audit: destroy long filenames correctly
[linux-2.6-block.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
3dc1c1b2 70#include <linux/compat.h>
1da177e4 71
fe7752ba 72#include "audit.h"
1da177e4 73
d7e7528b
EP
74/* flags stating the success for a syscall */
75#define AUDITSC_INVALID 0
76#define AUDITSC_SUCCESS 1
77#define AUDITSC_FAILURE 2
78
1da177e4 79/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82#define AUDIT_NAMES 5
1da177e4 83
de6bbd1d
EP
84/* no execve audit message should be longer than this (userspace limits) */
85#define MAX_EXECVE_AUDIT_LEN 7500
86
471a5c7c
AV
87/* number of audit rules */
88int audit_n_rules;
89
e54dc243
AG
90/* determines whether we collect data for signals sent */
91int audit_signals;
92
851f7ff5
EP
93struct audit_cap_data {
94 kernel_cap_t permitted;
95 kernel_cap_t inheritable;
96 union {
97 unsigned int fE; /* effective bit of a file capability */
98 kernel_cap_t effective; /* effective set of a process */
99 };
100};
101
1da177e4
LT
102/* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
105 *
91a27b2a
JL
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
107 */
1da177e4 108struct audit_names {
91a27b2a
JL
109 struct list_head list; /* audit_context->names_list */
110 struct filename *name;
111 unsigned long ino;
112 dev_t dev;
113 umode_t mode;
114 kuid_t uid;
115 kgid_t gid;
116 dev_t rdev;
117 u32 osid;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 int name_len; /* number of name's characters to log */
121 unsigned char type; /* record type */
122 bool name_put; /* call __putname() for this name */
5195d8e2
EP
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
91a27b2a 128 bool should_free;
1da177e4
LT
129};
130
131struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134};
135
136#define AUDIT_AUX_IPCPERM 0
137
e54dc243
AG
138/* Number of target pids per aux struct. */
139#define AUDIT_AUX_PIDS 16
140
473ae30b
AV
141struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
bdf4c48a 145 struct mm_struct *mm;
473ae30b
AV
146};
147
e54dc243
AG
148struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 151 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 152 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 154 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
156 int pid_count;
157};
158
3fc689e9
EP
159struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165};
166
e68b75a0
EP
167struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171};
172
74c3cbe3
AV
173struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176};
177
1da177e4
LT
178/* The per-task audit context. */
179struct audit_context {
d51374ad 180 int dummy; /* must be the first element */
1da177e4 181 int in_syscall; /* 1 if task is in a syscall */
0590b933 182 enum audit_state state, current_state;
1da177e4 183 unsigned int serial; /* serial number for record */
1da177e4 184 int major; /* syscall number */
44e51a1b 185 struct timespec ctime; /* time of syscall entry */
1da177e4 186 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 187 long return_code;/* syscall return code */
0590b933 188 u64 prio;
44e51a1b 189 int return_valid; /* return code is valid */
5195d8e2
EP
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 201 char * filterkey; /* key for rule that triggered record */
44707fdf 202 struct path pwd;
1da177e4 203 struct audit_aux_data *aux;
e54dc243 204 struct audit_aux_data *aux_pids;
4f6b434f
AV
205 struct sockaddr_storage *sockaddr;
206 size_t sockaddr_len;
1da177e4 207 /* Save things to print about task_struct */
f46038ff 208 pid_t pid, ppid;
cca080d9
EB
209 kuid_t uid, euid, suid, fsuid;
210 kgid_t gid, egid, sgid, fsgid;
1da177e4 211 unsigned long personality;
2fd6f58b 212 int arch;
1da177e4 213
a5cb013d 214 pid_t target_pid;
e1760bd5 215 kuid_t target_auid;
cca080d9 216 kuid_t target_uid;
4746ec5b 217 unsigned int target_sessionid;
a5cb013d 218 u32 target_sid;
c2a7780e 219 char target_comm[TASK_COMM_LEN];
a5cb013d 220
74c3cbe3 221 struct audit_tree_refs *trees, *first_trees;
916d7576 222 struct list_head killed_trees;
44e51a1b 223 int tree_count;
74c3cbe3 224
f3298dc4
AV
225 int type;
226 union {
227 struct {
228 int nargs;
229 long args[6];
230 } socketcall;
a33e6751 231 struct {
cca080d9
EB
232 kuid_t uid;
233 kgid_t gid;
2570ebbd 234 umode_t mode;
a33e6751 235 u32 osid;
e816f370
AV
236 int has_perm;
237 uid_t perm_uid;
238 gid_t perm_gid;
2570ebbd 239 umode_t perm_mode;
e816f370 240 unsigned long qbytes;
a33e6751 241 } ipc;
7392906e
AV
242 struct {
243 mqd_t mqdes;
244 struct mq_attr mqstat;
245 } mq_getsetattr;
20114f71
AV
246 struct {
247 mqd_t mqdes;
248 int sigev_signo;
249 } mq_notify;
c32c8af4
AV
250 struct {
251 mqd_t mqdes;
252 size_t msg_len;
253 unsigned int msg_prio;
254 struct timespec abs_timeout;
255 } mq_sendrecv;
564f6993
AV
256 struct {
257 int oflag;
df0a4283 258 umode_t mode;
564f6993
AV
259 struct mq_attr attr;
260 } mq_open;
57f71a0a
AV
261 struct {
262 pid_t pid;
263 struct audit_cap_data cap;
264 } capset;
120a795d
AV
265 struct {
266 int fd;
267 int flags;
268 } mmap;
f3298dc4 269 };
157cf649 270 int fds[2];
f3298dc4 271
1da177e4
LT
272#if AUDIT_DEBUG
273 int put_count;
274 int ino_count;
275#endif
276};
277
55669bfa
AV
278static inline int open_arg(int flags, int mask)
279{
280 int n = ACC_MODE(flags);
281 if (flags & (O_TRUNC | O_CREAT))
282 n |= AUDIT_PERM_WRITE;
283 return n & mask;
284}
285
286static int audit_match_perm(struct audit_context *ctx, int mask)
287{
c4bacefb 288 unsigned n;
1a61c88d 289 if (unlikely(!ctx))
290 return 0;
c4bacefb 291 n = ctx->major;
dbda4c0b 292
55669bfa
AV
293 switch (audit_classify_syscall(ctx->arch, n)) {
294 case 0: /* native */
295 if ((mask & AUDIT_PERM_WRITE) &&
296 audit_match_class(AUDIT_CLASS_WRITE, n))
297 return 1;
298 if ((mask & AUDIT_PERM_READ) &&
299 audit_match_class(AUDIT_CLASS_READ, n))
300 return 1;
301 if ((mask & AUDIT_PERM_ATTR) &&
302 audit_match_class(AUDIT_CLASS_CHATTR, n))
303 return 1;
304 return 0;
305 case 1: /* 32bit on biarch */
306 if ((mask & AUDIT_PERM_WRITE) &&
307 audit_match_class(AUDIT_CLASS_WRITE_32, n))
308 return 1;
309 if ((mask & AUDIT_PERM_READ) &&
310 audit_match_class(AUDIT_CLASS_READ_32, n))
311 return 1;
312 if ((mask & AUDIT_PERM_ATTR) &&
313 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
314 return 1;
315 return 0;
316 case 2: /* open */
317 return mask & ACC_MODE(ctx->argv[1]);
318 case 3: /* openat */
319 return mask & ACC_MODE(ctx->argv[2]);
320 case 4: /* socketcall */
321 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
322 case 5: /* execve */
323 return mask & AUDIT_PERM_EXEC;
324 default:
325 return 0;
326 }
327}
328
5ef30ee5 329static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 330{
5195d8e2 331 struct audit_names *n;
5ef30ee5 332 umode_t mode = (umode_t)val;
1a61c88d 333
334 if (unlikely(!ctx))
335 return 0;
336
5195d8e2
EP
337 list_for_each_entry(n, &ctx->names_list, list) {
338 if ((n->ino != -1) &&
339 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
340 return 1;
341 }
5195d8e2 342
5ef30ee5 343 return 0;
8b67dca9
AV
344}
345
74c3cbe3
AV
346/*
347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
348 * ->first_trees points to its beginning, ->trees - to the current end of data.
349 * ->tree_count is the number of free entries in array pointed to by ->trees.
350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
351 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
352 * it's going to remain 1-element for almost any setup) until we free context itself.
353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
354 */
355
356#ifdef CONFIG_AUDIT_TREE
679173b7
EP
357static void audit_set_auditable(struct audit_context *ctx)
358{
359 if (!ctx->prio) {
360 ctx->prio = 1;
361 ctx->current_state = AUDIT_RECORD_CONTEXT;
362 }
363}
364
74c3cbe3
AV
365static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
366{
367 struct audit_tree_refs *p = ctx->trees;
368 int left = ctx->tree_count;
369 if (likely(left)) {
370 p->c[--left] = chunk;
371 ctx->tree_count = left;
372 return 1;
373 }
374 if (!p)
375 return 0;
376 p = p->next;
377 if (p) {
378 p->c[30] = chunk;
379 ctx->trees = p;
380 ctx->tree_count = 30;
381 return 1;
382 }
383 return 0;
384}
385
386static int grow_tree_refs(struct audit_context *ctx)
387{
388 struct audit_tree_refs *p = ctx->trees;
389 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
390 if (!ctx->trees) {
391 ctx->trees = p;
392 return 0;
393 }
394 if (p)
395 p->next = ctx->trees;
396 else
397 ctx->first_trees = ctx->trees;
398 ctx->tree_count = 31;
399 return 1;
400}
401#endif
402
403static void unroll_tree_refs(struct audit_context *ctx,
404 struct audit_tree_refs *p, int count)
405{
406#ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *q;
408 int n;
409 if (!p) {
410 /* we started with empty chain */
411 p = ctx->first_trees;
412 count = 31;
413 /* if the very first allocation has failed, nothing to do */
414 if (!p)
415 return;
416 }
417 n = count;
418 for (q = p; q != ctx->trees; q = q->next, n = 31) {
419 while (n--) {
420 audit_put_chunk(q->c[n]);
421 q->c[n] = NULL;
422 }
423 }
424 while (n-- > ctx->tree_count) {
425 audit_put_chunk(q->c[n]);
426 q->c[n] = NULL;
427 }
428 ctx->trees = p;
429 ctx->tree_count = count;
430#endif
431}
432
433static void free_tree_refs(struct audit_context *ctx)
434{
435 struct audit_tree_refs *p, *q;
436 for (p = ctx->first_trees; p; p = q) {
437 q = p->next;
438 kfree(p);
439 }
440}
441
442static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
443{
444#ifdef CONFIG_AUDIT_TREE
445 struct audit_tree_refs *p;
446 int n;
447 if (!tree)
448 return 0;
449 /* full ones */
450 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
451 for (n = 0; n < 31; n++)
452 if (audit_tree_match(p->c[n], tree))
453 return 1;
454 }
455 /* partial */
456 if (p) {
457 for (n = ctx->tree_count; n < 31; n++)
458 if (audit_tree_match(p->c[n], tree))
459 return 1;
460 }
461#endif
462 return 0;
463}
464
ca57ec0f
EB
465static int audit_compare_uid(kuid_t uid,
466 struct audit_names *name,
467 struct audit_field *f,
468 struct audit_context *ctx)
b34b0393
EP
469{
470 struct audit_names *n;
b34b0393 471 int rc;
ca57ec0f 472
b34b0393 473 if (name) {
ca57ec0f 474 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
475 if (rc)
476 return rc;
477 }
ca57ec0f 478
b34b0393
EP
479 if (ctx) {
480 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
481 rc = audit_uid_comparator(uid, f->op, n->uid);
482 if (rc)
483 return rc;
484 }
485 }
486 return 0;
487}
b34b0393 488
ca57ec0f
EB
489static int audit_compare_gid(kgid_t gid,
490 struct audit_names *name,
491 struct audit_field *f,
492 struct audit_context *ctx)
493{
494 struct audit_names *n;
495 int rc;
496
497 if (name) {
498 rc = audit_gid_comparator(gid, f->op, name->gid);
499 if (rc)
500 return rc;
501 }
502
503 if (ctx) {
504 list_for_each_entry(n, &ctx->names_list, list) {
505 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
506 if (rc)
507 return rc;
508 }
509 }
510 return 0;
511}
512
02d86a56
EP
513static int audit_field_compare(struct task_struct *tsk,
514 const struct cred *cred,
515 struct audit_field *f,
516 struct audit_context *ctx,
517 struct audit_names *name)
518{
02d86a56 519 switch (f->val) {
4a6633ed 520 /* process to file object comparisons */
02d86a56 521 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 522 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 523 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 524 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 525 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 526 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 527 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 528 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 530 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 531 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 532 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 533 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 534 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 535 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 536 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 537 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 538 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
539 /* uid comparisons */
540 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 541 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 542 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 543 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 544 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 545 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 546 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 547 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
548 /* auid comparisons */
549 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 550 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 551 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 552 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 553 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 554 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
555 /* euid comparisons */
556 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 557 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 558 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 559 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
560 /* suid comparisons */
561 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 562 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
563 /* gid comparisons */
564 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 565 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 566 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 567 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 568 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 569 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
570 /* egid comparisons */
571 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 572 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 573 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 574 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
575 /* sgid comparison */
576 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 577 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
578 default:
579 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
580 return 0;
581 }
582 return 0;
583}
584
f368c07d 585/* Determine if any context name data matches a rule's watch data */
1da177e4 586/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
587 * otherwise.
588 *
589 * If task_creation is true, this is an explicit indication that we are
590 * filtering a task rule at task creation time. This and tsk == current are
591 * the only situations where tsk->cred may be accessed without an rcu read lock.
592 */
1da177e4 593static int audit_filter_rules(struct task_struct *tsk,
93315ed6 594 struct audit_krule *rule,
1da177e4 595 struct audit_context *ctx,
f368c07d 596 struct audit_names *name,
f5629883
TJ
597 enum audit_state *state,
598 bool task_creation)
1da177e4 599{
f5629883 600 const struct cred *cred;
5195d8e2 601 int i, need_sid = 1;
3dc7e315
DG
602 u32 sid;
603
f5629883
TJ
604 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
605
1da177e4 606 for (i = 0; i < rule->field_count; i++) {
93315ed6 607 struct audit_field *f = &rule->fields[i];
5195d8e2 608 struct audit_names *n;
1da177e4
LT
609 int result = 0;
610
93315ed6 611 switch (f->type) {
1da177e4 612 case AUDIT_PID:
93315ed6 613 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 614 break;
3c66251e 615 case AUDIT_PPID:
419c58f1
AV
616 if (ctx) {
617 if (!ctx->ppid)
618 ctx->ppid = sys_getppid();
3c66251e 619 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 620 }
3c66251e 621 break;
1da177e4 622 case AUDIT_UID:
ca57ec0f 623 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
624 break;
625 case AUDIT_EUID:
ca57ec0f 626 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
627 break;
628 case AUDIT_SUID:
ca57ec0f 629 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
630 break;
631 case AUDIT_FSUID:
ca57ec0f 632 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
633 break;
634 case AUDIT_GID:
ca57ec0f 635 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
636 if (f->op == Audit_equal) {
637 if (!result)
638 result = in_group_p(f->gid);
639 } else if (f->op == Audit_not_equal) {
640 if (result)
641 result = !in_group_p(f->gid);
642 }
1da177e4
LT
643 break;
644 case AUDIT_EGID:
ca57ec0f 645 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
646 if (f->op == Audit_equal) {
647 if (!result)
648 result = in_egroup_p(f->gid);
649 } else if (f->op == Audit_not_equal) {
650 if (result)
651 result = !in_egroup_p(f->gid);
652 }
1da177e4
LT
653 break;
654 case AUDIT_SGID:
ca57ec0f 655 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
656 break;
657 case AUDIT_FSGID:
ca57ec0f 658 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
659 break;
660 case AUDIT_PERS:
93315ed6 661 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 662 break;
2fd6f58b 663 case AUDIT_ARCH:
9f8dbe9c 664 if (ctx)
93315ed6 665 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 666 break;
1da177e4
LT
667
668 case AUDIT_EXIT:
669 if (ctx && ctx->return_valid)
93315ed6 670 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
671 break;
672 case AUDIT_SUCCESS:
b01f2cc1 673 if (ctx && ctx->return_valid) {
93315ed6
AG
674 if (f->val)
675 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 676 else
93315ed6 677 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 678 }
1da177e4
LT
679 break;
680 case AUDIT_DEVMAJOR:
16c174bd
EP
681 if (name) {
682 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
683 audit_comparator(MAJOR(name->rdev), f->op, f->val))
684 ++result;
685 } else if (ctx) {
5195d8e2 686 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
687 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
688 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
689 ++result;
690 break;
691 }
692 }
693 }
694 break;
695 case AUDIT_DEVMINOR:
16c174bd
EP
696 if (name) {
697 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
698 audit_comparator(MINOR(name->rdev), f->op, f->val))
699 ++result;
700 } else if (ctx) {
5195d8e2 701 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
702 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
703 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
704 ++result;
705 break;
706 }
707 }
708 }
709 break;
710 case AUDIT_INODE:
f368c07d 711 if (name)
9c937dcc 712 result = (name->ino == f->val);
f368c07d 713 else if (ctx) {
5195d8e2
EP
714 list_for_each_entry(n, &ctx->names_list, list) {
715 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
716 ++result;
717 break;
718 }
719 }
720 }
721 break;
efaffd6e
EP
722 case AUDIT_OBJ_UID:
723 if (name) {
ca57ec0f 724 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
725 } else if (ctx) {
726 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 727 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
728 ++result;
729 break;
730 }
731 }
732 }
733 break;
54d3218b
EP
734 case AUDIT_OBJ_GID:
735 if (name) {
ca57ec0f 736 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
737 } else if (ctx) {
738 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 739 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
740 ++result;
741 break;
742 }
743 }
744 }
745 break;
f368c07d 746 case AUDIT_WATCH:
ae7b8f41
EP
747 if (name)
748 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 749 break;
74c3cbe3
AV
750 case AUDIT_DIR:
751 if (ctx)
752 result = match_tree_refs(ctx, rule->tree);
753 break;
1da177e4
LT
754 case AUDIT_LOGINUID:
755 result = 0;
756 if (ctx)
ca57ec0f 757 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 758 break;
3a6b9f85
DG
759 case AUDIT_SUBJ_USER:
760 case AUDIT_SUBJ_ROLE:
761 case AUDIT_SUBJ_TYPE:
762 case AUDIT_SUBJ_SEN:
763 case AUDIT_SUBJ_CLR:
3dc7e315
DG
764 /* NOTE: this may return negative values indicating
765 a temporary error. We simply treat this as a
766 match for now to avoid losing information that
767 may be wanted. An error message will also be
768 logged upon error */
04305e4a 769 if (f->lsm_rule) {
2ad312d2 770 if (need_sid) {
2a862b32 771 security_task_getsecid(tsk, &sid);
2ad312d2
SG
772 need_sid = 0;
773 }
d7a96f3a 774 result = security_audit_rule_match(sid, f->type,
3dc7e315 775 f->op,
04305e4a 776 f->lsm_rule,
3dc7e315 777 ctx);
2ad312d2 778 }
3dc7e315 779 break;
6e5a2d1d
DG
780 case AUDIT_OBJ_USER:
781 case AUDIT_OBJ_ROLE:
782 case AUDIT_OBJ_TYPE:
783 case AUDIT_OBJ_LEV_LOW:
784 case AUDIT_OBJ_LEV_HIGH:
785 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
786 also applies here */
04305e4a 787 if (f->lsm_rule) {
6e5a2d1d
DG
788 /* Find files that match */
789 if (name) {
d7a96f3a 790 result = security_audit_rule_match(
6e5a2d1d 791 name->osid, f->type, f->op,
04305e4a 792 f->lsm_rule, ctx);
6e5a2d1d 793 } else if (ctx) {
5195d8e2
EP
794 list_for_each_entry(n, &ctx->names_list, list) {
795 if (security_audit_rule_match(n->osid, f->type,
796 f->op, f->lsm_rule,
797 ctx)) {
6e5a2d1d
DG
798 ++result;
799 break;
800 }
801 }
802 }
803 /* Find ipc objects that match */
a33e6751
AV
804 if (!ctx || ctx->type != AUDIT_IPC)
805 break;
806 if (security_audit_rule_match(ctx->ipc.osid,
807 f->type, f->op,
808 f->lsm_rule, ctx))
809 ++result;
6e5a2d1d
DG
810 }
811 break;
1da177e4
LT
812 case AUDIT_ARG0:
813 case AUDIT_ARG1:
814 case AUDIT_ARG2:
815 case AUDIT_ARG3:
816 if (ctx)
93315ed6 817 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 818 break;
5adc8a6a
AG
819 case AUDIT_FILTERKEY:
820 /* ignore this field for filtering */
821 result = 1;
822 break;
55669bfa
AV
823 case AUDIT_PERM:
824 result = audit_match_perm(ctx, f->val);
825 break;
8b67dca9
AV
826 case AUDIT_FILETYPE:
827 result = audit_match_filetype(ctx, f->val);
828 break;
02d86a56
EP
829 case AUDIT_FIELD_COMPARE:
830 result = audit_field_compare(tsk, cred, f, ctx, name);
831 break;
1da177e4 832 }
f5629883 833 if (!result)
1da177e4
LT
834 return 0;
835 }
0590b933
AV
836
837 if (ctx) {
838 if (rule->prio <= ctx->prio)
839 return 0;
840 if (rule->filterkey) {
841 kfree(ctx->filterkey);
842 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
843 }
844 ctx->prio = rule->prio;
845 }
1da177e4
LT
846 switch (rule->action) {
847 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
848 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
849 }
850 return 1;
851}
852
853/* At process creation time, we can determine if system-call auditing is
854 * completely disabled for this task. Since we only have the task
855 * structure at this point, we can only check uid and gid.
856 */
e048e02c 857static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
858{
859 struct audit_entry *e;
860 enum audit_state state;
861
862 rcu_read_lock();
0f45aa18 863 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
864 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
865 &state, true)) {
e048e02c
AV
866 if (state == AUDIT_RECORD_CONTEXT)
867 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
868 rcu_read_unlock();
869 return state;
870 }
871 }
872 rcu_read_unlock();
873 return AUDIT_BUILD_CONTEXT;
874}
875
876/* At syscall entry and exit time, this filter is called if the
877 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 878 * also not high enough that we already know we have to write an audit
b0dd25a8 879 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
880 */
881static enum audit_state audit_filter_syscall(struct task_struct *tsk,
882 struct audit_context *ctx,
883 struct list_head *list)
884{
885 struct audit_entry *e;
c3896495 886 enum audit_state state;
1da177e4 887
351bb722 888 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
889 return AUDIT_DISABLED;
890
1da177e4 891 rcu_read_lock();
c3896495 892 if (!list_empty(list)) {
b63862f4
DK
893 int word = AUDIT_WORD(ctx->major);
894 int bit = AUDIT_BIT(ctx->major);
895
896 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
897 if ((e->rule.mask[word] & bit) == bit &&
898 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 899 &state, false)) {
f368c07d 900 rcu_read_unlock();
0590b933 901 ctx->current_state = state;
f368c07d
AG
902 return state;
903 }
904 }
905 }
906 rcu_read_unlock();
907 return AUDIT_BUILD_CONTEXT;
908}
909
5195d8e2
EP
910/*
911 * Given an audit_name check the inode hash table to see if they match.
912 * Called holding the rcu read lock to protect the use of audit_inode_hash
913 */
914static int audit_filter_inode_name(struct task_struct *tsk,
915 struct audit_names *n,
916 struct audit_context *ctx) {
917 int word, bit;
918 int h = audit_hash_ino((u32)n->ino);
919 struct list_head *list = &audit_inode_hash[h];
920 struct audit_entry *e;
921 enum audit_state state;
922
923 word = AUDIT_WORD(ctx->major);
924 bit = AUDIT_BIT(ctx->major);
925
926 if (list_empty(list))
927 return 0;
928
929 list_for_each_entry_rcu(e, list, list) {
930 if ((e->rule.mask[word] & bit) == bit &&
931 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
932 ctx->current_state = state;
933 return 1;
934 }
935 }
936
937 return 0;
938}
939
940/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 941 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 942 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
943 * Regarding audit_state, same rules apply as for audit_filter_syscall().
944 */
0590b933 945void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 946{
5195d8e2 947 struct audit_names *n;
f368c07d
AG
948
949 if (audit_pid && tsk->tgid == audit_pid)
0590b933 950 return;
f368c07d
AG
951
952 rcu_read_lock();
f368c07d 953
5195d8e2
EP
954 list_for_each_entry(n, &ctx->names_list, list) {
955 if (audit_filter_inode_name(tsk, n, ctx))
956 break;
0f45aa18
DW
957 }
958 rcu_read_unlock();
0f45aa18
DW
959}
960
1da177e4
LT
961static inline struct audit_context *audit_get_context(struct task_struct *tsk,
962 int return_valid,
6d208da8 963 long return_code)
1da177e4
LT
964{
965 struct audit_context *context = tsk->audit_context;
966
56179a6e 967 if (!context)
1da177e4
LT
968 return NULL;
969 context->return_valid = return_valid;
f701b75e
EP
970
971 /*
972 * we need to fix up the return code in the audit logs if the actual
973 * return codes are later going to be fixed up by the arch specific
974 * signal handlers
975 *
976 * This is actually a test for:
977 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
978 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
979 *
980 * but is faster than a bunch of ||
981 */
982 if (unlikely(return_code <= -ERESTARTSYS) &&
983 (return_code >= -ERESTART_RESTARTBLOCK) &&
984 (return_code != -ENOIOCTLCMD))
985 context->return_code = -EINTR;
986 else
987 context->return_code = return_code;
1da177e4 988
0590b933
AV
989 if (context->in_syscall && !context->dummy) {
990 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
991 audit_filter_inodes(tsk, context);
1da177e4
LT
992 }
993
1da177e4
LT
994 tsk->audit_context = NULL;
995 return context;
996}
997
998static inline void audit_free_names(struct audit_context *context)
999{
5195d8e2 1000 struct audit_names *n, *next;
1da177e4
LT
1001
1002#if AUDIT_DEBUG == 2
0590b933 1003 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 1004 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
1005 " name_count=%d put_count=%d"
1006 " ino_count=%d [NOT freeing]\n",
73241ccc 1007 __FILE__, __LINE__,
1da177e4
LT
1008 context->serial, context->major, context->in_syscall,
1009 context->name_count, context->put_count,
1010 context->ino_count);
5195d8e2 1011 list_for_each_entry(n, &context->names_list, list) {
1da177e4 1012 printk(KERN_ERR "names[%d] = %p = %s\n", i,
91a27b2a 1013 n->name, n->name->name ?: "(null)");
8c8570fb 1014 }
1da177e4
LT
1015 dump_stack();
1016 return;
1017 }
1018#endif
1019#if AUDIT_DEBUG
1020 context->put_count = 0;
1021 context->ino_count = 0;
1022#endif
1023
5195d8e2
EP
1024 list_for_each_entry_safe(n, next, &context->names_list, list) {
1025 list_del(&n->list);
1026 if (n->name && n->name_put)
65ada7bc 1027 final_putname(n->name);
5195d8e2
EP
1028 if (n->should_free)
1029 kfree(n);
8c8570fb 1030 }
1da177e4 1031 context->name_count = 0;
44707fdf
JB
1032 path_put(&context->pwd);
1033 context->pwd.dentry = NULL;
1034 context->pwd.mnt = NULL;
1da177e4
LT
1035}
1036
1037static inline void audit_free_aux(struct audit_context *context)
1038{
1039 struct audit_aux_data *aux;
1040
1041 while ((aux = context->aux)) {
1042 context->aux = aux->next;
1043 kfree(aux);
1044 }
e54dc243
AG
1045 while ((aux = context->aux_pids)) {
1046 context->aux_pids = aux->next;
1047 kfree(aux);
1048 }
1da177e4
LT
1049}
1050
1051static inline void audit_zero_context(struct audit_context *context,
1052 enum audit_state state)
1053{
1da177e4
LT
1054 memset(context, 0, sizeof(*context));
1055 context->state = state;
0590b933 1056 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
1057}
1058
1059static inline struct audit_context *audit_alloc_context(enum audit_state state)
1060{
1061 struct audit_context *context;
1062
1063 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1064 return NULL;
1065 audit_zero_context(context, state);
916d7576 1066 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1067 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
1068 return context;
1069}
1070
b0dd25a8
RD
1071/**
1072 * audit_alloc - allocate an audit context block for a task
1073 * @tsk: task
1074 *
1075 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1076 * if necessary. Doing so turns on system call auditing for the
1077 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1078 * needed.
1079 */
1da177e4
LT
1080int audit_alloc(struct task_struct *tsk)
1081{
1082 struct audit_context *context;
1083 enum audit_state state;
e048e02c 1084 char *key = NULL;
1da177e4 1085
b593d384 1086 if (likely(!audit_ever_enabled))
1da177e4
LT
1087 return 0; /* Return if not auditing. */
1088
e048e02c 1089 state = audit_filter_task(tsk, &key);
56179a6e 1090 if (state == AUDIT_DISABLED)
1da177e4
LT
1091 return 0;
1092
1093 if (!(context = audit_alloc_context(state))) {
e048e02c 1094 kfree(key);
1da177e4
LT
1095 audit_log_lost("out of memory in audit_alloc");
1096 return -ENOMEM;
1097 }
e048e02c 1098 context->filterkey = key;
1da177e4 1099
1da177e4
LT
1100 tsk->audit_context = context;
1101 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1102 return 0;
1103}
1104
1105static inline void audit_free_context(struct audit_context *context)
1106{
c62d773a
AV
1107 audit_free_names(context);
1108 unroll_tree_refs(context, NULL, 0);
1109 free_tree_refs(context);
1110 audit_free_aux(context);
1111 kfree(context->filterkey);
1112 kfree(context->sockaddr);
1113 kfree(context);
1da177e4
LT
1114}
1115
161a09e7 1116void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
1117{
1118 char *ctx = NULL;
c4823bce
AV
1119 unsigned len;
1120 int error;
1121 u32 sid;
1122
2a862b32 1123 security_task_getsecid(current, &sid);
c4823bce
AV
1124 if (!sid)
1125 return;
8c8570fb 1126
2a862b32 1127 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1128 if (error) {
1129 if (error != -EINVAL)
8c8570fb
DK
1130 goto error_path;
1131 return;
1132 }
1133
8c8570fb 1134 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1135 security_release_secctx(ctx, len);
7306a0b9 1136 return;
8c8570fb
DK
1137
1138error_path:
7306a0b9 1139 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1140 return;
1141}
1142
161a09e7
JL
1143EXPORT_SYMBOL(audit_log_task_context);
1144
e23eb920 1145void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1146{
e23eb920 1147 const struct cred *cred;
45d9bb0e
AV
1148 char name[sizeof(tsk->comm)];
1149 struct mm_struct *mm = tsk->mm;
e23eb920
PM
1150 char *tty;
1151
1152 if (!ab)
1153 return;
219f0817 1154
e495149b 1155 /* tsk == current */
e23eb920
PM
1156 cred = current_cred();
1157
1158 spin_lock_irq(&tsk->sighand->siglock);
8ae763cd 1159 if (tsk->signal && tsk->signal->tty)
e23eb920
PM
1160 tty = tsk->signal->tty->name;
1161 else
1162 tty = "(none)";
1163 spin_unlock_irq(&tsk->sighand->siglock);
1164
1165
1166 audit_log_format(ab,
1167 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1168 " euid=%u suid=%u fsuid=%u"
1169 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1170 sys_getppid(),
1171 tsk->pid,
88265322
LT
1172 from_kuid(&init_user_ns, tsk->loginuid),
1173 from_kuid(&init_user_ns, cred->uid),
1174 from_kgid(&init_user_ns, cred->gid),
1175 from_kuid(&init_user_ns, cred->euid),
1176 from_kuid(&init_user_ns, cred->suid),
1177 from_kuid(&init_user_ns, cred->fsuid),
1178 from_kgid(&init_user_ns, cred->egid),
1179 from_kgid(&init_user_ns, cred->sgid),
1180 from_kgid(&init_user_ns, cred->fsgid),
e23eb920 1181 tsk->sessionid, tty);
e495149b 1182
45d9bb0e 1183 get_task_comm(name, tsk);
99e45eea
DW
1184 audit_log_format(ab, " comm=");
1185 audit_log_untrustedstring(ab, name);
219f0817 1186
e495149b
AV
1187 if (mm) {
1188 down_read(&mm->mmap_sem);
2dd8ad81
KK
1189 if (mm->exe_file)
1190 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
e495149b 1191 up_read(&mm->mmap_sem);
219f0817 1192 }
e495149b 1193 audit_log_task_context(ab);
219f0817
SS
1194}
1195
e23eb920
PM
1196EXPORT_SYMBOL(audit_log_task_info);
1197
e54dc243 1198static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 1199 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 1200 u32 sid, char *comm)
e54dc243
AG
1201{
1202 struct audit_buffer *ab;
2a862b32 1203 char *ctx = NULL;
e54dc243
AG
1204 u32 len;
1205 int rc = 0;
1206
1207 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1208 if (!ab)
6246ccab 1209 return rc;
e54dc243 1210
e1760bd5
EB
1211 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1212 from_kuid(&init_user_ns, auid),
cca080d9 1213 from_kuid(&init_user_ns, uid), sessionid);
2a862b32 1214 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1215 audit_log_format(ab, " obj=(none)");
e54dc243 1216 rc = 1;
2a862b32
AD
1217 } else {
1218 audit_log_format(ab, " obj=%s", ctx);
1219 security_release_secctx(ctx, len);
1220 }
c2a7780e
EP
1221 audit_log_format(ab, " ocomm=");
1222 audit_log_untrustedstring(ab, comm);
e54dc243 1223 audit_log_end(ab);
e54dc243
AG
1224
1225 return rc;
1226}
1227
de6bbd1d
EP
1228/*
1229 * to_send and len_sent accounting are very loose estimates. We aren't
1230 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1231 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1232 *
1233 * why snprintf? an int is up to 12 digits long. if we just assumed when
1234 * logging that a[%d]= was going to be 16 characters long we would be wasting
1235 * space in every audit message. In one 7500 byte message we can log up to
1236 * about 1000 min size arguments. That comes down to about 50% waste of space
1237 * if we didn't do the snprintf to find out how long arg_num_len was.
1238 */
1239static int audit_log_single_execve_arg(struct audit_context *context,
1240 struct audit_buffer **ab,
1241 int arg_num,
1242 size_t *len_sent,
1243 const char __user *p,
1244 char *buf)
bdf4c48a 1245{
de6bbd1d
EP
1246 char arg_num_len_buf[12];
1247 const char __user *tmp_p = p;
b87ce6e4
EP
1248 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1249 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1250 size_t len, len_left, to_send;
1251 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1252 unsigned int i, has_cntl = 0, too_long = 0;
1253 int ret;
1254
1255 /* strnlen_user includes the null we don't want to send */
1256 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1257
de6bbd1d
EP
1258 /*
1259 * We just created this mm, if we can't find the strings
1260 * we just copied into it something is _very_ wrong. Similar
1261 * for strings that are too long, we should not have created
1262 * any.
1263 */
b0abcfc1 1264 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1265 WARN_ON(1);
1266 send_sig(SIGKILL, current, 0);
b0abcfc1 1267 return -1;
de6bbd1d 1268 }
040b3a2d 1269
de6bbd1d
EP
1270 /* walk the whole argument looking for non-ascii chars */
1271 do {
1272 if (len_left > MAX_EXECVE_AUDIT_LEN)
1273 to_send = MAX_EXECVE_AUDIT_LEN;
1274 else
1275 to_send = len_left;
1276 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1277 /*
de6bbd1d
EP
1278 * There is no reason for this copy to be short. We just
1279 * copied them here, and the mm hasn't been exposed to user-
1280 * space yet.
bdf4c48a 1281 */
de6bbd1d 1282 if (ret) {
bdf4c48a
PZ
1283 WARN_ON(1);
1284 send_sig(SIGKILL, current, 0);
b0abcfc1 1285 return -1;
bdf4c48a 1286 }
de6bbd1d
EP
1287 buf[to_send] = '\0';
1288 has_cntl = audit_string_contains_control(buf, to_send);
1289 if (has_cntl) {
1290 /*
1291 * hex messages get logged as 2 bytes, so we can only
1292 * send half as much in each message
1293 */
1294 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1295 break;
1296 }
de6bbd1d
EP
1297 len_left -= to_send;
1298 tmp_p += to_send;
1299 } while (len_left > 0);
1300
1301 len_left = len;
1302
1303 if (len > max_execve_audit_len)
1304 too_long = 1;
1305
1306 /* rewalk the argument actually logging the message */
1307 for (i = 0; len_left > 0; i++) {
1308 int room_left;
1309
1310 if (len_left > max_execve_audit_len)
1311 to_send = max_execve_audit_len;
1312 else
1313 to_send = len_left;
1314
1315 /* do we have space left to send this argument in this ab? */
1316 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1317 if (has_cntl)
1318 room_left -= (to_send * 2);
1319 else
1320 room_left -= to_send;
1321 if (room_left < 0) {
1322 *len_sent = 0;
1323 audit_log_end(*ab);
1324 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1325 if (!*ab)
1326 return 0;
1327 }
bdf4c48a 1328
bdf4c48a 1329 /*
de6bbd1d
EP
1330 * first record needs to say how long the original string was
1331 * so we can be sure nothing was lost.
1332 */
1333 if ((i == 0) && (too_long))
ca96a895 1334 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1335 has_cntl ? 2*len : len);
1336
1337 /*
1338 * normally arguments are small enough to fit and we already
1339 * filled buf above when we checked for control characters
1340 * so don't bother with another copy_from_user
bdf4c48a 1341 */
de6bbd1d
EP
1342 if (len >= max_execve_audit_len)
1343 ret = copy_from_user(buf, p, to_send);
1344 else
1345 ret = 0;
040b3a2d 1346 if (ret) {
bdf4c48a
PZ
1347 WARN_ON(1);
1348 send_sig(SIGKILL, current, 0);
b0abcfc1 1349 return -1;
bdf4c48a 1350 }
de6bbd1d
EP
1351 buf[to_send] = '\0';
1352
1353 /* actually log it */
ca96a895 1354 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1355 if (too_long)
1356 audit_log_format(*ab, "[%d]", i);
1357 audit_log_format(*ab, "=");
1358 if (has_cntl)
b556f8ad 1359 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1360 else
9d960985 1361 audit_log_string(*ab, buf);
de6bbd1d
EP
1362
1363 p += to_send;
1364 len_left -= to_send;
1365 *len_sent += arg_num_len;
1366 if (has_cntl)
1367 *len_sent += to_send * 2;
1368 else
1369 *len_sent += to_send;
1370 }
1371 /* include the null we didn't log */
1372 return len + 1;
1373}
1374
1375static void audit_log_execve_info(struct audit_context *context,
1376 struct audit_buffer **ab,
1377 struct audit_aux_data_execve *axi)
1378{
5afb8a3f
XW
1379 int i, len;
1380 size_t len_sent = 0;
de6bbd1d
EP
1381 const char __user *p;
1382 char *buf;
bdf4c48a 1383
de6bbd1d
EP
1384 if (axi->mm != current->mm)
1385 return; /* execve failed, no additional info */
1386
1387 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1388
ca96a895 1389 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1390
1391 /*
1392 * we need some kernel buffer to hold the userspace args. Just
1393 * allocate one big one rather than allocating one of the right size
1394 * for every single argument inside audit_log_single_execve_arg()
1395 * should be <8k allocation so should be pretty safe.
1396 */
1397 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1398 if (!buf) {
1399 audit_panic("out of memory for argv string\n");
1400 return;
bdf4c48a 1401 }
de6bbd1d
EP
1402
1403 for (i = 0; i < axi->argc; i++) {
1404 len = audit_log_single_execve_arg(context, ab, i,
1405 &len_sent, p, buf);
1406 if (len <= 0)
1407 break;
1408 p += len;
1409 }
1410 kfree(buf);
bdf4c48a
PZ
1411}
1412
851f7ff5
EP
1413static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1414{
1415 int i;
1416
1417 audit_log_format(ab, " %s=", prefix);
1418 CAP_FOR_EACH_U32(i) {
1419 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1420 }
1421}
1422
1423static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1424{
1425 kernel_cap_t *perm = &name->fcap.permitted;
1426 kernel_cap_t *inh = &name->fcap.inheritable;
1427 int log = 0;
1428
1429 if (!cap_isclear(*perm)) {
1430 audit_log_cap(ab, "cap_fp", perm);
1431 log = 1;
1432 }
1433 if (!cap_isclear(*inh)) {
1434 audit_log_cap(ab, "cap_fi", inh);
1435 log = 1;
1436 }
1437
1438 if (log)
1439 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1440}
1441
a33e6751 1442static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1443{
1444 struct audit_buffer *ab;
1445 int i;
1446
1447 ab = audit_log_start(context, GFP_KERNEL, context->type);
1448 if (!ab)
1449 return;
1450
1451 switch (context->type) {
1452 case AUDIT_SOCKETCALL: {
1453 int nargs = context->socketcall.nargs;
1454 audit_log_format(ab, "nargs=%d", nargs);
1455 for (i = 0; i < nargs; i++)
1456 audit_log_format(ab, " a%d=%lx", i,
1457 context->socketcall.args[i]);
1458 break; }
a33e6751
AV
1459 case AUDIT_IPC: {
1460 u32 osid = context->ipc.osid;
1461
2570ebbd 1462 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1463 from_kuid(&init_user_ns, context->ipc.uid),
1464 from_kgid(&init_user_ns, context->ipc.gid),
1465 context->ipc.mode);
a33e6751
AV
1466 if (osid) {
1467 char *ctx = NULL;
1468 u32 len;
1469 if (security_secid_to_secctx(osid, &ctx, &len)) {
1470 audit_log_format(ab, " osid=%u", osid);
1471 *call_panic = 1;
1472 } else {
1473 audit_log_format(ab, " obj=%s", ctx);
1474 security_release_secctx(ctx, len);
1475 }
1476 }
e816f370
AV
1477 if (context->ipc.has_perm) {
1478 audit_log_end(ab);
1479 ab = audit_log_start(context, GFP_KERNEL,
1480 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1481 if (unlikely(!ab))
1482 return;
e816f370 1483 audit_log_format(ab,
2570ebbd 1484 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1485 context->ipc.qbytes,
1486 context->ipc.perm_uid,
1487 context->ipc.perm_gid,
1488 context->ipc.perm_mode);
e816f370 1489 }
a33e6751 1490 break; }
564f6993
AV
1491 case AUDIT_MQ_OPEN: {
1492 audit_log_format(ab,
df0a4283 1493 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1494 "mq_msgsize=%ld mq_curmsgs=%ld",
1495 context->mq_open.oflag, context->mq_open.mode,
1496 context->mq_open.attr.mq_flags,
1497 context->mq_open.attr.mq_maxmsg,
1498 context->mq_open.attr.mq_msgsize,
1499 context->mq_open.attr.mq_curmsgs);
1500 break; }
c32c8af4
AV
1501 case AUDIT_MQ_SENDRECV: {
1502 audit_log_format(ab,
1503 "mqdes=%d msg_len=%zd msg_prio=%u "
1504 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1505 context->mq_sendrecv.mqdes,
1506 context->mq_sendrecv.msg_len,
1507 context->mq_sendrecv.msg_prio,
1508 context->mq_sendrecv.abs_timeout.tv_sec,
1509 context->mq_sendrecv.abs_timeout.tv_nsec);
1510 break; }
20114f71
AV
1511 case AUDIT_MQ_NOTIFY: {
1512 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1513 context->mq_notify.mqdes,
1514 context->mq_notify.sigev_signo);
1515 break; }
7392906e
AV
1516 case AUDIT_MQ_GETSETATTR: {
1517 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1518 audit_log_format(ab,
1519 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1520 "mq_curmsgs=%ld ",
1521 context->mq_getsetattr.mqdes,
1522 attr->mq_flags, attr->mq_maxmsg,
1523 attr->mq_msgsize, attr->mq_curmsgs);
1524 break; }
57f71a0a
AV
1525 case AUDIT_CAPSET: {
1526 audit_log_format(ab, "pid=%d", context->capset.pid);
1527 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1528 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1529 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1530 break; }
120a795d
AV
1531 case AUDIT_MMAP: {
1532 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1533 context->mmap.flags);
1534 break; }
f3298dc4
AV
1535 }
1536 audit_log_end(ab);
1537}
1538
5195d8e2
EP
1539static void audit_log_name(struct audit_context *context, struct audit_names *n,
1540 int record_num, int *call_panic)
1541{
1542 struct audit_buffer *ab;
1543 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1544 if (!ab)
1545 return; /* audit_panic has been called */
1546
1547 audit_log_format(ab, "item=%d", record_num);
1548
1549 if (n->name) {
1550 switch (n->name_len) {
1551 case AUDIT_NAME_FULL:
1552 /* log the full path */
1553 audit_log_format(ab, " name=");
91a27b2a 1554 audit_log_untrustedstring(ab, n->name->name);
5195d8e2
EP
1555 break;
1556 case 0:
1557 /* name was specified as a relative path and the
1558 * directory component is the cwd */
c158a35c 1559 audit_log_d_path(ab, " name=", &context->pwd);
5195d8e2
EP
1560 break;
1561 default:
1562 /* log the name's directory component */
1563 audit_log_format(ab, " name=");
91a27b2a 1564 audit_log_n_untrustedstring(ab, n->name->name,
5195d8e2
EP
1565 n->name_len);
1566 }
1567 } else
1568 audit_log_format(ab, " name=(null)");
1569
1570 if (n->ino != (unsigned long)-1) {
1571 audit_log_format(ab, " inode=%lu"
1572 " dev=%02x:%02x mode=%#ho"
1573 " ouid=%u ogid=%u rdev=%02x:%02x",
1574 n->ino,
1575 MAJOR(n->dev),
1576 MINOR(n->dev),
1577 n->mode,
cca080d9
EB
1578 from_kuid(&init_user_ns, n->uid),
1579 from_kgid(&init_user_ns, n->gid),
5195d8e2
EP
1580 MAJOR(n->rdev),
1581 MINOR(n->rdev));
1582 }
1583 if (n->osid != 0) {
1584 char *ctx = NULL;
1585 u32 len;
1586 if (security_secid_to_secctx(
1587 n->osid, &ctx, &len)) {
1588 audit_log_format(ab, " osid=%u", n->osid);
1589 *call_panic = 2;
1590 } else {
1591 audit_log_format(ab, " obj=%s", ctx);
1592 security_release_secctx(ctx, len);
1593 }
1594 }
1595
1596 audit_log_fcaps(ab, n);
1597
1598 audit_log_end(ab);
1599}
1600
e495149b 1601static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1602{
9c7aa6aa 1603 int i, call_panic = 0;
1da177e4 1604 struct audit_buffer *ab;
7551ced3 1605 struct audit_aux_data *aux;
5195d8e2 1606 struct audit_names *n;
1da177e4 1607
e495149b 1608 /* tsk == current */
3f2792ff 1609 context->personality = tsk->personality;
e495149b
AV
1610
1611 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1612 if (!ab)
1613 return; /* audit_panic has been called */
bccf6ae0
DW
1614 audit_log_format(ab, "arch=%x syscall=%d",
1615 context->arch, context->major);
1da177e4
LT
1616 if (context->personality != PER_LINUX)
1617 audit_log_format(ab, " per=%lx", context->personality);
1618 if (context->return_valid)
9f8dbe9c 1619 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1620 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1621 context->return_code);
eb84a20e 1622
1da177e4 1623 audit_log_format(ab,
e23eb920
PM
1624 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1625 context->argv[0],
1626 context->argv[1],
1627 context->argv[2],
1628 context->argv[3],
1629 context->name_count);
eb84a20e 1630
e495149b 1631 audit_log_task_info(ab, tsk);
9d960985 1632 audit_log_key(ab, context->filterkey);
1da177e4 1633 audit_log_end(ab);
1da177e4 1634
7551ced3 1635 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1636
e495149b 1637 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1638 if (!ab)
1639 continue; /* audit_panic has been called */
1640
1da177e4 1641 switch (aux->type) {
20ca73bc 1642
473ae30b
AV
1643 case AUDIT_EXECVE: {
1644 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1645 audit_log_execve_info(context, &ab, axi);
473ae30b 1646 break; }
073115d6 1647
3fc689e9
EP
1648 case AUDIT_BPRM_FCAPS: {
1649 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1650 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1651 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1652 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1653 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1654 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1655 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1656 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1657 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1658 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1659 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1660 break; }
1661
1da177e4
LT
1662 }
1663 audit_log_end(ab);
1da177e4
LT
1664 }
1665
f3298dc4 1666 if (context->type)
a33e6751 1667 show_special(context, &call_panic);
f3298dc4 1668
157cf649
AV
1669 if (context->fds[0] >= 0) {
1670 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1671 if (ab) {
1672 audit_log_format(ab, "fd0=%d fd1=%d",
1673 context->fds[0], context->fds[1]);
1674 audit_log_end(ab);
1675 }
1676 }
1677
4f6b434f
AV
1678 if (context->sockaddr_len) {
1679 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1680 if (ab) {
1681 audit_log_format(ab, "saddr=");
1682 audit_log_n_hex(ab, (void *)context->sockaddr,
1683 context->sockaddr_len);
1684 audit_log_end(ab);
1685 }
1686 }
1687
e54dc243
AG
1688 for (aux = context->aux_pids; aux; aux = aux->next) {
1689 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1690
1691 for (i = 0; i < axs->pid_count; i++)
1692 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1693 axs->target_auid[i],
1694 axs->target_uid[i],
4746ec5b 1695 axs->target_sessionid[i],
c2a7780e
EP
1696 axs->target_sid[i],
1697 axs->target_comm[i]))
e54dc243 1698 call_panic = 1;
a5cb013d
AV
1699 }
1700
e54dc243
AG
1701 if (context->target_pid &&
1702 audit_log_pid_context(context, context->target_pid,
c2a7780e 1703 context->target_auid, context->target_uid,
4746ec5b 1704 context->target_sessionid,
c2a7780e 1705 context->target_sid, context->target_comm))
e54dc243
AG
1706 call_panic = 1;
1707
44707fdf 1708 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1709 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1710 if (ab) {
c158a35c 1711 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1712 audit_log_end(ab);
1713 }
1714 }
73241ccc 1715
5195d8e2
EP
1716 i = 0;
1717 list_for_each_entry(n, &context->names_list, list)
1718 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1719
1720 /* Send end of event record to help user space know we are finished */
1721 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1722 if (ab)
1723 audit_log_end(ab);
9c7aa6aa
SG
1724 if (call_panic)
1725 audit_panic("error converting sid to string");
1da177e4
LT
1726}
1727
b0dd25a8
RD
1728/**
1729 * audit_free - free a per-task audit context
1730 * @tsk: task whose audit context block to free
1731 *
fa84cb93 1732 * Called from copy_process and do_exit
b0dd25a8 1733 */
a4ff8dba 1734void __audit_free(struct task_struct *tsk)
1da177e4
LT
1735{
1736 struct audit_context *context;
1737
1da177e4 1738 context = audit_get_context(tsk, 0, 0);
56179a6e 1739 if (!context)
1da177e4
LT
1740 return;
1741
1742 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1743 * function (e.g., exit_group), then free context block.
1744 * We use GFP_ATOMIC here because we might be doing this
f5561964 1745 * in the context of the idle thread */
e495149b 1746 /* that can happen only if we are called from do_exit() */
0590b933 1747 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1748 audit_log_exit(context, tsk);
916d7576
AV
1749 if (!list_empty(&context->killed_trees))
1750 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1751
1752 audit_free_context(context);
1753}
1754
b0dd25a8
RD
1755/**
1756 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1757 * @arch: architecture type
1758 * @major: major syscall type (function)
1759 * @a1: additional syscall register 1
1760 * @a2: additional syscall register 2
1761 * @a3: additional syscall register 3
1762 * @a4: additional syscall register 4
1763 *
1764 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1765 * audit context was created when the task was created and the state or
1766 * filters demand the audit context be built. If the state from the
1767 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1768 * then the record will be written at syscall exit time (otherwise, it
1769 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1770 * be written).
1771 */
b05d8447 1772void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1773 unsigned long a1, unsigned long a2,
1774 unsigned long a3, unsigned long a4)
1775{
5411be59 1776 struct task_struct *tsk = current;
1da177e4
LT
1777 struct audit_context *context = tsk->audit_context;
1778 enum audit_state state;
1779
56179a6e 1780 if (!context)
86a1c34a 1781 return;
1da177e4 1782
1da177e4
LT
1783 BUG_ON(context->in_syscall || context->name_count);
1784
1785 if (!audit_enabled)
1786 return;
1787
2fd6f58b 1788 context->arch = arch;
1da177e4
LT
1789 context->major = major;
1790 context->argv[0] = a1;
1791 context->argv[1] = a2;
1792 context->argv[2] = a3;
1793 context->argv[3] = a4;
1794
1795 state = context->state;
d51374ad 1796 context->dummy = !audit_n_rules;
0590b933
AV
1797 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1798 context->prio = 0;
0f45aa18 1799 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1800 }
56179a6e 1801 if (state == AUDIT_DISABLED)
1da177e4
LT
1802 return;
1803
ce625a80 1804 context->serial = 0;
1da177e4
LT
1805 context->ctime = CURRENT_TIME;
1806 context->in_syscall = 1;
0590b933 1807 context->current_state = state;
419c58f1 1808 context->ppid = 0;
1da177e4
LT
1809}
1810
b0dd25a8
RD
1811/**
1812 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1813 * @success: success value of the syscall
1814 * @return_code: return value of the syscall
b0dd25a8
RD
1815 *
1816 * Tear down after system call. If the audit context has been marked as
1da177e4 1817 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1818 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1819 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1820 * free the names stored from getname().
1821 */
d7e7528b 1822void __audit_syscall_exit(int success, long return_code)
1da177e4 1823{
5411be59 1824 struct task_struct *tsk = current;
1da177e4
LT
1825 struct audit_context *context;
1826
d7e7528b
EP
1827 if (success)
1828 success = AUDITSC_SUCCESS;
1829 else
1830 success = AUDITSC_FAILURE;
1da177e4 1831
d7e7528b 1832 context = audit_get_context(tsk, success, return_code);
56179a6e 1833 if (!context)
97e94c45 1834 return;
1da177e4 1835
0590b933 1836 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1837 audit_log_exit(context, tsk);
1da177e4
LT
1838
1839 context->in_syscall = 0;
0590b933 1840 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1841
916d7576
AV
1842 if (!list_empty(&context->killed_trees))
1843 audit_kill_trees(&context->killed_trees);
1844
c62d773a
AV
1845 audit_free_names(context);
1846 unroll_tree_refs(context, NULL, 0);
1847 audit_free_aux(context);
1848 context->aux = NULL;
1849 context->aux_pids = NULL;
1850 context->target_pid = 0;
1851 context->target_sid = 0;
1852 context->sockaddr_len = 0;
1853 context->type = 0;
1854 context->fds[0] = -1;
1855 if (context->state != AUDIT_RECORD_CONTEXT) {
1856 kfree(context->filterkey);
1857 context->filterkey = NULL;
1da177e4 1858 }
c62d773a 1859 tsk->audit_context = context;
1da177e4
LT
1860}
1861
74c3cbe3
AV
1862static inline void handle_one(const struct inode *inode)
1863{
1864#ifdef CONFIG_AUDIT_TREE
1865 struct audit_context *context;
1866 struct audit_tree_refs *p;
1867 struct audit_chunk *chunk;
1868 int count;
e61ce867 1869 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1870 return;
1871 context = current->audit_context;
1872 p = context->trees;
1873 count = context->tree_count;
1874 rcu_read_lock();
1875 chunk = audit_tree_lookup(inode);
1876 rcu_read_unlock();
1877 if (!chunk)
1878 return;
1879 if (likely(put_tree_ref(context, chunk)))
1880 return;
1881 if (unlikely(!grow_tree_refs(context))) {
436c405c 1882 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1883 audit_set_auditable(context);
1884 audit_put_chunk(chunk);
1885 unroll_tree_refs(context, p, count);
1886 return;
1887 }
1888 put_tree_ref(context, chunk);
1889#endif
1890}
1891
1892static void handle_path(const struct dentry *dentry)
1893{
1894#ifdef CONFIG_AUDIT_TREE
1895 struct audit_context *context;
1896 struct audit_tree_refs *p;
1897 const struct dentry *d, *parent;
1898 struct audit_chunk *drop;
1899 unsigned long seq;
1900 int count;
1901
1902 context = current->audit_context;
1903 p = context->trees;
1904 count = context->tree_count;
1905retry:
1906 drop = NULL;
1907 d = dentry;
1908 rcu_read_lock();
1909 seq = read_seqbegin(&rename_lock);
1910 for(;;) {
1911 struct inode *inode = d->d_inode;
e61ce867 1912 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1913 struct audit_chunk *chunk;
1914 chunk = audit_tree_lookup(inode);
1915 if (chunk) {
1916 if (unlikely(!put_tree_ref(context, chunk))) {
1917 drop = chunk;
1918 break;
1919 }
1920 }
1921 }
1922 parent = d->d_parent;
1923 if (parent == d)
1924 break;
1925 d = parent;
1926 }
1927 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1928 rcu_read_unlock();
1929 if (!drop) {
1930 /* just a race with rename */
1931 unroll_tree_refs(context, p, count);
1932 goto retry;
1933 }
1934 audit_put_chunk(drop);
1935 if (grow_tree_refs(context)) {
1936 /* OK, got more space */
1937 unroll_tree_refs(context, p, count);
1938 goto retry;
1939 }
1940 /* too bad */
1941 printk(KERN_WARNING
436c405c 1942 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1943 unroll_tree_refs(context, p, count);
1944 audit_set_auditable(context);
1945 return;
1946 }
1947 rcu_read_unlock();
1948#endif
1949}
1950
78e2e802
JL
1951static struct audit_names *audit_alloc_name(struct audit_context *context,
1952 unsigned char type)
5195d8e2
EP
1953{
1954 struct audit_names *aname;
1955
1956 if (context->name_count < AUDIT_NAMES) {
1957 aname = &context->preallocated_names[context->name_count];
1958 memset(aname, 0, sizeof(*aname));
1959 } else {
1960 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1961 if (!aname)
1962 return NULL;
1963 aname->should_free = true;
1964 }
1965
1966 aname->ino = (unsigned long)-1;
78e2e802 1967 aname->type = type;
5195d8e2
EP
1968 list_add_tail(&aname->list, &context->names_list);
1969
1970 context->name_count++;
1971#if AUDIT_DEBUG
1972 context->ino_count++;
1973#endif
1974 return aname;
1975}
1976
7ac86265
JL
1977/**
1978 * audit_reusename - fill out filename with info from existing entry
1979 * @uptr: userland ptr to pathname
1980 *
1981 * Search the audit_names list for the current audit context. If there is an
1982 * existing entry with a matching "uptr" then return the filename
1983 * associated with that audit_name. If not, return NULL.
1984 */
1985struct filename *
1986__audit_reusename(const __user char *uptr)
1987{
1988 struct audit_context *context = current->audit_context;
1989 struct audit_names *n;
1990
1991 list_for_each_entry(n, &context->names_list, list) {
1992 if (!n->name)
1993 continue;
1994 if (n->name->uptr == uptr)
1995 return n->name;
1996 }
1997 return NULL;
1998}
1999
b0dd25a8
RD
2000/**
2001 * audit_getname - add a name to the list
2002 * @name: name to add
2003 *
2004 * Add a name to the list of audit names for this context.
2005 * Called from fs/namei.c:getname().
2006 */
91a27b2a 2007void __audit_getname(struct filename *name)
1da177e4
LT
2008{
2009 struct audit_context *context = current->audit_context;
5195d8e2 2010 struct audit_names *n;
1da177e4 2011
1da177e4
LT
2012 if (!context->in_syscall) {
2013#if AUDIT_DEBUG == 2
2014 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2015 __FILE__, __LINE__, context->serial, name);
2016 dump_stack();
2017#endif
2018 return;
2019 }
5195d8e2 2020
91a27b2a
JL
2021#if AUDIT_DEBUG
2022 /* The filename _must_ have a populated ->name */
2023 BUG_ON(!name->name);
2024#endif
2025
78e2e802 2026 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
2027 if (!n)
2028 return;
2029
2030 n->name = name;
2031 n->name_len = AUDIT_NAME_FULL;
2032 n->name_put = true;
adb5c247 2033 name->aname = n;
5195d8e2 2034
f7ad3c6b
MS
2035 if (!context->pwd.dentry)
2036 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
2037}
2038
b0dd25a8
RD
2039/* audit_putname - intercept a putname request
2040 * @name: name to intercept and delay for putname
2041 *
2042 * If we have stored the name from getname in the audit context,
2043 * then we delay the putname until syscall exit.
2044 * Called from include/linux/fs.h:putname().
2045 */
91a27b2a 2046void audit_putname(struct filename *name)
1da177e4
LT
2047{
2048 struct audit_context *context = current->audit_context;
2049
2050 BUG_ON(!context);
2051 if (!context->in_syscall) {
2052#if AUDIT_DEBUG == 2
65ada7bc 2053 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
2054 __FILE__, __LINE__, context->serial, name);
2055 if (context->name_count) {
5195d8e2 2056 struct audit_names *n;
1da177e4 2057 int i;
5195d8e2
EP
2058
2059 list_for_each_entry(n, &context->names_list, list)
1da177e4 2060 printk(KERN_ERR "name[%d] = %p = %s\n", i,
91a27b2a 2061 n->name, n->name->name ?: "(null)");
5195d8e2 2062 }
1da177e4 2063#endif
65ada7bc 2064 final_putname(name);
1da177e4
LT
2065 }
2066#if AUDIT_DEBUG
2067 else {
2068 ++context->put_count;
2069 if (context->put_count > context->name_count) {
2070 printk(KERN_ERR "%s:%d(:%d): major=%d"
2071 " in_syscall=%d putname(%p) name_count=%d"
2072 " put_count=%d\n",
2073 __FILE__, __LINE__,
2074 context->serial, context->major,
91a27b2a
JL
2075 context->in_syscall, name->name,
2076 context->name_count, context->put_count);
1da177e4
LT
2077 dump_stack();
2078 }
2079 }
2080#endif
2081}
2082
851f7ff5
EP
2083static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2084{
2085 struct cpu_vfs_cap_data caps;
2086 int rc;
2087
851f7ff5
EP
2088 if (!dentry)
2089 return 0;
2090
2091 rc = get_vfs_caps_from_disk(dentry, &caps);
2092 if (rc)
2093 return rc;
2094
2095 name->fcap.permitted = caps.permitted;
2096 name->fcap.inheritable = caps.inheritable;
2097 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2098 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2099
2100 return 0;
2101}
2102
2103
3e2efce0 2104/* Copy inode data into an audit_names. */
851f7ff5
EP
2105static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2106 const struct inode *inode)
8c8570fb 2107{
3e2efce0
AG
2108 name->ino = inode->i_ino;
2109 name->dev = inode->i_sb->s_dev;
2110 name->mode = inode->i_mode;
2111 name->uid = inode->i_uid;
2112 name->gid = inode->i_gid;
2113 name->rdev = inode->i_rdev;
2a862b32 2114 security_inode_getsecid(inode, &name->osid);
851f7ff5 2115 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2116}
2117
b0dd25a8 2118/**
bfcec708 2119 * __audit_inode - store the inode and device from a lookup
b0dd25a8 2120 * @name: name being audited
481968f4 2121 * @dentry: dentry being audited
bfcec708 2122 * @parent: does this dentry represent the parent?
b0dd25a8 2123 */
adb5c247 2124void __audit_inode(struct filename *name, const struct dentry *dentry,
bfcec708 2125 unsigned int parent)
1da177e4 2126{
1da177e4 2127 struct audit_context *context = current->audit_context;
74c3cbe3 2128 const struct inode *inode = dentry->d_inode;
5195d8e2 2129 struct audit_names *n;
1da177e4
LT
2130
2131 if (!context->in_syscall)
2132 return;
5195d8e2 2133
9cec9d68
JL
2134 if (!name)
2135 goto out_alloc;
2136
adb5c247
JL
2137#if AUDIT_DEBUG
2138 /* The struct filename _must_ have a populated ->name */
2139 BUG_ON(!name->name);
2140#endif
2141 /*
2142 * If we have a pointer to an audit_names entry already, then we can
2143 * just use it directly if the type is correct.
2144 */
2145 n = name->aname;
2146 if (n) {
2147 if (parent) {
2148 if (n->type == AUDIT_TYPE_PARENT ||
2149 n->type == AUDIT_TYPE_UNKNOWN)
2150 goto out;
2151 } else {
2152 if (n->type != AUDIT_TYPE_PARENT)
2153 goto out;
2154 }
2155 }
2156
5195d8e2 2157 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 2158 /* does the name pointer match? */
adb5c247 2159 if (!n->name || n->name->name != name->name)
bfcec708
JL
2160 continue;
2161
2162 /* match the correct record type */
2163 if (parent) {
2164 if (n->type == AUDIT_TYPE_PARENT ||
2165 n->type == AUDIT_TYPE_UNKNOWN)
2166 goto out;
2167 } else {
2168 if (n->type != AUDIT_TYPE_PARENT)
2169 goto out;
2170 }
1da177e4 2171 }
5195d8e2 2172
9cec9d68 2173out_alloc:
bfcec708
JL
2174 /* unable to find the name from a previous getname(). Allocate a new
2175 * anonymous entry.
2176 */
78e2e802 2177 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
2178 if (!n)
2179 return;
2180out:
bfcec708 2181 if (parent) {
91a27b2a 2182 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708
JL
2183 n->type = AUDIT_TYPE_PARENT;
2184 } else {
2185 n->name_len = AUDIT_NAME_FULL;
2186 n->type = AUDIT_TYPE_NORMAL;
2187 }
74c3cbe3 2188 handle_path(dentry);
5195d8e2 2189 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2190}
2191
2192/**
c43a25ab 2193 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 2194 * @parent: inode of dentry parent
c43a25ab 2195 * @dentry: dentry being audited
4fa6b5ec 2196 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
2197 *
2198 * For syscalls that create or remove filesystem objects, audit_inode
2199 * can only collect information for the filesystem object's parent.
2200 * This call updates the audit context with the child's information.
2201 * Syscalls that create a new filesystem object must be hooked after
2202 * the object is created. Syscalls that remove a filesystem object
2203 * must be hooked prior, in order to capture the target inode during
2204 * unsuccessful attempts.
2205 */
c43a25ab 2206void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
2207 const struct dentry *dentry,
2208 const unsigned char type)
73241ccc 2209{
73241ccc 2210 struct audit_context *context = current->audit_context;
5a190ae6 2211 const struct inode *inode = dentry->d_inode;
cccc6bba 2212 const char *dname = dentry->d_name.name;
4fa6b5ec 2213 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
2214
2215 if (!context->in_syscall)
2216 return;
2217
74c3cbe3
AV
2218 if (inode)
2219 handle_one(inode);
73241ccc 2220
4fa6b5ec 2221 /* look for a parent entry first */
5195d8e2 2222 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 2223 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
2224 continue;
2225
2226 if (n->ino == parent->i_ino &&
91a27b2a 2227 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
2228 found_parent = n;
2229 break;
f368c07d 2230 }
5712e88f 2231 }
73241ccc 2232
4fa6b5ec 2233 /* is there a matching child entry? */
5195d8e2 2234 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
2235 /* can only match entries that have a name */
2236 if (!n->name || n->type != type)
2237 continue;
2238
2239 /* if we found a parent, make sure this one is a child of it */
2240 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
2241 continue;
2242
91a27b2a
JL
2243 if (!strcmp(dname, n->name->name) ||
2244 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
2245 found_parent ?
2246 found_parent->name_len :
e3d6b07b 2247 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
2248 found_child = n;
2249 break;
5712e88f 2250 }
ac9910ce 2251 }
5712e88f 2252
5712e88f 2253 if (!found_parent) {
4fa6b5ec
JL
2254 /* create a new, "anonymous" parent record */
2255 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 2256 if (!n)
ac9910ce 2257 return;
5195d8e2 2258 audit_copy_inode(n, NULL, parent);
73d3ec5a 2259 }
5712e88f
AG
2260
2261 if (!found_child) {
4fa6b5ec
JL
2262 found_child = audit_alloc_name(context, type);
2263 if (!found_child)
5712e88f 2264 return;
5712e88f
AG
2265
2266 /* Re-use the name belonging to the slot for a matching parent
2267 * directory. All names for this context are relinquished in
2268 * audit_free_names() */
2269 if (found_parent) {
4fa6b5ec
JL
2270 found_child->name = found_parent->name;
2271 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 2272 /* don't call __putname() */
4fa6b5ec 2273 found_child->name_put = false;
5712e88f 2274 }
5712e88f 2275 }
4fa6b5ec
JL
2276 if (inode)
2277 audit_copy_inode(found_child, dentry, inode);
2278 else
2279 found_child->ino = (unsigned long)-1;
3e2efce0 2280}
50e437d5 2281EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2282
b0dd25a8
RD
2283/**
2284 * auditsc_get_stamp - get local copies of audit_context values
2285 * @ctx: audit_context for the task
2286 * @t: timespec to store time recorded in the audit_context
2287 * @serial: serial value that is recorded in the audit_context
2288 *
2289 * Also sets the context as auditable.
2290 */
48887e63 2291int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2292 struct timespec *t, unsigned int *serial)
1da177e4 2293{
48887e63
AV
2294 if (!ctx->in_syscall)
2295 return 0;
ce625a80
DW
2296 if (!ctx->serial)
2297 ctx->serial = audit_serial();
bfb4496e
DW
2298 t->tv_sec = ctx->ctime.tv_sec;
2299 t->tv_nsec = ctx->ctime.tv_nsec;
2300 *serial = ctx->serial;
0590b933
AV
2301 if (!ctx->prio) {
2302 ctx->prio = 1;
2303 ctx->current_state = AUDIT_RECORD_CONTEXT;
2304 }
48887e63 2305 return 1;
1da177e4
LT
2306}
2307
4746ec5b
EP
2308/* global counter which is incremented every time something logs in */
2309static atomic_t session_id = ATOMIC_INIT(0);
2310
b0dd25a8 2311/**
0a300be6 2312 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2313 * @loginuid: loginuid value
2314 *
2315 * Returns 0.
2316 *
2317 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2318 */
e1760bd5 2319int audit_set_loginuid(kuid_t loginuid)
1da177e4 2320{
0a300be6 2321 struct task_struct *task = current;
41757106 2322 struct audit_context *context = task->audit_context;
633b4545 2323 unsigned int sessionid;
41757106 2324
633b4545 2325#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
e1760bd5 2326 if (uid_valid(task->loginuid))
633b4545
EP
2327 return -EPERM;
2328#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2329 if (!capable(CAP_AUDIT_CONTROL))
2330 return -EPERM;
2331#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2332
2333 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2334 if (context && context->in_syscall) {
2335 struct audit_buffer *ab;
2336
2337 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2338 if (ab) {
2339 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2340 "old auid=%u new auid=%u"
2341 " old ses=%u new ses=%u",
cca080d9
EB
2342 task->pid,
2343 from_kuid(&init_user_ns, task_uid(task)),
e1760bd5
EB
2344 from_kuid(&init_user_ns, task->loginuid),
2345 from_kuid(&init_user_ns, loginuid),
4746ec5b 2346 task->sessionid, sessionid);
bfef93a5 2347 audit_log_end(ab);
c0404993 2348 }
1da177e4 2349 }
4746ec5b 2350 task->sessionid = sessionid;
bfef93a5 2351 task->loginuid = loginuid;
1da177e4
LT
2352 return 0;
2353}
2354
20ca73bc
GW
2355/**
2356 * __audit_mq_open - record audit data for a POSIX MQ open
2357 * @oflag: open flag
2358 * @mode: mode bits
6b962559 2359 * @attr: queue attributes
20ca73bc 2360 *
20ca73bc 2361 */
df0a4283 2362void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2363{
20ca73bc
GW
2364 struct audit_context *context = current->audit_context;
2365
564f6993
AV
2366 if (attr)
2367 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2368 else
2369 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2370
564f6993
AV
2371 context->mq_open.oflag = oflag;
2372 context->mq_open.mode = mode;
20ca73bc 2373
564f6993 2374 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2375}
2376
2377/**
c32c8af4 2378 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2379 * @mqdes: MQ descriptor
2380 * @msg_len: Message length
2381 * @msg_prio: Message priority
c32c8af4 2382 * @abs_timeout: Message timeout in absolute time
20ca73bc 2383 *
20ca73bc 2384 */
c32c8af4
AV
2385void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2386 const struct timespec *abs_timeout)
20ca73bc 2387{
20ca73bc 2388 struct audit_context *context = current->audit_context;
c32c8af4 2389 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2390
c32c8af4
AV
2391 if (abs_timeout)
2392 memcpy(p, abs_timeout, sizeof(struct timespec));
2393 else
2394 memset(p, 0, sizeof(struct timespec));
20ca73bc 2395
c32c8af4
AV
2396 context->mq_sendrecv.mqdes = mqdes;
2397 context->mq_sendrecv.msg_len = msg_len;
2398 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2399
c32c8af4 2400 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2401}
2402
2403/**
2404 * __audit_mq_notify - record audit data for a POSIX MQ notify
2405 * @mqdes: MQ descriptor
6b962559 2406 * @notification: Notification event
20ca73bc 2407 *
20ca73bc
GW
2408 */
2409
20114f71 2410void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2411{
20ca73bc
GW
2412 struct audit_context *context = current->audit_context;
2413
20114f71
AV
2414 if (notification)
2415 context->mq_notify.sigev_signo = notification->sigev_signo;
2416 else
2417 context->mq_notify.sigev_signo = 0;
20ca73bc 2418
20114f71
AV
2419 context->mq_notify.mqdes = mqdes;
2420 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2421}
2422
2423/**
2424 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2425 * @mqdes: MQ descriptor
2426 * @mqstat: MQ flags
2427 *
20ca73bc 2428 */
7392906e 2429void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2430{
20ca73bc 2431 struct audit_context *context = current->audit_context;
7392906e
AV
2432 context->mq_getsetattr.mqdes = mqdes;
2433 context->mq_getsetattr.mqstat = *mqstat;
2434 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2435}
2436
b0dd25a8 2437/**
073115d6
SG
2438 * audit_ipc_obj - record audit data for ipc object
2439 * @ipcp: ipc permissions
2440 *
073115d6 2441 */
a33e6751 2442void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2443{
073115d6 2444 struct audit_context *context = current->audit_context;
a33e6751
AV
2445 context->ipc.uid = ipcp->uid;
2446 context->ipc.gid = ipcp->gid;
2447 context->ipc.mode = ipcp->mode;
e816f370 2448 context->ipc.has_perm = 0;
a33e6751
AV
2449 security_ipc_getsecid(ipcp, &context->ipc.osid);
2450 context->type = AUDIT_IPC;
073115d6
SG
2451}
2452
2453/**
2454 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2455 * @qbytes: msgq bytes
2456 * @uid: msgq user id
2457 * @gid: msgq group id
2458 * @mode: msgq mode (permissions)
2459 *
e816f370 2460 * Called only after audit_ipc_obj().
b0dd25a8 2461 */
2570ebbd 2462void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2463{
1da177e4
LT
2464 struct audit_context *context = current->audit_context;
2465
e816f370
AV
2466 context->ipc.qbytes = qbytes;
2467 context->ipc.perm_uid = uid;
2468 context->ipc.perm_gid = gid;
2469 context->ipc.perm_mode = mode;
2470 context->ipc.has_perm = 1;
1da177e4 2471}
c2f0c7c3 2472
07c49417 2473int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2474{
2475 struct audit_aux_data_execve *ax;
2476 struct audit_context *context = current->audit_context;
473ae30b 2477
bdf4c48a 2478 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2479 if (!ax)
2480 return -ENOMEM;
2481
2482 ax->argc = bprm->argc;
2483 ax->envc = bprm->envc;
bdf4c48a 2484 ax->mm = bprm->mm;
473ae30b
AV
2485 ax->d.type = AUDIT_EXECVE;
2486 ax->d.next = context->aux;
2487 context->aux = (void *)ax;
2488 return 0;
2489}
2490
2491
b0dd25a8
RD
2492/**
2493 * audit_socketcall - record audit data for sys_socketcall
2494 * @nargs: number of args
2495 * @args: args array
2496 *
b0dd25a8 2497 */
07c49417 2498void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2499{
3ec3b2fb
DW
2500 struct audit_context *context = current->audit_context;
2501
f3298dc4
AV
2502 context->type = AUDIT_SOCKETCALL;
2503 context->socketcall.nargs = nargs;
2504 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2505}
2506
db349509
AV
2507/**
2508 * __audit_fd_pair - record audit data for pipe and socketpair
2509 * @fd1: the first file descriptor
2510 * @fd2: the second file descriptor
2511 *
db349509 2512 */
157cf649 2513void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2514{
2515 struct audit_context *context = current->audit_context;
157cf649
AV
2516 context->fds[0] = fd1;
2517 context->fds[1] = fd2;
db349509
AV
2518}
2519
b0dd25a8
RD
2520/**
2521 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2522 * @len: data length in user space
2523 * @a: data address in kernel space
2524 *
2525 * Returns 0 for success or NULL context or < 0 on error.
2526 */
07c49417 2527int __audit_sockaddr(int len, void *a)
3ec3b2fb 2528{
3ec3b2fb
DW
2529 struct audit_context *context = current->audit_context;
2530
4f6b434f
AV
2531 if (!context->sockaddr) {
2532 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2533 if (!p)
2534 return -ENOMEM;
2535 context->sockaddr = p;
2536 }
3ec3b2fb 2537
4f6b434f
AV
2538 context->sockaddr_len = len;
2539 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2540 return 0;
2541}
2542
a5cb013d
AV
2543void __audit_ptrace(struct task_struct *t)
2544{
2545 struct audit_context *context = current->audit_context;
2546
2547 context->target_pid = t->pid;
c2a7780e 2548 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2549 context->target_uid = task_uid(t);
4746ec5b 2550 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2551 security_task_getsecid(t, &context->target_sid);
c2a7780e 2552 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2553}
2554
b0dd25a8
RD
2555/**
2556 * audit_signal_info - record signal info for shutting down audit subsystem
2557 * @sig: signal value
2558 * @t: task being signaled
2559 *
2560 * If the audit subsystem is being terminated, record the task (pid)
2561 * and uid that is doing that.
2562 */
e54dc243 2563int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2564{
e54dc243
AG
2565 struct audit_aux_data_pids *axp;
2566 struct task_struct *tsk = current;
2567 struct audit_context *ctx = tsk->audit_context;
cca080d9 2568 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2569
175fc484 2570 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2571 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2572 audit_sig_pid = tsk->pid;
e1760bd5 2573 if (uid_valid(tsk->loginuid))
bfef93a5 2574 audit_sig_uid = tsk->loginuid;
175fc484 2575 else
c69e8d9c 2576 audit_sig_uid = uid;
2a862b32 2577 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2578 }
2579 if (!audit_signals || audit_dummy_context())
2580 return 0;
c2f0c7c3 2581 }
e54dc243 2582
e54dc243
AG
2583 /* optimize the common case by putting first signal recipient directly
2584 * in audit_context */
2585 if (!ctx->target_pid) {
2586 ctx->target_pid = t->tgid;
c2a7780e 2587 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2588 ctx->target_uid = t_uid;
4746ec5b 2589 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2590 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2591 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2592 return 0;
2593 }
2594
2595 axp = (void *)ctx->aux_pids;
2596 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2597 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2598 if (!axp)
2599 return -ENOMEM;
2600
2601 axp->d.type = AUDIT_OBJ_PID;
2602 axp->d.next = ctx->aux_pids;
2603 ctx->aux_pids = (void *)axp;
2604 }
88ae704c 2605 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2606
2607 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2608 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2609 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2610 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2611 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2612 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2613 axp->pid_count++;
2614
2615 return 0;
c2f0c7c3 2616}
0a4ff8c2 2617
3fc689e9
EP
2618/**
2619 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2620 * @bprm: pointer to the bprm being processed
2621 * @new: the proposed new credentials
2622 * @old: the old credentials
3fc689e9
EP
2623 *
2624 * Simply check if the proc already has the caps given by the file and if not
2625 * store the priv escalation info for later auditing at the end of the syscall
2626 *
3fc689e9
EP
2627 * -Eric
2628 */
d84f4f99
DH
2629int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2630 const struct cred *new, const struct cred *old)
3fc689e9
EP
2631{
2632 struct audit_aux_data_bprm_fcaps *ax;
2633 struct audit_context *context = current->audit_context;
2634 struct cpu_vfs_cap_data vcaps;
2635 struct dentry *dentry;
2636
2637 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2638 if (!ax)
d84f4f99 2639 return -ENOMEM;
3fc689e9
EP
2640
2641 ax->d.type = AUDIT_BPRM_FCAPS;
2642 ax->d.next = context->aux;
2643 context->aux = (void *)ax;
2644
2645 dentry = dget(bprm->file->f_dentry);
2646 get_vfs_caps_from_disk(dentry, &vcaps);
2647 dput(dentry);
2648
2649 ax->fcap.permitted = vcaps.permitted;
2650 ax->fcap.inheritable = vcaps.inheritable;
2651 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2652 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2653
d84f4f99
DH
2654 ax->old_pcap.permitted = old->cap_permitted;
2655 ax->old_pcap.inheritable = old->cap_inheritable;
2656 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2657
d84f4f99
DH
2658 ax->new_pcap.permitted = new->cap_permitted;
2659 ax->new_pcap.inheritable = new->cap_inheritable;
2660 ax->new_pcap.effective = new->cap_effective;
2661 return 0;
3fc689e9
EP
2662}
2663
e68b75a0
EP
2664/**
2665 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2666 * @pid: target pid of the capset call
2667 * @new: the new credentials
2668 * @old: the old (current) credentials
e68b75a0
EP
2669 *
2670 * Record the aguments userspace sent to sys_capset for later printing by the
2671 * audit system if applicable
2672 */
57f71a0a 2673void __audit_log_capset(pid_t pid,
d84f4f99 2674 const struct cred *new, const struct cred *old)
e68b75a0 2675{
e68b75a0 2676 struct audit_context *context = current->audit_context;
57f71a0a
AV
2677 context->capset.pid = pid;
2678 context->capset.cap.effective = new->cap_effective;
2679 context->capset.cap.inheritable = new->cap_effective;
2680 context->capset.cap.permitted = new->cap_permitted;
2681 context->type = AUDIT_CAPSET;
e68b75a0
EP
2682}
2683
120a795d
AV
2684void __audit_mmap_fd(int fd, int flags)
2685{
2686 struct audit_context *context = current->audit_context;
2687 context->mmap.fd = fd;
2688 context->mmap.flags = flags;
2689 context->type = AUDIT_MMAP;
2690}
2691
7b9205bd 2692static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2693{
cca080d9
EB
2694 kuid_t auid, uid;
2695 kgid_t gid;
85e7bac3
EP
2696 unsigned int sessionid;
2697
2698 auid = audit_get_loginuid(current);
2699 sessionid = audit_get_sessionid(current);
2700 current_uid_gid(&uid, &gid);
2701
2702 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2703 from_kuid(&init_user_ns, auid),
2704 from_kuid(&init_user_ns, uid),
2705 from_kgid(&init_user_ns, gid),
2706 sessionid);
85e7bac3
EP
2707 audit_log_task_context(ab);
2708 audit_log_format(ab, " pid=%d comm=", current->pid);
2709 audit_log_untrustedstring(ab, current->comm);
7b9205bd
KC
2710}
2711
2712static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2713{
2714 audit_log_task(ab);
85e7bac3
EP
2715 audit_log_format(ab, " reason=");
2716 audit_log_string(ab, reason);
2717 audit_log_format(ab, " sig=%ld", signr);
2718}
0a4ff8c2
SG
2719/**
2720 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2721 * @signr: signal value
0a4ff8c2
SG
2722 *
2723 * If a process ends with a core dump, something fishy is going on and we
2724 * should record the event for investigation.
2725 */
2726void audit_core_dumps(long signr)
2727{
2728 struct audit_buffer *ab;
0a4ff8c2
SG
2729
2730 if (!audit_enabled)
2731 return;
2732
2733 if (signr == SIGQUIT) /* don't care for those */
2734 return;
2735
2736 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2737 if (unlikely(!ab))
2738 return;
85e7bac3
EP
2739 audit_log_abend(ab, "memory violation", signr);
2740 audit_log_end(ab);
2741}
0a4ff8c2 2742
3dc1c1b2 2743void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2744{
2745 struct audit_buffer *ab;
2746
7b9205bd
KC
2747 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2748 if (unlikely(!ab))
2749 return;
2750 audit_log_task(ab);
2751 audit_log_format(ab, " sig=%ld", signr);
85e7bac3 2752 audit_log_format(ab, " syscall=%ld", syscall);
3dc1c1b2
KC
2753 audit_log_format(ab, " compat=%d", is_compat_task());
2754 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2755 audit_log_format(ab, " code=0x%x", code);
0a4ff8c2
SG
2756 audit_log_end(ab);
2757}
916d7576
AV
2758
2759struct list_head *audit_killed_trees(void)
2760{
2761 struct audit_context *ctx = current->audit_context;
2762 if (likely(!ctx || !ctx->in_syscall))
2763 return NULL;
2764 return &ctx->killed_trees;
2765}