pinctrl: at91-pio4: add missing of_node_put
[linux-2.6-block.git] / kernel / audit.c
CommitLineData
85c8721f 1/* audit.c -- Auditing support
1da177e4
LT
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
6a01b07f 5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
1da177e4
LT
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
d7a96f3a 24 * Goals: 1) Integrate fully with Security Modules.
1da177e4
LT
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
d590dca6
RGB
41 * Audit userspace, documentation, tests, and bug/issue trackers:
42 * https://github.com/linux-audit
1da177e4
LT
43 */
44
d957f7b7
JP
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
5b282552 47#include <linux/file.h>
1da177e4 48#include <linux/init.h>
7153e402 49#include <linux/types.h>
60063497 50#include <linux/atomic.h>
1da177e4 51#include <linux/mm.h>
9984de1a 52#include <linux/export.h>
5a0e3ad6 53#include <linux/slab.h>
b7d11258
DW
54#include <linux/err.h>
55#include <linux/kthread.h>
46e959ea 56#include <linux/kernel.h>
b24a30a7 57#include <linux/syscalls.h>
5b52330b
PM
58#include <linux/spinlock.h>
59#include <linux/rcupdate.h>
60#include <linux/mutex.h>
61#include <linux/gfp.h>
b6c7c115 62#include <linux/pid.h>
8cc96382 63#include <linux/slab.h>
1da177e4
LT
64
65#include <linux/audit.h>
66
67#include <net/sock.h>
93315ed6 68#include <net/netlink.h>
1da177e4 69#include <linux/skbuff.h>
131ad62d
MDF
70#ifdef CONFIG_SECURITY
71#include <linux/security.h>
72#endif
7dfb7103 73#include <linux/freezer.h>
34e36d8e 74#include <linux/pid_namespace.h>
33faba7f 75#include <net/netns/generic.h>
3dc7e315
DG
76
77#include "audit.h"
1da177e4 78
a3f07114 79/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
1da177e4 80 * (Initialization happens after skb_init is called.) */
a3f07114
EP
81#define AUDIT_DISABLED -1
82#define AUDIT_UNINITIALIZED 0
83#define AUDIT_INITIALIZED 1
1da177e4
LT
84static int audit_initialized;
85
1a6b9f23
EP
86#define AUDIT_OFF 0
87#define AUDIT_ON 1
88#define AUDIT_LOCKED 2
173743dd 89u32 audit_enabled = AUDIT_OFF;
b3b4fdf6 90bool audit_ever_enabled = !!AUDIT_OFF;
1da177e4 91
ae9d67af
JE
92EXPORT_SYMBOL_GPL(audit_enabled);
93
1da177e4 94/* Default state when kernel boots without any parameters. */
173743dd 95static u32 audit_default = AUDIT_OFF;
1da177e4
LT
96
97/* If auditing cannot proceed, audit_failure selects what happens. */
3e1d0bb6 98static u32 audit_failure = AUDIT_FAIL_PRINTK;
1da177e4 99
5b52330b
PM
100/* private audit network namespace index */
101static unsigned int audit_net_id;
102
103/**
104 * struct audit_net - audit private network namespace data
105 * @sk: communication socket
106 */
107struct audit_net {
108 struct sock *sk;
109};
110
111/**
112 * struct auditd_connection - kernel/auditd connection state
113 * @pid: auditd PID
114 * @portid: netlink portid
115 * @net: the associated network namespace
48d0e023 116 * @rcu: RCU head
5b52330b
PM
117 *
118 * Description:
119 * This struct is RCU protected; you must either hold the RCU lock for reading
48d0e023 120 * or the associated spinlock for writing.
75c0371a 121 */
5b52330b 122static struct auditd_connection {
b6c7c115 123 struct pid *pid;
5b52330b
PM
124 u32 portid;
125 struct net *net;
48d0e023
PM
126 struct rcu_head rcu;
127} *auditd_conn = NULL;
128static DEFINE_SPINLOCK(auditd_conn_lock);
1da177e4 129
b0dd25a8 130/* If audit_rate_limit is non-zero, limit the rate of sending audit records
1da177e4
LT
131 * to that number per second. This prevents DoS attacks, but results in
132 * audit records being dropped. */
3e1d0bb6 133static u32 audit_rate_limit;
1da177e4 134
40c0775e
RGB
135/* Number of outstanding audit_buffers allowed.
136 * When set to zero, this means unlimited. */
3e1d0bb6 137static u32 audit_backlog_limit = 64;
e789e561 138#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
3e1d0bb6 139static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1da177e4 140
c2f0c7c3 141/* The identity of the user shutting down the audit system. */
cca080d9 142kuid_t audit_sig_uid = INVALID_UID;
c2f0c7c3 143pid_t audit_sig_pid = -1;
e1396065 144u32 audit_sig_sid = 0;
c2f0c7c3 145
1da177e4
LT
146/* Records can be lost in several ways:
147 0) [suppressed in audit_alloc]
148 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
149 2) out of memory in audit_log_move [alloc_skb]
150 3) suppressed due to audit_rate_limit
151 4) suppressed due to audit_backlog_limit
152*/
92c82e8a 153static atomic_t audit_lost = ATOMIC_INIT(0);
1da177e4 154
f368c07d
AG
155/* Hash for inode-based rules */
156struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
157
8cc96382 158static struct kmem_cache *audit_buffer_cache;
1da177e4 159
c6480207 160/* queue msgs to send via kauditd_task */
af8b824f 161static struct sk_buff_head audit_queue;
c6480207
PM
162/* queue msgs due to temporary unicast send problems */
163static struct sk_buff_head audit_retry_queue;
164/* queue msgs waiting for new auditd connection */
af8b824f 165static struct sk_buff_head audit_hold_queue;
c6480207
PM
166
167/* queue servicing thread */
b7d11258
DW
168static struct task_struct *kauditd_task;
169static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
c6480207
PM
170
171/* waitqueue for callers who are blocked on the audit backlog */
9ad9ad38 172static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
1da177e4 173
b0fed402
EP
174static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
175 .mask = -1,
176 .features = 0,
177 .lock = 0,};
178
21b85c31 179static char *audit_feature_names[2] = {
d040e5af 180 "only_unset_loginuid",
21b85c31 181 "loginuid_immutable",
b0fed402
EP
182};
183
ce423631
PM
184/**
185 * struct audit_ctl_mutex - serialize requests from userspace
186 * @lock: the mutex used for locking
187 * @owner: the task which owns the lock
188 *
189 * Description:
190 * This is the lock struct used to ensure we only process userspace requests
191 * in an orderly fashion. We can't simply use a mutex/lock here because we
192 * need to track lock ownership so we don't end up blocking the lock owner in
193 * audit_log_start() or similar.
194 */
195static struct audit_ctl_mutex {
196 struct mutex lock;
197 void *owner;
198} audit_cmd_mutex;
1da177e4
LT
199
200/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
201 * audit records. Since printk uses a 1024 byte buffer, this buffer
202 * should be at least that large. */
203#define AUDIT_BUFSIZ 1024
204
1da177e4
LT
205/* The audit_buffer is used when formatting an audit record. The caller
206 * locks briefly to get the record off the freelist or to allocate the
207 * buffer, and locks briefly to send the buffer to the netlink layer or
208 * to place it on a transmit queue. Multiple audit_buffers can be in
209 * use simultaneously. */
210struct audit_buffer {
8fc6115c 211 struct sk_buff *skb; /* formatted skb ready to send */
1da177e4 212 struct audit_context *ctx; /* NULL or associated context */
9796fdd8 213 gfp_t gfp_mask;
1da177e4
LT
214};
215
f09ac9db 216struct audit_reply {
f9441639 217 __u32 portid;
638a0fd2 218 struct net *net;
f09ac9db
EP
219 struct sk_buff *skb;
220};
221
5b52330b
PM
222/**
223 * auditd_test_task - Check to see if a given task is an audit daemon
224 * @task: the task to check
225 *
226 * Description:
227 * Return 1 if the task is a registered audit daemon, 0 otherwise.
228 */
b6c7c115 229int auditd_test_task(struct task_struct *task)
5b52330b
PM
230{
231 int rc;
48d0e023 232 struct auditd_connection *ac;
5b52330b
PM
233
234 rcu_read_lock();
48d0e023
PM
235 ac = rcu_dereference(auditd_conn);
236 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
5b52330b
PM
237 rcu_read_unlock();
238
239 return rc;
240}
241
ce423631
PM
242/**
243 * audit_ctl_lock - Take the audit control lock
244 */
245void audit_ctl_lock(void)
246{
247 mutex_lock(&audit_cmd_mutex.lock);
248 audit_cmd_mutex.owner = current;
249}
250
251/**
252 * audit_ctl_unlock - Drop the audit control lock
253 */
254void audit_ctl_unlock(void)
255{
256 audit_cmd_mutex.owner = NULL;
257 mutex_unlock(&audit_cmd_mutex.lock);
258}
259
260/**
261 * audit_ctl_owner_current - Test to see if the current task owns the lock
262 *
263 * Description:
264 * Return true if the current task owns the audit control lock, false if it
265 * doesn't own the lock.
266 */
267static bool audit_ctl_owner_current(void)
268{
269 return (current == audit_cmd_mutex.owner);
270}
271
b6c7c115
PM
272/**
273 * auditd_pid_vnr - Return the auditd PID relative to the namespace
b6c7c115
PM
274 *
275 * Description:
48d0e023 276 * Returns the PID in relation to the namespace, 0 on failure.
b6c7c115 277 */
48d0e023 278static pid_t auditd_pid_vnr(void)
b6c7c115
PM
279{
280 pid_t pid;
48d0e023 281 const struct auditd_connection *ac;
b6c7c115
PM
282
283 rcu_read_lock();
48d0e023
PM
284 ac = rcu_dereference(auditd_conn);
285 if (!ac || !ac->pid)
b6c7c115
PM
286 pid = 0;
287 else
48d0e023 288 pid = pid_vnr(ac->pid);
b6c7c115
PM
289 rcu_read_unlock();
290
291 return pid;
292}
293
5b52330b
PM
294/**
295 * audit_get_sk - Return the audit socket for the given network namespace
296 * @net: the destination network namespace
297 *
298 * Description:
299 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
300 * that a reference is held for the network namespace while the sock is in use.
301 */
302static struct sock *audit_get_sk(const struct net *net)
303{
304 struct audit_net *aunet;
305
306 if (!net)
307 return NULL;
308
309 aunet = net_generic(net, audit_net_id);
310 return aunet->sk;
311}
312
8c8570fb 313void audit_panic(const char *message)
1da177e4 314{
d957f7b7 315 switch (audit_failure) {
1da177e4
LT
316 case AUDIT_FAIL_SILENT:
317 break;
318 case AUDIT_FAIL_PRINTK:
320f1b1e 319 if (printk_ratelimit())
d957f7b7 320 pr_err("%s\n", message);
1da177e4
LT
321 break;
322 case AUDIT_FAIL_PANIC:
5b52330b 323 panic("audit: %s\n", message);
1da177e4
LT
324 break;
325 }
326}
327
328static inline int audit_rate_check(void)
329{
330 static unsigned long last_check = 0;
331 static int messages = 0;
332 static DEFINE_SPINLOCK(lock);
333 unsigned long flags;
334 unsigned long now;
335 unsigned long elapsed;
336 int retval = 0;
337
338 if (!audit_rate_limit) return 1;
339
340 spin_lock_irqsave(&lock, flags);
341 if (++messages < audit_rate_limit) {
342 retval = 1;
343 } else {
344 now = jiffies;
345 elapsed = now - last_check;
346 if (elapsed > HZ) {
347 last_check = now;
348 messages = 0;
349 retval = 1;
350 }
351 }
352 spin_unlock_irqrestore(&lock, flags);
353
354 return retval;
355}
356
b0dd25a8
RD
357/**
358 * audit_log_lost - conditionally log lost audit message event
359 * @message: the message stating reason for lost audit message
360 *
361 * Emit at least 1 message per second, even if audit_rate_check is
362 * throttling.
363 * Always increment the lost messages counter.
364*/
1da177e4
LT
365void audit_log_lost(const char *message)
366{
367 static unsigned long last_msg = 0;
368 static DEFINE_SPINLOCK(lock);
369 unsigned long flags;
370 unsigned long now;
371 int print;
372
373 atomic_inc(&audit_lost);
374
375 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
376
377 if (!print) {
378 spin_lock_irqsave(&lock, flags);
379 now = jiffies;
380 if (now - last_msg > HZ) {
381 print = 1;
382 last_msg = now;
383 }
384 spin_unlock_irqrestore(&lock, flags);
385 }
386
387 if (print) {
320f1b1e 388 if (printk_ratelimit())
3e1d0bb6 389 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
320f1b1e
EP
390 atomic_read(&audit_lost),
391 audit_rate_limit,
392 audit_backlog_limit);
1da177e4
LT
393 audit_panic(message);
394 }
1da177e4
LT
395}
396
3e1d0bb6 397static int audit_log_config_change(char *function_name, u32 new, u32 old,
2532386f 398 int allow_changes)
1da177e4 399{
1a6b9f23
EP
400 struct audit_buffer *ab;
401 int rc = 0;
ce29b682 402
1a6b9f23 403 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
0644ec0c
KC
404 if (unlikely(!ab))
405 return rc;
3e1d0bb6 406 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
4d3fb709 407 audit_log_session_info(ab);
b122c376
EP
408 rc = audit_log_task_context(ab);
409 if (rc)
410 allow_changes = 0; /* Something weird, deny request */
1a6b9f23
EP
411 audit_log_format(ab, " res=%d", allow_changes);
412 audit_log_end(ab);
6a01b07f 413 return rc;
1da177e4
LT
414}
415
3e1d0bb6 416static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
1da177e4 417{
3e1d0bb6
JP
418 int allow_changes, rc = 0;
419 u32 old = *to_change;
6a01b07f
SG
420
421 /* check if we are locked */
1a6b9f23
EP
422 if (audit_enabled == AUDIT_LOCKED)
423 allow_changes = 0;
6a01b07f 424 else
1a6b9f23 425 allow_changes = 1;
ce29b682 426
1a6b9f23 427 if (audit_enabled != AUDIT_OFF) {
dc9eb698 428 rc = audit_log_config_change(function_name, new, old, allow_changes);
1a6b9f23
EP
429 if (rc)
430 allow_changes = 0;
6a01b07f 431 }
6a01b07f
SG
432
433 /* If we are allowed, make the change */
1a6b9f23
EP
434 if (allow_changes == 1)
435 *to_change = new;
6a01b07f
SG
436 /* Not allowed, update reason */
437 else if (rc == 0)
438 rc = -EPERM;
439 return rc;
1da177e4
LT
440}
441
3e1d0bb6 442static int audit_set_rate_limit(u32 limit)
1da177e4 443{
dc9eb698 444 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
1a6b9f23 445}
ce29b682 446
3e1d0bb6 447static int audit_set_backlog_limit(u32 limit)
1a6b9f23 448{
dc9eb698 449 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
1a6b9f23 450}
6a01b07f 451
3e1d0bb6 452static int audit_set_backlog_wait_time(u32 timeout)
51cc83f0
RGB
453{
454 return audit_do_config_change("audit_backlog_wait_time",
31975424 455 &audit_backlog_wait_time, timeout);
51cc83f0
RGB
456}
457
3e1d0bb6 458static int audit_set_enabled(u32 state)
1a6b9f23 459{
b593d384 460 int rc;
724e7bfc 461 if (state > AUDIT_LOCKED)
1a6b9f23 462 return -EINVAL;
6a01b07f 463
dc9eb698 464 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
b593d384
EP
465 if (!rc)
466 audit_ever_enabled |= !!state;
467
468 return rc;
1da177e4
LT
469}
470
3e1d0bb6 471static int audit_set_failure(u32 state)
1da177e4 472{
1da177e4
LT
473 if (state != AUDIT_FAIL_SILENT
474 && state != AUDIT_FAIL_PRINTK
475 && state != AUDIT_FAIL_PANIC)
476 return -EINVAL;
ce29b682 477
dc9eb698 478 return audit_do_config_change("audit_failure", &audit_failure, state);
1da177e4
LT
479}
480
48d0e023
PM
481/**
482 * auditd_conn_free - RCU helper to release an auditd connection struct
483 * @rcu: RCU head
484 *
485 * Description:
486 * Drop any references inside the auditd connection tracking struct and free
487 * the memory.
488 */
447a5647
JP
489static void auditd_conn_free(struct rcu_head *rcu)
490{
48d0e023
PM
491 struct auditd_connection *ac;
492
493 ac = container_of(rcu, struct auditd_connection, rcu);
494 put_pid(ac->pid);
495 put_net(ac->net);
496 kfree(ac);
447a5647 497}
48d0e023 498
5b52330b
PM
499/**
500 * auditd_set - Set/Reset the auditd connection state
501 * @pid: auditd PID
502 * @portid: auditd netlink portid
503 * @net: auditd network namespace pointer
504 *
505 * Description:
506 * This function will obtain and drop network namespace references as
48d0e023 507 * necessary. Returns zero on success, negative values on failure.
5b52330b 508 */
48d0e023 509static int auditd_set(struct pid *pid, u32 portid, struct net *net)
5b52330b
PM
510{
511 unsigned long flags;
48d0e023 512 struct auditd_connection *ac_old, *ac_new;
5b52330b 513
48d0e023
PM
514 if (!pid || !net)
515 return -EINVAL;
516
517 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
518 if (!ac_new)
519 return -ENOMEM;
520 ac_new->pid = get_pid(pid);
521 ac_new->portid = portid;
522 ac_new->net = get_net(net);
523
524 spin_lock_irqsave(&auditd_conn_lock, flags);
525 ac_old = rcu_dereference_protected(auditd_conn,
526 lockdep_is_held(&auditd_conn_lock));
527 rcu_assign_pointer(auditd_conn, ac_new);
528 spin_unlock_irqrestore(&auditd_conn_lock, flags);
529
530 if (ac_old)
531 call_rcu(&ac_old->rcu, auditd_conn_free);
532
533 return 0;
5b52330b
PM
534}
535
5b52330b
PM
536/**
537 * kauditd_print_skb - Print the audit record to the ring buffer
538 * @skb: audit record
539 *
540 * Whatever the reason, this packet may not make it to the auditd connection
541 * so write it via printk so the information isn't completely lost.
038cbcf6 542 */
af8b824f 543static void kauditd_printk_skb(struct sk_buff *skb)
038cbcf6
EP
544{
545 struct nlmsghdr *nlh = nlmsg_hdr(skb);
c64e66c6 546 char *data = nlmsg_data(nlh);
038cbcf6 547
5b52330b
PM
548 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
549 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
550}
551
552/**
553 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
554 * @skb: audit record
555 *
556 * Description:
557 * This should only be used by the kauditd_thread when it fails to flush the
558 * hold queue.
559 */
560static void kauditd_rehold_skb(struct sk_buff *skb)
561{
562 /* put the record back in the queue at the same place */
563 skb_queue_head(&audit_hold_queue, skb);
c6480207
PM
564}
565
566/**
567 * kauditd_hold_skb - Queue an audit record, waiting for auditd
568 * @skb: audit record
569 *
570 * Description:
571 * Queue the audit record, waiting for an instance of auditd. When this
572 * function is called we haven't given up yet on sending the record, but things
573 * are not looking good. The first thing we want to do is try to write the
574 * record via printk and then see if we want to try and hold on to the record
575 * and queue it, if we have room. If we want to hold on to the record, but we
576 * don't have room, record a record lost message.
577 */
578static void kauditd_hold_skb(struct sk_buff *skb)
579{
580 /* at this point it is uncertain if we will ever send this to auditd so
581 * try to send the message via printk before we go any further */
582 kauditd_printk_skb(skb);
583
584 /* can we just silently drop the message? */
585 if (!audit_default) {
586 kfree_skb(skb);
587 return;
588 }
589
590 /* if we have room, queue the message */
591 if (!audit_backlog_limit ||
592 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
593 skb_queue_tail(&audit_hold_queue, skb);
594 return;
595 }
038cbcf6 596
c6480207
PM
597 /* we have no other options - drop the message */
598 audit_log_lost("kauditd hold queue overflow");
599 kfree_skb(skb);
038cbcf6
EP
600}
601
c6480207
PM
602/**
603 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
604 * @skb: audit record
605 *
606 * Description:
607 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
608 * but for some reason we are having problems sending it audit records so
609 * queue the given record and attempt to resend.
610 */
611static void kauditd_retry_skb(struct sk_buff *skb)
f3d357b0 612{
c6480207
PM
613 /* NOTE: because records should only live in the retry queue for a
614 * short period of time, before either being sent or moved to the hold
615 * queue, we don't currently enforce a limit on this queue */
616 skb_queue_tail(&audit_retry_queue, skb);
617}
32a1dbae 618
264d5096
PM
619/**
620 * auditd_reset - Disconnect the auditd connection
c81be52a 621 * @ac: auditd connection state
264d5096
PM
622 *
623 * Description:
624 * Break the auditd/kauditd connection and move all the queued records into the
c81be52a
PM
625 * hold queue in case auditd reconnects. It is important to note that the @ac
626 * pointer should never be dereferenced inside this function as it may be NULL
627 * or invalid, you can only compare the memory address! If @ac is NULL then
628 * the connection will always be reset.
264d5096 629 */
c81be52a 630static void auditd_reset(const struct auditd_connection *ac)
264d5096 631{
48d0e023 632 unsigned long flags;
264d5096 633 struct sk_buff *skb;
48d0e023 634 struct auditd_connection *ac_old;
264d5096
PM
635
636 /* if it isn't already broken, break the connection */
48d0e023
PM
637 spin_lock_irqsave(&auditd_conn_lock, flags);
638 ac_old = rcu_dereference_protected(auditd_conn,
639 lockdep_is_held(&auditd_conn_lock));
c81be52a
PM
640 if (ac && ac != ac_old) {
641 /* someone already registered a new auditd connection */
642 spin_unlock_irqrestore(&auditd_conn_lock, flags);
643 return;
644 }
48d0e023
PM
645 rcu_assign_pointer(auditd_conn, NULL);
646 spin_unlock_irqrestore(&auditd_conn_lock, flags);
647
648 if (ac_old)
649 call_rcu(&ac_old->rcu, auditd_conn_free);
264d5096 650
cd33f5f2
PM
651 /* flush the retry queue to the hold queue, but don't touch the main
652 * queue since we need to process that normally for multicast */
264d5096
PM
653 while ((skb = skb_dequeue(&audit_retry_queue)))
654 kauditd_hold_skb(skb);
264d5096
PM
655}
656
c6480207 657/**
5b52330b
PM
658 * auditd_send_unicast_skb - Send a record via unicast to auditd
659 * @skb: audit record
c6480207
PM
660 *
661 * Description:
5b52330b
PM
662 * Send a skb to the audit daemon, returns positive/zero values on success and
663 * negative values on failure; in all cases the skb will be consumed by this
664 * function. If the send results in -ECONNREFUSED the connection with auditd
665 * will be reset. This function may sleep so callers should not hold any locks
666 * where this would cause a problem.
c6480207 667 */
5b52330b 668static int auditd_send_unicast_skb(struct sk_buff *skb)
c6480207 669{
5b52330b
PM
670 int rc;
671 u32 portid;
672 struct net *net;
673 struct sock *sk;
48d0e023 674 struct auditd_connection *ac;
5b52330b
PM
675
676 /* NOTE: we can't call netlink_unicast while in the RCU section so
677 * take a reference to the network namespace and grab local
678 * copies of the namespace, the sock, and the portid; the
679 * namespace and sock aren't going to go away while we hold a
680 * reference and if the portid does become invalid after the RCU
681 * section netlink_unicast() should safely return an error */
682
683 rcu_read_lock();
48d0e023
PM
684 ac = rcu_dereference(auditd_conn);
685 if (!ac) {
5b52330b 686 rcu_read_unlock();
b0659ae5 687 kfree_skb(skb);
5b52330b
PM
688 rc = -ECONNREFUSED;
689 goto err;
533c7b69 690 }
48d0e023 691 net = get_net(ac->net);
5b52330b 692 sk = audit_get_sk(net);
48d0e023 693 portid = ac->portid;
5b52330b 694 rcu_read_unlock();
c6480207 695
5b52330b
PM
696 rc = netlink_unicast(sk, skb, portid, 0);
697 put_net(net);
698 if (rc < 0)
699 goto err;
700
701 return rc;
702
703err:
c81be52a
PM
704 if (ac && rc == -ECONNREFUSED)
705 auditd_reset(ac);
5b52330b 706 return rc;
c6480207
PM
707}
708
709/**
5b52330b
PM
710 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
711 * @sk: the sending sock
712 * @portid: the netlink destination
713 * @queue: the skb queue to process
714 * @retry_limit: limit on number of netlink unicast failures
715 * @skb_hook: per-skb hook for additional processing
716 * @err_hook: hook called if the skb fails the netlink unicast send
717 *
718 * Description:
719 * Run through the given queue and attempt to send the audit records to auditd,
720 * returns zero on success, negative values on failure. It is up to the caller
721 * to ensure that the @sk is valid for the duration of this function.
722 *
c6480207 723 */
5b52330b
PM
724static int kauditd_send_queue(struct sock *sk, u32 portid,
725 struct sk_buff_head *queue,
726 unsigned int retry_limit,
727 void (*skb_hook)(struct sk_buff *skb),
728 void (*err_hook)(struct sk_buff *skb))
c6480207 729{
5b52330b
PM
730 int rc = 0;
731 struct sk_buff *skb;
732 static unsigned int failed = 0;
32a1dbae 733
5b52330b
PM
734 /* NOTE: kauditd_thread takes care of all our locking, we just use
735 * the netlink info passed to us (e.g. sk and portid) */
736
737 while ((skb = skb_dequeue(queue))) {
738 /* call the skb_hook for each skb we touch */
739 if (skb_hook)
740 (*skb_hook)(skb);
741
742 /* can we send to anyone via unicast? */
743 if (!sk) {
744 if (err_hook)
745 (*err_hook)(skb);
746 continue;
747 }
6c54e789 748
5b52330b
PM
749 /* grab an extra skb reference in case of error */
750 skb_get(skb);
751 rc = netlink_unicast(sk, skb, portid, 0);
752 if (rc < 0) {
753 /* fatal failure for our queue flush attempt? */
754 if (++failed >= retry_limit ||
755 rc == -ECONNREFUSED || rc == -EPERM) {
756 /* yes - error processing for the queue */
757 sk = NULL;
758 if (err_hook)
759 (*err_hook)(skb);
760 if (!skb_hook)
761 goto out;
762 /* keep processing with the skb_hook */
763 continue;
764 } else
765 /* no - requeue to preserve ordering */
766 skb_queue_head(queue, skb);
767 } else {
768 /* it worked - drop the extra reference and continue */
769 consume_skb(skb);
770 failed = 0;
771 }
c6480207
PM
772 }
773
5b52330b
PM
774out:
775 return (rc >= 0 ? 0 : rc);
f3d357b0
EP
776}
777
451f9216 778/*
c6480207
PM
779 * kauditd_send_multicast_skb - Send a record to any multicast listeners
780 * @skb: audit record
451f9216 781 *
c6480207 782 * Description:
5b52330b
PM
783 * Write a multicast message to anyone listening in the initial network
784 * namespace. This function doesn't consume an skb as might be expected since
785 * it has to copy it anyways.
451f9216 786 */
c6480207 787static void kauditd_send_multicast_skb(struct sk_buff *skb)
451f9216 788{
c6480207 789 struct sk_buff *copy;
5b52330b 790 struct sock *sock = audit_get_sk(&init_net);
c6480207 791 struct nlmsghdr *nlh;
451f9216 792
5b52330b
PM
793 /* NOTE: we are not taking an additional reference for init_net since
794 * we don't have to worry about it going away */
795
7f74ecd7
RGB
796 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
797 return;
798
451f9216
RGB
799 /*
800 * The seemingly wasteful skb_copy() rather than bumping the refcount
801 * using skb_get() is necessary because non-standard mods are made to
802 * the skb by the original kaudit unicast socket send routine. The
803 * existing auditd daemon assumes this breakage. Fixing this would
804 * require co-ordinating a change in the established protocol between
805 * the kaudit kernel subsystem and the auditd userspace code. There is
806 * no reason for new multicast clients to continue with this
807 * non-compliance.
808 */
c6480207 809 copy = skb_copy(skb, GFP_KERNEL);
451f9216
RGB
810 if (!copy)
811 return;
c6480207
PM
812 nlh = nlmsg_hdr(copy);
813 nlh->nlmsg_len = skb->len;
451f9216 814
c6480207 815 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
451f9216
RGB
816}
817
c6480207 818/**
5b52330b
PM
819 * kauditd_thread - Worker thread to send audit records to userspace
820 * @dummy: unused
b551d1d9 821 */
97a41e26 822static int kauditd_thread(void *dummy)
b7d11258 823{
c6480207 824 int rc;
5b52330b
PM
825 u32 portid = 0;
826 struct net *net = NULL;
827 struct sock *sk = NULL;
48d0e023 828 struct auditd_connection *ac;
4aa83872 829
c6480207 830#define UNICAST_RETRIES 5
c6480207 831
83144186 832 set_freezable();
4899b8b1 833 while (!kthread_should_stop()) {
5b52330b
PM
834 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
835 rcu_read_lock();
48d0e023
PM
836 ac = rcu_dereference(auditd_conn);
837 if (!ac) {
5b52330b
PM
838 rcu_read_unlock();
839 goto main_queue;
840 }
48d0e023 841 net = get_net(ac->net);
5b52330b 842 sk = audit_get_sk(net);
48d0e023 843 portid = ac->portid;
5b52330b 844 rcu_read_unlock();
c6480207
PM
845
846 /* attempt to flush the hold queue */
5b52330b
PM
847 rc = kauditd_send_queue(sk, portid,
848 &audit_hold_queue, UNICAST_RETRIES,
849 NULL, kauditd_rehold_skb);
c81be52a 850 if (ac && rc < 0) {
5b52330b 851 sk = NULL;
c81be52a 852 auditd_reset(ac);
5b52330b 853 goto main_queue;
c6480207 854 }
f3d357b0 855
c6480207 856 /* attempt to flush the retry queue */
5b52330b
PM
857 rc = kauditd_send_queue(sk, portid,
858 &audit_retry_queue, UNICAST_RETRIES,
859 NULL, kauditd_hold_skb);
c81be52a 860 if (ac && rc < 0) {
5b52330b 861 sk = NULL;
c81be52a 862 auditd_reset(ac);
5b52330b 863 goto main_queue;
c6480207 864 }
db897319 865
5b52330b
PM
866main_queue:
867 /* process the main queue - do the multicast send and attempt
868 * unicast, dump failed record sends to the retry queue; if
869 * sk == NULL due to previous failures we will just do the
c81be52a 870 * multicast send and move the record to the hold queue */
264d5096
PM
871 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
872 kauditd_send_multicast_skb,
c81be52a
PM
873 (sk ?
874 kauditd_retry_skb : kauditd_hold_skb));
875 if (ac && rc < 0)
876 auditd_reset(ac);
264d5096 877 sk = NULL;
5b52330b
PM
878
879 /* drop our netns reference, no auditd sends past this line */
880 if (net) {
881 put_net(net);
882 net = NULL;
3320c513 883 }
5b52330b
PM
884
885 /* we have processed all the queues so wake everyone */
886 wake_up(&audit_backlog_wait);
887
888 /* NOTE: we want to wake up if there is anything on the queue,
889 * regardless of if an auditd is connected, as we need to
890 * do the multicast send and rotate records from the
891 * main queue to the retry/hold queues */
892 wait_event_freezable(kauditd_wait,
893 (skb_queue_len(&audit_queue) ? 1 : 0));
b7d11258 894 }
c6480207 895
4899b8b1 896 return 0;
b7d11258
DW
897}
898
9044e6bc
AV
899int audit_send_list(void *_dest)
900{
901 struct audit_netlink_list *dest = _dest;
9044e6bc 902 struct sk_buff *skb;
5b52330b 903 struct sock *sk = audit_get_sk(dest->net);
9044e6bc
AV
904
905 /* wait for parent to finish and send an ACK */
ce423631
PM
906 audit_ctl_lock();
907 audit_ctl_unlock();
9044e6bc
AV
908
909 while ((skb = __skb_dequeue(&dest->q)) != NULL)
5b52330b 910 netlink_unicast(sk, skb, dest->portid, 0);
9044e6bc 911
5b52330b 912 put_net(dest->net);
9044e6bc
AV
913 kfree(dest);
914
915 return 0;
916}
917
45a0642b 918struct sk_buff *audit_make_reply(int seq, int type, int done,
b8800aa5 919 int multi, const void *payload, int size)
9044e6bc
AV
920{
921 struct sk_buff *skb;
922 struct nlmsghdr *nlh;
9044e6bc
AV
923 void *data;
924 int flags = multi ? NLM_F_MULTI : 0;
925 int t = done ? NLMSG_DONE : type;
926
ee080e6c 927 skb = nlmsg_new(size, GFP_KERNEL);
9044e6bc
AV
928 if (!skb)
929 return NULL;
930
45a0642b 931 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
c64e66c6
DM
932 if (!nlh)
933 goto out_kfree_skb;
934 data = nlmsg_data(nlh);
9044e6bc
AV
935 memcpy(data, payload, size);
936 return skb;
937
c64e66c6
DM
938out_kfree_skb:
939 kfree_skb(skb);
9044e6bc
AV
940 return NULL;
941}
942
f09ac9db
EP
943static int audit_send_reply_thread(void *arg)
944{
945 struct audit_reply *reply = (struct audit_reply *)arg;
5b52330b 946 struct sock *sk = audit_get_sk(reply->net);
f09ac9db 947
ce423631
PM
948 audit_ctl_lock();
949 audit_ctl_unlock();
f09ac9db
EP
950
951 /* Ignore failure. It'll only happen if the sender goes away,
952 because our timeout is set to infinite. */
5b52330b
PM
953 netlink_unicast(sk, reply->skb, reply->portid, 0);
954 put_net(reply->net);
f09ac9db
EP
955 kfree(reply);
956 return 0;
957}
c6480207 958
b0dd25a8
RD
959/**
960 * audit_send_reply - send an audit reply message via netlink
d211f177 961 * @request_skb: skb of request we are replying to (used to target the reply)
b0dd25a8
RD
962 * @seq: sequence number
963 * @type: audit message type
964 * @done: done (last) flag
965 * @multi: multi-part message flag
966 * @payload: payload data
967 * @size: payload size
968 *
f9441639 969 * Allocates an skb, builds the netlink message, and sends it to the port id.
b0dd25a8
RD
970 * No failure notifications.
971 */
6f285b19 972static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
f9441639 973 int multi, const void *payload, int size)
1da177e4 974{
6f285b19 975 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
f09ac9db
EP
976 struct sk_buff *skb;
977 struct task_struct *tsk;
978 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
979 GFP_KERNEL);
980
981 if (!reply)
982 return;
983
45a0642b 984 skb = audit_make_reply(seq, type, done, multi, payload, size);
1da177e4 985 if (!skb)
fcaf1eb8 986 goto out;
f09ac9db 987
6f285b19 988 reply->net = get_net(net);
45a0642b 989 reply->portid = NETLINK_CB(request_skb).portid;
f09ac9db
EP
990 reply->skb = skb;
991
992 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
fcaf1eb8
AM
993 if (!IS_ERR(tsk))
994 return;
995 kfree_skb(skb);
996out:
997 kfree(reply);
1da177e4
LT
998}
999
1000/*
1001 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1002 * control messages.
1003 */
c7bdb545 1004static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1da177e4
LT
1005{
1006 int err = 0;
1007
5a3cb3b6 1008 /* Only support initial user namespace for now. */
aa4af831
EP
1009 /*
1010 * We return ECONNREFUSED because it tricks userspace into thinking
1011 * that audit was not configured into the kernel. Lots of users
1012 * configure their PAM stack (because that's what the distro does)
1013 * to reject login if unable to send messages to audit. If we return
1014 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1015 * configured in and will let login proceed. If we return EPERM
1016 * userspace will reject all logins. This should be removed when we
1017 * support non init namespaces!!
1018 */
0b747172 1019 if (current_user_ns() != &init_user_ns)
aa4af831 1020 return -ECONNREFUSED;
34e36d8e 1021
1da177e4 1022 switch (msg_type) {
1da177e4 1023 case AUDIT_LIST:
1da177e4
LT
1024 case AUDIT_ADD:
1025 case AUDIT_DEL:
18900909
EP
1026 return -EOPNOTSUPP;
1027 case AUDIT_GET:
1028 case AUDIT_SET:
b0fed402
EP
1029 case AUDIT_GET_FEATURE:
1030 case AUDIT_SET_FEATURE:
18900909
EP
1031 case AUDIT_LIST_RULES:
1032 case AUDIT_ADD_RULE:
93315ed6 1033 case AUDIT_DEL_RULE:
c2f0c7c3 1034 case AUDIT_SIGNAL_INFO:
522ed776
MT
1035 case AUDIT_TTY_GET:
1036 case AUDIT_TTY_SET:
74c3cbe3
AV
1037 case AUDIT_TRIM:
1038 case AUDIT_MAKE_EQUIV:
5a3cb3b6
RGB
1039 /* Only support auditd and auditctl in initial pid namespace
1040 * for now. */
5985de67 1041 if (task_active_pid_ns(current) != &init_pid_ns)
5a3cb3b6
RGB
1042 return -EPERM;
1043
90f62cf3 1044 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1da177e4
LT
1045 err = -EPERM;
1046 break;
05474106 1047 case AUDIT_USER:
039b6b3e
RD
1048 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1049 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
90f62cf3 1050 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1da177e4
LT
1051 err = -EPERM;
1052 break;
1053 default: /* bad msg */
1054 err = -EINVAL;
1055 }
1056
1057 return err;
1058}
1059
233a6866 1060static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
50397bd1 1061{
dc9eb698 1062 uid_t uid = from_kuid(&init_user_ns, current_uid());
f1dc4867 1063 pid_t pid = task_tgid_nr(current);
50397bd1 1064
0868a5e1 1065 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
50397bd1 1066 *ab = NULL;
233a6866 1067 return;
50397bd1
EP
1068 }
1069
1070 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
0644ec0c 1071 if (unlikely(!*ab))
233a6866 1072 return;
f1dc4867 1073 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
4d3fb709 1074 audit_log_session_info(*ab);
b122c376 1075 audit_log_task_context(*ab);
50397bd1
EP
1076}
1077
b0fed402
EP
1078int is_audit_feature_set(int i)
1079{
1080 return af.features & AUDIT_FEATURE_TO_MASK(i);
1081}
1082
1083
1084static int audit_get_feature(struct sk_buff *skb)
1085{
1086 u32 seq;
1087
1088 seq = nlmsg_hdr(skb)->nlmsg_seq;
1089
9ef91514 1090 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
b0fed402
EP
1091
1092 return 0;
1093}
1094
1095static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1096 u32 old_lock, u32 new_lock, int res)
1097{
1098 struct audit_buffer *ab;
1099
b6c50fe0
G
1100 if (audit_enabled == AUDIT_OFF)
1101 return;
1102
b0fed402 1103 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
23138ead
RGB
1104 if (!ab)
1105 return;
ad2ac263 1106 audit_log_task_info(ab, current);
897f1acb 1107 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
b0fed402
EP
1108 audit_feature_names[which], !!old_feature, !!new_feature,
1109 !!old_lock, !!new_lock, res);
1110 audit_log_end(ab);
1111}
1112
1113static int audit_set_feature(struct sk_buff *skb)
1114{
1115 struct audit_features *uaf;
1116 int i;
1117
6eed9b26 1118 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
b0fed402
EP
1119 uaf = nlmsg_data(nlmsg_hdr(skb));
1120
1121 /* if there is ever a version 2 we should handle that here */
1122
1123 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1124 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1125 u32 old_feature, new_feature, old_lock, new_lock;
1126
1127 /* if we are not changing this feature, move along */
1128 if (!(feature & uaf->mask))
1129 continue;
1130
1131 old_feature = af.features & feature;
1132 new_feature = uaf->features & feature;
1133 new_lock = (uaf->lock | af.lock) & feature;
1134 old_lock = af.lock & feature;
1135
1136 /* are we changing a locked feature? */
4547b3bc 1137 if (old_lock && (new_feature != old_feature)) {
b0fed402
EP
1138 audit_log_feature_change(i, old_feature, new_feature,
1139 old_lock, new_lock, 0);
1140 return -EPERM;
1141 }
1142 }
1143 /* nothing invalid, do the changes */
1144 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1145 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1146 u32 old_feature, new_feature, old_lock, new_lock;
1147
1148 /* if we are not changing this feature, move along */
1149 if (!(feature & uaf->mask))
1150 continue;
1151
1152 old_feature = af.features & feature;
1153 new_feature = uaf->features & feature;
1154 old_lock = af.lock & feature;
1155 new_lock = (uaf->lock | af.lock) & feature;
1156
1157 if (new_feature != old_feature)
1158 audit_log_feature_change(i, old_feature, new_feature,
1159 old_lock, new_lock, 1);
1160
1161 if (new_feature)
1162 af.features |= feature;
1163 else
1164 af.features &= ~feature;
1165 af.lock |= new_lock;
1166 }
1167
1168 return 0;
1169}
1170
b6c7c115 1171static int audit_replace(struct pid *pid)
133e1e5a 1172{
b6c7c115 1173 pid_t pvnr;
5b52330b 1174 struct sk_buff *skb;
133e1e5a 1175
b6c7c115
PM
1176 pvnr = pid_vnr(pid);
1177 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
133e1e5a
RGB
1178 if (!skb)
1179 return -ENOMEM;
5b52330b 1180 return auditd_send_unicast_skb(skb);
133e1e5a
RGB
1181}
1182
1da177e4
LT
1183static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1184{
dc9eb698 1185 u32 seq;
1da177e4 1186 void *data;
1da177e4 1187 int err;
c0404993 1188 struct audit_buffer *ab;
1da177e4 1189 u16 msg_type = nlh->nlmsg_type;
e1396065 1190 struct audit_sig_info *sig_data;
50397bd1 1191 char *ctx = NULL;
e1396065 1192 u32 len;
1da177e4 1193
c7bdb545 1194 err = audit_netlink_ok(skb, msg_type);
1da177e4
LT
1195 if (err)
1196 return err;
1197
1da177e4 1198 seq = nlh->nlmsg_seq;
c64e66c6 1199 data = nlmsg_data(nlh);
1da177e4
LT
1200
1201 switch (msg_type) {
09f883a9
RGB
1202 case AUDIT_GET: {
1203 struct audit_status s;
1204 memset(&s, 0, sizeof(s));
1205 s.enabled = audit_enabled;
1206 s.failure = audit_failure;
b6c7c115
PM
1207 /* NOTE: use pid_vnr() so the PID is relative to the current
1208 * namespace */
48d0e023 1209 s.pid = auditd_pid_vnr();
09f883a9
RGB
1210 s.rate_limit = audit_rate_limit;
1211 s.backlog_limit = audit_backlog_limit;
1212 s.lost = atomic_read(&audit_lost);
af8b824f 1213 s.backlog = skb_queue_len(&audit_queue);
0288d718 1214 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
31975424 1215 s.backlog_wait_time = audit_backlog_wait_time;
6f285b19 1216 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1da177e4 1217 break;
09f883a9
RGB
1218 }
1219 case AUDIT_SET: {
1220 struct audit_status s;
1221 memset(&s, 0, sizeof(s));
1222 /* guard against past and future API changes */
1223 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1224 if (s.mask & AUDIT_STATUS_ENABLED) {
1225 err = audit_set_enabled(s.enabled);
20c6aaa3 1226 if (err < 0)
1227 return err;
1da177e4 1228 }
09f883a9
RGB
1229 if (s.mask & AUDIT_STATUS_FAILURE) {
1230 err = audit_set_failure(s.failure);
20c6aaa3 1231 if (err < 0)
1232 return err;
1da177e4 1233 }
09f883a9 1234 if (s.mask & AUDIT_STATUS_PID) {
b6c7c115
PM
1235 /* NOTE: we are using the vnr PID functions below
1236 * because the s.pid value is relative to the
1237 * namespace of the caller; at present this
1238 * doesn't matter much since you can really only
1239 * run auditd from the initial pid namespace, but
1240 * something to keep in mind if this changes */
1241 pid_t new_pid = s.pid;
5b52330b 1242 pid_t auditd_pid;
b6c7c115
PM
1243 struct pid *req_pid = task_tgid(current);
1244
33e8a907
SG
1245 /* Sanity check - PID values must match. Setting
1246 * pid to 0 is how auditd ends auditing. */
1247 if (new_pid && (new_pid != pid_vnr(req_pid)))
b6c7c115 1248 return -EINVAL;
1a6b9f23 1249
5b52330b 1250 /* test the auditd connection */
b6c7c115 1251 audit_replace(req_pid);
5b52330b 1252
48d0e023 1253 auditd_pid = auditd_pid_vnr();
33e8a907
SG
1254 if (auditd_pid) {
1255 /* replacing a healthy auditd is not allowed */
1256 if (new_pid) {
1257 audit_log_config_change("audit_pid",
1258 new_pid, auditd_pid, 0);
1259 return -EEXIST;
1260 }
1261 /* only current auditd can unregister itself */
1262 if (pid_vnr(req_pid) != auditd_pid) {
1263 audit_log_config_change("audit_pid",
1264 new_pid, auditd_pid, 0);
1265 return -EACCES;
1266 }
935c9e7f 1267 }
5b52330b 1268
533c7b69 1269 if (new_pid) {
5b52330b 1270 /* register a new auditd connection */
48d0e023
PM
1271 err = auditd_set(req_pid,
1272 NETLINK_CB(skb).portid,
1273 sock_net(NETLINK_CB(skb).sk));
1274 if (audit_enabled != AUDIT_OFF)
1275 audit_log_config_change("audit_pid",
1276 new_pid,
1277 auditd_pid,
1278 err ? 0 : 1);
1279 if (err)
1280 return err;
1281
5b52330b
PM
1282 /* try to process any backlog */
1283 wake_up_interruptible(&kauditd_wait);
48d0e023
PM
1284 } else {
1285 if (audit_enabled != AUDIT_OFF)
1286 audit_log_config_change("audit_pid",
1287 new_pid,
1288 auditd_pid, 1);
1289
5b52330b 1290 /* unregister the auditd connection */
c81be52a 1291 auditd_reset(NULL);
48d0e023 1292 }
1da177e4 1293 }
09f883a9
RGB
1294 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1295 err = audit_set_rate_limit(s.rate_limit);
20c6aaa3 1296 if (err < 0)
1297 return err;
1298 }
51cc83f0 1299 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
09f883a9 1300 err = audit_set_backlog_limit(s.backlog_limit);
51cc83f0
RGB
1301 if (err < 0)
1302 return err;
1303 }
3f0c5fad
EP
1304 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1305 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1306 return -EINVAL;
724e7bfc 1307 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
3f0c5fad
EP
1308 return -EINVAL;
1309 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1310 if (err < 0)
1311 return err;
51cc83f0 1312 }
92c82e8a
RGB
1313 if (s.mask == AUDIT_STATUS_LOST) {
1314 u32 lost = atomic_xchg(&audit_lost, 0);
1315
1316 audit_log_config_change("lost", 0, lost, 1);
1317 return lost;
1318 }
1da177e4 1319 break;
09f883a9 1320 }
b0fed402
EP
1321 case AUDIT_GET_FEATURE:
1322 err = audit_get_feature(skb);
1323 if (err)
1324 return err;
1325 break;
1326 case AUDIT_SET_FEATURE:
1327 err = audit_set_feature(skb);
1328 if (err)
1329 return err;
1330 break;
05474106 1331 case AUDIT_USER:
039b6b3e
RD
1332 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1333 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
4a4cd633
DW
1334 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1335 return 0;
1336
86b2efbe 1337 err = audit_filter(msg_type, AUDIT_FILTER_USER);
724e4fcc 1338 if (err == 1) { /* match or error */
4a4cd633 1339 err = 0;
522ed776 1340 if (msg_type == AUDIT_USER_TTY) {
37282a77 1341 err = tty_audit_push();
522ed776
MT
1342 if (err)
1343 break;
1344 }
dc9eb698 1345 audit_log_common_recv_msg(&ab, msg_type);
50397bd1 1346 if (msg_type != AUDIT_USER_TTY)
b50eba7e
RGB
1347 audit_log_format(ab, " msg='%.*s'",
1348 AUDIT_MESSAGE_TEXT_MAX,
50397bd1
EP
1349 (char *)data);
1350 else {
1351 int size;
1352
f7616102 1353 audit_log_format(ab, " data=");
50397bd1 1354 size = nlmsg_len(nlh);
55ad2f8d
MT
1355 if (size > 0 &&
1356 ((unsigned char *)data)[size - 1] == '\0')
1357 size--;
b556f8ad 1358 audit_log_n_untrustedstring(ab, data, size);
4a4cd633 1359 }
50397bd1 1360 audit_log_end(ab);
0f45aa18 1361 }
1da177e4 1362 break;
93315ed6
AG
1363 case AUDIT_ADD_RULE:
1364 case AUDIT_DEL_RULE:
1365 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1366 return -EINVAL;
1a6b9f23 1367 if (audit_enabled == AUDIT_LOCKED) {
dc9eb698
EP
1368 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1369 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
50397bd1 1370 audit_log_end(ab);
6a01b07f
SG
1371 return -EPERM;
1372 }
45a0642b 1373 err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1da177e4 1374 break;
ce0d9f04 1375 case AUDIT_LIST_RULES:
6f285b19 1376 err = audit_list_rules_send(skb, seq);
ce0d9f04 1377 break;
74c3cbe3
AV
1378 case AUDIT_TRIM:
1379 audit_trim_trees();
dc9eb698 1380 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
74c3cbe3
AV
1381 audit_log_format(ab, " op=trim res=1");
1382 audit_log_end(ab);
1383 break;
1384 case AUDIT_MAKE_EQUIV: {
1385 void *bufp = data;
1386 u32 sizes[2];
7719e437 1387 size_t msglen = nlmsg_len(nlh);
74c3cbe3
AV
1388 char *old, *new;
1389
1390 err = -EINVAL;
7719e437 1391 if (msglen < 2 * sizeof(u32))
74c3cbe3
AV
1392 break;
1393 memcpy(sizes, bufp, 2 * sizeof(u32));
1394 bufp += 2 * sizeof(u32);
7719e437
HH
1395 msglen -= 2 * sizeof(u32);
1396 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
74c3cbe3
AV
1397 if (IS_ERR(old)) {
1398 err = PTR_ERR(old);
1399 break;
1400 }
7719e437 1401 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
74c3cbe3
AV
1402 if (IS_ERR(new)) {
1403 err = PTR_ERR(new);
1404 kfree(old);
1405 break;
1406 }
1407 /* OK, here comes... */
1408 err = audit_tag_tree(old, new);
1409
dc9eb698 1410 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
50397bd1 1411
74c3cbe3
AV
1412 audit_log_format(ab, " op=make_equiv old=");
1413 audit_log_untrustedstring(ab, old);
1414 audit_log_format(ab, " new=");
1415 audit_log_untrustedstring(ab, new);
1416 audit_log_format(ab, " res=%d", !err);
1417 audit_log_end(ab);
1418 kfree(old);
1419 kfree(new);
1420 break;
1421 }
c2f0c7c3 1422 case AUDIT_SIGNAL_INFO:
939cbf26
EP
1423 len = 0;
1424 if (audit_sig_sid) {
1425 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1426 if (err)
1427 return err;
1428 }
e1396065
AV
1429 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1430 if (!sig_data) {
939cbf26
EP
1431 if (audit_sig_sid)
1432 security_release_secctx(ctx, len);
e1396065
AV
1433 return -ENOMEM;
1434 }
cca080d9 1435 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
e1396065 1436 sig_data->pid = audit_sig_pid;
939cbf26
EP
1437 if (audit_sig_sid) {
1438 memcpy(sig_data->ctx, ctx, len);
1439 security_release_secctx(ctx, len);
1440 }
6f285b19
EB
1441 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1442 sig_data, sizeof(*sig_data) + len);
e1396065 1443 kfree(sig_data);
c2f0c7c3 1444 break;
522ed776
MT
1445 case AUDIT_TTY_GET: {
1446 struct audit_tty_status s;
2e28d38a 1447 unsigned int t;
8aa14b64 1448
2e28d38a
PH
1449 t = READ_ONCE(current->signal->audit_tty);
1450 s.enabled = t & AUDIT_TTY_ENABLE;
1451 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
8aa14b64 1452
6f285b19 1453 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
522ed776
MT
1454 break;
1455 }
1456 case AUDIT_TTY_SET: {
a06e56b2 1457 struct audit_tty_status s, old;
a06e56b2 1458 struct audit_buffer *ab;
2e28d38a 1459 unsigned int t;
0e23bacc
EP
1460
1461 memset(&s, 0, sizeof(s));
1462 /* guard against past and future API changes */
1463 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1464 /* check if new data is valid */
1465 if ((s.enabled != 0 && s.enabled != 1) ||
1466 (s.log_passwd != 0 && s.log_passwd != 1))
1467 err = -EINVAL;
a06e56b2 1468
2e28d38a
PH
1469 if (err)
1470 t = READ_ONCE(current->signal->audit_tty);
1471 else {
1472 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1473 t = xchg(&current->signal->audit_tty, t);
0e23bacc 1474 }
2e28d38a
PH
1475 old.enabled = t & AUDIT_TTY_ENABLE;
1476 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
522ed776 1477
a06e56b2 1478 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1ce319f1
EP
1479 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1480 " old-log_passwd=%d new-log_passwd=%d res=%d",
1481 old.enabled, s.enabled, old.log_passwd,
1482 s.log_passwd, !err);
a06e56b2 1483 audit_log_end(ab);
522ed776
MT
1484 break;
1485 }
1da177e4
LT
1486 default:
1487 err = -EINVAL;
1488 break;
1489 }
1490
1491 return err < 0 ? err : 0;
1492}
1493
a9d16208
PM
1494/**
1495 * audit_receive - receive messages from a netlink control socket
1496 * @skb: the message buffer
1497 *
1498 * Parse the provided skb and deal with any messages that may be present,
1499 * malformed skbs are discarded.
b0dd25a8 1500 */
a9d16208 1501static void audit_receive(struct sk_buff *skb)
1da177e4 1502{
ea7ae60b
EP
1503 struct nlmsghdr *nlh;
1504 /*
94191213 1505 * len MUST be signed for nlmsg_next to be able to dec it below 0
ea7ae60b
EP
1506 * if the nlmsg_len was not aligned
1507 */
1508 int len;
1509 int err;
1510
1511 nlh = nlmsg_hdr(skb);
1512 len = skb->len;
1513
ce423631 1514 audit_ctl_lock();
94191213 1515 while (nlmsg_ok(nlh, len)) {
ea7ae60b
EP
1516 err = audit_receive_msg(skb, nlh);
1517 /* if err or if this message says it wants a response */
1518 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
2d4bc933 1519 netlink_ack(skb, nlh, err, NULL);
ea7ae60b 1520
2851da57 1521 nlh = nlmsg_next(nlh, &len);
1da177e4 1522 }
ce423631 1523 audit_ctl_unlock();
1da177e4
LT
1524}
1525
3a101b8d 1526/* Run custom bind function on netlink socket group connect or bind requests. */
023e2cfa 1527static int audit_bind(struct net *net, int group)
3a101b8d
RGB
1528{
1529 if (!capable(CAP_AUDIT_READ))
1530 return -EPERM;
1531
1532 return 0;
1533}
1534
33faba7f 1535static int __net_init audit_net_init(struct net *net)
1da177e4 1536{
a31f2d17
PNA
1537 struct netlink_kernel_cfg cfg = {
1538 .input = audit_receive,
3a101b8d 1539 .bind = audit_bind,
451f9216
RGB
1540 .flags = NL_CFG_F_NONROOT_RECV,
1541 .groups = AUDIT_NLGRP_MAX,
a31f2d17 1542 };
f368c07d 1543
33faba7f
RGB
1544 struct audit_net *aunet = net_generic(net, audit_net_id);
1545
5b52330b
PM
1546 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1547 if (aunet->sk == NULL) {
33faba7f 1548 audit_panic("cannot initialize netlink socket in namespace");
11ee39eb
G
1549 return -ENOMEM;
1550 }
5b52330b
PM
1551 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1552
33faba7f
RGB
1553 return 0;
1554}
1555
1556static void __net_exit audit_net_exit(struct net *net)
1557{
1558 struct audit_net *aunet = net_generic(net, audit_net_id);
5b52330b 1559
48d0e023
PM
1560 /* NOTE: you would think that we would want to check the auditd
1561 * connection and potentially reset it here if it lives in this
1562 * namespace, but since the auditd connection tracking struct holds a
1563 * reference to this namespace (see auditd_set()) we are only ever
1564 * going to get here after that connection has been released */
33faba7f 1565
5b52330b 1566 netlink_kernel_release(aunet->sk);
33faba7f
RGB
1567}
1568
8626877b 1569static struct pernet_operations audit_net_ops __net_initdata = {
33faba7f
RGB
1570 .init = audit_net_init,
1571 .exit = audit_net_exit,
1572 .id = &audit_net_id,
1573 .size = sizeof(struct audit_net),
1574};
1575
1576/* Initialize audit support at boot time. */
1577static int __init audit_init(void)
1578{
1579 int i;
1580
a3f07114
EP
1581 if (audit_initialized == AUDIT_DISABLED)
1582 return 0;
1583
8cc96382
PM
1584 audit_buffer_cache = kmem_cache_create("audit_buffer",
1585 sizeof(struct audit_buffer),
1586 0, SLAB_PANIC, NULL);
1da177e4 1587
af8b824f 1588 skb_queue_head_init(&audit_queue);
c6480207 1589 skb_queue_head_init(&audit_retry_queue);
af8b824f 1590 skb_queue_head_init(&audit_hold_queue);
3dc7e315 1591
f368c07d
AG
1592 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1593 INIT_LIST_HEAD(&audit_inode_hash[i]);
f368c07d 1594
ce423631
PM
1595 mutex_init(&audit_cmd_mutex.lock);
1596 audit_cmd_mutex.owner = NULL;
1597
5b52330b
PM
1598 pr_info("initializing netlink subsys (%s)\n",
1599 audit_default ? "enabled" : "disabled");
1600 register_pernet_subsys(&audit_net_ops);
1601
1602 audit_initialized = AUDIT_INITIALIZED;
5b52330b 1603
6c925564
PM
1604 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1605 if (IS_ERR(kauditd_task)) {
1606 int err = PTR_ERR(kauditd_task);
1607 panic("audit: failed to start the kauditd thread (%d)\n", err);
1608 }
1609
7c397d01
SG
1610 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1611 "state=initialized audit_enabled=%u res=1",
1612 audit_enabled);
6c925564 1613
1da177e4
LT
1614 return 0;
1615}
be4104ab 1616postcore_initcall(audit_init);
1da177e4 1617
11dd2666
GE
1618/*
1619 * Process kernel command-line parameter at boot time.
1620 * audit={0|off} or audit={1|on}.
1621 */
1da177e4
LT
1622static int __init audit_enable(char *str)
1623{
11dd2666
GE
1624 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1625 audit_default = AUDIT_OFF;
1626 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1627 audit_default = AUDIT_ON;
1628 else {
1629 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1630 audit_default = AUDIT_ON;
1631 }
80ab4df6
PM
1632
1633 if (audit_default == AUDIT_OFF)
a3f07114 1634 audit_initialized = AUDIT_DISABLED;
5d842a5b 1635 if (audit_set_enabled(audit_default))
11dd2666
GE
1636 pr_err("audit: error setting audit state (%d)\n",
1637 audit_default);
a3f07114 1638
d957f7b7 1639 pr_info("%s\n", audit_default ?
d3ca0344 1640 "enabled (after initialization)" : "disabled (until reboot)");
a3f07114 1641
9b41046c 1642 return 1;
1da177e4 1643}
1da177e4
LT
1644__setup("audit=", audit_enable);
1645
f910fde7
RGB
1646/* Process kernel command-line parameter at boot time.
1647 * audit_backlog_limit=<n> */
1648static int __init audit_backlog_limit_set(char *str)
1649{
3e1d0bb6 1650 u32 audit_backlog_limit_arg;
d957f7b7 1651
f910fde7 1652 pr_info("audit_backlog_limit: ");
3e1d0bb6
JP
1653 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1654 pr_cont("using default of %u, unable to parse %s\n",
d957f7b7 1655 audit_backlog_limit, str);
f910fde7
RGB
1656 return 1;
1657 }
3e1d0bb6
JP
1658
1659 audit_backlog_limit = audit_backlog_limit_arg;
d957f7b7 1660 pr_cont("%d\n", audit_backlog_limit);
f910fde7
RGB
1661
1662 return 1;
1663}
1664__setup("audit_backlog_limit=", audit_backlog_limit_set);
1665
16e1904e
CW
1666static void audit_buffer_free(struct audit_buffer *ab)
1667{
8fc6115c
CW
1668 if (!ab)
1669 return;
1670
d865e573 1671 kfree_skb(ab->skb);
8cc96382 1672 kmem_cache_free(audit_buffer_cache, ab);
16e1904e
CW
1673}
1674
8cc96382
PM
1675static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1676 gfp_t gfp_mask, int type)
16e1904e 1677{
8cc96382 1678 struct audit_buffer *ab;
8fc6115c 1679
8cc96382
PM
1680 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1681 if (!ab)
1682 return NULL;
ee080e6c
EP
1683
1684 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1685 if (!ab->skb)
c64e66c6 1686 goto err;
8cc96382
PM
1687 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1688 goto err;
ee080e6c 1689
8cc96382
PM
1690 ab->ctx = ctx;
1691 ab->gfp_mask = gfp_mask;
ee080e6c 1692
16e1904e 1693 return ab;
ee080e6c 1694
8fc6115c
CW
1695err:
1696 audit_buffer_free(ab);
1697 return NULL;
16e1904e 1698}
1da177e4 1699
b0dd25a8
RD
1700/**
1701 * audit_serial - compute a serial number for the audit record
1702 *
1703 * Compute a serial number for the audit record. Audit records are
bfb4496e
DW
1704 * written to user-space as soon as they are generated, so a complete
1705 * audit record may be written in several pieces. The timestamp of the
1706 * record and this serial number are used by the user-space tools to
1707 * determine which pieces belong to the same audit record. The
1708 * (timestamp,serial) tuple is unique for each syscall and is live from
1709 * syscall entry to syscall exit.
1710 *
bfb4496e
DW
1711 * NOTE: Another possibility is to store the formatted records off the
1712 * audit context (for those records that have a context), and emit them
1713 * all at syscall exit. However, this could delay the reporting of
1714 * significant errors until syscall exit (or never, if the system
b0dd25a8
RD
1715 * halts).
1716 */
bfb4496e
DW
1717unsigned int audit_serial(void)
1718{
01478d7d 1719 static atomic_t serial = ATOMIC_INIT(0);
d5b454f2 1720
01478d7d 1721 return atomic_add_return(1, &serial);
bfb4496e
DW
1722}
1723
5600b892 1724static inline void audit_get_stamp(struct audit_context *ctx,
2115bb25 1725 struct timespec64 *t, unsigned int *serial)
bfb4496e 1726{
48887e63 1727 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
e832bf48 1728 *t = current_kernel_time64();
bfb4496e
DW
1729 *serial = audit_serial();
1730 }
1731}
1732
b0dd25a8
RD
1733/**
1734 * audit_log_start - obtain an audit buffer
1735 * @ctx: audit_context (may be NULL)
1736 * @gfp_mask: type of allocation
1737 * @type: audit message type
1738 *
1739 * Returns audit_buffer pointer on success or NULL on error.
1740 *
1741 * Obtain an audit buffer. This routine does locking to obtain the
1742 * audit buffer, but then no locking is required for calls to
1743 * audit_log_*format. If the task (ctx) is a task that is currently in a
1744 * syscall, then the syscall is marked as auditable and an audit record
1745 * will be written at syscall exit. If there is no associated task, then
1746 * task context (ctx) should be NULL.
1747 */
9796fdd8 1748struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
9ad9ad38 1749 int type)
1da177e4 1750{
31975424 1751 struct audit_buffer *ab;
2115bb25 1752 struct timespec64 t;
31975424 1753 unsigned int uninitialized_var(serial);
1da177e4 1754
a3f07114 1755 if (audit_initialized != AUDIT_INITIALIZED)
1da177e4
LT
1756 return NULL;
1757
86b2efbe 1758 if (unlikely(!audit_filter(type, AUDIT_FILTER_TYPE)))
c8edc80c
DK
1759 return NULL;
1760
5b52330b 1761 /* NOTE: don't ever fail/sleep on these two conditions:
a09cfa47
PM
1762 * 1. auditd generated record - since we need auditd to drain the
1763 * queue; also, when we are checking for auditd, compare PIDs using
1764 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1765 * using a PID anchored in the caller's namespace
5b52330b
PM
1766 * 2. generator holding the audit_cmd_mutex - we don't want to block
1767 * while holding the mutex */
ce423631 1768 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
5b52330b 1769 long stime = audit_backlog_wait_time;
31975424
PM
1770
1771 while (audit_backlog_limit &&
1772 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1773 /* wake kauditd to try and flush the queue */
1774 wake_up_interruptible(&kauditd_wait);
9ad9ad38 1775
31975424
PM
1776 /* sleep if we are allowed and we haven't exhausted our
1777 * backlog wait limit */
5b52330b 1778 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
31975424
PM
1779 DECLARE_WAITQUEUE(wait, current);
1780
1781 add_wait_queue_exclusive(&audit_backlog_wait,
1782 &wait);
1783 set_current_state(TASK_UNINTERRUPTIBLE);
5b52330b 1784 stime = schedule_timeout(stime);
31975424
PM
1785 remove_wait_queue(&audit_backlog_wait, &wait);
1786 } else {
1787 if (audit_rate_check() && printk_ratelimit())
1788 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1789 skb_queue_len(&audit_queue),
1790 audit_backlog_limit);
1791 audit_log_lost("backlog limit exceeded");
1792 return NULL;
8ac1c8d5 1793 }
9ad9ad38 1794 }
fb19b4c6
DW
1795 }
1796
9ad9ad38 1797 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1da177e4
LT
1798 if (!ab) {
1799 audit_log_lost("out of memory in audit_log_start");
1800 return NULL;
1801 }
1802
bfb4496e 1803 audit_get_stamp(ab->ctx, &t, &serial);
2115bb25
DD
1804 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1805 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
31975424 1806
1da177e4
LT
1807 return ab;
1808}
1809
8fc6115c 1810/**
5ac52f33 1811 * audit_expand - expand skb in the audit buffer
8fc6115c 1812 * @ab: audit_buffer
b0dd25a8 1813 * @extra: space to add at tail of the skb
8fc6115c
CW
1814 *
1815 * Returns 0 (no space) on failed expansion, or available space if
1816 * successful.
1817 */
e3b926b4 1818static inline int audit_expand(struct audit_buffer *ab, int extra)
8fc6115c 1819{
5ac52f33 1820 struct sk_buff *skb = ab->skb;
406a1d86
HX
1821 int oldtail = skb_tailroom(skb);
1822 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1823 int newtail = skb_tailroom(skb);
1824
5ac52f33
CW
1825 if (ret < 0) {
1826 audit_log_lost("out of memory in audit_expand");
8fc6115c 1827 return 0;
5ac52f33 1828 }
406a1d86
HX
1829
1830 skb->truesize += newtail - oldtail;
1831 return newtail;
8fc6115c 1832}
1da177e4 1833
b0dd25a8
RD
1834/*
1835 * Format an audit message into the audit buffer. If there isn't enough
1da177e4
LT
1836 * room in the audit buffer, more room will be allocated and vsnprint
1837 * will be called a second time. Currently, we assume that a printk
b0dd25a8
RD
1838 * can't format message larger than 1024 bytes, so we don't either.
1839 */
1da177e4
LT
1840static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1841 va_list args)
1842{
1843 int len, avail;
5ac52f33 1844 struct sk_buff *skb;
eecb0a73 1845 va_list args2;
1da177e4
LT
1846
1847 if (!ab)
1848 return;
1849
5ac52f33
CW
1850 BUG_ON(!ab->skb);
1851 skb = ab->skb;
1852 avail = skb_tailroom(skb);
1853 if (avail == 0) {
e3b926b4 1854 avail = audit_expand(ab, AUDIT_BUFSIZ);
8fc6115c
CW
1855 if (!avail)
1856 goto out;
1da177e4 1857 }
eecb0a73 1858 va_copy(args2, args);
27a884dc 1859 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1da177e4
LT
1860 if (len >= avail) {
1861 /* The printk buffer is 1024 bytes long, so if we get
1862 * here and AUDIT_BUFSIZ is at least 1024, then we can
1863 * log everything that printk could have logged. */
b0dd25a8
RD
1864 avail = audit_expand(ab,
1865 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
8fc6115c 1866 if (!avail)
a0e86bd4 1867 goto out_va_end;
27a884dc 1868 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1da177e4 1869 }
168b7173
SG
1870 if (len > 0)
1871 skb_put(skb, len);
a0e86bd4
JJ
1872out_va_end:
1873 va_end(args2);
8fc6115c
CW
1874out:
1875 return;
1da177e4
LT
1876}
1877
b0dd25a8
RD
1878/**
1879 * audit_log_format - format a message into the audit buffer.
1880 * @ab: audit_buffer
1881 * @fmt: format string
1882 * @...: optional parameters matching @fmt string
1883 *
1884 * All the work is done in audit_log_vformat.
1885 */
1da177e4
LT
1886void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1887{
1888 va_list args;
1889
1890 if (!ab)
1891 return;
1892 va_start(args, fmt);
1893 audit_log_vformat(ab, fmt, args);
1894 va_end(args);
1895}
1896
b0dd25a8 1897/**
196a5085 1898 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
b0dd25a8
RD
1899 * @ab: the audit_buffer
1900 * @buf: buffer to convert to hex
1901 * @len: length of @buf to be converted
1902 *
1903 * No return value; failure to expand is silently ignored.
1904 *
1905 * This function will take the passed buf and convert it into a string of
1906 * ascii hex digits. The new string is placed onto the skb.
1907 */
b556f8ad 1908void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
168b7173 1909 size_t len)
83c7d091 1910{
168b7173
SG
1911 int i, avail, new_len;
1912 unsigned char *ptr;
1913 struct sk_buff *skb;
168b7173 1914
8ef2d304
AG
1915 if (!ab)
1916 return;
1917
168b7173
SG
1918 BUG_ON(!ab->skb);
1919 skb = ab->skb;
1920 avail = skb_tailroom(skb);
1921 new_len = len<<1;
1922 if (new_len >= avail) {
1923 /* Round the buffer request up to the next multiple */
1924 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1925 avail = audit_expand(ab, new_len);
1926 if (!avail)
1927 return;
1928 }
83c7d091 1929
27a884dc 1930 ptr = skb_tail_pointer(skb);
b8dbc324
JP
1931 for (i = 0; i < len; i++)
1932 ptr = hex_byte_pack_upper(ptr, buf[i]);
168b7173
SG
1933 *ptr = 0;
1934 skb_put(skb, len << 1); /* new string is twice the old string */
83c7d091 1935}
1936
9c937dcc
AG
1937/*
1938 * Format a string of no more than slen characters into the audit buffer,
1939 * enclosed in quote marks.
1940 */
b556f8ad
EP
1941void audit_log_n_string(struct audit_buffer *ab, const char *string,
1942 size_t slen)
9c937dcc
AG
1943{
1944 int avail, new_len;
1945 unsigned char *ptr;
1946 struct sk_buff *skb;
1947
8ef2d304
AG
1948 if (!ab)
1949 return;
1950
9c937dcc
AG
1951 BUG_ON(!ab->skb);
1952 skb = ab->skb;
1953 avail = skb_tailroom(skb);
1954 new_len = slen + 3; /* enclosing quotes + null terminator */
1955 if (new_len > avail) {
1956 avail = audit_expand(ab, new_len);
1957 if (!avail)
1958 return;
1959 }
27a884dc 1960 ptr = skb_tail_pointer(skb);
9c937dcc
AG
1961 *ptr++ = '"';
1962 memcpy(ptr, string, slen);
1963 ptr += slen;
1964 *ptr++ = '"';
1965 *ptr = 0;
1966 skb_put(skb, slen + 2); /* don't include null terminator */
1967}
1968
de6bbd1d
EP
1969/**
1970 * audit_string_contains_control - does a string need to be logged in hex
f706d5d2
DJ
1971 * @string: string to be checked
1972 * @len: max length of the string to check
de6bbd1d 1973 */
9fcf836b 1974bool audit_string_contains_control(const char *string, size_t len)
de6bbd1d
EP
1975{
1976 const unsigned char *p;
b3897f56 1977 for (p = string; p < (const unsigned char *)string + len; p++) {
1d6c9649 1978 if (*p == '"' || *p < 0x21 || *p > 0x7e)
9fcf836b 1979 return true;
de6bbd1d 1980 }
9fcf836b 1981 return false;
de6bbd1d
EP
1982}
1983
b0dd25a8 1984/**
522ed776 1985 * audit_log_n_untrustedstring - log a string that may contain random characters
b0dd25a8 1986 * @ab: audit_buffer
f706d5d2 1987 * @len: length of string (not including trailing null)
b0dd25a8
RD
1988 * @string: string to be logged
1989 *
1990 * This code will escape a string that is passed to it if the string
1991 * contains a control character, unprintable character, double quote mark,
168b7173 1992 * or a space. Unescaped strings will start and end with a double quote mark.
b0dd25a8 1993 * Strings that are escaped are printed in hex (2 digits per char).
9c937dcc
AG
1994 *
1995 * The caller specifies the number of characters in the string to log, which may
1996 * or may not be the entire string.
b0dd25a8 1997 */
b556f8ad
EP
1998void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1999 size_t len)
83c7d091 2000{
de6bbd1d 2001 if (audit_string_contains_control(string, len))
b556f8ad 2002 audit_log_n_hex(ab, string, len);
de6bbd1d 2003 else
b556f8ad 2004 audit_log_n_string(ab, string, len);
83c7d091 2005}
2006
9c937dcc 2007/**
522ed776 2008 * audit_log_untrustedstring - log a string that may contain random characters
9c937dcc
AG
2009 * @ab: audit_buffer
2010 * @string: string to be logged
2011 *
522ed776 2012 * Same as audit_log_n_untrustedstring(), except that strlen is used to
9c937dcc
AG
2013 * determine string length.
2014 */
de6bbd1d 2015void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
9c937dcc 2016{
b556f8ad 2017 audit_log_n_untrustedstring(ab, string, strlen(string));
9c937dcc
AG
2018}
2019
168b7173 2020/* This is a helper-function to print the escaped d_path */
1da177e4 2021void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
66b3fad3 2022 const struct path *path)
1da177e4 2023{
44707fdf 2024 char *p, *pathname;
1da177e4 2025
8fc6115c 2026 if (prefix)
c158a35c 2027 audit_log_format(ab, "%s", prefix);
1da177e4 2028
168b7173 2029 /* We will allow 11 spaces for ' (deleted)' to be appended */
44707fdf
JB
2030 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2031 if (!pathname) {
def57543 2032 audit_log_string(ab, "<no_memory>");
168b7173 2033 return;
1da177e4 2034 }
cf28b486 2035 p = d_path(path, pathname, PATH_MAX+11);
168b7173
SG
2036 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2037 /* FIXME: can we save some information here? */
def57543 2038 audit_log_string(ab, "<too_long>");
5600b892 2039 } else
168b7173 2040 audit_log_untrustedstring(ab, p);
44707fdf 2041 kfree(pathname);
1da177e4
LT
2042}
2043
4d3fb709
EP
2044void audit_log_session_info(struct audit_buffer *ab)
2045{
4440e854 2046 unsigned int sessionid = audit_get_sessionid(current);
4d3fb709
EP
2047 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2048
b8f89caa 2049 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
4d3fb709
EP
2050}
2051
9d960985
EP
2052void audit_log_key(struct audit_buffer *ab, char *key)
2053{
2054 audit_log_format(ab, " key=");
2055 if (key)
2056 audit_log_untrustedstring(ab, key);
2057 else
2058 audit_log_format(ab, "(null)");
2059}
2060
b24a30a7
EP
2061void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2062{
2063 int i;
2064
2065 audit_log_format(ab, " %s=", prefix);
2066 CAP_FOR_EACH_U32(i) {
2067 audit_log_format(ab, "%08x",
7d8b6c63 2068 cap->cap[CAP_LAST_U32 - i]);
b24a30a7
EP
2069 }
2070}
2071
691e6d59 2072static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
b24a30a7 2073{
4b3e4ed6
RGB
2074 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2075 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2076 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2077 name->fcap.fE, name->fcap_ver);
b24a30a7
EP
2078}
2079
2080static inline int audit_copy_fcaps(struct audit_names *name,
2081 const struct dentry *dentry)
2082{
2083 struct cpu_vfs_cap_data caps;
2084 int rc;
2085
2086 if (!dentry)
2087 return 0;
2088
2089 rc = get_vfs_caps_from_disk(dentry, &caps);
2090 if (rc)
2091 return rc;
2092
2093 name->fcap.permitted = caps.permitted;
2094 name->fcap.inheritable = caps.inheritable;
2095 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2096 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2097 VFS_CAP_REVISION_SHIFT;
2098
2099 return 0;
2100}
2101
2102/* Copy inode data into an audit_names. */
2103void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
d6335d77 2104 struct inode *inode)
b24a30a7
EP
2105{
2106 name->ino = inode->i_ino;
2107 name->dev = inode->i_sb->s_dev;
2108 name->mode = inode->i_mode;
2109 name->uid = inode->i_uid;
2110 name->gid = inode->i_gid;
2111 name->rdev = inode->i_rdev;
2112 security_inode_getsecid(inode, &name->osid);
2113 audit_copy_fcaps(name, dentry);
2114}
2115
2116/**
2117 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2118 * @context: audit_context for the task
2119 * @n: audit_names structure with reportable details
2120 * @path: optional path to report instead of audit_names->name
2121 * @record_num: record number to report when handling a list of names
2122 * @call_panic: optional pointer to int that will be updated if secid fails
2123 */
2124void audit_log_name(struct audit_context *context, struct audit_names *n,
8bd10763 2125 const struct path *path, int record_num, int *call_panic)
b24a30a7
EP
2126{
2127 struct audit_buffer *ab;
2128 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2129 if (!ab)
2130 return;
2131
2132 audit_log_format(ab, "item=%d", record_num);
2133
2134 if (path)
2135 audit_log_d_path(ab, " name=", path);
2136 else if (n->name) {
2137 switch (n->name_len) {
2138 case AUDIT_NAME_FULL:
2139 /* log the full path */
2140 audit_log_format(ab, " name=");
2141 audit_log_untrustedstring(ab, n->name->name);
2142 break;
2143 case 0:
2144 /* name was specified as a relative path and the
2145 * directory component is the cwd */
2146 audit_log_d_path(ab, " name=", &context->pwd);
2147 break;
2148 default:
2149 /* log the name's directory component */
2150 audit_log_format(ab, " name=");
2151 audit_log_n_untrustedstring(ab, n->name->name,
2152 n->name_len);
2153 }
2154 } else
2155 audit_log_format(ab, " name=(null)");
2156
425afcff 2157 if (n->ino != AUDIT_INO_UNSET)
b24a30a7
EP
2158 audit_log_format(ab, " inode=%lu"
2159 " dev=%02x:%02x mode=%#ho"
2160 " ouid=%u ogid=%u rdev=%02x:%02x",
2161 n->ino,
2162 MAJOR(n->dev),
2163 MINOR(n->dev),
2164 n->mode,
2165 from_kuid(&init_user_ns, n->uid),
2166 from_kgid(&init_user_ns, n->gid),
2167 MAJOR(n->rdev),
2168 MINOR(n->rdev));
b24a30a7
EP
2169 if (n->osid != 0) {
2170 char *ctx = NULL;
2171 u32 len;
2172 if (security_secid_to_secctx(
2173 n->osid, &ctx, &len)) {
2174 audit_log_format(ab, " osid=%u", n->osid);
2175 if (call_panic)
2176 *call_panic = 2;
2177 } else {
2178 audit_log_format(ab, " obj=%s", ctx);
2179 security_release_secctx(ctx, len);
2180 }
2181 }
2182
d3aea84a
JL
2183 /* log the audit_names record type */
2184 audit_log_format(ab, " nametype=");
2185 switch(n->type) {
2186 case AUDIT_TYPE_NORMAL:
2187 audit_log_format(ab, "NORMAL");
2188 break;
2189 case AUDIT_TYPE_PARENT:
2190 audit_log_format(ab, "PARENT");
2191 break;
2192 case AUDIT_TYPE_CHILD_DELETE:
2193 audit_log_format(ab, "DELETE");
2194 break;
2195 case AUDIT_TYPE_CHILD_CREATE:
2196 audit_log_format(ab, "CREATE");
2197 break;
2198 default:
2199 audit_log_format(ab, "UNKNOWN");
2200 break;
2201 }
2202
b24a30a7
EP
2203 audit_log_fcaps(ab, n);
2204 audit_log_end(ab);
2205}
2206
2207int audit_log_task_context(struct audit_buffer *ab)
2208{
2209 char *ctx = NULL;
2210 unsigned len;
2211 int error;
2212 u32 sid;
2213
2214 security_task_getsecid(current, &sid);
2215 if (!sid)
2216 return 0;
2217
2218 error = security_secid_to_secctx(sid, &ctx, &len);
2219 if (error) {
2220 if (error != -EINVAL)
2221 goto error_path;
2222 return 0;
2223 }
2224
2225 audit_log_format(ab, " subj=%s", ctx);
2226 security_release_secctx(ctx, len);
2227 return 0;
2228
2229error_path:
2230 audit_panic("error in audit_log_task_context");
2231 return error;
2232}
2233EXPORT_SYMBOL(audit_log_task_context);
2234
4766b199
DB
2235void audit_log_d_path_exe(struct audit_buffer *ab,
2236 struct mm_struct *mm)
2237{
5b282552
DB
2238 struct file *exe_file;
2239
2240 if (!mm)
2241 goto out_null;
4766b199 2242
5b282552
DB
2243 exe_file = get_mm_exe_file(mm);
2244 if (!exe_file)
2245 goto out_null;
2246
2247 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2248 fput(exe_file);
2249 return;
2250out_null:
2251 audit_log_format(ab, " exe=(null)");
4766b199
DB
2252}
2253
3f5be2da
RGB
2254struct tty_struct *audit_get_tty(struct task_struct *tsk)
2255{
2256 struct tty_struct *tty = NULL;
2257 unsigned long flags;
2258
2259 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2260 if (tsk->signal)
2261 tty = tty_kref_get(tsk->signal->tty);
2262 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2263 return tty;
2264}
2265
2266void audit_put_tty(struct tty_struct *tty)
2267{
2268 tty_kref_put(tty);
2269}
2270
b24a30a7
EP
2271void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2272{
2273 const struct cred *cred;
9eab339b 2274 char comm[sizeof(tsk->comm)];
db0a6fb5 2275 struct tty_struct *tty;
b24a30a7
EP
2276
2277 if (!ab)
2278 return;
2279
2280 /* tsk == current */
2281 cred = current_cred();
db0a6fb5 2282 tty = audit_get_tty(tsk);
b24a30a7 2283 audit_log_format(ab,
c92cdeb4 2284 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
b24a30a7 2285 " euid=%u suid=%u fsuid=%u"
2f2ad101 2286 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
c92cdeb4 2287 task_ppid_nr(tsk),
fa2bea2f 2288 task_tgid_nr(tsk),
b24a30a7
EP
2289 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2290 from_kuid(&init_user_ns, cred->uid),
2291 from_kgid(&init_user_ns, cred->gid),
2292 from_kuid(&init_user_ns, cred->euid),
2293 from_kuid(&init_user_ns, cred->suid),
2294 from_kuid(&init_user_ns, cred->fsuid),
2295 from_kgid(&init_user_ns, cred->egid),
2296 from_kgid(&init_user_ns, cred->sgid),
2297 from_kgid(&init_user_ns, cred->fsgid),
db0a6fb5
RGB
2298 tty ? tty_name(tty) : "(none)",
2299 audit_get_sessionid(tsk));
2300 audit_put_tty(tty);
b24a30a7 2301 audit_log_format(ab, " comm=");
9eab339b 2302 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
4766b199 2303 audit_log_d_path_exe(ab, tsk->mm);
b24a30a7
EP
2304 audit_log_task_context(ab);
2305}
2306EXPORT_SYMBOL(audit_log_task_info);
2307
a51d9eaa
KC
2308/**
2309 * audit_log_link_denied - report a link restriction denial
22011964 2310 * @operation: specific link operation
a51d9eaa 2311 */
94b9d9b7 2312void audit_log_link_denied(const char *operation)
a51d9eaa
KC
2313{
2314 struct audit_buffer *ab;
b24a30a7 2315
15564ff0 2316 if (!audit_enabled || audit_dummy_context())
b24a30a7 2317 return;
a51d9eaa 2318
b24a30a7 2319 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
a51d9eaa
KC
2320 ab = audit_log_start(current->audit_context, GFP_KERNEL,
2321 AUDIT_ANOM_LINK);
d1c7d97a 2322 if (!ab)
45b578fe 2323 return;
b24a30a7
EP
2324 audit_log_format(ab, "op=%s", operation);
2325 audit_log_task_info(ab, current);
2326 audit_log_format(ab, " res=0");
a51d9eaa
KC
2327 audit_log_end(ab);
2328}
2329
b0dd25a8
RD
2330/**
2331 * audit_log_end - end one audit record
2332 * @ab: the audit_buffer
2333 *
4aa83872
PM
2334 * We can not do a netlink send inside an irq context because it blocks (last
2335 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2336 * queue and a tasklet is scheduled to remove them from the queue outside the
2337 * irq context. May be called in any context.
b0dd25a8 2338 */
b7d11258 2339void audit_log_end(struct audit_buffer *ab)
1da177e4 2340{
5b52330b
PM
2341 struct sk_buff *skb;
2342 struct nlmsghdr *nlh;
2343
1da177e4
LT
2344 if (!ab)
2345 return;
5b52330b
PM
2346
2347 if (audit_rate_check()) {
2348 skb = ab->skb;
f3d357b0 2349 ab->skb = NULL;
5b52330b
PM
2350
2351 /* setup the netlink header, see the comments in
2352 * kauditd_send_multicast_skb() for length quirks */
2353 nlh = nlmsg_hdr(skb);
2354 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2355
2356 /* queue the netlink packet and poke the kauditd thread */
2357 skb_queue_tail(&audit_queue, skb);
2358 wake_up_interruptible(&kauditd_wait);
2359 } else
2360 audit_log_lost("rate limit exceeded");
2361
16e1904e 2362 audit_buffer_free(ab);
1da177e4
LT
2363}
2364
b0dd25a8
RD
2365/**
2366 * audit_log - Log an audit record
2367 * @ctx: audit context
2368 * @gfp_mask: type of allocation
2369 * @type: audit message type
2370 * @fmt: format string to use
2371 * @...: variable parameters matching the format string
2372 *
2373 * This is a convenience function that calls audit_log_start,
2374 * audit_log_vformat, and audit_log_end. It may be called
2375 * in any context.
2376 */
5600b892 2377void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
9ad9ad38 2378 const char *fmt, ...)
1da177e4
LT
2379{
2380 struct audit_buffer *ab;
2381 va_list args;
2382
9ad9ad38 2383 ab = audit_log_start(ctx, gfp_mask, type);
1da177e4
LT
2384 if (ab) {
2385 va_start(args, fmt);
2386 audit_log_vformat(ab, fmt, args);
2387 va_end(args);
2388 audit_log_end(ab);
2389 }
2390}
bf45da97 2391
2392EXPORT_SYMBOL(audit_log_start);
2393EXPORT_SYMBOL(audit_log_end);
2394EXPORT_SYMBOL(audit_log_format);
2395EXPORT_SYMBOL(audit_log);