y2038: ipc: Use __kernel_timespec
[linux-2.6-block.git] / ipc / sem.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
1da177e4
LT
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
624dffcb 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 11 * Enforced range limit on SEM_UNDO
046c6884 12 * (c) 2001 Red Hat Inc
1da177e4
LT
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 58 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
71 */
72
1da177e4
LT
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/init.h>
76#include <linux/proc_fs.h>
77#include <linux/time.h>
1da177e4
LT
78#include <linux/security.h>
79#include <linux/syscalls.h>
80#include <linux/audit.h>
c59ede7b 81#include <linux/capability.h>
19b4946c 82#include <linux/seq_file.h>
3e148c79 83#include <linux/rwsem.h>
e3893534 84#include <linux/nsproxy.h>
ae5e1b22 85#include <linux/ipc_namespace.h>
84f001e1 86#include <linux/sched/wake_q.h>
5f921ae9 87
7153e402 88#include <linux/uaccess.h>
1da177e4
LT
89#include "util.h"
90
1a5c1349
EB
91/* One semaphore structure for each semaphore in the system. */
92struct sem {
93 int semval; /* current value */
94 /*
95 * PID of the process that last modified the semaphore. For
96 * Linux, specifically these are:
97 * - semop
98 * - semctl, via SETVAL and SETALL.
99 * - at task exit when performing undo adjustments (see exit_sem).
100 */
51d6f263 101 struct pid *sempid;
1a5c1349
EB
102 spinlock_t lock; /* spinlock for fine-grained semtimedop */
103 struct list_head pending_alter; /* pending single-sop operations */
104 /* that alter the semaphore */
105 struct list_head pending_const; /* pending single-sop operations */
106 /* that do not alter the semaphore*/
2a70b787 107 time64_t sem_otime; /* candidate for sem_otime */
1a5c1349
EB
108} ____cacheline_aligned_in_smp;
109
110/* One sem_array data structure for each set of semaphores in the system. */
111struct sem_array {
112 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
113 time64_t sem_ctime; /* create/last semctl() time */
114 struct list_head pending_alter; /* pending operations */
115 /* that alter the array */
116 struct list_head pending_const; /* pending complex operations */
117 /* that do not alter semvals */
118 struct list_head list_id; /* undo requests on this array */
119 int sem_nsems; /* no. of semaphores in array */
120 int complex_count; /* pending complex operations */
121 unsigned int use_global_lock;/* >0: global lock required */
122
123 struct sem sems[];
124} __randomize_layout;
e57940d7
MS
125
126/* One queue for each sleeping process in the system. */
127struct sem_queue {
e57940d7
MS
128 struct list_head list; /* queue of pending operations */
129 struct task_struct *sleeper; /* this process */
130 struct sem_undo *undo; /* undo structure */
51d6f263 131 struct pid *pid; /* process id of requesting process */
e57940d7
MS
132 int status; /* completion status of operation */
133 struct sembuf *sops; /* array of pending operations */
ed247b7c 134 struct sembuf *blocking; /* the operation that blocked */
e57940d7 135 int nsops; /* number of operations */
4ce33ec2
DB
136 bool alter; /* does *sops alter the array? */
137 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
138};
139
140/* Each task has a list of undo requests. They are executed automatically
141 * when the process exits.
142 */
143struct sem_undo {
144 struct list_head list_proc; /* per-process list: *
145 * all undos from one process
146 * rcu protected */
147 struct rcu_head rcu; /* rcu struct for sem_undo */
148 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
149 struct list_head list_id; /* per semaphore array list:
150 * all undos for one array */
151 int semid; /* semaphore set identifier */
152 short *semadj; /* array of adjustments */
153 /* one per semaphore */
154};
155
156/* sem_undo_list controls shared access to the list of sem_undo structures
157 * that may be shared among all a CLONE_SYSVSEM task group.
158 */
159struct sem_undo_list {
f74370b8 160 refcount_t refcnt;
e57940d7
MS
161 spinlock_t lock;
162 struct list_head list_proc;
163};
164
165
ed2ddbf8 166#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 167
7748dbfa 168static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 169static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 170#ifdef CONFIG_PROC_FS
19b4946c 171static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
172#endif
173
174#define SEMMSL_FAST 256 /* 512 bytes on stack */
175#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
176
9de5ab8a
MS
177/*
178 * Switching from the mode suitable for simple ops
179 * to the mode for complex ops is costly. Therefore:
180 * use some hysteresis
181 */
182#define USE_GLOBAL_LOCK_HYSTERESIS 10
183
1da177e4 184/*
758a6ba3 185 * Locking:
5864a2fd 186 * a) global sem_lock() for read/write
1da177e4 187 * sem_undo.id_next,
758a6ba3 188 * sem_array.complex_count,
5864a2fd
MS
189 * sem_array.pending{_alter,_const},
190 * sem_array.sem_undo
46c0a8ca 191 *
5864a2fd 192 * b) global or semaphore sem_lock() for read/write:
1a233956 193 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
194 *
195 * c) special:
196 * sem_undo_list.list_proc:
197 * * undo_list->lock for write
198 * * rcu for read
9de5ab8a
MS
199 * use_global_lock:
200 * * global sem_lock() for write
201 * * either local or global sem_lock() for read.
202 *
203 * Memory ordering:
204 * Most ordering is enforced by using spin_lock() and spin_unlock().
205 * The special case is use_global_lock:
206 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
207 * using smp_store_release().
208 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
209 * smp_load_acquire().
210 * Setting it from 0 to non-zero must be ordered with regards to
211 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
212 * is inside a spin_lock() and after a write from 0 to non-zero a
213 * spin_lock()+spin_unlock() is done.
1da177e4
LT
214 */
215
e3893534
KK
216#define sc_semmsl sem_ctls[0]
217#define sc_semmns sem_ctls[1]
218#define sc_semopm sem_ctls[2]
219#define sc_semmni sem_ctls[3]
220
0cfb6aee 221int sem_init_ns(struct ipc_namespace *ns)
e3893534 222{
e3893534
KK
223 ns->sc_semmsl = SEMMSL;
224 ns->sc_semmns = SEMMNS;
225 ns->sc_semopm = SEMOPM;
226 ns->sc_semmni = SEMMNI;
227 ns->used_sems = 0;
0cfb6aee 228 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
229}
230
ae5e1b22 231#ifdef CONFIG_IPC_NS
e3893534
KK
232void sem_exit_ns(struct ipc_namespace *ns)
233{
01b8b07a 234 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 235 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0cfb6aee 236 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
e3893534 237}
ae5e1b22 238#endif
1da177e4 239
0cfb6aee 240int __init sem_init(void)
1da177e4 241{
0cfb6aee
GK
242 const int err = sem_init_ns(&init_ipc_ns);
243
19b4946c
MW
244 ipc_init_proc_interface("sysvipc/sem",
245 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 246 IPC_SEM_IDS, sysvipc_sem_proc_show);
0cfb6aee 247 return err;
1da177e4
LT
248}
249
f269f40a
MS
250/**
251 * unmerge_queues - unmerge queues, if possible.
252 * @sma: semaphore array
253 *
254 * The function unmerges the wait queues if complex_count is 0.
255 * It must be called prior to dropping the global semaphore array lock.
256 */
257static void unmerge_queues(struct sem_array *sma)
258{
259 struct sem_queue *q, *tq;
260
261 /* complex operations still around? */
262 if (sma->complex_count)
263 return;
264 /*
265 * We will switch back to simple mode.
266 * Move all pending operation back into the per-semaphore
267 * queues.
268 */
269 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
270 struct sem *curr;
1a233956 271 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
272
273 list_add_tail(&q->list, &curr->pending_alter);
274 }
275 INIT_LIST_HEAD(&sma->pending_alter);
276}
277
278/**
8001c858 279 * merge_queues - merge single semop queues into global queue
f269f40a
MS
280 * @sma: semaphore array
281 *
282 * This function merges all per-semaphore queues into the global queue.
283 * It is necessary to achieve FIFO ordering for the pending single-sop
284 * operations when a multi-semop operation must sleep.
285 * Only the alter operations must be moved, the const operations can stay.
286 */
287static void merge_queues(struct sem_array *sma)
288{
289 int i;
290 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 291 struct sem *sem = &sma->sems[i];
f269f40a
MS
292
293 list_splice_init(&sem->pending_alter, &sma->pending_alter);
294 }
295}
296
53dad6d3
DB
297static void sem_rcu_free(struct rcu_head *head)
298{
dba4cdd3
MS
299 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
300 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3 301
aefad959 302 security_sem_free(&sma->sem_perm);
e2029dfe 303 kvfree(sma);
53dad6d3
DB
304}
305
5e9d5275 306/*
5864a2fd 307 * Enter the mode suitable for non-simple operations:
5e9d5275 308 * Caller must own sem_perm.lock.
5e9d5275 309 */
5864a2fd 310static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
311{
312 int i;
313 struct sem *sem;
314
9de5ab8a
MS
315 if (sma->use_global_lock > 0) {
316 /*
317 * We are already in global lock mode.
318 * Nothing to do, just reset the
319 * counter until we return to simple mode.
320 */
321 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
322 return;
323 }
9de5ab8a 324 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 325
5e9d5275 326 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 327 sem = &sma->sems[i];
27d7be18
MS
328 spin_lock(&sem->lock);
329 spin_unlock(&sem->lock);
5e9d5275 330 }
5864a2fd
MS
331}
332
333/*
334 * Try to leave the mode that disallows simple operations:
335 * Caller must own sem_perm.lock.
336 */
337static void complexmode_tryleave(struct sem_array *sma)
338{
339 if (sma->complex_count) {
340 /* Complex ops are sleeping.
341 * We must stay in complex mode
342 */
343 return;
344 }
9de5ab8a
MS
345 if (sma->use_global_lock == 1) {
346 /*
347 * Immediately after setting use_global_lock to 0,
348 * a simple op can start. Thus: all memory writes
349 * performed by the current operation must be visible
350 * before we set use_global_lock to 0.
351 */
352 smp_store_release(&sma->use_global_lock, 0);
353 } else {
354 sma->use_global_lock--;
355 }
5e9d5275
MS
356}
357
5864a2fd 358#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
359/*
360 * If the request contains only one semaphore operation, and there are
361 * no complex transactions pending, lock only the semaphore involved.
362 * Otherwise, lock the entire semaphore array, since we either have
363 * multiple semaphores in our own semops, or we need to look at
364 * semaphores from other pending complex operations.
6062a8dc
RR
365 */
366static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
367 int nsops)
368{
5e9d5275 369 struct sem *sem;
6062a8dc 370
5e9d5275
MS
371 if (nsops != 1) {
372 /* Complex operation - acquire a full lock */
373 ipc_lock_object(&sma->sem_perm);
6062a8dc 374
5864a2fd
MS
375 /* Prevent parallel simple ops */
376 complexmode_enter(sma);
377 return SEM_GLOBAL_LOCK;
5e9d5275
MS
378 }
379
380 /*
381 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
382 * Optimized locking is possible if no complex operation
383 * is either enqueued or processed right now.
384 *
9de5ab8a 385 * Both facts are tracked by use_global_mode.
5e9d5275 386 */
1a233956 387 sem = &sma->sems[sops->sem_num];
6062a8dc 388
5864a2fd 389 /*
9de5ab8a 390 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
391 * no locking, no memory barrier.
392 */
9de5ab8a 393 if (!sma->use_global_lock) {
6062a8dc 394 /*
5e9d5275
MS
395 * It appears that no complex operation is around.
396 * Acquire the per-semaphore lock.
6062a8dc 397 */
5e9d5275
MS
398 spin_lock(&sem->lock);
399
9de5ab8a
MS
400 /* pairs with smp_store_release() */
401 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
402 /* fast path successful! */
403 return sops->sem_num;
6062a8dc 404 }
5e9d5275
MS
405 spin_unlock(&sem->lock);
406 }
407
408 /* slow path: acquire the full lock */
409 ipc_lock_object(&sma->sem_perm);
6062a8dc 410
9de5ab8a
MS
411 if (sma->use_global_lock == 0) {
412 /*
413 * The use_global_lock mode ended while we waited for
414 * sma->sem_perm.lock. Thus we must switch to locking
415 * with sem->lock.
416 * Unlike in the fast path, there is no need to recheck
417 * sma->use_global_lock after we have acquired sem->lock:
418 * We own sma->sem_perm.lock, thus use_global_lock cannot
419 * change.
5e9d5275
MS
420 */
421 spin_lock(&sem->lock);
9de5ab8a 422
5e9d5275
MS
423 ipc_unlock_object(&sma->sem_perm);
424 return sops->sem_num;
6062a8dc 425 } else {
9de5ab8a
MS
426 /*
427 * Not a false alarm, thus continue to use the global lock
428 * mode. No need for complexmode_enter(), this was done by
429 * the caller that has set use_global_mode to non-zero.
6062a8dc 430 */
5864a2fd 431 return SEM_GLOBAL_LOCK;
6062a8dc 432 }
6062a8dc
RR
433}
434
435static inline void sem_unlock(struct sem_array *sma, int locknum)
436{
5864a2fd 437 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 438 unmerge_queues(sma);
5864a2fd 439 complexmode_tryleave(sma);
cf9d5d78 440 ipc_unlock_object(&sma->sem_perm);
6062a8dc 441 } else {
1a233956 442 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
443 spin_unlock(&sem->lock);
444 }
6062a8dc
RR
445}
446
3e148c79 447/*
d9a605e4 448 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 449 * is not held.
321310ce
LT
450 *
451 * The caller holds the RCU read lock.
3e148c79 452 */
16df3674
DB
453static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
454{
55b7ae50 455 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
456
457 if (IS_ERR(ipcp))
458 return ERR_CAST(ipcp);
459
460 return container_of(ipcp, struct sem_array, sem_perm);
461}
462
16df3674
DB
463static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
464 int id)
465{
466 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
467
468 if (IS_ERR(ipcp))
469 return ERR_CAST(ipcp);
b1ed88b4 470
03f02c76 471 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
472}
473
6ff37972
PP
474static inline void sem_lock_and_putref(struct sem_array *sma)
475{
6062a8dc 476 sem_lock(sma, NULL, -1);
dba4cdd3 477 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
478}
479
7ca7e564
ND
480static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
481{
482 ipc_rmid(&sem_ids(ns), &s->sem_perm);
483}
484
101ede01
KC
485static struct sem_array *sem_alloc(size_t nsems)
486{
487 struct sem_array *sma;
488 size_t size;
489
490 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
491 return NULL;
492
493 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
494 sma = kvmalloc(size, GFP_KERNEL);
495 if (unlikely(!sma))
496 return NULL;
497
498 memset(sma, 0, size);
101ede01
KC
499
500 return sma;
501}
502
f4566f04
ND
503/**
504 * newary - Create a new semaphore set
505 * @ns: namespace
506 * @params: ptr to the structure that contains key, semflg and nsems
507 *
d9a605e4 508 * Called with sem_ids.rwsem held (as a writer)
f4566f04 509 */
7748dbfa 510static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 511{
1da177e4
LT
512 int retval;
513 struct sem_array *sma;
7748dbfa
ND
514 key_t key = params->key;
515 int nsems = params->u.nsems;
516 int semflg = params->flg;
b97e820f 517 int i;
1da177e4
LT
518
519 if (!nsems)
520 return -EINVAL;
e3893534 521 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
522 return -ENOSPC;
523
101ede01 524 sma = sem_alloc(nsems);
3ab08fe2 525 if (!sma)
1da177e4 526 return -ENOMEM;
3ab08fe2 527
1da177e4
LT
528 sma->sem_perm.mode = (semflg & S_IRWXUGO);
529 sma->sem_perm.key = key;
530
531 sma->sem_perm.security = NULL;
aefad959 532 retval = security_sem_alloc(&sma->sem_perm);
1da177e4 533 if (retval) {
e2029dfe 534 kvfree(sma);
1da177e4
LT
535 return retval;
536 }
537
6062a8dc 538 for (i = 0; i < nsems; i++) {
1a233956
MS
539 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
540 INIT_LIST_HEAD(&sma->sems[i].pending_const);
541 spin_lock_init(&sma->sems[i].lock);
6062a8dc 542 }
b97e820f
MS
543
544 sma->complex_count = 0;
9de5ab8a 545 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
546 INIT_LIST_HEAD(&sma->pending_alter);
547 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 548 INIT_LIST_HEAD(&sma->list_id);
1da177e4 549 sma->sem_nsems = nsems;
e54d02b2 550 sma->sem_ctime = ktime_get_real_seconds();
e8577d1f 551
39c96a1b 552 /* ipc_addid() locks sma upon success. */
2ec55f80
MS
553 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
554 if (retval < 0) {
555 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
556 return retval;
e8577d1f
MS
557 }
558 ns->used_sems += nsems;
559
6062a8dc 560 sem_unlock(sma, -1);
6d49dab8 561 rcu_read_unlock();
1da177e4 562
7ca7e564 563 return sma->sem_perm.id;
1da177e4
LT
564}
565
7748dbfa 566
f4566f04 567/*
d9a605e4 568 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 569 */
03f02c76
ND
570static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
571 struct ipc_params *params)
7748dbfa 572{
03f02c76
ND
573 struct sem_array *sma;
574
575 sma = container_of(ipcp, struct sem_array, sem_perm);
576 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
577 return -EINVAL;
578
579 return 0;
580}
581
69894718 582long ksys_semget(key_t key, int nsems, int semflg)
1da177e4 583{
e3893534 584 struct ipc_namespace *ns;
eb66ec44
MK
585 static const struct ipc_ops sem_ops = {
586 .getnew = newary,
50ab44b1 587 .associate = security_sem_associate,
eb66ec44
MK
588 .more_checks = sem_more_checks,
589 };
7748dbfa 590 struct ipc_params sem_params;
e3893534
KK
591
592 ns = current->nsproxy->ipc_ns;
1da177e4 593
e3893534 594 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 595 return -EINVAL;
7ca7e564 596
7748dbfa
ND
597 sem_params.key = key;
598 sem_params.flg = semflg;
599 sem_params.u.nsems = nsems;
1da177e4 600
7748dbfa 601 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
602}
603
69894718
DB
604SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
605{
606 return ksys_semget(key, nsems, semflg);
607}
608
78f5009c 609/**
4ce33ec2
DB
610 * perform_atomic_semop[_slow] - Attempt to perform semaphore
611 * operations on a given array.
758a6ba3 612 * @sma: semaphore array
d198cd6d 613 * @q: struct sem_queue that describes the operation
758a6ba3 614 *
4ce33ec2
DB
615 * Caller blocking are as follows, based the value
616 * indicated by the semaphore operation (sem_op):
617 *
618 * (1) >0 never blocks.
619 * (2) 0 (wait-for-zero operation): semval is non-zero.
620 * (3) <0 attempting to decrement semval to a value smaller than zero.
621 *
758a6ba3
MS
622 * Returns 0 if the operation was possible.
623 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 624 * Returns <0 for error codes.
1da177e4 625 */
4ce33ec2 626static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 627{
51d6f263
EB
628 int result, sem_op, nsops;
629 struct pid *pid;
1da177e4 630 struct sembuf *sop;
239521f3 631 struct sem *curr;
d198cd6d
MS
632 struct sembuf *sops;
633 struct sem_undo *un;
634
635 sops = q->sops;
636 nsops = q->nsops;
637 un = q->undo;
1da177e4
LT
638
639 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 640 curr = &sma->sems[sop->sem_num];
1da177e4
LT
641 sem_op = sop->sem_op;
642 result = curr->semval;
78f5009c 643
1da177e4
LT
644 if (!sem_op && result)
645 goto would_block;
646
647 result += sem_op;
648 if (result < 0)
649 goto would_block;
650 if (result > SEMVMX)
651 goto out_of_range;
78f5009c 652
1da177e4
LT
653 if (sop->sem_flg & SEM_UNDO) {
654 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 655 /* Exceeding the undo range is an error. */
1da177e4
LT
656 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
657 goto out_of_range;
78f5009c 658 un->semadj[sop->sem_num] = undo;
1da177e4 659 }
78f5009c 660
1da177e4
LT
661 curr->semval = result;
662 }
663
664 sop--;
d198cd6d 665 pid = q->pid;
1da177e4 666 while (sop >= sops) {
51d6f263 667 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
1da177e4
LT
668 sop--;
669 }
78f5009c 670
1da177e4
LT
671 return 0;
672
673out_of_range:
674 result = -ERANGE;
675 goto undo;
676
677would_block:
ed247b7c
MS
678 q->blocking = sop;
679
1da177e4
LT
680 if (sop->sem_flg & IPC_NOWAIT)
681 result = -EAGAIN;
682 else
683 result = 1;
684
685undo:
686 sop--;
687 while (sop >= sops) {
78f5009c 688 sem_op = sop->sem_op;
1a233956 689 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
690 if (sop->sem_flg & SEM_UNDO)
691 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
692 sop--;
693 }
694
695 return result;
696}
697
4ce33ec2
DB
698static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
699{
700 int result, sem_op, nsops;
701 struct sembuf *sop;
702 struct sem *curr;
703 struct sembuf *sops;
704 struct sem_undo *un;
705
706 sops = q->sops;
707 nsops = q->nsops;
708 un = q->undo;
709
710 if (unlikely(q->dupsop))
711 return perform_atomic_semop_slow(sma, q);
712
713 /*
714 * We scan the semaphore set twice, first to ensure that the entire
715 * operation can succeed, therefore avoiding any pointless writes
716 * to shared memory and having to undo such changes in order to block
717 * until the operations can go through.
718 */
719 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 720 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
721 sem_op = sop->sem_op;
722 result = curr->semval;
723
724 if (!sem_op && result)
725 goto would_block; /* wait-for-zero */
726
727 result += sem_op;
728 if (result < 0)
729 goto would_block;
730
731 if (result > SEMVMX)
732 return -ERANGE;
733
734 if (sop->sem_flg & SEM_UNDO) {
735 int undo = un->semadj[sop->sem_num] - sem_op;
736
737 /* Exceeding the undo range is an error. */
738 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
739 return -ERANGE;
740 }
741 }
742
743 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 744 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
745 sem_op = sop->sem_op;
746 result = curr->semval;
747
748 if (sop->sem_flg & SEM_UNDO) {
749 int undo = un->semadj[sop->sem_num] - sem_op;
750
751 un->semadj[sop->sem_num] = undo;
752 }
753 curr->semval += sem_op;
51d6f263 754 ipc_update_pid(&curr->sempid, q->pid);
4ce33ec2
DB
755 }
756
757 return 0;
758
759would_block:
760 q->blocking = sop;
761 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
762}
763
9ae949fa
DB
764static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
765 struct wake_q_head *wake_q)
0a2b9d4c 766{
9ae949fa
DB
767 wake_q_add(wake_q, q->sleeper);
768 /*
769 * Rely on the above implicit barrier, such that we can
770 * ensure that we hold reference to the task before setting
771 * q->status. Otherwise we could race with do_exit if the
772 * task is awoken by an external event before calling
773 * wake_up_process().
774 */
775 WRITE_ONCE(q->status, error);
d4212093
NP
776}
777
b97e820f
MS
778static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
779{
780 list_del(&q->list);
9f1bc2c9 781 if (q->nsops > 1)
b97e820f
MS
782 sma->complex_count--;
783}
784
fd5db422
MS
785/** check_restart(sma, q)
786 * @sma: semaphore array
787 * @q: the operation that just completed
788 *
789 * update_queue is O(N^2) when it restarts scanning the whole queue of
790 * waiting operations. Therefore this function checks if the restart is
791 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
792 * modified the array.
793 * Note that wait-for-zero operations are handled without restart.
fd5db422 794 */
4663d3e8 795static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 796{
1a82e9e1
MS
797 /* pending complex alter operations are too difficult to analyse */
798 if (!list_empty(&sma->pending_alter))
fd5db422
MS
799 return 1;
800
801 /* we were a sleeping complex operation. Too difficult */
802 if (q->nsops > 1)
803 return 1;
804
1a82e9e1
MS
805 /* It is impossible that someone waits for the new value:
806 * - complex operations always restart.
807 * - wait-for-zero are handled seperately.
808 * - q is a previously sleeping simple operation that
809 * altered the array. It must be a decrement, because
810 * simple increments never sleep.
811 * - If there are older (higher priority) decrements
812 * in the queue, then they have observed the original
813 * semval value and couldn't proceed. The operation
814 * decremented to value - thus they won't proceed either.
815 */
816 return 0;
817}
fd5db422 818
1a82e9e1 819/**
8001c858 820 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
821 * @sma: semaphore array.
822 * @semnum: semaphore that was modified.
9ae949fa 823 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
824 *
825 * wake_const_ops must be called after a semaphore in a semaphore array
826 * was set to 0. If complex const operations are pending, wake_const_ops must
827 * be called with semnum = -1, as well as with the number of each modified
828 * semaphore.
9ae949fa 829 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
830 * is stored in q->pid.
831 * The function returns 1 if at least one operation was completed successfully.
832 */
833static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 834 struct wake_q_head *wake_q)
1a82e9e1 835{
f150f02c 836 struct sem_queue *q, *tmp;
1a82e9e1
MS
837 struct list_head *pending_list;
838 int semop_completed = 0;
839
840 if (semnum == -1)
841 pending_list = &sma->pending_const;
842 else
1a233956 843 pending_list = &sma->sems[semnum].pending_const;
fd5db422 844
f150f02c
DB
845 list_for_each_entry_safe(q, tmp, pending_list, list) {
846 int error = perform_atomic_semop(sma, q);
1a82e9e1 847
f150f02c
DB
848 if (error > 0)
849 continue;
850 /* operation completed, remove from queue & wakeup */
851 unlink_queue(sma, q);
1a82e9e1 852
f150f02c
DB
853 wake_up_sem_queue_prepare(q, error, wake_q);
854 if (error == 0)
855 semop_completed = 1;
1a82e9e1 856 }
f150f02c 857
1a82e9e1
MS
858 return semop_completed;
859}
860
861/**
8001c858 862 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
863 * @sma: semaphore array
864 * @sops: operations that were performed
865 * @nsops: number of operations
9ae949fa 866 * @wake_q: lockless wake-queue head
1a82e9e1 867 *
8001c858
DB
868 * Checks all required queue for wait-for-zero operations, based
869 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
870 * The function returns 1 if at least one operation was completed successfully.
871 */
872static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 873 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
874{
875 int i;
876 int semop_completed = 0;
877 int got_zero = 0;
878
879 /* first: the per-semaphore queues, if known */
880 if (sops) {
881 for (i = 0; i < nsops; i++) {
882 int num = sops[i].sem_num;
883
1a233956 884 if (sma->sems[num].semval == 0) {
1a82e9e1 885 got_zero = 1;
9ae949fa 886 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
887 }
888 }
889 } else {
890 /*
891 * No sops means modified semaphores not known.
892 * Assume all were changed.
fd5db422 893 */
1a82e9e1 894 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 895 if (sma->sems[i].semval == 0) {
1a82e9e1 896 got_zero = 1;
9ae949fa 897 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
898 }
899 }
fd5db422
MS
900 }
901 /*
1a82e9e1
MS
902 * If one of the modified semaphores got 0,
903 * then check the global queue, too.
fd5db422 904 */
1a82e9e1 905 if (got_zero)
9ae949fa 906 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 907
1a82e9e1 908 return semop_completed;
fd5db422
MS
909}
910
636c6be8
MS
911
912/**
8001c858 913 * update_queue - look for tasks that can be completed.
636c6be8
MS
914 * @sma: semaphore array.
915 * @semnum: semaphore that was modified.
9ae949fa 916 * @wake_q: lockless wake-queue head.
636c6be8
MS
917 *
918 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
919 * was modified. If multiple semaphores were modified, update_queue must
920 * be called with semnum = -1, as well as with the number of each modified
921 * semaphore.
9ae949fa 922 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 923 * is stored in q->pid.
1a82e9e1
MS
924 * The function internally checks if const operations can now succeed.
925 *
0a2b9d4c 926 * The function return 1 if at least one semop was completed successfully.
1da177e4 927 */
9ae949fa 928static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 929{
f150f02c 930 struct sem_queue *q, *tmp;
636c6be8 931 struct list_head *pending_list;
0a2b9d4c 932 int semop_completed = 0;
636c6be8 933
9f1bc2c9 934 if (semnum == -1)
1a82e9e1 935 pending_list = &sma->pending_alter;
9f1bc2c9 936 else
1a233956 937 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
938
939again:
f150f02c 940 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 941 int error, restart;
636c6be8 942
d987f8b2
MS
943 /* If we are scanning the single sop, per-semaphore list of
944 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 945 * necessary to scan further: simple increments
d987f8b2
MS
946 * that affect only one entry succeed immediately and cannot
947 * be in the per semaphore pending queue, and decrements
948 * cannot be successful if the value is already 0.
949 */
1a233956 950 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
951 break;
952
d198cd6d 953 error = perform_atomic_semop(sma, q);
1da177e4
LT
954
955 /* Does q->sleeper still need to sleep? */
9cad200c
NP
956 if (error > 0)
957 continue;
958
b97e820f 959 unlink_queue(sma, q);
9cad200c 960
0a2b9d4c 961 if (error) {
fd5db422 962 restart = 0;
0a2b9d4c
MS
963 } else {
964 semop_completed = 1;
9ae949fa 965 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 966 restart = check_restart(sma, q);
0a2b9d4c 967 }
fd5db422 968
9ae949fa 969 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 970 if (restart)
9cad200c 971 goto again;
1da177e4 972 }
0a2b9d4c 973 return semop_completed;
1da177e4
LT
974}
975
0e8c6656 976/**
8001c858 977 * set_semotime - set sem_otime
0e8c6656
MS
978 * @sma: semaphore array
979 * @sops: operations that modified the array, may be NULL
980 *
981 * sem_otime is replicated to avoid cache line trashing.
982 * This function sets one instance to the current time.
983 */
984static void set_semotime(struct sem_array *sma, struct sembuf *sops)
985{
986 if (sops == NULL) {
2a70b787 987 sma->sems[0].sem_otime = ktime_get_real_seconds();
0e8c6656 988 } else {
1a233956 989 sma->sems[sops[0].sem_num].sem_otime =
2a70b787 990 ktime_get_real_seconds();
0e8c6656
MS
991 }
992}
993
0a2b9d4c 994/**
8001c858 995 * do_smart_update - optimized update_queue
fd5db422
MS
996 * @sma: semaphore array
997 * @sops: operations that were performed
998 * @nsops: number of operations
0a2b9d4c 999 * @otime: force setting otime
9ae949fa 1000 * @wake_q: lockless wake-queue head
fd5db422 1001 *
1a82e9e1
MS
1002 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1003 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 1004 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 1005 * responsible for calling wake_up_q().
0a2b9d4c 1006 * It is safe to perform this call after dropping all locks.
fd5db422 1007 */
0a2b9d4c 1008static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 1009 int otime, struct wake_q_head *wake_q)
fd5db422
MS
1010{
1011 int i;
1012
9ae949fa 1013 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 1014
f269f40a
MS
1015 if (!list_empty(&sma->pending_alter)) {
1016 /* semaphore array uses the global queue - just process it. */
9ae949fa 1017 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
1018 } else {
1019 if (!sops) {
1020 /*
1021 * No sops, thus the modified semaphores are not
1022 * known. Check all.
1023 */
1024 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 1025 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1026 } else {
1027 /*
1028 * Check the semaphores that were increased:
1029 * - No complex ops, thus all sleeping ops are
1030 * decrease.
1031 * - if we decreased the value, then any sleeping
1032 * semaphore ops wont be able to run: If the
1033 * previous value was too small, then the new
1034 * value will be too small, too.
1035 */
1036 for (i = 0; i < nsops; i++) {
1037 if (sops[i].sem_op > 0) {
1038 otime |= update_queue(sma,
9ae949fa 1039 sops[i].sem_num, wake_q);
f269f40a 1040 }
ab465df9 1041 }
9f1bc2c9 1042 }
fd5db422 1043 }
0e8c6656
MS
1044 if (otime)
1045 set_semotime(sma, sops);
fd5db422
MS
1046}
1047
2f2ed41d 1048/*
b220c57a 1049 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1050 */
1051static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1052 bool count_zero)
1053{
b220c57a 1054 struct sembuf *sop = q->blocking;
2f2ed41d 1055
9b44ee2e
MS
1056 /*
1057 * Linux always (since 0.99.10) reported a task as sleeping on all
1058 * semaphores. This violates SUS, therefore it was changed to the
1059 * standard compliant behavior.
1060 * Give the administrators a chance to notice that an application
1061 * might misbehave because it relies on the Linux behavior.
1062 */
1063 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1064 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1065 current->comm, task_pid_nr(current));
1066
b220c57a
MS
1067 if (sop->sem_num != semnum)
1068 return 0;
2f2ed41d 1069
b220c57a
MS
1070 if (count_zero && sop->sem_op == 0)
1071 return 1;
1072 if (!count_zero && sop->sem_op < 0)
1073 return 1;
1074
1075 return 0;
2f2ed41d
MS
1076}
1077
1da177e4
LT
1078/* The following counts are associated to each semaphore:
1079 * semncnt number of tasks waiting on semval being nonzero
1080 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1081 *
1082 * Per definition, a task waits only on the semaphore of the first semop
1083 * that cannot proceed, even if additional operation would block, too.
1da177e4 1084 */
2f2ed41d
MS
1085static int count_semcnt(struct sem_array *sma, ushort semnum,
1086 bool count_zero)
1da177e4 1087{
2f2ed41d 1088 struct list_head *l;
239521f3 1089 struct sem_queue *q;
2f2ed41d 1090 int semcnt;
1da177e4 1091
2f2ed41d
MS
1092 semcnt = 0;
1093 /* First: check the simple operations. They are easy to evaluate */
1094 if (count_zero)
1a233956 1095 l = &sma->sems[semnum].pending_const;
2f2ed41d 1096 else
1a233956 1097 l = &sma->sems[semnum].pending_alter;
1da177e4 1098
2f2ed41d
MS
1099 list_for_each_entry(q, l, list) {
1100 /* all task on a per-semaphore list sleep on exactly
1101 * that semaphore
1102 */
1103 semcnt++;
ebc2e5e6
RR
1104 }
1105
2f2ed41d 1106 /* Then: check the complex operations. */
1994862d 1107 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1108 semcnt += check_qop(sma, semnum, q, count_zero);
1109 }
1110 if (count_zero) {
1111 list_for_each_entry(q, &sma->pending_const, list) {
1112 semcnt += check_qop(sma, semnum, q, count_zero);
1113 }
1994862d 1114 }
2f2ed41d 1115 return semcnt;
1da177e4
LT
1116}
1117
d9a605e4
DB
1118/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1119 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1120 * remains locked on exit.
1da177e4 1121 */
01b8b07a 1122static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1123{
380af1b3
MS
1124 struct sem_undo *un, *tu;
1125 struct sem_queue *q, *tq;
01b8b07a 1126 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1127 int i;
9ae949fa 1128 DEFINE_WAKE_Q(wake_q);
1da177e4 1129
380af1b3 1130 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1131 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1132 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1133 list_del(&un->list_id);
1134 spin_lock(&un->ulp->lock);
1da177e4 1135 un->semid = -1;
380af1b3
MS
1136 list_del_rcu(&un->list_proc);
1137 spin_unlock(&un->ulp->lock);
693a8b6e 1138 kfree_rcu(un, rcu);
380af1b3 1139 }
1da177e4
LT
1140
1141 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1142 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1143 unlink_queue(sma, q);
9ae949fa 1144 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1145 }
1146
1147 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1148 unlink_queue(sma, q);
9ae949fa 1149 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1150 }
9f1bc2c9 1151 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1152 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1153 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1154 unlink_queue(sma, q);
9ae949fa 1155 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1156 }
1157 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1158 unlink_queue(sma, q);
9ae949fa 1159 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9 1160 }
51d6f263 1161 ipc_update_pid(&sem->sempid, NULL);
9f1bc2c9 1162 }
1da177e4 1163
7ca7e564
ND
1164 /* Remove the semaphore set from the IDR */
1165 sem_rmid(ns, sma);
6062a8dc 1166 sem_unlock(sma, -1);
6d49dab8 1167 rcu_read_unlock();
1da177e4 1168
9ae949fa 1169 wake_up_q(&wake_q);
e3893534 1170 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1171 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1172}
1173
1174static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1175{
239521f3 1176 switch (version) {
1da177e4
LT
1177 case IPC_64:
1178 return copy_to_user(buf, in, sizeof(*in));
1179 case IPC_OLD:
1180 {
1181 struct semid_ds out;
1182
982f7c2b
DR
1183 memset(&out, 0, sizeof(out));
1184
1da177e4
LT
1185 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1186
1187 out.sem_otime = in->sem_otime;
1188 out.sem_ctime = in->sem_ctime;
1189 out.sem_nsems = in->sem_nsems;
1190
1191 return copy_to_user(buf, &out, sizeof(out));
1192 }
1193 default:
1194 return -EINVAL;
1195 }
1196}
1197
e54d02b2 1198static time64_t get_semotime(struct sem_array *sma)
d12e1e50
MS
1199{
1200 int i;
e54d02b2 1201 time64_t res;
d12e1e50 1202
1a233956 1203 res = sma->sems[0].sem_otime;
d12e1e50 1204 for (i = 1; i < sma->sem_nsems; i++) {
e54d02b2 1205 time64_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1206
1207 if (to > res)
1208 res = to;
1209 }
1210 return res;
1211}
1212
45a4a64a
AV
1213static int semctl_stat(struct ipc_namespace *ns, int semid,
1214 int cmd, struct semid64_ds *semid64)
1da177e4 1215{
1da177e4 1216 struct sem_array *sma;
c2ab975c 1217 time64_t semotime;
45a4a64a
AV
1218 int id = 0;
1219 int err;
1da177e4 1220
45a4a64a 1221 memset(semid64, 0, sizeof(*semid64));
46c0a8ca 1222
45a4a64a 1223 rcu_read_lock();
a280d6dc 1224 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
45a4a64a
AV
1225 sma = sem_obtain_object(ns, semid);
1226 if (IS_ERR(sma)) {
1227 err = PTR_ERR(sma);
1228 goto out_unlock;
1229 }
1230 id = sma->sem_perm.id;
a280d6dc 1231 } else { /* IPC_STAT */
45a4a64a
AV
1232 sma = sem_obtain_object_check(ns, semid);
1233 if (IS_ERR(sma)) {
1234 err = PTR_ERR(sma);
1235 goto out_unlock;
1da177e4 1236 }
1da177e4 1237 }
1da177e4 1238
a280d6dc
DB
1239 /* see comment for SHM_STAT_ANY */
1240 if (cmd == SEM_STAT_ANY)
1241 audit_ipc_obj(&sma->sem_perm);
1242 else {
1243 err = -EACCES;
1244 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1245 goto out_unlock;
1246 }
1da177e4 1247
aefad959 1248 err = security_sem_semctl(&sma->sem_perm, cmd);
45a4a64a
AV
1249 if (err)
1250 goto out_unlock;
1da177e4 1251
87ad4b0d
PM
1252 ipc_lock_object(&sma->sem_perm);
1253
1254 if (!ipc_valid_object(&sma->sem_perm)) {
1255 ipc_unlock_object(&sma->sem_perm);
1256 err = -EIDRM;
1257 goto out_unlock;
1258 }
1259
45a4a64a 1260 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
c2ab975c
AB
1261 semotime = get_semotime(sma);
1262 semid64->sem_otime = semotime;
45a4a64a 1263 semid64->sem_ctime = sma->sem_ctime;
c2ab975c
AB
1264#ifndef CONFIG_64BIT
1265 semid64->sem_otime_high = semotime >> 32;
1266 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1267#endif
45a4a64a 1268 semid64->sem_nsems = sma->sem_nsems;
87ad4b0d
PM
1269
1270 ipc_unlock_object(&sma->sem_perm);
45a4a64a
AV
1271 rcu_read_unlock();
1272 return id;
1da177e4 1273
1da177e4 1274out_unlock:
16df3674 1275 rcu_read_unlock();
1da177e4
LT
1276 return err;
1277}
1278
45a4a64a
AV
1279static int semctl_info(struct ipc_namespace *ns, int semid,
1280 int cmd, void __user *p)
1281{
1282 struct seminfo seminfo;
1283 int max_id;
1284 int err;
1285
1286 err = security_sem_semctl(NULL, cmd);
1287 if (err)
1288 return err;
1289
1290 memset(&seminfo, 0, sizeof(seminfo));
1291 seminfo.semmni = ns->sc_semmni;
1292 seminfo.semmns = ns->sc_semmns;
1293 seminfo.semmsl = ns->sc_semmsl;
1294 seminfo.semopm = ns->sc_semopm;
1295 seminfo.semvmx = SEMVMX;
1296 seminfo.semmnu = SEMMNU;
1297 seminfo.semmap = SEMMAP;
1298 seminfo.semume = SEMUME;
1299 down_read(&sem_ids(ns).rwsem);
1300 if (cmd == SEM_INFO) {
1301 seminfo.semusz = sem_ids(ns).in_use;
1302 seminfo.semaem = ns->used_sems;
1303 } else {
1304 seminfo.semusz = SEMUSZ;
1305 seminfo.semaem = SEMAEM;
1306 }
1307 max_id = ipc_get_maxid(&sem_ids(ns));
1308 up_read(&sem_ids(ns).rwsem);
1309 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1310 return -EFAULT;
1311 return (max_id < 0) ? 0 : max_id;
1312}
1313
e1fd1f49 1314static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
45a4a64a 1315 int val)
e1fd1f49
AV
1316{
1317 struct sem_undo *un;
1318 struct sem_array *sma;
239521f3 1319 struct sem *curr;
45a4a64a 1320 int err;
9ae949fa
DB
1321 DEFINE_WAKE_Q(wake_q);
1322
6062a8dc
RR
1323 if (val > SEMVMX || val < 0)
1324 return -ERANGE;
e1fd1f49 1325
6062a8dc
RR
1326 rcu_read_lock();
1327 sma = sem_obtain_object_check(ns, semid);
1328 if (IS_ERR(sma)) {
1329 rcu_read_unlock();
1330 return PTR_ERR(sma);
1331 }
1332
1333 if (semnum < 0 || semnum >= sma->sem_nsems) {
1334 rcu_read_unlock();
1335 return -EINVAL;
1336 }
1337
1338
1339 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1340 rcu_read_unlock();
1341 return -EACCES;
1342 }
e1fd1f49 1343
aefad959 1344 err = security_sem_semctl(&sma->sem_perm, SETVAL);
6062a8dc
RR
1345 if (err) {
1346 rcu_read_unlock();
1347 return -EACCES;
1348 }
e1fd1f49 1349
6062a8dc 1350 sem_lock(sma, NULL, -1);
e1fd1f49 1351
0f3d2b01 1352 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1353 sem_unlock(sma, -1);
1354 rcu_read_unlock();
1355 return -EIDRM;
1356 }
1357
1a233956 1358 curr = &sma->sems[semnum];
e1fd1f49 1359
cf9d5d78 1360 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1361 list_for_each_entry(un, &sma->list_id, list_id)
1362 un->semadj[semnum] = 0;
1363
1364 curr->semval = val;
51d6f263 1365 ipc_update_pid(&curr->sempid, task_tgid(current));
e54d02b2 1366 sma->sem_ctime = ktime_get_real_seconds();
e1fd1f49 1367 /* maybe some queued-up processes were waiting for this */
9ae949fa 1368 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1369 sem_unlock(sma, -1);
6d49dab8 1370 rcu_read_unlock();
9ae949fa 1371 wake_up_q(&wake_q);
6062a8dc 1372 return 0;
e1fd1f49
AV
1373}
1374
e3893534 1375static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1376 int cmd, void __user *p)
1da177e4
LT
1377{
1378 struct sem_array *sma;
239521f3 1379 struct sem *curr;
16df3674 1380 int err, nsems;
1da177e4 1381 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1382 ushort *sem_io = fast_sem_io;
9ae949fa 1383 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1384
1385 rcu_read_lock();
1386 sma = sem_obtain_object_check(ns, semid);
1387 if (IS_ERR(sma)) {
1388 rcu_read_unlock();
023a5355 1389 return PTR_ERR(sma);
16df3674 1390 }
1da177e4
LT
1391
1392 nsems = sma->sem_nsems;
1393
1da177e4 1394 err = -EACCES;
c728b9c8
LT
1395 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1396 goto out_rcu_wakeup;
1da177e4 1397
aefad959 1398 err = security_sem_semctl(&sma->sem_perm, cmd);
c728b9c8
LT
1399 if (err)
1400 goto out_rcu_wakeup;
1da177e4
LT
1401
1402 err = -EACCES;
1403 switch (cmd) {
1404 case GETALL:
1405 {
e1fd1f49 1406 ushort __user *array = p;
1da177e4
LT
1407 int i;
1408
ce857229 1409 sem_lock(sma, NULL, -1);
0f3d2b01 1410 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1411 err = -EIDRM;
1412 goto out_unlock;
1413 }
239521f3 1414 if (nsems > SEMMSL_FAST) {
dba4cdd3 1415 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1416 err = -EIDRM;
6e224f94 1417 goto out_unlock;
ce857229
AV
1418 }
1419 sem_unlock(sma, -1);
6d49dab8 1420 rcu_read_unlock();
f8dbe8d2
KC
1421 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1422 GFP_KERNEL);
239521f3 1423 if (sem_io == NULL) {
dba4cdd3 1424 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1425 return -ENOMEM;
1426 }
1427
4091fd94 1428 rcu_read_lock();
6ff37972 1429 sem_lock_and_putref(sma);
0f3d2b01 1430 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1431 err = -EIDRM;
6e224f94 1432 goto out_unlock;
1da177e4 1433 }
ce857229 1434 }
1da177e4 1435 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1436 sem_io[i] = sma->sems[i].semval;
6062a8dc 1437 sem_unlock(sma, -1);
6d49dab8 1438 rcu_read_unlock();
1da177e4 1439 err = 0;
239521f3 1440 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1441 err = -EFAULT;
1442 goto out_free;
1443 }
1444 case SETALL:
1445 {
1446 int i;
1447 struct sem_undo *un;
1448
dba4cdd3 1449 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1450 err = -EIDRM;
1451 goto out_rcu_wakeup;
6062a8dc 1452 }
16df3674 1453 rcu_read_unlock();
1da177e4 1454
239521f3 1455 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1456 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1457 GFP_KERNEL);
239521f3 1458 if (sem_io == NULL) {
dba4cdd3 1459 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1460 return -ENOMEM;
1461 }
1462 }
1463
239521f3 1464 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1465 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1466 err = -EFAULT;
1467 goto out_free;
1468 }
1469
1470 for (i = 0; i < nsems; i++) {
1471 if (sem_io[i] > SEMVMX) {
dba4cdd3 1472 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1473 err = -ERANGE;
1474 goto out_free;
1475 }
1476 }
4091fd94 1477 rcu_read_lock();
6ff37972 1478 sem_lock_and_putref(sma);
0f3d2b01 1479 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1480 err = -EIDRM;
6e224f94 1481 goto out_unlock;
1da177e4
LT
1482 }
1483
a5f4db87 1484 for (i = 0; i < nsems; i++) {
1a233956 1485 sma->sems[i].semval = sem_io[i];
51d6f263 1486 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
a5f4db87 1487 }
4daa28f6 1488
cf9d5d78 1489 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1490 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1491 for (i = 0; i < nsems; i++)
1492 un->semadj[i] = 0;
4daa28f6 1493 }
e54d02b2 1494 sma->sem_ctime = ktime_get_real_seconds();
1da177e4 1495 /* maybe some queued-up processes were waiting for this */
9ae949fa 1496 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1497 err = 0;
1498 goto out_unlock;
1499 }
e1fd1f49 1500 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1501 }
1502 err = -EINVAL;
c728b9c8
LT
1503 if (semnum < 0 || semnum >= nsems)
1504 goto out_rcu_wakeup;
1da177e4 1505
6062a8dc 1506 sem_lock(sma, NULL, -1);
0f3d2b01 1507 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1508 err = -EIDRM;
1509 goto out_unlock;
1510 }
1a233956 1511 curr = &sma->sems[semnum];
1da177e4
LT
1512
1513 switch (cmd) {
1514 case GETVAL:
1515 err = curr->semval;
1516 goto out_unlock;
1517 case GETPID:
51d6f263 1518 err = pid_vnr(curr->sempid);
1da177e4
LT
1519 goto out_unlock;
1520 case GETNCNT:
2f2ed41d 1521 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1522 goto out_unlock;
1523 case GETZCNT:
2f2ed41d 1524 err = count_semcnt(sma, semnum, 1);
1da177e4 1525 goto out_unlock;
1da177e4 1526 }
16df3674 1527
1da177e4 1528out_unlock:
6062a8dc 1529 sem_unlock(sma, -1);
c728b9c8 1530out_rcu_wakeup:
6d49dab8 1531 rcu_read_unlock();
9ae949fa 1532 wake_up_q(&wake_q);
1da177e4 1533out_free:
239521f3 1534 if (sem_io != fast_sem_io)
f8dbe8d2 1535 kvfree(sem_io);
1da177e4
LT
1536 return err;
1537}
1538
016d7132
PP
1539static inline unsigned long
1540copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1541{
239521f3 1542 switch (version) {
1da177e4 1543 case IPC_64:
016d7132 1544 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1545 return -EFAULT;
1da177e4 1546 return 0;
1da177e4
LT
1547 case IPC_OLD:
1548 {
1549 struct semid_ds tbuf_old;
1550
239521f3 1551 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1552 return -EFAULT;
1553
016d7132
PP
1554 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1555 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1556 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1557
1558 return 0;
1559 }
1560 default:
1561 return -EINVAL;
1562 }
1563}
1564
522bb2a2 1565/*
d9a605e4 1566 * This function handles some semctl commands which require the rwsem
522bb2a2 1567 * to be held in write mode.
d9a605e4 1568 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1569 */
21a4826a 1570static int semctl_down(struct ipc_namespace *ns, int semid,
45a4a64a 1571 int cmd, struct semid64_ds *semid64)
1da177e4
LT
1572{
1573 struct sem_array *sma;
1574 int err;
1da177e4
LT
1575 struct kern_ipc_perm *ipcp;
1576
d9a605e4 1577 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1578 rcu_read_lock();
1579
16df3674 1580 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
45a4a64a 1581 &semid64->sem_perm, 0);
7b4cc5d8
DB
1582 if (IS_ERR(ipcp)) {
1583 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1584 goto out_unlock1;
1585 }
073115d6 1586
a5f75e7f 1587 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4 1588
aefad959 1589 err = security_sem_semctl(&sma->sem_perm, cmd);
7b4cc5d8
DB
1590 if (err)
1591 goto out_unlock1;
1da177e4 1592
7b4cc5d8 1593 switch (cmd) {
1da177e4 1594 case IPC_RMID:
6062a8dc 1595 sem_lock(sma, NULL, -1);
7b4cc5d8 1596 /* freeary unlocks the ipc object and rcu */
01b8b07a 1597 freeary(ns, ipcp);
522bb2a2 1598 goto out_up;
1da177e4 1599 case IPC_SET:
6062a8dc 1600 sem_lock(sma, NULL, -1);
45a4a64a 1601 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1efdb69b 1602 if (err)
7b4cc5d8 1603 goto out_unlock0;
e54d02b2 1604 sma->sem_ctime = ktime_get_real_seconds();
1da177e4
LT
1605 break;
1606 default:
1da177e4 1607 err = -EINVAL;
7b4cc5d8 1608 goto out_unlock1;
1da177e4 1609 }
1da177e4 1610
7b4cc5d8 1611out_unlock0:
6062a8dc 1612 sem_unlock(sma, -1);
7b4cc5d8 1613out_unlock1:
6d49dab8 1614 rcu_read_unlock();
522bb2a2 1615out_up:
d9a605e4 1616 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1617 return err;
1618}
1619
d969c6fa 1620long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1da177e4 1621{
1da177e4 1622 int version;
e3893534 1623 struct ipc_namespace *ns;
e1fd1f49 1624 void __user *p = (void __user *)arg;
45a4a64a
AV
1625 struct semid64_ds semid64;
1626 int err;
1da177e4
LT
1627
1628 if (semid < 0)
1629 return -EINVAL;
1630
1631 version = ipc_parse_version(&cmd);
e3893534 1632 ns = current->nsproxy->ipc_ns;
1da177e4 1633
239521f3 1634 switch (cmd) {
1da177e4
LT
1635 case IPC_INFO:
1636 case SEM_INFO:
45a4a64a 1637 return semctl_info(ns, semid, cmd, p);
4b9fcb0e 1638 case IPC_STAT:
1da177e4 1639 case SEM_STAT:
a280d6dc 1640 case SEM_STAT_ANY:
45a4a64a
AV
1641 err = semctl_stat(ns, semid, cmd, &semid64);
1642 if (err < 0)
1643 return err;
1644 if (copy_semid_to_user(p, &semid64, version))
1645 err = -EFAULT;
1646 return err;
1da177e4
LT
1647 case GETALL:
1648 case GETVAL:
1649 case GETPID:
1650 case GETNCNT:
1651 case GETZCNT:
1da177e4 1652 case SETALL:
e1fd1f49 1653 return semctl_main(ns, semid, semnum, cmd, p);
45a4a64a
AV
1654 case SETVAL: {
1655 int val;
1656#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1657 /* big-endian 64bit */
1658 val = arg >> 32;
1659#else
1660 /* 32bit or little-endian 64bit */
1661 val = arg;
1662#endif
1663 return semctl_setval(ns, semid, semnum, val);
1664 }
1da177e4 1665 case IPC_SET:
45a4a64a
AV
1666 if (copy_semid_from_user(&semid64, p, version))
1667 return -EFAULT;
1668 case IPC_RMID:
1669 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1670 default:
1671 return -EINVAL;
1672 }
1673}
1674
d969c6fa
DB
1675SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1676{
1677 return ksys_semctl(semid, semnum, cmd, arg);
1678}
1679
c0ebccb6
AV
1680#ifdef CONFIG_COMPAT
1681
1682struct compat_semid_ds {
1683 struct compat_ipc_perm sem_perm;
1684 compat_time_t sem_otime;
1685 compat_time_t sem_ctime;
1686 compat_uptr_t sem_base;
1687 compat_uptr_t sem_pending;
1688 compat_uptr_t sem_pending_last;
1689 compat_uptr_t undo;
1690 unsigned short sem_nsems;
1691};
1692
1693static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1694 int version)
1695{
1696 memset(out, 0, sizeof(*out));
1697 if (version == IPC_64) {
6aa211e8 1698 struct compat_semid64_ds __user *p = buf;
c0ebccb6
AV
1699 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1700 } else {
6aa211e8 1701 struct compat_semid_ds __user *p = buf;
c0ebccb6
AV
1702 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1703 }
1704}
1705
1706static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1707 int version)
1708{
1709 if (version == IPC_64) {
1710 struct compat_semid64_ds v;
1711 memset(&v, 0, sizeof(v));
1712 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
c2ab975c
AB
1713 v.sem_otime = lower_32_bits(in->sem_otime);
1714 v.sem_otime_high = upper_32_bits(in->sem_otime);
1715 v.sem_ctime = lower_32_bits(in->sem_ctime);
1716 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
c0ebccb6
AV
1717 v.sem_nsems = in->sem_nsems;
1718 return copy_to_user(buf, &v, sizeof(v));
1719 } else {
1720 struct compat_semid_ds v;
1721 memset(&v, 0, sizeof(v));
1722 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1723 v.sem_otime = in->sem_otime;
1724 v.sem_ctime = in->sem_ctime;
1725 v.sem_nsems = in->sem_nsems;
1726 return copy_to_user(buf, &v, sizeof(v));
1727 }
1728}
1729
d969c6fa 1730long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
c0ebccb6
AV
1731{
1732 void __user *p = compat_ptr(arg);
1733 struct ipc_namespace *ns;
1734 struct semid64_ds semid64;
1735 int version = compat_ipc_parse_version(&cmd);
1736 int err;
1737
1738 ns = current->nsproxy->ipc_ns;
1739
1740 if (semid < 0)
1741 return -EINVAL;
1742
1743 switch (cmd & (~IPC_64)) {
1744 case IPC_INFO:
1745 case SEM_INFO:
1746 return semctl_info(ns, semid, cmd, p);
1747 case IPC_STAT:
1748 case SEM_STAT:
a280d6dc 1749 case SEM_STAT_ANY:
c0ebccb6
AV
1750 err = semctl_stat(ns, semid, cmd, &semid64);
1751 if (err < 0)
1752 return err;
1753 if (copy_compat_semid_to_user(p, &semid64, version))
1754 err = -EFAULT;
1755 return err;
1756 case GETVAL:
1757 case GETPID:
1758 case GETNCNT:
1759 case GETZCNT:
1760 case GETALL:
1da177e4 1761 case SETALL:
e1fd1f49
AV
1762 return semctl_main(ns, semid, semnum, cmd, p);
1763 case SETVAL:
1764 return semctl_setval(ns, semid, semnum, arg);
1da177e4 1765 case IPC_SET:
c0ebccb6
AV
1766 if (copy_compat_semid_from_user(&semid64, p, version))
1767 return -EFAULT;
1768 /* fallthru */
1769 case IPC_RMID:
1770 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1771 default:
1772 return -EINVAL;
1773 }
1774}
d969c6fa
DB
1775
1776COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1777{
1778 return compat_ksys_semctl(semid, semnum, cmd, arg);
1779}
c0ebccb6 1780#endif
1da177e4 1781
1da177e4
LT
1782/* If the task doesn't already have a undo_list, then allocate one
1783 * here. We guarantee there is only one thread using this undo list,
1784 * and current is THE ONE
1785 *
1786 * If this allocation and assignment succeeds, but later
1787 * portions of this code fail, there is no need to free the sem_undo_list.
1788 * Just let it stay associated with the task, and it'll be freed later
1789 * at exit time.
1790 *
1791 * This can block, so callers must hold no locks.
1792 */
1793static inline int get_undo_list(struct sem_undo_list **undo_listp)
1794{
1795 struct sem_undo_list *undo_list;
1da177e4
LT
1796
1797 undo_list = current->sysvsem.undo_list;
1798 if (!undo_list) {
2453a306 1799 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1800 if (undo_list == NULL)
1801 return -ENOMEM;
00a5dfdb 1802 spin_lock_init(&undo_list->lock);
f74370b8 1803 refcount_set(&undo_list->refcnt, 1);
4daa28f6
MS
1804 INIT_LIST_HEAD(&undo_list->list_proc);
1805
1da177e4
LT
1806 current->sysvsem.undo_list = undo_list;
1807 }
1808 *undo_listp = undo_list;
1809 return 0;
1810}
1811
bf17bb71 1812static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1813{
bf17bb71 1814 struct sem_undo *un;
4daa28f6 1815
bf17bb71
NP
1816 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1817 if (un->semid == semid)
1818 return un;
1da177e4 1819 }
4daa28f6 1820 return NULL;
1da177e4
LT
1821}
1822
bf17bb71
NP
1823static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1824{
1825 struct sem_undo *un;
1826
239521f3 1827 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1828
1829 un = __lookup_undo(ulp, semid);
1830 if (un) {
1831 list_del_rcu(&un->list_proc);
1832 list_add_rcu(&un->list_proc, &ulp->list_proc);
1833 }
1834 return un;
1835}
1836
4daa28f6 1837/**
8001c858 1838 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1839 * @ns: namespace
1840 * @semid: semaphore array id
1841 *
1842 * The function looks up (and if not present creates) the undo structure.
1843 * The size of the undo structure depends on the size of the semaphore
1844 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1845 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1846 * performs a rcu_read_lock().
4daa28f6
MS
1847 */
1848static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1849{
1850 struct sem_array *sma;
1851 struct sem_undo_list *ulp;
1852 struct sem_undo *un, *new;
6062a8dc 1853 int nsems, error;
1da177e4
LT
1854
1855 error = get_undo_list(&ulp);
1856 if (error)
1857 return ERR_PTR(error);
1858
380af1b3 1859 rcu_read_lock();
c530c6ac 1860 spin_lock(&ulp->lock);
1da177e4 1861 un = lookup_undo(ulp, semid);
c530c6ac 1862 spin_unlock(&ulp->lock);
239521f3 1863 if (likely(un != NULL))
1da177e4
LT
1864 goto out;
1865
1866 /* no undo structure around - allocate one. */
4daa28f6 1867 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1868 sma = sem_obtain_object_check(ns, semid);
1869 if (IS_ERR(sma)) {
1870 rcu_read_unlock();
4de85cd6 1871 return ERR_CAST(sma);
16df3674 1872 }
023a5355 1873
1da177e4 1874 nsems = sma->sem_nsems;
dba4cdd3 1875 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1876 rcu_read_unlock();
1877 un = ERR_PTR(-EIDRM);
1878 goto out;
1879 }
16df3674 1880 rcu_read_unlock();
1da177e4 1881
4daa28f6 1882 /* step 2: allocate new undo structure */
4668edc3 1883 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1884 if (!new) {
dba4cdd3 1885 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1886 return ERR_PTR(-ENOMEM);
1887 }
1da177e4 1888
380af1b3 1889 /* step 3: Acquire the lock on semaphore array */
4091fd94 1890 rcu_read_lock();
6ff37972 1891 sem_lock_and_putref(sma);
0f3d2b01 1892 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1893 sem_unlock(sma, -1);
6d49dab8 1894 rcu_read_unlock();
1da177e4
LT
1895 kfree(new);
1896 un = ERR_PTR(-EIDRM);
1897 goto out;
1898 }
380af1b3
MS
1899 spin_lock(&ulp->lock);
1900
1901 /*
1902 * step 4: check for races: did someone else allocate the undo struct?
1903 */
1904 un = lookup_undo(ulp, semid);
1905 if (un) {
1906 kfree(new);
1907 goto success;
1908 }
4daa28f6
MS
1909 /* step 5: initialize & link new undo structure */
1910 new->semadj = (short *) &new[1];
380af1b3 1911 new->ulp = ulp;
4daa28f6
MS
1912 new->semid = semid;
1913 assert_spin_locked(&ulp->lock);
380af1b3 1914 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1915 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1916 list_add(&new->list_id, &sma->list_id);
380af1b3 1917 un = new;
4daa28f6 1918
380af1b3 1919success:
c530c6ac 1920 spin_unlock(&ulp->lock);
6062a8dc 1921 sem_unlock(sma, -1);
1da177e4
LT
1922out:
1923 return un;
1924}
1925
44ee4546 1926static long do_semtimedop(int semid, struct sembuf __user *tsops,
3ef56dc2 1927 unsigned nsops, const struct timespec64 *timeout)
1da177e4
LT
1928{
1929 int error = -EINVAL;
1930 struct sem_array *sma;
1931 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1932 struct sembuf *sops = fast_sops, *sop;
1da177e4 1933 struct sem_undo *un;
4ce33ec2
DB
1934 int max, locknum;
1935 bool undos = false, alter = false, dupsop = false;
1da177e4 1936 struct sem_queue queue;
4ce33ec2 1937 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1938 struct ipc_namespace *ns;
1939
1940 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1941
1942 if (nsops < 1 || semid < 0)
1943 return -EINVAL;
e3893534 1944 if (nsops > ns->sc_semopm)
1da177e4 1945 return -E2BIG;
239521f3 1946 if (nsops > SEMOPM_FAST) {
e4243b80 1947 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
239521f3 1948 if (sops == NULL)
1da177e4
LT
1949 return -ENOMEM;
1950 }
4ce33ec2 1951
239521f3
MS
1952 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1953 error = -EFAULT;
1da177e4
LT
1954 goto out_free;
1955 }
4ce33ec2 1956
1da177e4 1957 if (timeout) {
44ee4546
AV
1958 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1959 timeout->tv_nsec >= 1000000000L) {
1da177e4
LT
1960 error = -EINVAL;
1961 goto out_free;
1962 }
3ef56dc2 1963 jiffies_left = timespec64_to_jiffies(timeout);
1da177e4 1964 }
4ce33ec2 1965
1da177e4
LT
1966 max = 0;
1967 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
1968 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1969
1da177e4
LT
1970 if (sop->sem_num >= max)
1971 max = sop->sem_num;
1972 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
1973 undos = true;
1974 if (dup & mask) {
1975 /*
1976 * There was a previous alter access that appears
1977 * to have accessed the same semaphore, thus use
1978 * the dupsop logic. "appears", because the detection
1979 * can only check % BITS_PER_LONG.
1980 */
1981 dupsop = true;
1982 }
1983 if (sop->sem_op != 0) {
1984 alter = true;
1985 dup |= mask;
1986 }
1da177e4 1987 }
1da177e4 1988
1da177e4 1989 if (undos) {
6062a8dc 1990 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1991 un = find_alloc_undo(ns, semid);
1da177e4
LT
1992 if (IS_ERR(un)) {
1993 error = PTR_ERR(un);
1994 goto out_free;
1995 }
6062a8dc 1996 } else {
1da177e4 1997 un = NULL;
6062a8dc
RR
1998 rcu_read_lock();
1999 }
1da177e4 2000
16df3674 2001 sma = sem_obtain_object_check(ns, semid);
023a5355 2002 if (IS_ERR(sma)) {
6062a8dc 2003 rcu_read_unlock();
023a5355 2004 error = PTR_ERR(sma);
1da177e4 2005 goto out_free;
023a5355
ND
2006 }
2007
16df3674 2008 error = -EFBIG;
248e7357
DB
2009 if (max >= sma->sem_nsems) {
2010 rcu_read_unlock();
2011 goto out_free;
2012 }
16df3674
DB
2013
2014 error = -EACCES;
248e7357
DB
2015 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2016 rcu_read_unlock();
2017 goto out_free;
2018 }
16df3674 2019
aefad959 2020 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
248e7357
DB
2021 if (error) {
2022 rcu_read_unlock();
2023 goto out_free;
2024 }
16df3674 2025
6e224f94
MS
2026 error = -EIDRM;
2027 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
2028 /*
2029 * We eventually might perform the following check in a lockless
2030 * fashion, considering ipc_valid_object() locking constraints.
2031 * If nsops == 1 and there is no contention for sem_perm.lock, then
2032 * only a per-semaphore lock is held and it's OK to proceed with the
2033 * check below. More details on the fine grained locking scheme
2034 * entangled here and why it's RMID race safe on comments at sem_lock()
2035 */
2036 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 2037 goto out_unlock_free;
1da177e4 2038 /*
4daa28f6 2039 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 2040 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 2041 * and now a new array with received the same id. Check and fail.
25985edc 2042 * This case can be detected checking un->semid. The existence of
380af1b3 2043 * "un" itself is guaranteed by rcu.
1da177e4 2044 */
6062a8dc
RR
2045 if (un && un->semid == -1)
2046 goto out_unlock_free;
4daa28f6 2047
d198cd6d
MS
2048 queue.sops = sops;
2049 queue.nsops = nsops;
2050 queue.undo = un;
51d6f263 2051 queue.pid = task_tgid(current);
d198cd6d 2052 queue.alter = alter;
4ce33ec2 2053 queue.dupsop = dupsop;
d198cd6d
MS
2054
2055 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
2056 if (error == 0) { /* non-blocking succesfull path */
2057 DEFINE_WAKE_Q(wake_q);
2058
2059 /*
2060 * If the operation was successful, then do
0e8c6656
MS
2061 * the required updates.
2062 */
2063 if (alter)
9ae949fa 2064 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
2065 else
2066 set_semotime(sma, sops);
9ae949fa
DB
2067
2068 sem_unlock(sma, locknum);
2069 rcu_read_unlock();
2070 wake_up_q(&wake_q);
2071
2072 goto out_free;
1da177e4 2073 }
9ae949fa 2074 if (error < 0) /* non-blocking error path */
0e8c6656 2075 goto out_unlock_free;
1da177e4 2076
9ae949fa
DB
2077 /*
2078 * We need to sleep on this operation, so we put the current
1da177e4
LT
2079 * task into the pending queue and go to sleep.
2080 */
b97e820f
MS
2081 if (nsops == 1) {
2082 struct sem *curr;
1a233956 2083 curr = &sma->sems[sops->sem_num];
b97e820f 2084
f269f40a
MS
2085 if (alter) {
2086 if (sma->complex_count) {
2087 list_add_tail(&queue.list,
2088 &sma->pending_alter);
2089 } else {
2090
2091 list_add_tail(&queue.list,
2092 &curr->pending_alter);
2093 }
2094 } else {
1a82e9e1 2095 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 2096 }
b97e820f 2097 } else {
f269f40a
MS
2098 if (!sma->complex_count)
2099 merge_queues(sma);
2100
9f1bc2c9 2101 if (alter)
1a82e9e1 2102 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 2103 else
1a82e9e1
MS
2104 list_add_tail(&queue.list, &sma->pending_const);
2105
b97e820f
MS
2106 sma->complex_count++;
2107 }
2108
b5fa01a2
DB
2109 do {
2110 queue.status = -EINTR;
2111 queue.sleeper = current;
0b0577f6 2112
b5fa01a2
DB
2113 __set_current_state(TASK_INTERRUPTIBLE);
2114 sem_unlock(sma, locknum);
2115 rcu_read_unlock();
1da177e4 2116
b5fa01a2
DB
2117 if (timeout)
2118 jiffies_left = schedule_timeout(jiffies_left);
2119 else
2120 schedule();
1da177e4 2121
9ae949fa 2122 /*
b5fa01a2
DB
2123 * fastpath: the semop has completed, either successfully or
2124 * not, from the syscall pov, is quite irrelevant to us at this
2125 * point; we're done.
2126 *
2127 * We _do_ care, nonetheless, about being awoken by a signal or
2128 * spuriously. The queue.status is checked again in the
2129 * slowpath (aka after taking sem_lock), such that we can detect
2130 * scenarios where we were awakened externally, during the
2131 * window between wake_q_add() and wake_up_q().
c61284e9 2132 */
b5fa01a2
DB
2133 error = READ_ONCE(queue.status);
2134 if (error != -EINTR) {
2135 /*
2136 * User space could assume that semop() is a memory
2137 * barrier: Without the mb(), the cpu could
2138 * speculatively read in userspace stale data that was
2139 * overwritten by the previous owner of the semaphore.
2140 */
2141 smp_mb();
2142 goto out_free;
2143 }
d694ad62 2144
b5fa01a2 2145 rcu_read_lock();
c626bc46 2146 locknum = sem_lock(sma, sops, nsops);
1da177e4 2147
370b262c
DB
2148 if (!ipc_valid_object(&sma->sem_perm))
2149 goto out_unlock_free;
2150
2151 error = READ_ONCE(queue.status);
1da177e4 2152
b5fa01a2
DB
2153 /*
2154 * If queue.status != -EINTR we are woken up by another process.
2155 * Leave without unlink_queue(), but with sem_unlock().
2156 */
2157 if (error != -EINTR)
2158 goto out_unlock_free;
0b0577f6 2159
b5fa01a2
DB
2160 /*
2161 * If an interrupt occurred we have to clean up the queue.
2162 */
2163 if (timeout && jiffies_left == 0)
2164 error = -EAGAIN;
2165 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2166
b97e820f 2167 unlink_queue(sma, &queue);
1da177e4
LT
2168
2169out_unlock_free:
6062a8dc 2170 sem_unlock(sma, locknum);
6d49dab8 2171 rcu_read_unlock();
1da177e4 2172out_free:
239521f3 2173 if (sops != fast_sops)
e4243b80 2174 kvfree(sops);
1da177e4
LT
2175 return error;
2176}
2177
41f4f0e2 2178long ksys_semtimedop(int semid, struct sembuf __user *tsops,
21fc538d 2179 unsigned int nsops, const struct __kernel_timespec __user *timeout)
44ee4546
AV
2180{
2181 if (timeout) {
3ef56dc2
DD
2182 struct timespec64 ts;
2183 if (get_timespec64(&ts, timeout))
44ee4546
AV
2184 return -EFAULT;
2185 return do_semtimedop(semid, tsops, nsops, &ts);
2186 }
2187 return do_semtimedop(semid, tsops, nsops, NULL);
2188}
2189
41f4f0e2 2190SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
21fc538d 2191 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
41f4f0e2
DB
2192{
2193 return ksys_semtimedop(semid, tsops, nsops, timeout);
2194}
2195
44ee4546 2196#ifdef CONFIG_COMPAT
41f4f0e2
DB
2197long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2198 unsigned int nsops,
2199 const struct compat_timespec __user *timeout)
44ee4546
AV
2200{
2201 if (timeout) {
3ef56dc2
DD
2202 struct timespec64 ts;
2203 if (compat_get_timespec64(&ts, timeout))
44ee4546
AV
2204 return -EFAULT;
2205 return do_semtimedop(semid, tsems, nsops, &ts);
2206 }
2207 return do_semtimedop(semid, tsems, nsops, NULL);
2208}
41f4f0e2
DB
2209
2210COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2211 unsigned int, nsops,
2212 const struct compat_timespec __user *, timeout)
2213{
2214 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2215}
44ee4546
AV
2216#endif
2217
d5460c99
HC
2218SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2219 unsigned, nsops)
1da177e4 2220{
44ee4546 2221 return do_semtimedop(semid, tsops, nsops, NULL);
1da177e4
LT
2222}
2223
2224/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2225 * parent and child tasks.
1da177e4
LT
2226 */
2227
2228int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2229{
2230 struct sem_undo_list *undo_list;
2231 int error;
2232
2233 if (clone_flags & CLONE_SYSVSEM) {
2234 error = get_undo_list(&undo_list);
2235 if (error)
2236 return error;
f74370b8 2237 refcount_inc(&undo_list->refcnt);
1da177e4 2238 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2239 } else
1da177e4
LT
2240 tsk->sysvsem.undo_list = NULL;
2241
2242 return 0;
2243}
2244
2245/*
2246 * add semadj values to semaphores, free undo structures.
2247 * undo structures are not freed when semaphore arrays are destroyed
2248 * so some of them may be out of date.
2249 * IMPLEMENTATION NOTE: There is some confusion over whether the
2250 * set of adjustments that needs to be done should be done in an atomic
2251 * manner or not. That is, if we are attempting to decrement the semval
2252 * should we queue up and wait until we can do so legally?
2253 * The original implementation attempted to do this (queue and wait).
2254 * The current implementation does not do so. The POSIX standard
2255 * and SVID should be consulted to determine what behavior is mandated.
2256 */
2257void exit_sem(struct task_struct *tsk)
2258{
4daa28f6 2259 struct sem_undo_list *ulp;
1da177e4 2260
4daa28f6
MS
2261 ulp = tsk->sysvsem.undo_list;
2262 if (!ulp)
1da177e4 2263 return;
9edff4ab 2264 tsk->sysvsem.undo_list = NULL;
1da177e4 2265
f74370b8 2266 if (!refcount_dec_and_test(&ulp->refcnt))
1da177e4
LT
2267 return;
2268
380af1b3 2269 for (;;) {
1da177e4 2270 struct sem_array *sma;
380af1b3 2271 struct sem_undo *un;
6062a8dc 2272 int semid, i;
9ae949fa 2273 DEFINE_WAKE_Q(wake_q);
4daa28f6 2274
2a1613a5
NB
2275 cond_resched();
2276
380af1b3 2277 rcu_read_lock();
05725f7e
JP
2278 un = list_entry_rcu(ulp->list_proc.next,
2279 struct sem_undo, list_proc);
602b8593
HK
2280 if (&un->list_proc == &ulp->list_proc) {
2281 /*
2282 * We must wait for freeary() before freeing this ulp,
2283 * in case we raced with last sem_undo. There is a small
2284 * possibility where we exit while freeary() didn't
2285 * finish unlocking sem_undo_list.
2286 */
e0892e08
PM
2287 spin_lock(&ulp->lock);
2288 spin_unlock(&ulp->lock);
602b8593
HK
2289 rcu_read_unlock();
2290 break;
2291 }
2292 spin_lock(&ulp->lock);
2293 semid = un->semid;
2294 spin_unlock(&ulp->lock);
4daa28f6 2295
602b8593 2296 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2297 if (semid == -1) {
2298 rcu_read_unlock();
602b8593 2299 continue;
6062a8dc 2300 }
1da177e4 2301
602b8593 2302 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2303 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2304 if (IS_ERR(sma)) {
2305 rcu_read_unlock();
380af1b3 2306 continue;
6062a8dc 2307 }
1da177e4 2308
6062a8dc 2309 sem_lock(sma, NULL, -1);
6e224f94 2310 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2311 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2312 sem_unlock(sma, -1);
2313 rcu_read_unlock();
2314 continue;
2315 }
bf17bb71 2316 un = __lookup_undo(ulp, semid);
380af1b3
MS
2317 if (un == NULL) {
2318 /* exit_sem raced with IPC_RMID+semget() that created
2319 * exactly the same semid. Nothing to do.
2320 */
6062a8dc 2321 sem_unlock(sma, -1);
6d49dab8 2322 rcu_read_unlock();
380af1b3
MS
2323 continue;
2324 }
2325
2326 /* remove un from the linked lists */
cf9d5d78 2327 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2328 list_del(&un->list_id);
2329
a9795584
HK
2330 /* we are the last process using this ulp, acquiring ulp->lock
2331 * isn't required. Besides that, we are also protected against
2332 * IPC_RMID as we hold sma->sem_perm lock now
2333 */
380af1b3 2334 list_del_rcu(&un->list_proc);
380af1b3 2335
4daa28f6
MS
2336 /* perform adjustments registered in un */
2337 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2338 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2339 if (un->semadj[i]) {
2340 semaphore->semval += un->semadj[i];
1da177e4
LT
2341 /*
2342 * Range checks of the new semaphore value,
2343 * not defined by sus:
2344 * - Some unices ignore the undo entirely
2345 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2346 * - some cap the value (e.g. FreeBSD caps
2347 * at 0, but doesn't enforce SEMVMX)
2348 *
2349 * Linux caps the semaphore value, both at 0
2350 * and at SEMVMX.
2351 *
239521f3 2352 * Manfred <manfred@colorfullife.com>
1da177e4 2353 */
5f921ae9
IM
2354 if (semaphore->semval < 0)
2355 semaphore->semval = 0;
2356 if (semaphore->semval > SEMVMX)
2357 semaphore->semval = SEMVMX;
51d6f263 2358 ipc_update_pid(&semaphore->sempid, task_tgid(current));
1da177e4
LT
2359 }
2360 }
1da177e4 2361 /* maybe some queued-up processes were waiting for this */
9ae949fa 2362 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2363 sem_unlock(sma, -1);
6d49dab8 2364 rcu_read_unlock();
9ae949fa 2365 wake_up_q(&wake_q);
380af1b3 2366
693a8b6e 2367 kfree_rcu(un, rcu);
1da177e4 2368 }
4daa28f6 2369 kfree(ulp);
1da177e4
LT
2370}
2371
2372#ifdef CONFIG_PROC_FS
19b4946c 2373static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2374{
1efdb69b 2375 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2376 struct kern_ipc_perm *ipcp = it;
2377 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
e54d02b2 2378 time64_t sem_otime;
d12e1e50 2379
d8c63376
MS
2380 /*
2381 * The proc interface isn't aware of sem_lock(), it calls
2382 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2383 * In order to stay compatible with sem_lock(), we must
2384 * enter / leave complex_mode.
d8c63376 2385 */
5864a2fd 2386 complexmode_enter(sma);
d8c63376 2387
d12e1e50 2388 sem_otime = get_semotime(sma);
19b4946c 2389
7f032d6e 2390 seq_printf(s,
e54d02b2 2391 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
7f032d6e
JP
2392 sma->sem_perm.key,
2393 sma->sem_perm.id,
2394 sma->sem_perm.mode,
2395 sma->sem_nsems,
2396 from_kuid_munged(user_ns, sma->sem_perm.uid),
2397 from_kgid_munged(user_ns, sma->sem_perm.gid),
2398 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2399 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2400 sem_otime,
2401 sma->sem_ctime);
2402
5864a2fd
MS
2403 complexmode_tryleave(sma);
2404
7f032d6e 2405 return 0;
1da177e4
LT
2406}
2407#endif