ipc/sem.c: avoid overflow of semop undo (semadj) value
[linux-2.6-block.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
6062a8dc 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
1a82e9e1
MS
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
d12e1e50 102 time_t sem_otime; /* candidate for sem_otime */
f5c936c0 103} ____cacheline_aligned_in_smp;
e57940d7
MS
104
105/* One queue for each sleeping process in the system. */
106struct sem_queue {
e57940d7
MS
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
758a6ba3 157 * Locking:
1da177e4 158 * sem_undo.id_next,
758a6ba3 159 * sem_array.complex_count,
1a82e9e1 160 * sem_array.pending{_alter,_cont},
758a6ba3 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4
LT
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
758a6ba3
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4
LT
190
191void __init sem_init (void)
192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
f269f40a
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
53dad6d3
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
5e9d5275
MS
255/*
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
6d07b68c 260 * that a) sem_perm.lock is free and b) complex_count is 0.
5e9d5275
MS
261 */
262static void sem_wait_array(struct sem_array *sma)
263{
264 int i;
265 struct sem *sem;
266
6d07b68c
MS
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
270 */
271 return;
272 }
273
5e9d5275
MS
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
277 }
278}
279
6062a8dc
RR
280/*
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
6062a8dc
RR
286 */
287static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
289{
5e9d5275 290 struct sem *sem;
6062a8dc 291
5e9d5275
MS
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
6062a8dc 295
5e9d5275
MS
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
6062a8dc 298 */
5e9d5275
MS
299 sem_wait_array(sma);
300 return -1;
301 }
302
303 /*
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
317 */
318 sem = sma->sem_base + sops->sem_num;
6062a8dc 319
5e9d5275 320 if (sma->complex_count == 0) {
6062a8dc 321 /*
5e9d5275
MS
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
6062a8dc 324 */
5e9d5275
MS
325 spin_lock(&sem->lock);
326
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
331
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
335 */
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
339 }
6062a8dc 340 }
5e9d5275
MS
341 spin_unlock(&sem->lock);
342 }
343
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
6062a8dc 346
5e9d5275
MS
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
351 */
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
6062a8dc 355 } else {
5e9d5275
MS
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
6062a8dc 358 */
5e9d5275
MS
359 sem_wait_array(sma);
360 return -1;
6062a8dc 361 }
6062a8dc
RR
362}
363
364static inline void sem_unlock(struct sem_array *sma, int locknum)
365{
366 if (locknum == -1) {
f269f40a 367 unmerge_queues(sma);
cf9d5d78 368 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
372 }
6062a8dc
RR
373}
374
3e148c79 375/*
d9a605e4 376 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 377 * is not held.
321310ce
LT
378 *
379 * The caller holds the RCU read lock.
3e148c79 380 */
6062a8dc
RR
381static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 383{
c460b662
RR
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
03f02c76 386
c460b662 387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
b1ed88b4 390
6062a8dc
RR
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
393
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
396 */
397 if (!ipcp->deleted)
398 return container_of(ipcp, struct sem_array, sem_perm);
399
6062a8dc 400 sem_unlock(sma, *locknum);
321310ce 401 return ERR_PTR(-EINVAL);
023a5355
ND
402}
403
16df3674
DB
404static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405{
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
410
411 return container_of(ipcp, struct sem_array, sem_perm);
412}
413
16df3674
DB
414static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
416{
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
b1ed88b4 421
03f02c76 422 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
423}
424
6ff37972
PP
425static inline void sem_lock_and_putref(struct sem_array *sma)
426{
6062a8dc 427 sem_lock(sma, NULL, -1);
53dad6d3 428 ipc_rcu_putref(sma, ipc_rcu_free);
6ff37972
PP
429}
430
7ca7e564
ND
431static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432{
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
434}
435
1da177e4
LT
436/*
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
1a82e9e1 441 * * unlinking the queue entry from the pending list
1da177e4
LT
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
5f921ae9 451 * performing any operation on the sem array.
1da177e4
LT
452 * * otherwise it must acquire the spinlock and check what's up.
453 *
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
466 *
467 */
468#define IN_WAKEUP 1
469
f4566f04
ND
470/**
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
474 *
d9a605e4 475 * Called with sem_ids.rwsem held (as a writer)
f4566f04
ND
476 */
477
7748dbfa 478static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
479{
480 int id;
481 int retval;
482 struct sem_array *sma;
483 int size;
7748dbfa
ND
484 key_t key = params->key;
485 int nsems = params->u.nsems;
486 int semflg = params->flg;
b97e820f 487 int i;
1da177e4
LT
488
489 if (!nsems)
490 return -EINVAL;
e3893534 491 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
492 return -ENOSPC;
493
494 size = sizeof (*sma) + nsems * sizeof (struct sem);
495 sma = ipc_rcu_alloc(size);
496 if (!sma) {
497 return -ENOMEM;
498 }
499 memset (sma, 0, size);
500
501 sma->sem_perm.mode = (semflg & S_IRWXUGO);
502 sma->sem_perm.key = key;
503
504 sma->sem_perm.security = NULL;
505 retval = security_sem_alloc(sma);
506 if (retval) {
53dad6d3 507 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
508 return retval;
509 }
510
e3893534 511 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 512 if (id < 0) {
53dad6d3 513 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 514 return id;
1da177e4 515 }
e3893534 516 ns->used_sems += nsems;
1da177e4
LT
517
518 sma->sem_base = (struct sem *) &sma[1];
b97e820f 519
6062a8dc 520 for (i = 0; i < nsems; i++) {
1a82e9e1
MS
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
522 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
523 spin_lock_init(&sma->sem_base[i].lock);
524 }
b97e820f
MS
525
526 sma->complex_count = 0;
1a82e9e1
MS
527 INIT_LIST_HEAD(&sma->pending_alter);
528 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 529 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
530 sma->sem_nsems = nsems;
531 sma->sem_ctime = get_seconds();
6062a8dc 532 sem_unlock(sma, -1);
6d49dab8 533 rcu_read_unlock();
1da177e4 534
7ca7e564 535 return sma->sem_perm.id;
1da177e4
LT
536}
537
7748dbfa 538
f4566f04 539/*
d9a605e4 540 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 541 */
03f02c76 542static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 543{
03f02c76
ND
544 struct sem_array *sma;
545
546 sma = container_of(ipcp, struct sem_array, sem_perm);
547 return security_sem_associate(sma, semflg);
7748dbfa
ND
548}
549
f4566f04 550/*
d9a605e4 551 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 552 */
03f02c76
ND
553static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
554 struct ipc_params *params)
7748dbfa 555{
03f02c76
ND
556 struct sem_array *sma;
557
558 sma = container_of(ipcp, struct sem_array, sem_perm);
559 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
560 return -EINVAL;
561
562 return 0;
563}
564
d5460c99 565SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 566{
e3893534 567 struct ipc_namespace *ns;
7748dbfa
ND
568 struct ipc_ops sem_ops;
569 struct ipc_params sem_params;
e3893534
KK
570
571 ns = current->nsproxy->ipc_ns;
1da177e4 572
e3893534 573 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 574 return -EINVAL;
7ca7e564 575
7748dbfa
ND
576 sem_ops.getnew = newary;
577 sem_ops.associate = sem_security;
578 sem_ops.more_checks = sem_more_checks;
579
580 sem_params.key = key;
581 sem_params.flg = semflg;
582 sem_params.u.nsems = nsems;
1da177e4 583
7748dbfa 584 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
585}
586
78f5009c
PM
587/**
588 * perform_atomic_semop - Perform (if possible) a semaphore operation
758a6ba3
MS
589 * @sma: semaphore array
590 * @sops: array with operations that should be checked
78f5009c 591 * @nsops: number of operations
758a6ba3
MS
592 * @un: undo array
593 * @pid: pid that did the change
594 *
595 * Returns 0 if the operation was possible.
596 * Returns 1 if the operation is impossible, the caller must sleep.
597 * Negative values are error codes.
1da177e4 598 */
758a6ba3 599static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
1da177e4
LT
600 int nsops, struct sem_undo *un, int pid)
601{
602 int result, sem_op;
603 struct sembuf *sop;
604 struct sem * curr;
605
606 for (sop = sops; sop < sops + nsops; sop++) {
607 curr = sma->sem_base + sop->sem_num;
608 sem_op = sop->sem_op;
609 result = curr->semval;
78f5009c 610
1da177e4
LT
611 if (!sem_op && result)
612 goto would_block;
613
614 result += sem_op;
615 if (result < 0)
616 goto would_block;
617 if (result > SEMVMX)
618 goto out_of_range;
78f5009c 619
1da177e4
LT
620 if (sop->sem_flg & SEM_UNDO) {
621 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 622 /* Exceeding the undo range is an error. */
1da177e4
LT
623 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
624 goto out_of_range;
78f5009c 625 un->semadj[sop->sem_num] = undo;
1da177e4 626 }
78f5009c 627
1da177e4
LT
628 curr->semval = result;
629 }
630
631 sop--;
632 while (sop >= sops) {
633 sma->sem_base[sop->sem_num].sempid = pid;
1da177e4
LT
634 sop--;
635 }
78f5009c 636
1da177e4
LT
637 return 0;
638
639out_of_range:
640 result = -ERANGE;
641 goto undo;
642
643would_block:
644 if (sop->sem_flg & IPC_NOWAIT)
645 result = -EAGAIN;
646 else
647 result = 1;
648
649undo:
650 sop--;
651 while (sop >= sops) {
78f5009c
PM
652 sem_op = sop->sem_op;
653 sma->sem_base[sop->sem_num].semval -= sem_op;
654 if (sop->sem_flg & SEM_UNDO)
655 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
656 sop--;
657 }
658
659 return result;
660}
661
0a2b9d4c
MS
662/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
663 * @q: queue entry that must be signaled
664 * @error: Error value for the signal
665 *
666 * Prepare the wake-up of the queue entry q.
d4212093 667 */
0a2b9d4c
MS
668static void wake_up_sem_queue_prepare(struct list_head *pt,
669 struct sem_queue *q, int error)
d4212093 670{
0a2b9d4c
MS
671 if (list_empty(pt)) {
672 /*
673 * Hold preempt off so that we don't get preempted and have the
674 * wakee busy-wait until we're scheduled back on.
675 */
676 preempt_disable();
677 }
d4212093 678 q->status = IN_WAKEUP;
0a2b9d4c
MS
679 q->pid = error;
680
9f1bc2c9 681 list_add_tail(&q->list, pt);
0a2b9d4c
MS
682}
683
684/**
685 * wake_up_sem_queue_do(pt) - do the actual wake-up
686 * @pt: list of tasks to be woken up
687 *
688 * Do the actual wake-up.
689 * The function is called without any locks held, thus the semaphore array
690 * could be destroyed already and the tasks can disappear as soon as the
691 * status is set to the actual return code.
692 */
693static void wake_up_sem_queue_do(struct list_head *pt)
694{
695 struct sem_queue *q, *t;
696 int did_something;
697
698 did_something = !list_empty(pt);
9f1bc2c9 699 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
700 wake_up_process(q->sleeper);
701 /* q can disappear immediately after writing q->status. */
702 smp_wmb();
703 q->status = q->pid;
704 }
705 if (did_something)
706 preempt_enable();
d4212093
NP
707}
708
b97e820f
MS
709static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
710{
711 list_del(&q->list);
9f1bc2c9 712 if (q->nsops > 1)
b97e820f
MS
713 sma->complex_count--;
714}
715
fd5db422
MS
716/** check_restart(sma, q)
717 * @sma: semaphore array
718 * @q: the operation that just completed
719 *
720 * update_queue is O(N^2) when it restarts scanning the whole queue of
721 * waiting operations. Therefore this function checks if the restart is
722 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
723 * modified the array.
724 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
725 */
726static int check_restart(struct sem_array *sma, struct sem_queue *q)
727{
1a82e9e1
MS
728 /* pending complex alter operations are too difficult to analyse */
729 if (!list_empty(&sma->pending_alter))
fd5db422
MS
730 return 1;
731
732 /* we were a sleeping complex operation. Too difficult */
733 if (q->nsops > 1)
734 return 1;
735
1a82e9e1
MS
736 /* It is impossible that someone waits for the new value:
737 * - complex operations always restart.
738 * - wait-for-zero are handled seperately.
739 * - q is a previously sleeping simple operation that
740 * altered the array. It must be a decrement, because
741 * simple increments never sleep.
742 * - If there are older (higher priority) decrements
743 * in the queue, then they have observed the original
744 * semval value and couldn't proceed. The operation
745 * decremented to value - thus they won't proceed either.
746 */
747 return 0;
748}
fd5db422 749
1a82e9e1
MS
750/**
751 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
752 * @sma: semaphore array.
753 * @semnum: semaphore that was modified.
754 * @pt: list head for the tasks that must be woken up.
755 *
756 * wake_const_ops must be called after a semaphore in a semaphore array
757 * was set to 0. If complex const operations are pending, wake_const_ops must
758 * be called with semnum = -1, as well as with the number of each modified
759 * semaphore.
760 * The tasks that must be woken up are added to @pt. The return code
761 * is stored in q->pid.
762 * The function returns 1 if at least one operation was completed successfully.
763 */
764static int wake_const_ops(struct sem_array *sma, int semnum,
765 struct list_head *pt)
766{
767 struct sem_queue *q;
768 struct list_head *walk;
769 struct list_head *pending_list;
770 int semop_completed = 0;
771
772 if (semnum == -1)
773 pending_list = &sma->pending_const;
774 else
775 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 776
1a82e9e1
MS
777 walk = pending_list->next;
778 while (walk != pending_list) {
779 int error;
780
781 q = container_of(walk, struct sem_queue, list);
782 walk = walk->next;
783
758a6ba3
MS
784 error = perform_atomic_semop(sma, q->sops, q->nsops,
785 q->undo, q->pid);
1a82e9e1
MS
786
787 if (error <= 0) {
788 /* operation completed, remove from queue & wakeup */
789
790 unlink_queue(sma, q);
791
792 wake_up_sem_queue_prepare(pt, q, error);
793 if (error == 0)
794 semop_completed = 1;
795 }
796 }
797 return semop_completed;
798}
799
800/**
801 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
802 * @sma: semaphore array
803 * @sops: operations that were performed
804 * @nsops: number of operations
805 * @pt: list head of the tasks that must be woken up.
806 *
807 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
808 * operations, based on the actual changes that were performed on the
809 * semaphore array.
810 * The function returns 1 if at least one operation was completed successfully.
811 */
812static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
813 int nsops, struct list_head *pt)
814{
815 int i;
816 int semop_completed = 0;
817 int got_zero = 0;
818
819 /* first: the per-semaphore queues, if known */
820 if (sops) {
821 for (i = 0; i < nsops; i++) {
822 int num = sops[i].sem_num;
823
824 if (sma->sem_base[num].semval == 0) {
825 got_zero = 1;
826 semop_completed |= wake_const_ops(sma, num, pt);
827 }
828 }
829 } else {
830 /*
831 * No sops means modified semaphores not known.
832 * Assume all were changed.
fd5db422 833 */
1a82e9e1
MS
834 for (i = 0; i < sma->sem_nsems; i++) {
835 if (sma->sem_base[i].semval == 0) {
836 got_zero = 1;
837 semop_completed |= wake_const_ops(sma, i, pt);
838 }
839 }
fd5db422
MS
840 }
841 /*
1a82e9e1
MS
842 * If one of the modified semaphores got 0,
843 * then check the global queue, too.
fd5db422 844 */
1a82e9e1
MS
845 if (got_zero)
846 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 847
1a82e9e1 848 return semop_completed;
fd5db422
MS
849}
850
636c6be8
MS
851
852/**
853 * update_queue(sma, semnum): Look for tasks that can be completed.
854 * @sma: semaphore array.
855 * @semnum: semaphore that was modified.
0a2b9d4c 856 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
857 *
858 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
859 * was modified. If multiple semaphores were modified, update_queue must
860 * be called with semnum = -1, as well as with the number of each modified
861 * semaphore.
0a2b9d4c
MS
862 * The tasks that must be woken up are added to @pt. The return code
863 * is stored in q->pid.
1a82e9e1
MS
864 * The function internally checks if const operations can now succeed.
865 *
0a2b9d4c 866 * The function return 1 if at least one semop was completed successfully.
1da177e4 867 */
0a2b9d4c 868static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 869{
636c6be8
MS
870 struct sem_queue *q;
871 struct list_head *walk;
872 struct list_head *pending_list;
0a2b9d4c 873 int semop_completed = 0;
636c6be8 874
9f1bc2c9 875 if (semnum == -1)
1a82e9e1 876 pending_list = &sma->pending_alter;
9f1bc2c9 877 else
1a82e9e1 878 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
879
880again:
636c6be8
MS
881 walk = pending_list->next;
882 while (walk != pending_list) {
fd5db422 883 int error, restart;
636c6be8 884
9f1bc2c9 885 q = container_of(walk, struct sem_queue, list);
636c6be8 886 walk = walk->next;
1da177e4 887
d987f8b2
MS
888 /* If we are scanning the single sop, per-semaphore list of
889 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 890 * necessary to scan further: simple increments
d987f8b2
MS
891 * that affect only one entry succeed immediately and cannot
892 * be in the per semaphore pending queue, and decrements
893 * cannot be successful if the value is already 0.
894 */
1a82e9e1 895 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
896 break;
897
758a6ba3 898 error = perform_atomic_semop(sma, q->sops, q->nsops,
1da177e4
LT
899 q->undo, q->pid);
900
901 /* Does q->sleeper still need to sleep? */
9cad200c
NP
902 if (error > 0)
903 continue;
904
b97e820f 905 unlink_queue(sma, q);
9cad200c 906
0a2b9d4c 907 if (error) {
fd5db422 908 restart = 0;
0a2b9d4c
MS
909 } else {
910 semop_completed = 1;
1a82e9e1 911 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 912 restart = check_restart(sma, q);
0a2b9d4c 913 }
fd5db422 914
0a2b9d4c 915 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 916 if (restart)
9cad200c 917 goto again;
1da177e4 918 }
0a2b9d4c 919 return semop_completed;
1da177e4
LT
920}
921
0e8c6656
MS
922/**
923 * set_semotime(sma, sops) - set sem_otime
924 * @sma: semaphore array
925 * @sops: operations that modified the array, may be NULL
926 *
927 * sem_otime is replicated to avoid cache line trashing.
928 * This function sets one instance to the current time.
929 */
930static void set_semotime(struct sem_array *sma, struct sembuf *sops)
931{
932 if (sops == NULL) {
933 sma->sem_base[0].sem_otime = get_seconds();
934 } else {
935 sma->sem_base[sops[0].sem_num].sem_otime =
936 get_seconds();
937 }
938}
939
0a2b9d4c
MS
940/**
941 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
fd5db422
MS
942 * @sma: semaphore array
943 * @sops: operations that were performed
944 * @nsops: number of operations
0a2b9d4c
MS
945 * @otime: force setting otime
946 * @pt: list head of the tasks that must be woken up.
fd5db422 947 *
1a82e9e1
MS
948 * do_smart_update() does the required calls to update_queue and wakeup_zero,
949 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
950 * Note that the function does not do the actual wake-up: the caller is
951 * responsible for calling wake_up_sem_queue_do(@pt).
952 * It is safe to perform this call after dropping all locks.
fd5db422 953 */
0a2b9d4c
MS
954static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
955 int otime, struct list_head *pt)
fd5db422
MS
956{
957 int i;
958
1a82e9e1
MS
959 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
960
f269f40a
MS
961 if (!list_empty(&sma->pending_alter)) {
962 /* semaphore array uses the global queue - just process it. */
963 otime |= update_queue(sma, -1, pt);
964 } else {
965 if (!sops) {
966 /*
967 * No sops, thus the modified semaphores are not
968 * known. Check all.
969 */
970 for (i = 0; i < sma->sem_nsems; i++)
971 otime |= update_queue(sma, i, pt);
972 } else {
973 /*
974 * Check the semaphores that were increased:
975 * - No complex ops, thus all sleeping ops are
976 * decrease.
977 * - if we decreased the value, then any sleeping
978 * semaphore ops wont be able to run: If the
979 * previous value was too small, then the new
980 * value will be too small, too.
981 */
982 for (i = 0; i < nsops; i++) {
983 if (sops[i].sem_op > 0) {
984 otime |= update_queue(sma,
985 sops[i].sem_num, pt);
986 }
ab465df9 987 }
9f1bc2c9 988 }
fd5db422 989 }
0e8c6656
MS
990 if (otime)
991 set_semotime(sma, sops);
fd5db422
MS
992}
993
1da177e4
LT
994/* The following counts are associated to each semaphore:
995 * semncnt number of tasks waiting on semval being nonzero
996 * semzcnt number of tasks waiting on semval being zero
997 * This model assumes that a task waits on exactly one semaphore.
998 * Since semaphore operations are to be performed atomically, tasks actually
999 * wait on a whole sequence of semaphores simultaneously.
1000 * The counts we return here are a rough approximation, but still
1001 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1002 */
1003static int count_semncnt (struct sem_array * sma, ushort semnum)
1004{
1005 int semncnt;
1006 struct sem_queue * q;
1007
1008 semncnt = 0;
1a82e9e1 1009 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
de2657f9
RR
1010 struct sembuf * sops = q->sops;
1011 BUG_ON(sops->sem_num != semnum);
1012 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1013 semncnt++;
1014 }
1015
1a82e9e1 1016 list_for_each_entry(q, &sma->pending_alter, list) {
1da177e4
LT
1017 struct sembuf * sops = q->sops;
1018 int nsops = q->nsops;
1019 int i;
1020 for (i = 0; i < nsops; i++)
1021 if (sops[i].sem_num == semnum
1022 && (sops[i].sem_op < 0)
1023 && !(sops[i].sem_flg & IPC_NOWAIT))
1024 semncnt++;
1025 }
1026 return semncnt;
1027}
a1193f8e 1028
1da177e4
LT
1029static int count_semzcnt (struct sem_array * sma, ushort semnum)
1030{
1031 int semzcnt;
1032 struct sem_queue * q;
1033
1034 semzcnt = 0;
1a82e9e1 1035 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
ebc2e5e6
RR
1036 struct sembuf * sops = q->sops;
1037 BUG_ON(sops->sem_num != semnum);
1038 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1039 semzcnt++;
1040 }
1041
1a82e9e1 1042 list_for_each_entry(q, &sma->pending_const, list) {
1da177e4
LT
1043 struct sembuf * sops = q->sops;
1044 int nsops = q->nsops;
1045 int i;
1046 for (i = 0; i < nsops; i++)
1047 if (sops[i].sem_num == semnum
1048 && (sops[i].sem_op == 0)
1049 && !(sops[i].sem_flg & IPC_NOWAIT))
1050 semzcnt++;
1051 }
1052 return semzcnt;
1053}
1054
d9a605e4
DB
1055/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1056 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1057 * remains locked on exit.
1da177e4 1058 */
01b8b07a 1059static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1060{
380af1b3
MS
1061 struct sem_undo *un, *tu;
1062 struct sem_queue *q, *tq;
01b8b07a 1063 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1064 struct list_head tasks;
9f1bc2c9 1065 int i;
1da177e4 1066
380af1b3 1067 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1068 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1069 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1070 list_del(&un->list_id);
1071 spin_lock(&un->ulp->lock);
1da177e4 1072 un->semid = -1;
380af1b3
MS
1073 list_del_rcu(&un->list_proc);
1074 spin_unlock(&un->ulp->lock);
693a8b6e 1075 kfree_rcu(un, rcu);
380af1b3 1076 }
1da177e4
LT
1077
1078 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1079 INIT_LIST_HEAD(&tasks);
1a82e9e1
MS
1080 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1081 unlink_queue(sma, q);
1082 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1083 }
1084
1085 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1086 unlink_queue(sma, q);
0a2b9d4c 1087 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1088 }
9f1bc2c9
RR
1089 for (i = 0; i < sma->sem_nsems; i++) {
1090 struct sem *sem = sma->sem_base + i;
1a82e9e1
MS
1091 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1092 unlink_queue(sma, q);
1093 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1094 }
1095 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1096 unlink_queue(sma, q);
1097 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1098 }
1099 }
1da177e4 1100
7ca7e564
ND
1101 /* Remove the semaphore set from the IDR */
1102 sem_rmid(ns, sma);
6062a8dc 1103 sem_unlock(sma, -1);
6d49dab8 1104 rcu_read_unlock();
1da177e4 1105
0a2b9d4c 1106 wake_up_sem_queue_do(&tasks);
e3893534 1107 ns->used_sems -= sma->sem_nsems;
53dad6d3 1108 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1109}
1110
1111static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1112{
1113 switch(version) {
1114 case IPC_64:
1115 return copy_to_user(buf, in, sizeof(*in));
1116 case IPC_OLD:
1117 {
1118 struct semid_ds out;
1119
982f7c2b
DR
1120 memset(&out, 0, sizeof(out));
1121
1da177e4
LT
1122 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1123
1124 out.sem_otime = in->sem_otime;
1125 out.sem_ctime = in->sem_ctime;
1126 out.sem_nsems = in->sem_nsems;
1127
1128 return copy_to_user(buf, &out, sizeof(out));
1129 }
1130 default:
1131 return -EINVAL;
1132 }
1133}
1134
d12e1e50
MS
1135static time_t get_semotime(struct sem_array *sma)
1136{
1137 int i;
1138 time_t res;
1139
1140 res = sma->sem_base[0].sem_otime;
1141 for (i = 1; i < sma->sem_nsems; i++) {
1142 time_t to = sma->sem_base[i].sem_otime;
1143
1144 if (to > res)
1145 res = to;
1146 }
1147 return res;
1148}
1149
4b9fcb0e 1150static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1151 int cmd, int version, void __user *p)
1da177e4 1152{
e5cc9c7b 1153 int err;
1da177e4
LT
1154 struct sem_array *sma;
1155
1156 switch(cmd) {
1157 case IPC_INFO:
1158 case SEM_INFO:
1159 {
1160 struct seminfo seminfo;
1161 int max_id;
1162
1163 err = security_sem_semctl(NULL, cmd);
1164 if (err)
1165 return err;
1166
1167 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
1168 seminfo.semmni = ns->sc_semmni;
1169 seminfo.semmns = ns->sc_semmns;
1170 seminfo.semmsl = ns->sc_semmsl;
1171 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1172 seminfo.semvmx = SEMVMX;
1173 seminfo.semmnu = SEMMNU;
1174 seminfo.semmap = SEMMAP;
1175 seminfo.semume = SEMUME;
d9a605e4 1176 down_read(&sem_ids(ns).rwsem);
1da177e4 1177 if (cmd == SEM_INFO) {
e3893534
KK
1178 seminfo.semusz = sem_ids(ns).in_use;
1179 seminfo.semaem = ns->used_sems;
1da177e4
LT
1180 } else {
1181 seminfo.semusz = SEMUSZ;
1182 seminfo.semaem = SEMAEM;
1183 }
7ca7e564 1184 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1185 up_read(&sem_ids(ns).rwsem);
e1fd1f49 1186 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4
LT
1187 return -EFAULT;
1188 return (max_id < 0) ? 0: max_id;
1189 }
4b9fcb0e 1190 case IPC_STAT:
1da177e4
LT
1191 case SEM_STAT:
1192 {
1193 struct semid64_ds tbuf;
16df3674
DB
1194 int id = 0;
1195
1196 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1197
941b0304 1198 rcu_read_lock();
4b9fcb0e 1199 if (cmd == SEM_STAT) {
16df3674
DB
1200 sma = sem_obtain_object(ns, semid);
1201 if (IS_ERR(sma)) {
1202 err = PTR_ERR(sma);
1203 goto out_unlock;
1204 }
4b9fcb0e
PP
1205 id = sma->sem_perm.id;
1206 } else {
16df3674
DB
1207 sma = sem_obtain_object_check(ns, semid);
1208 if (IS_ERR(sma)) {
1209 err = PTR_ERR(sma);
1210 goto out_unlock;
1211 }
4b9fcb0e 1212 }
1da177e4
LT
1213
1214 err = -EACCES;
b0e77598 1215 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1216 goto out_unlock;
1217
1218 err = security_sem_semctl(sma, cmd);
1219 if (err)
1220 goto out_unlock;
1221
1da177e4 1222 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1223 tbuf.sem_otime = get_semotime(sma);
1224 tbuf.sem_ctime = sma->sem_ctime;
1225 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1226 rcu_read_unlock();
e1fd1f49 1227 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1228 return -EFAULT;
1229 return id;
1230 }
1231 default:
1232 return -EINVAL;
1233 }
1da177e4 1234out_unlock:
16df3674 1235 rcu_read_unlock();
1da177e4
LT
1236 return err;
1237}
1238
e1fd1f49
AV
1239static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1240 unsigned long arg)
1241{
1242 struct sem_undo *un;
1243 struct sem_array *sma;
1244 struct sem* curr;
1245 int err;
e1fd1f49
AV
1246 struct list_head tasks;
1247 int val;
1248#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1249 /* big-endian 64bit */
1250 val = arg >> 32;
1251#else
1252 /* 32bit or little-endian 64bit */
1253 val = arg;
1254#endif
1255
6062a8dc
RR
1256 if (val > SEMVMX || val < 0)
1257 return -ERANGE;
e1fd1f49
AV
1258
1259 INIT_LIST_HEAD(&tasks);
e1fd1f49 1260
6062a8dc
RR
1261 rcu_read_lock();
1262 sma = sem_obtain_object_check(ns, semid);
1263 if (IS_ERR(sma)) {
1264 rcu_read_unlock();
1265 return PTR_ERR(sma);
1266 }
1267
1268 if (semnum < 0 || semnum >= sma->sem_nsems) {
1269 rcu_read_unlock();
1270 return -EINVAL;
1271 }
1272
1273
1274 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1275 rcu_read_unlock();
1276 return -EACCES;
1277 }
e1fd1f49
AV
1278
1279 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1280 if (err) {
1281 rcu_read_unlock();
1282 return -EACCES;
1283 }
e1fd1f49 1284
6062a8dc 1285 sem_lock(sma, NULL, -1);
e1fd1f49 1286
6e224f94
MS
1287 if (sma->sem_perm.deleted) {
1288 sem_unlock(sma, -1);
1289 rcu_read_unlock();
1290 return -EIDRM;
1291 }
1292
e1fd1f49
AV
1293 curr = &sma->sem_base[semnum];
1294
cf9d5d78 1295 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1296 list_for_each_entry(un, &sma->list_id, list_id)
1297 un->semadj[semnum] = 0;
1298
1299 curr->semval = val;
1300 curr->sempid = task_tgid_vnr(current);
1301 sma->sem_ctime = get_seconds();
1302 /* maybe some queued-up processes were waiting for this */
1303 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1304 sem_unlock(sma, -1);
6d49dab8 1305 rcu_read_unlock();
e1fd1f49 1306 wake_up_sem_queue_do(&tasks);
6062a8dc 1307 return 0;
e1fd1f49
AV
1308}
1309
e3893534 1310static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1311 int cmd, void __user *p)
1da177e4
LT
1312{
1313 struct sem_array *sma;
1314 struct sem* curr;
16df3674 1315 int err, nsems;
1da177e4
LT
1316 ushort fast_sem_io[SEMMSL_FAST];
1317 ushort* sem_io = fast_sem_io;
0a2b9d4c 1318 struct list_head tasks;
1da177e4 1319
16df3674
DB
1320 INIT_LIST_HEAD(&tasks);
1321
1322 rcu_read_lock();
1323 sma = sem_obtain_object_check(ns, semid);
1324 if (IS_ERR(sma)) {
1325 rcu_read_unlock();
023a5355 1326 return PTR_ERR(sma);
16df3674 1327 }
1da177e4
LT
1328
1329 nsems = sma->sem_nsems;
1330
1da177e4 1331 err = -EACCES;
c728b9c8
LT
1332 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1333 goto out_rcu_wakeup;
1da177e4
LT
1334
1335 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1336 if (err)
1337 goto out_rcu_wakeup;
1da177e4
LT
1338
1339 err = -EACCES;
1340 switch (cmd) {
1341 case GETALL:
1342 {
e1fd1f49 1343 ushort __user *array = p;
1da177e4
LT
1344 int i;
1345
ce857229 1346 sem_lock(sma, NULL, -1);
6e224f94
MS
1347 if (sma->sem_perm.deleted) {
1348 err = -EIDRM;
1349 goto out_unlock;
1350 }
1da177e4 1351 if(nsems > SEMMSL_FAST) {
ce857229 1352 if (!ipc_rcu_getref(sma)) {
ce857229 1353 err = -EIDRM;
6e224f94 1354 goto out_unlock;
ce857229
AV
1355 }
1356 sem_unlock(sma, -1);
6d49dab8 1357 rcu_read_unlock();
1da177e4
LT
1358 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1359 if(sem_io == NULL) {
53dad6d3 1360 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1361 return -ENOMEM;
1362 }
1363
4091fd94 1364 rcu_read_lock();
6ff37972 1365 sem_lock_and_putref(sma);
1da177e4 1366 if (sma->sem_perm.deleted) {
1da177e4 1367 err = -EIDRM;
6e224f94 1368 goto out_unlock;
1da177e4 1369 }
ce857229 1370 }
1da177e4
LT
1371 for (i = 0; i < sma->sem_nsems; i++)
1372 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1373 sem_unlock(sma, -1);
6d49dab8 1374 rcu_read_unlock();
1da177e4
LT
1375 err = 0;
1376 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1377 err = -EFAULT;
1378 goto out_free;
1379 }
1380 case SETALL:
1381 {
1382 int i;
1383 struct sem_undo *un;
1384
6062a8dc 1385 if (!ipc_rcu_getref(sma)) {
6e224f94
MS
1386 err = -EIDRM;
1387 goto out_rcu_wakeup;
6062a8dc 1388 }
16df3674 1389 rcu_read_unlock();
1da177e4
LT
1390
1391 if(nsems > SEMMSL_FAST) {
1392 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1393 if(sem_io == NULL) {
53dad6d3 1394 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1395 return -ENOMEM;
1396 }
1397 }
1398
e1fd1f49 1399 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
53dad6d3 1400 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1401 err = -EFAULT;
1402 goto out_free;
1403 }
1404
1405 for (i = 0; i < nsems; i++) {
1406 if (sem_io[i] > SEMVMX) {
53dad6d3 1407 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1408 err = -ERANGE;
1409 goto out_free;
1410 }
1411 }
4091fd94 1412 rcu_read_lock();
6ff37972 1413 sem_lock_and_putref(sma);
1da177e4 1414 if (sma->sem_perm.deleted) {
1da177e4 1415 err = -EIDRM;
6e224f94 1416 goto out_unlock;
1da177e4
LT
1417 }
1418
1419 for (i = 0; i < nsems; i++)
1420 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1421
cf9d5d78 1422 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1423 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1424 for (i = 0; i < nsems; i++)
1425 un->semadj[i] = 0;
4daa28f6 1426 }
1da177e4
LT
1427 sma->sem_ctime = get_seconds();
1428 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1429 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1430 err = 0;
1431 goto out_unlock;
1432 }
e1fd1f49 1433 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1434 }
1435 err = -EINVAL;
c728b9c8
LT
1436 if (semnum < 0 || semnum >= nsems)
1437 goto out_rcu_wakeup;
1da177e4 1438
6062a8dc 1439 sem_lock(sma, NULL, -1);
6e224f94
MS
1440 if (sma->sem_perm.deleted) {
1441 err = -EIDRM;
1442 goto out_unlock;
1443 }
1da177e4
LT
1444 curr = &sma->sem_base[semnum];
1445
1446 switch (cmd) {
1447 case GETVAL:
1448 err = curr->semval;
1449 goto out_unlock;
1450 case GETPID:
1451 err = curr->sempid;
1452 goto out_unlock;
1453 case GETNCNT:
1454 err = count_semncnt(sma,semnum);
1455 goto out_unlock;
1456 case GETZCNT:
1457 err = count_semzcnt(sma,semnum);
1458 goto out_unlock;
1da177e4 1459 }
16df3674 1460
1da177e4 1461out_unlock:
6062a8dc 1462 sem_unlock(sma, -1);
c728b9c8 1463out_rcu_wakeup:
6d49dab8 1464 rcu_read_unlock();
0a2b9d4c 1465 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1466out_free:
1467 if(sem_io != fast_sem_io)
1468 ipc_free(sem_io, sizeof(ushort)*nsems);
1469 return err;
1470}
1471
016d7132
PP
1472static inline unsigned long
1473copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
1474{
1475 switch(version) {
1476 case IPC_64:
016d7132 1477 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1478 return -EFAULT;
1da177e4 1479 return 0;
1da177e4
LT
1480 case IPC_OLD:
1481 {
1482 struct semid_ds tbuf_old;
1483
1484 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1485 return -EFAULT;
1486
016d7132
PP
1487 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1488 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1489 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1490
1491 return 0;
1492 }
1493 default:
1494 return -EINVAL;
1495 }
1496}
1497
522bb2a2 1498/*
d9a605e4 1499 * This function handles some semctl commands which require the rwsem
522bb2a2 1500 * to be held in write mode.
d9a605e4 1501 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1502 */
21a4826a 1503static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1504 int cmd, int version, void __user *p)
1da177e4
LT
1505{
1506 struct sem_array *sma;
1507 int err;
016d7132 1508 struct semid64_ds semid64;
1da177e4
LT
1509 struct kern_ipc_perm *ipcp;
1510
1511 if(cmd == IPC_SET) {
e1fd1f49 1512 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1513 return -EFAULT;
1da177e4 1514 }
073115d6 1515
d9a605e4 1516 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1517 rcu_read_lock();
1518
16df3674
DB
1519 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1520 &semid64.sem_perm, 0);
7b4cc5d8
DB
1521 if (IS_ERR(ipcp)) {
1522 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1523 goto out_unlock1;
1524 }
073115d6 1525
a5f75e7f 1526 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1527
1528 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1529 if (err)
1530 goto out_unlock1;
1da177e4 1531
7b4cc5d8 1532 switch (cmd) {
1da177e4 1533 case IPC_RMID:
6062a8dc 1534 sem_lock(sma, NULL, -1);
7b4cc5d8 1535 /* freeary unlocks the ipc object and rcu */
01b8b07a 1536 freeary(ns, ipcp);
522bb2a2 1537 goto out_up;
1da177e4 1538 case IPC_SET:
6062a8dc 1539 sem_lock(sma, NULL, -1);
1efdb69b
EB
1540 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1541 if (err)
7b4cc5d8 1542 goto out_unlock0;
1da177e4 1543 sma->sem_ctime = get_seconds();
1da177e4
LT
1544 break;
1545 default:
1da177e4 1546 err = -EINVAL;
7b4cc5d8 1547 goto out_unlock1;
1da177e4 1548 }
1da177e4 1549
7b4cc5d8 1550out_unlock0:
6062a8dc 1551 sem_unlock(sma, -1);
7b4cc5d8 1552out_unlock1:
6d49dab8 1553 rcu_read_unlock();
522bb2a2 1554out_up:
d9a605e4 1555 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1556 return err;
1557}
1558
e1fd1f49 1559SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1560{
1da177e4 1561 int version;
e3893534 1562 struct ipc_namespace *ns;
e1fd1f49 1563 void __user *p = (void __user *)arg;
1da177e4
LT
1564
1565 if (semid < 0)
1566 return -EINVAL;
1567
1568 version = ipc_parse_version(&cmd);
e3893534 1569 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1570
1571 switch(cmd) {
1572 case IPC_INFO:
1573 case SEM_INFO:
4b9fcb0e 1574 case IPC_STAT:
1da177e4 1575 case SEM_STAT:
e1fd1f49 1576 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1577 case GETALL:
1578 case GETVAL:
1579 case GETPID:
1580 case GETNCNT:
1581 case GETZCNT:
1da177e4 1582 case SETALL:
e1fd1f49
AV
1583 return semctl_main(ns, semid, semnum, cmd, p);
1584 case SETVAL:
1585 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1586 case IPC_RMID:
1587 case IPC_SET:
e1fd1f49 1588 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1589 default:
1590 return -EINVAL;
1591 }
1592}
1593
1da177e4
LT
1594/* If the task doesn't already have a undo_list, then allocate one
1595 * here. We guarantee there is only one thread using this undo list,
1596 * and current is THE ONE
1597 *
1598 * If this allocation and assignment succeeds, but later
1599 * portions of this code fail, there is no need to free the sem_undo_list.
1600 * Just let it stay associated with the task, and it'll be freed later
1601 * at exit time.
1602 *
1603 * This can block, so callers must hold no locks.
1604 */
1605static inline int get_undo_list(struct sem_undo_list **undo_listp)
1606{
1607 struct sem_undo_list *undo_list;
1da177e4
LT
1608
1609 undo_list = current->sysvsem.undo_list;
1610 if (!undo_list) {
2453a306 1611 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1612 if (undo_list == NULL)
1613 return -ENOMEM;
00a5dfdb 1614 spin_lock_init(&undo_list->lock);
1da177e4 1615 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1616 INIT_LIST_HEAD(&undo_list->list_proc);
1617
1da177e4
LT
1618 current->sysvsem.undo_list = undo_list;
1619 }
1620 *undo_listp = undo_list;
1621 return 0;
1622}
1623
bf17bb71 1624static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1625{
bf17bb71 1626 struct sem_undo *un;
4daa28f6 1627
bf17bb71
NP
1628 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1629 if (un->semid == semid)
1630 return un;
1da177e4 1631 }
4daa28f6 1632 return NULL;
1da177e4
LT
1633}
1634
bf17bb71
NP
1635static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1636{
1637 struct sem_undo *un;
1638
1639 assert_spin_locked(&ulp->lock);
1640
1641 un = __lookup_undo(ulp, semid);
1642 if (un) {
1643 list_del_rcu(&un->list_proc);
1644 list_add_rcu(&un->list_proc, &ulp->list_proc);
1645 }
1646 return un;
1647}
1648
4daa28f6
MS
1649/**
1650 * find_alloc_undo - Lookup (and if not present create) undo array
1651 * @ns: namespace
1652 * @semid: semaphore array id
1653 *
1654 * The function looks up (and if not present creates) the undo structure.
1655 * The size of the undo structure depends on the size of the semaphore
1656 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1657 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1658 * performs a rcu_read_lock().
4daa28f6
MS
1659 */
1660static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1661{
1662 struct sem_array *sma;
1663 struct sem_undo_list *ulp;
1664 struct sem_undo *un, *new;
6062a8dc 1665 int nsems, error;
1da177e4
LT
1666
1667 error = get_undo_list(&ulp);
1668 if (error)
1669 return ERR_PTR(error);
1670
380af1b3 1671 rcu_read_lock();
c530c6ac 1672 spin_lock(&ulp->lock);
1da177e4 1673 un = lookup_undo(ulp, semid);
c530c6ac 1674 spin_unlock(&ulp->lock);
1da177e4
LT
1675 if (likely(un!=NULL))
1676 goto out;
1677
1678 /* no undo structure around - allocate one. */
4daa28f6 1679 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1680 sma = sem_obtain_object_check(ns, semid);
1681 if (IS_ERR(sma)) {
1682 rcu_read_unlock();
4de85cd6 1683 return ERR_CAST(sma);
16df3674 1684 }
023a5355 1685
1da177e4 1686 nsems = sma->sem_nsems;
6062a8dc
RR
1687 if (!ipc_rcu_getref(sma)) {
1688 rcu_read_unlock();
1689 un = ERR_PTR(-EIDRM);
1690 goto out;
1691 }
16df3674 1692 rcu_read_unlock();
1da177e4 1693
4daa28f6 1694 /* step 2: allocate new undo structure */
4668edc3 1695 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1696 if (!new) {
53dad6d3 1697 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1698 return ERR_PTR(-ENOMEM);
1699 }
1da177e4 1700
380af1b3 1701 /* step 3: Acquire the lock on semaphore array */
4091fd94 1702 rcu_read_lock();
6ff37972 1703 sem_lock_and_putref(sma);
1da177e4 1704 if (sma->sem_perm.deleted) {
6062a8dc 1705 sem_unlock(sma, -1);
6d49dab8 1706 rcu_read_unlock();
1da177e4
LT
1707 kfree(new);
1708 un = ERR_PTR(-EIDRM);
1709 goto out;
1710 }
380af1b3
MS
1711 spin_lock(&ulp->lock);
1712
1713 /*
1714 * step 4: check for races: did someone else allocate the undo struct?
1715 */
1716 un = lookup_undo(ulp, semid);
1717 if (un) {
1718 kfree(new);
1719 goto success;
1720 }
4daa28f6
MS
1721 /* step 5: initialize & link new undo structure */
1722 new->semadj = (short *) &new[1];
380af1b3 1723 new->ulp = ulp;
4daa28f6
MS
1724 new->semid = semid;
1725 assert_spin_locked(&ulp->lock);
380af1b3 1726 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1727 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1728 list_add(&new->list_id, &sma->list_id);
380af1b3 1729 un = new;
4daa28f6 1730
380af1b3 1731success:
c530c6ac 1732 spin_unlock(&ulp->lock);
6062a8dc 1733 sem_unlock(sma, -1);
1da177e4
LT
1734out:
1735 return un;
1736}
1737
c61284e9
MS
1738
1739/**
1740 * get_queue_result - Retrieve the result code from sem_queue
1741 * @q: Pointer to queue structure
1742 *
1743 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1744 * q->status, then we must loop until the value is replaced with the final
1745 * value: This may happen if a task is woken up by an unrelated event (e.g.
1746 * signal) and in parallel the task is woken up by another task because it got
1747 * the requested semaphores.
1748 *
1749 * The function can be called with or without holding the semaphore spinlock.
1750 */
1751static int get_queue_result(struct sem_queue *q)
1752{
1753 int error;
1754
1755 error = q->status;
1756 while (unlikely(error == IN_WAKEUP)) {
1757 cpu_relax();
1758 error = q->status;
1759 }
1760
1761 return error;
1762}
1763
d5460c99
HC
1764SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1765 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1766{
1767 int error = -EINVAL;
1768 struct sem_array *sma;
1769 struct sembuf fast_sops[SEMOPM_FAST];
1770 struct sembuf* sops = fast_sops, *sop;
1771 struct sem_undo *un;
6062a8dc 1772 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1773 struct sem_queue queue;
1774 unsigned long jiffies_left = 0;
e3893534 1775 struct ipc_namespace *ns;
0a2b9d4c 1776 struct list_head tasks;
e3893534
KK
1777
1778 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1779
1780 if (nsops < 1 || semid < 0)
1781 return -EINVAL;
e3893534 1782 if (nsops > ns->sc_semopm)
1da177e4
LT
1783 return -E2BIG;
1784 if(nsops > SEMOPM_FAST) {
1785 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1786 if(sops==NULL)
1787 return -ENOMEM;
1788 }
1789 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1790 error=-EFAULT;
1791 goto out_free;
1792 }
1793 if (timeout) {
1794 struct timespec _timeout;
1795 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1796 error = -EFAULT;
1797 goto out_free;
1798 }
1799 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1800 _timeout.tv_nsec >= 1000000000L) {
1801 error = -EINVAL;
1802 goto out_free;
1803 }
1804 jiffies_left = timespec_to_jiffies(&_timeout);
1805 }
1806 max = 0;
1807 for (sop = sops; sop < sops + nsops; sop++) {
1808 if (sop->sem_num >= max)
1809 max = sop->sem_num;
1810 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1811 undos = 1;
1812 if (sop->sem_op != 0)
1da177e4
LT
1813 alter = 1;
1814 }
1da177e4 1815
6062a8dc
RR
1816 INIT_LIST_HEAD(&tasks);
1817
1da177e4 1818 if (undos) {
6062a8dc 1819 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1820 un = find_alloc_undo(ns, semid);
1da177e4
LT
1821 if (IS_ERR(un)) {
1822 error = PTR_ERR(un);
1823 goto out_free;
1824 }
6062a8dc 1825 } else {
1da177e4 1826 un = NULL;
6062a8dc
RR
1827 rcu_read_lock();
1828 }
1da177e4 1829
16df3674 1830 sma = sem_obtain_object_check(ns, semid);
023a5355 1831 if (IS_ERR(sma)) {
6062a8dc 1832 rcu_read_unlock();
023a5355 1833 error = PTR_ERR(sma);
1da177e4 1834 goto out_free;
023a5355
ND
1835 }
1836
16df3674 1837 error = -EFBIG;
c728b9c8
LT
1838 if (max >= sma->sem_nsems)
1839 goto out_rcu_wakeup;
16df3674
DB
1840
1841 error = -EACCES;
c728b9c8
LT
1842 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1843 goto out_rcu_wakeup;
16df3674
DB
1844
1845 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1846 if (error)
1847 goto out_rcu_wakeup;
16df3674 1848
6e224f94
MS
1849 error = -EIDRM;
1850 locknum = sem_lock(sma, sops, nsops);
1851 if (sma->sem_perm.deleted)
1852 goto out_unlock_free;
1da177e4 1853 /*
4daa28f6 1854 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1855 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1856 * and now a new array with received the same id. Check and fail.
25985edc 1857 * This case can be detected checking un->semid. The existence of
380af1b3 1858 * "un" itself is guaranteed by rcu.
1da177e4 1859 */
6062a8dc
RR
1860 if (un && un->semid == -1)
1861 goto out_unlock_free;
4daa28f6 1862
758a6ba3
MS
1863 error = perform_atomic_semop(sma, sops, nsops, un,
1864 task_tgid_vnr(current));
0e8c6656
MS
1865 if (error == 0) {
1866 /* If the operation was successful, then do
1867 * the required updates.
1868 */
1869 if (alter)
0a2b9d4c 1870 do_smart_update(sma, sops, nsops, 1, &tasks);
0e8c6656
MS
1871 else
1872 set_semotime(sma, sops);
1da177e4 1873 }
0e8c6656
MS
1874 if (error <= 0)
1875 goto out_unlock_free;
1da177e4
LT
1876
1877 /* We need to sleep on this operation, so we put the current
1878 * task into the pending queue and go to sleep.
1879 */
1880
1da177e4
LT
1881 queue.sops = sops;
1882 queue.nsops = nsops;
1883 queue.undo = un;
b488893a 1884 queue.pid = task_tgid_vnr(current);
1da177e4 1885 queue.alter = alter;
1da177e4 1886
b97e820f
MS
1887 if (nsops == 1) {
1888 struct sem *curr;
1889 curr = &sma->sem_base[sops->sem_num];
1890
f269f40a
MS
1891 if (alter) {
1892 if (sma->complex_count) {
1893 list_add_tail(&queue.list,
1894 &sma->pending_alter);
1895 } else {
1896
1897 list_add_tail(&queue.list,
1898 &curr->pending_alter);
1899 }
1900 } else {
1a82e9e1 1901 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1902 }
b97e820f 1903 } else {
f269f40a
MS
1904 if (!sma->complex_count)
1905 merge_queues(sma);
1906
9f1bc2c9 1907 if (alter)
1a82e9e1 1908 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1909 else
1a82e9e1
MS
1910 list_add_tail(&queue.list, &sma->pending_const);
1911
b97e820f
MS
1912 sma->complex_count++;
1913 }
1914
1da177e4
LT
1915 queue.status = -EINTR;
1916 queue.sleeper = current;
0b0577f6
MS
1917
1918sleep_again:
1da177e4 1919 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1920 sem_unlock(sma, locknum);
6d49dab8 1921 rcu_read_unlock();
1da177e4
LT
1922
1923 if (timeout)
1924 jiffies_left = schedule_timeout(jiffies_left);
1925 else
1926 schedule();
1927
c61284e9 1928 error = get_queue_result(&queue);
1da177e4
LT
1929
1930 if (error != -EINTR) {
1931 /* fast path: update_queue already obtained all requested
c61284e9
MS
1932 * resources.
1933 * Perform a smp_mb(): User space could assume that semop()
1934 * is a memory barrier: Without the mb(), the cpu could
1935 * speculatively read in user space stale data that was
1936 * overwritten by the previous owner of the semaphore.
1937 */
1938 smp_mb();
1939
1da177e4
LT
1940 goto out_free;
1941 }
1942
321310ce 1943 rcu_read_lock();
6062a8dc 1944 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1945
1946 /*
1947 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1948 */
1949 error = get_queue_result(&queue);
1950
1951 /*
1952 * Array removed? If yes, leave without sem_unlock().
1953 */
023a5355 1954 if (IS_ERR(sma)) {
321310ce 1955 rcu_read_unlock();
1da177e4
LT
1956 goto out_free;
1957 }
1958
c61284e9 1959
1da177e4 1960 /*
d694ad62
MS
1961 * If queue.status != -EINTR we are woken up by another process.
1962 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1963 */
c61284e9 1964
1da177e4
LT
1965 if (error != -EINTR) {
1966 goto out_unlock_free;
1967 }
1968
1969 /*
1970 * If an interrupt occurred we have to clean up the queue
1971 */
1972 if (timeout && jiffies_left == 0)
1973 error = -EAGAIN;
0b0577f6
MS
1974
1975 /*
1976 * If the wakeup was spurious, just retry
1977 */
1978 if (error == -EINTR && !signal_pending(current))
1979 goto sleep_again;
1980
b97e820f 1981 unlink_queue(sma, &queue);
1da177e4
LT
1982
1983out_unlock_free:
6062a8dc 1984 sem_unlock(sma, locknum);
c728b9c8 1985out_rcu_wakeup:
6d49dab8 1986 rcu_read_unlock();
0a2b9d4c 1987 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1988out_free:
1989 if(sops != fast_sops)
1990 kfree(sops);
1991 return error;
1992}
1993
d5460c99
HC
1994SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1995 unsigned, nsops)
1da177e4
LT
1996{
1997 return sys_semtimedop(semid, tsops, nsops, NULL);
1998}
1999
2000/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2001 * parent and child tasks.
1da177e4
LT
2002 */
2003
2004int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2005{
2006 struct sem_undo_list *undo_list;
2007 int error;
2008
2009 if (clone_flags & CLONE_SYSVSEM) {
2010 error = get_undo_list(&undo_list);
2011 if (error)
2012 return error;
1da177e4
LT
2013 atomic_inc(&undo_list->refcnt);
2014 tsk->sysvsem.undo_list = undo_list;
2015 } else
2016 tsk->sysvsem.undo_list = NULL;
2017
2018 return 0;
2019}
2020
2021/*
2022 * add semadj values to semaphores, free undo structures.
2023 * undo structures are not freed when semaphore arrays are destroyed
2024 * so some of them may be out of date.
2025 * IMPLEMENTATION NOTE: There is some confusion over whether the
2026 * set of adjustments that needs to be done should be done in an atomic
2027 * manner or not. That is, if we are attempting to decrement the semval
2028 * should we queue up and wait until we can do so legally?
2029 * The original implementation attempted to do this (queue and wait).
2030 * The current implementation does not do so. The POSIX standard
2031 * and SVID should be consulted to determine what behavior is mandated.
2032 */
2033void exit_sem(struct task_struct *tsk)
2034{
4daa28f6 2035 struct sem_undo_list *ulp;
1da177e4 2036
4daa28f6
MS
2037 ulp = tsk->sysvsem.undo_list;
2038 if (!ulp)
1da177e4 2039 return;
9edff4ab 2040 tsk->sysvsem.undo_list = NULL;
1da177e4 2041
4daa28f6 2042 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2043 return;
2044
380af1b3 2045 for (;;) {
1da177e4 2046 struct sem_array *sma;
380af1b3 2047 struct sem_undo *un;
0a2b9d4c 2048 struct list_head tasks;
6062a8dc 2049 int semid, i;
4daa28f6 2050
380af1b3 2051 rcu_read_lock();
05725f7e
JP
2052 un = list_entry_rcu(ulp->list_proc.next,
2053 struct sem_undo, list_proc);
380af1b3
MS
2054 if (&un->list_proc == &ulp->list_proc)
2055 semid = -1;
2056 else
2057 semid = un->semid;
4daa28f6 2058
6062a8dc
RR
2059 if (semid == -1) {
2060 rcu_read_unlock();
380af1b3 2061 break;
6062a8dc 2062 }
1da177e4 2063
6062a8dc 2064 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 2065 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2066 if (IS_ERR(sma)) {
2067 rcu_read_unlock();
380af1b3 2068 continue;
6062a8dc 2069 }
1da177e4 2070
6062a8dc 2071 sem_lock(sma, NULL, -1);
6e224f94
MS
2072 /* exit_sem raced with IPC_RMID, nothing to do */
2073 if (sma->sem_perm.deleted) {
2074 sem_unlock(sma, -1);
2075 rcu_read_unlock();
2076 continue;
2077 }
bf17bb71 2078 un = __lookup_undo(ulp, semid);
380af1b3
MS
2079 if (un == NULL) {
2080 /* exit_sem raced with IPC_RMID+semget() that created
2081 * exactly the same semid. Nothing to do.
2082 */
6062a8dc 2083 sem_unlock(sma, -1);
6d49dab8 2084 rcu_read_unlock();
380af1b3
MS
2085 continue;
2086 }
2087
2088 /* remove un from the linked lists */
cf9d5d78 2089 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2090 list_del(&un->list_id);
2091
380af1b3
MS
2092 spin_lock(&ulp->lock);
2093 list_del_rcu(&un->list_proc);
2094 spin_unlock(&ulp->lock);
2095
4daa28f6
MS
2096 /* perform adjustments registered in un */
2097 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 2098 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
2099 if (un->semadj[i]) {
2100 semaphore->semval += un->semadj[i];
1da177e4
LT
2101 /*
2102 * Range checks of the new semaphore value,
2103 * not defined by sus:
2104 * - Some unices ignore the undo entirely
2105 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2106 * - some cap the value (e.g. FreeBSD caps
2107 * at 0, but doesn't enforce SEMVMX)
2108 *
2109 * Linux caps the semaphore value, both at 0
2110 * and at SEMVMX.
2111 *
2112 * Manfred <manfred@colorfullife.com>
2113 */
5f921ae9
IM
2114 if (semaphore->semval < 0)
2115 semaphore->semval = 0;
2116 if (semaphore->semval > SEMVMX)
2117 semaphore->semval = SEMVMX;
b488893a 2118 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2119 }
2120 }
1da177e4 2121 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2122 INIT_LIST_HEAD(&tasks);
2123 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2124 sem_unlock(sma, -1);
6d49dab8 2125 rcu_read_unlock();
0a2b9d4c 2126 wake_up_sem_queue_do(&tasks);
380af1b3 2127
693a8b6e 2128 kfree_rcu(un, rcu);
1da177e4 2129 }
4daa28f6 2130 kfree(ulp);
1da177e4
LT
2131}
2132
2133#ifdef CONFIG_PROC_FS
19b4946c 2134static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2135{
1efdb69b 2136 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2137 struct sem_array *sma = it;
d12e1e50
MS
2138 time_t sem_otime;
2139
d8c63376
MS
2140 /*
2141 * The proc interface isn't aware of sem_lock(), it calls
2142 * ipc_lock_object() directly (in sysvipc_find_ipc).
2143 * In order to stay compatible with sem_lock(), we must wait until
2144 * all simple semop() calls have left their critical regions.
2145 */
2146 sem_wait_array(sma);
2147
d12e1e50 2148 sem_otime = get_semotime(sma);
19b4946c
MW
2149
2150 return seq_printf(s,
b97e820f 2151 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2152 sma->sem_perm.key,
7ca7e564 2153 sma->sem_perm.id,
19b4946c
MW
2154 sma->sem_perm.mode,
2155 sma->sem_nsems,
1efdb69b
EB
2156 from_kuid_munged(user_ns, sma->sem_perm.uid),
2157 from_kgid_munged(user_ns, sma->sem_perm.gid),
2158 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2159 from_kgid_munged(user_ns, sma->sem_perm.cgid),
d12e1e50 2160 sem_otime,
19b4946c 2161 sma->sem_ctime);
1da177e4
LT
2162}
2163#endif