(idr, ptr, id);
54504e97 222 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
223 return ret;
224}
225
226static void cgroup_idr_remove(struct idr *idr, int id)
227{
54504e97 228 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 229 idr_remove(idr, id);
54504e97 230 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
231}
232
d51f39b0
TH
233static struct cgroup *cgroup_parent(struct cgroup *cgrp)
234{
235 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
236
237 if (parent_css)
238 return container_of(parent_css, struct cgroup, self);
239 return NULL;
240}
241
95109b62
TH
242/**
243 * cgroup_css - obtain a cgroup's css for the specified subsystem
244 * @cgrp: the cgroup of interest
9d800df1 245 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 246 *
ca8bdcaf
TH
247 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
248 * function must be called either under cgroup_mutex or rcu_read_lock() and
249 * the caller is responsible for pinning the returned css if it wants to
250 * keep accessing it outside the said locks. This function may return
251 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
252 */
253static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 254 struct cgroup_subsys *ss)
95109b62 255{
ca8bdcaf 256 if (ss)
aec25020 257 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 258 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 259 else
9d800df1 260 return &cgrp->self;
95109b62 261}
42809dd4 262
aec3dfcb
TH
263/**
264 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
265 * @cgrp: the cgroup of interest
9d800df1 266 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 267 *
d0f702e6 268 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
269 * as the matching css of the nearest ancestor including self which has @ss
270 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
271 * function is guaranteed to return non-NULL css.
272 */
273static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
274 struct cgroup_subsys *ss)
275{
276 lockdep_assert_held(&cgroup_mutex);
277
278 if (!ss)
9d800df1 279 return &cgrp->self;
aec3dfcb
TH
280
281 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
282 return NULL;
283
eeecbd19
TH
284 /*
285 * This function is used while updating css associations and thus
286 * can't test the csses directly. Use ->child_subsys_mask.
287 */
d51f39b0
TH
288 while (cgroup_parent(cgrp) &&
289 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
290 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
291
292 return cgroup_css(cgrp, ss);
95109b62 293}
42809dd4 294
eeecbd19
TH
295/**
296 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
297 * @cgrp: the cgroup of interest
298 * @ss: the subsystem of interest
299 *
300 * Find and get the effective css of @cgrp for @ss. The effective css is
301 * defined as the matching css of the nearest ancestor including self which
302 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
303 * the root css is returned, so this function always returns a valid css.
304 * The returned css must be put using css_put().
305 */
306struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
307 struct cgroup_subsys *ss)
308{
309 struct cgroup_subsys_state *css;
310
311 rcu_read_lock();
312
313 do {
314 css = cgroup_css(cgrp, ss);
315
316 if (css && css_tryget_online(css))
317 goto out_unlock;
318 cgrp = cgroup_parent(cgrp);
319 } while (cgrp);
320
321 css = init_css_set.subsys[ss->id];
322 css_get(css);
323out_unlock:
324 rcu_read_unlock();
325 return css;
326}
327
ddbcc7e8 328/* convenient tests for these bits */
54766d4a 329static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 330{
184faf32 331 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
332}
333
b4168640 334struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 335{
2bd59d48 336 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 337 struct cftype *cft = of_cft(of);
2bd59d48
TH
338
339 /*
340 * This is open and unprotected implementation of cgroup_css().
341 * seq_css() is only called from a kernfs file operation which has
342 * an active reference on the file. Because all the subsystem
343 * files are drained before a css is disassociated with a cgroup,
344 * the matching css from the cgroup's subsys table is guaranteed to
345 * be and stay valid until the enclosing operation is complete.
346 */
347 if (cft->ss)
348 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
349 else
9d800df1 350 return &cgrp->self;
59f5296b 351}
b4168640 352EXPORT_SYMBOL_GPL(of_css);
59f5296b 353
78574cf9
LZ
354/**
355 * cgroup_is_descendant - test ancestry
356 * @cgrp: the cgroup to be tested
357 * @ancestor: possible ancestor of @cgrp
358 *
359 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
360 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
361 * and @ancestor are accessible.
362 */
363bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
364{
365 while (cgrp) {
366 if (cgrp == ancestor)
367 return true;
d51f39b0 368 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
369 }
370 return false;
371}
ddbcc7e8 372
e9685a03 373static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 374{
bd89aabc 375 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
376}
377
1c6727af
TH
378/**
379 * for_each_css - iterate all css's of a cgroup
380 * @css: the iteration cursor
381 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
382 * @cgrp: the target cgroup to iterate css's of
383 *
aec3dfcb 384 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
385 */
386#define for_each_css(css, ssid, cgrp) \
387 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
388 if (!((css) = rcu_dereference_check( \
389 (cgrp)->subsys[(ssid)], \
390 lockdep_is_held(&cgroup_mutex)))) { } \
391 else
392
aec3dfcb
TH
393/**
394 * for_each_e_css - iterate all effective css's of a cgroup
395 * @css: the iteration cursor
396 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
397 * @cgrp: the target cgroup to iterate css's of
398 *
399 * Should be called under cgroup_[tree_]mutex.
400 */
401#define for_each_e_css(css, ssid, cgrp) \
402 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
403 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
404 ; \
405 else
406
30159ec7 407/**
3ed80a62 408 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 409 * @ss: the iteration cursor
780cd8b3 410 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 411 */
780cd8b3 412#define for_each_subsys(ss, ssid) \
3ed80a62
TH
413 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
414 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 415
cb4a3167
AS
416/**
417 * for_each_subsys_which - filter for_each_subsys with a bitmask
418 * @ss: the iteration cursor
419 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
420 * @ss_maskp: a pointer to the bitmask
421 *
422 * The block will only run for cases where the ssid-th bit (1 << ssid) of
423 * mask is set to 1.
424 */
425#define for_each_subsys_which(ss, ssid, ss_maskp) \
426 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 427 (ssid) = 0; \
cb4a3167
AS
428 else \
429 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
430 if (((ss) = cgroup_subsys[ssid]) && false) \
431 break; \
432 else
433
985ed670
TH
434/* iterate across the hierarchies */
435#define for_each_root(root) \
5549c497 436 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 437
f8f22e53
TH
438/* iterate over child cgrps, lock should be held throughout iteration */
439#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 440 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 441 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
442 cgroup_is_dead(child); })) \
443 ; \
444 else
7ae1bad9 445
81a6a5cd 446static void cgroup_release_agent(struct work_struct *work);
bd89aabc 447static void check_for_release(struct cgroup *cgrp);
81a6a5cd 448
69d0206c
TH
449/*
450 * A cgroup can be associated with multiple css_sets as different tasks may
451 * belong to different cgroups on different hierarchies. In the other
452 * direction, a css_set is naturally associated with multiple cgroups.
453 * This M:N relationship is represented by the following link structure
454 * which exists for each association and allows traversing the associations
455 * from both sides.
456 */
457struct cgrp_cset_link {
458 /* the cgroup and css_set this link associates */
459 struct cgroup *cgrp;
460 struct css_set *cset;
461
462 /* list of cgrp_cset_links anchored at cgrp->cset_links */
463 struct list_head cset_link;
464
465 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
466 struct list_head cgrp_link;
817929ec
PM
467};
468
172a2c06
TH
469/*
470 * The default css_set - used by init and its children prior to any
817929ec
PM
471 * hierarchies being mounted. It contains a pointer to the root state
472 * for each subsystem. Also used to anchor the list of css_sets. Not
473 * reference-counted, to improve performance when child cgroups
474 * haven't been created.
475 */
5024ae29 476struct css_set init_css_set = {
172a2c06
TH
477 .refcount = ATOMIC_INIT(1),
478 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
479 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
480 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
481 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
482 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
483};
817929ec 484
172a2c06 485static int css_set_count = 1; /* 1 for init_css_set */
817929ec 486
842b597e
TH
487/**
488 * cgroup_update_populated - updated populated count of a cgroup
489 * @cgrp: the target cgroup
490 * @populated: inc or dec populated count
491 *
492 * @cgrp is either getting the first task (css_set) or losing the last.
493 * Update @cgrp->populated_cnt accordingly. The count is propagated
494 * towards root so that a given cgroup's populated_cnt is zero iff the
495 * cgroup and all its descendants are empty.
496 *
497 * @cgrp's interface file "cgroup.populated" is zero if
498 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
499 * changes from or to zero, userland is notified that the content of the
500 * interface file has changed. This can be used to detect when @cgrp and
501 * its descendants become populated or empty.
502 */
503static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
504{
505 lockdep_assert_held(&css_set_rwsem);
506
507 do {
508 bool trigger;
509
510 if (populated)
511 trigger = !cgrp->populated_cnt++;
512 else
513 trigger = !--cgrp->populated_cnt;
514
515 if (!trigger)
516 break;
517
518 if (cgrp->populated_kn)
519 kernfs_notify(cgrp->populated_kn);
d51f39b0 520 cgrp = cgroup_parent(cgrp);
842b597e
TH
521 } while (cgrp);
522}
523
7717f7ba
PM
524/*
525 * hash table for cgroup groups. This improves the performance to find
526 * an existing css_set. This hash doesn't (currently) take into
527 * account cgroups in empty hierarchies.
528 */
472b1053 529#define CSS_SET_HASH_BITS 7
0ac801fe 530static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 531
0ac801fe 532static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 533{
0ac801fe 534 unsigned long key = 0UL;
30159ec7
TH
535 struct cgroup_subsys *ss;
536 int i;
472b1053 537
30159ec7 538 for_each_subsys(ss, i)
0ac801fe
LZ
539 key += (unsigned long)css[i];
540 key = (key >> 16) ^ key;
472b1053 541
0ac801fe 542 return key;
472b1053
LZ
543}
544
a25eb52e 545static void put_css_set_locked(struct css_set *cset)
b4f48b63 546{
69d0206c 547 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
548 struct cgroup_subsys *ss;
549 int ssid;
5abb8855 550
89c5509b
TH
551 lockdep_assert_held(&css_set_rwsem);
552
553 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 554 return;
81a6a5cd 555
2c6ab6d2 556 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
557 for_each_subsys(ss, ssid)
558 list_del(&cset->e_cset_node[ssid]);
5abb8855 559 hash_del(&cset->hlist);
2c6ab6d2
PM
560 css_set_count--;
561
69d0206c 562 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 563 struct cgroup *cgrp = link->cgrp;
5abb8855 564
69d0206c
TH
565 list_del(&link->cset_link);
566 list_del(&link->cgrp_link);
71b5707e 567
96d365e0 568 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
569 if (list_empty(&cgrp->cset_links)) {
570 cgroup_update_populated(cgrp, false);
a25eb52e 571 check_for_release(cgrp);
81a6a5cd 572 }
2c6ab6d2
PM
573
574 kfree(link);
81a6a5cd 575 }
2c6ab6d2 576
5abb8855 577 kfree_rcu(cset, rcu_head);
b4f48b63
PM
578}
579
a25eb52e 580static void put_css_set(struct css_set *cset)
89c5509b
TH
581{
582 /*
583 * Ensure that the refcount doesn't hit zero while any readers
584 * can see it. Similar to atomic_dec_and_lock(), but for an
585 * rwlock
586 */
587 if (atomic_add_unless(&cset->refcount, -1, 1))
588 return;
589
590 down_write(&css_set_rwsem);
a25eb52e 591 put_css_set_locked(cset);
89c5509b
TH
592 up_write(&css_set_rwsem);
593}
594
817929ec
PM
595/*
596 * refcounted get/put for css_set objects
597 */
5abb8855 598static inline void get_css_set(struct css_set *cset)
817929ec 599{
5abb8855 600 atomic_inc(&cset->refcount);
817929ec
PM
601}
602
b326f9d0 603/**
7717f7ba 604 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
605 * @cset: candidate css_set being tested
606 * @old_cset: existing css_set for a task
7717f7ba
PM
607 * @new_cgrp: cgroup that's being entered by the task
608 * @template: desired set of css pointers in css_set (pre-calculated)
609 *
6f4b7e63 610 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
611 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
612 */
5abb8855
TH
613static bool compare_css_sets(struct css_set *cset,
614 struct css_set *old_cset,
7717f7ba
PM
615 struct cgroup *new_cgrp,
616 struct cgroup_subsys_state *template[])
617{
618 struct list_head *l1, *l2;
619
aec3dfcb
TH
620 /*
621 * On the default hierarchy, there can be csets which are
622 * associated with the same set of cgroups but different csses.
623 * Let's first ensure that csses match.
624 */
625 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 626 return false;
7717f7ba
PM
627
628 /*
629 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
630 * different cgroups in hierarchies. As different cgroups may
631 * share the same effective css, this comparison is always
632 * necessary.
7717f7ba 633 */
69d0206c
TH
634 l1 = &cset->cgrp_links;
635 l2 = &old_cset->cgrp_links;
7717f7ba 636 while (1) {
69d0206c 637 struct cgrp_cset_link *link1, *link2;
5abb8855 638 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
639
640 l1 = l1->next;
641 l2 = l2->next;
642 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
643 if (l1 == &cset->cgrp_links) {
644 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
645 break;
646 } else {
69d0206c 647 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
648 }
649 /* Locate the cgroups associated with these links. */
69d0206c
TH
650 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
651 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
652 cgrp1 = link1->cgrp;
653 cgrp2 = link2->cgrp;
7717f7ba 654 /* Hierarchies should be linked in the same order. */
5abb8855 655 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
656
657 /*
658 * If this hierarchy is the hierarchy of the cgroup
659 * that's changing, then we need to check that this
660 * css_set points to the new cgroup; if it's any other
661 * hierarchy, then this css_set should point to the
662 * same cgroup as the old css_set.
663 */
5abb8855
TH
664 if (cgrp1->root == new_cgrp->root) {
665 if (cgrp1 != new_cgrp)
7717f7ba
PM
666 return false;
667 } else {
5abb8855 668 if (cgrp1 != cgrp2)
7717f7ba
PM
669 return false;
670 }
671 }
672 return true;
673}
674
b326f9d0
TH
675/**
676 * find_existing_css_set - init css array and find the matching css_set
677 * @old_cset: the css_set that we're using before the cgroup transition
678 * @cgrp: the cgroup that we're moving into
679 * @template: out param for the new set of csses, should be clear on entry
817929ec 680 */
5abb8855
TH
681static struct css_set *find_existing_css_set(struct css_set *old_cset,
682 struct cgroup *cgrp,
683 struct cgroup_subsys_state *template[])
b4f48b63 684{
3dd06ffa 685 struct cgroup_root *root = cgrp->root;
30159ec7 686 struct cgroup_subsys *ss;
5abb8855 687 struct css_set *cset;
0ac801fe 688 unsigned long key;
b326f9d0 689 int i;
817929ec 690
aae8aab4
BB
691 /*
692 * Build the set of subsystem state objects that we want to see in the
693 * new css_set. while subsystems can change globally, the entries here
694 * won't change, so no need for locking.
695 */
30159ec7 696 for_each_subsys(ss, i) {
f392e51c 697 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
698 /*
699 * @ss is in this hierarchy, so we want the
700 * effective css from @cgrp.
701 */
702 template[i] = cgroup_e_css(cgrp, ss);
817929ec 703 } else {
aec3dfcb
TH
704 /*
705 * @ss is not in this hierarchy, so we don't want
706 * to change the css.
707 */
5abb8855 708 template[i] = old_cset->subsys[i];
817929ec
PM
709 }
710 }
711
0ac801fe 712 key = css_set_hash(template);
5abb8855
TH
713 hash_for_each_possible(css_set_table, cset, hlist, key) {
714 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
715 continue;
716
717 /* This css_set matches what we need */
5abb8855 718 return cset;
472b1053 719 }
817929ec
PM
720
721 /* No existing cgroup group matched */
722 return NULL;
723}
724
69d0206c 725static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 726{
69d0206c 727 struct cgrp_cset_link *link, *tmp_link;
36553434 728
69d0206c
TH
729 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
730 list_del(&link->cset_link);
36553434
LZ
731 kfree(link);
732 }
733}
734
69d0206c
TH
735/**
736 * allocate_cgrp_cset_links - allocate cgrp_cset_links
737 * @count: the number of links to allocate
738 * @tmp_links: list_head the allocated links are put on
739 *
740 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
741 * through ->cset_link. Returns 0 on success or -errno.
817929ec 742 */
69d0206c 743static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 744{
69d0206c 745 struct cgrp_cset_link *link;
817929ec 746 int i;
69d0206c
TH
747
748 INIT_LIST_HEAD(tmp_links);
749
817929ec 750 for (i = 0; i < count; i++) {
f4f4be2b 751 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 752 if (!link) {
69d0206c 753 free_cgrp_cset_links(tmp_links);
817929ec
PM
754 return -ENOMEM;
755 }
69d0206c 756 list_add(&link->cset_link, tmp_links);
817929ec
PM
757 }
758 return 0;
759}
760
c12f65d4
LZ
761/**
762 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 763 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 764 * @cset: the css_set to be linked
c12f65d4
LZ
765 * @cgrp: the destination cgroup
766 */
69d0206c
TH
767static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
768 struct cgroup *cgrp)
c12f65d4 769{
69d0206c 770 struct cgrp_cset_link *link;
c12f65d4 771
69d0206c 772 BUG_ON(list_empty(tmp_links));
6803c006
TH
773
774 if (cgroup_on_dfl(cgrp))
775 cset->dfl_cgrp = cgrp;
776
69d0206c
TH
777 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
778 link->cset = cset;
7717f7ba 779 link->cgrp = cgrp;
842b597e
TH
780
781 if (list_empty(&cgrp->cset_links))
782 cgroup_update_populated(cgrp, true);
69d0206c 783 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 784
7717f7ba
PM
785 /*
786 * Always add links to the tail of the list so that the list
787 * is sorted by order of hierarchy creation
788 */
69d0206c 789 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
790}
791
b326f9d0
TH
792/**
793 * find_css_set - return a new css_set with one cgroup updated
794 * @old_cset: the baseline css_set
795 * @cgrp: the cgroup to be updated
796 *
797 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
798 * substituted into the appropriate hierarchy.
817929ec 799 */
5abb8855
TH
800static struct css_set *find_css_set(struct css_set *old_cset,
801 struct cgroup *cgrp)
817929ec 802{
b326f9d0 803 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 804 struct css_set *cset;
69d0206c
TH
805 struct list_head tmp_links;
806 struct cgrp_cset_link *link;
2d8f243a 807 struct cgroup_subsys *ss;
0ac801fe 808 unsigned long key;
2d8f243a 809 int ssid;
472b1053 810
b326f9d0
TH
811 lockdep_assert_held(&cgroup_mutex);
812
817929ec
PM
813 /* First see if we already have a cgroup group that matches
814 * the desired set */
96d365e0 815 down_read(&css_set_rwsem);
5abb8855
TH
816 cset = find_existing_css_set(old_cset, cgrp, template);
817 if (cset)
818 get_css_set(cset);
96d365e0 819 up_read(&css_set_rwsem);
817929ec 820
5abb8855
TH
821 if (cset)
822 return cset;
817929ec 823
f4f4be2b 824 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 825 if (!cset)
817929ec
PM
826 return NULL;
827
69d0206c 828 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 829 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 830 kfree(cset);
817929ec
PM
831 return NULL;
832 }
833
5abb8855 834 atomic_set(&cset->refcount, 1);
69d0206c 835 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 836 INIT_LIST_HEAD(&cset->tasks);
c7561128 837 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 838 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 839 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 840 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
841
842 /* Copy the set of subsystem state objects generated in
843 * find_existing_css_set() */
5abb8855 844 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 845
96d365e0 846 down_write(&css_set_rwsem);
817929ec 847 /* Add reference counts and links from the new css_set. */
69d0206c 848 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 849 struct cgroup *c = link->cgrp;
69d0206c 850
7717f7ba
PM
851 if (c->root == cgrp->root)
852 c = cgrp;
69d0206c 853 link_css_set(&tmp_links, cset, c);
7717f7ba 854 }
817929ec 855
69d0206c 856 BUG_ON(!list_empty(&tmp_links));
817929ec 857
817929ec 858 css_set_count++;
472b1053 859
2d8f243a 860 /* Add @cset to the hash table */
5abb8855
TH
861 key = css_set_hash(cset->subsys);
862 hash_add(css_set_table, &cset->hlist, key);
472b1053 863
2d8f243a
TH
864 for_each_subsys(ss, ssid)
865 list_add_tail(&cset->e_cset_node[ssid],
866 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
867
96d365e0 868 up_write(&css_set_rwsem);
817929ec 869
5abb8855 870 return cset;
b4f48b63
PM
871}
872
3dd06ffa 873static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 874{
3dd06ffa 875 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 876
3dd06ffa 877 return root_cgrp->root;
2bd59d48
TH
878}
879
3dd06ffa 880static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
881{
882 int id;
883
884 lockdep_assert_held(&cgroup_mutex);
885
985ed670 886 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
887 if (id < 0)
888 return id;
889
890 root->hierarchy_id = id;
891 return 0;
892}
893
3dd06ffa 894static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
895{
896 lockdep_assert_held(&cgroup_mutex);
897
898 if (root->hierarchy_id) {
899 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
900 root->hierarchy_id = 0;
901 }
902}
903
3dd06ffa 904static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
905{
906 if (root) {
d0f702e6 907 /* hierarchy ID should already have been released */
f2e85d57
TH
908 WARN_ON_ONCE(root->hierarchy_id);
909
910 idr_destroy(&root->cgroup_idr);
911 kfree(root);
912 }
913}
914
3dd06ffa 915static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 916{
3dd06ffa 917 struct cgroup *cgrp = &root->cgrp;
f2e85d57 918 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 919
2bd59d48 920 mutex_lock(&cgroup_mutex);
f2e85d57 921
776f02fa 922 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 923 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 924
f2e85d57 925 /* Rebind all subsystems back to the default hierarchy */
f392e51c 926 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 927
7717f7ba 928 /*
f2e85d57
TH
929 * Release all the links from cset_links to this hierarchy's
930 * root cgroup
7717f7ba 931 */
96d365e0 932 down_write(&css_set_rwsem);
f2e85d57
TH
933
934 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
935 list_del(&link->cset_link);
936 list_del(&link->cgrp_link);
937 kfree(link);
938 }
96d365e0 939 up_write(&css_set_rwsem);
f2e85d57
TH
940
941 if (!list_empty(&root->root_list)) {
942 list_del(&root->root_list);
943 cgroup_root_count--;
944 }
945
946 cgroup_exit_root_id(root);
947
948 mutex_unlock(&cgroup_mutex);
f2e85d57 949
2bd59d48 950 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
951 cgroup_free_root(root);
952}
953
ceb6a081
TH
954/* look up cgroup associated with given css_set on the specified hierarchy */
955static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 956 struct cgroup_root *root)
7717f7ba 957{
7717f7ba
PM
958 struct cgroup *res = NULL;
959
96d365e0
TH
960 lockdep_assert_held(&cgroup_mutex);
961 lockdep_assert_held(&css_set_rwsem);
962
5abb8855 963 if (cset == &init_css_set) {
3dd06ffa 964 res = &root->cgrp;
7717f7ba 965 } else {
69d0206c
TH
966 struct cgrp_cset_link *link;
967
968 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 969 struct cgroup *c = link->cgrp;
69d0206c 970
7717f7ba
PM
971 if (c->root == root) {
972 res = c;
973 break;
974 }
975 }
976 }
96d365e0 977
7717f7ba
PM
978 BUG_ON(!res);
979 return res;
980}
981
ddbcc7e8 982/*
ceb6a081
TH
983 * Return the cgroup for "task" from the given hierarchy. Must be
984 * called with cgroup_mutex and css_set_rwsem held.
985 */
986static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 987 struct cgroup_root *root)
ceb6a081
TH
988{
989 /*
990 * No need to lock the task - since we hold cgroup_mutex the
991 * task can't change groups, so the only thing that can happen
992 * is that it exits and its css is set back to init_css_set.
993 */
994 return cset_cgroup_from_root(task_css_set(task), root);
995}
996
ddbcc7e8 997/*
ddbcc7e8
PM
998 * A task must hold cgroup_mutex to modify cgroups.
999 *
1000 * Any task can increment and decrement the count field without lock.
1001 * So in general, code holding cgroup_mutex can't rely on the count
1002 * field not changing. However, if the count goes to zero, then only
956db3ca 1003 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1004 * means that no tasks are currently attached, therefore there is no
1005 * way a task attached to that cgroup can fork (the other way to
1006 * increment the count). So code holding cgroup_mutex can safely
1007 * assume that if the count is zero, it will stay zero. Similarly, if
1008 * a task holds cgroup_mutex on a cgroup with zero count, it
1009 * knows that the cgroup won't be removed, as cgroup_rmdir()
1010 * needs that mutex.
1011 *
ddbcc7e8
PM
1012 * A cgroup can only be deleted if both its 'count' of using tasks
1013 * is zero, and its list of 'children' cgroups is empty. Since all
1014 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1015 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1016 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1017 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1018 *
1019 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1020 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1021 */
1022
8ab456ac 1023static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 1024static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1025static const struct file_operations proc_cgroupstats_operations;
a424316c 1026
8d7e6fb0
TH
1027static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1028 char *buf)
ddbcc7e8 1029{
8d7e6fb0
TH
1030 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1031 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1032 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1033 cft->ss->name, cft->name);
1034 else
1035 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1036 return buf;
ddbcc7e8
PM
1037}
1038
f2e85d57
TH
1039/**
1040 * cgroup_file_mode - deduce file mode of a control file
1041 * @cft: the control file in question
1042 *
1043 * returns cft->mode if ->mode is not 0
1044 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1045 * returns S_IRUGO if it has only a read handler
1046 * returns S_IWUSR if it has only a write hander
1047 */
1048static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1049{
f2e85d57 1050 umode_t mode = 0;
65dff759 1051
f2e85d57
TH
1052 if (cft->mode)
1053 return cft->mode;
1054
1055 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1056 mode |= S_IRUGO;
1057
6770c64e 1058 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1059 mode |= S_IWUSR;
1060
1061 return mode;
65dff759
LZ
1062}
1063
59f5296b 1064static void cgroup_get(struct cgroup *cgrp)
be445626 1065{
2bd59d48 1066 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1067 css_get(&cgrp->self);
be445626
LZ
1068}
1069
aa32362f
LZ
1070static bool cgroup_tryget(struct cgroup *cgrp)
1071{
1072 return css_tryget(&cgrp->self);
1073}
1074
59f5296b 1075static void cgroup_put(struct cgroup *cgrp)
be445626 1076{
9d755d33 1077 css_put(&cgrp->self);
be445626
LZ
1078}
1079
af0ba678 1080/**
0f060deb 1081 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1082 * @cgrp: the target cgroup
0f060deb 1083 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1084 *
1085 * On the default hierarchy, a subsystem may request other subsystems to be
1086 * enabled together through its ->depends_on mask. In such cases, more
1087 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1088 *
0f060deb
TH
1089 * This function calculates which subsystems need to be enabled if
1090 * @subtree_control is to be applied to @cgrp. The returned mask is always
1091 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1092 */
8ab456ac
AS
1093static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1094 unsigned long subtree_control)
667c2491 1095{
af0ba678 1096 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1097 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1098 struct cgroup_subsys *ss;
1099 int ssid;
1100
1101 lockdep_assert_held(&cgroup_mutex);
1102
0f060deb
TH
1103 if (!cgroup_on_dfl(cgrp))
1104 return cur_ss_mask;
af0ba678
TH
1105
1106 while (true) {
8ab456ac 1107 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1108
a966a4ed
AS
1109 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1110 new_ss_mask |= ss->depends_on;
af0ba678
TH
1111
1112 /*
1113 * Mask out subsystems which aren't available. This can
1114 * happen only if some depended-upon subsystems were bound
1115 * to non-default hierarchies.
1116 */
1117 if (parent)
1118 new_ss_mask &= parent->child_subsys_mask;
1119 else
1120 new_ss_mask &= cgrp->root->subsys_mask;
1121
1122 if (new_ss_mask == cur_ss_mask)
1123 break;
1124 cur_ss_mask = new_ss_mask;
1125 }
1126
0f060deb
TH
1127 return cur_ss_mask;
1128}
1129
1130/**
1131 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1132 * @cgrp: the target cgroup
1133 *
1134 * Update @cgrp->child_subsys_mask according to the current
1135 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1136 */
1137static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1138{
1139 cgrp->child_subsys_mask =
1140 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1141}
1142
a9746d8d
TH
1143/**
1144 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1145 * @kn: the kernfs_node being serviced
1146 *
1147 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1148 * the method finishes if locking succeeded. Note that once this function
1149 * returns the cgroup returned by cgroup_kn_lock_live() may become
1150 * inaccessible any time. If the caller intends to continue to access the
1151 * cgroup, it should pin it before invoking this function.
1152 */
1153static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1154{
a9746d8d
TH
1155 struct cgroup *cgrp;
1156
1157 if (kernfs_type(kn) == KERNFS_DIR)
1158 cgrp = kn->priv;
1159 else
1160 cgrp = kn->parent->priv;
1161
1162 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1163
1164 kernfs_unbreak_active_protection(kn);
1165 cgroup_put(cgrp);
ddbcc7e8
PM
1166}
1167
a9746d8d
TH
1168/**
1169 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1170 * @kn: the kernfs_node being serviced
1171 *
1172 * This helper is to be used by a cgroup kernfs method currently servicing
1173 * @kn. It breaks the active protection, performs cgroup locking and
1174 * verifies that the associated cgroup is alive. Returns the cgroup if
1175 * alive; otherwise, %NULL. A successful return should be undone by a
1176 * matching cgroup_kn_unlock() invocation.
1177 *
1178 * Any cgroup kernfs method implementation which requires locking the
1179 * associated cgroup should use this helper. It avoids nesting cgroup
1180 * locking under kernfs active protection and allows all kernfs operations
1181 * including self-removal.
1182 */
1183static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1184{
a9746d8d
TH
1185 struct cgroup *cgrp;
1186
1187 if (kernfs_type(kn) == KERNFS_DIR)
1188 cgrp = kn->priv;
1189 else
1190 cgrp = kn->parent->priv;
05ef1d7c 1191
2739d3cc 1192 /*
01f6474c 1193 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1194 * active_ref. cgroup liveliness check alone provides enough
1195 * protection against removal. Ensure @cgrp stays accessible and
1196 * break the active_ref protection.
2739d3cc 1197 */
aa32362f
LZ
1198 if (!cgroup_tryget(cgrp))
1199 return NULL;
a9746d8d
TH
1200 kernfs_break_active_protection(kn);
1201
2bd59d48 1202 mutex_lock(&cgroup_mutex);
05ef1d7c 1203
a9746d8d
TH
1204 if (!cgroup_is_dead(cgrp))
1205 return cgrp;
1206
1207 cgroup_kn_unlock(kn);
1208 return NULL;
ddbcc7e8 1209}
05ef1d7c 1210
2739d3cc 1211static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1212{
2bd59d48 1213 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1214
01f6474c 1215 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1216 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1217}
1218
13af07df 1219/**
628f7cd4 1220 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1221 * @cgrp: target cgroup
13af07df
AR
1222 * @subsys_mask: mask of the subsystem ids whose files should be removed
1223 */
8ab456ac 1224static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1225{
13af07df 1226 struct cgroup_subsys *ss;
b420ba7d 1227 int i;
05ef1d7c 1228
b420ba7d 1229 for_each_subsys(ss, i) {
0adb0704 1230 struct cftype *cfts;
b420ba7d 1231
69dfa00c 1232 if (!(subsys_mask & (1 << i)))
13af07df 1233 continue;
0adb0704
TH
1234 list_for_each_entry(cfts, &ss->cfts, node)
1235 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1236 }
ddbcc7e8
PM
1237}
1238
8ab456ac
AS
1239static int rebind_subsystems(struct cgroup_root *dst_root,
1240 unsigned long ss_mask)
ddbcc7e8 1241{
30159ec7 1242 struct cgroup_subsys *ss;
8ab456ac 1243 unsigned long tmp_ss_mask;
2d8f243a 1244 int ssid, i, ret;
ddbcc7e8 1245
ace2bee8 1246 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1247
a966a4ed 1248 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1249 /* if @ss has non-root csses attached to it, can't move */
1250 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1251 return -EBUSY;
1d5be6b2 1252
5df36032 1253 /* can't move between two non-dummy roots either */
7fd8c565 1254 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1255 return -EBUSY;
ddbcc7e8
PM
1256 }
1257
5533e011
TH
1258 /* skip creating root files on dfl_root for inhibited subsystems */
1259 tmp_ss_mask = ss_mask;
1260 if (dst_root == &cgrp_dfl_root)
1261 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1262
1263 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1264 if (ret) {
1265 if (dst_root != &cgrp_dfl_root)
5df36032 1266 return ret;
ddbcc7e8 1267
a2dd4247
TH
1268 /*
1269 * Rebinding back to the default root is not allowed to
1270 * fail. Using both default and non-default roots should
1271 * be rare. Moving subsystems back and forth even more so.
1272 * Just warn about it and continue.
1273 */
1274 if (cgrp_dfl_root_visible) {
8ab456ac 1275 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
a2a1f9ea 1276 ret, ss_mask);
ed3d261b 1277 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1278 }
5df36032 1279 }
3126121f
TH
1280
1281 /*
1282 * Nothing can fail from this point on. Remove files for the
1283 * removed subsystems and rebind each subsystem.
1284 */
a966a4ed
AS
1285 for_each_subsys_which(ss, ssid, &ss_mask)
1286 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1287
a966a4ed 1288 for_each_subsys_which(ss, ssid, &ss_mask) {
3dd06ffa 1289 struct cgroup_root *src_root;
5df36032 1290 struct cgroup_subsys_state *css;
2d8f243a 1291 struct css_set *cset;
a8a648c4 1292
5df36032 1293 src_root = ss->root;
3dd06ffa 1294 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1295
3dd06ffa 1296 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1297
3dd06ffa
TH
1298 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1299 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1300 ss->root = dst_root;
3dd06ffa 1301 css->cgroup = &dst_root->cgrp;
73e80ed8 1302
2d8f243a
TH
1303 down_write(&css_set_rwsem);
1304 hash_for_each(css_set_table, i, cset, hlist)
1305 list_move_tail(&cset->e_cset_node[ss->id],
1306 &dst_root->cgrp.e_csets[ss->id]);
1307 up_write(&css_set_rwsem);
1308
f392e51c 1309 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1310 src_root->cgrp.subtree_control &= ~(1 << ssid);
1311 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1312
bd53d617 1313 /* default hierarchy doesn't enable controllers by default */
f392e51c 1314 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1315 if (dst_root != &cgrp_dfl_root) {
1316 dst_root->cgrp.subtree_control |= 1 << ssid;
1317 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1318 }
a8a648c4 1319
5df36032
TH
1320 if (ss->bind)
1321 ss->bind(css);
ddbcc7e8 1322 }
ddbcc7e8 1323
a2dd4247 1324 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1325 return 0;
1326}
1327
2bd59d48
TH
1328static int cgroup_show_options(struct seq_file *seq,
1329 struct kernfs_root *kf_root)
ddbcc7e8 1330{
3dd06ffa 1331 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1332 struct cgroup_subsys *ss;
b85d2040 1333 int ssid;
ddbcc7e8 1334
b85d2040 1335 for_each_subsys(ss, ssid)
f392e51c 1336 if (root->subsys_mask & (1 << ssid))
b85d2040 1337 seq_printf(seq, ",%s", ss->name);
93438629 1338 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1339 seq_puts(seq, ",noprefix");
93438629 1340 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1341 seq_puts(seq, ",xattr");
69e943b7
TH
1342
1343 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1344 if (strlen(root->release_agent_path))
1345 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1346 spin_unlock(&release_agent_path_lock);
1347
3dd06ffa 1348 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1349 seq_puts(seq, ",clone_children");
c6d57f33
PM
1350 if (strlen(root->name))
1351 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1352 return 0;
1353}
1354
1355struct cgroup_sb_opts {
8ab456ac 1356 unsigned long subsys_mask;
69dfa00c 1357 unsigned int flags;
81a6a5cd 1358 char *release_agent;
2260e7fc 1359 bool cpuset_clone_children;
c6d57f33 1360 char *name;
2c6ab6d2
PM
1361 /* User explicitly requested empty subsystem */
1362 bool none;
ddbcc7e8
PM
1363};
1364
cf5d5941 1365static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1366{
32a8cf23
DL
1367 char *token, *o = data;
1368 bool all_ss = false, one_ss = false;
8ab456ac 1369 unsigned long mask = -1UL;
30159ec7 1370 struct cgroup_subsys *ss;
7b9a6ba5 1371 int nr_opts = 0;
30159ec7 1372 int i;
f9ab5b5b
LZ
1373
1374#ifdef CONFIG_CPUSETS
69dfa00c 1375 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1376#endif
ddbcc7e8 1377
c6d57f33 1378 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1379
1380 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1381 nr_opts++;
1382
ddbcc7e8
PM
1383 if (!*token)
1384 return -EINVAL;
32a8cf23 1385 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1386 /* Explicitly have no subsystems */
1387 opts->none = true;
32a8cf23
DL
1388 continue;
1389 }
1390 if (!strcmp(token, "all")) {
1391 /* Mutually exclusive option 'all' + subsystem name */
1392 if (one_ss)
1393 return -EINVAL;
1394 all_ss = true;
1395 continue;
1396 }
873fe09e
TH
1397 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1398 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1399 continue;
1400 }
32a8cf23 1401 if (!strcmp(token, "noprefix")) {
93438629 1402 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1403 continue;
1404 }
1405 if (!strcmp(token, "clone_children")) {
2260e7fc 1406 opts->cpuset_clone_children = true;
32a8cf23
DL
1407 continue;
1408 }
03b1cde6 1409 if (!strcmp(token, "xattr")) {
93438629 1410 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1411 continue;
1412 }
32a8cf23 1413 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1414 /* Specifying two release agents is forbidden */
1415 if (opts->release_agent)
1416 return -EINVAL;
c6d57f33 1417 opts->release_agent =
e400c285 1418 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1419 if (!opts->release_agent)
1420 return -ENOMEM;
32a8cf23
DL
1421 continue;
1422 }
1423 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1424 const char *name = token + 5;
1425 /* Can't specify an empty name */
1426 if (!strlen(name))
1427 return -EINVAL;
1428 /* Must match [\w.-]+ */
1429 for (i = 0; i < strlen(name); i++) {
1430 char c = name[i];
1431 if (isalnum(c))
1432 continue;
1433 if ((c == '.') || (c == '-') || (c == '_'))
1434 continue;
1435 return -EINVAL;
1436 }
1437 /* Specifying two names is forbidden */
1438 if (opts->name)
1439 return -EINVAL;
1440 opts->name = kstrndup(name,
e400c285 1441 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1442 GFP_KERNEL);
1443 if (!opts->name)
1444 return -ENOMEM;
32a8cf23
DL
1445
1446 continue;
1447 }
1448
30159ec7 1449 for_each_subsys(ss, i) {
32a8cf23
DL
1450 if (strcmp(token, ss->name))
1451 continue;
1452 if (ss->disabled)
1453 continue;
1454
1455 /* Mutually exclusive option 'all' + subsystem name */
1456 if (all_ss)
1457 return -EINVAL;
69dfa00c 1458 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1459 one_ss = true;
1460
1461 break;
1462 }
1463 if (i == CGROUP_SUBSYS_COUNT)
1464 return -ENOENT;
1465 }
1466
873fe09e 1467 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1468 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1469 if (nr_opts != 1) {
1470 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1471 return -EINVAL;
1472 }
7b9a6ba5 1473 return 0;
873fe09e
TH
1474 }
1475
7b9a6ba5
TH
1476 /*
1477 * If the 'all' option was specified select all the subsystems,
1478 * otherwise if 'none', 'name=' and a subsystem name options were
1479 * not specified, let's default to 'all'
1480 */
1481 if (all_ss || (!one_ss && !opts->none && !opts->name))
1482 for_each_subsys(ss, i)
1483 if (!ss->disabled)
1484 opts->subsys_mask |= (1 << i);
1485
1486 /*
1487 * We either have to specify by name or by subsystems. (So all
1488 * empty hierarchies must have a name).
1489 */
1490 if (!opts->subsys_mask && !opts->name)
1491 return -EINVAL;
1492
f9ab5b5b
LZ
1493 /*
1494 * Option noprefix was introduced just for backward compatibility
1495 * with the old cpuset, so we allow noprefix only if mounting just
1496 * the cpuset subsystem.
1497 */
93438629 1498 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1499 return -EINVAL;
1500
2c6ab6d2 1501 /* Can't specify "none" and some subsystems */
a1a71b45 1502 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1503 return -EINVAL;
1504
ddbcc7e8
PM
1505 return 0;
1506}
1507
2bd59d48 1508static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1509{
1510 int ret = 0;
3dd06ffa 1511 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1512 struct cgroup_sb_opts opts;
8ab456ac 1513 unsigned long added_mask, removed_mask;
ddbcc7e8 1514
aa6ec29b
TH
1515 if (root == &cgrp_dfl_root) {
1516 pr_err("remount is not allowed\n");
873fe09e
TH
1517 return -EINVAL;
1518 }
1519
ddbcc7e8
PM
1520 mutex_lock(&cgroup_mutex);
1521
1522 /* See what subsystems are wanted */
1523 ret = parse_cgroupfs_options(data, &opts);
1524 if (ret)
1525 goto out_unlock;
1526
f392e51c 1527 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1528 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1529 task_tgid_nr(current), current->comm);
8b5a5a9d 1530
f392e51c
TH
1531 added_mask = opts.subsys_mask & ~root->subsys_mask;
1532 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1533
cf5d5941 1534 /* Don't allow flags or name to change at remount */
7450e90b 1535 if ((opts.flags ^ root->flags) ||
cf5d5941 1536 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1537 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1538 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1539 ret = -EINVAL;
1540 goto out_unlock;
1541 }
1542
f172e67c 1543 /* remounting is not allowed for populated hierarchies */
d5c419b6 1544 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1545 ret = -EBUSY;
0670e08b 1546 goto out_unlock;
cf5d5941 1547 }
ddbcc7e8 1548
5df36032 1549 ret = rebind_subsystems(root, added_mask);
3126121f 1550 if (ret)
0670e08b 1551 goto out_unlock;
ddbcc7e8 1552
3dd06ffa 1553 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1554
69e943b7
TH
1555 if (opts.release_agent) {
1556 spin_lock(&release_agent_path_lock);
81a6a5cd 1557 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1558 spin_unlock(&release_agent_path_lock);
1559 }
ddbcc7e8 1560 out_unlock:
66bdc9cf 1561 kfree(opts.release_agent);
c6d57f33 1562 kfree(opts.name);
ddbcc7e8 1563 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1564 return ret;
1565}
1566
afeb0f9f
TH
1567/*
1568 * To reduce the fork() overhead for systems that are not actually using
1569 * their cgroups capability, we don't maintain the lists running through
1570 * each css_set to its tasks until we see the list actually used - in other
1571 * words after the first mount.
1572 */
1573static bool use_task_css_set_links __read_mostly;
1574
1575static void cgroup_enable_task_cg_lists(void)
1576{
1577 struct task_struct *p, *g;
1578
96d365e0 1579 down_write(&css_set_rwsem);
afeb0f9f
TH
1580
1581 if (use_task_css_set_links)
1582 goto out_unlock;
1583
1584 use_task_css_set_links = true;
1585
1586 /*
1587 * We need tasklist_lock because RCU is not safe against
1588 * while_each_thread(). Besides, a forking task that has passed
1589 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1590 * is not guaranteed to have its child immediately visible in the
1591 * tasklist if we walk through it with RCU.
1592 */
1593 read_lock(&tasklist_lock);
1594 do_each_thread(g, p) {
afeb0f9f
TH
1595 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1596 task_css_set(p) != &init_css_set);
1597
1598 /*
1599 * We should check if the process is exiting, otherwise
1600 * it will race with cgroup_exit() in that the list
1601 * entry won't be deleted though the process has exited.
f153ad11
TH
1602 * Do it while holding siglock so that we don't end up
1603 * racing against cgroup_exit().
afeb0f9f 1604 */
f153ad11 1605 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1606 if (!(p->flags & PF_EXITING)) {
1607 struct css_set *cset = task_css_set(p);
1608
1609 list_add(&p->cg_list, &cset->tasks);
1610 get_css_set(cset);
1611 }
f153ad11 1612 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1613 } while_each_thread(g, p);
1614 read_unlock(&tasklist_lock);
1615out_unlock:
96d365e0 1616 up_write(&css_set_rwsem);
afeb0f9f 1617}
ddbcc7e8 1618
cc31edce
PM
1619static void init_cgroup_housekeeping(struct cgroup *cgrp)
1620{
2d8f243a
TH
1621 struct cgroup_subsys *ss;
1622 int ssid;
1623
d5c419b6
TH
1624 INIT_LIST_HEAD(&cgrp->self.sibling);
1625 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1626 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1627 INIT_LIST_HEAD(&cgrp->pidlists);
1628 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1629 cgrp->self.cgroup = cgrp;
184faf32 1630 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1631
1632 for_each_subsys(ss, ssid)
1633 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1634
1635 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1636 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1637}
c6d57f33 1638
3dd06ffa 1639static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1640 struct cgroup_sb_opts *opts)
ddbcc7e8 1641{
3dd06ffa 1642 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1643
ddbcc7e8 1644 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1645 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1646 cgrp->root = root;
cc31edce 1647 init_cgroup_housekeeping(cgrp);
4e96ee8e 1648 idr_init(&root->cgroup_idr);
c6d57f33 1649
c6d57f33
PM
1650 root->flags = opts->flags;
1651 if (opts->release_agent)
1652 strcpy(root->release_agent_path, opts->release_agent);
1653 if (opts->name)
1654 strcpy(root->name, opts->name);
2260e7fc 1655 if (opts->cpuset_clone_children)
3dd06ffa 1656 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1657}
1658
8ab456ac 1659static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1660{
d427dfeb 1661 LIST_HEAD(tmp_links);
3dd06ffa 1662 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1663 struct cftype *base_files;
d427dfeb 1664 struct css_set *cset;
d427dfeb 1665 int i, ret;
2c6ab6d2 1666
d427dfeb 1667 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1668
6fa4918d 1669 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1670 if (ret < 0)
2bd59d48 1671 goto out;
d427dfeb 1672 root_cgrp->id = ret;
c6d57f33 1673
2aad2a86
TH
1674 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1675 GFP_KERNEL);
9d755d33
TH
1676 if (ret)
1677 goto out;
1678
d427dfeb 1679 /*
96d365e0 1680 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1681 * but that's OK - it can only be increased by someone holding
1682 * cgroup_lock, and that's us. The worst that can happen is that we
1683 * have some link structures left over
1684 */
1685 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1686 if (ret)
9d755d33 1687 goto cancel_ref;
ddbcc7e8 1688
985ed670 1689 ret = cgroup_init_root_id(root);
ddbcc7e8 1690 if (ret)
9d755d33 1691 goto cancel_ref;
ddbcc7e8 1692
2bd59d48
TH
1693 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1694 KERNFS_ROOT_CREATE_DEACTIVATED,
1695 root_cgrp);
1696 if (IS_ERR(root->kf_root)) {
1697 ret = PTR_ERR(root->kf_root);
1698 goto exit_root_id;
1699 }
1700 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1701
a14c6874
TH
1702 if (root == &cgrp_dfl_root)
1703 base_files = cgroup_dfl_base_files;
1704 else
1705 base_files = cgroup_legacy_base_files;
1706
1707 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1708 if (ret)
2bd59d48 1709 goto destroy_root;
ddbcc7e8 1710
5df36032 1711 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1712 if (ret)
2bd59d48 1713 goto destroy_root;
ddbcc7e8 1714
d427dfeb
TH
1715 /*
1716 * There must be no failure case after here, since rebinding takes
1717 * care of subsystems' refcounts, which are explicitly dropped in
1718 * the failure exit path.
1719 */
1720 list_add(&root->root_list, &cgroup_roots);
1721 cgroup_root_count++;
0df6a63f 1722
d427dfeb 1723 /*
3dd06ffa 1724 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1725 * objects.
1726 */
96d365e0 1727 down_write(&css_set_rwsem);
d427dfeb
TH
1728 hash_for_each(css_set_table, i, cset, hlist)
1729 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1730 up_write(&css_set_rwsem);
ddbcc7e8 1731
d5c419b6 1732 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1733 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1734
2bd59d48 1735 kernfs_activate(root_cgrp->kn);
d427dfeb 1736 ret = 0;
2bd59d48 1737 goto out;
d427dfeb 1738
2bd59d48
TH
1739destroy_root:
1740 kernfs_destroy_root(root->kf_root);
1741 root->kf_root = NULL;
1742exit_root_id:
d427dfeb 1743 cgroup_exit_root_id(root);
9d755d33 1744cancel_ref:
9a1049da 1745 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1746out:
d427dfeb
TH
1747 free_cgrp_cset_links(&tmp_links);
1748 return ret;
ddbcc7e8
PM
1749}
1750
f7e83571 1751static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1752 int flags, const char *unused_dev_name,
f7e83571 1753 void *data)
ddbcc7e8 1754{
3a32bd72 1755 struct super_block *pinned_sb = NULL;
970317aa 1756 struct cgroup_subsys *ss;
3dd06ffa 1757 struct cgroup_root *root;
ddbcc7e8 1758 struct cgroup_sb_opts opts;
2bd59d48 1759 struct dentry *dentry;
8e30e2b8 1760 int ret;
970317aa 1761 int i;
c6b3d5bc 1762 bool new_sb;
ddbcc7e8 1763
56fde9e0
TH
1764 /*
1765 * The first time anyone tries to mount a cgroup, enable the list
1766 * linking each css_set to its tasks and fix up all existing tasks.
1767 */
1768 if (!use_task_css_set_links)
1769 cgroup_enable_task_cg_lists();
e37a06f1 1770
aae8aab4 1771 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1772
1773 /* First find the desired set of subsystems */
ddbcc7e8 1774 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1775 if (ret)
8e30e2b8 1776 goto out_unlock;
a015edd2 1777
2bd59d48 1778 /* look for a matching existing root */
7b9a6ba5 1779 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1780 cgrp_dfl_root_visible = true;
1781 root = &cgrp_dfl_root;
1782 cgroup_get(&root->cgrp);
1783 ret = 0;
1784 goto out_unlock;
ddbcc7e8
PM
1785 }
1786
970317aa
LZ
1787 /*
1788 * Destruction of cgroup root is asynchronous, so subsystems may
1789 * still be dying after the previous unmount. Let's drain the
1790 * dying subsystems. We just need to ensure that the ones
1791 * unmounted previously finish dying and don't care about new ones
1792 * starting. Testing ref liveliness is good enough.
1793 */
1794 for_each_subsys(ss, i) {
1795 if (!(opts.subsys_mask & (1 << i)) ||
1796 ss->root == &cgrp_dfl_root)
1797 continue;
1798
1799 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1800 mutex_unlock(&cgroup_mutex);
1801 msleep(10);
1802 ret = restart_syscall();
1803 goto out_free;
1804 }
1805 cgroup_put(&ss->root->cgrp);
1806 }
1807
985ed670 1808 for_each_root(root) {
2bd59d48 1809 bool name_match = false;
3126121f 1810
3dd06ffa 1811 if (root == &cgrp_dfl_root)
985ed670 1812 continue;
3126121f 1813
cf5d5941 1814 /*
2bd59d48
TH
1815 * If we asked for a name then it must match. Also, if
1816 * name matches but sybsys_mask doesn't, we should fail.
1817 * Remember whether name matched.
cf5d5941 1818 */
2bd59d48
TH
1819 if (opts.name) {
1820 if (strcmp(opts.name, root->name))
1821 continue;
1822 name_match = true;
1823 }
ddbcc7e8 1824
c6d57f33 1825 /*
2bd59d48
TH
1826 * If we asked for subsystems (or explicitly for no
1827 * subsystems) then they must match.
c6d57f33 1828 */
2bd59d48 1829 if ((opts.subsys_mask || opts.none) &&
f392e51c 1830 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1831 if (!name_match)
1832 continue;
1833 ret = -EBUSY;
1834 goto out_unlock;
1835 }
873fe09e 1836
7b9a6ba5
TH
1837 if (root->flags ^ opts.flags)
1838 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1839
776f02fa 1840 /*
3a32bd72
LZ
1841 * We want to reuse @root whose lifetime is governed by its
1842 * ->cgrp. Let's check whether @root is alive and keep it
1843 * that way. As cgroup_kill_sb() can happen anytime, we
1844 * want to block it by pinning the sb so that @root doesn't
1845 * get killed before mount is complete.
1846 *
1847 * With the sb pinned, tryget_live can reliably indicate
1848 * whether @root can be reused. If it's being killed,
1849 * drain it. We can use wait_queue for the wait but this
1850 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1851 */
3a32bd72
LZ
1852 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1853 if (IS_ERR(pinned_sb) ||
1854 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1855 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1856 if (!IS_ERR_OR_NULL(pinned_sb))
1857 deactivate_super(pinned_sb);
776f02fa 1858 msleep(10);
a015edd2
TH
1859 ret = restart_syscall();
1860 goto out_free;
776f02fa 1861 }
ddbcc7e8 1862
776f02fa 1863 ret = 0;
2bd59d48 1864 goto out_unlock;
ddbcc7e8 1865 }
ddbcc7e8 1866
817929ec 1867 /*
172a2c06
TH
1868 * No such thing, create a new one. name= matching without subsys
1869 * specification is allowed for already existing hierarchies but we
1870 * can't create new one without subsys specification.
817929ec 1871 */
172a2c06
TH
1872 if (!opts.subsys_mask && !opts.none) {
1873 ret = -EINVAL;
1874 goto out_unlock;
817929ec 1875 }
817929ec 1876
172a2c06
TH
1877 root = kzalloc(sizeof(*root), GFP_KERNEL);
1878 if (!root) {
1879 ret = -ENOMEM;
2bd59d48 1880 goto out_unlock;
839ec545 1881 }
e5f6a860 1882
172a2c06
TH
1883 init_cgroup_root(root, &opts);
1884
35585573 1885 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1886 if (ret)
1887 cgroup_free_root(root);
fa3ca07e 1888
8e30e2b8 1889out_unlock:
ddbcc7e8 1890 mutex_unlock(&cgroup_mutex);
a015edd2 1891out_free:
c6d57f33
PM
1892 kfree(opts.release_agent);
1893 kfree(opts.name);
03b1cde6 1894
2bd59d48 1895 if (ret)
8e30e2b8 1896 return ERR_PTR(ret);
2bd59d48 1897
c9482a5b
JZ
1898 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1899 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1900 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1901 cgroup_put(&root->cgrp);
3a32bd72
LZ
1902
1903 /*
1904 * If @pinned_sb, we're reusing an existing root and holding an
1905 * extra ref on its sb. Mount is complete. Put the extra ref.
1906 */
1907 if (pinned_sb) {
1908 WARN_ON(new_sb);
1909 deactivate_super(pinned_sb);
1910 }
1911
2bd59d48
TH
1912 return dentry;
1913}
1914
1915static void cgroup_kill_sb(struct super_block *sb)
1916{
1917 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1918 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1919
9d755d33
TH
1920 /*
1921 * If @root doesn't have any mounts or children, start killing it.
1922 * This prevents new mounts by disabling percpu_ref_tryget_live().
1923 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1924 *
1925 * And don't kill the default root.
9d755d33 1926 */
3c606d35 1927 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 1928 root == &cgrp_dfl_root)
9d755d33
TH
1929 cgroup_put(&root->cgrp);
1930 else
1931 percpu_ref_kill(&root->cgrp.self.refcnt);
1932
2bd59d48 1933 kernfs_kill_sb(sb);
ddbcc7e8
PM
1934}
1935
1936static struct file_system_type cgroup_fs_type = {
1937 .name = "cgroup",
f7e83571 1938 .mount = cgroup_mount,
ddbcc7e8
PM
1939 .kill_sb = cgroup_kill_sb,
1940};
1941
676db4af
GK
1942static struct kobject *cgroup_kobj;
1943
857a2beb 1944/**
913ffdb5 1945 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1946 * @task: target task
857a2beb
TH
1947 * @buf: the buffer to write the path into
1948 * @buflen: the length of the buffer
1949 *
913ffdb5
TH
1950 * Determine @task's cgroup on the first (the one with the lowest non-zero
1951 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1952 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1953 * cgroup controller callbacks.
1954 *
e61734c5 1955 * Return value is the same as kernfs_path().
857a2beb 1956 */
e61734c5 1957char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1958{
3dd06ffa 1959 struct cgroup_root *root;
913ffdb5 1960 struct cgroup *cgrp;
e61734c5
TH
1961 int hierarchy_id = 1;
1962 char *path = NULL;
857a2beb
TH
1963
1964 mutex_lock(&cgroup_mutex);
96d365e0 1965 down_read(&css_set_rwsem);
857a2beb 1966
913ffdb5
TH
1967 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1968
857a2beb
TH
1969 if (root) {
1970 cgrp = task_cgroup_from_root(task, root);
e61734c5 1971 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1972 } else {
1973 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1974 if (strlcpy(buf, "/", buflen) < buflen)
1975 path = buf;
857a2beb
TH
1976 }
1977
96d365e0 1978 up_read(&css_set_rwsem);
857a2beb 1979 mutex_unlock(&cgroup_mutex);
e61734c5 1980 return path;
857a2beb 1981}
913ffdb5 1982EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1983
b3dc094e 1984/* used to track tasks and other necessary states during migration */
2f7ee569 1985struct cgroup_taskset {
b3dc094e
TH
1986 /* the src and dst cset list running through cset->mg_node */
1987 struct list_head src_csets;
1988 struct list_head dst_csets;
1989
1990 /*
1991 * Fields for cgroup_taskset_*() iteration.
1992 *
1993 * Before migration is committed, the target migration tasks are on
1994 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1995 * the csets on ->dst_csets. ->csets point to either ->src_csets
1996 * or ->dst_csets depending on whether migration is committed.
1997 *
1998 * ->cur_csets and ->cur_task point to the current task position
1999 * during iteration.
2000 */
2001 struct list_head *csets;
2002 struct css_set *cur_cset;
2003 struct task_struct *cur_task;
2f7ee569
TH
2004};
2005
2006/**
2007 * cgroup_taskset_first - reset taskset and return the first task
2008 * @tset: taskset of interest
2009 *
2010 * @tset iteration is initialized and the first task is returned.
2011 */
2012struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2013{
b3dc094e
TH
2014 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2015 tset->cur_task = NULL;
2016
2017 return cgroup_taskset_next(tset);
2f7ee569 2018}
2f7ee569
TH
2019
2020/**
2021 * cgroup_taskset_next - iterate to the next task in taskset
2022 * @tset: taskset of interest
2023 *
2024 * Return the next task in @tset. Iteration must have been initialized
2025 * with cgroup_taskset_first().
2026 */
2027struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2028{
b3dc094e
TH
2029 struct css_set *cset = tset->cur_cset;
2030 struct task_struct *task = tset->cur_task;
2f7ee569 2031
b3dc094e
TH
2032 while (&cset->mg_node != tset->csets) {
2033 if (!task)
2034 task = list_first_entry(&cset->mg_tasks,
2035 struct task_struct, cg_list);
2036 else
2037 task = list_next_entry(task, cg_list);
2f7ee569 2038
b3dc094e
TH
2039 if (&task->cg_list != &cset->mg_tasks) {
2040 tset->cur_cset = cset;
2041 tset->cur_task = task;
2042 return task;
2043 }
2f7ee569 2044
b3dc094e
TH
2045 cset = list_next_entry(cset, mg_node);
2046 task = NULL;
2047 }
2f7ee569 2048
b3dc094e 2049 return NULL;
2f7ee569 2050}
2f7ee569 2051
cb0f1fe9 2052/**
74a1166d 2053 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2054 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2055 * @tsk: the task being migrated
2056 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2057 *
cb0f1fe9 2058 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2059 */
5abb8855
TH
2060static void cgroup_task_migrate(struct cgroup *old_cgrp,
2061 struct task_struct *tsk,
2062 struct css_set *new_cset)
74a1166d 2063{
5abb8855 2064 struct css_set *old_cset;
74a1166d 2065
cb0f1fe9
TH
2066 lockdep_assert_held(&cgroup_mutex);
2067 lockdep_assert_held(&css_set_rwsem);
2068
74a1166d 2069 /*
d59cfc09
TH
2070 * We are synchronized through cgroup_threadgroup_rwsem against
2071 * PF_EXITING setting such that we can't race against cgroup_exit()
2072 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2073 */
c84cdf75 2074 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2075 old_cset = task_css_set(tsk);
74a1166d 2076
b3dc094e 2077 get_css_set(new_cset);
5abb8855 2078 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2079
1b9aba49
TH
2080 /*
2081 * Use move_tail so that cgroup_taskset_first() still returns the
2082 * leader after migration. This works because cgroup_migrate()
2083 * ensures that the dst_cset of the leader is the first on the
2084 * tset's dst_csets list.
2085 */
2086 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2087
2088 /*
5abb8855
TH
2089 * We just gained a reference on old_cset by taking it from the
2090 * task. As trading it for new_cset is protected by cgroup_mutex,
2091 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2092 */
a25eb52e 2093 put_css_set_locked(old_cset);
74a1166d
BB
2094}
2095
a043e3b2 2096/**
1958d2d5
TH
2097 * cgroup_migrate_finish - cleanup after attach
2098 * @preloaded_csets: list of preloaded css_sets
74a1166d 2099 *
1958d2d5
TH
2100 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2101 * those functions for details.
74a1166d 2102 */
1958d2d5 2103static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2104{
1958d2d5 2105 struct css_set *cset, *tmp_cset;
74a1166d 2106
1958d2d5
TH
2107 lockdep_assert_held(&cgroup_mutex);
2108
2109 down_write(&css_set_rwsem);
2110 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2111 cset->mg_src_cgrp = NULL;
2112 cset->mg_dst_cset = NULL;
2113 list_del_init(&cset->mg_preload_node);
a25eb52e 2114 put_css_set_locked(cset);
1958d2d5
TH
2115 }
2116 up_write(&css_set_rwsem);
2117}
2118
2119/**
2120 * cgroup_migrate_add_src - add a migration source css_set
2121 * @src_cset: the source css_set to add
2122 * @dst_cgrp: the destination cgroup
2123 * @preloaded_csets: list of preloaded css_sets
2124 *
2125 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2126 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2127 * up by cgroup_migrate_finish().
2128 *
d59cfc09
TH
2129 * This function may be called without holding cgroup_threadgroup_rwsem
2130 * even if the target is a process. Threads may be created and destroyed
2131 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2132 * into play and the preloaded css_sets are guaranteed to cover all
2133 * migrations.
1958d2d5
TH
2134 */
2135static void cgroup_migrate_add_src(struct css_set *src_cset,
2136 struct cgroup *dst_cgrp,
2137 struct list_head *preloaded_csets)
2138{
2139 struct cgroup *src_cgrp;
2140
2141 lockdep_assert_held(&cgroup_mutex);
2142 lockdep_assert_held(&css_set_rwsem);
2143
2144 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2145
1958d2d5
TH
2146 if (!list_empty(&src_cset->mg_preload_node))
2147 return;
2148
2149 WARN_ON(src_cset->mg_src_cgrp);
2150 WARN_ON(!list_empty(&src_cset->mg_tasks));
2151 WARN_ON(!list_empty(&src_cset->mg_node));
2152
2153 src_cset->mg_src_cgrp = src_cgrp;
2154 get_css_set(src_cset);
2155 list_add(&src_cset->mg_preload_node, preloaded_csets);
2156}
2157
2158/**
2159 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2160 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2161 * @preloaded_csets: list of preloaded source css_sets
2162 *
2163 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2164 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2165 * pins all destination css_sets, links each to its source, and append them
2166 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2167 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2168 *
2169 * This function must be called after cgroup_migrate_add_src() has been
2170 * called on each migration source css_set. After migration is performed
2171 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2172 * @preloaded_csets.
2173 */
2174static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2175 struct list_head *preloaded_csets)
2176{
2177 LIST_HEAD(csets);
f817de98 2178 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2179
2180 lockdep_assert_held(&cgroup_mutex);
2181
f8f22e53
TH
2182 /*
2183 * Except for the root, child_subsys_mask must be zero for a cgroup
2184 * with tasks so that child cgroups don't compete against tasks.
2185 */
d51f39b0 2186 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2187 dst_cgrp->child_subsys_mask)
2188 return -EBUSY;
2189
1958d2d5 2190 /* look up the dst cset for each src cset and link it to src */
f817de98 2191 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2192 struct css_set *dst_cset;
2193
f817de98
TH
2194 dst_cset = find_css_set(src_cset,
2195 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2196 if (!dst_cset)
2197 goto err;
2198
2199 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2200
2201 /*
2202 * If src cset equals dst, it's noop. Drop the src.
2203 * cgroup_migrate() will skip the cset too. Note that we
2204 * can't handle src == dst as some nodes are used by both.
2205 */
2206 if (src_cset == dst_cset) {
2207 src_cset->mg_src_cgrp = NULL;
2208 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2209 put_css_set(src_cset);
2210 put_css_set(dst_cset);
f817de98
TH
2211 continue;
2212 }
2213
1958d2d5
TH
2214 src_cset->mg_dst_cset = dst_cset;
2215
2216 if (list_empty(&dst_cset->mg_preload_node))
2217 list_add(&dst_cset->mg_preload_node, &csets);
2218 else
a25eb52e 2219 put_css_set(dst_cset);
1958d2d5
TH
2220 }
2221
f817de98 2222 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2223 return 0;
2224err:
2225 cgroup_migrate_finish(&csets);
2226 return -ENOMEM;
2227}
2228
2229/**
2230 * cgroup_migrate - migrate a process or task to a cgroup
2231 * @cgrp: the destination cgroup
2232 * @leader: the leader of the process or the task to migrate
2233 * @threadgroup: whether @leader points to the whole process or a single task
2234 *
2235 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
d59cfc09 2236 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2237 * caller is also responsible for invoking cgroup_migrate_add_src() and
2238 * cgroup_migrate_prepare_dst() on the targets before invoking this
2239 * function and following up with cgroup_migrate_finish().
2240 *
2241 * As long as a controller's ->can_attach() doesn't fail, this function is
2242 * guaranteed to succeed. This means that, excluding ->can_attach()
2243 * failure, when migrating multiple targets, the success or failure can be
2244 * decided for all targets by invoking group_migrate_prepare_dst() before
2245 * actually starting migrating.
2246 */
2247static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2248 bool threadgroup)
74a1166d 2249{
b3dc094e
TH
2250 struct cgroup_taskset tset = {
2251 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2252 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2253 .csets = &tset.src_csets,
2254 };
1c6727af 2255 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2256 struct css_set *cset, *tmp_cset;
2257 struct task_struct *task, *tmp_task;
2258 int i, ret;
74a1166d 2259
fb5d2b4c
MSB
2260 /*
2261 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2262 * already PF_EXITING could be freed from underneath us unless we
2263 * take an rcu_read_lock.
2264 */
b3dc094e 2265 down_write(&css_set_rwsem);
fb5d2b4c 2266 rcu_read_lock();
9db8de37 2267 task = leader;
74a1166d 2268 do {
9db8de37
TH
2269 /* @task either already exited or can't exit until the end */
2270 if (task->flags & PF_EXITING)
ea84753c 2271 goto next;
134d3373 2272
eaf797ab
TH
2273 /* leave @task alone if post_fork() hasn't linked it yet */
2274 if (list_empty(&task->cg_list))
ea84753c 2275 goto next;
cd3d0952 2276
b3dc094e 2277 cset = task_css_set(task);
1958d2d5 2278 if (!cset->mg_src_cgrp)
ea84753c 2279 goto next;
b3dc094e 2280
61d1d219 2281 /*
1b9aba49
TH
2282 * cgroup_taskset_first() must always return the leader.
2283 * Take care to avoid disturbing the ordering.
61d1d219 2284 */
1b9aba49
TH
2285 list_move_tail(&task->cg_list, &cset->mg_tasks);
2286 if (list_empty(&cset->mg_node))
2287 list_add_tail(&cset->mg_node, &tset.src_csets);
2288 if (list_empty(&cset->mg_dst_cset->mg_node))
2289 list_move_tail(&cset->mg_dst_cset->mg_node,
2290 &tset.dst_csets);
ea84753c 2291 next:
081aa458
LZ
2292 if (!threadgroup)
2293 break;
9db8de37 2294 } while_each_thread(leader, task);
fb5d2b4c 2295 rcu_read_unlock();
b3dc094e 2296 up_write(&css_set_rwsem);
74a1166d 2297
134d3373 2298 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2299 if (list_empty(&tset.src_csets))
2300 return 0;
134d3373 2301
1958d2d5 2302 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2303 for_each_e_css(css, i, cgrp) {
1c6727af 2304 if (css->ss->can_attach) {
9db8de37
TH
2305 ret = css->ss->can_attach(css, &tset);
2306 if (ret) {
1c6727af 2307 failed_css = css;
74a1166d
BB
2308 goto out_cancel_attach;
2309 }
2310 }
74a1166d
BB
2311 }
2312
2313 /*
1958d2d5
TH
2314 * Now that we're guaranteed success, proceed to move all tasks to
2315 * the new cgroup. There are no failure cases after here, so this
2316 * is the commit point.
74a1166d 2317 */
cb0f1fe9 2318 down_write(&css_set_rwsem);
b3dc094e
TH
2319 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2320 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2321 cgroup_task_migrate(cset->mg_src_cgrp, task,
2322 cset->mg_dst_cset);
74a1166d 2323 }
cb0f1fe9 2324 up_write(&css_set_rwsem);
74a1166d
BB
2325
2326 /*
1958d2d5
TH
2327 * Migration is committed, all target tasks are now on dst_csets.
2328 * Nothing is sensitive to fork() after this point. Notify
2329 * controllers that migration is complete.
74a1166d 2330 */
1958d2d5 2331 tset.csets = &tset.dst_csets;
74a1166d 2332
aec3dfcb 2333 for_each_e_css(css, i, cgrp)
1c6727af
TH
2334 if (css->ss->attach)
2335 css->ss->attach(css, &tset);
74a1166d 2336
9db8de37 2337 ret = 0;
b3dc094e
TH
2338 goto out_release_tset;
2339
74a1166d 2340out_cancel_attach:
aec3dfcb 2341 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2342 if (css == failed_css)
2343 break;
2344 if (css->ss->cancel_attach)
2345 css->ss->cancel_attach(css, &tset);
74a1166d 2346 }
b3dc094e
TH
2347out_release_tset:
2348 down_write(&css_set_rwsem);
2349 list_splice_init(&tset.dst_csets, &tset.src_csets);
2350 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2351 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2352 list_del_init(&cset->mg_node);
b3dc094e
TH
2353 }
2354 up_write(&css_set_rwsem);
9db8de37 2355 return ret;
74a1166d
BB
2356}
2357
1958d2d5
TH
2358/**
2359 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2360 * @dst_cgrp: the cgroup to attach to
2361 * @leader: the task or the leader of the threadgroup to be attached
2362 * @threadgroup: attach the whole threadgroup?
2363 *
d59cfc09 2364 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2365 */
2366static int cgroup_attach_task(struct cgroup *dst_cgrp,
2367 struct task_struct *leader, bool threadgroup)
2368{
2369 LIST_HEAD(preloaded_csets);
2370 struct task_struct *task;
2371 int ret;
2372
2373 /* look up all src csets */
2374 down_read(&css_set_rwsem);
2375 rcu_read_lock();
2376 task = leader;
2377 do {
2378 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2379 &preloaded_csets);
2380 if (!threadgroup)
2381 break;
2382 } while_each_thread(leader, task);
2383 rcu_read_unlock();
2384 up_read(&css_set_rwsem);
2385
2386 /* prepare dst csets and commit */
2387 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2388 if (!ret)
2389 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2390
2391 cgroup_migrate_finish(&preloaded_csets);
2392 return ret;
74a1166d
BB
2393}
2394
187fe840
TH
2395static int cgroup_procs_write_permission(struct task_struct *task,
2396 struct cgroup *dst_cgrp,
2397 struct kernfs_open_file *of)
dedf22e9
TH
2398{
2399 const struct cred *cred = current_cred();
2400 const struct cred *tcred = get_task_cred(task);
2401 int ret = 0;
2402
2403 /*
2404 * even if we're attaching all tasks in the thread group, we only
2405 * need to check permissions on one of them.
2406 */
2407 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2408 !uid_eq(cred->euid, tcred->uid) &&
2409 !uid_eq(cred->euid, tcred->suid))
2410 ret = -EACCES;
2411
187fe840
TH
2412 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2413 struct super_block *sb = of->file->f_path.dentry->d_sb;
2414 struct cgroup *cgrp;
2415 struct inode *inode;
2416
2417 down_read(&css_set_rwsem);
2418 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2419 up_read(&css_set_rwsem);
2420
2421 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2422 cgrp = cgroup_parent(cgrp);
2423
2424 ret = -ENOMEM;
2425 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2426 if (inode) {
2427 ret = inode_permission(inode, MAY_WRITE);
2428 iput(inode);
2429 }
2430 }
2431
dedf22e9
TH
2432 put_cred(tcred);
2433 return ret;
2434}
2435
74a1166d
BB
2436/*
2437 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2438 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2439 * cgroup_mutex and threadgroup.
bbcb81d0 2440 */
acbef755
TH
2441static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2442 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2443{
bbcb81d0 2444 struct task_struct *tsk;
e76ecaee 2445 struct cgroup *cgrp;
acbef755 2446 pid_t pid;
bbcb81d0
PM
2447 int ret;
2448
acbef755
TH
2449 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2450 return -EINVAL;
2451
e76ecaee
TH
2452 cgrp = cgroup_kn_lock_live(of->kn);
2453 if (!cgrp)
74a1166d
BB
2454 return -ENODEV;
2455
b5ba75b5 2456 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2457 rcu_read_lock();
bbcb81d0 2458 if (pid) {
73507f33 2459 tsk = find_task_by_vpid(pid);
74a1166d 2460 if (!tsk) {
dd4b0a46 2461 ret = -ESRCH;
b5ba75b5 2462 goto out_unlock_rcu;
bbcb81d0 2463 }
dedf22e9 2464 } else {
b78949eb 2465 tsk = current;
dedf22e9 2466 }
cd3d0952
TH
2467
2468 if (threadgroup)
b78949eb 2469 tsk = tsk->group_leader;
c4c27fbd
MG
2470
2471 /*
14a40ffc 2472 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2473 * trapped in a cpuset, or RT worker may be born in a cgroup
2474 * with no rt_runtime allocated. Just say no.
2475 */
14a40ffc 2476 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2477 ret = -EINVAL;
b5ba75b5 2478 goto out_unlock_rcu;
c4c27fbd
MG
2479 }
2480
b78949eb
MSB
2481 get_task_struct(tsk);
2482 rcu_read_unlock();
2483
187fe840 2484 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2485 if (!ret)
2486 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2487
bbcb81d0 2488 put_task_struct(tsk);
b5ba75b5
TH
2489 goto out_unlock_threadgroup;
2490
2491out_unlock_rcu:
2492 rcu_read_unlock();
2493out_unlock_threadgroup:
2494 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2495 cgroup_kn_unlock(of->kn);
acbef755 2496 return ret ?: nbytes;
bbcb81d0
PM
2497}
2498
7ae1bad9
TH
2499/**
2500 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2501 * @from: attach to all cgroups of a given task
2502 * @tsk: the task to be attached
2503 */
2504int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2505{
3dd06ffa 2506 struct cgroup_root *root;
7ae1bad9
TH
2507 int retval = 0;
2508
47cfcd09 2509 mutex_lock(&cgroup_mutex);
985ed670 2510 for_each_root(root) {
96d365e0
TH
2511 struct cgroup *from_cgrp;
2512
3dd06ffa 2513 if (root == &cgrp_dfl_root)
985ed670
TH
2514 continue;
2515
96d365e0
TH
2516 down_read(&css_set_rwsem);
2517 from_cgrp = task_cgroup_from_root(from, root);
2518 up_read(&css_set_rwsem);
7ae1bad9 2519
6f4b7e63 2520 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2521 if (retval)
2522 break;
2523 }
47cfcd09 2524 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2525
2526 return retval;
2527}
2528EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2529
acbef755
TH
2530static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2531 char *buf, size_t nbytes, loff_t off)
74a1166d 2532{
acbef755 2533 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2534}
2535
acbef755
TH
2536static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2537 char *buf, size_t nbytes, loff_t off)
af351026 2538{
acbef755 2539 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2540}
2541
451af504
TH
2542static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2543 char *buf, size_t nbytes, loff_t off)
e788e066 2544{
e76ecaee 2545 struct cgroup *cgrp;
5f469907 2546
e76ecaee 2547 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2548
e76ecaee
TH
2549 cgrp = cgroup_kn_lock_live(of->kn);
2550 if (!cgrp)
e788e066 2551 return -ENODEV;
69e943b7 2552 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2553 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2554 sizeof(cgrp->root->release_agent_path));
69e943b7 2555 spin_unlock(&release_agent_path_lock);
e76ecaee 2556 cgroup_kn_unlock(of->kn);
451af504 2557 return nbytes;
e788e066
PM
2558}
2559
2da8ca82 2560static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2561{
2da8ca82 2562 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2563
46cfeb04 2564 spin_lock(&release_agent_path_lock);
e788e066 2565 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2566 spin_unlock(&release_agent_path_lock);
e788e066 2567 seq_putc(seq, '\n');
e788e066
PM
2568 return 0;
2569}
2570
2da8ca82 2571static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2572{
c1d5d42e 2573 seq_puts(seq, "0\n");
e788e066
PM
2574 return 0;
2575}
2576
8ab456ac 2577static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2578{
f8f22e53
TH
2579 struct cgroup_subsys *ss;
2580 bool printed = false;
2581 int ssid;
a742c59d 2582
a966a4ed
AS
2583 for_each_subsys_which(ss, ssid, &ss_mask) {
2584 if (printed)
2585 seq_putc(seq, ' ');
2586 seq_printf(seq, "%s", ss->name);
2587 printed = true;
e73d2c61 2588 }
f8f22e53
TH
2589 if (printed)
2590 seq_putc(seq, '\n');
355e0c48
PM
2591}
2592
f8f22e53
TH
2593/* show controllers which are currently attached to the default hierarchy */
2594static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2595{
f8f22e53
TH
2596 struct cgroup *cgrp = seq_css(seq)->cgroup;
2597
5533e011
TH
2598 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2599 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2600 return 0;
db3b1497
PM
2601}
2602
f8f22e53
TH
2603/* show controllers which are enabled from the parent */
2604static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2605{
f8f22e53
TH
2606 struct cgroup *cgrp = seq_css(seq)->cgroup;
2607
667c2491 2608 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2609 return 0;
ddbcc7e8
PM
2610}
2611
f8f22e53
TH
2612/* show controllers which are enabled for a given cgroup's children */
2613static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2614{
f8f22e53
TH
2615 struct cgroup *cgrp = seq_css(seq)->cgroup;
2616
667c2491 2617 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2618 return 0;
2619}
2620
2621/**
2622 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2623 * @cgrp: root of the subtree to update csses for
2624 *
2625 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2626 * css associations need to be updated accordingly. This function looks up
2627 * all css_sets which are attached to the subtree, creates the matching
2628 * updated css_sets and migrates the tasks to the new ones.
2629 */
2630static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2631{
2632 LIST_HEAD(preloaded_csets);
2633 struct cgroup_subsys_state *css;
2634 struct css_set *src_cset;
2635 int ret;
2636
f8f22e53
TH
2637 lockdep_assert_held(&cgroup_mutex);
2638
b5ba75b5
TH
2639 percpu_down_write(&cgroup_threadgroup_rwsem);
2640
f8f22e53
TH
2641 /* look up all csses currently attached to @cgrp's subtree */
2642 down_read(&css_set_rwsem);
2643 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2644 struct cgrp_cset_link *link;
2645
2646 /* self is not affected by child_subsys_mask change */
2647 if (css->cgroup == cgrp)
2648 continue;
2649
2650 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2651 cgroup_migrate_add_src(link->cset, cgrp,
2652 &preloaded_csets);
2653 }
2654 up_read(&css_set_rwsem);
2655
2656 /* NULL dst indicates self on default hierarchy */
2657 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2658 if (ret)
2659 goto out_finish;
2660
2661 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2662 struct task_struct *last_task = NULL, *task;
2663
2664 /* src_csets precede dst_csets, break on the first dst_cset */
2665 if (!src_cset->mg_src_cgrp)
2666 break;
2667
2668 /*
2669 * All tasks in src_cset need to be migrated to the
2670 * matching dst_cset. Empty it process by process. We
2671 * walk tasks but migrate processes. The leader might even
2672 * belong to a different cset but such src_cset would also
2673 * be among the target src_csets because the default
2674 * hierarchy enforces per-process membership.
2675 */
2676 while (true) {
2677 down_read(&css_set_rwsem);
2678 task = list_first_entry_or_null(&src_cset->tasks,
2679 struct task_struct, cg_list);
2680 if (task) {
2681 task = task->group_leader;
2682 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2683 get_task_struct(task);
2684 }
2685 up_read(&css_set_rwsem);
2686
2687 if (!task)
2688 break;
2689
2690 /* guard against possible infinite loop */
2691 if (WARN(last_task == task,
2692 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2693 goto out_finish;
2694 last_task = task;
2695
f8f22e53
TH
2696 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2697
f8f22e53
TH
2698 put_task_struct(task);
2699
2700 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2701 goto out_finish;
2702 }
2703 }
2704
2705out_finish:
2706 cgroup_migrate_finish(&preloaded_csets);
b5ba75b5 2707 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2708 return ret;
2709}
2710
2711/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2712static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2713 char *buf, size_t nbytes,
2714 loff_t off)
f8f22e53 2715{
8ab456ac
AS
2716 unsigned long enable = 0, disable = 0;
2717 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2718 struct cgroup *cgrp, *child;
f8f22e53 2719 struct cgroup_subsys *ss;
451af504 2720 char *tok;
f8f22e53
TH
2721 int ssid, ret;
2722
2723 /*
d37167ab
TH
2724 * Parse input - space separated list of subsystem names prefixed
2725 * with either + or -.
f8f22e53 2726 */
451af504
TH
2727 buf = strstrip(buf);
2728 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2729 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2730
d37167ab
TH
2731 if (tok[0] == '\0')
2732 continue;
a966a4ed
AS
2733 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2734 if (ss->disabled || strcmp(tok + 1, ss->name))
f8f22e53
TH
2735 continue;
2736
2737 if (*tok == '+') {
7d331fa9
TH
2738 enable |= 1 << ssid;
2739 disable &= ~(1 << ssid);
f8f22e53 2740 } else if (*tok == '-') {
7d331fa9
TH
2741 disable |= 1 << ssid;
2742 enable &= ~(1 << ssid);
f8f22e53
TH
2743 } else {
2744 return -EINVAL;
2745 }
2746 break;
2747 }
2748 if (ssid == CGROUP_SUBSYS_COUNT)
2749 return -EINVAL;
2750 }
2751
a9746d8d
TH
2752 cgrp = cgroup_kn_lock_live(of->kn);
2753 if (!cgrp)
2754 return -ENODEV;
f8f22e53
TH
2755
2756 for_each_subsys(ss, ssid) {
2757 if (enable & (1 << ssid)) {
667c2491 2758 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2759 enable &= ~(1 << ssid);
2760 continue;
2761 }
2762
c29adf24
TH
2763 /* unavailable or not enabled on the parent? */
2764 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2765 (cgroup_parent(cgrp) &&
667c2491 2766 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2767 ret = -ENOENT;
2768 goto out_unlock;
2769 }
f8f22e53 2770 } else if (disable & (1 << ssid)) {
667c2491 2771 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2772 disable &= ~(1 << ssid);
2773 continue;
2774 }
2775
2776 /* a child has it enabled? */
2777 cgroup_for_each_live_child(child, cgrp) {
667c2491 2778 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2779 ret = -EBUSY;
ddab2b6e 2780 goto out_unlock;
f8f22e53
TH
2781 }
2782 }
2783 }
2784 }
2785
2786 if (!enable && !disable) {
2787 ret = 0;
ddab2b6e 2788 goto out_unlock;
f8f22e53
TH
2789 }
2790
2791 /*
667c2491 2792 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2793 * with tasks so that child cgroups don't compete against tasks.
2794 */
d51f39b0 2795 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2796 ret = -EBUSY;
2797 goto out_unlock;
2798 }
2799
2800 /*
f63070d3
TH
2801 * Update subsys masks and calculate what needs to be done. More
2802 * subsystems than specified may need to be enabled or disabled
2803 * depending on subsystem dependencies.
2804 */
755bf5ee
TH
2805 old_sc = cgrp->subtree_control;
2806 old_ss = cgrp->child_subsys_mask;
2807 new_sc = (old_sc | enable) & ~disable;
2808 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2809
755bf5ee
TH
2810 css_enable = ~old_ss & new_ss;
2811 css_disable = old_ss & ~new_ss;
f63070d3
TH
2812 enable |= css_enable;
2813 disable |= css_disable;
c29adf24 2814
db6e3053
TH
2815 /*
2816 * Because css offlining is asynchronous, userland might try to
2817 * re-enable the same controller while the previous instance is
2818 * still around. In such cases, wait till it's gone using
2819 * offline_waitq.
2820 */
a966a4ed 2821 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2822 cgroup_for_each_live_child(child, cgrp) {
2823 DEFINE_WAIT(wait);
2824
2825 if (!cgroup_css(child, ss))
2826 continue;
2827
2828 cgroup_get(child);
2829 prepare_to_wait(&child->offline_waitq, &wait,
2830 TASK_UNINTERRUPTIBLE);
2831 cgroup_kn_unlock(of->kn);
2832 schedule();
2833 finish_wait(&child->offline_waitq, &wait);
2834 cgroup_put(child);
2835
2836 return restart_syscall();
2837 }
2838 }
2839
755bf5ee
TH
2840 cgrp->subtree_control = new_sc;
2841 cgrp->child_subsys_mask = new_ss;
2842
f63070d3
TH
2843 /*
2844 * Create new csses or make the existing ones visible. A css is
2845 * created invisible if it's being implicitly enabled through
2846 * dependency. An invisible css is made visible when the userland
2847 * explicitly enables it.
f8f22e53
TH
2848 */
2849 for_each_subsys(ss, ssid) {
2850 if (!(enable & (1 << ssid)))
2851 continue;
2852
2853 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2854 if (css_enable & (1 << ssid))
2855 ret = create_css(child, ss,
2856 cgrp->subtree_control & (1 << ssid));
2857 else
2858 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2859 if (ret)
2860 goto err_undo_css;
2861 }
2862 }
2863
c29adf24
TH
2864 /*
2865 * At this point, cgroup_e_css() results reflect the new csses
2866 * making the following cgroup_update_dfl_csses() properly update
2867 * css associations of all tasks in the subtree.
2868 */
f8f22e53
TH
2869 ret = cgroup_update_dfl_csses(cgrp);
2870 if (ret)
2871 goto err_undo_css;
2872
f63070d3
TH
2873 /*
2874 * All tasks are migrated out of disabled csses. Kill or hide
2875 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2876 * disabled while other subsystems are still depending on it. The
2877 * css must not actively control resources and be in the vanilla
2878 * state if it's made visible again later. Controllers which may
2879 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2880 */
f8f22e53
TH
2881 for_each_subsys(ss, ssid) {
2882 if (!(disable & (1 << ssid)))
2883 continue;
2884
f63070d3 2885 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2886 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2887
2888 if (css_disable & (1 << ssid)) {
2889 kill_css(css);
2890 } else {
f63070d3 2891 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2892 if (ss->css_reset)
2893 ss->css_reset(css);
2894 }
f63070d3 2895 }
f8f22e53
TH
2896 }
2897
56c807ba
TH
2898 /*
2899 * The effective csses of all the descendants (excluding @cgrp) may
2900 * have changed. Subsystems can optionally subscribe to this event
2901 * by implementing ->css_e_css_changed() which is invoked if any of
2902 * the effective csses seen from the css's cgroup may have changed.
2903 */
2904 for_each_subsys(ss, ssid) {
2905 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2906 struct cgroup_subsys_state *css;
2907
2908 if (!ss->css_e_css_changed || !this_css)
2909 continue;
2910
2911 css_for_each_descendant_pre(css, this_css)
2912 if (css != this_css)
2913 ss->css_e_css_changed(css);
2914 }
2915
f8f22e53
TH
2916 kernfs_activate(cgrp->kn);
2917 ret = 0;
2918out_unlock:
a9746d8d 2919 cgroup_kn_unlock(of->kn);
451af504 2920 return ret ?: nbytes;
f8f22e53
TH
2921
2922err_undo_css:
755bf5ee
TH
2923 cgrp->subtree_control = old_sc;
2924 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
2925
2926 for_each_subsys(ss, ssid) {
2927 if (!(enable & (1 << ssid)))
2928 continue;
2929
2930 cgroup_for_each_live_child(child, cgrp) {
2931 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2932
2933 if (!css)
2934 continue;
2935
2936 if (css_enable & (1 << ssid))
f8f22e53 2937 kill_css(css);
f63070d3
TH
2938 else
2939 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2940 }
2941 }
2942 goto out_unlock;
2943}
2944
842b597e
TH
2945static int cgroup_populated_show(struct seq_file *seq, void *v)
2946{
2947 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2948 return 0;
2949}
2950
2bd59d48
TH
2951static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2952 size_t nbytes, loff_t off)
355e0c48 2953{
2bd59d48
TH
2954 struct cgroup *cgrp = of->kn->parent->priv;
2955 struct cftype *cft = of->kn->priv;
2956 struct cgroup_subsys_state *css;
a742c59d 2957 int ret;
355e0c48 2958
b4168640
TH
2959 if (cft->write)
2960 return cft->write(of, buf, nbytes, off);
2961
2bd59d48
TH
2962 /*
2963 * kernfs guarantees that a file isn't deleted with operations in
2964 * flight, which means that the matching css is and stays alive and
2965 * doesn't need to be pinned. The RCU locking is not necessary
2966 * either. It's just for the convenience of using cgroup_css().
2967 */
2968 rcu_read_lock();
2969 css = cgroup_css(cgrp, cft->ss);
2970 rcu_read_unlock();
a742c59d 2971
451af504 2972 if (cft->write_u64) {
a742c59d
TH
2973 unsigned long long v;
2974 ret = kstrtoull(buf, 0, &v);
2975 if (!ret)
2976 ret = cft->write_u64(css, cft, v);
2977 } else if (cft->write_s64) {
2978 long long v;
2979 ret = kstrtoll(buf, 0, &v);
2980 if (!ret)
2981 ret = cft->write_s64(css, cft, v);
e73d2c61 2982 } else {
a742c59d 2983 ret = -EINVAL;
e73d2c61 2984 }
2bd59d48 2985
a742c59d 2986 return ret ?: nbytes;
355e0c48
PM
2987}
2988
6612f05b 2989static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2990{
2bd59d48 2991 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2992}
2993
6612f05b 2994static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2995{
2bd59d48 2996 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2997}
2998
6612f05b 2999static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3000{
2bd59d48 3001 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3002}
3003
91796569 3004static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3005{
7da11279
TH
3006 struct cftype *cft = seq_cft(m);
3007 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3008
2da8ca82
TH
3009 if (cft->seq_show)
3010 return cft->seq_show(m, arg);
e73d2c61 3011
f4c753b7 3012 if (cft->read_u64)
896f5199
TH
3013 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3014 else if (cft->read_s64)
3015 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3016 else
3017 return -EINVAL;
3018 return 0;
91796569
PM
3019}
3020
2bd59d48
TH
3021static struct kernfs_ops cgroup_kf_single_ops = {
3022 .atomic_write_len = PAGE_SIZE,
3023 .write = cgroup_file_write,
3024 .seq_show = cgroup_seqfile_show,
91796569
PM
3025};
3026
2bd59d48
TH
3027static struct kernfs_ops cgroup_kf_ops = {
3028 .atomic_write_len = PAGE_SIZE,
3029 .write = cgroup_file_write,
3030 .seq_start = cgroup_seqfile_start,
3031 .seq_next = cgroup_seqfile_next,
3032 .seq_stop = cgroup_seqfile_stop,
3033 .seq_show = cgroup_seqfile_show,
3034};
ddbcc7e8
PM
3035
3036/*
3037 * cgroup_rename - Only allow simple rename of directories in place.
3038 */
2bd59d48
TH
3039static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3040 const char *new_name_str)
ddbcc7e8 3041{
2bd59d48 3042 struct cgroup *cgrp = kn->priv;
65dff759 3043 int ret;
65dff759 3044
2bd59d48 3045 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3046 return -ENOTDIR;
2bd59d48 3047 if (kn->parent != new_parent)
ddbcc7e8 3048 return -EIO;
65dff759 3049
6db8e85c
TH
3050 /*
3051 * This isn't a proper migration and its usefulness is very
aa6ec29b 3052 * limited. Disallow on the default hierarchy.
6db8e85c 3053 */
aa6ec29b 3054 if (cgroup_on_dfl(cgrp))
6db8e85c 3055 return -EPERM;
099fca32 3056
e1b2dc17 3057 /*
8353da1f 3058 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3059 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3060 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3061 */
3062 kernfs_break_active_protection(new_parent);
3063 kernfs_break_active_protection(kn);
099fca32 3064
2bd59d48 3065 mutex_lock(&cgroup_mutex);
099fca32 3066
2bd59d48 3067 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3068
2bd59d48 3069 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3070
3071 kernfs_unbreak_active_protection(kn);
3072 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3073 return ret;
099fca32
LZ
3074}
3075
49957f8e
TH
3076/* set uid and gid of cgroup dirs and files to that of the creator */
3077static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3078{
3079 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3080 .ia_uid = current_fsuid(),
3081 .ia_gid = current_fsgid(), };
3082
3083 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3084 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3085 return 0;
3086
3087 return kernfs_setattr(kn, &iattr);
3088}
3089
2bb566cb 3090static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3091{
8d7e6fb0 3092 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3093 struct kernfs_node *kn;
3094 struct lock_class_key *key = NULL;
49957f8e 3095 int ret;
05ef1d7c 3096
2bd59d48
TH
3097#ifdef CONFIG_DEBUG_LOCK_ALLOC
3098 key = &cft->lockdep_key;
3099#endif
3100 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3101 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3102 NULL, key);
49957f8e
TH
3103 if (IS_ERR(kn))
3104 return PTR_ERR(kn);
3105
3106 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3107 if (ret) {
49957f8e 3108 kernfs_remove(kn);
f8f22e53
TH
3109 return ret;
3110 }
3111
187fe840
TH
3112 if (cft->write == cgroup_procs_write)
3113 cgrp->procs_kn = kn;
3114 else if (cft->seq_show == cgroup_populated_show)
842b597e 3115 cgrp->populated_kn = kn;
f8f22e53 3116 return 0;
ddbcc7e8
PM
3117}
3118
b1f28d31
TH
3119/**
3120 * cgroup_addrm_files - add or remove files to a cgroup directory
3121 * @cgrp: the target cgroup
b1f28d31
TH
3122 * @cfts: array of cftypes to be added
3123 * @is_add: whether to add or remove
3124 *
3125 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3126 * For removals, this function never fails. If addition fails, this
3127 * function doesn't remove files already added. The caller is responsible
3128 * for cleaning up.
b1f28d31 3129 */
2bb566cb
TH
3130static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3131 bool is_add)
ddbcc7e8 3132{
03b1cde6 3133 struct cftype *cft;
b1f28d31
TH
3134 int ret;
3135
01f6474c 3136 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3137
3138 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3139 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3140 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3141 continue;
05ebb6e6 3142 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3143 continue;
d51f39b0 3144 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3145 continue;
d51f39b0 3146 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3147 continue;
3148
2739d3cc 3149 if (is_add) {
2bb566cb 3150 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3151 if (ret) {
ed3d261b
JP
3152 pr_warn("%s: failed to add %s, err=%d\n",
3153 __func__, cft->name, ret);
b1f28d31
TH
3154 return ret;
3155 }
2739d3cc
LZ
3156 } else {
3157 cgroup_rm_file(cgrp, cft);
db0416b6 3158 }
ddbcc7e8 3159 }
b1f28d31 3160 return 0;
ddbcc7e8
PM
3161}
3162
21a2d343 3163static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3164{
3165 LIST_HEAD(pending);
2bb566cb 3166 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3167 struct cgroup *root = &ss->root->cgrp;
492eb21b 3168 struct cgroup_subsys_state *css;
9ccece80 3169 int ret = 0;
8e3f6541 3170
01f6474c 3171 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3172
e8c82d20 3173 /* add/rm files for all cgroups created before */
ca8bdcaf 3174 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3175 struct cgroup *cgrp = css->cgroup;
3176
e8c82d20
LZ
3177 if (cgroup_is_dead(cgrp))
3178 continue;
3179
21a2d343 3180 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3181 if (ret)
3182 break;
8e3f6541 3183 }
21a2d343
TH
3184
3185 if (is_add && !ret)
3186 kernfs_activate(root->kn);
9ccece80 3187 return ret;
8e3f6541
TH
3188}
3189
2da440a2 3190static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3191{
2bb566cb 3192 struct cftype *cft;
8e3f6541 3193
2bd59d48
TH
3194 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3195 /* free copy for custom atomic_write_len, see init_cftypes() */
3196 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3197 kfree(cft->kf_ops);
3198 cft->kf_ops = NULL;
2da440a2 3199 cft->ss = NULL;
a8ddc821
TH
3200
3201 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3202 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3203 }
2da440a2
TH
3204}
3205
2bd59d48 3206static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3207{
3208 struct cftype *cft;
3209
2bd59d48
TH
3210 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3211 struct kernfs_ops *kf_ops;
3212
0adb0704
TH
3213 WARN_ON(cft->ss || cft->kf_ops);
3214
2bd59d48
TH
3215 if (cft->seq_start)
3216 kf_ops = &cgroup_kf_ops;
3217 else
3218 kf_ops = &cgroup_kf_single_ops;
3219
3220 /*
3221 * Ugh... if @cft wants a custom max_write_len, we need to
3222 * make a copy of kf_ops to set its atomic_write_len.
3223 */
3224 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3225 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3226 if (!kf_ops) {
3227 cgroup_exit_cftypes(cfts);
3228 return -ENOMEM;
3229 }
3230 kf_ops->atomic_write_len = cft->max_write_len;
3231 }
8e3f6541 3232
2bd59d48 3233 cft->kf_ops = kf_ops;
2bb566cb 3234 cft->ss = ss;
2bd59d48 3235 }
2bb566cb 3236
2bd59d48 3237 return 0;
2da440a2
TH
3238}
3239
21a2d343
TH
3240static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3241{
01f6474c 3242 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3243
3244 if (!cfts || !cfts[0].ss)
3245 return -ENOENT;
3246
3247 list_del(&cfts->node);
3248 cgroup_apply_cftypes(cfts, false);
3249 cgroup_exit_cftypes(cfts);
3250 return 0;
8e3f6541 3251}
8e3f6541 3252
79578621
TH
3253/**
3254 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3255 * @cfts: zero-length name terminated array of cftypes
3256 *
2bb566cb
TH
3257 * Unregister @cfts. Files described by @cfts are removed from all
3258 * existing cgroups and all future cgroups won't have them either. This
3259 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3260 *
3261 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3262 * registered.
79578621 3263 */
2bb566cb 3264int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3265{
21a2d343 3266 int ret;
79578621 3267
01f6474c 3268 mutex_lock(&cgroup_mutex);
21a2d343 3269 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3270 mutex_unlock(&cgroup_mutex);
21a2d343 3271 return ret;
80b13586
TH
3272}
3273
8e3f6541
TH
3274/**
3275 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3276 * @ss: target cgroup subsystem
3277 * @cfts: zero-length name terminated array of cftypes
3278 *
3279 * Register @cfts to @ss. Files described by @cfts are created for all
3280 * existing cgroups to which @ss is attached and all future cgroups will
3281 * have them too. This function can be called anytime whether @ss is
3282 * attached or not.
3283 *
3284 * Returns 0 on successful registration, -errno on failure. Note that this
3285 * function currently returns 0 as long as @cfts registration is successful
3286 * even if some file creation attempts on existing cgroups fail.
3287 */
2cf669a5 3288static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3289{
9ccece80 3290 int ret;
8e3f6541 3291
c731ae1d
LZ
3292 if (ss->disabled)
3293 return 0;
3294
dc5736ed
LZ
3295 if (!cfts || cfts[0].name[0] == '\0')
3296 return 0;
2bb566cb 3297
2bd59d48
TH
3298 ret = cgroup_init_cftypes(ss, cfts);
3299 if (ret)
3300 return ret;
79578621 3301
01f6474c 3302 mutex_lock(&cgroup_mutex);
21a2d343 3303
0adb0704 3304 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3305 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3306 if (ret)
21a2d343 3307 cgroup_rm_cftypes_locked(cfts);
79578621 3308
01f6474c 3309 mutex_unlock(&cgroup_mutex);
9ccece80 3310 return ret;
79578621
TH
3311}
3312
a8ddc821
TH
3313/**
3314 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3315 * @ss: target cgroup subsystem
3316 * @cfts: zero-length name terminated array of cftypes
3317 *
3318 * Similar to cgroup_add_cftypes() but the added files are only used for
3319 * the default hierarchy.
3320 */
3321int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3322{
3323 struct cftype *cft;
3324
3325 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3326 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3327 return cgroup_add_cftypes(ss, cfts);
3328}
3329
3330/**
3331 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3332 * @ss: target cgroup subsystem
3333 * @cfts: zero-length name terminated array of cftypes
3334 *
3335 * Similar to cgroup_add_cftypes() but the added files are only used for
3336 * the legacy hierarchies.
3337 */
2cf669a5
TH
3338int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3339{
a8ddc821
TH
3340 struct cftype *cft;
3341
fa8137be
VG
3342 /*
3343 * If legacy_flies_on_dfl, we want to show the legacy files on the
3344 * dfl hierarchy but iff the target subsystem hasn't been updated
3345 * for the dfl hierarchy yet.
3346 */
3347 if (!cgroup_legacy_files_on_dfl ||
3348 ss->dfl_cftypes != ss->legacy_cftypes) {
3349 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3350 cft->flags |= __CFTYPE_NOT_ON_DFL;
3351 }
3352
2cf669a5
TH
3353 return cgroup_add_cftypes(ss, cfts);
3354}
3355
a043e3b2
LZ
3356/**
3357 * cgroup_task_count - count the number of tasks in a cgroup.
3358 * @cgrp: the cgroup in question
3359 *
3360 * Return the number of tasks in the cgroup.
3361 */
07bc356e 3362static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3363{
3364 int count = 0;
69d0206c 3365 struct cgrp_cset_link *link;
817929ec 3366
96d365e0 3367 down_read(&css_set_rwsem);
69d0206c
TH
3368 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3369 count += atomic_read(&link->cset->refcount);
96d365e0 3370 up_read(&css_set_rwsem);
bbcb81d0
PM
3371 return count;
3372}
3373
53fa5261 3374/**
492eb21b 3375 * css_next_child - find the next child of a given css
c2931b70
TH
3376 * @pos: the current position (%NULL to initiate traversal)
3377 * @parent: css whose children to walk
53fa5261 3378 *
c2931b70 3379 * This function returns the next child of @parent and should be called
87fb54f1 3380 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3381 * that @parent and @pos are accessible. The next sibling is guaranteed to
3382 * be returned regardless of their states.
3383 *
3384 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3385 * css which finished ->css_online() is guaranteed to be visible in the
3386 * future iterations and will stay visible until the last reference is put.
3387 * A css which hasn't finished ->css_online() or already finished
3388 * ->css_offline() may show up during traversal. It's each subsystem's
3389 * responsibility to synchronize against on/offlining.
53fa5261 3390 */
c2931b70
TH
3391struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3392 struct cgroup_subsys_state *parent)
53fa5261 3393{
c2931b70 3394 struct cgroup_subsys_state *next;
53fa5261 3395
8353da1f 3396 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3397
3398 /*
de3f0341
TH
3399 * @pos could already have been unlinked from the sibling list.
3400 * Once a cgroup is removed, its ->sibling.next is no longer
3401 * updated when its next sibling changes. CSS_RELEASED is set when
3402 * @pos is taken off list, at which time its next pointer is valid,
3403 * and, as releases are serialized, the one pointed to by the next
3404 * pointer is guaranteed to not have started release yet. This
3405 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3406 * critical section, the one pointed to by its next pointer is
3407 * guaranteed to not have finished its RCU grace period even if we
3408 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3409 *
de3f0341
TH
3410 * If @pos has CSS_RELEASED set, its next pointer can't be
3411 * dereferenced; however, as each css is given a monotonically
3412 * increasing unique serial number and always appended to the
3413 * sibling list, the next one can be found by walking the parent's
3414 * children until the first css with higher serial number than
3415 * @pos's. While this path can be slower, it happens iff iteration
3416 * races against release and the race window is very small.
53fa5261 3417 */
3b287a50 3418 if (!pos) {
c2931b70
TH
3419 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3420 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3421 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3422 } else {
c2931b70 3423 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3424 if (next->serial_nr > pos->serial_nr)
3425 break;
53fa5261
TH
3426 }
3427
3b281afb
TH
3428 /*
3429 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3430 * the next sibling.
3b281afb 3431 */
c2931b70
TH
3432 if (&next->sibling != &parent->children)
3433 return next;
3b281afb 3434 return NULL;
53fa5261 3435}
53fa5261 3436
574bd9f7 3437/**
492eb21b 3438 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3439 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3440 * @root: css whose descendants to walk
574bd9f7 3441 *
492eb21b 3442 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3443 * to visit for pre-order traversal of @root's descendants. @root is
3444 * included in the iteration and the first node to be visited.
75501a6d 3445 *
87fb54f1
TH
3446 * While this function requires cgroup_mutex or RCU read locking, it
3447 * doesn't require the whole traversal to be contained in a single critical
3448 * section. This function will return the correct next descendant as long
3449 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3450 *
3451 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3452 * css which finished ->css_online() is guaranteed to be visible in the
3453 * future iterations and will stay visible until the last reference is put.
3454 * A css which hasn't finished ->css_online() or already finished
3455 * ->css_offline() may show up during traversal. It's each subsystem's
3456 * responsibility to synchronize against on/offlining.
574bd9f7 3457 */
492eb21b
TH
3458struct cgroup_subsys_state *
3459css_next_descendant_pre(struct cgroup_subsys_state *pos,
3460 struct cgroup_subsys_state *root)
574bd9f7 3461{
492eb21b 3462 struct cgroup_subsys_state *next;
574bd9f7 3463
8353da1f 3464 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3465
bd8815a6 3466 /* if first iteration, visit @root */
7805d000 3467 if (!pos)
bd8815a6 3468 return root;
574bd9f7
TH
3469
3470 /* visit the first child if exists */
492eb21b 3471 next = css_next_child(NULL, pos);
574bd9f7
TH
3472 if (next)
3473 return next;
3474
3475 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3476 while (pos != root) {
5c9d535b 3477 next = css_next_child(pos, pos->parent);
75501a6d 3478 if (next)
574bd9f7 3479 return next;
5c9d535b 3480 pos = pos->parent;
7805d000 3481 }
574bd9f7
TH
3482
3483 return NULL;
3484}
574bd9f7 3485
12a9d2fe 3486/**
492eb21b
TH
3487 * css_rightmost_descendant - return the rightmost descendant of a css
3488 * @pos: css of interest
12a9d2fe 3489 *
492eb21b
TH
3490 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3491 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3492 * subtree of @pos.
75501a6d 3493 *
87fb54f1
TH
3494 * While this function requires cgroup_mutex or RCU read locking, it
3495 * doesn't require the whole traversal to be contained in a single critical
3496 * section. This function will return the correct rightmost descendant as
3497 * long as @pos is accessible.
12a9d2fe 3498 */
492eb21b
TH
3499struct cgroup_subsys_state *
3500css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3501{
492eb21b 3502 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3503
8353da1f 3504 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3505
3506 do {
3507 last = pos;
3508 /* ->prev isn't RCU safe, walk ->next till the end */
3509 pos = NULL;
492eb21b 3510 css_for_each_child(tmp, last)
12a9d2fe
TH
3511 pos = tmp;
3512 } while (pos);
3513
3514 return last;
3515}
12a9d2fe 3516
492eb21b
TH
3517static struct cgroup_subsys_state *
3518css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3519{
492eb21b 3520 struct cgroup_subsys_state *last;
574bd9f7
TH
3521
3522 do {
3523 last = pos;
492eb21b 3524 pos = css_next_child(NULL, pos);
574bd9f7
TH
3525 } while (pos);
3526
3527 return last;
3528}
3529
3530/**
492eb21b 3531 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3532 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3533 * @root: css whose descendants to walk
574bd9f7 3534 *
492eb21b 3535 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3536 * to visit for post-order traversal of @root's descendants. @root is
3537 * included in the iteration and the last node to be visited.
75501a6d 3538 *
87fb54f1
TH
3539 * While this function requires cgroup_mutex or RCU read locking, it
3540 * doesn't require the whole traversal to be contained in a single critical
3541 * section. This function will return the correct next descendant as long
3542 * as both @pos and @cgroup are accessible and @pos is a descendant of
3543 * @cgroup.
c2931b70
TH
3544 *
3545 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3546 * css which finished ->css_online() is guaranteed to be visible in the
3547 * future iterations and will stay visible until the last reference is put.
3548 * A css which hasn't finished ->css_online() or already finished
3549 * ->css_offline() may show up during traversal. It's each subsystem's
3550 * responsibility to synchronize against on/offlining.
574bd9f7 3551 */
492eb21b
TH
3552struct cgroup_subsys_state *
3553css_next_descendant_post(struct cgroup_subsys_state *pos,
3554 struct cgroup_subsys_state *root)
574bd9f7 3555{
492eb21b 3556 struct cgroup_subsys_state *next;
574bd9f7 3557
8353da1f 3558 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3559
58b79a91
TH
3560 /* if first iteration, visit leftmost descendant which may be @root */
3561 if (!pos)
3562 return css_leftmost_descendant(root);
574bd9f7 3563
bd8815a6
TH
3564 /* if we visited @root, we're done */
3565 if (pos == root)
3566 return NULL;
3567
574bd9f7 3568 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3569 next = css_next_child(pos, pos->parent);
75501a6d 3570 if (next)
492eb21b 3571 return css_leftmost_descendant(next);
574bd9f7
TH
3572
3573 /* no sibling left, visit parent */
5c9d535b 3574 return pos->parent;
574bd9f7 3575}
574bd9f7 3576
f3d46500
TH
3577/**
3578 * css_has_online_children - does a css have online children
3579 * @css: the target css
3580 *
3581 * Returns %true if @css has any online children; otherwise, %false. This
3582 * function can be called from any context but the caller is responsible
3583 * for synchronizing against on/offlining as necessary.
3584 */
3585bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3586{
f3d46500
TH
3587 struct cgroup_subsys_state *child;
3588 bool ret = false;
cbc125ef
TH
3589
3590 rcu_read_lock();
f3d46500 3591 css_for_each_child(child, css) {
99bae5f9 3592 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3593 ret = true;
3594 break;
cbc125ef
TH
3595 }
3596 }
3597 rcu_read_unlock();
f3d46500 3598 return ret;
574bd9f7 3599}
574bd9f7 3600
0942eeee 3601/**
72ec7029 3602 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3603 * @it: the iterator to advance
3604 *
3605 * Advance @it to the next css_set to walk.
d515876e 3606 */
72ec7029 3607static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3608{
0f0a2b4f 3609 struct list_head *l = it->cset_pos;
d515876e
TH
3610 struct cgrp_cset_link *link;
3611 struct css_set *cset;
3612
3613 /* Advance to the next non-empty css_set */
3614 do {
3615 l = l->next;
0f0a2b4f
TH
3616 if (l == it->cset_head) {
3617 it->cset_pos = NULL;
d515876e
TH
3618 return;
3619 }
3ebb2b6e
TH
3620
3621 if (it->ss) {
3622 cset = container_of(l, struct css_set,
3623 e_cset_node[it->ss->id]);
3624 } else {
3625 link = list_entry(l, struct cgrp_cset_link, cset_link);
3626 cset = link->cset;
3627 }
c7561128
TH
3628 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3629
0f0a2b4f 3630 it->cset_pos = l;
c7561128
TH
3631
3632 if (!list_empty(&cset->tasks))
0f0a2b4f 3633 it->task_pos = cset->tasks.next;
c7561128 3634 else
0f0a2b4f
TH
3635 it->task_pos = cset->mg_tasks.next;
3636
3637 it->tasks_head = &cset->tasks;
3638 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3639}
3640
0942eeee 3641/**
72ec7029
TH
3642 * css_task_iter_start - initiate task iteration
3643 * @css: the css to walk tasks of
0942eeee
TH
3644 * @it: the task iterator to use
3645 *
72ec7029
TH
3646 * Initiate iteration through the tasks of @css. The caller can call
3647 * css_task_iter_next() to walk through the tasks until the function
3648 * returns NULL. On completion of iteration, css_task_iter_end() must be
3649 * called.
0942eeee
TH
3650 *
3651 * Note that this function acquires a lock which is released when the
3652 * iteration finishes. The caller can't sleep while iteration is in
3653 * progress.
3654 */
72ec7029
TH
3655void css_task_iter_start(struct cgroup_subsys_state *css,
3656 struct css_task_iter *it)
96d365e0 3657 __acquires(css_set_rwsem)
817929ec 3658{
56fde9e0
TH
3659 /* no one should try to iterate before mounting cgroups */
3660 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3661
96d365e0 3662 down_read(&css_set_rwsem);
c59cd3d8 3663
3ebb2b6e
TH
3664 it->ss = css->ss;
3665
3666 if (it->ss)
3667 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3668 else
3669 it->cset_pos = &css->cgroup->cset_links;
3670
0f0a2b4f 3671 it->cset_head = it->cset_pos;
c59cd3d8 3672
72ec7029 3673 css_advance_task_iter(it);
817929ec
PM
3674}
3675
0942eeee 3676/**
72ec7029 3677 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3678 * @it: the task iterator being iterated
3679 *
3680 * The "next" function for task iteration. @it should have been
72ec7029
TH
3681 * initialized via css_task_iter_start(). Returns NULL when the iteration
3682 * reaches the end.
0942eeee 3683 */
72ec7029 3684struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3685{
3686 struct task_struct *res;
0f0a2b4f 3687 struct list_head *l = it->task_pos;
817929ec
PM
3688
3689 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3690 if (!it->cset_pos)
817929ec
PM
3691 return NULL;
3692 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3693
3694 /*
3695 * Advance iterator to find next entry. cset->tasks is consumed
3696 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3697 * next cset.
3698 */
817929ec 3699 l = l->next;
c7561128 3700
0f0a2b4f
TH
3701 if (l == it->tasks_head)
3702 l = it->mg_tasks_head->next;
c7561128 3703
0f0a2b4f 3704 if (l == it->mg_tasks_head)
72ec7029 3705 css_advance_task_iter(it);
c7561128 3706 else
0f0a2b4f 3707 it->task_pos = l;
c7561128 3708
817929ec
PM
3709 return res;
3710}
3711
0942eeee 3712/**
72ec7029 3713 * css_task_iter_end - finish task iteration
0942eeee
TH
3714 * @it: the task iterator to finish
3715 *
72ec7029 3716 * Finish task iteration started by css_task_iter_start().
0942eeee 3717 */
72ec7029 3718void css_task_iter_end(struct css_task_iter *it)
96d365e0 3719 __releases(css_set_rwsem)
31a7df01 3720{
96d365e0 3721 up_read(&css_set_rwsem);
31a7df01
CW
3722}
3723
3724/**
8cc99345
TH
3725 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3726 * @to: cgroup to which the tasks will be moved
3727 * @from: cgroup in which the tasks currently reside
31a7df01 3728 *
eaf797ab
TH
3729 * Locking rules between cgroup_post_fork() and the migration path
3730 * guarantee that, if a task is forking while being migrated, the new child
3731 * is guaranteed to be either visible in the source cgroup after the
3732 * parent's migration is complete or put into the target cgroup. No task
3733 * can slip out of migration through forking.
31a7df01 3734 */
8cc99345 3735int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3736{
952aaa12
TH
3737 LIST_HEAD(preloaded_csets);
3738 struct cgrp_cset_link *link;
72ec7029 3739 struct css_task_iter it;
e406d1cf 3740 struct task_struct *task;
952aaa12 3741 int ret;
31a7df01 3742
952aaa12 3743 mutex_lock(&cgroup_mutex);
31a7df01 3744
952aaa12
TH
3745 /* all tasks in @from are being moved, all csets are source */
3746 down_read(&css_set_rwsem);
3747 list_for_each_entry(link, &from->cset_links, cset_link)
3748 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3749 up_read(&css_set_rwsem);
31a7df01 3750
952aaa12
TH
3751 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3752 if (ret)
3753 goto out_err;
8cc99345 3754
952aaa12
TH
3755 /*
3756 * Migrate tasks one-by-one until @form is empty. This fails iff
3757 * ->can_attach() fails.
3758 */
e406d1cf 3759 do {
9d800df1 3760 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3761 task = css_task_iter_next(&it);
3762 if (task)
3763 get_task_struct(task);
3764 css_task_iter_end(&it);
3765
3766 if (task) {
952aaa12 3767 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3768 put_task_struct(task);
3769 }
3770 } while (task && !ret);
952aaa12
TH
3771out_err:
3772 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3773 mutex_unlock(&cgroup_mutex);
e406d1cf 3774 return ret;
8cc99345
TH
3775}
3776
bbcb81d0 3777/*
102a775e 3778 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3779 *
3780 * Reading this file can return large amounts of data if a cgroup has
3781 * *lots* of attached tasks. So it may need several calls to read(),
3782 * but we cannot guarantee that the information we produce is correct
3783 * unless we produce it entirely atomically.
3784 *
bbcb81d0 3785 */
bbcb81d0 3786
24528255
LZ
3787/* which pidlist file are we talking about? */
3788enum cgroup_filetype {
3789 CGROUP_FILE_PROCS,
3790 CGROUP_FILE_TASKS,
3791};
3792
3793/*
3794 * A pidlist is a list of pids that virtually represents the contents of one
3795 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3796 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3797 * to the cgroup.
3798 */
3799struct cgroup_pidlist {
3800 /*
3801 * used to find which pidlist is wanted. doesn't change as long as
3802 * this particular list stays in the list.
3803 */
3804 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3805 /* array of xids */
3806 pid_t *list;
3807 /* how many elements the above list has */
3808 int length;
24528255
LZ
3809 /* each of these stored in a list by its cgroup */
3810 struct list_head links;
3811 /* pointer to the cgroup we belong to, for list removal purposes */
3812 struct cgroup *owner;
b1a21367
TH
3813 /* for delayed destruction */
3814 struct delayed_work destroy_dwork;
24528255
LZ
3815};
3816
d1d9fd33
BB
3817/*
3818 * The following two functions "fix" the issue where there are more pids
3819 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3820 * TODO: replace with a kernel-wide solution to this problem
3821 */
3822#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3823static void *pidlist_allocate(int count)
3824{
3825 if (PIDLIST_TOO_LARGE(count))
3826 return vmalloc(count * sizeof(pid_t));
3827 else
3828 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3829}
b1a21367 3830
d1d9fd33
BB
3831static void pidlist_free(void *p)
3832{
58794514 3833 kvfree(p);
d1d9fd33 3834}
d1d9fd33 3835
b1a21367
TH
3836/*
3837 * Used to destroy all pidlists lingering waiting for destroy timer. None
3838 * should be left afterwards.
3839 */
3840static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3841{
3842 struct cgroup_pidlist *l, *tmp_l;
3843
3844 mutex_lock(&cgrp->pidlist_mutex);
3845 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3846 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3847 mutex_unlock(&cgrp->pidlist_mutex);
3848
3849 flush_workqueue(cgroup_pidlist_destroy_wq);
3850 BUG_ON(!list_empty(&cgrp->pidlists));
3851}
3852
3853static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3854{
3855 struct delayed_work *dwork = to_delayed_work(work);
3856 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3857 destroy_dwork);
3858 struct cgroup_pidlist *tofree = NULL;
3859
3860 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3861
3862 /*
04502365
TH
3863 * Destroy iff we didn't get queued again. The state won't change
3864 * as destroy_dwork can only be queued while locked.
b1a21367 3865 */
04502365 3866 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3867 list_del(&l->links);
3868 pidlist_free(l->list);
3869 put_pid_ns(l->key.ns);
3870 tofree = l;
3871 }
3872
b1a21367
TH
3873 mutex_unlock(&l->owner->pidlist_mutex);
3874 kfree(tofree);
3875}
3876
bbcb81d0 3877/*
102a775e 3878 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3879 * Returns the number of unique elements.
bbcb81d0 3880 */
6ee211ad 3881static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3882{
102a775e 3883 int src, dest = 1;
102a775e
BB
3884
3885 /*
3886 * we presume the 0th element is unique, so i starts at 1. trivial
3887 * edge cases first; no work needs to be done for either
3888 */
3889 if (length == 0 || length == 1)
3890 return length;
3891 /* src and dest walk down the list; dest counts unique elements */
3892 for (src = 1; src < length; src++) {
3893 /* find next unique element */
3894 while (list[src] == list[src-1]) {
3895 src++;
3896 if (src == length)
3897 goto after;
3898 }
3899 /* dest always points to where the next unique element goes */
3900 list[dest] = list[src];
3901 dest++;
3902 }
3903after:
102a775e
BB
3904 return dest;
3905}
3906
afb2bc14
TH
3907/*
3908 * The two pid files - task and cgroup.procs - guaranteed that the result
3909 * is sorted, which forced this whole pidlist fiasco. As pid order is
3910 * different per namespace, each namespace needs differently sorted list,
3911 * making it impossible to use, for example, single rbtree of member tasks
3912 * sorted by task pointer. As pidlists can be fairly large, allocating one
3913 * per open file is dangerous, so cgroup had to implement shared pool of
3914 * pidlists keyed by cgroup and namespace.
3915 *
3916 * All this extra complexity was caused by the original implementation
3917 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3918 * want to do away with it. Explicitly scramble sort order if on the
3919 * default hierarchy so that no such expectation exists in the new
3920 * interface.
afb2bc14
TH
3921 *
3922 * Scrambling is done by swapping every two consecutive bits, which is
3923 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3924 */
3925static pid_t pid_fry(pid_t pid)
3926{
3927 unsigned a = pid & 0x55555555;
3928 unsigned b = pid & 0xAAAAAAAA;
3929
3930 return (a << 1) | (b >> 1);
3931}
3932
3933static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3934{
aa6ec29b 3935 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3936 return pid_fry(pid);
3937 else
3938 return pid;
3939}
3940
102a775e
BB
3941static int cmppid(const void *a, const void *b)
3942{
3943 return *(pid_t *)a - *(pid_t *)b;
3944}
3945
afb2bc14
TH
3946static int fried_cmppid(const void *a, const void *b)
3947{
3948 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3949}
3950
e6b81710
TH
3951static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3952 enum cgroup_filetype type)
3953{
3954 struct cgroup_pidlist *l;
3955 /* don't need task_nsproxy() if we're looking at ourself */
3956 struct pid_namespace *ns = task_active_pid_ns(current);
3957
3958 lockdep_assert_held(&cgrp->pidlist_mutex);
3959
3960 list_for_each_entry(l, &cgrp->pidlists, links)
3961 if (l->key.type == type && l->key.ns == ns)
3962 return l;
3963 return NULL;
3964}
3965
72a8cb30
BB
3966/*
3967 * find the appropriate pidlist for our purpose (given procs vs tasks)
3968 * returns with the lock on that pidlist already held, and takes care
3969 * of the use count, or returns NULL with no locks held if we're out of
3970 * memory.
3971 */
e6b81710
TH
3972static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3973 enum cgroup_filetype type)
72a8cb30
BB
3974{
3975 struct cgroup_pidlist *l;
b70cc5fd 3976
e6b81710
TH
3977 lockdep_assert_held(&cgrp->pidlist_mutex);
3978
3979 l = cgroup_pidlist_find(cgrp, type);
3980 if (l)
3981 return l;
3982
72a8cb30 3983 /* entry not found; create a new one */
f4f4be2b 3984 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3985 if (!l)
72a8cb30 3986 return l;
e6b81710 3987
b1a21367 3988 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3989 l->key.type = type;
e6b81710
TH
3990 /* don't need task_nsproxy() if we're looking at ourself */
3991 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3992 l->owner = cgrp;
3993 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3994 return l;
3995}
3996
102a775e
BB
3997/*
3998 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3999 */
72a8cb30
BB
4000static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4001 struct cgroup_pidlist **lp)
102a775e
BB
4002{
4003 pid_t *array;
4004 int length;
4005 int pid, n = 0; /* used for populating the array */
72ec7029 4006 struct css_task_iter it;
817929ec 4007 struct task_struct *tsk;
102a775e
BB
4008 struct cgroup_pidlist *l;
4009
4bac00d1
TH
4010 lockdep_assert_held(&cgrp->pidlist_mutex);
4011
102a775e
BB
4012 /*
4013 * If cgroup gets more users after we read count, we won't have
4014 * enough space - tough. This race is indistinguishable to the
4015 * caller from the case that the additional cgroup users didn't
4016 * show up until sometime later on.
4017 */
4018 length = cgroup_task_count(cgrp);
d1d9fd33 4019 array = pidlist_allocate(length);
102a775e
BB
4020 if (!array)
4021 return -ENOMEM;
4022 /* now, populate the array */
9d800df1 4023 css_task_iter_start(&cgrp->self, &it);
72ec7029 4024 while ((tsk = css_task_iter_next(&it))) {
102a775e 4025 if (unlikely(n == length))
817929ec 4026 break;
102a775e 4027 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4028 if (type == CGROUP_FILE_PROCS)
4029 pid = task_tgid_vnr(tsk);
4030 else
4031 pid = task_pid_vnr(tsk);
102a775e
BB
4032 if (pid > 0) /* make sure to only use valid results */
4033 array[n++] = pid;
817929ec 4034 }
72ec7029 4035 css_task_iter_end(&it);
102a775e
BB
4036 length = n;
4037 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4038 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4039 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4040 else
4041 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4042 if (type == CGROUP_FILE_PROCS)
6ee211ad 4043 length = pidlist_uniq(array, length);
e6b81710 4044
e6b81710 4045 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4046 if (!l) {
d1d9fd33 4047 pidlist_free(array);
72a8cb30 4048 return -ENOMEM;
102a775e 4049 }
e6b81710
TH
4050
4051 /* store array, freeing old if necessary */
d1d9fd33 4052 pidlist_free(l->list);
102a775e
BB
4053 l->list = array;
4054 l->length = length;
72a8cb30 4055 *lp = l;
102a775e 4056 return 0;
bbcb81d0
PM
4057}
4058
846c7bb0 4059/**
a043e3b2 4060 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4061 * @stats: cgroupstats to fill information into
4062 * @dentry: A dentry entry belonging to the cgroup for which stats have
4063 * been requested.
a043e3b2
LZ
4064 *
4065 * Build and fill cgroupstats so that taskstats can export it to user
4066 * space.
846c7bb0
BS
4067 */
4068int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4069{
2bd59d48 4070 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4071 struct cgroup *cgrp;
72ec7029 4072 struct css_task_iter it;
846c7bb0 4073 struct task_struct *tsk;
33d283be 4074
2bd59d48
TH
4075 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4076 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4077 kernfs_type(kn) != KERNFS_DIR)
4078 return -EINVAL;
4079
bad34660
LZ
4080 mutex_lock(&cgroup_mutex);
4081
846c7bb0 4082 /*
2bd59d48 4083 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4084 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4085 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4086 */
2bd59d48
TH
4087 rcu_read_lock();
4088 cgrp = rcu_dereference(kn->priv);
bad34660 4089 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4090 rcu_read_unlock();
bad34660 4091 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4092 return -ENOENT;
4093 }
bad34660 4094 rcu_read_unlock();
846c7bb0 4095
9d800df1 4096 css_task_iter_start(&cgrp->self, &it);
72ec7029 4097 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4098 switch (tsk->state) {
4099 case TASK_RUNNING:
4100 stats->nr_running++;
4101 break;
4102 case TASK_INTERRUPTIBLE:
4103 stats->nr_sleeping++;
4104 break;
4105 case TASK_UNINTERRUPTIBLE:
4106 stats->nr_uninterruptible++;
4107 break;
4108 case TASK_STOPPED:
4109 stats->nr_stopped++;
4110 break;
4111 default:
4112 if (delayacct_is_task_waiting_on_io(tsk))
4113 stats->nr_io_wait++;
4114 break;
4115 }
4116 }
72ec7029 4117 css_task_iter_end(&it);
846c7bb0 4118
bad34660 4119 mutex_unlock(&cgroup_mutex);
2bd59d48 4120 return 0;
846c7bb0
BS
4121}
4122
8f3ff208 4123
bbcb81d0 4124/*
102a775e 4125 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4126 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4127 * in the cgroup->l->list array.
bbcb81d0 4128 */
cc31edce 4129
102a775e 4130static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4131{
cc31edce
PM
4132 /*
4133 * Initially we receive a position value that corresponds to
4134 * one more than the last pid shown (or 0 on the first call or
4135 * after a seek to the start). Use a binary-search to find the
4136 * next pid to display, if any
4137 */
2bd59d48 4138 struct kernfs_open_file *of = s->private;
7da11279 4139 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4140 struct cgroup_pidlist *l;
7da11279 4141 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4142 int index = 0, pid = *pos;
4bac00d1
TH
4143 int *iter, ret;
4144
4145 mutex_lock(&cgrp->pidlist_mutex);
4146
4147 /*
5d22444f 4148 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4149 * after open. If the matching pidlist is around, we can use that.
5d22444f 4150 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4151 * could already have been destroyed.
4152 */
5d22444f
TH
4153 if (of->priv)
4154 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4155
4156 /*
4157 * Either this is the first start() after open or the matching
4158 * pidlist has been destroyed inbetween. Create a new one.
4159 */
5d22444f
TH
4160 if (!of->priv) {
4161 ret = pidlist_array_load(cgrp, type,
4162 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4163 if (ret)
4164 return ERR_PTR(ret);
4165 }
5d22444f 4166 l = of->priv;
cc31edce 4167
cc31edce 4168 if (pid) {
102a775e 4169 int end = l->length;
20777766 4170
cc31edce
PM
4171 while (index < end) {
4172 int mid = (index + end) / 2;
afb2bc14 4173 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4174 index = mid;
4175 break;
afb2bc14 4176 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4177 index = mid + 1;
4178 else
4179 end = mid;
4180 }
4181 }
4182 /* If we're off the end of the array, we're done */
102a775e 4183 if (index >= l->length)
cc31edce
PM
4184 return NULL;
4185 /* Update the abstract position to be the actual pid that we found */
102a775e 4186 iter = l->list + index;
afb2bc14 4187 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4188 return iter;
4189}
4190
102a775e 4191static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4192{
2bd59d48 4193 struct kernfs_open_file *of = s->private;
5d22444f 4194 struct cgroup_pidlist *l = of->priv;
62236858 4195
5d22444f
TH
4196 if (l)
4197 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4198 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4199 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4200}
4201
102a775e 4202static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4203{
2bd59d48 4204 struct kernfs_open_file *of = s->private;
5d22444f 4205 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4206 pid_t *p = v;
4207 pid_t *end = l->list + l->length;
cc31edce
PM
4208 /*
4209 * Advance to the next pid in the array. If this goes off the
4210 * end, we're done
4211 */
4212 p++;
4213 if (p >= end) {
4214 return NULL;
4215 } else {
7da11279 4216 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4217 return p;
4218 }
4219}
4220
102a775e 4221static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4222{
94ff212d
JP
4223 seq_printf(s, "%d\n", *(int *)v);
4224
4225 return 0;
cc31edce 4226}
bbcb81d0 4227
182446d0
TH
4228static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4229 struct cftype *cft)
81a6a5cd 4230{
182446d0 4231 return notify_on_release(css->cgroup);
81a6a5cd
PM
4232}
4233
182446d0
TH
4234static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4235 struct cftype *cft, u64 val)
6379c106 4236{
6379c106 4237 if (val)
182446d0 4238 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4239 else
182446d0 4240 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4241 return 0;
4242}
4243
182446d0
TH
4244static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4245 struct cftype *cft)
97978e6d 4246{
182446d0 4247 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4248}
4249
182446d0
TH
4250static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4251 struct cftype *cft, u64 val)
97978e6d
DL
4252{
4253 if (val)
182446d0 4254 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4255 else
182446d0 4256 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4257 return 0;
4258}
4259
a14c6874
TH
4260/* cgroup core interface files for the default hierarchy */
4261static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4262 {
d5c56ced 4263 .name = "cgroup.procs",
6612f05b
TH
4264 .seq_start = cgroup_pidlist_start,
4265 .seq_next = cgroup_pidlist_next,
4266 .seq_stop = cgroup_pidlist_stop,
4267 .seq_show = cgroup_pidlist_show,
5d22444f 4268 .private = CGROUP_FILE_PROCS,
acbef755 4269 .write = cgroup_procs_write,
74a1166d 4270 .mode = S_IRUGO | S_IWUSR,
102a775e 4271 },
f8f22e53
TH
4272 {
4273 .name = "cgroup.controllers",
a14c6874 4274 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4275 .seq_show = cgroup_root_controllers_show,
4276 },
4277 {
4278 .name = "cgroup.controllers",
a14c6874 4279 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4280 .seq_show = cgroup_controllers_show,
4281 },
4282 {
4283 .name = "cgroup.subtree_control",
f8f22e53 4284 .seq_show = cgroup_subtree_control_show,
451af504 4285 .write = cgroup_subtree_control_write,
f8f22e53 4286 },
842b597e
TH
4287 {
4288 .name = "cgroup.populated",
a14c6874 4289 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4290 .seq_show = cgroup_populated_show,
4291 },
a14c6874
TH
4292 { } /* terminate */
4293};
d5c56ced 4294
a14c6874
TH
4295/* cgroup core interface files for the legacy hierarchies */
4296static struct cftype cgroup_legacy_base_files[] = {
4297 {
4298 .name = "cgroup.procs",
4299 .seq_start = cgroup_pidlist_start,
4300 .seq_next = cgroup_pidlist_next,
4301 .seq_stop = cgroup_pidlist_stop,
4302 .seq_show = cgroup_pidlist_show,
4303 .private = CGROUP_FILE_PROCS,
4304 .write = cgroup_procs_write,
4305 .mode = S_IRUGO | S_IWUSR,
4306 },
4307 {
4308 .name = "cgroup.clone_children",
4309 .read_u64 = cgroup_clone_children_read,
4310 .write_u64 = cgroup_clone_children_write,
4311 },
4312 {
4313 .name = "cgroup.sane_behavior",
4314 .flags = CFTYPE_ONLY_ON_ROOT,
4315 .seq_show = cgroup_sane_behavior_show,
4316 },
d5c56ced
TH
4317 {
4318 .name = "tasks",
6612f05b
TH
4319 .seq_start = cgroup_pidlist_start,
4320 .seq_next = cgroup_pidlist_next,
4321 .seq_stop = cgroup_pidlist_stop,
4322 .seq_show = cgroup_pidlist_show,
5d22444f 4323 .private = CGROUP_FILE_TASKS,
acbef755 4324 .write = cgroup_tasks_write,
d5c56ced
TH
4325 .mode = S_IRUGO | S_IWUSR,
4326 },
4327 {
4328 .name = "notify_on_release",
d5c56ced
TH
4329 .read_u64 = cgroup_read_notify_on_release,
4330 .write_u64 = cgroup_write_notify_on_release,
4331 },
6e6ff25b
TH
4332 {
4333 .name = "release_agent",
a14c6874 4334 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4335 .seq_show = cgroup_release_agent_show,
451af504 4336 .write = cgroup_release_agent_write,
5f469907 4337 .max_write_len = PATH_MAX - 1,
6e6ff25b 4338 },
db0416b6 4339 { } /* terminate */
bbcb81d0
PM
4340};
4341
13af07df 4342/**
628f7cd4 4343 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4344 * @cgrp: target cgroup
13af07df 4345 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4346 *
4347 * On failure, no file is added.
13af07df 4348 */
8ab456ac 4349static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4350{
ddbcc7e8 4351 struct cgroup_subsys *ss;
b420ba7d 4352 int i, ret = 0;
bbcb81d0 4353
8e3f6541 4354 /* process cftsets of each subsystem */
b420ba7d 4355 for_each_subsys(ss, i) {
0adb0704 4356 struct cftype *cfts;
b420ba7d 4357
69dfa00c 4358 if (!(subsys_mask & (1 << i)))
13af07df 4359 continue;
8e3f6541 4360
0adb0704
TH
4361 list_for_each_entry(cfts, &ss->cfts, node) {
4362 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4363 if (ret < 0)
4364 goto err;
4365 }
ddbcc7e8 4366 }
ddbcc7e8 4367 return 0;
bee55099
TH
4368err:
4369 cgroup_clear_dir(cgrp, subsys_mask);
4370 return ret;
ddbcc7e8
PM
4371}
4372
0c21ead1
TH
4373/*
4374 * css destruction is four-stage process.
4375 *
4376 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4377 * Implemented in kill_css().
4378 *
4379 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4380 * and thus css_tryget_online() is guaranteed to fail, the css can be
4381 * offlined by invoking offline_css(). After offlining, the base ref is
4382 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4383 *
4384 * 3. When the percpu_ref reaches zero, the only possible remaining
4385 * accessors are inside RCU read sections. css_release() schedules the
4386 * RCU callback.
4387 *
4388 * 4. After the grace period, the css can be freed. Implemented in
4389 * css_free_work_fn().
4390 *
4391 * It is actually hairier because both step 2 and 4 require process context
4392 * and thus involve punting to css->destroy_work adding two additional
4393 * steps to the already complex sequence.
4394 */
35ef10da 4395static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4396{
4397 struct cgroup_subsys_state *css =
35ef10da 4398 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4399 struct cgroup_subsys *ss = css->ss;
0c21ead1 4400 struct cgroup *cgrp = css->cgroup;
48ddbe19 4401
9a1049da
TH
4402 percpu_ref_exit(&css->refcnt);
4403
01e58659 4404 if (ss) {
9d755d33 4405 /* css free path */
01e58659
VD
4406 int id = css->id;
4407
9d755d33
TH
4408 if (css->parent)
4409 css_put(css->parent);
0ae78e0b 4410
01e58659
VD
4411 ss->css_free(css);
4412 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4413 cgroup_put(cgrp);
4414 } else {
4415 /* cgroup free path */
4416 atomic_dec(&cgrp->root->nr_cgrps);
4417 cgroup_pidlist_destroy_all(cgrp);
971ff493 4418 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4419
d51f39b0 4420 if (cgroup_parent(cgrp)) {
9d755d33
TH
4421 /*
4422 * We get a ref to the parent, and put the ref when
4423 * this cgroup is being freed, so it's guaranteed
4424 * that the parent won't be destroyed before its
4425 * children.
4426 */
d51f39b0 4427 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4428 kernfs_put(cgrp->kn);
4429 kfree(cgrp);
4430 } else {
4431 /*
4432 * This is root cgroup's refcnt reaching zero,
4433 * which indicates that the root should be
4434 * released.
4435 */
4436 cgroup_destroy_root(cgrp->root);
4437 }
4438 }
48ddbe19
TH
4439}
4440
0c21ead1 4441static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4442{
4443 struct cgroup_subsys_state *css =
0c21ead1 4444 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4445
35ef10da 4446 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4447 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4448}
4449
25e15d83 4450static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4451{
4452 struct cgroup_subsys_state *css =
25e15d83 4453 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4454 struct cgroup_subsys *ss = css->ss;
9d755d33 4455 struct cgroup *cgrp = css->cgroup;
15a4c835 4456
1fed1b2e
TH
4457 mutex_lock(&cgroup_mutex);
4458
de3f0341 4459 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4460 list_del_rcu(&css->sibling);
4461
9d755d33
TH
4462 if (ss) {
4463 /* css release path */
01e58659 4464 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4465 if (ss->css_released)
4466 ss->css_released(css);
9d755d33
TH
4467 } else {
4468 /* cgroup release path */
9d755d33
TH
4469 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4470 cgrp->id = -1;
a4189487
LZ
4471
4472 /*
4473 * There are two control paths which try to determine
4474 * cgroup from dentry without going through kernfs -
4475 * cgroupstats_build() and css_tryget_online_from_dir().
4476 * Those are supported by RCU protecting clearing of
4477 * cgrp->kn->priv backpointer.
4478 */
4479 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4480 }
d3daf28d 4481
1fed1b2e
TH
4482 mutex_unlock(&cgroup_mutex);
4483
0c21ead1 4484 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4485}
4486
d3daf28d
TH
4487static void css_release(struct percpu_ref *ref)
4488{
4489 struct cgroup_subsys_state *css =
4490 container_of(ref, struct cgroup_subsys_state, refcnt);
4491
25e15d83
TH
4492 INIT_WORK(&css->destroy_work, css_release_work_fn);
4493 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4494}
4495
ddfcadab
TH
4496static void init_and_link_css(struct cgroup_subsys_state *css,
4497 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4498{
0cb51d71
TH
4499 lockdep_assert_held(&cgroup_mutex);
4500
ddfcadab
TH
4501 cgroup_get(cgrp);
4502
d5c419b6 4503 memset(css, 0, sizeof(*css));
bd89aabc 4504 css->cgroup = cgrp;
72c97e54 4505 css->ss = ss;
d5c419b6
TH
4506 INIT_LIST_HEAD(&css->sibling);
4507 INIT_LIST_HEAD(&css->children);
0cb51d71 4508 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4509
d51f39b0
TH
4510 if (cgroup_parent(cgrp)) {
4511 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4512 css_get(css->parent);
ddfcadab 4513 }
48ddbe19 4514
ca8bdcaf 4515 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4516}
4517
2a4ac633 4518/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4519static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4520{
623f926b 4521 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4522 int ret = 0;
4523
a31f2d3f
TH
4524 lockdep_assert_held(&cgroup_mutex);
4525
92fb9748 4526 if (ss->css_online)
eb95419b 4527 ret = ss->css_online(css);
ae7f164a 4528 if (!ret) {
eb95419b 4529 css->flags |= CSS_ONLINE;
aec25020 4530 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4531 }
b1929db4 4532 return ret;
a31f2d3f
TH
4533}
4534
2a4ac633 4535/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4536static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4537{
623f926b 4538 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4539
4540 lockdep_assert_held(&cgroup_mutex);
4541
4542 if (!(css->flags & CSS_ONLINE))
4543 return;
4544
d7eeac19 4545 if (ss->css_offline)
eb95419b 4546 ss->css_offline(css);
a31f2d3f 4547
eb95419b 4548 css->flags &= ~CSS_ONLINE;
e3297803 4549 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4550
4551 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4552}
4553
c81c925a
TH
4554/**
4555 * create_css - create a cgroup_subsys_state
4556 * @cgrp: the cgroup new css will be associated with
4557 * @ss: the subsys of new css
f63070d3 4558 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4559 *
4560 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4561 * css is online and installed in @cgrp with all interface files created if
4562 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4563 */
f63070d3
TH
4564static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4565 bool visible)
c81c925a 4566{
d51f39b0 4567 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4568 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4569 struct cgroup_subsys_state *css;
4570 int err;
4571
c81c925a
TH
4572 lockdep_assert_held(&cgroup_mutex);
4573
1fed1b2e 4574 css = ss->css_alloc(parent_css);
c81c925a
TH
4575 if (IS_ERR(css))
4576 return PTR_ERR(css);
4577
ddfcadab 4578 init_and_link_css(css, ss, cgrp);
a2bed820 4579
2aad2a86 4580 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4581 if (err)
3eb59ec6 4582 goto err_free_css;
c81c925a 4583
15a4c835
TH
4584 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4585 if (err < 0)
4586 goto err_free_percpu_ref;
4587 css->id = err;
c81c925a 4588
f63070d3
TH
4589 if (visible) {
4590 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4591 if (err)
4592 goto err_free_id;
4593 }
15a4c835
TH
4594
4595 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4596 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4597 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4598
4599 err = online_css(css);
4600 if (err)
1fed1b2e 4601 goto err_list_del;
94419627 4602
c81c925a 4603 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4604 cgroup_parent(parent)) {
ed3d261b 4605 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4606 current->comm, current->pid, ss->name);
c81c925a 4607 if (!strcmp(ss->name, "memory"))
ed3d261b 4608 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4609 ss->warned_broken_hierarchy = true;
4610 }
4611
4612 return 0;
4613
1fed1b2e
TH
4614err_list_del:
4615 list_del_rcu(&css->sibling);
32d01dc7 4616 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4617err_free_id:
4618 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4619err_free_percpu_ref:
9a1049da 4620 percpu_ref_exit(&css->refcnt);
3eb59ec6 4621err_free_css:
a2bed820 4622 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4623 return err;
4624}
4625
b3bfd983
TH
4626static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4627 umode_t mode)
ddbcc7e8 4628{
a9746d8d
TH
4629 struct cgroup *parent, *cgrp;
4630 struct cgroup_root *root;
ddbcc7e8 4631 struct cgroup_subsys *ss;
2bd59d48 4632 struct kernfs_node *kn;
a14c6874 4633 struct cftype *base_files;
b3bfd983 4634 int ssid, ret;
ddbcc7e8 4635
71b1fb5c
AC
4636 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4637 */
4638 if (strchr(name, '\n'))
4639 return -EINVAL;
4640
a9746d8d
TH
4641 parent = cgroup_kn_lock_live(parent_kn);
4642 if (!parent)
4643 return -ENODEV;
4644 root = parent->root;
ddbcc7e8 4645
0a950f65 4646 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4647 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4648 if (!cgrp) {
4649 ret = -ENOMEM;
4650 goto out_unlock;
0ab02ca8
LZ
4651 }
4652
2aad2a86 4653 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4654 if (ret)
4655 goto out_free_cgrp;
4656
0ab02ca8
LZ
4657 /*
4658 * Temporarily set the pointer to NULL, so idr_find() won't return
4659 * a half-baked cgroup.
4660 */
6fa4918d 4661 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4662 if (cgrp->id < 0) {
ba0f4d76 4663 ret = -ENOMEM;
9d755d33 4664 goto out_cancel_ref;
976c06bc
TH
4665 }
4666
cc31edce 4667 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4668
9d800df1 4669 cgrp->self.parent = &parent->self;
ba0f4d76 4670 cgrp->root = root;
ddbcc7e8 4671
b6abdb0e
LZ
4672 if (notify_on_release(parent))
4673 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4674
2260e7fc
TH
4675 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4676 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4677
2bd59d48 4678 /* create the directory */
e61734c5 4679 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4680 if (IS_ERR(kn)) {
ba0f4d76
TH
4681 ret = PTR_ERR(kn);
4682 goto out_free_id;
2bd59d48
TH
4683 }
4684 cgrp->kn = kn;
ddbcc7e8 4685
4e139afc 4686 /*
6f30558f
TH
4687 * This extra ref will be put in cgroup_free_fn() and guarantees
4688 * that @cgrp->kn is always accessible.
4e139afc 4689 */
6f30558f 4690 kernfs_get(kn);
ddbcc7e8 4691
0cb51d71 4692 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4693
4e139afc 4694 /* allocation complete, commit to creation */
d5c419b6 4695 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4696 atomic_inc(&root->nr_cgrps);
59f5296b 4697 cgroup_get(parent);
415cf07a 4698
0d80255e
TH
4699 /*
4700 * @cgrp is now fully operational. If something fails after this
4701 * point, it'll be released via the normal destruction path.
4702 */
6fa4918d 4703 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4704
ba0f4d76
TH
4705 ret = cgroup_kn_set_ugid(kn);
4706 if (ret)
4707 goto out_destroy;
49957f8e 4708
a14c6874
TH
4709 if (cgroup_on_dfl(cgrp))
4710 base_files = cgroup_dfl_base_files;
4711 else
4712 base_files = cgroup_legacy_base_files;
4713
4714 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4715 if (ret)
4716 goto out_destroy;
628f7cd4 4717
9d403e99 4718 /* let's create and online css's */
b85d2040 4719 for_each_subsys(ss, ssid) {
f392e51c 4720 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4721 ret = create_css(cgrp, ss,
4722 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4723 if (ret)
4724 goto out_destroy;
b85d2040 4725 }
a8638030 4726 }
ddbcc7e8 4727
bd53d617
TH
4728 /*
4729 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4730 * subtree_control from the parent. Each is configured manually.
bd53d617 4731 */
667c2491
TH
4732 if (!cgroup_on_dfl(cgrp)) {
4733 cgrp->subtree_control = parent->subtree_control;
4734 cgroup_refresh_child_subsys_mask(cgrp);
4735 }
2bd59d48 4736
2bd59d48 4737 kernfs_activate(kn);
ddbcc7e8 4738
ba0f4d76
TH
4739 ret = 0;
4740 goto out_unlock;
ddbcc7e8 4741
ba0f4d76 4742out_free_id:
6fa4918d 4743 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4744out_cancel_ref:
9a1049da 4745 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4746out_free_cgrp:
bd89aabc 4747 kfree(cgrp);
ba0f4d76 4748out_unlock:
a9746d8d 4749 cgroup_kn_unlock(parent_kn);
ba0f4d76 4750 return ret;
4b8b47eb 4751
ba0f4d76 4752out_destroy:
4b8b47eb 4753 cgroup_destroy_locked(cgrp);
ba0f4d76 4754 goto out_unlock;
ddbcc7e8
PM
4755}
4756
223dbc38
TH
4757/*
4758 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4759 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4760 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4761 */
4762static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4763{
223dbc38
TH
4764 struct cgroup_subsys_state *css =
4765 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4766
f20104de 4767 mutex_lock(&cgroup_mutex);
09a503ea 4768 offline_css(css);
f20104de 4769 mutex_unlock(&cgroup_mutex);
09a503ea 4770
09a503ea 4771 css_put(css);
d3daf28d
TH
4772}
4773
223dbc38
TH
4774/* css kill confirmation processing requires process context, bounce */
4775static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4776{
4777 struct cgroup_subsys_state *css =
4778 container_of(ref, struct cgroup_subsys_state, refcnt);
4779
223dbc38 4780 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4781 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4782}
4783
f392e51c
TH
4784/**
4785 * kill_css - destroy a css
4786 * @css: css to destroy
4787 *
4788 * This function initiates destruction of @css by removing cgroup interface
4789 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4790 * asynchronously once css_tryget_online() is guaranteed to fail and when
4791 * the reference count reaches zero, @css will be released.
f392e51c
TH
4792 */
4793static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4794{
01f6474c 4795 lockdep_assert_held(&cgroup_mutex);
94419627 4796
2bd59d48
TH
4797 /*
4798 * This must happen before css is disassociated with its cgroup.
4799 * See seq_css() for details.
4800 */
aec25020 4801 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4802
edae0c33
TH
4803 /*
4804 * Killing would put the base ref, but we need to keep it alive
4805 * until after ->css_offline().
4806 */
4807 css_get(css);
4808
4809 /*
4810 * cgroup core guarantees that, by the time ->css_offline() is
4811 * invoked, no new css reference will be given out via
ec903c0c 4812 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4813 * proceed to offlining css's because percpu_ref_kill() doesn't
4814 * guarantee that the ref is seen as killed on all CPUs on return.
4815 *
4816 * Use percpu_ref_kill_and_confirm() to get notifications as each
4817 * css is confirmed to be seen as killed on all CPUs.
4818 */
4819 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4820}
4821
4822/**
4823 * cgroup_destroy_locked - the first stage of cgroup destruction
4824 * @cgrp: cgroup to be destroyed
4825 *
4826 * css's make use of percpu refcnts whose killing latency shouldn't be
4827 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4828 * guarantee that css_tryget_online() won't succeed by the time
4829 * ->css_offline() is invoked. To satisfy all the requirements,
4830 * destruction is implemented in the following two steps.
d3daf28d
TH
4831 *
4832 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4833 * userland visible parts and start killing the percpu refcnts of
4834 * css's. Set up so that the next stage will be kicked off once all
4835 * the percpu refcnts are confirmed to be killed.
4836 *
4837 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4838 * rest of destruction. Once all cgroup references are gone, the
4839 * cgroup is RCU-freed.
4840 *
4841 * This function implements s1. After this step, @cgrp is gone as far as
4842 * the userland is concerned and a new cgroup with the same name may be
4843 * created. As cgroup doesn't care about the names internally, this
4844 * doesn't cause any problem.
4845 */
42809dd4
TH
4846static int cgroup_destroy_locked(struct cgroup *cgrp)
4847 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4848{
2bd59d48 4849 struct cgroup_subsys_state *css;
ddd69148 4850 bool empty;
1c6727af 4851 int ssid;
ddbcc7e8 4852
42809dd4
TH
4853 lockdep_assert_held(&cgroup_mutex);
4854
ddd69148 4855 /*
96d365e0 4856 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4857 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4858 */
96d365e0 4859 down_read(&css_set_rwsem);
bb78a92f 4860 empty = list_empty(&cgrp->cset_links);
96d365e0 4861 up_read(&css_set_rwsem);
ddd69148 4862 if (!empty)
ddbcc7e8 4863 return -EBUSY;
a043e3b2 4864
bb78a92f 4865 /*
d5c419b6
TH
4866 * Make sure there's no live children. We can't test emptiness of
4867 * ->self.children as dead children linger on it while being
4868 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4869 */
f3d46500 4870 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4871 return -EBUSY;
4872
455050d2
TH
4873 /*
4874 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4875 * creation by disabling cgroup_lock_live_group().
455050d2 4876 */
184faf32 4877 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4878
249f3468 4879 /* initiate massacre of all css's */
1c6727af
TH
4880 for_each_css(css, ssid, cgrp)
4881 kill_css(css);
455050d2 4882
455050d2 4883 /*
01f6474c
TH
4884 * Remove @cgrp directory along with the base files. @cgrp has an
4885 * extra ref on its kn.
f20104de 4886 */
01f6474c 4887 kernfs_remove(cgrp->kn);
f20104de 4888
d51f39b0 4889 check_for_release(cgroup_parent(cgrp));
2bd59d48 4890
249f3468 4891 /* put the base reference */
9d755d33 4892 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4893
ea15f8cc
TH
4894 return 0;
4895};
4896
2bd59d48 4897static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4898{
a9746d8d 4899 struct cgroup *cgrp;
2bd59d48 4900 int ret = 0;
42809dd4 4901
a9746d8d
TH
4902 cgrp = cgroup_kn_lock_live(kn);
4903 if (!cgrp)
4904 return 0;
42809dd4 4905
a9746d8d 4906 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4907
a9746d8d 4908 cgroup_kn_unlock(kn);
42809dd4 4909 return ret;
8e3f6541
TH
4910}
4911
2bd59d48
TH
4912static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4913 .remount_fs = cgroup_remount,
4914 .show_options = cgroup_show_options,
4915 .mkdir = cgroup_mkdir,
4916 .rmdir = cgroup_rmdir,
4917 .rename = cgroup_rename,
4918};
4919
15a4c835 4920static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4921{
ddbcc7e8 4922 struct cgroup_subsys_state *css;
cfe36bde
DC
4923
4924 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4925
648bb56d
TH
4926 mutex_lock(&cgroup_mutex);
4927
15a4c835 4928 idr_init(&ss->css_idr);
0adb0704 4929 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4930
3dd06ffa
TH
4931 /* Create the root cgroup state for this subsystem */
4932 ss->root = &cgrp_dfl_root;
4933 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4934 /* We don't handle early failures gracefully */
4935 BUG_ON(IS_ERR(css));
ddfcadab 4936 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4937
4938 /*
4939 * Root csses are never destroyed and we can't initialize
4940 * percpu_ref during early init. Disable refcnting.
4941 */
4942 css->flags |= CSS_NO_REF;
4943
15a4c835 4944 if (early) {
9395a450 4945 /* allocation can't be done safely during early init */
15a4c835
TH
4946 css->id = 1;
4947 } else {
4948 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4949 BUG_ON(css->id < 0);
4950 }
ddbcc7e8 4951
e8d55fde 4952 /* Update the init_css_set to contain a subsys
817929ec 4953 * pointer to this state - since the subsystem is
e8d55fde 4954 * newly registered, all tasks and hence the
3dd06ffa 4955 * init_css_set is in the subsystem's root cgroup. */
aec25020 4956 init_css_set.subsys[ss->id] = css;
ddbcc7e8 4957
cb4a3167
AS
4958 have_fork_callback |= (bool)ss->fork << ss->id;
4959 have_exit_callback |= (bool)ss->exit << ss->id;
ddbcc7e8 4960
e8d55fde
LZ
4961 /* At system boot, before all subsystems have been
4962 * registered, no tasks have been forked, so we don't
4963 * need to invoke fork callbacks here. */
4964 BUG_ON(!list_empty(&init_task.tasks));
4965
ae7f164a 4966 BUG_ON(online_css(css));
a8638030 4967
cf5d5941
BB
4968 mutex_unlock(&cgroup_mutex);
4969}
cf5d5941 4970
ddbcc7e8 4971/**
a043e3b2
LZ
4972 * cgroup_init_early - cgroup initialization at system boot
4973 *
4974 * Initialize cgroups at system boot, and initialize any
4975 * subsystems that request early init.
ddbcc7e8
PM
4976 */
4977int __init cgroup_init_early(void)
4978{
7b9a6ba5 4979 static struct cgroup_sb_opts __initdata opts;
30159ec7 4980 struct cgroup_subsys *ss;
ddbcc7e8 4981 int i;
30159ec7 4982
3dd06ffa 4983 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4984 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4985
a4ea1cc9 4986 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4987
3ed80a62 4988 for_each_subsys(ss, i) {
aec25020 4989 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4990 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4991 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4992 ss->id, ss->name);
073219e9
TH
4993 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4994 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4995
aec25020 4996 ss->id = i;
073219e9 4997 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4998
4999 if (ss->early_init)
15a4c835 5000 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5001 }
5002 return 0;
5003}
5004
5005/**
a043e3b2
LZ
5006 * cgroup_init - cgroup initialization
5007 *
5008 * Register cgroup filesystem and /proc file, and initialize
5009 * any subsystems that didn't request early init.
ddbcc7e8
PM
5010 */
5011int __init cgroup_init(void)
5012{
30159ec7 5013 struct cgroup_subsys *ss;
0ac801fe 5014 unsigned long key;
172a2c06 5015 int ssid, err;
ddbcc7e8 5016
d59cfc09 5017 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5018 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5019 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5020
54e7b4eb 5021 mutex_lock(&cgroup_mutex);
54e7b4eb 5022
82fe9b0d
TH
5023 /* Add init_css_set to the hash table */
5024 key = css_set_hash(init_css_set.subsys);
5025 hash_add(css_set_table, &init_css_set.hlist, key);
5026
3dd06ffa 5027 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5028
54e7b4eb
TH
5029 mutex_unlock(&cgroup_mutex);
5030
172a2c06 5031 for_each_subsys(ss, ssid) {
15a4c835
TH
5032 if (ss->early_init) {
5033 struct cgroup_subsys_state *css =
5034 init_css_set.subsys[ss->id];
5035
5036 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5037 GFP_KERNEL);
5038 BUG_ON(css->id < 0);
5039 } else {
5040 cgroup_init_subsys(ss, false);
5041 }
172a2c06 5042
2d8f243a
TH
5043 list_add_tail(&init_css_set.e_cset_node[ssid],
5044 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5045
5046 /*
c731ae1d
LZ
5047 * Setting dfl_root subsys_mask needs to consider the
5048 * disabled flag and cftype registration needs kmalloc,
5049 * both of which aren't available during early_init.
172a2c06 5050 */
a8ddc821
TH
5051 if (ss->disabled)
5052 continue;
5053
5054 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5055
5056 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5057 ss->dfl_cftypes = ss->legacy_cftypes;
5058
5de4fa13
TH
5059 if (!ss->dfl_cftypes)
5060 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5061
a8ddc821
TH
5062 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5063 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5064 } else {
5065 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5066 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5067 }
295458e6
VD
5068
5069 if (ss->bind)
5070 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5071 }
5072
676db4af 5073 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
5074 if (!cgroup_kobj)
5075 return -ENOMEM;
676db4af 5076
ddbcc7e8 5077 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
5078 if (err < 0) {
5079 kobject_put(cgroup_kobj);
2bd59d48 5080 return err;
676db4af 5081 }
ddbcc7e8 5082
46ae220b 5083 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5084 return 0;
ddbcc7e8 5085}
b4f48b63 5086
e5fca243
TH
5087static int __init cgroup_wq_init(void)
5088{
5089 /*
5090 * There isn't much point in executing destruction path in
5091 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5092 * Use 1 for @max_active.
e5fca243
TH
5093 *
5094 * We would prefer to do this in cgroup_init() above, but that
5095 * is called before init_workqueues(): so leave this until after.
5096 */
1a11533f 5097 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5098 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5099
5100 /*
5101 * Used to destroy pidlists and separate to serve as flush domain.
5102 * Cap @max_active to 1 too.
5103 */
5104 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5105 0, 1);
5106 BUG_ON(!cgroup_pidlist_destroy_wq);
5107
e5fca243
TH
5108 return 0;
5109}
5110core_initcall(cgroup_wq_init);
5111
a424316c
PM
5112/*
5113 * proc_cgroup_show()
5114 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5115 * - Used for /proc/<pid>/cgroup.
a424316c 5116 */
006f4ac4
ZL
5117int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5118 struct pid *pid, struct task_struct *tsk)
a424316c 5119{
e61734c5 5120 char *buf, *path;
a424316c 5121 int retval;
3dd06ffa 5122 struct cgroup_root *root;
a424316c
PM
5123
5124 retval = -ENOMEM;
e61734c5 5125 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5126 if (!buf)
5127 goto out;
5128
a424316c 5129 mutex_lock(&cgroup_mutex);
96d365e0 5130 down_read(&css_set_rwsem);
a424316c 5131
985ed670 5132 for_each_root(root) {
a424316c 5133 struct cgroup_subsys *ss;
bd89aabc 5134 struct cgroup *cgrp;
b85d2040 5135 int ssid, count = 0;
a424316c 5136
a2dd4247 5137 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5138 continue;
5139
2c6ab6d2 5140 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5141 for_each_subsys(ss, ssid)
f392e51c 5142 if (root->subsys_mask & (1 << ssid))
b85d2040 5143 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5144 if (strlen(root->name))
5145 seq_printf(m, "%sname=%s", count ? "," : "",
5146 root->name);
a424316c 5147 seq_putc(m, ':');
7717f7ba 5148 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5149 path = cgroup_path(cgrp, buf, PATH_MAX);
5150 if (!path) {
5151 retval = -ENAMETOOLONG;
a424316c 5152 goto out_unlock;
e61734c5
TH
5153 }
5154 seq_puts(m, path);
a424316c
PM
5155 seq_putc(m, '\n');
5156 }
5157
006f4ac4 5158 retval = 0;
a424316c 5159out_unlock:
96d365e0 5160 up_read(&css_set_rwsem);
a424316c 5161 mutex_unlock(&cgroup_mutex);
a424316c
PM
5162 kfree(buf);
5163out:
5164 return retval;
5165}
5166
a424316c
PM
5167/* Display information about each subsystem and each hierarchy */
5168static int proc_cgroupstats_show(struct seq_file *m, void *v)
5169{
30159ec7 5170 struct cgroup_subsys *ss;
a424316c 5171 int i;
a424316c 5172
8bab8dde 5173 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5174 /*
5175 * ideally we don't want subsystems moving around while we do this.
5176 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5177 * subsys/hierarchy state.
5178 */
a424316c 5179 mutex_lock(&cgroup_mutex);
30159ec7
TH
5180
5181 for_each_subsys(ss, i)
2c6ab6d2
PM
5182 seq_printf(m, "%s\t%d\t%d\t%d\n",
5183 ss->name, ss->root->hierarchy_id,
3c9c825b 5184 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5185
a424316c
PM
5186 mutex_unlock(&cgroup_mutex);
5187 return 0;
5188}
5189
5190static int cgroupstats_open(struct inode *inode, struct file *file)
5191{
9dce07f1 5192 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5193}
5194
828c0950 5195static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5196 .open = cgroupstats_open,
5197 .read = seq_read,
5198 .llseek = seq_lseek,
5199 .release = single_release,
5200};
5201
b4f48b63 5202/**
eaf797ab 5203 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5204 * @child: pointer to task_struct of forking parent process.
b4f48b63 5205 *
eaf797ab
TH
5206 * A task is associated with the init_css_set until cgroup_post_fork()
5207 * attaches it to the parent's css_set. Empty cg_list indicates that
5208 * @child isn't holding reference to its css_set.
b4f48b63
PM
5209 */
5210void cgroup_fork(struct task_struct *child)
5211{
eaf797ab 5212 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5213 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5214}
5215
817929ec 5216/**
a043e3b2
LZ
5217 * cgroup_post_fork - called on a new task after adding it to the task list
5218 * @child: the task in question
5219 *
5edee61e
TH
5220 * Adds the task to the list running through its css_set if necessary and
5221 * call the subsystem fork() callbacks. Has to be after the task is
5222 * visible on the task list in case we race with the first call to
0942eeee 5223 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5224 * list.
a043e3b2 5225 */
817929ec
PM
5226void cgroup_post_fork(struct task_struct *child)
5227{
30159ec7 5228 struct cgroup_subsys *ss;
5edee61e
TH
5229 int i;
5230
3ce3230a 5231 /*
251f8c03 5232 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5233 * function sets use_task_css_set_links before grabbing
5234 * tasklist_lock and we just went through tasklist_lock to add
5235 * @child, it's guaranteed that either we see the set
5236 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5237 * @child during its iteration.
5238 *
5239 * If we won the race, @child is associated with %current's
5240 * css_set. Grabbing css_set_rwsem guarantees both that the
5241 * association is stable, and, on completion of the parent's
5242 * migration, @child is visible in the source of migration or
5243 * already in the destination cgroup. This guarantee is necessary
5244 * when implementing operations which need to migrate all tasks of
5245 * a cgroup to another.
5246 *
251f8c03 5247 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5248 * will remain in init_css_set. This is safe because all tasks are
5249 * in the init_css_set before cg_links is enabled and there's no
5250 * operation which transfers all tasks out of init_css_set.
3ce3230a 5251 */
817929ec 5252 if (use_task_css_set_links) {
eaf797ab
TH
5253 struct css_set *cset;
5254
96d365e0 5255 down_write(&css_set_rwsem);
0e1d768f 5256 cset = task_css_set(current);
eaf797ab
TH
5257 if (list_empty(&child->cg_list)) {
5258 rcu_assign_pointer(child->cgroups, cset);
5259 list_add(&child->cg_list, &cset->tasks);
5260 get_css_set(cset);
5261 }
96d365e0 5262 up_write(&css_set_rwsem);
817929ec 5263 }
5edee61e
TH
5264
5265 /*
5266 * Call ss->fork(). This must happen after @child is linked on
5267 * css_set; otherwise, @child might change state between ->fork()
5268 * and addition to css_set.
5269 */
cb4a3167
AS
5270 for_each_subsys_which(ss, i, &have_fork_callback)
5271 ss->fork(child);
817929ec 5272}
5edee61e 5273
b4f48b63
PM
5274/**
5275 * cgroup_exit - detach cgroup from exiting task
5276 * @tsk: pointer to task_struct of exiting process
5277 *
5278 * Description: Detach cgroup from @tsk and release it.
5279 *
5280 * Note that cgroups marked notify_on_release force every task in
5281 * them to take the global cgroup_mutex mutex when exiting.
5282 * This could impact scaling on very large systems. Be reluctant to
5283 * use notify_on_release cgroups where very high task exit scaling
5284 * is required on large systems.
5285 *
0e1d768f
TH
5286 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5287 * call cgroup_exit() while the task is still competent to handle
5288 * notify_on_release(), then leave the task attached to the root cgroup in
5289 * each hierarchy for the remainder of its exit. No need to bother with
5290 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5291 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5292 */
1ec41830 5293void cgroup_exit(struct task_struct *tsk)
b4f48b63 5294{
30159ec7 5295 struct cgroup_subsys *ss;
5abb8855 5296 struct css_set *cset;
eaf797ab 5297 bool put_cset = false;
d41d5a01 5298 int i;
817929ec
PM
5299
5300 /*
0e1d768f
TH
5301 * Unlink from @tsk from its css_set. As migration path can't race
5302 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5303 */
5304 if (!list_empty(&tsk->cg_list)) {
96d365e0 5305 down_write(&css_set_rwsem);
0e1d768f 5306 list_del_init(&tsk->cg_list);
96d365e0 5307 up_write(&css_set_rwsem);
0e1d768f 5308 put_cset = true;
817929ec
PM
5309 }
5310
b4f48b63 5311 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5312 cset = task_css_set(tsk);
5313 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5314
cb4a3167
AS
5315 /* see cgroup_post_fork() for details */
5316 for_each_subsys_which(ss, i, &have_exit_callback) {
5317 struct cgroup_subsys_state *old_css = cset->subsys[i];
5318 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5319
cb4a3167 5320 ss->exit(css, old_css, tsk);
d41d5a01 5321 }
d41d5a01 5322
eaf797ab 5323 if (put_cset)
a25eb52e 5324 put_css_set(cset);
b4f48b63 5325}
697f4161 5326
bd89aabc 5327static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5328{
a25eb52e 5329 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5330 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5331 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5332}
5333
81a6a5cd
PM
5334/*
5335 * Notify userspace when a cgroup is released, by running the
5336 * configured release agent with the name of the cgroup (path
5337 * relative to the root of cgroup file system) as the argument.
5338 *
5339 * Most likely, this user command will try to rmdir this cgroup.
5340 *
5341 * This races with the possibility that some other task will be
5342 * attached to this cgroup before it is removed, or that some other
5343 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5344 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5345 * unused, and this cgroup will be reprieved from its death sentence,
5346 * to continue to serve a useful existence. Next time it's released,
5347 * we will get notified again, if it still has 'notify_on_release' set.
5348 *
5349 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5350 * means only wait until the task is successfully execve()'d. The
5351 * separate release agent task is forked by call_usermodehelper(),
5352 * then control in this thread returns here, without waiting for the
5353 * release agent task. We don't bother to wait because the caller of
5354 * this routine has no use for the exit status of the release agent
5355 * task, so no sense holding our caller up for that.
81a6a5cd 5356 */
81a6a5cd
PM
5357static void cgroup_release_agent(struct work_struct *work)
5358{
971ff493
ZL
5359 struct cgroup *cgrp =
5360 container_of(work, struct cgroup, release_agent_work);
5361 char *pathbuf = NULL, *agentbuf = NULL, *path;
5362 char *argv[3], *envp[3];
5363
81a6a5cd 5364 mutex_lock(&cgroup_mutex);
971ff493
ZL
5365
5366 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5367 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5368 if (!pathbuf || !agentbuf)
5369 goto out;
5370
5371 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5372 if (!path)
5373 goto out;
5374
5375 argv[0] = agentbuf;
5376 argv[1] = path;
5377 argv[2] = NULL;
5378
5379 /* minimal command environment */
5380 envp[0] = "HOME=/";
5381 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5382 envp[2] = NULL;
5383
81a6a5cd 5384 mutex_unlock(&cgroup_mutex);
971ff493 5385 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5386 goto out_free;
971ff493 5387out:
81a6a5cd 5388 mutex_unlock(&cgroup_mutex);
3e2cd91a 5389out_free:
971ff493
ZL
5390 kfree(agentbuf);
5391 kfree(pathbuf);
81a6a5cd 5392}
8bab8dde
PM
5393
5394static int __init cgroup_disable(char *str)
5395{
30159ec7 5396 struct cgroup_subsys *ss;
8bab8dde 5397 char *token;
30159ec7 5398 int i;
8bab8dde
PM
5399
5400 while ((token = strsep(&str, ",")) != NULL) {
5401 if (!*token)
5402 continue;
be45c900 5403
3ed80a62 5404 for_each_subsys(ss, i) {
8bab8dde
PM
5405 if (!strcmp(token, ss->name)) {
5406 ss->disabled = 1;
5407 printk(KERN_INFO "Disabling %s control group"
5408 " subsystem\n", ss->name);
5409 break;
5410 }
5411 }
5412 }
5413 return 1;
5414}
5415__setup("cgroup_disable=", cgroup_disable);
38460b48 5416
a8ddc821
TH
5417static int __init cgroup_set_legacy_files_on_dfl(char *str)
5418{
5419 printk("cgroup: using legacy files on the default hierarchy\n");
5420 cgroup_legacy_files_on_dfl = true;
5421 return 0;
5422}
5423__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5424
b77d7b60 5425/**
ec903c0c 5426 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5427 * @dentry: directory dentry of interest
5428 * @ss: subsystem of interest
b77d7b60 5429 *
5a17f543
TH
5430 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5431 * to get the corresponding css and return it. If such css doesn't exist
5432 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5433 */
ec903c0c
TH
5434struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5435 struct cgroup_subsys *ss)
e5d1367f 5436{
2bd59d48
TH
5437 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5438 struct cgroup_subsys_state *css = NULL;
e5d1367f 5439 struct cgroup *cgrp;
e5d1367f 5440
35cf0836 5441 /* is @dentry a cgroup dir? */
2bd59d48
TH
5442 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5443 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5444 return ERR_PTR(-EBADF);
5445
5a17f543
TH
5446 rcu_read_lock();
5447
2bd59d48
TH
5448 /*
5449 * This path doesn't originate from kernfs and @kn could already
5450 * have been or be removed at any point. @kn->priv is RCU
a4189487 5451 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5452 */
5453 cgrp = rcu_dereference(kn->priv);
5454 if (cgrp)
5455 css = cgroup_css(cgrp, ss);
5a17f543 5456
ec903c0c 5457 if (!css || !css_tryget_online(css))
5a17f543
TH
5458 css = ERR_PTR(-ENOENT);
5459
5460 rcu_read_unlock();
5461 return css;
e5d1367f 5462}
e5d1367f 5463
1cb650b9
LZ
5464/**
5465 * css_from_id - lookup css by id
5466 * @id: the cgroup id
5467 * @ss: cgroup subsys to be looked into
5468 *
5469 * Returns the css if there's valid one with @id, otherwise returns NULL.
5470 * Should be called under rcu_read_lock().
5471 */
5472struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5473{
6fa4918d 5474 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5475 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5476}
5477
fe693435 5478#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5479static struct cgroup_subsys_state *
5480debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5481{
5482 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5483
5484 if (!css)
5485 return ERR_PTR(-ENOMEM);
5486
5487 return css;
5488}
5489
eb95419b 5490static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5491{
eb95419b 5492 kfree(css);
fe693435
PM
5493}
5494
182446d0
TH
5495static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5496 struct cftype *cft)
fe693435 5497{
182446d0 5498 return cgroup_task_count(css->cgroup);
fe693435
PM
5499}
5500
182446d0
TH
5501static u64 current_css_set_read(struct cgroup_subsys_state *css,
5502 struct cftype *cft)
fe693435
PM
5503{
5504 return (u64)(unsigned long)current->cgroups;
5505}
5506
182446d0 5507static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5508 struct cftype *cft)
fe693435
PM
5509{
5510 u64 count;
5511
5512 rcu_read_lock();
a8ad805c 5513 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5514 rcu_read_unlock();
5515 return count;
5516}
5517
2da8ca82 5518static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5519{
69d0206c 5520 struct cgrp_cset_link *link;
5abb8855 5521 struct css_set *cset;
e61734c5
TH
5522 char *name_buf;
5523
5524 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5525 if (!name_buf)
5526 return -ENOMEM;
7717f7ba 5527
96d365e0 5528 down_read(&css_set_rwsem);
7717f7ba 5529 rcu_read_lock();
5abb8855 5530 cset = rcu_dereference(current->cgroups);
69d0206c 5531 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5532 struct cgroup *c = link->cgrp;
7717f7ba 5533
a2dd4247 5534 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5535 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5536 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5537 }
5538 rcu_read_unlock();
96d365e0 5539 up_read(&css_set_rwsem);
e61734c5 5540 kfree(name_buf);
7717f7ba
PM
5541 return 0;
5542}
5543
5544#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5545static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5546{
2da8ca82 5547 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5548 struct cgrp_cset_link *link;
7717f7ba 5549
96d365e0 5550 down_read(&css_set_rwsem);
182446d0 5551 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5552 struct css_set *cset = link->cset;
7717f7ba
PM
5553 struct task_struct *task;
5554 int count = 0;
c7561128 5555
5abb8855 5556 seq_printf(seq, "css_set %p\n", cset);
c7561128 5557
5abb8855 5558 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5559 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5560 goto overflow;
5561 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5562 }
5563
5564 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5565 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5566 goto overflow;
5567 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5568 }
c7561128
TH
5569 continue;
5570 overflow:
5571 seq_puts(seq, " ...\n");
7717f7ba 5572 }
96d365e0 5573 up_read(&css_set_rwsem);
7717f7ba
PM
5574 return 0;
5575}
5576
182446d0 5577static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5578{
a25eb52e
ZL
5579 return (!cgroup_has_tasks(css->cgroup) &&
5580 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5581}
5582
5583static struct cftype debug_files[] = {
fe693435
PM
5584 {
5585 .name = "taskcount",
5586 .read_u64 = debug_taskcount_read,
5587 },
5588
5589 {
5590 .name = "current_css_set",
5591 .read_u64 = current_css_set_read,
5592 },
5593
5594 {
5595 .name = "current_css_set_refcount",
5596 .read_u64 = current_css_set_refcount_read,
5597 },
5598
7717f7ba
PM
5599 {
5600 .name = "current_css_set_cg_links",
2da8ca82 5601 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5602 },
5603
5604 {
5605 .name = "cgroup_css_links",
2da8ca82 5606 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5607 },
5608
fe693435
PM
5609 {
5610 .name = "releasable",
5611 .read_u64 = releasable_read,
5612 },
fe693435 5613
4baf6e33
TH
5614 { } /* terminate */
5615};
fe693435 5616
073219e9 5617struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5618 .css_alloc = debug_css_alloc,
5619 .css_free = debug_css_free,
5577964e 5620 .legacy_cftypes = debug_files,
fe693435
PM
5621};
5622#endif /* CONFIG_CGROUP_DEBUG */