ipc,sem: do not hold ipc lock more than necessary
[linux-2.6-block.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 struct list_head sem_pending; /* pending single-sop operations */
98};
99
100/* One queue for each sleeping process in the system. */
101struct sem_queue {
102 struct list_head simple_list; /* queue of pending operations */
103 struct list_head list; /* queue of pending operations */
104 struct task_struct *sleeper; /* this process */
105 struct sem_undo *undo; /* undo structure */
106 int pid; /* process id of requesting process */
107 int status; /* completion status of operation */
108 struct sembuf *sops; /* array of pending operations */
109 int nsops; /* number of operations */
110 int alter; /* does *sops alter the array? */
111};
112
113/* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
115 */
116struct sem_undo {
117 struct list_head list_proc; /* per-process list: *
118 * all undos from one process
119 * rcu protected */
120 struct rcu_head rcu; /* rcu struct for sem_undo */
121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
122 struct list_head list_id; /* per semaphore array list:
123 * all undos for one array */
124 int semid; /* semaphore set identifier */
125 short *semadj; /* array of adjustments */
126 /* one per semaphore */
127};
128
129/* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
131 */
132struct sem_undo_list {
133 atomic_t refcnt;
134 spinlock_t lock;
135 struct list_head list_proc;
136};
137
138
ed2ddbf8 139#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 140
e3893534 141#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
1b531f21 142#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 143
7748dbfa 144static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 145static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 146#ifdef CONFIG_PROC_FS
19b4946c 147static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
148#endif
149
150#define SEMMSL_FAST 256 /* 512 bytes on stack */
151#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
152
153/*
154 * linked list protection:
155 * sem_undo.id_next,
156 * sem_array.sem_pending{,last},
157 * sem_array.sem_undo: sem_lock() for read/write
158 * sem_undo.proc_next: only "current" is allowed to read/write that field.
159 *
160 */
161
e3893534
KK
162#define sc_semmsl sem_ctls[0]
163#define sc_semmns sem_ctls[1]
164#define sc_semopm sem_ctls[2]
165#define sc_semmni sem_ctls[3]
166
ed2ddbf8 167void sem_init_ns(struct ipc_namespace *ns)
e3893534 168{
e3893534
KK
169 ns->sc_semmsl = SEMMSL;
170 ns->sc_semmns = SEMMNS;
171 ns->sc_semopm = SEMOPM;
172 ns->sc_semmni = SEMMNI;
173 ns->used_sems = 0;
ed2ddbf8 174 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
175}
176
ae5e1b22 177#ifdef CONFIG_IPC_NS
e3893534
KK
178void sem_exit_ns(struct ipc_namespace *ns)
179{
01b8b07a 180 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 181 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 182}
ae5e1b22 183#endif
1da177e4
LT
184
185void __init sem_init (void)
186{
ed2ddbf8 187 sem_init_ns(&init_ipc_ns);
19b4946c
MW
188 ipc_init_proc_interface("sysvipc/sem",
189 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 190 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
191}
192
3e148c79
ND
193/*
194 * sem_lock_(check_) routines are called in the paths where the rw_mutex
195 * is not held.
196 */
023a5355
ND
197static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
198{
03f02c76
ND
199 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
200
b1ed88b4
PP
201 if (IS_ERR(ipcp))
202 return (struct sem_array *)ipcp;
203
03f02c76 204 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
205}
206
16df3674
DB
207static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
208{
209 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
210
211 if (IS_ERR(ipcp))
212 return ERR_CAST(ipcp);
213
214 return container_of(ipcp, struct sem_array, sem_perm);
215}
216
023a5355
ND
217static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
218 int id)
219{
03f02c76
ND
220 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
221
b1ed88b4 222 if (IS_ERR(ipcp))
16df3674
DB
223 return ERR_CAST(ipcp);
224
225 return container_of(ipcp, struct sem_array, sem_perm);
226}
227
228static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
229 int id)
230{
231 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
232
233 if (IS_ERR(ipcp))
234 return ERR_CAST(ipcp);
b1ed88b4 235
03f02c76 236 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
237}
238
6ff37972
PP
239static inline void sem_lock_and_putref(struct sem_array *sma)
240{
241 ipc_lock_by_ptr(&sma->sem_perm);
242 ipc_rcu_putref(sma);
243}
244
245static inline void sem_getref_and_unlock(struct sem_array *sma)
246{
247 ipc_rcu_getref(sma);
248 ipc_unlock(&(sma)->sem_perm);
249}
250
251static inline void sem_putref(struct sem_array *sma)
252{
253 ipc_lock_by_ptr(&sma->sem_perm);
254 ipc_rcu_putref(sma);
255 ipc_unlock(&(sma)->sem_perm);
256}
257
16df3674
DB
258/*
259 * Call inside the rcu read section.
260 */
261static inline void sem_getref(struct sem_array *sma)
262{
263 spin_lock(&(sma)->sem_perm.lock);
264 ipc_rcu_getref(sma);
265 ipc_unlock(&(sma)->sem_perm);
266}
267
7ca7e564
ND
268static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
269{
270 ipc_rmid(&sem_ids(ns), &s->sem_perm);
271}
272
1da177e4
LT
273/*
274 * Lockless wakeup algorithm:
275 * Without the check/retry algorithm a lockless wakeup is possible:
276 * - queue.status is initialized to -EINTR before blocking.
277 * - wakeup is performed by
278 * * unlinking the queue entry from sma->sem_pending
279 * * setting queue.status to IN_WAKEUP
280 * This is the notification for the blocked thread that a
281 * result value is imminent.
282 * * call wake_up_process
283 * * set queue.status to the final value.
284 * - the previously blocked thread checks queue.status:
285 * * if it's IN_WAKEUP, then it must wait until the value changes
286 * * if it's not -EINTR, then the operation was completed by
287 * update_queue. semtimedop can return queue.status without
5f921ae9 288 * performing any operation on the sem array.
1da177e4
LT
289 * * otherwise it must acquire the spinlock and check what's up.
290 *
291 * The two-stage algorithm is necessary to protect against the following
292 * races:
293 * - if queue.status is set after wake_up_process, then the woken up idle
294 * thread could race forward and try (and fail) to acquire sma->lock
295 * before update_queue had a chance to set queue.status
296 * - if queue.status is written before wake_up_process and if the
297 * blocked process is woken up by a signal between writing
298 * queue.status and the wake_up_process, then the woken up
299 * process could return from semtimedop and die by calling
300 * sys_exit before wake_up_process is called. Then wake_up_process
301 * will oops, because the task structure is already invalid.
302 * (yes, this happened on s390 with sysv msg).
303 *
304 */
305#define IN_WAKEUP 1
306
f4566f04
ND
307/**
308 * newary - Create a new semaphore set
309 * @ns: namespace
310 * @params: ptr to the structure that contains key, semflg and nsems
311 *
3e148c79 312 * Called with sem_ids.rw_mutex held (as a writer)
f4566f04
ND
313 */
314
7748dbfa 315static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
316{
317 int id;
318 int retval;
319 struct sem_array *sma;
320 int size;
7748dbfa
ND
321 key_t key = params->key;
322 int nsems = params->u.nsems;
323 int semflg = params->flg;
b97e820f 324 int i;
1da177e4
LT
325
326 if (!nsems)
327 return -EINVAL;
e3893534 328 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
329 return -ENOSPC;
330
331 size = sizeof (*sma) + nsems * sizeof (struct sem);
332 sma = ipc_rcu_alloc(size);
333 if (!sma) {
334 return -ENOMEM;
335 }
336 memset (sma, 0, size);
337
338 sma->sem_perm.mode = (semflg & S_IRWXUGO);
339 sma->sem_perm.key = key;
340
341 sma->sem_perm.security = NULL;
342 retval = security_sem_alloc(sma);
343 if (retval) {
344 ipc_rcu_putref(sma);
345 return retval;
346 }
347
e3893534 348 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 349 if (id < 0) {
1da177e4
LT
350 security_sem_free(sma);
351 ipc_rcu_putref(sma);
283bb7fa 352 return id;
1da177e4 353 }
e3893534 354 ns->used_sems += nsems;
1da177e4
LT
355
356 sma->sem_base = (struct sem *) &sma[1];
b97e820f
MS
357
358 for (i = 0; i < nsems; i++)
359 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
360
361 sma->complex_count = 0;
a1193f8e 362 INIT_LIST_HEAD(&sma->sem_pending);
4daa28f6 363 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
364 sma->sem_nsems = nsems;
365 sma->sem_ctime = get_seconds();
366 sem_unlock(sma);
367
7ca7e564 368 return sma->sem_perm.id;
1da177e4
LT
369}
370
7748dbfa 371
f4566f04 372/*
3e148c79 373 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 374 */
03f02c76 375static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 376{
03f02c76
ND
377 struct sem_array *sma;
378
379 sma = container_of(ipcp, struct sem_array, sem_perm);
380 return security_sem_associate(sma, semflg);
7748dbfa
ND
381}
382
f4566f04 383/*
3e148c79 384 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 385 */
03f02c76
ND
386static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
387 struct ipc_params *params)
7748dbfa 388{
03f02c76
ND
389 struct sem_array *sma;
390
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
393 return -EINVAL;
394
395 return 0;
396}
397
d5460c99 398SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 399{
e3893534 400 struct ipc_namespace *ns;
7748dbfa
ND
401 struct ipc_ops sem_ops;
402 struct ipc_params sem_params;
e3893534
KK
403
404 ns = current->nsproxy->ipc_ns;
1da177e4 405
e3893534 406 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 407 return -EINVAL;
7ca7e564 408
7748dbfa
ND
409 sem_ops.getnew = newary;
410 sem_ops.associate = sem_security;
411 sem_ops.more_checks = sem_more_checks;
412
413 sem_params.key = key;
414 sem_params.flg = semflg;
415 sem_params.u.nsems = nsems;
1da177e4 416
7748dbfa 417 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
418}
419
1da177e4
LT
420/*
421 * Determine whether a sequence of semaphore operations would succeed
422 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
423 */
424
425static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
426 int nsops, struct sem_undo *un, int pid)
427{
428 int result, sem_op;
429 struct sembuf *sop;
430 struct sem * curr;
431
432 for (sop = sops; sop < sops + nsops; sop++) {
433 curr = sma->sem_base + sop->sem_num;
434 sem_op = sop->sem_op;
435 result = curr->semval;
436
437 if (!sem_op && result)
438 goto would_block;
439
440 result += sem_op;
441 if (result < 0)
442 goto would_block;
443 if (result > SEMVMX)
444 goto out_of_range;
445 if (sop->sem_flg & SEM_UNDO) {
446 int undo = un->semadj[sop->sem_num] - sem_op;
447 /*
448 * Exceeding the undo range is an error.
449 */
450 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
451 goto out_of_range;
452 }
453 curr->semval = result;
454 }
455
456 sop--;
457 while (sop >= sops) {
458 sma->sem_base[sop->sem_num].sempid = pid;
459 if (sop->sem_flg & SEM_UNDO)
460 un->semadj[sop->sem_num] -= sop->sem_op;
461 sop--;
462 }
463
1da177e4
LT
464 return 0;
465
466out_of_range:
467 result = -ERANGE;
468 goto undo;
469
470would_block:
471 if (sop->sem_flg & IPC_NOWAIT)
472 result = -EAGAIN;
473 else
474 result = 1;
475
476undo:
477 sop--;
478 while (sop >= sops) {
479 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
480 sop--;
481 }
482
483 return result;
484}
485
0a2b9d4c
MS
486/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
487 * @q: queue entry that must be signaled
488 * @error: Error value for the signal
489 *
490 * Prepare the wake-up of the queue entry q.
d4212093 491 */
0a2b9d4c
MS
492static void wake_up_sem_queue_prepare(struct list_head *pt,
493 struct sem_queue *q, int error)
d4212093 494{
0a2b9d4c
MS
495 if (list_empty(pt)) {
496 /*
497 * Hold preempt off so that we don't get preempted and have the
498 * wakee busy-wait until we're scheduled back on.
499 */
500 preempt_disable();
501 }
d4212093 502 q->status = IN_WAKEUP;
0a2b9d4c
MS
503 q->pid = error;
504
505 list_add_tail(&q->simple_list, pt);
506}
507
508/**
509 * wake_up_sem_queue_do(pt) - do the actual wake-up
510 * @pt: list of tasks to be woken up
511 *
512 * Do the actual wake-up.
513 * The function is called without any locks held, thus the semaphore array
514 * could be destroyed already and the tasks can disappear as soon as the
515 * status is set to the actual return code.
516 */
517static void wake_up_sem_queue_do(struct list_head *pt)
518{
519 struct sem_queue *q, *t;
520 int did_something;
521
522 did_something = !list_empty(pt);
523 list_for_each_entry_safe(q, t, pt, simple_list) {
524 wake_up_process(q->sleeper);
525 /* q can disappear immediately after writing q->status. */
526 smp_wmb();
527 q->status = q->pid;
528 }
529 if (did_something)
530 preempt_enable();
d4212093
NP
531}
532
b97e820f
MS
533static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
534{
535 list_del(&q->list);
536 if (q->nsops == 1)
537 list_del(&q->simple_list);
538 else
539 sma->complex_count--;
540}
541
fd5db422
MS
542/** check_restart(sma, q)
543 * @sma: semaphore array
544 * @q: the operation that just completed
545 *
546 * update_queue is O(N^2) when it restarts scanning the whole queue of
547 * waiting operations. Therefore this function checks if the restart is
548 * really necessary. It is called after a previously waiting operation
549 * was completed.
550 */
551static int check_restart(struct sem_array *sma, struct sem_queue *q)
552{
553 struct sem *curr;
554 struct sem_queue *h;
555
556 /* if the operation didn't modify the array, then no restart */
557 if (q->alter == 0)
558 return 0;
559
560 /* pending complex operations are too difficult to analyse */
561 if (sma->complex_count)
562 return 1;
563
564 /* we were a sleeping complex operation. Too difficult */
565 if (q->nsops > 1)
566 return 1;
567
568 curr = sma->sem_base + q->sops[0].sem_num;
569
570 /* No-one waits on this queue */
571 if (list_empty(&curr->sem_pending))
572 return 0;
573
574 /* the new semaphore value */
575 if (curr->semval) {
576 /* It is impossible that someone waits for the new value:
577 * - q is a previously sleeping simple operation that
578 * altered the array. It must be a decrement, because
579 * simple increments never sleep.
580 * - The value is not 0, thus wait-for-zero won't proceed.
581 * - If there are older (higher priority) decrements
582 * in the queue, then they have observed the original
583 * semval value and couldn't proceed. The operation
584 * decremented to value - thus they won't proceed either.
585 */
586 BUG_ON(q->sops[0].sem_op >= 0);
587 return 0;
588 }
589 /*
590 * semval is 0. Check if there are wait-for-zero semops.
591 * They must be the first entries in the per-semaphore simple queue
592 */
593 h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list);
594 BUG_ON(h->nsops != 1);
595 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
596
597 /* Yes, there is a wait-for-zero semop. Restart */
598 if (h->sops[0].sem_op == 0)
599 return 1;
600
601 /* Again - no-one is waiting for the new value. */
602 return 0;
603}
604
636c6be8
MS
605
606/**
607 * update_queue(sma, semnum): Look for tasks that can be completed.
608 * @sma: semaphore array.
609 * @semnum: semaphore that was modified.
0a2b9d4c 610 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
611 *
612 * update_queue must be called after a semaphore in a semaphore array
613 * was modified. If multiple semaphore were modified, then @semnum
614 * must be set to -1.
0a2b9d4c
MS
615 * The tasks that must be woken up are added to @pt. The return code
616 * is stored in q->pid.
617 * The function return 1 if at least one semop was completed successfully.
1da177e4 618 */
0a2b9d4c 619static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 620{
636c6be8
MS
621 struct sem_queue *q;
622 struct list_head *walk;
623 struct list_head *pending_list;
624 int offset;
0a2b9d4c 625 int semop_completed = 0;
636c6be8
MS
626
627 /* if there are complex operations around, then knowing the semaphore
628 * that was modified doesn't help us. Assume that multiple semaphores
629 * were modified.
630 */
631 if (sma->complex_count)
632 semnum = -1;
633
634 if (semnum == -1) {
635 pending_list = &sma->sem_pending;
636 offset = offsetof(struct sem_queue, list);
637 } else {
638 pending_list = &sma->sem_base[semnum].sem_pending;
639 offset = offsetof(struct sem_queue, simple_list);
640 }
9cad200c
NP
641
642again:
636c6be8
MS
643 walk = pending_list->next;
644 while (walk != pending_list) {
fd5db422 645 int error, restart;
636c6be8
MS
646
647 q = (struct sem_queue *)((char *)walk - offset);
648 walk = walk->next;
1da177e4 649
d987f8b2
MS
650 /* If we are scanning the single sop, per-semaphore list of
651 * one semaphore and that semaphore is 0, then it is not
652 * necessary to scan the "alter" entries: simple increments
653 * that affect only one entry succeed immediately and cannot
654 * be in the per semaphore pending queue, and decrements
655 * cannot be successful if the value is already 0.
656 */
657 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
658 q->alter)
659 break;
660
1da177e4
LT
661 error = try_atomic_semop(sma, q->sops, q->nsops,
662 q->undo, q->pid);
663
664 /* Does q->sleeper still need to sleep? */
9cad200c
NP
665 if (error > 0)
666 continue;
667
b97e820f 668 unlink_queue(sma, q);
9cad200c 669
0a2b9d4c 670 if (error) {
fd5db422 671 restart = 0;
0a2b9d4c
MS
672 } else {
673 semop_completed = 1;
fd5db422 674 restart = check_restart(sma, q);
0a2b9d4c 675 }
fd5db422 676
0a2b9d4c 677 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 678 if (restart)
9cad200c 679 goto again;
1da177e4 680 }
0a2b9d4c 681 return semop_completed;
1da177e4
LT
682}
683
0a2b9d4c
MS
684/**
685 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
fd5db422
MS
686 * @sma: semaphore array
687 * @sops: operations that were performed
688 * @nsops: number of operations
0a2b9d4c
MS
689 * @otime: force setting otime
690 * @pt: list head of the tasks that must be woken up.
fd5db422
MS
691 *
692 * do_smart_update() does the required called to update_queue, based on the
693 * actual changes that were performed on the semaphore array.
0a2b9d4c
MS
694 * Note that the function does not do the actual wake-up: the caller is
695 * responsible for calling wake_up_sem_queue_do(@pt).
696 * It is safe to perform this call after dropping all locks.
fd5db422 697 */
0a2b9d4c
MS
698static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
699 int otime, struct list_head *pt)
fd5db422
MS
700{
701 int i;
702
703 if (sma->complex_count || sops == NULL) {
0a2b9d4c
MS
704 if (update_queue(sma, -1, pt))
705 otime = 1;
706 goto done;
fd5db422
MS
707 }
708
709 for (i = 0; i < nsops; i++) {
710 if (sops[i].sem_op > 0 ||
711 (sops[i].sem_op < 0 &&
712 sma->sem_base[sops[i].sem_num].semval == 0))
0a2b9d4c
MS
713 if (update_queue(sma, sops[i].sem_num, pt))
714 otime = 1;
fd5db422 715 }
0a2b9d4c
MS
716done:
717 if (otime)
718 sma->sem_otime = get_seconds();
fd5db422
MS
719}
720
721
1da177e4
LT
722/* The following counts are associated to each semaphore:
723 * semncnt number of tasks waiting on semval being nonzero
724 * semzcnt number of tasks waiting on semval being zero
725 * This model assumes that a task waits on exactly one semaphore.
726 * Since semaphore operations are to be performed atomically, tasks actually
727 * wait on a whole sequence of semaphores simultaneously.
728 * The counts we return here are a rough approximation, but still
729 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
730 */
731static int count_semncnt (struct sem_array * sma, ushort semnum)
732{
733 int semncnt;
734 struct sem_queue * q;
735
736 semncnt = 0;
a1193f8e 737 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
738 struct sembuf * sops = q->sops;
739 int nsops = q->nsops;
740 int i;
741 for (i = 0; i < nsops; i++)
742 if (sops[i].sem_num == semnum
743 && (sops[i].sem_op < 0)
744 && !(sops[i].sem_flg & IPC_NOWAIT))
745 semncnt++;
746 }
747 return semncnt;
748}
a1193f8e 749
1da177e4
LT
750static int count_semzcnt (struct sem_array * sma, ushort semnum)
751{
752 int semzcnt;
753 struct sem_queue * q;
754
755 semzcnt = 0;
a1193f8e 756 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
757 struct sembuf * sops = q->sops;
758 int nsops = q->nsops;
759 int i;
760 for (i = 0; i < nsops; i++)
761 if (sops[i].sem_num == semnum
762 && (sops[i].sem_op == 0)
763 && !(sops[i].sem_flg & IPC_NOWAIT))
764 semzcnt++;
765 }
766 return semzcnt;
767}
768
3e148c79
ND
769/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
770 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
771 * remains locked on exit.
1da177e4 772 */
01b8b07a 773static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 774{
380af1b3
MS
775 struct sem_undo *un, *tu;
776 struct sem_queue *q, *tq;
01b8b07a 777 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 778 struct list_head tasks;
1da177e4 779
380af1b3 780 /* Free the existing undo structures for this semaphore set. */
4daa28f6 781 assert_spin_locked(&sma->sem_perm.lock);
380af1b3
MS
782 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
783 list_del(&un->list_id);
784 spin_lock(&un->ulp->lock);
1da177e4 785 un->semid = -1;
380af1b3
MS
786 list_del_rcu(&un->list_proc);
787 spin_unlock(&un->ulp->lock);
693a8b6e 788 kfree_rcu(un, rcu);
380af1b3 789 }
1da177e4
LT
790
791 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 792 INIT_LIST_HEAD(&tasks);
380af1b3 793 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
b97e820f 794 unlink_queue(sma, q);
0a2b9d4c 795 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4
LT
796 }
797
7ca7e564
ND
798 /* Remove the semaphore set from the IDR */
799 sem_rmid(ns, sma);
1da177e4
LT
800 sem_unlock(sma);
801
0a2b9d4c 802 wake_up_sem_queue_do(&tasks);
e3893534 803 ns->used_sems -= sma->sem_nsems;
1da177e4
LT
804 security_sem_free(sma);
805 ipc_rcu_putref(sma);
806}
807
808static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
809{
810 switch(version) {
811 case IPC_64:
812 return copy_to_user(buf, in, sizeof(*in));
813 case IPC_OLD:
814 {
815 struct semid_ds out;
816
982f7c2b
DR
817 memset(&out, 0, sizeof(out));
818
1da177e4
LT
819 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
820
821 out.sem_otime = in->sem_otime;
822 out.sem_ctime = in->sem_ctime;
823 out.sem_nsems = in->sem_nsems;
824
825 return copy_to_user(buf, &out, sizeof(out));
826 }
827 default:
828 return -EINVAL;
829 }
830}
831
4b9fcb0e 832static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 833 int cmd, int version, void __user *p)
1da177e4 834{
e5cc9c7b 835 int err;
1da177e4
LT
836 struct sem_array *sma;
837
838 switch(cmd) {
839 case IPC_INFO:
840 case SEM_INFO:
841 {
842 struct seminfo seminfo;
843 int max_id;
844
845 err = security_sem_semctl(NULL, cmd);
846 if (err)
847 return err;
848
849 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
850 seminfo.semmni = ns->sc_semmni;
851 seminfo.semmns = ns->sc_semmns;
852 seminfo.semmsl = ns->sc_semmsl;
853 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
854 seminfo.semvmx = SEMVMX;
855 seminfo.semmnu = SEMMNU;
856 seminfo.semmap = SEMMAP;
857 seminfo.semume = SEMUME;
3e148c79 858 down_read(&sem_ids(ns).rw_mutex);
1da177e4 859 if (cmd == SEM_INFO) {
e3893534
KK
860 seminfo.semusz = sem_ids(ns).in_use;
861 seminfo.semaem = ns->used_sems;
1da177e4
LT
862 } else {
863 seminfo.semusz = SEMUSZ;
864 seminfo.semaem = SEMAEM;
865 }
7ca7e564 866 max_id = ipc_get_maxid(&sem_ids(ns));
3e148c79 867 up_read(&sem_ids(ns).rw_mutex);
e1fd1f49 868 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4
LT
869 return -EFAULT;
870 return (max_id < 0) ? 0: max_id;
871 }
4b9fcb0e 872 case IPC_STAT:
1da177e4
LT
873 case SEM_STAT:
874 {
875 struct semid64_ds tbuf;
16df3674
DB
876 int id = 0;
877
878 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 879
4b9fcb0e 880 if (cmd == SEM_STAT) {
16df3674
DB
881 rcu_read_lock();
882 sma = sem_obtain_object(ns, semid);
883 if (IS_ERR(sma)) {
884 err = PTR_ERR(sma);
885 goto out_unlock;
886 }
4b9fcb0e
PP
887 id = sma->sem_perm.id;
888 } else {
16df3674
DB
889 rcu_read_lock();
890 sma = sem_obtain_object_check(ns, semid);
891 if (IS_ERR(sma)) {
892 err = PTR_ERR(sma);
893 goto out_unlock;
894 }
4b9fcb0e 895 }
1da177e4
LT
896
897 err = -EACCES;
b0e77598 898 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
899 goto out_unlock;
900
901 err = security_sem_semctl(sma, cmd);
902 if (err)
903 goto out_unlock;
904
1da177e4
LT
905 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
906 tbuf.sem_otime = sma->sem_otime;
907 tbuf.sem_ctime = sma->sem_ctime;
908 tbuf.sem_nsems = sma->sem_nsems;
16df3674 909 rcu_read_unlock();
e1fd1f49 910 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
911 return -EFAULT;
912 return id;
913 }
914 default:
915 return -EINVAL;
916 }
1da177e4 917out_unlock:
16df3674 918 rcu_read_unlock();
1da177e4
LT
919 return err;
920}
921
e1fd1f49
AV
922static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
923 unsigned long arg)
924{
925 struct sem_undo *un;
926 struct sem_array *sma;
927 struct sem* curr;
928 int err;
929 int nsems;
930 struct list_head tasks;
931 int val;
932#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
933 /* big-endian 64bit */
934 val = arg >> 32;
935#else
936 /* 32bit or little-endian 64bit */
937 val = arg;
938#endif
939
940 sma = sem_lock_check(ns, semid);
941 if (IS_ERR(sma))
942 return PTR_ERR(sma);
943
944 INIT_LIST_HEAD(&tasks);
945 nsems = sma->sem_nsems;
946
947 err = -EACCES;
948 if (ipcperms(ns, &sma->sem_perm, S_IWUGO))
949 goto out_unlock;
950
951 err = security_sem_semctl(sma, SETVAL);
952 if (err)
953 goto out_unlock;
954
955 err = -EINVAL;
956 if(semnum < 0 || semnum >= nsems)
957 goto out_unlock;
958
959 curr = &sma->sem_base[semnum];
960
961 err = -ERANGE;
962 if (val > SEMVMX || val < 0)
963 goto out_unlock;
964
965 assert_spin_locked(&sma->sem_perm.lock);
966 list_for_each_entry(un, &sma->list_id, list_id)
967 un->semadj[semnum] = 0;
968
969 curr->semval = val;
970 curr->sempid = task_tgid_vnr(current);
971 sma->sem_ctime = get_seconds();
972 /* maybe some queued-up processes were waiting for this */
973 do_smart_update(sma, NULL, 0, 0, &tasks);
974 err = 0;
975out_unlock:
976 sem_unlock(sma);
977 wake_up_sem_queue_do(&tasks);
978 return err;
979}
980
e3893534 981static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 982 int cmd, void __user *p)
1da177e4
LT
983{
984 struct sem_array *sma;
985 struct sem* curr;
16df3674 986 int err, nsems;
1da177e4
LT
987 ushort fast_sem_io[SEMMSL_FAST];
988 ushort* sem_io = fast_sem_io;
0a2b9d4c 989 struct list_head tasks;
1da177e4 990
16df3674
DB
991 INIT_LIST_HEAD(&tasks);
992
993 rcu_read_lock();
994 sma = sem_obtain_object_check(ns, semid);
995 if (IS_ERR(sma)) {
996 rcu_read_unlock();
023a5355 997 return PTR_ERR(sma);
16df3674 998 }
1da177e4
LT
999
1000 nsems = sma->sem_nsems;
1001
1da177e4 1002 err = -EACCES;
b0e77598 1003 if (ipcperms(ns, &sma->sem_perm,
16df3674
DB
1004 cmd == SETALL ? S_IWUGO : S_IRUGO)) {
1005 rcu_read_unlock();
1006 goto out_wakeup;
1007 }
1da177e4
LT
1008
1009 err = security_sem_semctl(sma, cmd);
16df3674
DB
1010 if (err) {
1011 rcu_read_unlock();
1012 goto out_wakeup;
1013 }
1da177e4
LT
1014
1015 err = -EACCES;
1016 switch (cmd) {
1017 case GETALL:
1018 {
e1fd1f49 1019 ushort __user *array = p;
1da177e4
LT
1020 int i;
1021
1022 if(nsems > SEMMSL_FAST) {
16df3674 1023 sem_getref(sma);
1da177e4
LT
1024
1025 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1026 if(sem_io == NULL) {
6ff37972 1027 sem_putref(sma);
1da177e4
LT
1028 return -ENOMEM;
1029 }
1030
6ff37972 1031 sem_lock_and_putref(sma);
1da177e4
LT
1032 if (sma->sem_perm.deleted) {
1033 sem_unlock(sma);
1034 err = -EIDRM;
1035 goto out_free;
1036 }
1037 }
1038
16df3674 1039 spin_lock(&sma->sem_perm.lock);
1da177e4
LT
1040 for (i = 0; i < sma->sem_nsems; i++)
1041 sem_io[i] = sma->sem_base[i].semval;
1042 sem_unlock(sma);
1043 err = 0;
1044 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1045 err = -EFAULT;
1046 goto out_free;
1047 }
1048 case SETALL:
1049 {
1050 int i;
1051 struct sem_undo *un;
1052
16df3674
DB
1053 ipc_rcu_getref(sma);
1054 rcu_read_unlock();
1da177e4
LT
1055
1056 if(nsems > SEMMSL_FAST) {
1057 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1058 if(sem_io == NULL) {
6ff37972 1059 sem_putref(sma);
1da177e4
LT
1060 return -ENOMEM;
1061 }
1062 }
1063
e1fd1f49 1064 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
6ff37972 1065 sem_putref(sma);
1da177e4
LT
1066 err = -EFAULT;
1067 goto out_free;
1068 }
1069
1070 for (i = 0; i < nsems; i++) {
1071 if (sem_io[i] > SEMVMX) {
6ff37972 1072 sem_putref(sma);
1da177e4
LT
1073 err = -ERANGE;
1074 goto out_free;
1075 }
1076 }
6ff37972 1077 sem_lock_and_putref(sma);
1da177e4
LT
1078 if (sma->sem_perm.deleted) {
1079 sem_unlock(sma);
1080 err = -EIDRM;
1081 goto out_free;
1082 }
1083
1084 for (i = 0; i < nsems; i++)
1085 sma->sem_base[i].semval = sem_io[i];
4daa28f6
MS
1086
1087 assert_spin_locked(&sma->sem_perm.lock);
1088 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1089 for (i = 0; i < nsems; i++)
1090 un->semadj[i] = 0;
4daa28f6 1091 }
1da177e4
LT
1092 sma->sem_ctime = get_seconds();
1093 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1094 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1095 err = 0;
1096 goto out_unlock;
1097 }
e1fd1f49 1098 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1099 }
1100 err = -EINVAL;
16df3674
DB
1101 if (semnum < 0 || semnum >= nsems) {
1102 rcu_read_unlock();
1103 goto out_wakeup;
1104 }
1da177e4 1105
16df3674 1106 spin_lock(&sma->sem_perm.lock);
1da177e4
LT
1107 curr = &sma->sem_base[semnum];
1108
1109 switch (cmd) {
1110 case GETVAL:
1111 err = curr->semval;
1112 goto out_unlock;
1113 case GETPID:
1114 err = curr->sempid;
1115 goto out_unlock;
1116 case GETNCNT:
1117 err = count_semncnt(sma,semnum);
1118 goto out_unlock;
1119 case GETZCNT:
1120 err = count_semzcnt(sma,semnum);
1121 goto out_unlock;
1da177e4 1122 }
16df3674 1123
1da177e4
LT
1124out_unlock:
1125 sem_unlock(sma);
16df3674 1126out_wakeup:
0a2b9d4c 1127 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1128out_free:
1129 if(sem_io != fast_sem_io)
1130 ipc_free(sem_io, sizeof(ushort)*nsems);
1131 return err;
1132}
1133
016d7132
PP
1134static inline unsigned long
1135copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
1136{
1137 switch(version) {
1138 case IPC_64:
016d7132 1139 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1140 return -EFAULT;
1da177e4 1141 return 0;
1da177e4
LT
1142 case IPC_OLD:
1143 {
1144 struct semid_ds tbuf_old;
1145
1146 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1147 return -EFAULT;
1148
016d7132
PP
1149 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1150 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1151 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1152
1153 return 0;
1154 }
1155 default:
1156 return -EINVAL;
1157 }
1158}
1159
522bb2a2
PP
1160/*
1161 * This function handles some semctl commands which require the rw_mutex
1162 * to be held in write mode.
1163 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1164 */
21a4826a 1165static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1166 int cmd, int version, void __user *p)
1da177e4
LT
1167{
1168 struct sem_array *sma;
1169 int err;
016d7132 1170 struct semid64_ds semid64;
1da177e4
LT
1171 struct kern_ipc_perm *ipcp;
1172
1173 if(cmd == IPC_SET) {
e1fd1f49 1174 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1175 return -EFAULT;
1da177e4 1176 }
073115d6 1177
16df3674
DB
1178 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1179 &semid64.sem_perm, 0);
a5f75e7f
PP
1180 if (IS_ERR(ipcp))
1181 return PTR_ERR(ipcp);
073115d6 1182
a5f75e7f 1183 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1184
1185 err = security_sem_semctl(sma, cmd);
16df3674
DB
1186 if (err) {
1187 rcu_read_unlock();
1da177e4 1188 goto out_unlock;
16df3674 1189 }
1da177e4
LT
1190
1191 switch(cmd){
1192 case IPC_RMID:
16df3674 1193 ipc_lock_object(&sma->sem_perm);
01b8b07a 1194 freeary(ns, ipcp);
522bb2a2 1195 goto out_up;
1da177e4 1196 case IPC_SET:
16df3674 1197 ipc_lock_object(&sma->sem_perm);
1efdb69b
EB
1198 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1199 if (err)
1200 goto out_unlock;
1da177e4 1201 sma->sem_ctime = get_seconds();
1da177e4
LT
1202 break;
1203 default:
16df3674 1204 rcu_read_unlock();
1da177e4 1205 err = -EINVAL;
16df3674 1206 goto out_up;
1da177e4 1207 }
1da177e4
LT
1208
1209out_unlock:
1210 sem_unlock(sma);
522bb2a2
PP
1211out_up:
1212 up_write(&sem_ids(ns).rw_mutex);
1da177e4
LT
1213 return err;
1214}
1215
e1fd1f49 1216SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1217{
1da177e4 1218 int version;
e3893534 1219 struct ipc_namespace *ns;
e1fd1f49 1220 void __user *p = (void __user *)arg;
1da177e4
LT
1221
1222 if (semid < 0)
1223 return -EINVAL;
1224
1225 version = ipc_parse_version(&cmd);
e3893534 1226 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1227
1228 switch(cmd) {
1229 case IPC_INFO:
1230 case SEM_INFO:
4b9fcb0e 1231 case IPC_STAT:
1da177e4 1232 case SEM_STAT:
e1fd1f49 1233 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1234 case GETALL:
1235 case GETVAL:
1236 case GETPID:
1237 case GETNCNT:
1238 case GETZCNT:
1da177e4 1239 case SETALL:
e1fd1f49
AV
1240 return semctl_main(ns, semid, semnum, cmd, p);
1241 case SETVAL:
1242 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1243 case IPC_RMID:
1244 case IPC_SET:
e1fd1f49 1245 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1246 default:
1247 return -EINVAL;
1248 }
1249}
1250
1da177e4
LT
1251/* If the task doesn't already have a undo_list, then allocate one
1252 * here. We guarantee there is only one thread using this undo list,
1253 * and current is THE ONE
1254 *
1255 * If this allocation and assignment succeeds, but later
1256 * portions of this code fail, there is no need to free the sem_undo_list.
1257 * Just let it stay associated with the task, and it'll be freed later
1258 * at exit time.
1259 *
1260 * This can block, so callers must hold no locks.
1261 */
1262static inline int get_undo_list(struct sem_undo_list **undo_listp)
1263{
1264 struct sem_undo_list *undo_list;
1da177e4
LT
1265
1266 undo_list = current->sysvsem.undo_list;
1267 if (!undo_list) {
2453a306 1268 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1269 if (undo_list == NULL)
1270 return -ENOMEM;
00a5dfdb 1271 spin_lock_init(&undo_list->lock);
1da177e4 1272 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1273 INIT_LIST_HEAD(&undo_list->list_proc);
1274
1da177e4
LT
1275 current->sysvsem.undo_list = undo_list;
1276 }
1277 *undo_listp = undo_list;
1278 return 0;
1279}
1280
bf17bb71 1281static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1282{
bf17bb71 1283 struct sem_undo *un;
4daa28f6 1284
bf17bb71
NP
1285 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1286 if (un->semid == semid)
1287 return un;
1da177e4 1288 }
4daa28f6 1289 return NULL;
1da177e4
LT
1290}
1291
bf17bb71
NP
1292static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1293{
1294 struct sem_undo *un;
1295
1296 assert_spin_locked(&ulp->lock);
1297
1298 un = __lookup_undo(ulp, semid);
1299 if (un) {
1300 list_del_rcu(&un->list_proc);
1301 list_add_rcu(&un->list_proc, &ulp->list_proc);
1302 }
1303 return un;
1304}
1305
4daa28f6
MS
1306/**
1307 * find_alloc_undo - Lookup (and if not present create) undo array
1308 * @ns: namespace
1309 * @semid: semaphore array id
1310 *
1311 * The function looks up (and if not present creates) the undo structure.
1312 * The size of the undo structure depends on the size of the semaphore
1313 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1314 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1315 * performs a rcu_read_lock().
4daa28f6
MS
1316 */
1317static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1318{
1319 struct sem_array *sma;
1320 struct sem_undo_list *ulp;
1321 struct sem_undo *un, *new;
1322 int nsems;
1323 int error;
1324
1325 error = get_undo_list(&ulp);
1326 if (error)
1327 return ERR_PTR(error);
1328
380af1b3 1329 rcu_read_lock();
c530c6ac 1330 spin_lock(&ulp->lock);
1da177e4 1331 un = lookup_undo(ulp, semid);
c530c6ac 1332 spin_unlock(&ulp->lock);
1da177e4
LT
1333 if (likely(un!=NULL))
1334 goto out;
1335
1336 /* no undo structure around - allocate one. */
4daa28f6 1337 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1338 sma = sem_obtain_object_check(ns, semid);
1339 if (IS_ERR(sma)) {
1340 rcu_read_unlock();
4de85cd6 1341 return ERR_CAST(sma);
16df3674 1342 }
023a5355 1343
1da177e4 1344 nsems = sma->sem_nsems;
16df3674
DB
1345 ipc_rcu_getref(sma);
1346 rcu_read_unlock();
1da177e4 1347
4daa28f6 1348 /* step 2: allocate new undo structure */
4668edc3 1349 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1350 if (!new) {
6ff37972 1351 sem_putref(sma);
1da177e4
LT
1352 return ERR_PTR(-ENOMEM);
1353 }
1da177e4 1354
380af1b3 1355 /* step 3: Acquire the lock on semaphore array */
6ff37972 1356 sem_lock_and_putref(sma);
1da177e4
LT
1357 if (sma->sem_perm.deleted) {
1358 sem_unlock(sma);
1da177e4
LT
1359 kfree(new);
1360 un = ERR_PTR(-EIDRM);
1361 goto out;
1362 }
380af1b3
MS
1363 spin_lock(&ulp->lock);
1364
1365 /*
1366 * step 4: check for races: did someone else allocate the undo struct?
1367 */
1368 un = lookup_undo(ulp, semid);
1369 if (un) {
1370 kfree(new);
1371 goto success;
1372 }
4daa28f6
MS
1373 /* step 5: initialize & link new undo structure */
1374 new->semadj = (short *) &new[1];
380af1b3 1375 new->ulp = ulp;
4daa28f6
MS
1376 new->semid = semid;
1377 assert_spin_locked(&ulp->lock);
380af1b3 1378 list_add_rcu(&new->list_proc, &ulp->list_proc);
4daa28f6
MS
1379 assert_spin_locked(&sma->sem_perm.lock);
1380 list_add(&new->list_id, &sma->list_id);
380af1b3 1381 un = new;
4daa28f6 1382
380af1b3 1383success:
c530c6ac 1384 spin_unlock(&ulp->lock);
380af1b3
MS
1385 rcu_read_lock();
1386 sem_unlock(sma);
1da177e4
LT
1387out:
1388 return un;
1389}
1390
c61284e9
MS
1391
1392/**
1393 * get_queue_result - Retrieve the result code from sem_queue
1394 * @q: Pointer to queue structure
1395 *
1396 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1397 * q->status, then we must loop until the value is replaced with the final
1398 * value: This may happen if a task is woken up by an unrelated event (e.g.
1399 * signal) and in parallel the task is woken up by another task because it got
1400 * the requested semaphores.
1401 *
1402 * The function can be called with or without holding the semaphore spinlock.
1403 */
1404static int get_queue_result(struct sem_queue *q)
1405{
1406 int error;
1407
1408 error = q->status;
1409 while (unlikely(error == IN_WAKEUP)) {
1410 cpu_relax();
1411 error = q->status;
1412 }
1413
1414 return error;
1415}
1416
1417
d5460c99
HC
1418SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1419 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1420{
1421 int error = -EINVAL;
1422 struct sem_array *sma;
1423 struct sembuf fast_sops[SEMOPM_FAST];
1424 struct sembuf* sops = fast_sops, *sop;
1425 struct sem_undo *un;
b78755ab 1426 int undos = 0, alter = 0, max;
1da177e4
LT
1427 struct sem_queue queue;
1428 unsigned long jiffies_left = 0;
e3893534 1429 struct ipc_namespace *ns;
0a2b9d4c 1430 struct list_head tasks;
e3893534
KK
1431
1432 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1433
1434 if (nsops < 1 || semid < 0)
1435 return -EINVAL;
e3893534 1436 if (nsops > ns->sc_semopm)
1da177e4
LT
1437 return -E2BIG;
1438 if(nsops > SEMOPM_FAST) {
1439 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1440 if(sops==NULL)
1441 return -ENOMEM;
1442 }
1443 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1444 error=-EFAULT;
1445 goto out_free;
1446 }
1447 if (timeout) {
1448 struct timespec _timeout;
1449 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1450 error = -EFAULT;
1451 goto out_free;
1452 }
1453 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1454 _timeout.tv_nsec >= 1000000000L) {
1455 error = -EINVAL;
1456 goto out_free;
1457 }
1458 jiffies_left = timespec_to_jiffies(&_timeout);
1459 }
1460 max = 0;
1461 for (sop = sops; sop < sops + nsops; sop++) {
1462 if (sop->sem_num >= max)
1463 max = sop->sem_num;
1464 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1465 undos = 1;
1466 if (sop->sem_op != 0)
1da177e4
LT
1467 alter = 1;
1468 }
1da177e4 1469
1da177e4 1470 if (undos) {
4daa28f6 1471 un = find_alloc_undo(ns, semid);
1da177e4
LT
1472 if (IS_ERR(un)) {
1473 error = PTR_ERR(un);
1474 goto out_free;
1475 }
1476 } else
1477 un = NULL;
1478
0a2b9d4c
MS
1479 INIT_LIST_HEAD(&tasks);
1480
16df3674
DB
1481 rcu_read_lock();
1482 sma = sem_obtain_object_check(ns, semid);
023a5355 1483 if (IS_ERR(sma)) {
380af1b3
MS
1484 if (un)
1485 rcu_read_unlock();
023a5355 1486 error = PTR_ERR(sma);
1da177e4 1487 goto out_free;
023a5355
ND
1488 }
1489
16df3674
DB
1490 error = -EFBIG;
1491 if (max >= sma->sem_nsems) {
1492 rcu_read_unlock();
1493 goto out_wakeup;
1494 }
1495
1496 error = -EACCES;
1497 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1498 rcu_read_unlock();
1499 goto out_wakeup;
1500 }
1501
1502 error = security_sem_semop(sma, sops, nsops, alter);
1503 if (error) {
1504 rcu_read_unlock();
1505 goto out_wakeup;
1506 }
1507
1da177e4 1508 /*
4daa28f6 1509 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1510 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1511 * and now a new array with received the same id. Check and fail.
25985edc 1512 * This case can be detected checking un->semid. The existence of
380af1b3 1513 * "un" itself is guaranteed by rcu.
1da177e4 1514 */
4daa28f6 1515 error = -EIDRM;
16df3674 1516 ipc_lock_object(&sma->sem_perm);
380af1b3
MS
1517 if (un) {
1518 if (un->semid == -1) {
1519 rcu_read_unlock();
1520 goto out_unlock_free;
1521 } else {
1522 /*
1523 * rcu lock can be released, "un" cannot disappear:
1524 * - sem_lock is acquired, thus IPC_RMID is
1525 * impossible.
1526 * - exit_sem is impossible, it always operates on
1527 * current (or a dead task).
1528 */
1529
1530 rcu_read_unlock();
1531 }
1532 }
4daa28f6 1533
b488893a 1534 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1da177e4
LT
1535 if (error <= 0) {
1536 if (alter && error == 0)
0a2b9d4c 1537 do_smart_update(sma, sops, nsops, 1, &tasks);
636c6be8 1538
1da177e4
LT
1539 goto out_unlock_free;
1540 }
1541
1542 /* We need to sleep on this operation, so we put the current
1543 * task into the pending queue and go to sleep.
1544 */
1545
1da177e4
LT
1546 queue.sops = sops;
1547 queue.nsops = nsops;
1548 queue.undo = un;
b488893a 1549 queue.pid = task_tgid_vnr(current);
1da177e4
LT
1550 queue.alter = alter;
1551 if (alter)
a1193f8e 1552 list_add_tail(&queue.list, &sma->sem_pending);
1da177e4 1553 else
a1193f8e 1554 list_add(&queue.list, &sma->sem_pending);
1da177e4 1555
b97e820f
MS
1556 if (nsops == 1) {
1557 struct sem *curr;
1558 curr = &sma->sem_base[sops->sem_num];
1559
1560 if (alter)
1561 list_add_tail(&queue.simple_list, &curr->sem_pending);
1562 else
1563 list_add(&queue.simple_list, &curr->sem_pending);
1564 } else {
1565 INIT_LIST_HEAD(&queue.simple_list);
1566 sma->complex_count++;
1567 }
1568
1da177e4
LT
1569 queue.status = -EINTR;
1570 queue.sleeper = current;
0b0577f6
MS
1571
1572sleep_again:
1da177e4
LT
1573 current->state = TASK_INTERRUPTIBLE;
1574 sem_unlock(sma);
1575
1576 if (timeout)
1577 jiffies_left = schedule_timeout(jiffies_left);
1578 else
1579 schedule();
1580
c61284e9 1581 error = get_queue_result(&queue);
1da177e4
LT
1582
1583 if (error != -EINTR) {
1584 /* fast path: update_queue already obtained all requested
c61284e9
MS
1585 * resources.
1586 * Perform a smp_mb(): User space could assume that semop()
1587 * is a memory barrier: Without the mb(), the cpu could
1588 * speculatively read in user space stale data that was
1589 * overwritten by the previous owner of the semaphore.
1590 */
1591 smp_mb();
1592
1da177e4
LT
1593 goto out_free;
1594 }
1595
e3893534 1596 sma = sem_lock(ns, semid);
d694ad62
MS
1597
1598 /*
1599 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1600 */
1601 error = get_queue_result(&queue);
1602
1603 /*
1604 * Array removed? If yes, leave without sem_unlock().
1605 */
023a5355 1606 if (IS_ERR(sma)) {
1da177e4
LT
1607 goto out_free;
1608 }
1609
c61284e9 1610
1da177e4 1611 /*
d694ad62
MS
1612 * If queue.status != -EINTR we are woken up by another process.
1613 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1614 */
c61284e9 1615
1da177e4
LT
1616 if (error != -EINTR) {
1617 goto out_unlock_free;
1618 }
1619
1620 /*
1621 * If an interrupt occurred we have to clean up the queue
1622 */
1623 if (timeout && jiffies_left == 0)
1624 error = -EAGAIN;
0b0577f6
MS
1625
1626 /*
1627 * If the wakeup was spurious, just retry
1628 */
1629 if (error == -EINTR && !signal_pending(current))
1630 goto sleep_again;
1631
b97e820f 1632 unlink_queue(sma, &queue);
1da177e4
LT
1633
1634out_unlock_free:
1635 sem_unlock(sma);
16df3674 1636out_wakeup:
0a2b9d4c 1637 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1638out_free:
1639 if(sops != fast_sops)
1640 kfree(sops);
1641 return error;
1642}
1643
d5460c99
HC
1644SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1645 unsigned, nsops)
1da177e4
LT
1646{
1647 return sys_semtimedop(semid, tsops, nsops, NULL);
1648}
1649
1650/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1651 * parent and child tasks.
1da177e4
LT
1652 */
1653
1654int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1655{
1656 struct sem_undo_list *undo_list;
1657 int error;
1658
1659 if (clone_flags & CLONE_SYSVSEM) {
1660 error = get_undo_list(&undo_list);
1661 if (error)
1662 return error;
1da177e4
LT
1663 atomic_inc(&undo_list->refcnt);
1664 tsk->sysvsem.undo_list = undo_list;
1665 } else
1666 tsk->sysvsem.undo_list = NULL;
1667
1668 return 0;
1669}
1670
1671/*
1672 * add semadj values to semaphores, free undo structures.
1673 * undo structures are not freed when semaphore arrays are destroyed
1674 * so some of them may be out of date.
1675 * IMPLEMENTATION NOTE: There is some confusion over whether the
1676 * set of adjustments that needs to be done should be done in an atomic
1677 * manner or not. That is, if we are attempting to decrement the semval
1678 * should we queue up and wait until we can do so legally?
1679 * The original implementation attempted to do this (queue and wait).
1680 * The current implementation does not do so. The POSIX standard
1681 * and SVID should be consulted to determine what behavior is mandated.
1682 */
1683void exit_sem(struct task_struct *tsk)
1684{
4daa28f6 1685 struct sem_undo_list *ulp;
1da177e4 1686
4daa28f6
MS
1687 ulp = tsk->sysvsem.undo_list;
1688 if (!ulp)
1da177e4 1689 return;
9edff4ab 1690 tsk->sysvsem.undo_list = NULL;
1da177e4 1691
4daa28f6 1692 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
1693 return;
1694
380af1b3 1695 for (;;) {
1da177e4 1696 struct sem_array *sma;
380af1b3 1697 struct sem_undo *un;
0a2b9d4c 1698 struct list_head tasks;
380af1b3 1699 int semid;
4daa28f6
MS
1700 int i;
1701
380af1b3 1702 rcu_read_lock();
05725f7e
JP
1703 un = list_entry_rcu(ulp->list_proc.next,
1704 struct sem_undo, list_proc);
380af1b3
MS
1705 if (&un->list_proc == &ulp->list_proc)
1706 semid = -1;
1707 else
1708 semid = un->semid;
1709 rcu_read_unlock();
4daa28f6 1710
380af1b3
MS
1711 if (semid == -1)
1712 break;
1da177e4 1713
380af1b3 1714 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1da177e4 1715
380af1b3
MS
1716 /* exit_sem raced with IPC_RMID, nothing to do */
1717 if (IS_ERR(sma))
1718 continue;
1da177e4 1719
bf17bb71 1720 un = __lookup_undo(ulp, semid);
380af1b3
MS
1721 if (un == NULL) {
1722 /* exit_sem raced with IPC_RMID+semget() that created
1723 * exactly the same semid. Nothing to do.
1724 */
1725 sem_unlock(sma);
1726 continue;
1727 }
1728
1729 /* remove un from the linked lists */
4daa28f6
MS
1730 assert_spin_locked(&sma->sem_perm.lock);
1731 list_del(&un->list_id);
1732
380af1b3
MS
1733 spin_lock(&ulp->lock);
1734 list_del_rcu(&un->list_proc);
1735 spin_unlock(&ulp->lock);
1736
4daa28f6
MS
1737 /* perform adjustments registered in un */
1738 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 1739 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
1740 if (un->semadj[i]) {
1741 semaphore->semval += un->semadj[i];
1da177e4
LT
1742 /*
1743 * Range checks of the new semaphore value,
1744 * not defined by sus:
1745 * - Some unices ignore the undo entirely
1746 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1747 * - some cap the value (e.g. FreeBSD caps
1748 * at 0, but doesn't enforce SEMVMX)
1749 *
1750 * Linux caps the semaphore value, both at 0
1751 * and at SEMVMX.
1752 *
1753 * Manfred <manfred@colorfullife.com>
1754 */
5f921ae9
IM
1755 if (semaphore->semval < 0)
1756 semaphore->semval = 0;
1757 if (semaphore->semval > SEMVMX)
1758 semaphore->semval = SEMVMX;
b488893a 1759 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
1760 }
1761 }
1da177e4 1762 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
1763 INIT_LIST_HEAD(&tasks);
1764 do_smart_update(sma, NULL, 0, 1, &tasks);
1da177e4 1765 sem_unlock(sma);
0a2b9d4c 1766 wake_up_sem_queue_do(&tasks);
380af1b3 1767
693a8b6e 1768 kfree_rcu(un, rcu);
1da177e4 1769 }
4daa28f6 1770 kfree(ulp);
1da177e4
LT
1771}
1772
1773#ifdef CONFIG_PROC_FS
19b4946c 1774static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 1775{
1efdb69b 1776 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c
MW
1777 struct sem_array *sma = it;
1778
1779 return seq_printf(s,
b97e820f 1780 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 1781 sma->sem_perm.key,
7ca7e564 1782 sma->sem_perm.id,
19b4946c
MW
1783 sma->sem_perm.mode,
1784 sma->sem_nsems,
1efdb69b
EB
1785 from_kuid_munged(user_ns, sma->sem_perm.uid),
1786 from_kgid_munged(user_ns, sma->sem_perm.gid),
1787 from_kuid_munged(user_ns, sma->sem_perm.cuid),
1788 from_kgid_munged(user_ns, sma->sem_perm.cgid),
19b4946c
MW
1789 sma->sem_otime,
1790 sma->sem_ctime);
1da177e4
LT
1791}
1792#endif