ipc: reorganize initialization of kern_ipc_perm.seq
[linux-2.6-block.git] / ipc / sem.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
1da177e4
LT
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
624dffcb 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 11 * Enforced range limit on SEM_UNDO
046c6884 12 * (c) 2001 Red Hat Inc
1da177e4
LT
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 58 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
71 */
72
b0d17578 73#include <linux/compat.h>
1da177e4
LT
74#include <linux/slab.h>
75#include <linux/spinlock.h>
76#include <linux/init.h>
77#include <linux/proc_fs.h>
78#include <linux/time.h>
1da177e4
LT
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/audit.h>
c59ede7b 82#include <linux/capability.h>
19b4946c 83#include <linux/seq_file.h>
3e148c79 84#include <linux/rwsem.h>
e3893534 85#include <linux/nsproxy.h>
ae5e1b22 86#include <linux/ipc_namespace.h>
84f001e1 87#include <linux/sched/wake_q.h>
ec67aaa4 88#include <linux/nospec.h>
0eb71a9d 89#include <linux/rhashtable.h>
5f921ae9 90
7153e402 91#include <linux/uaccess.h>
1da177e4
LT
92#include "util.h"
93
1a5c1349
EB
94/* One semaphore structure for each semaphore in the system. */
95struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
51d6f263 104 struct pid *sempid;
1a5c1349
EB
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
2a70b787 110 time64_t sem_otime; /* candidate for sem_otime */
1a5c1349
EB
111} ____cacheline_aligned_in_smp;
112
113/* One sem_array data structure for each set of semaphores in the system. */
114struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127} __randomize_layout;
e57940d7
MS
128
129/* One queue for each sleeping process in the system. */
130struct sem_queue {
e57940d7
MS
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
51d6f263 134 struct pid *pid; /* process id of requesting process */
e57940d7
MS
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
ed247b7c 137 struct sembuf *blocking; /* the operation that blocked */
e57940d7 138 int nsops; /* number of operations */
4ce33ec2
DB
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
141};
142
143/* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157};
158
159/* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162struct sem_undo_list {
f74370b8 163 refcount_t refcnt;
e57940d7
MS
164 spinlock_t lock;
165 struct list_head list_proc;
166};
167
168
ed2ddbf8 169#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 170
7748dbfa 171static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 173#ifdef CONFIG_PROC_FS
19b4946c 174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
175#endif
176
177#define SEMMSL_FAST 256 /* 512 bytes on stack */
178#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
9de5ab8a
MS
180/*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185#define USE_GLOBAL_LOCK_HYSTERESIS 10
186
1da177e4 187/*
758a6ba3 188 * Locking:
5864a2fd 189 * a) global sem_lock() for read/write
1da177e4 190 * sem_undo.id_next,
758a6ba3 191 * sem_array.complex_count,
5864a2fd
MS
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
46c0a8ca 194 *
5864a2fd 195 * b) global or semaphore sem_lock() for read/write:
1a233956 196 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
9de5ab8a
MS
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
208 * The special case is use_global_lock:
209 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
210 * using smp_store_release().
211 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
212 * smp_load_acquire().
213 * Setting it from 0 to non-zero must be ordered with regards to
214 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
215 * is inside a spin_lock() and after a write from 0 to non-zero a
216 * spin_lock()+spin_unlock() is done.
1da177e4
LT
217 */
218
e3893534
KK
219#define sc_semmsl sem_ctls[0]
220#define sc_semmns sem_ctls[1]
221#define sc_semopm sem_ctls[2]
222#define sc_semmni sem_ctls[3]
223
0cfb6aee 224int sem_init_ns(struct ipc_namespace *ns)
e3893534 225{
e3893534
KK
226 ns->sc_semmsl = SEMMSL;
227 ns->sc_semmns = SEMMNS;
228 ns->sc_semopm = SEMOPM;
229 ns->sc_semmni = SEMMNI;
230 ns->used_sems = 0;
0cfb6aee 231 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
232}
233
ae5e1b22 234#ifdef CONFIG_IPC_NS
e3893534
KK
235void sem_exit_ns(struct ipc_namespace *ns)
236{
01b8b07a 237 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 238 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0cfb6aee 239 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
e3893534 240}
ae5e1b22 241#endif
1da177e4 242
0cfb6aee 243int __init sem_init(void)
1da177e4 244{
0cfb6aee
GK
245 const int err = sem_init_ns(&init_ipc_ns);
246
19b4946c
MW
247 ipc_init_proc_interface("sysvipc/sem",
248 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 249 IPC_SEM_IDS, sysvipc_sem_proc_show);
0cfb6aee 250 return err;
1da177e4
LT
251}
252
f269f40a
MS
253/**
254 * unmerge_queues - unmerge queues, if possible.
255 * @sma: semaphore array
256 *
257 * The function unmerges the wait queues if complex_count is 0.
258 * It must be called prior to dropping the global semaphore array lock.
259 */
260static void unmerge_queues(struct sem_array *sma)
261{
262 struct sem_queue *q, *tq;
263
264 /* complex operations still around? */
265 if (sma->complex_count)
266 return;
267 /*
268 * We will switch back to simple mode.
269 * Move all pending operation back into the per-semaphore
270 * queues.
271 */
272 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
273 struct sem *curr;
1a233956 274 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
275
276 list_add_tail(&q->list, &curr->pending_alter);
277 }
278 INIT_LIST_HEAD(&sma->pending_alter);
279}
280
281/**
8001c858 282 * merge_queues - merge single semop queues into global queue
f269f40a
MS
283 * @sma: semaphore array
284 *
285 * This function merges all per-semaphore queues into the global queue.
286 * It is necessary to achieve FIFO ordering for the pending single-sop
287 * operations when a multi-semop operation must sleep.
288 * Only the alter operations must be moved, the const operations can stay.
289 */
290static void merge_queues(struct sem_array *sma)
291{
292 int i;
293 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 294 struct sem *sem = &sma->sems[i];
f269f40a
MS
295
296 list_splice_init(&sem->pending_alter, &sma->pending_alter);
297 }
298}
299
53dad6d3
DB
300static void sem_rcu_free(struct rcu_head *head)
301{
dba4cdd3
MS
302 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
303 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3 304
aefad959 305 security_sem_free(&sma->sem_perm);
e2029dfe 306 kvfree(sma);
53dad6d3
DB
307}
308
5e9d5275 309/*
5864a2fd 310 * Enter the mode suitable for non-simple operations:
5e9d5275 311 * Caller must own sem_perm.lock.
5e9d5275 312 */
5864a2fd 313static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
314{
315 int i;
316 struct sem *sem;
317
9de5ab8a
MS
318 if (sma->use_global_lock > 0) {
319 /*
320 * We are already in global lock mode.
321 * Nothing to do, just reset the
322 * counter until we return to simple mode.
323 */
324 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
325 return;
326 }
9de5ab8a 327 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 328
5e9d5275 329 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 330 sem = &sma->sems[i];
27d7be18
MS
331 spin_lock(&sem->lock);
332 spin_unlock(&sem->lock);
5e9d5275 333 }
5864a2fd
MS
334}
335
336/*
337 * Try to leave the mode that disallows simple operations:
338 * Caller must own sem_perm.lock.
339 */
340static void complexmode_tryleave(struct sem_array *sma)
341{
342 if (sma->complex_count) {
343 /* Complex ops are sleeping.
344 * We must stay in complex mode
345 */
346 return;
347 }
9de5ab8a
MS
348 if (sma->use_global_lock == 1) {
349 /*
350 * Immediately after setting use_global_lock to 0,
351 * a simple op can start. Thus: all memory writes
352 * performed by the current operation must be visible
353 * before we set use_global_lock to 0.
354 */
355 smp_store_release(&sma->use_global_lock, 0);
356 } else {
357 sma->use_global_lock--;
358 }
5e9d5275
MS
359}
360
5864a2fd 361#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
362/*
363 * If the request contains only one semaphore operation, and there are
364 * no complex transactions pending, lock only the semaphore involved.
365 * Otherwise, lock the entire semaphore array, since we either have
366 * multiple semaphores in our own semops, or we need to look at
367 * semaphores from other pending complex operations.
6062a8dc
RR
368 */
369static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
370 int nsops)
371{
5e9d5275 372 struct sem *sem;
ec67aaa4 373 int idx;
6062a8dc 374
5e9d5275
MS
375 if (nsops != 1) {
376 /* Complex operation - acquire a full lock */
377 ipc_lock_object(&sma->sem_perm);
6062a8dc 378
5864a2fd
MS
379 /* Prevent parallel simple ops */
380 complexmode_enter(sma);
381 return SEM_GLOBAL_LOCK;
5e9d5275
MS
382 }
383
384 /*
385 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
386 * Optimized locking is possible if no complex operation
387 * is either enqueued or processed right now.
388 *
9de5ab8a 389 * Both facts are tracked by use_global_mode.
5e9d5275 390 */
ec67aaa4
DB
391 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
392 sem = &sma->sems[idx];
6062a8dc 393
5864a2fd 394 /*
9de5ab8a 395 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
396 * no locking, no memory barrier.
397 */
9de5ab8a 398 if (!sma->use_global_lock) {
6062a8dc 399 /*
5e9d5275
MS
400 * It appears that no complex operation is around.
401 * Acquire the per-semaphore lock.
6062a8dc 402 */
5e9d5275
MS
403 spin_lock(&sem->lock);
404
9de5ab8a
MS
405 /* pairs with smp_store_release() */
406 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
407 /* fast path successful! */
408 return sops->sem_num;
6062a8dc 409 }
5e9d5275
MS
410 spin_unlock(&sem->lock);
411 }
412
413 /* slow path: acquire the full lock */
414 ipc_lock_object(&sma->sem_perm);
6062a8dc 415
9de5ab8a
MS
416 if (sma->use_global_lock == 0) {
417 /*
418 * The use_global_lock mode ended while we waited for
419 * sma->sem_perm.lock. Thus we must switch to locking
420 * with sem->lock.
421 * Unlike in the fast path, there is no need to recheck
422 * sma->use_global_lock after we have acquired sem->lock:
423 * We own sma->sem_perm.lock, thus use_global_lock cannot
424 * change.
5e9d5275
MS
425 */
426 spin_lock(&sem->lock);
9de5ab8a 427
5e9d5275
MS
428 ipc_unlock_object(&sma->sem_perm);
429 return sops->sem_num;
6062a8dc 430 } else {
9de5ab8a
MS
431 /*
432 * Not a false alarm, thus continue to use the global lock
433 * mode. No need for complexmode_enter(), this was done by
434 * the caller that has set use_global_mode to non-zero.
6062a8dc 435 */
5864a2fd 436 return SEM_GLOBAL_LOCK;
6062a8dc 437 }
6062a8dc
RR
438}
439
440static inline void sem_unlock(struct sem_array *sma, int locknum)
441{
5864a2fd 442 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 443 unmerge_queues(sma);
5864a2fd 444 complexmode_tryleave(sma);
cf9d5d78 445 ipc_unlock_object(&sma->sem_perm);
6062a8dc 446 } else {
1a233956 447 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
448 spin_unlock(&sem->lock);
449 }
6062a8dc
RR
450}
451
3e148c79 452/*
d9a605e4 453 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 454 * is not held.
321310ce
LT
455 *
456 * The caller holds the RCU read lock.
3e148c79 457 */
16df3674
DB
458static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
459{
55b7ae50 460 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
461
462 if (IS_ERR(ipcp))
463 return ERR_CAST(ipcp);
464
465 return container_of(ipcp, struct sem_array, sem_perm);
466}
467
16df3674
DB
468static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
469 int id)
470{
471 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
472
473 if (IS_ERR(ipcp))
474 return ERR_CAST(ipcp);
b1ed88b4 475
03f02c76 476 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
477}
478
6ff37972
PP
479static inline void sem_lock_and_putref(struct sem_array *sma)
480{
6062a8dc 481 sem_lock(sma, NULL, -1);
dba4cdd3 482 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
483}
484
7ca7e564
ND
485static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
486{
487 ipc_rmid(&sem_ids(ns), &s->sem_perm);
488}
489
101ede01
KC
490static struct sem_array *sem_alloc(size_t nsems)
491{
492 struct sem_array *sma;
493 size_t size;
494
495 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
496 return NULL;
497
498 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
499 sma = kvmalloc(size, GFP_KERNEL);
500 if (unlikely(!sma))
501 return NULL;
502
503 memset(sma, 0, size);
101ede01
KC
504
505 return sma;
506}
507
f4566f04
ND
508/**
509 * newary - Create a new semaphore set
510 * @ns: namespace
511 * @params: ptr to the structure that contains key, semflg and nsems
512 *
d9a605e4 513 * Called with sem_ids.rwsem held (as a writer)
f4566f04 514 */
7748dbfa 515static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 516{
1da177e4
LT
517 int retval;
518 struct sem_array *sma;
7748dbfa
ND
519 key_t key = params->key;
520 int nsems = params->u.nsems;
521 int semflg = params->flg;
b97e820f 522 int i;
1da177e4
LT
523
524 if (!nsems)
525 return -EINVAL;
e3893534 526 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
527 return -ENOSPC;
528
101ede01 529 sma = sem_alloc(nsems);
3ab08fe2 530 if (!sma)
1da177e4 531 return -ENOMEM;
3ab08fe2 532
1da177e4
LT
533 sma->sem_perm.mode = (semflg & S_IRWXUGO);
534 sma->sem_perm.key = key;
535
536 sma->sem_perm.security = NULL;
aefad959 537 retval = security_sem_alloc(&sma->sem_perm);
1da177e4 538 if (retval) {
e2029dfe 539 kvfree(sma);
1da177e4
LT
540 return retval;
541 }
542
6062a8dc 543 for (i = 0; i < nsems; i++) {
1a233956
MS
544 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
545 INIT_LIST_HEAD(&sma->sems[i].pending_const);
546 spin_lock_init(&sma->sems[i].lock);
6062a8dc 547 }
b97e820f
MS
548
549 sma->complex_count = 0;
9de5ab8a 550 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
551 INIT_LIST_HEAD(&sma->pending_alter);
552 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 553 INIT_LIST_HEAD(&sma->list_id);
1da177e4 554 sma->sem_nsems = nsems;
e54d02b2 555 sma->sem_ctime = ktime_get_real_seconds();
e8577d1f 556
39c96a1b 557 /* ipc_addid() locks sma upon success. */
2ec55f80
MS
558 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
559 if (retval < 0) {
560 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
561 return retval;
e8577d1f
MS
562 }
563 ns->used_sems += nsems;
564
6062a8dc 565 sem_unlock(sma, -1);
6d49dab8 566 rcu_read_unlock();
1da177e4 567
7ca7e564 568 return sma->sem_perm.id;
1da177e4
LT
569}
570
7748dbfa 571
f4566f04 572/*
d9a605e4 573 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 574 */
03f02c76
ND
575static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
576 struct ipc_params *params)
7748dbfa 577{
03f02c76
ND
578 struct sem_array *sma;
579
580 sma = container_of(ipcp, struct sem_array, sem_perm);
581 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
582 return -EINVAL;
583
584 return 0;
585}
586
69894718 587long ksys_semget(key_t key, int nsems, int semflg)
1da177e4 588{
e3893534 589 struct ipc_namespace *ns;
eb66ec44
MK
590 static const struct ipc_ops sem_ops = {
591 .getnew = newary,
50ab44b1 592 .associate = security_sem_associate,
eb66ec44
MK
593 .more_checks = sem_more_checks,
594 };
7748dbfa 595 struct ipc_params sem_params;
e3893534
KK
596
597 ns = current->nsproxy->ipc_ns;
1da177e4 598
e3893534 599 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 600 return -EINVAL;
7ca7e564 601
7748dbfa
ND
602 sem_params.key = key;
603 sem_params.flg = semflg;
604 sem_params.u.nsems = nsems;
1da177e4 605
7748dbfa 606 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
607}
608
69894718
DB
609SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
610{
611 return ksys_semget(key, nsems, semflg);
612}
613
78f5009c 614/**
4ce33ec2
DB
615 * perform_atomic_semop[_slow] - Attempt to perform semaphore
616 * operations on a given array.
758a6ba3 617 * @sma: semaphore array
d198cd6d 618 * @q: struct sem_queue that describes the operation
758a6ba3 619 *
4ce33ec2
DB
620 * Caller blocking are as follows, based the value
621 * indicated by the semaphore operation (sem_op):
622 *
623 * (1) >0 never blocks.
624 * (2) 0 (wait-for-zero operation): semval is non-zero.
625 * (3) <0 attempting to decrement semval to a value smaller than zero.
626 *
758a6ba3
MS
627 * Returns 0 if the operation was possible.
628 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 629 * Returns <0 for error codes.
1da177e4 630 */
4ce33ec2 631static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 632{
51d6f263
EB
633 int result, sem_op, nsops;
634 struct pid *pid;
1da177e4 635 struct sembuf *sop;
239521f3 636 struct sem *curr;
d198cd6d
MS
637 struct sembuf *sops;
638 struct sem_undo *un;
639
640 sops = q->sops;
641 nsops = q->nsops;
642 un = q->undo;
1da177e4
LT
643
644 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
645 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
646 curr = &sma->sems[idx];
1da177e4
LT
647 sem_op = sop->sem_op;
648 result = curr->semval;
78f5009c 649
1da177e4
LT
650 if (!sem_op && result)
651 goto would_block;
652
653 result += sem_op;
654 if (result < 0)
655 goto would_block;
656 if (result > SEMVMX)
657 goto out_of_range;
78f5009c 658
1da177e4
LT
659 if (sop->sem_flg & SEM_UNDO) {
660 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 661 /* Exceeding the undo range is an error. */
1da177e4
LT
662 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
663 goto out_of_range;
78f5009c 664 un->semadj[sop->sem_num] = undo;
1da177e4 665 }
78f5009c 666
1da177e4
LT
667 curr->semval = result;
668 }
669
670 sop--;
d198cd6d 671 pid = q->pid;
1da177e4 672 while (sop >= sops) {
51d6f263 673 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
1da177e4
LT
674 sop--;
675 }
78f5009c 676
1da177e4
LT
677 return 0;
678
679out_of_range:
680 result = -ERANGE;
681 goto undo;
682
683would_block:
ed247b7c
MS
684 q->blocking = sop;
685
1da177e4
LT
686 if (sop->sem_flg & IPC_NOWAIT)
687 result = -EAGAIN;
688 else
689 result = 1;
690
691undo:
692 sop--;
693 while (sop >= sops) {
78f5009c 694 sem_op = sop->sem_op;
1a233956 695 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
696 if (sop->sem_flg & SEM_UNDO)
697 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
698 sop--;
699 }
700
701 return result;
702}
703
4ce33ec2
DB
704static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
705{
706 int result, sem_op, nsops;
707 struct sembuf *sop;
708 struct sem *curr;
709 struct sembuf *sops;
710 struct sem_undo *un;
711
712 sops = q->sops;
713 nsops = q->nsops;
714 un = q->undo;
715
716 if (unlikely(q->dupsop))
717 return perform_atomic_semop_slow(sma, q);
718
719 /*
720 * We scan the semaphore set twice, first to ensure that the entire
721 * operation can succeed, therefore avoiding any pointless writes
722 * to shared memory and having to undo such changes in order to block
723 * until the operations can go through.
724 */
725 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
726 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
727
728 curr = &sma->sems[idx];
4ce33ec2
DB
729 sem_op = sop->sem_op;
730 result = curr->semval;
731
732 if (!sem_op && result)
733 goto would_block; /* wait-for-zero */
734
735 result += sem_op;
736 if (result < 0)
737 goto would_block;
738
739 if (result > SEMVMX)
740 return -ERANGE;
741
742 if (sop->sem_flg & SEM_UNDO) {
743 int undo = un->semadj[sop->sem_num] - sem_op;
744
745 /* Exceeding the undo range is an error. */
746 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
747 return -ERANGE;
748 }
749 }
750
751 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 752 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
753 sem_op = sop->sem_op;
754 result = curr->semval;
755
756 if (sop->sem_flg & SEM_UNDO) {
757 int undo = un->semadj[sop->sem_num] - sem_op;
758
759 un->semadj[sop->sem_num] = undo;
760 }
761 curr->semval += sem_op;
51d6f263 762 ipc_update_pid(&curr->sempid, q->pid);
4ce33ec2
DB
763 }
764
765 return 0;
766
767would_block:
768 q->blocking = sop;
769 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
770}
771
9ae949fa
DB
772static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
773 struct wake_q_head *wake_q)
0a2b9d4c 774{
9ae949fa
DB
775 wake_q_add(wake_q, q->sleeper);
776 /*
777 * Rely on the above implicit barrier, such that we can
778 * ensure that we hold reference to the task before setting
779 * q->status. Otherwise we could race with do_exit if the
780 * task is awoken by an external event before calling
781 * wake_up_process().
782 */
783 WRITE_ONCE(q->status, error);
d4212093
NP
784}
785
b97e820f
MS
786static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
787{
788 list_del(&q->list);
9f1bc2c9 789 if (q->nsops > 1)
b97e820f
MS
790 sma->complex_count--;
791}
792
fd5db422
MS
793/** check_restart(sma, q)
794 * @sma: semaphore array
795 * @q: the operation that just completed
796 *
797 * update_queue is O(N^2) when it restarts scanning the whole queue of
798 * waiting operations. Therefore this function checks if the restart is
799 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
800 * modified the array.
801 * Note that wait-for-zero operations are handled without restart.
fd5db422 802 */
4663d3e8 803static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 804{
1a82e9e1
MS
805 /* pending complex alter operations are too difficult to analyse */
806 if (!list_empty(&sma->pending_alter))
fd5db422
MS
807 return 1;
808
809 /* we were a sleeping complex operation. Too difficult */
810 if (q->nsops > 1)
811 return 1;
812
1a82e9e1
MS
813 /* It is impossible that someone waits for the new value:
814 * - complex operations always restart.
815 * - wait-for-zero are handled seperately.
816 * - q is a previously sleeping simple operation that
817 * altered the array. It must be a decrement, because
818 * simple increments never sleep.
819 * - If there are older (higher priority) decrements
820 * in the queue, then they have observed the original
821 * semval value and couldn't proceed. The operation
822 * decremented to value - thus they won't proceed either.
823 */
824 return 0;
825}
fd5db422 826
1a82e9e1 827/**
8001c858 828 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
829 * @sma: semaphore array.
830 * @semnum: semaphore that was modified.
9ae949fa 831 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
832 *
833 * wake_const_ops must be called after a semaphore in a semaphore array
834 * was set to 0. If complex const operations are pending, wake_const_ops must
835 * be called with semnum = -1, as well as with the number of each modified
836 * semaphore.
9ae949fa 837 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
838 * is stored in q->pid.
839 * The function returns 1 if at least one operation was completed successfully.
840 */
841static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 842 struct wake_q_head *wake_q)
1a82e9e1 843{
f150f02c 844 struct sem_queue *q, *tmp;
1a82e9e1
MS
845 struct list_head *pending_list;
846 int semop_completed = 0;
847
848 if (semnum == -1)
849 pending_list = &sma->pending_const;
850 else
1a233956 851 pending_list = &sma->sems[semnum].pending_const;
fd5db422 852
f150f02c
DB
853 list_for_each_entry_safe(q, tmp, pending_list, list) {
854 int error = perform_atomic_semop(sma, q);
1a82e9e1 855
f150f02c
DB
856 if (error > 0)
857 continue;
858 /* operation completed, remove from queue & wakeup */
859 unlink_queue(sma, q);
1a82e9e1 860
f150f02c
DB
861 wake_up_sem_queue_prepare(q, error, wake_q);
862 if (error == 0)
863 semop_completed = 1;
1a82e9e1 864 }
f150f02c 865
1a82e9e1
MS
866 return semop_completed;
867}
868
869/**
8001c858 870 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
871 * @sma: semaphore array
872 * @sops: operations that were performed
873 * @nsops: number of operations
9ae949fa 874 * @wake_q: lockless wake-queue head
1a82e9e1 875 *
8001c858
DB
876 * Checks all required queue for wait-for-zero operations, based
877 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
878 * The function returns 1 if at least one operation was completed successfully.
879 */
880static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 881 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
882{
883 int i;
884 int semop_completed = 0;
885 int got_zero = 0;
886
887 /* first: the per-semaphore queues, if known */
888 if (sops) {
889 for (i = 0; i < nsops; i++) {
890 int num = sops[i].sem_num;
891
1a233956 892 if (sma->sems[num].semval == 0) {
1a82e9e1 893 got_zero = 1;
9ae949fa 894 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
895 }
896 }
897 } else {
898 /*
899 * No sops means modified semaphores not known.
900 * Assume all were changed.
fd5db422 901 */
1a82e9e1 902 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 903 if (sma->sems[i].semval == 0) {
1a82e9e1 904 got_zero = 1;
9ae949fa 905 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
906 }
907 }
fd5db422
MS
908 }
909 /*
1a82e9e1
MS
910 * If one of the modified semaphores got 0,
911 * then check the global queue, too.
fd5db422 912 */
1a82e9e1 913 if (got_zero)
9ae949fa 914 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 915
1a82e9e1 916 return semop_completed;
fd5db422
MS
917}
918
636c6be8
MS
919
920/**
8001c858 921 * update_queue - look for tasks that can be completed.
636c6be8
MS
922 * @sma: semaphore array.
923 * @semnum: semaphore that was modified.
9ae949fa 924 * @wake_q: lockless wake-queue head.
636c6be8
MS
925 *
926 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
927 * was modified. If multiple semaphores were modified, update_queue must
928 * be called with semnum = -1, as well as with the number of each modified
929 * semaphore.
9ae949fa 930 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 931 * is stored in q->pid.
1a82e9e1
MS
932 * The function internally checks if const operations can now succeed.
933 *
0a2b9d4c 934 * The function return 1 if at least one semop was completed successfully.
1da177e4 935 */
9ae949fa 936static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 937{
f150f02c 938 struct sem_queue *q, *tmp;
636c6be8 939 struct list_head *pending_list;
0a2b9d4c 940 int semop_completed = 0;
636c6be8 941
9f1bc2c9 942 if (semnum == -1)
1a82e9e1 943 pending_list = &sma->pending_alter;
9f1bc2c9 944 else
1a233956 945 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
946
947again:
f150f02c 948 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 949 int error, restart;
636c6be8 950
d987f8b2
MS
951 /* If we are scanning the single sop, per-semaphore list of
952 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 953 * necessary to scan further: simple increments
d987f8b2
MS
954 * that affect only one entry succeed immediately and cannot
955 * be in the per semaphore pending queue, and decrements
956 * cannot be successful if the value is already 0.
957 */
1a233956 958 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
959 break;
960
d198cd6d 961 error = perform_atomic_semop(sma, q);
1da177e4
LT
962
963 /* Does q->sleeper still need to sleep? */
9cad200c
NP
964 if (error > 0)
965 continue;
966
b97e820f 967 unlink_queue(sma, q);
9cad200c 968
0a2b9d4c 969 if (error) {
fd5db422 970 restart = 0;
0a2b9d4c
MS
971 } else {
972 semop_completed = 1;
9ae949fa 973 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 974 restart = check_restart(sma, q);
0a2b9d4c 975 }
fd5db422 976
9ae949fa 977 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 978 if (restart)
9cad200c 979 goto again;
1da177e4 980 }
0a2b9d4c 981 return semop_completed;
1da177e4
LT
982}
983
0e8c6656 984/**
8001c858 985 * set_semotime - set sem_otime
0e8c6656
MS
986 * @sma: semaphore array
987 * @sops: operations that modified the array, may be NULL
988 *
989 * sem_otime is replicated to avoid cache line trashing.
990 * This function sets one instance to the current time.
991 */
992static void set_semotime(struct sem_array *sma, struct sembuf *sops)
993{
994 if (sops == NULL) {
2a70b787 995 sma->sems[0].sem_otime = ktime_get_real_seconds();
0e8c6656 996 } else {
1a233956 997 sma->sems[sops[0].sem_num].sem_otime =
2a70b787 998 ktime_get_real_seconds();
0e8c6656
MS
999 }
1000}
1001
0a2b9d4c 1002/**
8001c858 1003 * do_smart_update - optimized update_queue
fd5db422
MS
1004 * @sma: semaphore array
1005 * @sops: operations that were performed
1006 * @nsops: number of operations
0a2b9d4c 1007 * @otime: force setting otime
9ae949fa 1008 * @wake_q: lockless wake-queue head
fd5db422 1009 *
1a82e9e1
MS
1010 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1011 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 1012 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 1013 * responsible for calling wake_up_q().
0a2b9d4c 1014 * It is safe to perform this call after dropping all locks.
fd5db422 1015 */
0a2b9d4c 1016static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 1017 int otime, struct wake_q_head *wake_q)
fd5db422
MS
1018{
1019 int i;
1020
9ae949fa 1021 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 1022
f269f40a
MS
1023 if (!list_empty(&sma->pending_alter)) {
1024 /* semaphore array uses the global queue - just process it. */
9ae949fa 1025 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
1026 } else {
1027 if (!sops) {
1028 /*
1029 * No sops, thus the modified semaphores are not
1030 * known. Check all.
1031 */
1032 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 1033 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1034 } else {
1035 /*
1036 * Check the semaphores that were increased:
1037 * - No complex ops, thus all sleeping ops are
1038 * decrease.
1039 * - if we decreased the value, then any sleeping
1040 * semaphore ops wont be able to run: If the
1041 * previous value was too small, then the new
1042 * value will be too small, too.
1043 */
1044 for (i = 0; i < nsops; i++) {
1045 if (sops[i].sem_op > 0) {
1046 otime |= update_queue(sma,
9ae949fa 1047 sops[i].sem_num, wake_q);
f269f40a 1048 }
ab465df9 1049 }
9f1bc2c9 1050 }
fd5db422 1051 }
0e8c6656
MS
1052 if (otime)
1053 set_semotime(sma, sops);
fd5db422
MS
1054}
1055
2f2ed41d 1056/*
b220c57a 1057 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1058 */
1059static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1060 bool count_zero)
1061{
b220c57a 1062 struct sembuf *sop = q->blocking;
2f2ed41d 1063
9b44ee2e
MS
1064 /*
1065 * Linux always (since 0.99.10) reported a task as sleeping on all
1066 * semaphores. This violates SUS, therefore it was changed to the
1067 * standard compliant behavior.
1068 * Give the administrators a chance to notice that an application
1069 * might misbehave because it relies on the Linux behavior.
1070 */
1071 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1072 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1073 current->comm, task_pid_nr(current));
1074
b220c57a
MS
1075 if (sop->sem_num != semnum)
1076 return 0;
2f2ed41d 1077
b220c57a
MS
1078 if (count_zero && sop->sem_op == 0)
1079 return 1;
1080 if (!count_zero && sop->sem_op < 0)
1081 return 1;
1082
1083 return 0;
2f2ed41d
MS
1084}
1085
1da177e4
LT
1086/* The following counts are associated to each semaphore:
1087 * semncnt number of tasks waiting on semval being nonzero
1088 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1089 *
1090 * Per definition, a task waits only on the semaphore of the first semop
1091 * that cannot proceed, even if additional operation would block, too.
1da177e4 1092 */
2f2ed41d
MS
1093static int count_semcnt(struct sem_array *sma, ushort semnum,
1094 bool count_zero)
1da177e4 1095{
2f2ed41d 1096 struct list_head *l;
239521f3 1097 struct sem_queue *q;
2f2ed41d 1098 int semcnt;
1da177e4 1099
2f2ed41d
MS
1100 semcnt = 0;
1101 /* First: check the simple operations. They are easy to evaluate */
1102 if (count_zero)
1a233956 1103 l = &sma->sems[semnum].pending_const;
2f2ed41d 1104 else
1a233956 1105 l = &sma->sems[semnum].pending_alter;
1da177e4 1106
2f2ed41d
MS
1107 list_for_each_entry(q, l, list) {
1108 /* all task on a per-semaphore list sleep on exactly
1109 * that semaphore
1110 */
1111 semcnt++;
ebc2e5e6
RR
1112 }
1113
2f2ed41d 1114 /* Then: check the complex operations. */
1994862d 1115 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1116 semcnt += check_qop(sma, semnum, q, count_zero);
1117 }
1118 if (count_zero) {
1119 list_for_each_entry(q, &sma->pending_const, list) {
1120 semcnt += check_qop(sma, semnum, q, count_zero);
1121 }
1994862d 1122 }
2f2ed41d 1123 return semcnt;
1da177e4
LT
1124}
1125
d9a605e4
DB
1126/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1127 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1128 * remains locked on exit.
1da177e4 1129 */
01b8b07a 1130static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1131{
380af1b3
MS
1132 struct sem_undo *un, *tu;
1133 struct sem_queue *q, *tq;
01b8b07a 1134 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1135 int i;
9ae949fa 1136 DEFINE_WAKE_Q(wake_q);
1da177e4 1137
380af1b3 1138 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1139 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1140 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1141 list_del(&un->list_id);
1142 spin_lock(&un->ulp->lock);
1da177e4 1143 un->semid = -1;
380af1b3
MS
1144 list_del_rcu(&un->list_proc);
1145 spin_unlock(&un->ulp->lock);
693a8b6e 1146 kfree_rcu(un, rcu);
380af1b3 1147 }
1da177e4
LT
1148
1149 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1150 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1151 unlink_queue(sma, q);
9ae949fa 1152 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1153 }
1154
1155 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1156 unlink_queue(sma, q);
9ae949fa 1157 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1158 }
9f1bc2c9 1159 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1160 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1161 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1162 unlink_queue(sma, q);
9ae949fa 1163 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1164 }
1165 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1166 unlink_queue(sma, q);
9ae949fa 1167 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9 1168 }
51d6f263 1169 ipc_update_pid(&sem->sempid, NULL);
9f1bc2c9 1170 }
1da177e4 1171
7ca7e564
ND
1172 /* Remove the semaphore set from the IDR */
1173 sem_rmid(ns, sma);
6062a8dc 1174 sem_unlock(sma, -1);
6d49dab8 1175 rcu_read_unlock();
1da177e4 1176
9ae949fa 1177 wake_up_q(&wake_q);
e3893534 1178 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1179 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1180}
1181
1182static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1183{
239521f3 1184 switch (version) {
1da177e4
LT
1185 case IPC_64:
1186 return copy_to_user(buf, in, sizeof(*in));
1187 case IPC_OLD:
1188 {
1189 struct semid_ds out;
1190
982f7c2b
DR
1191 memset(&out, 0, sizeof(out));
1192
1da177e4
LT
1193 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1194
1195 out.sem_otime = in->sem_otime;
1196 out.sem_ctime = in->sem_ctime;
1197 out.sem_nsems = in->sem_nsems;
1198
1199 return copy_to_user(buf, &out, sizeof(out));
1200 }
1201 default:
1202 return -EINVAL;
1203 }
1204}
1205
e54d02b2 1206static time64_t get_semotime(struct sem_array *sma)
d12e1e50
MS
1207{
1208 int i;
e54d02b2 1209 time64_t res;
d12e1e50 1210
1a233956 1211 res = sma->sems[0].sem_otime;
d12e1e50 1212 for (i = 1; i < sma->sem_nsems; i++) {
e54d02b2 1213 time64_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1214
1215 if (to > res)
1216 res = to;
1217 }
1218 return res;
1219}
1220
45a4a64a
AV
1221static int semctl_stat(struct ipc_namespace *ns, int semid,
1222 int cmd, struct semid64_ds *semid64)
1da177e4 1223{
1da177e4 1224 struct sem_array *sma;
c2ab975c 1225 time64_t semotime;
45a4a64a 1226 int err;
1da177e4 1227
45a4a64a 1228 memset(semid64, 0, sizeof(*semid64));
46c0a8ca 1229
45a4a64a 1230 rcu_read_lock();
a280d6dc 1231 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
45a4a64a
AV
1232 sma = sem_obtain_object(ns, semid);
1233 if (IS_ERR(sma)) {
1234 err = PTR_ERR(sma);
1235 goto out_unlock;
1236 }
a280d6dc 1237 } else { /* IPC_STAT */
45a4a64a
AV
1238 sma = sem_obtain_object_check(ns, semid);
1239 if (IS_ERR(sma)) {
1240 err = PTR_ERR(sma);
1241 goto out_unlock;
1da177e4 1242 }
1da177e4 1243 }
1da177e4 1244
a280d6dc
DB
1245 /* see comment for SHM_STAT_ANY */
1246 if (cmd == SEM_STAT_ANY)
1247 audit_ipc_obj(&sma->sem_perm);
1248 else {
1249 err = -EACCES;
1250 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1251 goto out_unlock;
1252 }
1da177e4 1253
aefad959 1254 err = security_sem_semctl(&sma->sem_perm, cmd);
45a4a64a
AV
1255 if (err)
1256 goto out_unlock;
1da177e4 1257
87ad4b0d
PM
1258 ipc_lock_object(&sma->sem_perm);
1259
1260 if (!ipc_valid_object(&sma->sem_perm)) {
1261 ipc_unlock_object(&sma->sem_perm);
1262 err = -EIDRM;
1263 goto out_unlock;
1264 }
1265
45a4a64a 1266 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
c2ab975c
AB
1267 semotime = get_semotime(sma);
1268 semid64->sem_otime = semotime;
45a4a64a 1269 semid64->sem_ctime = sma->sem_ctime;
c2ab975c
AB
1270#ifndef CONFIG_64BIT
1271 semid64->sem_otime_high = semotime >> 32;
1272 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1273#endif
45a4a64a 1274 semid64->sem_nsems = sma->sem_nsems;
87ad4b0d 1275
615c999c
MS
1276 if (cmd == IPC_STAT) {
1277 /*
1278 * As defined in SUS:
1279 * Return 0 on success
1280 */
1281 err = 0;
1282 } else {
1283 /*
1284 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1285 * Return the full id, including the sequence number
1286 */
1287 err = sma->sem_perm.id;
1288 }
87ad4b0d 1289 ipc_unlock_object(&sma->sem_perm);
1da177e4 1290out_unlock:
16df3674 1291 rcu_read_unlock();
1da177e4
LT
1292 return err;
1293}
1294
45a4a64a
AV
1295static int semctl_info(struct ipc_namespace *ns, int semid,
1296 int cmd, void __user *p)
1297{
1298 struct seminfo seminfo;
1299 int max_id;
1300 int err;
1301
1302 err = security_sem_semctl(NULL, cmd);
1303 if (err)
1304 return err;
1305
1306 memset(&seminfo, 0, sizeof(seminfo));
1307 seminfo.semmni = ns->sc_semmni;
1308 seminfo.semmns = ns->sc_semmns;
1309 seminfo.semmsl = ns->sc_semmsl;
1310 seminfo.semopm = ns->sc_semopm;
1311 seminfo.semvmx = SEMVMX;
1312 seminfo.semmnu = SEMMNU;
1313 seminfo.semmap = SEMMAP;
1314 seminfo.semume = SEMUME;
1315 down_read(&sem_ids(ns).rwsem);
1316 if (cmd == SEM_INFO) {
1317 seminfo.semusz = sem_ids(ns).in_use;
1318 seminfo.semaem = ns->used_sems;
1319 } else {
1320 seminfo.semusz = SEMUSZ;
1321 seminfo.semaem = SEMAEM;
1322 }
1323 max_id = ipc_get_maxid(&sem_ids(ns));
1324 up_read(&sem_ids(ns).rwsem);
1325 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1326 return -EFAULT;
1327 return (max_id < 0) ? 0 : max_id;
1328}
1329
e1fd1f49 1330static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
45a4a64a 1331 int val)
e1fd1f49
AV
1332{
1333 struct sem_undo *un;
1334 struct sem_array *sma;
239521f3 1335 struct sem *curr;
45a4a64a 1336 int err;
9ae949fa
DB
1337 DEFINE_WAKE_Q(wake_q);
1338
6062a8dc
RR
1339 if (val > SEMVMX || val < 0)
1340 return -ERANGE;
e1fd1f49 1341
6062a8dc
RR
1342 rcu_read_lock();
1343 sma = sem_obtain_object_check(ns, semid);
1344 if (IS_ERR(sma)) {
1345 rcu_read_unlock();
1346 return PTR_ERR(sma);
1347 }
1348
1349 if (semnum < 0 || semnum >= sma->sem_nsems) {
1350 rcu_read_unlock();
1351 return -EINVAL;
1352 }
1353
1354
1355 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1356 rcu_read_unlock();
1357 return -EACCES;
1358 }
e1fd1f49 1359
aefad959 1360 err = security_sem_semctl(&sma->sem_perm, SETVAL);
6062a8dc
RR
1361 if (err) {
1362 rcu_read_unlock();
1363 return -EACCES;
1364 }
e1fd1f49 1365
6062a8dc 1366 sem_lock(sma, NULL, -1);
e1fd1f49 1367
0f3d2b01 1368 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1369 sem_unlock(sma, -1);
1370 rcu_read_unlock();
1371 return -EIDRM;
1372 }
1373
ec67aaa4 1374 semnum = array_index_nospec(semnum, sma->sem_nsems);
1a233956 1375 curr = &sma->sems[semnum];
e1fd1f49 1376
cf9d5d78 1377 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1378 list_for_each_entry(un, &sma->list_id, list_id)
1379 un->semadj[semnum] = 0;
1380
1381 curr->semval = val;
51d6f263 1382 ipc_update_pid(&curr->sempid, task_tgid(current));
e54d02b2 1383 sma->sem_ctime = ktime_get_real_seconds();
e1fd1f49 1384 /* maybe some queued-up processes were waiting for this */
9ae949fa 1385 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1386 sem_unlock(sma, -1);
6d49dab8 1387 rcu_read_unlock();
9ae949fa 1388 wake_up_q(&wake_q);
6062a8dc 1389 return 0;
e1fd1f49
AV
1390}
1391
e3893534 1392static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1393 int cmd, void __user *p)
1da177e4
LT
1394{
1395 struct sem_array *sma;
239521f3 1396 struct sem *curr;
16df3674 1397 int err, nsems;
1da177e4 1398 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1399 ushort *sem_io = fast_sem_io;
9ae949fa 1400 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1401
1402 rcu_read_lock();
1403 sma = sem_obtain_object_check(ns, semid);
1404 if (IS_ERR(sma)) {
1405 rcu_read_unlock();
023a5355 1406 return PTR_ERR(sma);
16df3674 1407 }
1da177e4
LT
1408
1409 nsems = sma->sem_nsems;
1410
1da177e4 1411 err = -EACCES;
c728b9c8
LT
1412 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1413 goto out_rcu_wakeup;
1da177e4 1414
aefad959 1415 err = security_sem_semctl(&sma->sem_perm, cmd);
c728b9c8
LT
1416 if (err)
1417 goto out_rcu_wakeup;
1da177e4
LT
1418
1419 err = -EACCES;
1420 switch (cmd) {
1421 case GETALL:
1422 {
e1fd1f49 1423 ushort __user *array = p;
1da177e4
LT
1424 int i;
1425
ce857229 1426 sem_lock(sma, NULL, -1);
0f3d2b01 1427 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1428 err = -EIDRM;
1429 goto out_unlock;
1430 }
239521f3 1431 if (nsems > SEMMSL_FAST) {
dba4cdd3 1432 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1433 err = -EIDRM;
6e224f94 1434 goto out_unlock;
ce857229
AV
1435 }
1436 sem_unlock(sma, -1);
6d49dab8 1437 rcu_read_unlock();
f8dbe8d2
KC
1438 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1439 GFP_KERNEL);
239521f3 1440 if (sem_io == NULL) {
dba4cdd3 1441 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1442 return -ENOMEM;
1443 }
1444
4091fd94 1445 rcu_read_lock();
6ff37972 1446 sem_lock_and_putref(sma);
0f3d2b01 1447 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1448 err = -EIDRM;
6e224f94 1449 goto out_unlock;
1da177e4 1450 }
ce857229 1451 }
1da177e4 1452 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1453 sem_io[i] = sma->sems[i].semval;
6062a8dc 1454 sem_unlock(sma, -1);
6d49dab8 1455 rcu_read_unlock();
1da177e4 1456 err = 0;
239521f3 1457 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1458 err = -EFAULT;
1459 goto out_free;
1460 }
1461 case SETALL:
1462 {
1463 int i;
1464 struct sem_undo *un;
1465
dba4cdd3 1466 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1467 err = -EIDRM;
1468 goto out_rcu_wakeup;
6062a8dc 1469 }
16df3674 1470 rcu_read_unlock();
1da177e4 1471
239521f3 1472 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1473 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1474 GFP_KERNEL);
239521f3 1475 if (sem_io == NULL) {
dba4cdd3 1476 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1477 return -ENOMEM;
1478 }
1479 }
1480
239521f3 1481 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1482 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1483 err = -EFAULT;
1484 goto out_free;
1485 }
1486
1487 for (i = 0; i < nsems; i++) {
1488 if (sem_io[i] > SEMVMX) {
dba4cdd3 1489 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1490 err = -ERANGE;
1491 goto out_free;
1492 }
1493 }
4091fd94 1494 rcu_read_lock();
6ff37972 1495 sem_lock_and_putref(sma);
0f3d2b01 1496 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1497 err = -EIDRM;
6e224f94 1498 goto out_unlock;
1da177e4
LT
1499 }
1500
a5f4db87 1501 for (i = 0; i < nsems; i++) {
1a233956 1502 sma->sems[i].semval = sem_io[i];
51d6f263 1503 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
a5f4db87 1504 }
4daa28f6 1505
cf9d5d78 1506 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1507 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1508 for (i = 0; i < nsems; i++)
1509 un->semadj[i] = 0;
4daa28f6 1510 }
e54d02b2 1511 sma->sem_ctime = ktime_get_real_seconds();
1da177e4 1512 /* maybe some queued-up processes were waiting for this */
9ae949fa 1513 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1514 err = 0;
1515 goto out_unlock;
1516 }
e1fd1f49 1517 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1518 }
1519 err = -EINVAL;
c728b9c8
LT
1520 if (semnum < 0 || semnum >= nsems)
1521 goto out_rcu_wakeup;
1da177e4 1522
6062a8dc 1523 sem_lock(sma, NULL, -1);
0f3d2b01 1524 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1525 err = -EIDRM;
1526 goto out_unlock;
1527 }
ec67aaa4
DB
1528
1529 semnum = array_index_nospec(semnum, nsems);
1a233956 1530 curr = &sma->sems[semnum];
1da177e4
LT
1531
1532 switch (cmd) {
1533 case GETVAL:
1534 err = curr->semval;
1535 goto out_unlock;
1536 case GETPID:
51d6f263 1537 err = pid_vnr(curr->sempid);
1da177e4
LT
1538 goto out_unlock;
1539 case GETNCNT:
2f2ed41d 1540 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1541 goto out_unlock;
1542 case GETZCNT:
2f2ed41d 1543 err = count_semcnt(sma, semnum, 1);
1da177e4 1544 goto out_unlock;
1da177e4 1545 }
16df3674 1546
1da177e4 1547out_unlock:
6062a8dc 1548 sem_unlock(sma, -1);
c728b9c8 1549out_rcu_wakeup:
6d49dab8 1550 rcu_read_unlock();
9ae949fa 1551 wake_up_q(&wake_q);
1da177e4 1552out_free:
239521f3 1553 if (sem_io != fast_sem_io)
f8dbe8d2 1554 kvfree(sem_io);
1da177e4
LT
1555 return err;
1556}
1557
016d7132
PP
1558static inline unsigned long
1559copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1560{
239521f3 1561 switch (version) {
1da177e4 1562 case IPC_64:
016d7132 1563 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1564 return -EFAULT;
1da177e4 1565 return 0;
1da177e4
LT
1566 case IPC_OLD:
1567 {
1568 struct semid_ds tbuf_old;
1569
239521f3 1570 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1571 return -EFAULT;
1572
016d7132
PP
1573 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1574 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1575 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1576
1577 return 0;
1578 }
1579 default:
1580 return -EINVAL;
1581 }
1582}
1583
522bb2a2 1584/*
d9a605e4 1585 * This function handles some semctl commands which require the rwsem
522bb2a2 1586 * to be held in write mode.
d9a605e4 1587 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1588 */
21a4826a 1589static int semctl_down(struct ipc_namespace *ns, int semid,
45a4a64a 1590 int cmd, struct semid64_ds *semid64)
1da177e4
LT
1591{
1592 struct sem_array *sma;
1593 int err;
1da177e4
LT
1594 struct kern_ipc_perm *ipcp;
1595
d9a605e4 1596 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1597 rcu_read_lock();
1598
16df3674 1599 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
45a4a64a 1600 &semid64->sem_perm, 0);
7b4cc5d8
DB
1601 if (IS_ERR(ipcp)) {
1602 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1603 goto out_unlock1;
1604 }
073115d6 1605
a5f75e7f 1606 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4 1607
aefad959 1608 err = security_sem_semctl(&sma->sem_perm, cmd);
7b4cc5d8
DB
1609 if (err)
1610 goto out_unlock1;
1da177e4 1611
7b4cc5d8 1612 switch (cmd) {
1da177e4 1613 case IPC_RMID:
6062a8dc 1614 sem_lock(sma, NULL, -1);
7b4cc5d8 1615 /* freeary unlocks the ipc object and rcu */
01b8b07a 1616 freeary(ns, ipcp);
522bb2a2 1617 goto out_up;
1da177e4 1618 case IPC_SET:
6062a8dc 1619 sem_lock(sma, NULL, -1);
45a4a64a 1620 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1efdb69b 1621 if (err)
7b4cc5d8 1622 goto out_unlock0;
e54d02b2 1623 sma->sem_ctime = ktime_get_real_seconds();
1da177e4
LT
1624 break;
1625 default:
1da177e4 1626 err = -EINVAL;
7b4cc5d8 1627 goto out_unlock1;
1da177e4 1628 }
1da177e4 1629
7b4cc5d8 1630out_unlock0:
6062a8dc 1631 sem_unlock(sma, -1);
7b4cc5d8 1632out_unlock1:
6d49dab8 1633 rcu_read_unlock();
522bb2a2 1634out_up:
d9a605e4 1635 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1636 return err;
1637}
1638
d969c6fa 1639long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1da177e4 1640{
1da177e4 1641 int version;
e3893534 1642 struct ipc_namespace *ns;
e1fd1f49 1643 void __user *p = (void __user *)arg;
45a4a64a
AV
1644 struct semid64_ds semid64;
1645 int err;
1da177e4
LT
1646
1647 if (semid < 0)
1648 return -EINVAL;
1649
1650 version = ipc_parse_version(&cmd);
e3893534 1651 ns = current->nsproxy->ipc_ns;
1da177e4 1652
239521f3 1653 switch (cmd) {
1da177e4
LT
1654 case IPC_INFO:
1655 case SEM_INFO:
45a4a64a 1656 return semctl_info(ns, semid, cmd, p);
4b9fcb0e 1657 case IPC_STAT:
1da177e4 1658 case SEM_STAT:
a280d6dc 1659 case SEM_STAT_ANY:
45a4a64a
AV
1660 err = semctl_stat(ns, semid, cmd, &semid64);
1661 if (err < 0)
1662 return err;
1663 if (copy_semid_to_user(p, &semid64, version))
1664 err = -EFAULT;
1665 return err;
1da177e4
LT
1666 case GETALL:
1667 case GETVAL:
1668 case GETPID:
1669 case GETNCNT:
1670 case GETZCNT:
1da177e4 1671 case SETALL:
e1fd1f49 1672 return semctl_main(ns, semid, semnum, cmd, p);
45a4a64a
AV
1673 case SETVAL: {
1674 int val;
1675#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1676 /* big-endian 64bit */
1677 val = arg >> 32;
1678#else
1679 /* 32bit or little-endian 64bit */
1680 val = arg;
1681#endif
1682 return semctl_setval(ns, semid, semnum, val);
1683 }
1da177e4 1684 case IPC_SET:
45a4a64a
AV
1685 if (copy_semid_from_user(&semid64, p, version))
1686 return -EFAULT;
1687 case IPC_RMID:
1688 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1689 default:
1690 return -EINVAL;
1691 }
1692}
1693
d969c6fa
DB
1694SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1695{
1696 return ksys_semctl(semid, semnum, cmd, arg);
1697}
1698
c0ebccb6
AV
1699#ifdef CONFIG_COMPAT
1700
1701struct compat_semid_ds {
1702 struct compat_ipc_perm sem_perm;
1703 compat_time_t sem_otime;
1704 compat_time_t sem_ctime;
1705 compat_uptr_t sem_base;
1706 compat_uptr_t sem_pending;
1707 compat_uptr_t sem_pending_last;
1708 compat_uptr_t undo;
1709 unsigned short sem_nsems;
1710};
1711
1712static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1713 int version)
1714{
1715 memset(out, 0, sizeof(*out));
1716 if (version == IPC_64) {
6aa211e8 1717 struct compat_semid64_ds __user *p = buf;
c0ebccb6
AV
1718 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1719 } else {
6aa211e8 1720 struct compat_semid_ds __user *p = buf;
c0ebccb6
AV
1721 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1722 }
1723}
1724
1725static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1726 int version)
1727{
1728 if (version == IPC_64) {
1729 struct compat_semid64_ds v;
1730 memset(&v, 0, sizeof(v));
1731 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
c2ab975c
AB
1732 v.sem_otime = lower_32_bits(in->sem_otime);
1733 v.sem_otime_high = upper_32_bits(in->sem_otime);
1734 v.sem_ctime = lower_32_bits(in->sem_ctime);
1735 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
c0ebccb6
AV
1736 v.sem_nsems = in->sem_nsems;
1737 return copy_to_user(buf, &v, sizeof(v));
1738 } else {
1739 struct compat_semid_ds v;
1740 memset(&v, 0, sizeof(v));
1741 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1742 v.sem_otime = in->sem_otime;
1743 v.sem_ctime = in->sem_ctime;
1744 v.sem_nsems = in->sem_nsems;
1745 return copy_to_user(buf, &v, sizeof(v));
1746 }
1747}
1748
d969c6fa 1749long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
c0ebccb6
AV
1750{
1751 void __user *p = compat_ptr(arg);
1752 struct ipc_namespace *ns;
1753 struct semid64_ds semid64;
1754 int version = compat_ipc_parse_version(&cmd);
1755 int err;
1756
1757 ns = current->nsproxy->ipc_ns;
1758
1759 if (semid < 0)
1760 return -EINVAL;
1761
1762 switch (cmd & (~IPC_64)) {
1763 case IPC_INFO:
1764 case SEM_INFO:
1765 return semctl_info(ns, semid, cmd, p);
1766 case IPC_STAT:
1767 case SEM_STAT:
a280d6dc 1768 case SEM_STAT_ANY:
c0ebccb6
AV
1769 err = semctl_stat(ns, semid, cmd, &semid64);
1770 if (err < 0)
1771 return err;
1772 if (copy_compat_semid_to_user(p, &semid64, version))
1773 err = -EFAULT;
1774 return err;
1775 case GETVAL:
1776 case GETPID:
1777 case GETNCNT:
1778 case GETZCNT:
1779 case GETALL:
1da177e4 1780 case SETALL:
e1fd1f49
AV
1781 return semctl_main(ns, semid, semnum, cmd, p);
1782 case SETVAL:
1783 return semctl_setval(ns, semid, semnum, arg);
1da177e4 1784 case IPC_SET:
c0ebccb6
AV
1785 if (copy_compat_semid_from_user(&semid64, p, version))
1786 return -EFAULT;
1787 /* fallthru */
1788 case IPC_RMID:
1789 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1790 default:
1791 return -EINVAL;
1792 }
1793}
d969c6fa
DB
1794
1795COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1796{
1797 return compat_ksys_semctl(semid, semnum, cmd, arg);
1798}
c0ebccb6 1799#endif
1da177e4 1800
1da177e4
LT
1801/* If the task doesn't already have a undo_list, then allocate one
1802 * here. We guarantee there is only one thread using this undo list,
1803 * and current is THE ONE
1804 *
1805 * If this allocation and assignment succeeds, but later
1806 * portions of this code fail, there is no need to free the sem_undo_list.
1807 * Just let it stay associated with the task, and it'll be freed later
1808 * at exit time.
1809 *
1810 * This can block, so callers must hold no locks.
1811 */
1812static inline int get_undo_list(struct sem_undo_list **undo_listp)
1813{
1814 struct sem_undo_list *undo_list;
1da177e4
LT
1815
1816 undo_list = current->sysvsem.undo_list;
1817 if (!undo_list) {
2453a306 1818 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1819 if (undo_list == NULL)
1820 return -ENOMEM;
00a5dfdb 1821 spin_lock_init(&undo_list->lock);
f74370b8 1822 refcount_set(&undo_list->refcnt, 1);
4daa28f6
MS
1823 INIT_LIST_HEAD(&undo_list->list_proc);
1824
1da177e4
LT
1825 current->sysvsem.undo_list = undo_list;
1826 }
1827 *undo_listp = undo_list;
1828 return 0;
1829}
1830
bf17bb71 1831static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1832{
bf17bb71 1833 struct sem_undo *un;
4daa28f6 1834
bf17bb71
NP
1835 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1836 if (un->semid == semid)
1837 return un;
1da177e4 1838 }
4daa28f6 1839 return NULL;
1da177e4
LT
1840}
1841
bf17bb71
NP
1842static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1843{
1844 struct sem_undo *un;
1845
239521f3 1846 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1847
1848 un = __lookup_undo(ulp, semid);
1849 if (un) {
1850 list_del_rcu(&un->list_proc);
1851 list_add_rcu(&un->list_proc, &ulp->list_proc);
1852 }
1853 return un;
1854}
1855
4daa28f6 1856/**
8001c858 1857 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1858 * @ns: namespace
1859 * @semid: semaphore array id
1860 *
1861 * The function looks up (and if not present creates) the undo structure.
1862 * The size of the undo structure depends on the size of the semaphore
1863 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1864 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1865 * performs a rcu_read_lock().
4daa28f6
MS
1866 */
1867static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1868{
1869 struct sem_array *sma;
1870 struct sem_undo_list *ulp;
1871 struct sem_undo *un, *new;
6062a8dc 1872 int nsems, error;
1da177e4
LT
1873
1874 error = get_undo_list(&ulp);
1875 if (error)
1876 return ERR_PTR(error);
1877
380af1b3 1878 rcu_read_lock();
c530c6ac 1879 spin_lock(&ulp->lock);
1da177e4 1880 un = lookup_undo(ulp, semid);
c530c6ac 1881 spin_unlock(&ulp->lock);
239521f3 1882 if (likely(un != NULL))
1da177e4
LT
1883 goto out;
1884
1885 /* no undo structure around - allocate one. */
4daa28f6 1886 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1887 sma = sem_obtain_object_check(ns, semid);
1888 if (IS_ERR(sma)) {
1889 rcu_read_unlock();
4de85cd6 1890 return ERR_CAST(sma);
16df3674 1891 }
023a5355 1892
1da177e4 1893 nsems = sma->sem_nsems;
dba4cdd3 1894 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1895 rcu_read_unlock();
1896 un = ERR_PTR(-EIDRM);
1897 goto out;
1898 }
16df3674 1899 rcu_read_unlock();
1da177e4 1900
4daa28f6 1901 /* step 2: allocate new undo structure */
4668edc3 1902 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1903 if (!new) {
dba4cdd3 1904 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1905 return ERR_PTR(-ENOMEM);
1906 }
1da177e4 1907
380af1b3 1908 /* step 3: Acquire the lock on semaphore array */
4091fd94 1909 rcu_read_lock();
6ff37972 1910 sem_lock_and_putref(sma);
0f3d2b01 1911 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1912 sem_unlock(sma, -1);
6d49dab8 1913 rcu_read_unlock();
1da177e4
LT
1914 kfree(new);
1915 un = ERR_PTR(-EIDRM);
1916 goto out;
1917 }
380af1b3
MS
1918 spin_lock(&ulp->lock);
1919
1920 /*
1921 * step 4: check for races: did someone else allocate the undo struct?
1922 */
1923 un = lookup_undo(ulp, semid);
1924 if (un) {
1925 kfree(new);
1926 goto success;
1927 }
4daa28f6
MS
1928 /* step 5: initialize & link new undo structure */
1929 new->semadj = (short *) &new[1];
380af1b3 1930 new->ulp = ulp;
4daa28f6
MS
1931 new->semid = semid;
1932 assert_spin_locked(&ulp->lock);
380af1b3 1933 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1934 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1935 list_add(&new->list_id, &sma->list_id);
380af1b3 1936 un = new;
4daa28f6 1937
380af1b3 1938success:
c530c6ac 1939 spin_unlock(&ulp->lock);
6062a8dc 1940 sem_unlock(sma, -1);
1da177e4
LT
1941out:
1942 return un;
1943}
1944
44ee4546 1945static long do_semtimedop(int semid, struct sembuf __user *tsops,
3ef56dc2 1946 unsigned nsops, const struct timespec64 *timeout)
1da177e4
LT
1947{
1948 int error = -EINVAL;
1949 struct sem_array *sma;
1950 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1951 struct sembuf *sops = fast_sops, *sop;
1da177e4 1952 struct sem_undo *un;
4ce33ec2
DB
1953 int max, locknum;
1954 bool undos = false, alter = false, dupsop = false;
1da177e4 1955 struct sem_queue queue;
4ce33ec2 1956 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1957 struct ipc_namespace *ns;
1958
1959 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1960
1961 if (nsops < 1 || semid < 0)
1962 return -EINVAL;
e3893534 1963 if (nsops > ns->sc_semopm)
1da177e4 1964 return -E2BIG;
239521f3 1965 if (nsops > SEMOPM_FAST) {
344476e1 1966 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
239521f3 1967 if (sops == NULL)
1da177e4
LT
1968 return -ENOMEM;
1969 }
4ce33ec2 1970
239521f3
MS
1971 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1972 error = -EFAULT;
1da177e4
LT
1973 goto out_free;
1974 }
4ce33ec2 1975
1da177e4 1976 if (timeout) {
44ee4546
AV
1977 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1978 timeout->tv_nsec >= 1000000000L) {
1da177e4
LT
1979 error = -EINVAL;
1980 goto out_free;
1981 }
3ef56dc2 1982 jiffies_left = timespec64_to_jiffies(timeout);
1da177e4 1983 }
4ce33ec2 1984
1da177e4
LT
1985 max = 0;
1986 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
1987 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1988
1da177e4
LT
1989 if (sop->sem_num >= max)
1990 max = sop->sem_num;
1991 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
1992 undos = true;
1993 if (dup & mask) {
1994 /*
1995 * There was a previous alter access that appears
1996 * to have accessed the same semaphore, thus use
1997 * the dupsop logic. "appears", because the detection
1998 * can only check % BITS_PER_LONG.
1999 */
2000 dupsop = true;
2001 }
2002 if (sop->sem_op != 0) {
2003 alter = true;
2004 dup |= mask;
2005 }
1da177e4 2006 }
1da177e4 2007
1da177e4 2008 if (undos) {
6062a8dc 2009 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 2010 un = find_alloc_undo(ns, semid);
1da177e4
LT
2011 if (IS_ERR(un)) {
2012 error = PTR_ERR(un);
2013 goto out_free;
2014 }
6062a8dc 2015 } else {
1da177e4 2016 un = NULL;
6062a8dc
RR
2017 rcu_read_lock();
2018 }
1da177e4 2019
16df3674 2020 sma = sem_obtain_object_check(ns, semid);
023a5355 2021 if (IS_ERR(sma)) {
6062a8dc 2022 rcu_read_unlock();
023a5355 2023 error = PTR_ERR(sma);
1da177e4 2024 goto out_free;
023a5355
ND
2025 }
2026
16df3674 2027 error = -EFBIG;
248e7357
DB
2028 if (max >= sma->sem_nsems) {
2029 rcu_read_unlock();
2030 goto out_free;
2031 }
16df3674
DB
2032
2033 error = -EACCES;
248e7357
DB
2034 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2035 rcu_read_unlock();
2036 goto out_free;
2037 }
16df3674 2038
aefad959 2039 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
248e7357
DB
2040 if (error) {
2041 rcu_read_unlock();
2042 goto out_free;
2043 }
16df3674 2044
6e224f94
MS
2045 error = -EIDRM;
2046 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
2047 /*
2048 * We eventually might perform the following check in a lockless
2049 * fashion, considering ipc_valid_object() locking constraints.
2050 * If nsops == 1 and there is no contention for sem_perm.lock, then
2051 * only a per-semaphore lock is held and it's OK to proceed with the
2052 * check below. More details on the fine grained locking scheme
2053 * entangled here and why it's RMID race safe on comments at sem_lock()
2054 */
2055 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 2056 goto out_unlock_free;
1da177e4 2057 /*
4daa28f6 2058 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 2059 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 2060 * and now a new array with received the same id. Check and fail.
25985edc 2061 * This case can be detected checking un->semid. The existence of
380af1b3 2062 * "un" itself is guaranteed by rcu.
1da177e4 2063 */
6062a8dc
RR
2064 if (un && un->semid == -1)
2065 goto out_unlock_free;
4daa28f6 2066
d198cd6d
MS
2067 queue.sops = sops;
2068 queue.nsops = nsops;
2069 queue.undo = un;
51d6f263 2070 queue.pid = task_tgid(current);
d198cd6d 2071 queue.alter = alter;
4ce33ec2 2072 queue.dupsop = dupsop;
d198cd6d
MS
2073
2074 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
2075 if (error == 0) { /* non-blocking succesfull path */
2076 DEFINE_WAKE_Q(wake_q);
2077
2078 /*
2079 * If the operation was successful, then do
0e8c6656
MS
2080 * the required updates.
2081 */
2082 if (alter)
9ae949fa 2083 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
2084 else
2085 set_semotime(sma, sops);
9ae949fa
DB
2086
2087 sem_unlock(sma, locknum);
2088 rcu_read_unlock();
2089 wake_up_q(&wake_q);
2090
2091 goto out_free;
1da177e4 2092 }
9ae949fa 2093 if (error < 0) /* non-blocking error path */
0e8c6656 2094 goto out_unlock_free;
1da177e4 2095
9ae949fa
DB
2096 /*
2097 * We need to sleep on this operation, so we put the current
1da177e4
LT
2098 * task into the pending queue and go to sleep.
2099 */
b97e820f
MS
2100 if (nsops == 1) {
2101 struct sem *curr;
ec67aaa4
DB
2102 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2103 curr = &sma->sems[idx];
b97e820f 2104
f269f40a
MS
2105 if (alter) {
2106 if (sma->complex_count) {
2107 list_add_tail(&queue.list,
2108 &sma->pending_alter);
2109 } else {
2110
2111 list_add_tail(&queue.list,
2112 &curr->pending_alter);
2113 }
2114 } else {
1a82e9e1 2115 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 2116 }
b97e820f 2117 } else {
f269f40a
MS
2118 if (!sma->complex_count)
2119 merge_queues(sma);
2120
9f1bc2c9 2121 if (alter)
1a82e9e1 2122 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 2123 else
1a82e9e1
MS
2124 list_add_tail(&queue.list, &sma->pending_const);
2125
b97e820f
MS
2126 sma->complex_count++;
2127 }
2128
b5fa01a2 2129 do {
f075faa3 2130 WRITE_ONCE(queue.status, -EINTR);
b5fa01a2 2131 queue.sleeper = current;
0b0577f6 2132
b5fa01a2
DB
2133 __set_current_state(TASK_INTERRUPTIBLE);
2134 sem_unlock(sma, locknum);
2135 rcu_read_unlock();
1da177e4 2136
b5fa01a2
DB
2137 if (timeout)
2138 jiffies_left = schedule_timeout(jiffies_left);
2139 else
2140 schedule();
1da177e4 2141
9ae949fa 2142 /*
b5fa01a2
DB
2143 * fastpath: the semop has completed, either successfully or
2144 * not, from the syscall pov, is quite irrelevant to us at this
2145 * point; we're done.
2146 *
2147 * We _do_ care, nonetheless, about being awoken by a signal or
2148 * spuriously. The queue.status is checked again in the
2149 * slowpath (aka after taking sem_lock), such that we can detect
2150 * scenarios where we were awakened externally, during the
2151 * window between wake_q_add() and wake_up_q().
c61284e9 2152 */
b5fa01a2
DB
2153 error = READ_ONCE(queue.status);
2154 if (error != -EINTR) {
2155 /*
2156 * User space could assume that semop() is a memory
2157 * barrier: Without the mb(), the cpu could
2158 * speculatively read in userspace stale data that was
2159 * overwritten by the previous owner of the semaphore.
2160 */
2161 smp_mb();
2162 goto out_free;
2163 }
d694ad62 2164
b5fa01a2 2165 rcu_read_lock();
c626bc46 2166 locknum = sem_lock(sma, sops, nsops);
1da177e4 2167
370b262c
DB
2168 if (!ipc_valid_object(&sma->sem_perm))
2169 goto out_unlock_free;
2170
2171 error = READ_ONCE(queue.status);
1da177e4 2172
b5fa01a2
DB
2173 /*
2174 * If queue.status != -EINTR we are woken up by another process.
2175 * Leave without unlink_queue(), but with sem_unlock().
2176 */
2177 if (error != -EINTR)
2178 goto out_unlock_free;
0b0577f6 2179
b5fa01a2
DB
2180 /*
2181 * If an interrupt occurred we have to clean up the queue.
2182 */
2183 if (timeout && jiffies_left == 0)
2184 error = -EAGAIN;
2185 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2186
b97e820f 2187 unlink_queue(sma, &queue);
1da177e4
LT
2188
2189out_unlock_free:
6062a8dc 2190 sem_unlock(sma, locknum);
6d49dab8 2191 rcu_read_unlock();
1da177e4 2192out_free:
239521f3 2193 if (sops != fast_sops)
e4243b80 2194 kvfree(sops);
1da177e4
LT
2195 return error;
2196}
2197
41f4f0e2 2198long ksys_semtimedop(int semid, struct sembuf __user *tsops,
21fc538d 2199 unsigned int nsops, const struct __kernel_timespec __user *timeout)
44ee4546
AV
2200{
2201 if (timeout) {
3ef56dc2
DD
2202 struct timespec64 ts;
2203 if (get_timespec64(&ts, timeout))
44ee4546
AV
2204 return -EFAULT;
2205 return do_semtimedop(semid, tsops, nsops, &ts);
2206 }
2207 return do_semtimedop(semid, tsops, nsops, NULL);
2208}
2209
41f4f0e2 2210SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
21fc538d 2211 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
41f4f0e2
DB
2212{
2213 return ksys_semtimedop(semid, tsops, nsops, timeout);
2214}
2215
b0d17578 2216#ifdef CONFIG_COMPAT_32BIT_TIME
41f4f0e2
DB
2217long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2218 unsigned int nsops,
2219 const struct compat_timespec __user *timeout)
44ee4546
AV
2220{
2221 if (timeout) {
3ef56dc2
DD
2222 struct timespec64 ts;
2223 if (compat_get_timespec64(&ts, timeout))
44ee4546
AV
2224 return -EFAULT;
2225 return do_semtimedop(semid, tsems, nsops, &ts);
2226 }
2227 return do_semtimedop(semid, tsems, nsops, NULL);
2228}
41f4f0e2
DB
2229
2230COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2231 unsigned int, nsops,
2232 const struct compat_timespec __user *, timeout)
2233{
2234 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2235}
44ee4546
AV
2236#endif
2237
d5460c99
HC
2238SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2239 unsigned, nsops)
1da177e4 2240{
44ee4546 2241 return do_semtimedop(semid, tsops, nsops, NULL);
1da177e4
LT
2242}
2243
2244/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2245 * parent and child tasks.
1da177e4
LT
2246 */
2247
2248int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2249{
2250 struct sem_undo_list *undo_list;
2251 int error;
2252
2253 if (clone_flags & CLONE_SYSVSEM) {
2254 error = get_undo_list(&undo_list);
2255 if (error)
2256 return error;
f74370b8 2257 refcount_inc(&undo_list->refcnt);
1da177e4 2258 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2259 } else
1da177e4
LT
2260 tsk->sysvsem.undo_list = NULL;
2261
2262 return 0;
2263}
2264
2265/*
2266 * add semadj values to semaphores, free undo structures.
2267 * undo structures are not freed when semaphore arrays are destroyed
2268 * so some of them may be out of date.
2269 * IMPLEMENTATION NOTE: There is some confusion over whether the
2270 * set of adjustments that needs to be done should be done in an atomic
2271 * manner or not. That is, if we are attempting to decrement the semval
2272 * should we queue up and wait until we can do so legally?
2273 * The original implementation attempted to do this (queue and wait).
2274 * The current implementation does not do so. The POSIX standard
2275 * and SVID should be consulted to determine what behavior is mandated.
2276 */
2277void exit_sem(struct task_struct *tsk)
2278{
4daa28f6 2279 struct sem_undo_list *ulp;
1da177e4 2280
4daa28f6
MS
2281 ulp = tsk->sysvsem.undo_list;
2282 if (!ulp)
1da177e4 2283 return;
9edff4ab 2284 tsk->sysvsem.undo_list = NULL;
1da177e4 2285
f74370b8 2286 if (!refcount_dec_and_test(&ulp->refcnt))
1da177e4
LT
2287 return;
2288
380af1b3 2289 for (;;) {
1da177e4 2290 struct sem_array *sma;
380af1b3 2291 struct sem_undo *un;
6062a8dc 2292 int semid, i;
9ae949fa 2293 DEFINE_WAKE_Q(wake_q);
4daa28f6 2294
2a1613a5
NB
2295 cond_resched();
2296
380af1b3 2297 rcu_read_lock();
05725f7e
JP
2298 un = list_entry_rcu(ulp->list_proc.next,
2299 struct sem_undo, list_proc);
602b8593
HK
2300 if (&un->list_proc == &ulp->list_proc) {
2301 /*
2302 * We must wait for freeary() before freeing this ulp,
2303 * in case we raced with last sem_undo. There is a small
2304 * possibility where we exit while freeary() didn't
2305 * finish unlocking sem_undo_list.
2306 */
e0892e08
PM
2307 spin_lock(&ulp->lock);
2308 spin_unlock(&ulp->lock);
602b8593
HK
2309 rcu_read_unlock();
2310 break;
2311 }
2312 spin_lock(&ulp->lock);
2313 semid = un->semid;
2314 spin_unlock(&ulp->lock);
4daa28f6 2315
602b8593 2316 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2317 if (semid == -1) {
2318 rcu_read_unlock();
602b8593 2319 continue;
6062a8dc 2320 }
1da177e4 2321
602b8593 2322 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2323 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2324 if (IS_ERR(sma)) {
2325 rcu_read_unlock();
380af1b3 2326 continue;
6062a8dc 2327 }
1da177e4 2328
6062a8dc 2329 sem_lock(sma, NULL, -1);
6e224f94 2330 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2331 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2332 sem_unlock(sma, -1);
2333 rcu_read_unlock();
2334 continue;
2335 }
bf17bb71 2336 un = __lookup_undo(ulp, semid);
380af1b3
MS
2337 if (un == NULL) {
2338 /* exit_sem raced with IPC_RMID+semget() that created
2339 * exactly the same semid. Nothing to do.
2340 */
6062a8dc 2341 sem_unlock(sma, -1);
6d49dab8 2342 rcu_read_unlock();
380af1b3
MS
2343 continue;
2344 }
2345
2346 /* remove un from the linked lists */
cf9d5d78 2347 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2348 list_del(&un->list_id);
2349
a9795584
HK
2350 /* we are the last process using this ulp, acquiring ulp->lock
2351 * isn't required. Besides that, we are also protected against
2352 * IPC_RMID as we hold sma->sem_perm lock now
2353 */
380af1b3 2354 list_del_rcu(&un->list_proc);
380af1b3 2355
4daa28f6
MS
2356 /* perform adjustments registered in un */
2357 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2358 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2359 if (un->semadj[i]) {
2360 semaphore->semval += un->semadj[i];
1da177e4
LT
2361 /*
2362 * Range checks of the new semaphore value,
2363 * not defined by sus:
2364 * - Some unices ignore the undo entirely
2365 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2366 * - some cap the value (e.g. FreeBSD caps
2367 * at 0, but doesn't enforce SEMVMX)
2368 *
2369 * Linux caps the semaphore value, both at 0
2370 * and at SEMVMX.
2371 *
239521f3 2372 * Manfred <manfred@colorfullife.com>
1da177e4 2373 */
5f921ae9
IM
2374 if (semaphore->semval < 0)
2375 semaphore->semval = 0;
2376 if (semaphore->semval > SEMVMX)
2377 semaphore->semval = SEMVMX;
51d6f263 2378 ipc_update_pid(&semaphore->sempid, task_tgid(current));
1da177e4
LT
2379 }
2380 }
1da177e4 2381 /* maybe some queued-up processes were waiting for this */
9ae949fa 2382 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2383 sem_unlock(sma, -1);
6d49dab8 2384 rcu_read_unlock();
9ae949fa 2385 wake_up_q(&wake_q);
380af1b3 2386
693a8b6e 2387 kfree_rcu(un, rcu);
1da177e4 2388 }
4daa28f6 2389 kfree(ulp);
1da177e4
LT
2390}
2391
2392#ifdef CONFIG_PROC_FS
19b4946c 2393static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2394{
1efdb69b 2395 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2396 struct kern_ipc_perm *ipcp = it;
2397 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
e54d02b2 2398 time64_t sem_otime;
d12e1e50 2399
d8c63376
MS
2400 /*
2401 * The proc interface isn't aware of sem_lock(), it calls
2402 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2403 * In order to stay compatible with sem_lock(), we must
2404 * enter / leave complex_mode.
d8c63376 2405 */
5864a2fd 2406 complexmode_enter(sma);
d8c63376 2407
d12e1e50 2408 sem_otime = get_semotime(sma);
19b4946c 2409
7f032d6e 2410 seq_printf(s,
e54d02b2 2411 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
7f032d6e
JP
2412 sma->sem_perm.key,
2413 sma->sem_perm.id,
2414 sma->sem_perm.mode,
2415 sma->sem_nsems,
2416 from_kuid_munged(user_ns, sma->sem_perm.uid),
2417 from_kgid_munged(user_ns, sma->sem_perm.gid),
2418 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2419 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2420 sem_otime,
2421 sma->sem_ctime);
2422
5864a2fd
MS
2423 complexmode_tryleave(sma);
2424
7f032d6e 2425 return 0;
1da177e4
LT
2426}
2427#endif