audit: remove AUDIT_SETUP_CONTEXT as it isn't used
[linux-2.6-block.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
d7e7528b
EP
73/* flags stating the success for a syscall */
74#define AUDITSC_INVALID 0
75#define AUDITSC_SUCCESS 1
76#define AUDITSC_FAILURE 2
77
1da177e4 78/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81#define AUDIT_NAMES 5
1da177e4 82
9c937dcc
AG
83/* Indicates that audit should log the full pathname. */
84#define AUDIT_NAME_FULL -1
85
de6bbd1d
EP
86/* no execve audit message should be longer than this (userspace limits) */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
471a5c7c
AV
89/* number of audit rules */
90int audit_n_rules;
91
e54dc243
AG
92/* determines whether we collect data for signals sent */
93int audit_signals;
94
851f7ff5
EP
95struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102};
103
1da177e4
LT
104/* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109struct audit_names {
5195d8e2 110 struct list_head list; /* audit_context->names_list */
1da177e4
LT
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
1b50eed9 118 u32 osid;
851f7ff5
EP
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
5195d8e2
EP
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
1da177e4
LT
129};
130
131struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134};
135
136#define AUDIT_AUX_IPCPERM 0
137
e54dc243
AG
138/* Number of target pids per aux struct. */
139#define AUDIT_AUX_PIDS 16
140
473ae30b
AV
141struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
bdf4c48a 145 struct mm_struct *mm;
473ae30b
AV
146};
147
e54dc243
AG
148struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 154 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
156 int pid_count;
157};
158
3fc689e9
EP
159struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165};
166
e68b75a0
EP
167struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171};
172
74c3cbe3
AV
173struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176};
177
1da177e4
LT
178/* The per-task audit context. */
179struct audit_context {
d51374ad 180 int dummy; /* must be the first element */
1da177e4 181 int in_syscall; /* 1 if task is in a syscall */
0590b933 182 enum audit_state state, current_state;
1da177e4 183 unsigned int serial; /* serial number for record */
1da177e4 184 int major; /* syscall number */
44e51a1b 185 struct timespec ctime; /* time of syscall entry */
1da177e4 186 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 187 long return_code;/* syscall return code */
0590b933 188 u64 prio;
44e51a1b 189 int return_valid; /* return code is valid */
5195d8e2
EP
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 201 char * filterkey; /* key for rule that triggered record */
44707fdf 202 struct path pwd;
1da177e4
LT
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
e54dc243 205 struct audit_aux_data *aux_pids;
4f6b434f
AV
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
1da177e4 208 /* Save things to print about task_struct */
f46038ff 209 pid_t pid, ppid;
1da177e4
LT
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
2fd6f58b 213 int arch;
1da177e4 214
a5cb013d 215 pid_t target_pid;
c2a7780e
EP
216 uid_t target_auid;
217 uid_t target_uid;
4746ec5b 218 unsigned int target_sessionid;
a5cb013d 219 u32 target_sid;
c2a7780e 220 char target_comm[TASK_COMM_LEN];
a5cb013d 221
74c3cbe3 222 struct audit_tree_refs *trees, *first_trees;
916d7576 223 struct list_head killed_trees;
44e51a1b 224 int tree_count;
74c3cbe3 225
f3298dc4
AV
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
a33e6751
AV
232 struct {
233 uid_t uid;
234 gid_t gid;
2570ebbd 235 umode_t mode;
a33e6751 236 u32 osid;
e816f370
AV
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
2570ebbd 240 umode_t perm_mode;
e816f370 241 unsigned long qbytes;
a33e6751 242 } ipc;
7392906e
AV
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
20114f71
AV
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
c32c8af4
AV
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
564f6993
AV
257 struct {
258 int oflag;
df0a4283 259 umode_t mode;
564f6993
AV
260 struct mq_attr attr;
261 } mq_open;
57f71a0a
AV
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
120a795d
AV
266 struct {
267 int fd;
268 int flags;
269 } mmap;
f3298dc4 270 };
157cf649 271 int fds[2];
f3298dc4 272
1da177e4
LT
273#if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276#endif
277};
278
55669bfa
AV
279static inline int open_arg(int flags, int mask)
280{
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285}
286
287static int audit_match_perm(struct audit_context *ctx, int mask)
288{
c4bacefb 289 unsigned n;
1a61c88d 290 if (unlikely(!ctx))
291 return 0;
c4bacefb 292 n = ctx->major;
dbda4c0b 293
55669bfa
AV
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328}
329
5ef30ee5 330static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 331{
5195d8e2 332 struct audit_names *n;
5ef30ee5 333 umode_t mode = (umode_t)val;
1a61c88d 334
335 if (unlikely(!ctx))
336 return 0;
337
5195d8e2
EP
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
341 return 1;
342 }
5195d8e2 343
5ef30ee5 344 return 0;
8b67dca9
AV
345}
346
74c3cbe3
AV
347/*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357#ifdef CONFIG_AUDIT_TREE
679173b7
EP
358static void audit_set_auditable(struct audit_context *ctx)
359{
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364}
365
74c3cbe3
AV
366static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367{
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385}
386
387static int grow_tree_refs(struct audit_context *ctx)
388{
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401}
402#endif
403
404static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406{
407#ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431#endif
432}
433
434static void free_tree_refs(struct audit_context *ctx)
435{
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441}
442
443static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444{
445#ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462#endif
463 return 0;
464}
465
f368c07d 466/* Determine if any context name data matches a rule's watch data */
1da177e4 467/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
468 * otherwise.
469 *
470 * If task_creation is true, this is an explicit indication that we are
471 * filtering a task rule at task creation time. This and tsk == current are
472 * the only situations where tsk->cred may be accessed without an rcu read lock.
473 */
1da177e4 474static int audit_filter_rules(struct task_struct *tsk,
93315ed6 475 struct audit_krule *rule,
1da177e4 476 struct audit_context *ctx,
f368c07d 477 struct audit_names *name,
f5629883
TJ
478 enum audit_state *state,
479 bool task_creation)
1da177e4 480{
f5629883 481 const struct cred *cred;
5195d8e2 482 int i, need_sid = 1;
3dc7e315
DG
483 u32 sid;
484
f5629883
TJ
485 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
486
1da177e4 487 for (i = 0; i < rule->field_count; i++) {
93315ed6 488 struct audit_field *f = &rule->fields[i];
5195d8e2 489 struct audit_names *n;
1da177e4
LT
490 int result = 0;
491
93315ed6 492 switch (f->type) {
1da177e4 493 case AUDIT_PID:
93315ed6 494 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 495 break;
3c66251e 496 case AUDIT_PPID:
419c58f1
AV
497 if (ctx) {
498 if (!ctx->ppid)
499 ctx->ppid = sys_getppid();
3c66251e 500 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 501 }
3c66251e 502 break;
1da177e4 503 case AUDIT_UID:
b6dff3ec 504 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
505 break;
506 case AUDIT_EUID:
b6dff3ec 507 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
508 break;
509 case AUDIT_SUID:
b6dff3ec 510 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
511 break;
512 case AUDIT_FSUID:
b6dff3ec 513 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
514 break;
515 case AUDIT_GID:
b6dff3ec 516 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
517 break;
518 case AUDIT_EGID:
b6dff3ec 519 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
520 break;
521 case AUDIT_SGID:
b6dff3ec 522 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
523 break;
524 case AUDIT_FSGID:
b6dff3ec 525 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
526 break;
527 case AUDIT_PERS:
93315ed6 528 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 529 break;
2fd6f58b 530 case AUDIT_ARCH:
9f8dbe9c 531 if (ctx)
93315ed6 532 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 533 break;
1da177e4
LT
534
535 case AUDIT_EXIT:
536 if (ctx && ctx->return_valid)
93315ed6 537 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
538 break;
539 case AUDIT_SUCCESS:
b01f2cc1 540 if (ctx && ctx->return_valid) {
93315ed6
AG
541 if (f->val)
542 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 543 else
93315ed6 544 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 545 }
1da177e4
LT
546 break;
547 case AUDIT_DEVMAJOR:
16c174bd
EP
548 if (name) {
549 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
550 audit_comparator(MAJOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
5195d8e2 553 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
554 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
555 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_DEVMINOR:
16c174bd
EP
563 if (name) {
564 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
565 audit_comparator(MINOR(name->rdev), f->op, f->val))
566 ++result;
567 } else if (ctx) {
5195d8e2 568 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
569 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
570 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
571 ++result;
572 break;
573 }
574 }
575 }
576 break;
577 case AUDIT_INODE:
f368c07d 578 if (name)
9c937dcc 579 result = (name->ino == f->val);
f368c07d 580 else if (ctx) {
5195d8e2
EP
581 list_for_each_entry(n, &ctx->names_list, list) {
582 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
583 ++result;
584 break;
585 }
586 }
587 }
588 break;
f368c07d 589 case AUDIT_WATCH:
ae7b8f41
EP
590 if (name)
591 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 592 break;
74c3cbe3
AV
593 case AUDIT_DIR:
594 if (ctx)
595 result = match_tree_refs(ctx, rule->tree);
596 break;
1da177e4
LT
597 case AUDIT_LOGINUID:
598 result = 0;
599 if (ctx)
bfef93a5 600 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 601 break;
3a6b9f85
DG
602 case AUDIT_SUBJ_USER:
603 case AUDIT_SUBJ_ROLE:
604 case AUDIT_SUBJ_TYPE:
605 case AUDIT_SUBJ_SEN:
606 case AUDIT_SUBJ_CLR:
3dc7e315
DG
607 /* NOTE: this may return negative values indicating
608 a temporary error. We simply treat this as a
609 match for now to avoid losing information that
610 may be wanted. An error message will also be
611 logged upon error */
04305e4a 612 if (f->lsm_rule) {
2ad312d2 613 if (need_sid) {
2a862b32 614 security_task_getsecid(tsk, &sid);
2ad312d2
SG
615 need_sid = 0;
616 }
d7a96f3a 617 result = security_audit_rule_match(sid, f->type,
3dc7e315 618 f->op,
04305e4a 619 f->lsm_rule,
3dc7e315 620 ctx);
2ad312d2 621 }
3dc7e315 622 break;
6e5a2d1d
DG
623 case AUDIT_OBJ_USER:
624 case AUDIT_OBJ_ROLE:
625 case AUDIT_OBJ_TYPE:
626 case AUDIT_OBJ_LEV_LOW:
627 case AUDIT_OBJ_LEV_HIGH:
628 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
629 also applies here */
04305e4a 630 if (f->lsm_rule) {
6e5a2d1d
DG
631 /* Find files that match */
632 if (name) {
d7a96f3a 633 result = security_audit_rule_match(
6e5a2d1d 634 name->osid, f->type, f->op,
04305e4a 635 f->lsm_rule, ctx);
6e5a2d1d 636 } else if (ctx) {
5195d8e2
EP
637 list_for_each_entry(n, &ctx->names_list, list) {
638 if (security_audit_rule_match(n->osid, f->type,
639 f->op, f->lsm_rule,
640 ctx)) {
6e5a2d1d
DG
641 ++result;
642 break;
643 }
644 }
645 }
646 /* Find ipc objects that match */
a33e6751
AV
647 if (!ctx || ctx->type != AUDIT_IPC)
648 break;
649 if (security_audit_rule_match(ctx->ipc.osid,
650 f->type, f->op,
651 f->lsm_rule, ctx))
652 ++result;
6e5a2d1d
DG
653 }
654 break;
1da177e4
LT
655 case AUDIT_ARG0:
656 case AUDIT_ARG1:
657 case AUDIT_ARG2:
658 case AUDIT_ARG3:
659 if (ctx)
93315ed6 660 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 661 break;
5adc8a6a
AG
662 case AUDIT_FILTERKEY:
663 /* ignore this field for filtering */
664 result = 1;
665 break;
55669bfa
AV
666 case AUDIT_PERM:
667 result = audit_match_perm(ctx, f->val);
668 break;
8b67dca9
AV
669 case AUDIT_FILETYPE:
670 result = audit_match_filetype(ctx, f->val);
671 break;
1da177e4
LT
672 }
673
f5629883 674 if (!result)
1da177e4
LT
675 return 0;
676 }
0590b933
AV
677
678 if (ctx) {
679 if (rule->prio <= ctx->prio)
680 return 0;
681 if (rule->filterkey) {
682 kfree(ctx->filterkey);
683 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
684 }
685 ctx->prio = rule->prio;
686 }
1da177e4
LT
687 switch (rule->action) {
688 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
689 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
690 }
691 return 1;
692}
693
694/* At process creation time, we can determine if system-call auditing is
695 * completely disabled for this task. Since we only have the task
696 * structure at this point, we can only check uid and gid.
697 */
e048e02c 698static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
699{
700 struct audit_entry *e;
701 enum audit_state state;
702
703 rcu_read_lock();
0f45aa18 704 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
705 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
706 &state, true)) {
e048e02c
AV
707 if (state == AUDIT_RECORD_CONTEXT)
708 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
709 rcu_read_unlock();
710 return state;
711 }
712 }
713 rcu_read_unlock();
714 return AUDIT_BUILD_CONTEXT;
715}
716
717/* At syscall entry and exit time, this filter is called if the
718 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 719 * also not high enough that we already know we have to write an audit
b0dd25a8 720 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
721 */
722static enum audit_state audit_filter_syscall(struct task_struct *tsk,
723 struct audit_context *ctx,
724 struct list_head *list)
725{
726 struct audit_entry *e;
c3896495 727 enum audit_state state;
1da177e4 728
351bb722 729 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
730 return AUDIT_DISABLED;
731
1da177e4 732 rcu_read_lock();
c3896495 733 if (!list_empty(list)) {
b63862f4
DK
734 int word = AUDIT_WORD(ctx->major);
735 int bit = AUDIT_BIT(ctx->major);
736
737 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
738 if ((e->rule.mask[word] & bit) == bit &&
739 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 740 &state, false)) {
f368c07d 741 rcu_read_unlock();
0590b933 742 ctx->current_state = state;
f368c07d
AG
743 return state;
744 }
745 }
746 }
747 rcu_read_unlock();
748 return AUDIT_BUILD_CONTEXT;
749}
750
5195d8e2
EP
751/*
752 * Given an audit_name check the inode hash table to see if they match.
753 * Called holding the rcu read lock to protect the use of audit_inode_hash
754 */
755static int audit_filter_inode_name(struct task_struct *tsk,
756 struct audit_names *n,
757 struct audit_context *ctx) {
758 int word, bit;
759 int h = audit_hash_ino((u32)n->ino);
760 struct list_head *list = &audit_inode_hash[h];
761 struct audit_entry *e;
762 enum audit_state state;
763
764 word = AUDIT_WORD(ctx->major);
765 bit = AUDIT_BIT(ctx->major);
766
767 if (list_empty(list))
768 return 0;
769
770 list_for_each_entry_rcu(e, list, list) {
771 if ((e->rule.mask[word] & bit) == bit &&
772 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
773 ctx->current_state = state;
774 return 1;
775 }
776 }
777
778 return 0;
779}
780
781/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 782 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 783 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
784 * Regarding audit_state, same rules apply as for audit_filter_syscall().
785 */
0590b933 786void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 787{
5195d8e2 788 struct audit_names *n;
f368c07d
AG
789
790 if (audit_pid && tsk->tgid == audit_pid)
0590b933 791 return;
f368c07d
AG
792
793 rcu_read_lock();
f368c07d 794
5195d8e2
EP
795 list_for_each_entry(n, &ctx->names_list, list) {
796 if (audit_filter_inode_name(tsk, n, ctx))
797 break;
0f45aa18
DW
798 }
799 rcu_read_unlock();
0f45aa18
DW
800}
801
1da177e4
LT
802static inline struct audit_context *audit_get_context(struct task_struct *tsk,
803 int return_valid,
6d208da8 804 long return_code)
1da177e4
LT
805{
806 struct audit_context *context = tsk->audit_context;
807
808 if (likely(!context))
809 return NULL;
810 context->return_valid = return_valid;
f701b75e
EP
811
812 /*
813 * we need to fix up the return code in the audit logs if the actual
814 * return codes are later going to be fixed up by the arch specific
815 * signal handlers
816 *
817 * This is actually a test for:
818 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
819 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
820 *
821 * but is faster than a bunch of ||
822 */
823 if (unlikely(return_code <= -ERESTARTSYS) &&
824 (return_code >= -ERESTART_RESTARTBLOCK) &&
825 (return_code != -ENOIOCTLCMD))
826 context->return_code = -EINTR;
827 else
828 context->return_code = return_code;
1da177e4 829
0590b933
AV
830 if (context->in_syscall && !context->dummy) {
831 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
832 audit_filter_inodes(tsk, context);
1da177e4
LT
833 }
834
1da177e4
LT
835 tsk->audit_context = NULL;
836 return context;
837}
838
839static inline void audit_free_names(struct audit_context *context)
840{
5195d8e2 841 struct audit_names *n, *next;
1da177e4
LT
842
843#if AUDIT_DEBUG == 2
0590b933 844 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 845 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
846 " name_count=%d put_count=%d"
847 " ino_count=%d [NOT freeing]\n",
73241ccc 848 __FILE__, __LINE__,
1da177e4
LT
849 context->serial, context->major, context->in_syscall,
850 context->name_count, context->put_count,
851 context->ino_count);
5195d8e2 852 list_for_each_entry(n, &context->names_list, list) {
1da177e4 853 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 854 n->name, n->name ?: "(null)");
8c8570fb 855 }
1da177e4
LT
856 dump_stack();
857 return;
858 }
859#endif
860#if AUDIT_DEBUG
861 context->put_count = 0;
862 context->ino_count = 0;
863#endif
864
5195d8e2
EP
865 list_for_each_entry_safe(n, next, &context->names_list, list) {
866 list_del(&n->list);
867 if (n->name && n->name_put)
868 __putname(n->name);
869 if (n->should_free)
870 kfree(n);
8c8570fb 871 }
1da177e4 872 context->name_count = 0;
44707fdf
JB
873 path_put(&context->pwd);
874 context->pwd.dentry = NULL;
875 context->pwd.mnt = NULL;
1da177e4
LT
876}
877
878static inline void audit_free_aux(struct audit_context *context)
879{
880 struct audit_aux_data *aux;
881
882 while ((aux = context->aux)) {
883 context->aux = aux->next;
884 kfree(aux);
885 }
e54dc243
AG
886 while ((aux = context->aux_pids)) {
887 context->aux_pids = aux->next;
888 kfree(aux);
889 }
1da177e4
LT
890}
891
892static inline void audit_zero_context(struct audit_context *context,
893 enum audit_state state)
894{
1da177e4
LT
895 memset(context, 0, sizeof(*context));
896 context->state = state;
0590b933 897 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
898}
899
900static inline struct audit_context *audit_alloc_context(enum audit_state state)
901{
902 struct audit_context *context;
903
904 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
905 return NULL;
906 audit_zero_context(context, state);
916d7576 907 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 908 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
909 return context;
910}
911
b0dd25a8
RD
912/**
913 * audit_alloc - allocate an audit context block for a task
914 * @tsk: task
915 *
916 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
917 * if necessary. Doing so turns on system call auditing for the
918 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
919 * needed.
920 */
1da177e4
LT
921int audit_alloc(struct task_struct *tsk)
922{
923 struct audit_context *context;
924 enum audit_state state;
e048e02c 925 char *key = NULL;
1da177e4 926
b593d384 927 if (likely(!audit_ever_enabled))
1da177e4
LT
928 return 0; /* Return if not auditing. */
929
e048e02c 930 state = audit_filter_task(tsk, &key);
1da177e4
LT
931 if (likely(state == AUDIT_DISABLED))
932 return 0;
933
934 if (!(context = audit_alloc_context(state))) {
e048e02c 935 kfree(key);
1da177e4
LT
936 audit_log_lost("out of memory in audit_alloc");
937 return -ENOMEM;
938 }
e048e02c 939 context->filterkey = key;
1da177e4 940
1da177e4
LT
941 tsk->audit_context = context;
942 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
943 return 0;
944}
945
946static inline void audit_free_context(struct audit_context *context)
947{
948 struct audit_context *previous;
949 int count = 0;
950
951 do {
952 previous = context->previous;
953 if (previous || (count && count < 10)) {
954 ++count;
955 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
956 " freeing multiple contexts (%d)\n",
957 context->serial, context->major,
958 context->name_count, count);
959 }
960 audit_free_names(context);
74c3cbe3
AV
961 unroll_tree_refs(context, NULL, 0);
962 free_tree_refs(context);
1da177e4 963 audit_free_aux(context);
5adc8a6a 964 kfree(context->filterkey);
4f6b434f 965 kfree(context->sockaddr);
1da177e4
LT
966 kfree(context);
967 context = previous;
968 } while (context);
969 if (count >= 10)
970 printk(KERN_ERR "audit: freed %d contexts\n", count);
971}
972
161a09e7 973void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
974{
975 char *ctx = NULL;
c4823bce
AV
976 unsigned len;
977 int error;
978 u32 sid;
979
2a862b32 980 security_task_getsecid(current, &sid);
c4823bce
AV
981 if (!sid)
982 return;
8c8570fb 983
2a862b32 984 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
985 if (error) {
986 if (error != -EINVAL)
8c8570fb
DK
987 goto error_path;
988 return;
989 }
990
8c8570fb 991 audit_log_format(ab, " subj=%s", ctx);
2a862b32 992 security_release_secctx(ctx, len);
7306a0b9 993 return;
8c8570fb
DK
994
995error_path:
7306a0b9 996 audit_panic("error in audit_log_task_context");
8c8570fb
DK
997 return;
998}
999
161a09e7
JL
1000EXPORT_SYMBOL(audit_log_task_context);
1001
e495149b 1002static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1003{
45d9bb0e
AV
1004 char name[sizeof(tsk->comm)];
1005 struct mm_struct *mm = tsk->mm;
219f0817
SS
1006 struct vm_area_struct *vma;
1007
e495149b
AV
1008 /* tsk == current */
1009
45d9bb0e 1010 get_task_comm(name, tsk);
99e45eea
DW
1011 audit_log_format(ab, " comm=");
1012 audit_log_untrustedstring(ab, name);
219f0817 1013
e495149b
AV
1014 if (mm) {
1015 down_read(&mm->mmap_sem);
1016 vma = mm->mmap;
1017 while (vma) {
1018 if ((vma->vm_flags & VM_EXECUTABLE) &&
1019 vma->vm_file) {
1020 audit_log_d_path(ab, "exe=",
44707fdf 1021 &vma->vm_file->f_path);
e495149b
AV
1022 break;
1023 }
1024 vma = vma->vm_next;
219f0817 1025 }
e495149b 1026 up_read(&mm->mmap_sem);
219f0817 1027 }
e495149b 1028 audit_log_task_context(ab);
219f0817
SS
1029}
1030
e54dc243 1031static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
1032 uid_t auid, uid_t uid, unsigned int sessionid,
1033 u32 sid, char *comm)
e54dc243
AG
1034{
1035 struct audit_buffer *ab;
2a862b32 1036 char *ctx = NULL;
e54dc243
AG
1037 u32 len;
1038 int rc = 0;
1039
1040 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1041 if (!ab)
6246ccab 1042 return rc;
e54dc243 1043
4746ec5b
EP
1044 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1045 uid, sessionid);
2a862b32 1046 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1047 audit_log_format(ab, " obj=(none)");
e54dc243 1048 rc = 1;
2a862b32
AD
1049 } else {
1050 audit_log_format(ab, " obj=%s", ctx);
1051 security_release_secctx(ctx, len);
1052 }
c2a7780e
EP
1053 audit_log_format(ab, " ocomm=");
1054 audit_log_untrustedstring(ab, comm);
e54dc243 1055 audit_log_end(ab);
e54dc243
AG
1056
1057 return rc;
1058}
1059
de6bbd1d
EP
1060/*
1061 * to_send and len_sent accounting are very loose estimates. We aren't
1062 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1063 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1064 *
1065 * why snprintf? an int is up to 12 digits long. if we just assumed when
1066 * logging that a[%d]= was going to be 16 characters long we would be wasting
1067 * space in every audit message. In one 7500 byte message we can log up to
1068 * about 1000 min size arguments. That comes down to about 50% waste of space
1069 * if we didn't do the snprintf to find out how long arg_num_len was.
1070 */
1071static int audit_log_single_execve_arg(struct audit_context *context,
1072 struct audit_buffer **ab,
1073 int arg_num,
1074 size_t *len_sent,
1075 const char __user *p,
1076 char *buf)
bdf4c48a 1077{
de6bbd1d
EP
1078 char arg_num_len_buf[12];
1079 const char __user *tmp_p = p;
b87ce6e4
EP
1080 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1081 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1082 size_t len, len_left, to_send;
1083 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1084 unsigned int i, has_cntl = 0, too_long = 0;
1085 int ret;
1086
1087 /* strnlen_user includes the null we don't want to send */
1088 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1089
de6bbd1d
EP
1090 /*
1091 * We just created this mm, if we can't find the strings
1092 * we just copied into it something is _very_ wrong. Similar
1093 * for strings that are too long, we should not have created
1094 * any.
1095 */
b0abcfc1 1096 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1097 WARN_ON(1);
1098 send_sig(SIGKILL, current, 0);
b0abcfc1 1099 return -1;
de6bbd1d 1100 }
040b3a2d 1101
de6bbd1d
EP
1102 /* walk the whole argument looking for non-ascii chars */
1103 do {
1104 if (len_left > MAX_EXECVE_AUDIT_LEN)
1105 to_send = MAX_EXECVE_AUDIT_LEN;
1106 else
1107 to_send = len_left;
1108 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1109 /*
de6bbd1d
EP
1110 * There is no reason for this copy to be short. We just
1111 * copied them here, and the mm hasn't been exposed to user-
1112 * space yet.
bdf4c48a 1113 */
de6bbd1d 1114 if (ret) {
bdf4c48a
PZ
1115 WARN_ON(1);
1116 send_sig(SIGKILL, current, 0);
b0abcfc1 1117 return -1;
bdf4c48a 1118 }
de6bbd1d
EP
1119 buf[to_send] = '\0';
1120 has_cntl = audit_string_contains_control(buf, to_send);
1121 if (has_cntl) {
1122 /*
1123 * hex messages get logged as 2 bytes, so we can only
1124 * send half as much in each message
1125 */
1126 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1127 break;
1128 }
de6bbd1d
EP
1129 len_left -= to_send;
1130 tmp_p += to_send;
1131 } while (len_left > 0);
1132
1133 len_left = len;
1134
1135 if (len > max_execve_audit_len)
1136 too_long = 1;
1137
1138 /* rewalk the argument actually logging the message */
1139 for (i = 0; len_left > 0; i++) {
1140 int room_left;
1141
1142 if (len_left > max_execve_audit_len)
1143 to_send = max_execve_audit_len;
1144 else
1145 to_send = len_left;
1146
1147 /* do we have space left to send this argument in this ab? */
1148 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1149 if (has_cntl)
1150 room_left -= (to_send * 2);
1151 else
1152 room_left -= to_send;
1153 if (room_left < 0) {
1154 *len_sent = 0;
1155 audit_log_end(*ab);
1156 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1157 if (!*ab)
1158 return 0;
1159 }
bdf4c48a 1160
bdf4c48a 1161 /*
de6bbd1d
EP
1162 * first record needs to say how long the original string was
1163 * so we can be sure nothing was lost.
1164 */
1165 if ((i == 0) && (too_long))
ca96a895 1166 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1167 has_cntl ? 2*len : len);
1168
1169 /*
1170 * normally arguments are small enough to fit and we already
1171 * filled buf above when we checked for control characters
1172 * so don't bother with another copy_from_user
bdf4c48a 1173 */
de6bbd1d
EP
1174 if (len >= max_execve_audit_len)
1175 ret = copy_from_user(buf, p, to_send);
1176 else
1177 ret = 0;
040b3a2d 1178 if (ret) {
bdf4c48a
PZ
1179 WARN_ON(1);
1180 send_sig(SIGKILL, current, 0);
b0abcfc1 1181 return -1;
bdf4c48a 1182 }
de6bbd1d
EP
1183 buf[to_send] = '\0';
1184
1185 /* actually log it */
ca96a895 1186 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1187 if (too_long)
1188 audit_log_format(*ab, "[%d]", i);
1189 audit_log_format(*ab, "=");
1190 if (has_cntl)
b556f8ad 1191 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1192 else
9d960985 1193 audit_log_string(*ab, buf);
de6bbd1d
EP
1194
1195 p += to_send;
1196 len_left -= to_send;
1197 *len_sent += arg_num_len;
1198 if (has_cntl)
1199 *len_sent += to_send * 2;
1200 else
1201 *len_sent += to_send;
1202 }
1203 /* include the null we didn't log */
1204 return len + 1;
1205}
1206
1207static void audit_log_execve_info(struct audit_context *context,
1208 struct audit_buffer **ab,
1209 struct audit_aux_data_execve *axi)
1210{
1211 int i;
1212 size_t len, len_sent = 0;
1213 const char __user *p;
1214 char *buf;
bdf4c48a 1215
de6bbd1d
EP
1216 if (axi->mm != current->mm)
1217 return; /* execve failed, no additional info */
1218
1219 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1220
ca96a895 1221 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1222
1223 /*
1224 * we need some kernel buffer to hold the userspace args. Just
1225 * allocate one big one rather than allocating one of the right size
1226 * for every single argument inside audit_log_single_execve_arg()
1227 * should be <8k allocation so should be pretty safe.
1228 */
1229 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1230 if (!buf) {
1231 audit_panic("out of memory for argv string\n");
1232 return;
bdf4c48a 1233 }
de6bbd1d
EP
1234
1235 for (i = 0; i < axi->argc; i++) {
1236 len = audit_log_single_execve_arg(context, ab, i,
1237 &len_sent, p, buf);
1238 if (len <= 0)
1239 break;
1240 p += len;
1241 }
1242 kfree(buf);
bdf4c48a
PZ
1243}
1244
851f7ff5
EP
1245static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1246{
1247 int i;
1248
1249 audit_log_format(ab, " %s=", prefix);
1250 CAP_FOR_EACH_U32(i) {
1251 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1252 }
1253}
1254
1255static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1256{
1257 kernel_cap_t *perm = &name->fcap.permitted;
1258 kernel_cap_t *inh = &name->fcap.inheritable;
1259 int log = 0;
1260
1261 if (!cap_isclear(*perm)) {
1262 audit_log_cap(ab, "cap_fp", perm);
1263 log = 1;
1264 }
1265 if (!cap_isclear(*inh)) {
1266 audit_log_cap(ab, "cap_fi", inh);
1267 log = 1;
1268 }
1269
1270 if (log)
1271 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1272}
1273
a33e6751 1274static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1275{
1276 struct audit_buffer *ab;
1277 int i;
1278
1279 ab = audit_log_start(context, GFP_KERNEL, context->type);
1280 if (!ab)
1281 return;
1282
1283 switch (context->type) {
1284 case AUDIT_SOCKETCALL: {
1285 int nargs = context->socketcall.nargs;
1286 audit_log_format(ab, "nargs=%d", nargs);
1287 for (i = 0; i < nargs; i++)
1288 audit_log_format(ab, " a%d=%lx", i,
1289 context->socketcall.args[i]);
1290 break; }
a33e6751
AV
1291 case AUDIT_IPC: {
1292 u32 osid = context->ipc.osid;
1293
2570ebbd 1294 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
a33e6751
AV
1295 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1296 if (osid) {
1297 char *ctx = NULL;
1298 u32 len;
1299 if (security_secid_to_secctx(osid, &ctx, &len)) {
1300 audit_log_format(ab, " osid=%u", osid);
1301 *call_panic = 1;
1302 } else {
1303 audit_log_format(ab, " obj=%s", ctx);
1304 security_release_secctx(ctx, len);
1305 }
1306 }
e816f370
AV
1307 if (context->ipc.has_perm) {
1308 audit_log_end(ab);
1309 ab = audit_log_start(context, GFP_KERNEL,
1310 AUDIT_IPC_SET_PERM);
1311 audit_log_format(ab,
2570ebbd 1312 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1313 context->ipc.qbytes,
1314 context->ipc.perm_uid,
1315 context->ipc.perm_gid,
1316 context->ipc.perm_mode);
1317 if (!ab)
1318 return;
1319 }
a33e6751 1320 break; }
564f6993
AV
1321 case AUDIT_MQ_OPEN: {
1322 audit_log_format(ab,
df0a4283 1323 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1324 "mq_msgsize=%ld mq_curmsgs=%ld",
1325 context->mq_open.oflag, context->mq_open.mode,
1326 context->mq_open.attr.mq_flags,
1327 context->mq_open.attr.mq_maxmsg,
1328 context->mq_open.attr.mq_msgsize,
1329 context->mq_open.attr.mq_curmsgs);
1330 break; }
c32c8af4
AV
1331 case AUDIT_MQ_SENDRECV: {
1332 audit_log_format(ab,
1333 "mqdes=%d msg_len=%zd msg_prio=%u "
1334 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1335 context->mq_sendrecv.mqdes,
1336 context->mq_sendrecv.msg_len,
1337 context->mq_sendrecv.msg_prio,
1338 context->mq_sendrecv.abs_timeout.tv_sec,
1339 context->mq_sendrecv.abs_timeout.tv_nsec);
1340 break; }
20114f71
AV
1341 case AUDIT_MQ_NOTIFY: {
1342 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1343 context->mq_notify.mqdes,
1344 context->mq_notify.sigev_signo);
1345 break; }
7392906e
AV
1346 case AUDIT_MQ_GETSETATTR: {
1347 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1348 audit_log_format(ab,
1349 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1350 "mq_curmsgs=%ld ",
1351 context->mq_getsetattr.mqdes,
1352 attr->mq_flags, attr->mq_maxmsg,
1353 attr->mq_msgsize, attr->mq_curmsgs);
1354 break; }
57f71a0a
AV
1355 case AUDIT_CAPSET: {
1356 audit_log_format(ab, "pid=%d", context->capset.pid);
1357 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1358 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1359 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1360 break; }
120a795d
AV
1361 case AUDIT_MMAP: {
1362 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1363 context->mmap.flags);
1364 break; }
f3298dc4
AV
1365 }
1366 audit_log_end(ab);
1367}
1368
5195d8e2
EP
1369static void audit_log_name(struct audit_context *context, struct audit_names *n,
1370 int record_num, int *call_panic)
1371{
1372 struct audit_buffer *ab;
1373 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1374 if (!ab)
1375 return; /* audit_panic has been called */
1376
1377 audit_log_format(ab, "item=%d", record_num);
1378
1379 if (n->name) {
1380 switch (n->name_len) {
1381 case AUDIT_NAME_FULL:
1382 /* log the full path */
1383 audit_log_format(ab, " name=");
1384 audit_log_untrustedstring(ab, n->name);
1385 break;
1386 case 0:
1387 /* name was specified as a relative path and the
1388 * directory component is the cwd */
1389 audit_log_d_path(ab, "name=", &context->pwd);
1390 break;
1391 default:
1392 /* log the name's directory component */
1393 audit_log_format(ab, " name=");
1394 audit_log_n_untrustedstring(ab, n->name,
1395 n->name_len);
1396 }
1397 } else
1398 audit_log_format(ab, " name=(null)");
1399
1400 if (n->ino != (unsigned long)-1) {
1401 audit_log_format(ab, " inode=%lu"
1402 " dev=%02x:%02x mode=%#ho"
1403 " ouid=%u ogid=%u rdev=%02x:%02x",
1404 n->ino,
1405 MAJOR(n->dev),
1406 MINOR(n->dev),
1407 n->mode,
1408 n->uid,
1409 n->gid,
1410 MAJOR(n->rdev),
1411 MINOR(n->rdev));
1412 }
1413 if (n->osid != 0) {
1414 char *ctx = NULL;
1415 u32 len;
1416 if (security_secid_to_secctx(
1417 n->osid, &ctx, &len)) {
1418 audit_log_format(ab, " osid=%u", n->osid);
1419 *call_panic = 2;
1420 } else {
1421 audit_log_format(ab, " obj=%s", ctx);
1422 security_release_secctx(ctx, len);
1423 }
1424 }
1425
1426 audit_log_fcaps(ab, n);
1427
1428 audit_log_end(ab);
1429}
1430
e495149b 1431static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1432{
c69e8d9c 1433 const struct cred *cred;
9c7aa6aa 1434 int i, call_panic = 0;
1da177e4 1435 struct audit_buffer *ab;
7551ced3 1436 struct audit_aux_data *aux;
a6c043a8 1437 const char *tty;
5195d8e2 1438 struct audit_names *n;
1da177e4 1439
e495149b 1440 /* tsk == current */
3f2792ff 1441 context->pid = tsk->pid;
419c58f1
AV
1442 if (!context->ppid)
1443 context->ppid = sys_getppid();
c69e8d9c
DH
1444 cred = current_cred();
1445 context->uid = cred->uid;
1446 context->gid = cred->gid;
1447 context->euid = cred->euid;
1448 context->suid = cred->suid;
b6dff3ec 1449 context->fsuid = cred->fsuid;
c69e8d9c
DH
1450 context->egid = cred->egid;
1451 context->sgid = cred->sgid;
b6dff3ec 1452 context->fsgid = cred->fsgid;
3f2792ff 1453 context->personality = tsk->personality;
e495149b
AV
1454
1455 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1456 if (!ab)
1457 return; /* audit_panic has been called */
bccf6ae0
DW
1458 audit_log_format(ab, "arch=%x syscall=%d",
1459 context->arch, context->major);
1da177e4
LT
1460 if (context->personality != PER_LINUX)
1461 audit_log_format(ab, " per=%lx", context->personality);
1462 if (context->return_valid)
9f8dbe9c 1463 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1464 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1465 context->return_code);
eb84a20e 1466
dbda4c0b 1467 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1468 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1469 tty = tsk->signal->tty->name;
a6c043a8
SG
1470 else
1471 tty = "(none)";
dbda4c0b
AC
1472 spin_unlock_irq(&tsk->sighand->siglock);
1473
1da177e4
LT
1474 audit_log_format(ab,
1475 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1476 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1477 " euid=%u suid=%u fsuid=%u"
4746ec5b 1478 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1479 context->argv[0],
1480 context->argv[1],
1481 context->argv[2],
1482 context->argv[3],
1483 context->name_count,
f46038ff 1484 context->ppid,
1da177e4 1485 context->pid,
bfef93a5 1486 tsk->loginuid,
1da177e4
LT
1487 context->uid,
1488 context->gid,
1489 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1490 context->egid, context->sgid, context->fsgid, tty,
1491 tsk->sessionid);
eb84a20e 1492
eb84a20e 1493
e495149b 1494 audit_log_task_info(ab, tsk);
9d960985 1495 audit_log_key(ab, context->filterkey);
1da177e4 1496 audit_log_end(ab);
1da177e4 1497
7551ced3 1498 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1499
e495149b 1500 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1501 if (!ab)
1502 continue; /* audit_panic has been called */
1503
1da177e4 1504 switch (aux->type) {
20ca73bc 1505
473ae30b
AV
1506 case AUDIT_EXECVE: {
1507 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1508 audit_log_execve_info(context, &ab, axi);
473ae30b 1509 break; }
073115d6 1510
3fc689e9
EP
1511 case AUDIT_BPRM_FCAPS: {
1512 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1513 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1514 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1515 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1516 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1517 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1518 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1519 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1520 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1521 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1522 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1523 break; }
1524
1da177e4
LT
1525 }
1526 audit_log_end(ab);
1da177e4
LT
1527 }
1528
f3298dc4 1529 if (context->type)
a33e6751 1530 show_special(context, &call_panic);
f3298dc4 1531
157cf649
AV
1532 if (context->fds[0] >= 0) {
1533 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1534 if (ab) {
1535 audit_log_format(ab, "fd0=%d fd1=%d",
1536 context->fds[0], context->fds[1]);
1537 audit_log_end(ab);
1538 }
1539 }
1540
4f6b434f
AV
1541 if (context->sockaddr_len) {
1542 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1543 if (ab) {
1544 audit_log_format(ab, "saddr=");
1545 audit_log_n_hex(ab, (void *)context->sockaddr,
1546 context->sockaddr_len);
1547 audit_log_end(ab);
1548 }
1549 }
1550
e54dc243
AG
1551 for (aux = context->aux_pids; aux; aux = aux->next) {
1552 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1553
1554 for (i = 0; i < axs->pid_count; i++)
1555 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1556 axs->target_auid[i],
1557 axs->target_uid[i],
4746ec5b 1558 axs->target_sessionid[i],
c2a7780e
EP
1559 axs->target_sid[i],
1560 axs->target_comm[i]))
e54dc243 1561 call_panic = 1;
a5cb013d
AV
1562 }
1563
e54dc243
AG
1564 if (context->target_pid &&
1565 audit_log_pid_context(context, context->target_pid,
c2a7780e 1566 context->target_auid, context->target_uid,
4746ec5b 1567 context->target_sessionid,
c2a7780e 1568 context->target_sid, context->target_comm))
e54dc243
AG
1569 call_panic = 1;
1570
44707fdf 1571 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1572 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1573 if (ab) {
44707fdf 1574 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1575 audit_log_end(ab);
1576 }
1577 }
73241ccc 1578
5195d8e2
EP
1579 i = 0;
1580 list_for_each_entry(n, &context->names_list, list)
1581 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1582
1583 /* Send end of event record to help user space know we are finished */
1584 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1585 if (ab)
1586 audit_log_end(ab);
9c7aa6aa
SG
1587 if (call_panic)
1588 audit_panic("error converting sid to string");
1da177e4
LT
1589}
1590
b0dd25a8
RD
1591/**
1592 * audit_free - free a per-task audit context
1593 * @tsk: task whose audit context block to free
1594 *
fa84cb93 1595 * Called from copy_process and do_exit
b0dd25a8 1596 */
1da177e4
LT
1597void audit_free(struct task_struct *tsk)
1598{
1599 struct audit_context *context;
1600
1da177e4 1601 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1602 if (likely(!context))
1603 return;
1604
1605 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1606 * function (e.g., exit_group), then free context block.
1607 * We use GFP_ATOMIC here because we might be doing this
f5561964 1608 * in the context of the idle thread */
e495149b 1609 /* that can happen only if we are called from do_exit() */
0590b933 1610 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1611 audit_log_exit(context, tsk);
916d7576
AV
1612 if (!list_empty(&context->killed_trees))
1613 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1614
1615 audit_free_context(context);
1616}
1617
b0dd25a8
RD
1618/**
1619 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1620 * @arch: architecture type
1621 * @major: major syscall type (function)
1622 * @a1: additional syscall register 1
1623 * @a2: additional syscall register 2
1624 * @a3: additional syscall register 3
1625 * @a4: additional syscall register 4
1626 *
1627 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1628 * audit context was created when the task was created and the state or
1629 * filters demand the audit context be built. If the state from the
1630 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1631 * then the record will be written at syscall exit time (otherwise, it
1632 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1633 * be written).
1634 */
b05d8447 1635void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1636 unsigned long a1, unsigned long a2,
1637 unsigned long a3, unsigned long a4)
1638{
5411be59 1639 struct task_struct *tsk = current;
1da177e4
LT
1640 struct audit_context *context = tsk->audit_context;
1641 enum audit_state state;
1642
86a1c34a
RM
1643 if (unlikely(!context))
1644 return;
1da177e4 1645
b0dd25a8
RD
1646 /*
1647 * This happens only on certain architectures that make system
1da177e4
LT
1648 * calls in kernel_thread via the entry.S interface, instead of
1649 * with direct calls. (If you are porting to a new
1650 * architecture, hitting this condition can indicate that you
1651 * got the _exit/_leave calls backward in entry.S.)
1652 *
1653 * i386 no
1654 * x86_64 no
2ef9481e 1655 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1656 *
1657 * This also happens with vm86 emulation in a non-nested manner
1658 * (entries without exits), so this case must be caught.
1659 */
1660 if (context->in_syscall) {
1661 struct audit_context *newctx;
1662
1da177e4
LT
1663#if AUDIT_DEBUG
1664 printk(KERN_ERR
1665 "audit(:%d) pid=%d in syscall=%d;"
1666 " entering syscall=%d\n",
1667 context->serial, tsk->pid, context->major, major);
1668#endif
1669 newctx = audit_alloc_context(context->state);
1670 if (newctx) {
1671 newctx->previous = context;
1672 context = newctx;
1673 tsk->audit_context = newctx;
1674 } else {
1675 /* If we can't alloc a new context, the best we
1676 * can do is to leak memory (any pending putname
1677 * will be lost). The only other alternative is
1678 * to abandon auditing. */
1679 audit_zero_context(context, context->state);
1680 }
1681 }
1682 BUG_ON(context->in_syscall || context->name_count);
1683
1684 if (!audit_enabled)
1685 return;
1686
2fd6f58b 1687 context->arch = arch;
1da177e4
LT
1688 context->major = major;
1689 context->argv[0] = a1;
1690 context->argv[1] = a2;
1691 context->argv[2] = a3;
1692 context->argv[3] = a4;
1693
1694 state = context->state;
d51374ad 1695 context->dummy = !audit_n_rules;
0590b933
AV
1696 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1697 context->prio = 0;
0f45aa18 1698 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1699 }
1da177e4
LT
1700 if (likely(state == AUDIT_DISABLED))
1701 return;
1702
ce625a80 1703 context->serial = 0;
1da177e4
LT
1704 context->ctime = CURRENT_TIME;
1705 context->in_syscall = 1;
0590b933 1706 context->current_state = state;
419c58f1 1707 context->ppid = 0;
1da177e4
LT
1708}
1709
a64e6494
AV
1710void audit_finish_fork(struct task_struct *child)
1711{
1712 struct audit_context *ctx = current->audit_context;
1713 struct audit_context *p = child->audit_context;
0590b933
AV
1714 if (!p || !ctx)
1715 return;
1716 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
a64e6494
AV
1717 return;
1718 p->arch = ctx->arch;
1719 p->major = ctx->major;
1720 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1721 p->ctime = ctx->ctime;
1722 p->dummy = ctx->dummy;
a64e6494
AV
1723 p->in_syscall = ctx->in_syscall;
1724 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1725 p->ppid = current->pid;
0590b933
AV
1726 p->prio = ctx->prio;
1727 p->current_state = ctx->current_state;
a64e6494
AV
1728}
1729
b0dd25a8
RD
1730/**
1731 * audit_syscall_exit - deallocate audit context after a system call
d7e7528b 1732 * @pt_regs: syscall registers
b0dd25a8
RD
1733 *
1734 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1735 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1736 * filtering, or because some other part of the kernel write an audit
1737 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1738 * free the names stored from getname().
1739 */
d7e7528b 1740void __audit_syscall_exit(int success, long return_code)
1da177e4 1741{
5411be59 1742 struct task_struct *tsk = current;
1da177e4
LT
1743 struct audit_context *context;
1744
d7e7528b
EP
1745 if (success)
1746 success = AUDITSC_SUCCESS;
1747 else
1748 success = AUDITSC_FAILURE;
1da177e4 1749
d7e7528b 1750 context = audit_get_context(tsk, success, return_code);
1da177e4 1751 if (likely(!context))
97e94c45 1752 return;
1da177e4 1753
0590b933 1754 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1755 audit_log_exit(context, tsk);
1da177e4
LT
1756
1757 context->in_syscall = 0;
0590b933 1758 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1759
916d7576
AV
1760 if (!list_empty(&context->killed_trees))
1761 audit_kill_trees(&context->killed_trees);
1762
1da177e4
LT
1763 if (context->previous) {
1764 struct audit_context *new_context = context->previous;
1765 context->previous = NULL;
1766 audit_free_context(context);
1767 tsk->audit_context = new_context;
1768 } else {
1769 audit_free_names(context);
74c3cbe3 1770 unroll_tree_refs(context, NULL, 0);
1da177e4 1771 audit_free_aux(context);
e54dc243
AG
1772 context->aux = NULL;
1773 context->aux_pids = NULL;
a5cb013d 1774 context->target_pid = 0;
e54dc243 1775 context->target_sid = 0;
4f6b434f 1776 context->sockaddr_len = 0;
f3298dc4 1777 context->type = 0;
157cf649 1778 context->fds[0] = -1;
e048e02c
AV
1779 if (context->state != AUDIT_RECORD_CONTEXT) {
1780 kfree(context->filterkey);
1781 context->filterkey = NULL;
1782 }
1da177e4
LT
1783 tsk->audit_context = context;
1784 }
1da177e4
LT
1785}
1786
74c3cbe3
AV
1787static inline void handle_one(const struct inode *inode)
1788{
1789#ifdef CONFIG_AUDIT_TREE
1790 struct audit_context *context;
1791 struct audit_tree_refs *p;
1792 struct audit_chunk *chunk;
1793 int count;
e61ce867 1794 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1795 return;
1796 context = current->audit_context;
1797 p = context->trees;
1798 count = context->tree_count;
1799 rcu_read_lock();
1800 chunk = audit_tree_lookup(inode);
1801 rcu_read_unlock();
1802 if (!chunk)
1803 return;
1804 if (likely(put_tree_ref(context, chunk)))
1805 return;
1806 if (unlikely(!grow_tree_refs(context))) {
436c405c 1807 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1808 audit_set_auditable(context);
1809 audit_put_chunk(chunk);
1810 unroll_tree_refs(context, p, count);
1811 return;
1812 }
1813 put_tree_ref(context, chunk);
1814#endif
1815}
1816
1817static void handle_path(const struct dentry *dentry)
1818{
1819#ifdef CONFIG_AUDIT_TREE
1820 struct audit_context *context;
1821 struct audit_tree_refs *p;
1822 const struct dentry *d, *parent;
1823 struct audit_chunk *drop;
1824 unsigned long seq;
1825 int count;
1826
1827 context = current->audit_context;
1828 p = context->trees;
1829 count = context->tree_count;
1830retry:
1831 drop = NULL;
1832 d = dentry;
1833 rcu_read_lock();
1834 seq = read_seqbegin(&rename_lock);
1835 for(;;) {
1836 struct inode *inode = d->d_inode;
e61ce867 1837 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1838 struct audit_chunk *chunk;
1839 chunk = audit_tree_lookup(inode);
1840 if (chunk) {
1841 if (unlikely(!put_tree_ref(context, chunk))) {
1842 drop = chunk;
1843 break;
1844 }
1845 }
1846 }
1847 parent = d->d_parent;
1848 if (parent == d)
1849 break;
1850 d = parent;
1851 }
1852 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1853 rcu_read_unlock();
1854 if (!drop) {
1855 /* just a race with rename */
1856 unroll_tree_refs(context, p, count);
1857 goto retry;
1858 }
1859 audit_put_chunk(drop);
1860 if (grow_tree_refs(context)) {
1861 /* OK, got more space */
1862 unroll_tree_refs(context, p, count);
1863 goto retry;
1864 }
1865 /* too bad */
1866 printk(KERN_WARNING
436c405c 1867 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1868 unroll_tree_refs(context, p, count);
1869 audit_set_auditable(context);
1870 return;
1871 }
1872 rcu_read_unlock();
1873#endif
1874}
1875
5195d8e2
EP
1876static struct audit_names *audit_alloc_name(struct audit_context *context)
1877{
1878 struct audit_names *aname;
1879
1880 if (context->name_count < AUDIT_NAMES) {
1881 aname = &context->preallocated_names[context->name_count];
1882 memset(aname, 0, sizeof(*aname));
1883 } else {
1884 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1885 if (!aname)
1886 return NULL;
1887 aname->should_free = true;
1888 }
1889
1890 aname->ino = (unsigned long)-1;
1891 list_add_tail(&aname->list, &context->names_list);
1892
1893 context->name_count++;
1894#if AUDIT_DEBUG
1895 context->ino_count++;
1896#endif
1897 return aname;
1898}
1899
b0dd25a8
RD
1900/**
1901 * audit_getname - add a name to the list
1902 * @name: name to add
1903 *
1904 * Add a name to the list of audit names for this context.
1905 * Called from fs/namei.c:getname().
1906 */
d8945bb5 1907void __audit_getname(const char *name)
1da177e4
LT
1908{
1909 struct audit_context *context = current->audit_context;
5195d8e2 1910 struct audit_names *n;
1da177e4 1911
d8945bb5 1912 if (IS_ERR(name) || !name)
1da177e4
LT
1913 return;
1914
1915 if (!context->in_syscall) {
1916#if AUDIT_DEBUG == 2
1917 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1918 __FILE__, __LINE__, context->serial, name);
1919 dump_stack();
1920#endif
1921 return;
1922 }
5195d8e2
EP
1923
1924 n = audit_alloc_name(context);
1925 if (!n)
1926 return;
1927
1928 n->name = name;
1929 n->name_len = AUDIT_NAME_FULL;
1930 n->name_put = true;
1931
f7ad3c6b
MS
1932 if (!context->pwd.dentry)
1933 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1934}
1935
b0dd25a8
RD
1936/* audit_putname - intercept a putname request
1937 * @name: name to intercept and delay for putname
1938 *
1939 * If we have stored the name from getname in the audit context,
1940 * then we delay the putname until syscall exit.
1941 * Called from include/linux/fs.h:putname().
1942 */
1da177e4
LT
1943void audit_putname(const char *name)
1944{
1945 struct audit_context *context = current->audit_context;
1946
1947 BUG_ON(!context);
1948 if (!context->in_syscall) {
1949#if AUDIT_DEBUG == 2
1950 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1951 __FILE__, __LINE__, context->serial, name);
1952 if (context->name_count) {
5195d8e2 1953 struct audit_names *n;
1da177e4 1954 int i;
5195d8e2
EP
1955
1956 list_for_each_entry(n, &context->names_list, list)
1da177e4 1957 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
1958 n->name, n->name ?: "(null)");
1959 }
1da177e4
LT
1960#endif
1961 __putname(name);
1962 }
1963#if AUDIT_DEBUG
1964 else {
1965 ++context->put_count;
1966 if (context->put_count > context->name_count) {
1967 printk(KERN_ERR "%s:%d(:%d): major=%d"
1968 " in_syscall=%d putname(%p) name_count=%d"
1969 " put_count=%d\n",
1970 __FILE__, __LINE__,
1971 context->serial, context->major,
1972 context->in_syscall, name, context->name_count,
1973 context->put_count);
1974 dump_stack();
1975 }
1976 }
1977#endif
1978}
1979
851f7ff5
EP
1980static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1981{
1982 struct cpu_vfs_cap_data caps;
1983 int rc;
1984
851f7ff5
EP
1985 if (!dentry)
1986 return 0;
1987
1988 rc = get_vfs_caps_from_disk(dentry, &caps);
1989 if (rc)
1990 return rc;
1991
1992 name->fcap.permitted = caps.permitted;
1993 name->fcap.inheritable = caps.inheritable;
1994 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1995 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1996
1997 return 0;
1998}
1999
2000
3e2efce0 2001/* Copy inode data into an audit_names. */
851f7ff5
EP
2002static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2003 const struct inode *inode)
8c8570fb 2004{
3e2efce0
AG
2005 name->ino = inode->i_ino;
2006 name->dev = inode->i_sb->s_dev;
2007 name->mode = inode->i_mode;
2008 name->uid = inode->i_uid;
2009 name->gid = inode->i_gid;
2010 name->rdev = inode->i_rdev;
2a862b32 2011 security_inode_getsecid(inode, &name->osid);
851f7ff5 2012 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2013}
2014
b0dd25a8
RD
2015/**
2016 * audit_inode - store the inode and device from a lookup
2017 * @name: name being audited
481968f4 2018 * @dentry: dentry being audited
b0dd25a8
RD
2019 *
2020 * Called from fs/namei.c:path_lookup().
2021 */
5a190ae6 2022void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2023{
1da177e4 2024 struct audit_context *context = current->audit_context;
74c3cbe3 2025 const struct inode *inode = dentry->d_inode;
5195d8e2 2026 struct audit_names *n;
1da177e4
LT
2027
2028 if (!context->in_syscall)
2029 return;
5195d8e2
EP
2030
2031 list_for_each_entry_reverse(n, &context->names_list, list) {
2032 if (n->name && (n->name == name))
2033 goto out;
1da177e4 2034 }
5195d8e2
EP
2035
2036 /* unable to find the name from a previous getname() */
2037 n = audit_alloc_name(context);
2038 if (!n)
2039 return;
2040out:
74c3cbe3 2041 handle_path(dentry);
5195d8e2 2042 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2043}
2044
2045/**
2046 * audit_inode_child - collect inode info for created/removed objects
481968f4 2047 * @dentry: dentry being audited
73d3ec5a 2048 * @parent: inode of dentry parent
73241ccc
AG
2049 *
2050 * For syscalls that create or remove filesystem objects, audit_inode
2051 * can only collect information for the filesystem object's parent.
2052 * This call updates the audit context with the child's information.
2053 * Syscalls that create a new filesystem object must be hooked after
2054 * the object is created. Syscalls that remove a filesystem object
2055 * must be hooked prior, in order to capture the target inode during
2056 * unsuccessful attempts.
2057 */
cccc6bba 2058void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2059 const struct inode *parent)
73241ccc 2060{
73241ccc 2061 struct audit_context *context = current->audit_context;
5712e88f 2062 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2063 const struct inode *inode = dentry->d_inode;
cccc6bba 2064 const char *dname = dentry->d_name.name;
5195d8e2 2065 struct audit_names *n;
9c937dcc 2066 int dirlen = 0;
73241ccc
AG
2067
2068 if (!context->in_syscall)
2069 return;
2070
74c3cbe3
AV
2071 if (inode)
2072 handle_one(inode);
73241ccc 2073
5712e88f 2074 /* parent is more likely, look for it first */
5195d8e2 2075 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2076 if (!n->name)
2077 continue;
2078
2079 if (n->ino == parent->i_ino &&
2080 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2081 n->name_len = dirlen; /* update parent data in place */
2082 found_parent = n->name;
2083 goto add_names;
f368c07d 2084 }
5712e88f 2085 }
73241ccc 2086
5712e88f 2087 /* no matching parent, look for matching child */
5195d8e2 2088 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2089 if (!n->name)
2090 continue;
2091
2092 /* strcmp() is the more likely scenario */
2093 if (!strcmp(dname, n->name) ||
2094 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2095 if (inode)
851f7ff5 2096 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2097 else
2098 n->ino = (unsigned long)-1;
2099 found_child = n->name;
2100 goto add_names;
2101 }
ac9910ce 2102 }
5712e88f
AG
2103
2104add_names:
2105 if (!found_parent) {
5195d8e2
EP
2106 n = audit_alloc_name(context);
2107 if (!n)
ac9910ce 2108 return;
5195d8e2 2109 audit_copy_inode(n, NULL, parent);
73d3ec5a 2110 }
5712e88f
AG
2111
2112 if (!found_child) {
5195d8e2
EP
2113 n = audit_alloc_name(context);
2114 if (!n)
5712e88f 2115 return;
5712e88f
AG
2116
2117 /* Re-use the name belonging to the slot for a matching parent
2118 * directory. All names for this context are relinquished in
2119 * audit_free_names() */
2120 if (found_parent) {
5195d8e2
EP
2121 n->name = found_parent;
2122 n->name_len = AUDIT_NAME_FULL;
5712e88f 2123 /* don't call __putname() */
5195d8e2 2124 n->name_put = false;
5712e88f
AG
2125 }
2126
2127 if (inode)
5195d8e2 2128 audit_copy_inode(n, NULL, inode);
5712e88f 2129 }
3e2efce0 2130}
50e437d5 2131EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2132
b0dd25a8
RD
2133/**
2134 * auditsc_get_stamp - get local copies of audit_context values
2135 * @ctx: audit_context for the task
2136 * @t: timespec to store time recorded in the audit_context
2137 * @serial: serial value that is recorded in the audit_context
2138 *
2139 * Also sets the context as auditable.
2140 */
48887e63 2141int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2142 struct timespec *t, unsigned int *serial)
1da177e4 2143{
48887e63
AV
2144 if (!ctx->in_syscall)
2145 return 0;
ce625a80
DW
2146 if (!ctx->serial)
2147 ctx->serial = audit_serial();
bfb4496e
DW
2148 t->tv_sec = ctx->ctime.tv_sec;
2149 t->tv_nsec = ctx->ctime.tv_nsec;
2150 *serial = ctx->serial;
0590b933
AV
2151 if (!ctx->prio) {
2152 ctx->prio = 1;
2153 ctx->current_state = AUDIT_RECORD_CONTEXT;
2154 }
48887e63 2155 return 1;
1da177e4
LT
2156}
2157
4746ec5b
EP
2158/* global counter which is incremented every time something logs in */
2159static atomic_t session_id = ATOMIC_INIT(0);
2160
b0dd25a8
RD
2161/**
2162 * audit_set_loginuid - set a task's audit_context loginuid
2163 * @task: task whose audit context is being modified
2164 * @loginuid: loginuid value
2165 *
2166 * Returns 0.
2167 *
2168 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2169 */
456be6cd 2170int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2171{
4746ec5b 2172 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2173 struct audit_context *context = task->audit_context;
2174
bfef93a5
AV
2175 if (context && context->in_syscall) {
2176 struct audit_buffer *ab;
2177
2178 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2179 if (ab) {
2180 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2181 "old auid=%u new auid=%u"
2182 " old ses=%u new ses=%u",
c69e8d9c 2183 task->pid, task_uid(task),
4746ec5b
EP
2184 task->loginuid, loginuid,
2185 task->sessionid, sessionid);
bfef93a5 2186 audit_log_end(ab);
c0404993 2187 }
1da177e4 2188 }
4746ec5b 2189 task->sessionid = sessionid;
bfef93a5 2190 task->loginuid = loginuid;
1da177e4
LT
2191 return 0;
2192}
2193
20ca73bc
GW
2194/**
2195 * __audit_mq_open - record audit data for a POSIX MQ open
2196 * @oflag: open flag
2197 * @mode: mode bits
6b962559 2198 * @attr: queue attributes
20ca73bc 2199 *
20ca73bc 2200 */
df0a4283 2201void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2202{
20ca73bc
GW
2203 struct audit_context *context = current->audit_context;
2204
564f6993
AV
2205 if (attr)
2206 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2207 else
2208 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2209
564f6993
AV
2210 context->mq_open.oflag = oflag;
2211 context->mq_open.mode = mode;
20ca73bc 2212
564f6993 2213 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2214}
2215
2216/**
c32c8af4 2217 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2218 * @mqdes: MQ descriptor
2219 * @msg_len: Message length
2220 * @msg_prio: Message priority
c32c8af4 2221 * @abs_timeout: Message timeout in absolute time
20ca73bc 2222 *
20ca73bc 2223 */
c32c8af4
AV
2224void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2225 const struct timespec *abs_timeout)
20ca73bc 2226{
20ca73bc 2227 struct audit_context *context = current->audit_context;
c32c8af4 2228 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2229
c32c8af4
AV
2230 if (abs_timeout)
2231 memcpy(p, abs_timeout, sizeof(struct timespec));
2232 else
2233 memset(p, 0, sizeof(struct timespec));
20ca73bc 2234
c32c8af4
AV
2235 context->mq_sendrecv.mqdes = mqdes;
2236 context->mq_sendrecv.msg_len = msg_len;
2237 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2238
c32c8af4 2239 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2240}
2241
2242/**
2243 * __audit_mq_notify - record audit data for a POSIX MQ notify
2244 * @mqdes: MQ descriptor
6b962559 2245 * @notification: Notification event
20ca73bc 2246 *
20ca73bc
GW
2247 */
2248
20114f71 2249void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2250{
20ca73bc
GW
2251 struct audit_context *context = current->audit_context;
2252
20114f71
AV
2253 if (notification)
2254 context->mq_notify.sigev_signo = notification->sigev_signo;
2255 else
2256 context->mq_notify.sigev_signo = 0;
20ca73bc 2257
20114f71
AV
2258 context->mq_notify.mqdes = mqdes;
2259 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2260}
2261
2262/**
2263 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2264 * @mqdes: MQ descriptor
2265 * @mqstat: MQ flags
2266 *
20ca73bc 2267 */
7392906e 2268void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2269{
20ca73bc 2270 struct audit_context *context = current->audit_context;
7392906e
AV
2271 context->mq_getsetattr.mqdes = mqdes;
2272 context->mq_getsetattr.mqstat = *mqstat;
2273 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2274}
2275
b0dd25a8 2276/**
073115d6
SG
2277 * audit_ipc_obj - record audit data for ipc object
2278 * @ipcp: ipc permissions
2279 *
073115d6 2280 */
a33e6751 2281void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2282{
073115d6 2283 struct audit_context *context = current->audit_context;
a33e6751
AV
2284 context->ipc.uid = ipcp->uid;
2285 context->ipc.gid = ipcp->gid;
2286 context->ipc.mode = ipcp->mode;
e816f370 2287 context->ipc.has_perm = 0;
a33e6751
AV
2288 security_ipc_getsecid(ipcp, &context->ipc.osid);
2289 context->type = AUDIT_IPC;
073115d6
SG
2290}
2291
2292/**
2293 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2294 * @qbytes: msgq bytes
2295 * @uid: msgq user id
2296 * @gid: msgq group id
2297 * @mode: msgq mode (permissions)
2298 *
e816f370 2299 * Called only after audit_ipc_obj().
b0dd25a8 2300 */
2570ebbd 2301void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2302{
1da177e4
LT
2303 struct audit_context *context = current->audit_context;
2304
e816f370
AV
2305 context->ipc.qbytes = qbytes;
2306 context->ipc.perm_uid = uid;
2307 context->ipc.perm_gid = gid;
2308 context->ipc.perm_mode = mode;
2309 context->ipc.has_perm = 1;
1da177e4 2310}
c2f0c7c3 2311
473ae30b
AV
2312int audit_bprm(struct linux_binprm *bprm)
2313{
2314 struct audit_aux_data_execve *ax;
2315 struct audit_context *context = current->audit_context;
473ae30b 2316
5ac3a9c2 2317 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2318 return 0;
2319
bdf4c48a 2320 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2321 if (!ax)
2322 return -ENOMEM;
2323
2324 ax->argc = bprm->argc;
2325 ax->envc = bprm->envc;
bdf4c48a 2326 ax->mm = bprm->mm;
473ae30b
AV
2327 ax->d.type = AUDIT_EXECVE;
2328 ax->d.next = context->aux;
2329 context->aux = (void *)ax;
2330 return 0;
2331}
2332
2333
b0dd25a8
RD
2334/**
2335 * audit_socketcall - record audit data for sys_socketcall
2336 * @nargs: number of args
2337 * @args: args array
2338 *
b0dd25a8 2339 */
f3298dc4 2340void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2341{
3ec3b2fb
DW
2342 struct audit_context *context = current->audit_context;
2343
5ac3a9c2 2344 if (likely(!context || context->dummy))
f3298dc4 2345 return;
3ec3b2fb 2346
f3298dc4
AV
2347 context->type = AUDIT_SOCKETCALL;
2348 context->socketcall.nargs = nargs;
2349 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2350}
2351
db349509
AV
2352/**
2353 * __audit_fd_pair - record audit data for pipe and socketpair
2354 * @fd1: the first file descriptor
2355 * @fd2: the second file descriptor
2356 *
db349509 2357 */
157cf649 2358void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2359{
2360 struct audit_context *context = current->audit_context;
157cf649
AV
2361 context->fds[0] = fd1;
2362 context->fds[1] = fd2;
db349509
AV
2363}
2364
b0dd25a8
RD
2365/**
2366 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2367 * @len: data length in user space
2368 * @a: data address in kernel space
2369 *
2370 * Returns 0 for success or NULL context or < 0 on error.
2371 */
3ec3b2fb
DW
2372int audit_sockaddr(int len, void *a)
2373{
3ec3b2fb
DW
2374 struct audit_context *context = current->audit_context;
2375
5ac3a9c2 2376 if (likely(!context || context->dummy))
3ec3b2fb
DW
2377 return 0;
2378
4f6b434f
AV
2379 if (!context->sockaddr) {
2380 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2381 if (!p)
2382 return -ENOMEM;
2383 context->sockaddr = p;
2384 }
3ec3b2fb 2385
4f6b434f
AV
2386 context->sockaddr_len = len;
2387 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2388 return 0;
2389}
2390
a5cb013d
AV
2391void __audit_ptrace(struct task_struct *t)
2392{
2393 struct audit_context *context = current->audit_context;
2394
2395 context->target_pid = t->pid;
c2a7780e 2396 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2397 context->target_uid = task_uid(t);
4746ec5b 2398 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2399 security_task_getsecid(t, &context->target_sid);
c2a7780e 2400 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2401}
2402
b0dd25a8
RD
2403/**
2404 * audit_signal_info - record signal info for shutting down audit subsystem
2405 * @sig: signal value
2406 * @t: task being signaled
2407 *
2408 * If the audit subsystem is being terminated, record the task (pid)
2409 * and uid that is doing that.
2410 */
e54dc243 2411int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2412{
e54dc243
AG
2413 struct audit_aux_data_pids *axp;
2414 struct task_struct *tsk = current;
2415 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2416 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2417
175fc484 2418 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2419 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2420 audit_sig_pid = tsk->pid;
bfef93a5
AV
2421 if (tsk->loginuid != -1)
2422 audit_sig_uid = tsk->loginuid;
175fc484 2423 else
c69e8d9c 2424 audit_sig_uid = uid;
2a862b32 2425 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2426 }
2427 if (!audit_signals || audit_dummy_context())
2428 return 0;
c2f0c7c3 2429 }
e54dc243 2430
e54dc243
AG
2431 /* optimize the common case by putting first signal recipient directly
2432 * in audit_context */
2433 if (!ctx->target_pid) {
2434 ctx->target_pid = t->tgid;
c2a7780e 2435 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2436 ctx->target_uid = t_uid;
4746ec5b 2437 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2438 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2439 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2440 return 0;
2441 }
2442
2443 axp = (void *)ctx->aux_pids;
2444 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2445 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2446 if (!axp)
2447 return -ENOMEM;
2448
2449 axp->d.type = AUDIT_OBJ_PID;
2450 axp->d.next = ctx->aux_pids;
2451 ctx->aux_pids = (void *)axp;
2452 }
88ae704c 2453 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2454
2455 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2456 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2457 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2458 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2459 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2460 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2461 axp->pid_count++;
2462
2463 return 0;
c2f0c7c3 2464}
0a4ff8c2 2465
3fc689e9
EP
2466/**
2467 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2468 * @bprm: pointer to the bprm being processed
2469 * @new: the proposed new credentials
2470 * @old: the old credentials
3fc689e9
EP
2471 *
2472 * Simply check if the proc already has the caps given by the file and if not
2473 * store the priv escalation info for later auditing at the end of the syscall
2474 *
3fc689e9
EP
2475 * -Eric
2476 */
d84f4f99
DH
2477int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2478 const struct cred *new, const struct cred *old)
3fc689e9
EP
2479{
2480 struct audit_aux_data_bprm_fcaps *ax;
2481 struct audit_context *context = current->audit_context;
2482 struct cpu_vfs_cap_data vcaps;
2483 struct dentry *dentry;
2484
2485 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2486 if (!ax)
d84f4f99 2487 return -ENOMEM;
3fc689e9
EP
2488
2489 ax->d.type = AUDIT_BPRM_FCAPS;
2490 ax->d.next = context->aux;
2491 context->aux = (void *)ax;
2492
2493 dentry = dget(bprm->file->f_dentry);
2494 get_vfs_caps_from_disk(dentry, &vcaps);
2495 dput(dentry);
2496
2497 ax->fcap.permitted = vcaps.permitted;
2498 ax->fcap.inheritable = vcaps.inheritable;
2499 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2500 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2501
d84f4f99
DH
2502 ax->old_pcap.permitted = old->cap_permitted;
2503 ax->old_pcap.inheritable = old->cap_inheritable;
2504 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2505
d84f4f99
DH
2506 ax->new_pcap.permitted = new->cap_permitted;
2507 ax->new_pcap.inheritable = new->cap_inheritable;
2508 ax->new_pcap.effective = new->cap_effective;
2509 return 0;
3fc689e9
EP
2510}
2511
e68b75a0
EP
2512/**
2513 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2514 * @pid: target pid of the capset call
2515 * @new: the new credentials
2516 * @old: the old (current) credentials
e68b75a0
EP
2517 *
2518 * Record the aguments userspace sent to sys_capset for later printing by the
2519 * audit system if applicable
2520 */
57f71a0a 2521void __audit_log_capset(pid_t pid,
d84f4f99 2522 const struct cred *new, const struct cred *old)
e68b75a0 2523{
e68b75a0 2524 struct audit_context *context = current->audit_context;
57f71a0a
AV
2525 context->capset.pid = pid;
2526 context->capset.cap.effective = new->cap_effective;
2527 context->capset.cap.inheritable = new->cap_effective;
2528 context->capset.cap.permitted = new->cap_permitted;
2529 context->type = AUDIT_CAPSET;
e68b75a0
EP
2530}
2531
120a795d
AV
2532void __audit_mmap_fd(int fd, int flags)
2533{
2534 struct audit_context *context = current->audit_context;
2535 context->mmap.fd = fd;
2536 context->mmap.flags = flags;
2537 context->type = AUDIT_MMAP;
2538}
2539
85e7bac3
EP
2540static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2541{
2542 uid_t auid, uid;
2543 gid_t gid;
2544 unsigned int sessionid;
2545
2546 auid = audit_get_loginuid(current);
2547 sessionid = audit_get_sessionid(current);
2548 current_uid_gid(&uid, &gid);
2549
2550 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2551 auid, uid, gid, sessionid);
2552 audit_log_task_context(ab);
2553 audit_log_format(ab, " pid=%d comm=", current->pid);
2554 audit_log_untrustedstring(ab, current->comm);
2555 audit_log_format(ab, " reason=");
2556 audit_log_string(ab, reason);
2557 audit_log_format(ab, " sig=%ld", signr);
2558}
0a4ff8c2
SG
2559/**
2560 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2561 * @signr: signal value
0a4ff8c2
SG
2562 *
2563 * If a process ends with a core dump, something fishy is going on and we
2564 * should record the event for investigation.
2565 */
2566void audit_core_dumps(long signr)
2567{
2568 struct audit_buffer *ab;
0a4ff8c2
SG
2569
2570 if (!audit_enabled)
2571 return;
2572
2573 if (signr == SIGQUIT) /* don't care for those */
2574 return;
2575
2576 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2577 audit_log_abend(ab, "memory violation", signr);
2578 audit_log_end(ab);
2579}
0a4ff8c2 2580
85e7bac3
EP
2581void __audit_seccomp(unsigned long syscall)
2582{
2583 struct audit_buffer *ab;
2584
2585 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2586 audit_log_abend(ab, "seccomp", SIGKILL);
2587 audit_log_format(ab, " syscall=%ld", syscall);
0a4ff8c2
SG
2588 audit_log_end(ab);
2589}
916d7576
AV
2590
2591struct list_head *audit_killed_trees(void)
2592{
2593 struct audit_context *ctx = current->audit_context;
2594 if (likely(!ctx || !ctx->in_syscall))
2595 return NULL;
2596 return &ctx->killed_trees;
2597}