IB/uverbs: Consolidate uobject destruction
[linux-2.6-block.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
2fc77572 58#include <linux/netdevice.h>
e2773c06 59
50174a7f 60#include <linux/if_link.h>
60063497 61#include <linux/atomic.h>
882214e2 62#include <linux/mmu_notifier.h>
7c0f6ba6 63#include <linux/uaccess.h>
43579b5f 64#include <linux/cgroup_rdma.h>
ea6819e1 65#include <uapi/rdma/ib_user_verbs.h>
02d8883f 66#include <rdma/restrack.h>
0ede73bc 67#include <uapi/rdma/rdma_user_ioctl.h>
2eb9beae 68#include <uapi/rdma/ib_user_ioctl_verbs.h>
1da177e4 69
9abb0d1b
LR
70#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
71
f0626710 72extern struct workqueue_struct *ib_wq;
14d3a3b2 73extern struct workqueue_struct *ib_comp_wq;
f0626710 74
1da177e4
LT
75union ib_gid {
76 u8 raw[16];
77 struct {
97f52eb4
SH
78 __be64 subnet_prefix;
79 __be64 interface_id;
1da177e4
LT
80 } global;
81};
82
e26be1bf
MS
83extern union ib_gid zgid;
84
b39ffa1d
MB
85enum ib_gid_type {
86 /* If link layer is Ethernet, this is RoCE V1 */
87 IB_GID_TYPE_IB = 0,
88 IB_GID_TYPE_ROCE = 0,
7766a99f 89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
90 IB_GID_TYPE_SIZE
91};
92
7ead4bcb 93#define ROCE_V2_UDP_DPORT 4791
03db3a2d
MB
94struct ib_gid_attr {
95 struct net_device *ndev;
598ff6ba 96 struct ib_device *device;
b150c386 97 union ib_gid gid;
598ff6ba
PP
98 enum ib_gid_type gid_type;
99 u16 index;
100 u8 port_num;
03db3a2d
MB
101};
102
07ebafba
TT
103enum rdma_node_type {
104 /* IB values map to NodeInfo:NodeType. */
105 RDMA_NODE_IB_CA = 1,
106 RDMA_NODE_IB_SWITCH,
107 RDMA_NODE_IB_ROUTER,
180771a3
UM
108 RDMA_NODE_RNIC,
109 RDMA_NODE_USNIC,
5db5765e 110 RDMA_NODE_USNIC_UDP,
1da177e4
LT
111};
112
a0c1b2a3
EC
113enum {
114 /* set the local administered indication */
115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
116};
117
07ebafba
TT
118enum rdma_transport_type {
119 RDMA_TRANSPORT_IB,
180771a3 120 RDMA_TRANSPORT_IWARP,
248567f7
UM
121 RDMA_TRANSPORT_USNIC,
122 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
123};
124
6b90a6d6
MW
125enum rdma_protocol_type {
126 RDMA_PROTOCOL_IB,
127 RDMA_PROTOCOL_IBOE,
128 RDMA_PROTOCOL_IWARP,
129 RDMA_PROTOCOL_USNIC_UDP
130};
131
8385fd84
RD
132__attribute_const__ enum rdma_transport_type
133rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 134
c865f246
SK
135enum rdma_network_type {
136 RDMA_NETWORK_IB,
137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
138 RDMA_NETWORK_IPV4,
139 RDMA_NETWORK_IPV6
140};
141
142static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
143{
144 if (network_type == RDMA_NETWORK_IPV4 ||
145 network_type == RDMA_NETWORK_IPV6)
146 return IB_GID_TYPE_ROCE_UDP_ENCAP;
147
148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
149 return IB_GID_TYPE_IB;
150}
151
47ec3866
PP
152static inline enum rdma_network_type
153rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
c865f246 154{
47ec3866 155 if (attr->gid_type == IB_GID_TYPE_IB)
c865f246
SK
156 return RDMA_NETWORK_IB;
157
47ec3866 158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
c865f246
SK
159 return RDMA_NETWORK_IPV4;
160 else
161 return RDMA_NETWORK_IPV6;
162}
163
a3f5adaf
EC
164enum rdma_link_layer {
165 IB_LINK_LAYER_UNSPECIFIED,
166 IB_LINK_LAYER_INFINIBAND,
167 IB_LINK_LAYER_ETHERNET,
168};
169
1da177e4 170enum ib_device_cap_flags {
7ca0bc53
LR
171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
174 IB_DEVICE_RAW_MULTI = (1 << 3),
175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 180 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
184 IB_DEVICE_SRQ_RESIZE = (1 << 13),
185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
186
187 /*
188 * This device supports a per-device lkey or stag that can be
189 * used without performing a memory registration for the local
190 * memory. Note that ULPs should never check this flag, but
191 * instead of use the local_dma_lkey flag in the ib_pd structure,
192 * which will always contain a usable lkey.
193 */
7ca0bc53 194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 195 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 196 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
197 /*
198 * Devices should set IB_DEVICE_UD_IP_SUM if they support
199 * insertion of UDP and TCP checksum on outgoing UD IPoIB
200 * messages and can verify the validity of checksum for
201 * incoming messages. Setting this flag implies that the
202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
203 */
7ca0bc53
LR
204 IB_DEVICE_UD_IP_CSUM = (1 << 18),
205 IB_DEVICE_UD_TSO = (1 << 19),
206 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
207
208 /*
209 * This device supports the IB "base memory management extension",
210 * which includes support for fast registrations (IB_WR_REG_MR,
211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
212 * also be set by any iWarp device which must support FRs to comply
213 * to the iWarp verbs spec. iWarp devices also support the
214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
215 * stag.
216 */
7ca0bc53
LR
217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
221 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 223 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
224 /*
225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
226 * support execution of WQEs that involve synchronization
227 * of I/O operations with single completion queue managed
228 * by hardware.
229 */
78b57f95 230 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
e1d2e887
NO
239 /* The device supports padding incoming writes to cacheline. */
240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
1b01d335
SG
241};
242
243enum ib_signature_prot_cap {
244 IB_PROT_T10DIF_TYPE_1 = 1,
245 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
246 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
247};
248
249enum ib_signature_guard_cap {
250 IB_GUARD_T10DIF_CRC = 1,
251 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
252};
253
254enum ib_atomic_cap {
255 IB_ATOMIC_NONE,
256 IB_ATOMIC_HCA,
257 IB_ATOMIC_GLOB
258};
259
860f10a7 260enum ib_odp_general_cap_bits {
25bf14d6
AK
261 IB_ODP_SUPPORT = 1 << 0,
262 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
263};
264
265enum ib_odp_transport_cap_bits {
266 IB_ODP_SUPPORT_SEND = 1 << 0,
267 IB_ODP_SUPPORT_RECV = 1 << 1,
268 IB_ODP_SUPPORT_WRITE = 1 << 2,
269 IB_ODP_SUPPORT_READ = 1 << 3,
270 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
271};
272
273struct ib_odp_caps {
274 uint64_t general_caps;
275 struct {
276 uint32_t rc_odp_caps;
277 uint32_t uc_odp_caps;
278 uint32_t ud_odp_caps;
279 } per_transport_caps;
280};
281
ccf20562
YH
282struct ib_rss_caps {
283 /* Corresponding bit will be set if qp type from
284 * 'enum ib_qp_type' is supported, e.g.
285 * supported_qpts |= 1 << IB_QPT_UD
286 */
287 u32 supported_qpts;
288 u32 max_rwq_indirection_tables;
289 u32 max_rwq_indirection_table_size;
290};
291
6938fc1e
AK
292enum ib_tm_cap_flags {
293 /* Support tag matching on RC transport */
294 IB_TM_CAP_RC = 1 << 0,
295};
296
78b1beb0 297struct ib_tm_caps {
6938fc1e
AK
298 /* Max size of RNDV header */
299 u32 max_rndv_hdr_size;
300 /* Max number of entries in tag matching list */
301 u32 max_num_tags;
302 /* From enum ib_tm_cap_flags */
303 u32 flags;
304 /* Max number of outstanding list operations */
305 u32 max_ops;
306 /* Max number of SGE in tag matching entry */
307 u32 max_sge;
308};
309
bcf4c1ea
MB
310struct ib_cq_init_attr {
311 unsigned int cqe;
312 int comp_vector;
313 u32 flags;
314};
315
869ddcf8
YC
316enum ib_cq_attr_mask {
317 IB_CQ_MODERATE = 1 << 0,
318};
319
18bd9072
YC
320struct ib_cq_caps {
321 u16 max_cq_moderation_count;
322 u16 max_cq_moderation_period;
323};
324
be934cca
AL
325struct ib_dm_mr_attr {
326 u64 length;
327 u64 offset;
328 u32 access_flags;
329};
330
bee76d7a
AL
331struct ib_dm_alloc_attr {
332 u64 length;
333 u32 alignment;
334 u32 flags;
335};
336
1da177e4
LT
337struct ib_device_attr {
338 u64 fw_ver;
97f52eb4 339 __be64 sys_image_guid;
1da177e4
LT
340 u64 max_mr_size;
341 u64 page_size_cap;
342 u32 vendor_id;
343 u32 vendor_part_id;
344 u32 hw_ver;
345 int max_qp;
346 int max_qp_wr;
fb532d6a 347 u64 device_cap_flags;
33023fb8
SW
348 int max_send_sge;
349 int max_recv_sge;
1da177e4
LT
350 int max_sge_rd;
351 int max_cq;
352 int max_cqe;
353 int max_mr;
354 int max_pd;
355 int max_qp_rd_atom;
356 int max_ee_rd_atom;
357 int max_res_rd_atom;
358 int max_qp_init_rd_atom;
359 int max_ee_init_rd_atom;
360 enum ib_atomic_cap atomic_cap;
5e80ba8f 361 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
362 int max_ee;
363 int max_rdd;
364 int max_mw;
365 int max_raw_ipv6_qp;
366 int max_raw_ethy_qp;
367 int max_mcast_grp;
368 int max_mcast_qp_attach;
369 int max_total_mcast_qp_attach;
370 int max_ah;
371 int max_fmr;
372 int max_map_per_fmr;
373 int max_srq;
374 int max_srq_wr;
375 int max_srq_sge;
00f7ec36 376 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
377 u16 max_pkeys;
378 u8 local_ca_ack_delay;
1b01d335
SG
379 int sig_prot_cap;
380 int sig_guard_cap;
860f10a7 381 struct ib_odp_caps odp_caps;
24306dc6
MB
382 uint64_t timestamp_mask;
383 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
384 struct ib_rss_caps rss_caps;
385 u32 max_wq_type_rq;
ebaaee25 386 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
78b1beb0 387 struct ib_tm_caps tm_caps;
18bd9072 388 struct ib_cq_caps cq_caps;
1d8eeb9f 389 u64 max_dm_size;
1da177e4
LT
390};
391
392enum ib_mtu {
393 IB_MTU_256 = 1,
394 IB_MTU_512 = 2,
395 IB_MTU_1024 = 3,
396 IB_MTU_2048 = 4,
397 IB_MTU_4096 = 5
398};
399
400static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
401{
402 switch (mtu) {
403 case IB_MTU_256: return 256;
404 case IB_MTU_512: return 512;
405 case IB_MTU_1024: return 1024;
406 case IB_MTU_2048: return 2048;
407 case IB_MTU_4096: return 4096;
408 default: return -1;
409 }
410}
411
d3f4aadd
AR
412static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
413{
414 if (mtu >= 4096)
415 return IB_MTU_4096;
416 else if (mtu >= 2048)
417 return IB_MTU_2048;
418 else if (mtu >= 1024)
419 return IB_MTU_1024;
420 else if (mtu >= 512)
421 return IB_MTU_512;
422 else
423 return IB_MTU_256;
424}
425
1da177e4
LT
426enum ib_port_state {
427 IB_PORT_NOP = 0,
428 IB_PORT_DOWN = 1,
429 IB_PORT_INIT = 2,
430 IB_PORT_ARMED = 3,
431 IB_PORT_ACTIVE = 4,
432 IB_PORT_ACTIVE_DEFER = 5
433};
434
1da177e4
LT
435enum ib_port_width {
436 IB_WIDTH_1X = 1,
437 IB_WIDTH_4X = 2,
438 IB_WIDTH_8X = 4,
439 IB_WIDTH_12X = 8
440};
441
442static inline int ib_width_enum_to_int(enum ib_port_width width)
443{
444 switch (width) {
445 case IB_WIDTH_1X: return 1;
446 case IB_WIDTH_4X: return 4;
447 case IB_WIDTH_8X: return 8;
448 case IB_WIDTH_12X: return 12;
449 default: return -1;
450 }
451}
452
2e96691c
OG
453enum ib_port_speed {
454 IB_SPEED_SDR = 1,
455 IB_SPEED_DDR = 2,
456 IB_SPEED_QDR = 4,
457 IB_SPEED_FDR10 = 8,
458 IB_SPEED_FDR = 16,
12113a35
NO
459 IB_SPEED_EDR = 32,
460 IB_SPEED_HDR = 64
2e96691c
OG
461};
462
b40f4757
CL
463/**
464 * struct rdma_hw_stats
e945130b
MB
465 * @lock - Mutex to protect parallel write access to lifespan and values
466 * of counters, which are 64bits and not guaranteeed to be written
467 * atomicaly on 32bits systems.
b40f4757
CL
468 * @timestamp - Used by the core code to track when the last update was
469 * @lifespan - Used by the core code to determine how old the counters
470 * should be before being updated again. Stored in jiffies, defaults
471 * to 10 milliseconds, drivers can override the default be specifying
472 * their own value during their allocation routine.
473 * @name - Array of pointers to static names used for the counters in
474 * directory.
475 * @num_counters - How many hardware counters there are. If name is
476 * shorter than this number, a kernel oops will result. Driver authors
477 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
478 * in their code to prevent this.
479 * @value - Array of u64 counters that are accessed by the sysfs code and
480 * filled in by the drivers get_stats routine
481 */
482struct rdma_hw_stats {
e945130b 483 struct mutex lock; /* Protect lifespan and values[] */
b40f4757
CL
484 unsigned long timestamp;
485 unsigned long lifespan;
486 const char * const *names;
487 int num_counters;
488 u64 value[];
7f624d02
SW
489};
490
b40f4757
CL
491#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
492/**
493 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
494 * for drivers.
495 * @names - Array of static const char *
496 * @num_counters - How many elements in array
497 * @lifespan - How many milliseconds between updates
498 */
499static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
500 const char * const *names, int num_counters,
501 unsigned long lifespan)
502{
503 struct rdma_hw_stats *stats;
504
505 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
506 GFP_KERNEL);
507 if (!stats)
508 return NULL;
509 stats->names = names;
510 stats->num_counters = num_counters;
511 stats->lifespan = msecs_to_jiffies(lifespan);
512
513 return stats;
514}
515
516
f9b22e35
IW
517/* Define bits for the various functionality this port needs to be supported by
518 * the core.
519 */
520/* Management 0x00000FFF */
521#define RDMA_CORE_CAP_IB_MAD 0x00000001
522#define RDMA_CORE_CAP_IB_SMI 0x00000002
523#define RDMA_CORE_CAP_IB_CM 0x00000004
524#define RDMA_CORE_CAP_IW_CM 0x00000008
525#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 526#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
527
528/* Address format 0x000FF000 */
529#define RDMA_CORE_CAP_AF_IB 0x00001000
530#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 531#define RDMA_CORE_CAP_OPA_AH 0x00004000
b02289b3 532#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
f9b22e35
IW
533
534/* Protocol 0xFFF00000 */
535#define RDMA_CORE_CAP_PROT_IB 0x00100000
536#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
537#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 538#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 539#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 540#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35 541
b02289b3
AK
542#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
543 | RDMA_CORE_CAP_PROT_ROCE \
544 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
545
f9b22e35
IW
546#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
547 | RDMA_CORE_CAP_IB_MAD \
548 | RDMA_CORE_CAP_IB_SMI \
549 | RDMA_CORE_CAP_IB_CM \
550 | RDMA_CORE_CAP_IB_SA \
551 | RDMA_CORE_CAP_AF_IB)
552#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
553 | RDMA_CORE_CAP_IB_MAD \
554 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
555 | RDMA_CORE_CAP_AF_IB \
556 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
557#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
558 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
559 | RDMA_CORE_CAP_IB_MAD \
560 | RDMA_CORE_CAP_IB_CM \
561 | RDMA_CORE_CAP_AF_IB \
562 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
563#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
564 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
565#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
566 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 567
aa773bd4
OG
568#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
569
ce1e055f
OG
570#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
571
1da177e4 572struct ib_port_attr {
fad61ad4 573 u64 subnet_prefix;
1da177e4
LT
574 enum ib_port_state state;
575 enum ib_mtu max_mtu;
576 enum ib_mtu active_mtu;
577 int gid_tbl_len;
2f944c0f
JG
578 unsigned int ip_gids:1;
579 /* This is the value from PortInfo CapabilityMask, defined by IBA */
1da177e4
LT
580 u32 port_cap_flags;
581 u32 max_msg_sz;
582 u32 bad_pkey_cntr;
583 u32 qkey_viol_cntr;
584 u16 pkey_tbl_len;
db58540b 585 u32 sm_lid;
582faf31 586 u32 lid;
1da177e4
LT
587 u8 lmc;
588 u8 max_vl_num;
589 u8 sm_sl;
590 u8 subnet_timeout;
591 u8 init_type_reply;
592 u8 active_width;
593 u8 active_speed;
594 u8 phys_state;
595};
596
597enum ib_device_modify_flags {
c5bcbbb9
RD
598 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
599 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
600};
601
bd99fdea
YS
602#define IB_DEVICE_NODE_DESC_MAX 64
603
1da177e4
LT
604struct ib_device_modify {
605 u64 sys_image_guid;
bd99fdea 606 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
607};
608
609enum ib_port_modify_flags {
610 IB_PORT_SHUTDOWN = 1,
611 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
612 IB_PORT_RESET_QKEY_CNTR = (1<<3),
613 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
614};
615
616struct ib_port_modify {
617 u32 set_port_cap_mask;
618 u32 clr_port_cap_mask;
619 u8 init_type;
620};
621
622enum ib_event_type {
623 IB_EVENT_CQ_ERR,
624 IB_EVENT_QP_FATAL,
625 IB_EVENT_QP_REQ_ERR,
626 IB_EVENT_QP_ACCESS_ERR,
627 IB_EVENT_COMM_EST,
628 IB_EVENT_SQ_DRAINED,
629 IB_EVENT_PATH_MIG,
630 IB_EVENT_PATH_MIG_ERR,
631 IB_EVENT_DEVICE_FATAL,
632 IB_EVENT_PORT_ACTIVE,
633 IB_EVENT_PORT_ERR,
634 IB_EVENT_LID_CHANGE,
635 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
636 IB_EVENT_SM_CHANGE,
637 IB_EVENT_SRQ_ERR,
638 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 639 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
640 IB_EVENT_CLIENT_REREGISTER,
641 IB_EVENT_GID_CHANGE,
f213c052 642 IB_EVENT_WQ_FATAL,
1da177e4
LT
643};
644
db7489e0 645const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 646
1da177e4
LT
647struct ib_event {
648 struct ib_device *device;
649 union {
650 struct ib_cq *cq;
651 struct ib_qp *qp;
d41fcc67 652 struct ib_srq *srq;
f213c052 653 struct ib_wq *wq;
1da177e4
LT
654 u8 port_num;
655 } element;
656 enum ib_event_type event;
657};
658
659struct ib_event_handler {
660 struct ib_device *device;
661 void (*handler)(struct ib_event_handler *, struct ib_event *);
662 struct list_head list;
663};
664
665#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
666 do { \
667 (_ptr)->device = _device; \
668 (_ptr)->handler = _handler; \
669 INIT_LIST_HEAD(&(_ptr)->list); \
670 } while (0)
671
672struct ib_global_route {
8d9ec9ad 673 const struct ib_gid_attr *sgid_attr;
1da177e4
LT
674 union ib_gid dgid;
675 u32 flow_label;
676 u8 sgid_index;
677 u8 hop_limit;
678 u8 traffic_class;
679};
680
513789ed 681struct ib_grh {
97f52eb4
SH
682 __be32 version_tclass_flow;
683 __be16 paylen;
513789ed
HR
684 u8 next_hdr;
685 u8 hop_limit;
686 union ib_gid sgid;
687 union ib_gid dgid;
688};
689
c865f246
SK
690union rdma_network_hdr {
691 struct ib_grh ibgrh;
692 struct {
693 /* The IB spec states that if it's IPv4, the header
694 * is located in the last 20 bytes of the header.
695 */
696 u8 reserved[20];
697 struct iphdr roce4grh;
698 };
699};
700
7dafbab3
DH
701#define IB_QPN_MASK 0xFFFFFF
702
1da177e4
LT
703enum {
704 IB_MULTICAST_QPN = 0xffffff
705};
706
f3a7c66b 707#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 708#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 709
1da177e4
LT
710enum ib_ah_flags {
711 IB_AH_GRH = 1
712};
713
bf6a9e31
JM
714enum ib_rate {
715 IB_RATE_PORT_CURRENT = 0,
716 IB_RATE_2_5_GBPS = 2,
717 IB_RATE_5_GBPS = 5,
718 IB_RATE_10_GBPS = 3,
719 IB_RATE_20_GBPS = 6,
720 IB_RATE_30_GBPS = 4,
721 IB_RATE_40_GBPS = 7,
722 IB_RATE_60_GBPS = 8,
723 IB_RATE_80_GBPS = 9,
71eeba16
MA
724 IB_RATE_120_GBPS = 10,
725 IB_RATE_14_GBPS = 11,
726 IB_RATE_56_GBPS = 12,
727 IB_RATE_112_GBPS = 13,
728 IB_RATE_168_GBPS = 14,
729 IB_RATE_25_GBPS = 15,
730 IB_RATE_100_GBPS = 16,
731 IB_RATE_200_GBPS = 17,
732 IB_RATE_300_GBPS = 18
bf6a9e31
JM
733};
734
735/**
736 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
737 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
738 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
739 * @rate: rate to convert.
740 */
8385fd84 741__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 742
71eeba16
MA
743/**
744 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
745 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
746 * @rate: rate to convert.
747 */
8385fd84 748__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 749
17cd3a2d
SG
750
751/**
9bee178b
SG
752 * enum ib_mr_type - memory region type
753 * @IB_MR_TYPE_MEM_REG: memory region that is used for
754 * normal registration
755 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
756 * signature operations (data-integrity
757 * capable regions)
f5aa9159
SG
758 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
759 * register any arbitrary sg lists (without
760 * the normal mr constraints - see
761 * ib_map_mr_sg)
17cd3a2d 762 */
9bee178b
SG
763enum ib_mr_type {
764 IB_MR_TYPE_MEM_REG,
765 IB_MR_TYPE_SIGNATURE,
f5aa9159 766 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
767};
768
1b01d335 769/**
78eda2bb
SG
770 * Signature types
771 * IB_SIG_TYPE_NONE: Unprotected.
772 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 773 */
78eda2bb
SG
774enum ib_signature_type {
775 IB_SIG_TYPE_NONE,
776 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
777};
778
779/**
780 * Signature T10-DIF block-guard types
781 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
782 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
783 */
784enum ib_t10_dif_bg_type {
785 IB_T10DIF_CRC,
786 IB_T10DIF_CSUM
787};
788
789/**
790 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
791 * domain.
1b01d335
SG
792 * @bg_type: T10-DIF block guard type (CRC|CSUM)
793 * @pi_interval: protection information interval.
794 * @bg: seed of guard computation.
795 * @app_tag: application tag of guard block
796 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
797 * @ref_remap: Indicate wethear the reftag increments each block
798 * @app_escape: Indicate to skip block check if apptag=0xffff
799 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
800 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
801 */
802struct ib_t10_dif_domain {
1b01d335
SG
803 enum ib_t10_dif_bg_type bg_type;
804 u16 pi_interval;
805 u16 bg;
806 u16 app_tag;
807 u32 ref_tag;
78eda2bb
SG
808 bool ref_remap;
809 bool app_escape;
810 bool ref_escape;
811 u16 apptag_check_mask;
1b01d335
SG
812};
813
814/**
815 * struct ib_sig_domain - Parameters for signature domain
816 * @sig_type: specific signauture type
817 * @sig: union of all signature domain attributes that may
818 * be used to set domain layout.
819 */
820struct ib_sig_domain {
821 enum ib_signature_type sig_type;
822 union {
823 struct ib_t10_dif_domain dif;
824 } sig;
825};
826
827/**
828 * struct ib_sig_attrs - Parameters for signature handover operation
829 * @check_mask: bitmask for signature byte check (8 bytes)
830 * @mem: memory domain layout desciptor.
831 * @wire: wire domain layout desciptor.
832 */
833struct ib_sig_attrs {
834 u8 check_mask;
835 struct ib_sig_domain mem;
836 struct ib_sig_domain wire;
837};
838
839enum ib_sig_err_type {
840 IB_SIG_BAD_GUARD,
841 IB_SIG_BAD_REFTAG,
842 IB_SIG_BAD_APPTAG,
843};
844
ca24da00
MG
845/**
846 * Signature check masks (8 bytes in total) according to the T10-PI standard:
847 * -------- -------- ------------
848 * | GUARD | APPTAG | REFTAG |
849 * | 2B | 2B | 4B |
850 * -------- -------- ------------
851 */
852enum {
853 IB_SIG_CHECK_GUARD = 0xc0,
854 IB_SIG_CHECK_APPTAG = 0x30,
855 IB_SIG_CHECK_REFTAG = 0x0f,
856};
857
1b01d335
SG
858/**
859 * struct ib_sig_err - signature error descriptor
860 */
861struct ib_sig_err {
862 enum ib_sig_err_type err_type;
863 u32 expected;
864 u32 actual;
865 u64 sig_err_offset;
866 u32 key;
867};
868
869enum ib_mr_status_check {
870 IB_MR_CHECK_SIG_STATUS = 1,
871};
872
873/**
874 * struct ib_mr_status - Memory region status container
875 *
876 * @fail_status: Bitmask of MR checks status. For each
877 * failed check a corresponding status bit is set.
878 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
879 * failure.
880 */
881struct ib_mr_status {
882 u32 fail_status;
883 struct ib_sig_err sig_err;
884};
885
bf6a9e31
JM
886/**
887 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
888 * enum.
889 * @mult: multiple to convert.
890 */
8385fd84 891__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 892
44c58487 893enum rdma_ah_attr_type {
87daac68 894 RDMA_AH_ATTR_TYPE_UNDEFINED,
44c58487
DC
895 RDMA_AH_ATTR_TYPE_IB,
896 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 897 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
898};
899
900struct ib_ah_attr {
901 u16 dlid;
902 u8 src_path_bits;
903};
904
905struct roce_ah_attr {
906 u8 dmac[ETH_ALEN];
907};
908
64b4646e
DC
909struct opa_ah_attr {
910 u32 dlid;
911 u8 src_path_bits;
d98bb7f7 912 bool make_grd;
64b4646e
DC
913};
914
90898850 915struct rdma_ah_attr {
1da177e4 916 struct ib_global_route grh;
1da177e4 917 u8 sl;
1da177e4 918 u8 static_rate;
1da177e4 919 u8 port_num;
44c58487
DC
920 u8 ah_flags;
921 enum rdma_ah_attr_type type;
922 union {
923 struct ib_ah_attr ib;
924 struct roce_ah_attr roce;
64b4646e 925 struct opa_ah_attr opa;
44c58487 926 };
1da177e4
LT
927};
928
929enum ib_wc_status {
930 IB_WC_SUCCESS,
931 IB_WC_LOC_LEN_ERR,
932 IB_WC_LOC_QP_OP_ERR,
933 IB_WC_LOC_EEC_OP_ERR,
934 IB_WC_LOC_PROT_ERR,
935 IB_WC_WR_FLUSH_ERR,
936 IB_WC_MW_BIND_ERR,
937 IB_WC_BAD_RESP_ERR,
938 IB_WC_LOC_ACCESS_ERR,
939 IB_WC_REM_INV_REQ_ERR,
940 IB_WC_REM_ACCESS_ERR,
941 IB_WC_REM_OP_ERR,
942 IB_WC_RETRY_EXC_ERR,
943 IB_WC_RNR_RETRY_EXC_ERR,
944 IB_WC_LOC_RDD_VIOL_ERR,
945 IB_WC_REM_INV_RD_REQ_ERR,
946 IB_WC_REM_ABORT_ERR,
947 IB_WC_INV_EECN_ERR,
948 IB_WC_INV_EEC_STATE_ERR,
949 IB_WC_FATAL_ERR,
950 IB_WC_RESP_TIMEOUT_ERR,
951 IB_WC_GENERAL_ERR
952};
953
db7489e0 954const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 955
1da177e4
LT
956enum ib_wc_opcode {
957 IB_WC_SEND,
958 IB_WC_RDMA_WRITE,
959 IB_WC_RDMA_READ,
960 IB_WC_COMP_SWAP,
961 IB_WC_FETCH_ADD,
c93570f2 962 IB_WC_LSO,
00f7ec36 963 IB_WC_LOCAL_INV,
4c67e2bf 964 IB_WC_REG_MR,
5e80ba8f
VS
965 IB_WC_MASKED_COMP_SWAP,
966 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
967/*
968 * Set value of IB_WC_RECV so consumers can test if a completion is a
969 * receive by testing (opcode & IB_WC_RECV).
970 */
971 IB_WC_RECV = 1 << 7,
972 IB_WC_RECV_RDMA_WITH_IMM
973};
974
975enum ib_wc_flags {
976 IB_WC_GRH = 1,
00f7ec36
SW
977 IB_WC_WITH_IMM = (1<<1),
978 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 979 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
980 IB_WC_WITH_SMAC = (1<<4),
981 IB_WC_WITH_VLAN = (1<<5),
c865f246 982 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
983};
984
985struct ib_wc {
14d3a3b2
CH
986 union {
987 u64 wr_id;
988 struct ib_cqe *wr_cqe;
989 };
1da177e4
LT
990 enum ib_wc_status status;
991 enum ib_wc_opcode opcode;
992 u32 vendor_err;
993 u32 byte_len;
062dbb69 994 struct ib_qp *qp;
00f7ec36
SW
995 union {
996 __be32 imm_data;
997 u32 invalidate_rkey;
998 } ex;
1da177e4 999 u32 src_qp;
cd2a6e7d 1000 u32 slid;
1da177e4
LT
1001 int wc_flags;
1002 u16 pkey_index;
1da177e4
LT
1003 u8 sl;
1004 u8 dlid_path_bits;
1005 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
1006 u8 smac[ETH_ALEN];
1007 u16 vlan_id;
c865f246 1008 u8 network_hdr_type;
1da177e4
LT
1009};
1010
ed23a727
RD
1011enum ib_cq_notify_flags {
1012 IB_CQ_SOLICITED = 1 << 0,
1013 IB_CQ_NEXT_COMP = 1 << 1,
1014 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1015 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
1016};
1017
96104eda 1018enum ib_srq_type {
418d5130 1019 IB_SRQT_BASIC,
9c2c8496
AK
1020 IB_SRQT_XRC,
1021 IB_SRQT_TM,
96104eda
SH
1022};
1023
1a56ff6d
AK
1024static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1025{
9c2c8496
AK
1026 return srq_type == IB_SRQT_XRC ||
1027 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1028}
1029
d41fcc67
RD
1030enum ib_srq_attr_mask {
1031 IB_SRQ_MAX_WR = 1 << 0,
1032 IB_SRQ_LIMIT = 1 << 1,
1033};
1034
1035struct ib_srq_attr {
1036 u32 max_wr;
1037 u32 max_sge;
1038 u32 srq_limit;
1039};
1040
1041struct ib_srq_init_attr {
1042 void (*event_handler)(struct ib_event *, void *);
1043 void *srq_context;
1044 struct ib_srq_attr attr;
96104eda 1045 enum ib_srq_type srq_type;
418d5130 1046
1a56ff6d
AK
1047 struct {
1048 struct ib_cq *cq;
1049 union {
1050 struct {
1051 struct ib_xrcd *xrcd;
1052 } xrc;
9c2c8496
AK
1053
1054 struct {
1055 u32 max_num_tags;
1056 } tag_matching;
1a56ff6d 1057 };
418d5130 1058 } ext;
d41fcc67
RD
1059};
1060
1da177e4
LT
1061struct ib_qp_cap {
1062 u32 max_send_wr;
1063 u32 max_recv_wr;
1064 u32 max_send_sge;
1065 u32 max_recv_sge;
1066 u32 max_inline_data;
a060b562
CH
1067
1068 /*
1069 * Maximum number of rdma_rw_ctx structures in flight at a time.
1070 * ib_create_qp() will calculate the right amount of neededed WRs
1071 * and MRs based on this.
1072 */
1073 u32 max_rdma_ctxs;
1da177e4
LT
1074};
1075
1076enum ib_sig_type {
1077 IB_SIGNAL_ALL_WR,
1078 IB_SIGNAL_REQ_WR
1079};
1080
1081enum ib_qp_type {
1082 /*
1083 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1084 * here (and in that order) since the MAD layer uses them as
1085 * indices into a 2-entry table.
1086 */
1087 IB_QPT_SMI,
1088 IB_QPT_GSI,
1089
1090 IB_QPT_RC,
1091 IB_QPT_UC,
1092 IB_QPT_UD,
1093 IB_QPT_RAW_IPV6,
b42b63cf 1094 IB_QPT_RAW_ETHERTYPE,
c938a616 1095 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1096 IB_QPT_XRC_INI = 9,
1097 IB_QPT_XRC_TGT,
0134f16b 1098 IB_QPT_MAX,
8011c1e3 1099 IB_QPT_DRIVER = 0xFF,
0134f16b
JM
1100 /* Reserve a range for qp types internal to the low level driver.
1101 * These qp types will not be visible at the IB core layer, so the
1102 * IB_QPT_MAX usages should not be affected in the core layer
1103 */
1104 IB_QPT_RESERVED1 = 0x1000,
1105 IB_QPT_RESERVED2,
1106 IB_QPT_RESERVED3,
1107 IB_QPT_RESERVED4,
1108 IB_QPT_RESERVED5,
1109 IB_QPT_RESERVED6,
1110 IB_QPT_RESERVED7,
1111 IB_QPT_RESERVED8,
1112 IB_QPT_RESERVED9,
1113 IB_QPT_RESERVED10,
1da177e4
LT
1114};
1115
b846f25a 1116enum ib_qp_create_flags {
47ee1b9f
RL
1117 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1118 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1119 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1120 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1121 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1122 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1123 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1124 /* FREE = 1 << 7, */
b531b909 1125 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1126 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1127 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
e1d2e887 1128 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
d2b57063
JM
1129 /* reserve bits 26-31 for low level drivers' internal use */
1130 IB_QP_CREATE_RESERVED_START = 1 << 26,
1131 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1132};
1133
73c40c61
YH
1134/*
1135 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1136 * callback to destroy the passed in QP.
1137 */
1138
1da177e4
LT
1139struct ib_qp_init_attr {
1140 void (*event_handler)(struct ib_event *, void *);
1141 void *qp_context;
1142 struct ib_cq *send_cq;
1143 struct ib_cq *recv_cq;
1144 struct ib_srq *srq;
b42b63cf 1145 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1146 struct ib_qp_cap cap;
1147 enum ib_sig_type sq_sig_type;
1148 enum ib_qp_type qp_type;
b846f25a 1149 enum ib_qp_create_flags create_flags;
a060b562
CH
1150
1151 /*
1152 * Only needed for special QP types, or when using the RW API.
1153 */
1154 u8 port_num;
a9017e23 1155 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1156 u32 source_qpn;
1da177e4
LT
1157};
1158
0e0ec7e0
SH
1159struct ib_qp_open_attr {
1160 void (*event_handler)(struct ib_event *, void *);
1161 void *qp_context;
1162 u32 qp_num;
1163 enum ib_qp_type qp_type;
1164};
1165
1da177e4
LT
1166enum ib_rnr_timeout {
1167 IB_RNR_TIMER_655_36 = 0,
1168 IB_RNR_TIMER_000_01 = 1,
1169 IB_RNR_TIMER_000_02 = 2,
1170 IB_RNR_TIMER_000_03 = 3,
1171 IB_RNR_TIMER_000_04 = 4,
1172 IB_RNR_TIMER_000_06 = 5,
1173 IB_RNR_TIMER_000_08 = 6,
1174 IB_RNR_TIMER_000_12 = 7,
1175 IB_RNR_TIMER_000_16 = 8,
1176 IB_RNR_TIMER_000_24 = 9,
1177 IB_RNR_TIMER_000_32 = 10,
1178 IB_RNR_TIMER_000_48 = 11,
1179 IB_RNR_TIMER_000_64 = 12,
1180 IB_RNR_TIMER_000_96 = 13,
1181 IB_RNR_TIMER_001_28 = 14,
1182 IB_RNR_TIMER_001_92 = 15,
1183 IB_RNR_TIMER_002_56 = 16,
1184 IB_RNR_TIMER_003_84 = 17,
1185 IB_RNR_TIMER_005_12 = 18,
1186 IB_RNR_TIMER_007_68 = 19,
1187 IB_RNR_TIMER_010_24 = 20,
1188 IB_RNR_TIMER_015_36 = 21,
1189 IB_RNR_TIMER_020_48 = 22,
1190 IB_RNR_TIMER_030_72 = 23,
1191 IB_RNR_TIMER_040_96 = 24,
1192 IB_RNR_TIMER_061_44 = 25,
1193 IB_RNR_TIMER_081_92 = 26,
1194 IB_RNR_TIMER_122_88 = 27,
1195 IB_RNR_TIMER_163_84 = 28,
1196 IB_RNR_TIMER_245_76 = 29,
1197 IB_RNR_TIMER_327_68 = 30,
1198 IB_RNR_TIMER_491_52 = 31
1199};
1200
1201enum ib_qp_attr_mask {
1202 IB_QP_STATE = 1,
1203 IB_QP_CUR_STATE = (1<<1),
1204 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1205 IB_QP_ACCESS_FLAGS = (1<<3),
1206 IB_QP_PKEY_INDEX = (1<<4),
1207 IB_QP_PORT = (1<<5),
1208 IB_QP_QKEY = (1<<6),
1209 IB_QP_AV = (1<<7),
1210 IB_QP_PATH_MTU = (1<<8),
1211 IB_QP_TIMEOUT = (1<<9),
1212 IB_QP_RETRY_CNT = (1<<10),
1213 IB_QP_RNR_RETRY = (1<<11),
1214 IB_QP_RQ_PSN = (1<<12),
1215 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1216 IB_QP_ALT_PATH = (1<<14),
1217 IB_QP_MIN_RNR_TIMER = (1<<15),
1218 IB_QP_SQ_PSN = (1<<16),
1219 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1220 IB_QP_PATH_MIG_STATE = (1<<18),
1221 IB_QP_CAP = (1<<19),
dd5f03be 1222 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1223 IB_QP_RESERVED1 = (1<<21),
1224 IB_QP_RESERVED2 = (1<<22),
1225 IB_QP_RESERVED3 = (1<<23),
1226 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1227 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1228};
1229
1230enum ib_qp_state {
1231 IB_QPS_RESET,
1232 IB_QPS_INIT,
1233 IB_QPS_RTR,
1234 IB_QPS_RTS,
1235 IB_QPS_SQD,
1236 IB_QPS_SQE,
1237 IB_QPS_ERR
1238};
1239
1240enum ib_mig_state {
1241 IB_MIG_MIGRATED,
1242 IB_MIG_REARM,
1243 IB_MIG_ARMED
1244};
1245
7083e42e
SM
1246enum ib_mw_type {
1247 IB_MW_TYPE_1 = 1,
1248 IB_MW_TYPE_2 = 2
1249};
1250
1da177e4
LT
1251struct ib_qp_attr {
1252 enum ib_qp_state qp_state;
1253 enum ib_qp_state cur_qp_state;
1254 enum ib_mtu path_mtu;
1255 enum ib_mig_state path_mig_state;
1256 u32 qkey;
1257 u32 rq_psn;
1258 u32 sq_psn;
1259 u32 dest_qp_num;
1260 int qp_access_flags;
1261 struct ib_qp_cap cap;
90898850
DC
1262 struct rdma_ah_attr ah_attr;
1263 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1264 u16 pkey_index;
1265 u16 alt_pkey_index;
1266 u8 en_sqd_async_notify;
1267 u8 sq_draining;
1268 u8 max_rd_atomic;
1269 u8 max_dest_rd_atomic;
1270 u8 min_rnr_timer;
1271 u8 port_num;
1272 u8 timeout;
1273 u8 retry_cnt;
1274 u8 rnr_retry;
1275 u8 alt_port_num;
1276 u8 alt_timeout;
528e5a1b 1277 u32 rate_limit;
1da177e4
LT
1278};
1279
1280enum ib_wr_opcode {
1281 IB_WR_RDMA_WRITE,
1282 IB_WR_RDMA_WRITE_WITH_IMM,
1283 IB_WR_SEND,
1284 IB_WR_SEND_WITH_IMM,
1285 IB_WR_RDMA_READ,
1286 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1287 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1288 IB_WR_LSO,
1289 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1290 IB_WR_RDMA_READ_WITH_INV,
1291 IB_WR_LOCAL_INV,
4c67e2bf 1292 IB_WR_REG_MR,
5e80ba8f
VS
1293 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1294 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1295 IB_WR_REG_SIG_MR,
0134f16b
JM
1296 /* reserve values for low level drivers' internal use.
1297 * These values will not be used at all in the ib core layer.
1298 */
1299 IB_WR_RESERVED1 = 0xf0,
1300 IB_WR_RESERVED2,
1301 IB_WR_RESERVED3,
1302 IB_WR_RESERVED4,
1303 IB_WR_RESERVED5,
1304 IB_WR_RESERVED6,
1305 IB_WR_RESERVED7,
1306 IB_WR_RESERVED8,
1307 IB_WR_RESERVED9,
1308 IB_WR_RESERVED10,
1da177e4
LT
1309};
1310
1311enum ib_send_flags {
1312 IB_SEND_FENCE = 1,
1313 IB_SEND_SIGNALED = (1<<1),
1314 IB_SEND_SOLICITED = (1<<2),
e0605d91 1315 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1316 IB_SEND_IP_CSUM = (1<<4),
1317
1318 /* reserve bits 26-31 for low level drivers' internal use */
1319 IB_SEND_RESERVED_START = (1 << 26),
1320 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1321};
1322
1323struct ib_sge {
1324 u64 addr;
1325 u32 length;
1326 u32 lkey;
1327};
1328
14d3a3b2
CH
1329struct ib_cqe {
1330 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1331};
1332
1da177e4
LT
1333struct ib_send_wr {
1334 struct ib_send_wr *next;
14d3a3b2
CH
1335 union {
1336 u64 wr_id;
1337 struct ib_cqe *wr_cqe;
1338 };
1da177e4
LT
1339 struct ib_sge *sg_list;
1340 int num_sge;
1341 enum ib_wr_opcode opcode;
1342 int send_flags;
0f39cf3d
RD
1343 union {
1344 __be32 imm_data;
1345 u32 invalidate_rkey;
1346 } ex;
1da177e4
LT
1347};
1348
e622f2f4
CH
1349struct ib_rdma_wr {
1350 struct ib_send_wr wr;
1351 u64 remote_addr;
1352 u32 rkey;
1353};
1354
f696bf6d 1355static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1356{
1357 return container_of(wr, struct ib_rdma_wr, wr);
1358}
1359
1360struct ib_atomic_wr {
1361 struct ib_send_wr wr;
1362 u64 remote_addr;
1363 u64 compare_add;
1364 u64 swap;
1365 u64 compare_add_mask;
1366 u64 swap_mask;
1367 u32 rkey;
1368};
1369
f696bf6d 1370static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1371{
1372 return container_of(wr, struct ib_atomic_wr, wr);
1373}
1374
1375struct ib_ud_wr {
1376 struct ib_send_wr wr;
1377 struct ib_ah *ah;
1378 void *header;
1379 int hlen;
1380 int mss;
1381 u32 remote_qpn;
1382 u32 remote_qkey;
1383 u16 pkey_index; /* valid for GSI only */
1384 u8 port_num; /* valid for DR SMPs on switch only */
1385};
1386
f696bf6d 1387static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1388{
1389 return container_of(wr, struct ib_ud_wr, wr);
1390}
1391
4c67e2bf
SG
1392struct ib_reg_wr {
1393 struct ib_send_wr wr;
1394 struct ib_mr *mr;
1395 u32 key;
1396 int access;
1397};
1398
f696bf6d 1399static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
4c67e2bf
SG
1400{
1401 return container_of(wr, struct ib_reg_wr, wr);
1402}
1403
e622f2f4
CH
1404struct ib_sig_handover_wr {
1405 struct ib_send_wr wr;
1406 struct ib_sig_attrs *sig_attrs;
1407 struct ib_mr *sig_mr;
1408 int access_flags;
1409 struct ib_sge *prot;
1410};
1411
f696bf6d
BVA
1412static inline const struct ib_sig_handover_wr *
1413sig_handover_wr(const struct ib_send_wr *wr)
e622f2f4
CH
1414{
1415 return container_of(wr, struct ib_sig_handover_wr, wr);
1416}
1417
1da177e4
LT
1418struct ib_recv_wr {
1419 struct ib_recv_wr *next;
14d3a3b2
CH
1420 union {
1421 u64 wr_id;
1422 struct ib_cqe *wr_cqe;
1423 };
1da177e4
LT
1424 struct ib_sge *sg_list;
1425 int num_sge;
1426};
1427
1428enum ib_access_flags {
4fca0377
JG
1429 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1430 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1431 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1432 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1433 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1434 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1435 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1436 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1437
1438 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1da177e4
LT
1439};
1440
b7d3e0a9
CH
1441/*
1442 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1443 * are hidden here instead of a uapi header!
1444 */
1da177e4
LT
1445enum ib_mr_rereg_flags {
1446 IB_MR_REREG_TRANS = 1,
1447 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1448 IB_MR_REREG_ACCESS = (1<<2),
1449 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1450};
1451
1da177e4
LT
1452struct ib_fmr_attr {
1453 int max_pages;
1454 int max_maps;
d36f34aa 1455 u8 page_shift;
1da177e4
LT
1456};
1457
882214e2
HE
1458struct ib_umem;
1459
38321256 1460enum rdma_remove_reason {
1c77483e
YH
1461 /*
1462 * Userspace requested uobject deletion or initial try
1463 * to remove uobject via cleanup. Call could fail
1464 */
38321256
MB
1465 RDMA_REMOVE_DESTROY,
1466 /* Context deletion. This call should delete the actual object itself */
1467 RDMA_REMOVE_CLOSE,
1468 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1469 RDMA_REMOVE_DRIVER_REMOVE,
87ad80ab
JG
1470 /* uobj is being cleaned-up before being committed */
1471 RDMA_REMOVE_ABORT,
38321256
MB
1472};
1473
43579b5f
PP
1474struct ib_rdmacg_object {
1475#ifdef CONFIG_CGROUP_RDMA
1476 struct rdma_cgroup *cg; /* owner rdma cgroup */
1477#endif
1478};
1479
e2773c06
RD
1480struct ib_ucontext {
1481 struct ib_device *device;
771addf6 1482 struct ib_uverbs_file *ufile;
e951747a
JG
1483 /*
1484 * 'closing' can be read by the driver only during a destroy callback,
1485 * it is set when we are closing the file descriptor and indicates
1486 * that mm_sem may be locked.
1487 */
f7c6a7b5 1488 int closing;
8ada2c1c 1489
1c77483e 1490 bool cleanup_retryable;
38321256 1491
8ada2c1c 1492 struct pid *tgid;
882214e2 1493#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
f808c13f 1494 struct rb_root_cached umem_tree;
882214e2
HE
1495 /*
1496 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1497 * mmu notifiers registration.
1498 */
1499 struct rw_semaphore umem_rwsem;
1500 void (*invalidate_range)(struct ib_umem *umem,
1501 unsigned long start, unsigned long end);
1502
1503 struct mmu_notifier mn;
1504 atomic_t notifier_count;
1505 /* A list of umems that don't have private mmu notifier counters yet. */
1506 struct list_head no_private_counters;
1507 int odp_mrs_count;
1508#endif
43579b5f
PP
1509
1510 struct ib_rdmacg_object cg_obj;
e2773c06
RD
1511};
1512
1513struct ib_uobject {
1514 u64 user_handle; /* handle given to us by userspace */
6a5e9c88
JG
1515 /* ufile & ucontext owning this object */
1516 struct ib_uverbs_file *ufile;
1517 /* FIXME, save memory: ufile->context == context */
e2773c06 1518 struct ib_ucontext *context; /* associated user context */
9ead190b 1519 void *object; /* containing object */
e2773c06 1520 struct list_head list; /* link to context's list */
43579b5f 1521 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1522 int id; /* index into kernel idr */
9ead190b 1523 struct kref ref;
38321256 1524 atomic_t usecnt; /* protects exclusive access */
d144da8c 1525 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256
MB
1526
1527 const struct uverbs_obj_type *type;
e2773c06
RD
1528};
1529
e2773c06 1530struct ib_udata {
309243ec 1531 const void __user *inbuf;
e2773c06
RD
1532 void __user *outbuf;
1533 size_t inlen;
1534 size_t outlen;
1535};
1536
1da177e4 1537struct ib_pd {
96249d70 1538 u32 local_dma_lkey;
ed082d36 1539 u32 flags;
e2773c06
RD
1540 struct ib_device *device;
1541 struct ib_uobject *uobject;
1542 atomic_t usecnt; /* count all resources */
50d46335 1543
ed082d36
CH
1544 u32 unsafe_global_rkey;
1545
50d46335
CH
1546 /*
1547 * Implementation details of the RDMA core, don't use in drivers:
1548 */
1549 struct ib_mr *__internal_mr;
02d8883f 1550 struct rdma_restrack_entry res;
1da177e4
LT
1551};
1552
59991f94
SH
1553struct ib_xrcd {
1554 struct ib_device *device;
d3d72d90 1555 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1556 struct inode *inode;
d3d72d90
SH
1557
1558 struct mutex tgt_qp_mutex;
1559 struct list_head tgt_qp_list;
59991f94
SH
1560};
1561
1da177e4
LT
1562struct ib_ah {
1563 struct ib_device *device;
1564 struct ib_pd *pd;
e2773c06 1565 struct ib_uobject *uobject;
1a1f460f 1566 const struct ib_gid_attr *sgid_attr;
44c58487 1567 enum rdma_ah_attr_type type;
1da177e4
LT
1568};
1569
1570typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1571
14d3a3b2
CH
1572enum ib_poll_context {
1573 IB_POLL_DIRECT, /* caller context, no hw completions */
1574 IB_POLL_SOFTIRQ, /* poll from softirq context */
1575 IB_POLL_WORKQUEUE, /* poll from workqueue */
1576};
1577
1da177e4 1578struct ib_cq {
e2773c06
RD
1579 struct ib_device *device;
1580 struct ib_uobject *uobject;
1581 ib_comp_handler comp_handler;
1582 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1583 void *cq_context;
e2773c06
RD
1584 int cqe;
1585 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1586 enum ib_poll_context poll_ctx;
1587 struct ib_wc *wc;
1588 union {
1589 struct irq_poll iop;
1590 struct work_struct work;
1591 };
02d8883f
LR
1592 /*
1593 * Implementation details of the RDMA core, don't use in drivers:
1594 */
1595 struct rdma_restrack_entry res;
1da177e4
LT
1596};
1597
1598struct ib_srq {
d41fcc67
RD
1599 struct ib_device *device;
1600 struct ib_pd *pd;
1601 struct ib_uobject *uobject;
1602 void (*event_handler)(struct ib_event *, void *);
1603 void *srq_context;
96104eda 1604 enum ib_srq_type srq_type;
1da177e4 1605 atomic_t usecnt;
418d5130 1606
1a56ff6d
AK
1607 struct {
1608 struct ib_cq *cq;
1609 union {
1610 struct {
1611 struct ib_xrcd *xrcd;
1612 u32 srq_num;
1613 } xrc;
1614 };
418d5130 1615 } ext;
1da177e4
LT
1616};
1617
ebaaee25
NO
1618enum ib_raw_packet_caps {
1619 /* Strip cvlan from incoming packet and report it in the matching work
1620 * completion is supported.
1621 */
1622 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1623 /* Scatter FCS field of an incoming packet to host memory is supported.
1624 */
1625 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1626 /* Checksum offloads are supported (for both send and receive). */
1627 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1628 /* When a packet is received for an RQ with no receive WQEs, the
1629 * packet processing is delayed.
1630 */
1631 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1632};
1633
5fd251c8
YH
1634enum ib_wq_type {
1635 IB_WQT_RQ
1636};
1637
1638enum ib_wq_state {
1639 IB_WQS_RESET,
1640 IB_WQS_RDY,
1641 IB_WQS_ERR
1642};
1643
1644struct ib_wq {
1645 struct ib_device *device;
1646 struct ib_uobject *uobject;
1647 void *wq_context;
1648 void (*event_handler)(struct ib_event *, void *);
1649 struct ib_pd *pd;
1650 struct ib_cq *cq;
1651 u32 wq_num;
1652 enum ib_wq_state state;
1653 enum ib_wq_type wq_type;
1654 atomic_t usecnt;
1655};
1656
10bac72b
NO
1657enum ib_wq_flags {
1658 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1659 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1660 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
e1d2e887 1661 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
10bac72b
NO
1662};
1663
5fd251c8
YH
1664struct ib_wq_init_attr {
1665 void *wq_context;
1666 enum ib_wq_type wq_type;
1667 u32 max_wr;
1668 u32 max_sge;
1669 struct ib_cq *cq;
1670 void (*event_handler)(struct ib_event *, void *);
10bac72b 1671 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1672};
1673
1674enum ib_wq_attr_mask {
10bac72b
NO
1675 IB_WQ_STATE = 1 << 0,
1676 IB_WQ_CUR_STATE = 1 << 1,
1677 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1678};
1679
1680struct ib_wq_attr {
1681 enum ib_wq_state wq_state;
1682 enum ib_wq_state curr_wq_state;
10bac72b
NO
1683 u32 flags; /* Use enum ib_wq_flags */
1684 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1685};
1686
6d39786b
YH
1687struct ib_rwq_ind_table {
1688 struct ib_device *device;
1689 struct ib_uobject *uobject;
1690 atomic_t usecnt;
1691 u32 ind_tbl_num;
1692 u32 log_ind_tbl_size;
1693 struct ib_wq **ind_tbl;
1694};
1695
1696struct ib_rwq_ind_table_init_attr {
1697 u32 log_ind_tbl_size;
1698 /* Each entry is a pointer to Receive Work Queue */
1699 struct ib_wq **ind_tbl;
1700};
1701
d291f1a6
DJ
1702enum port_pkey_state {
1703 IB_PORT_PKEY_NOT_VALID = 0,
1704 IB_PORT_PKEY_VALID = 1,
1705 IB_PORT_PKEY_LISTED = 2,
1706};
1707
1708struct ib_qp_security;
1709
1710struct ib_port_pkey {
1711 enum port_pkey_state state;
1712 u16 pkey_index;
1713 u8 port_num;
1714 struct list_head qp_list;
1715 struct list_head to_error_list;
1716 struct ib_qp_security *sec;
1717};
1718
1719struct ib_ports_pkeys {
1720 struct ib_port_pkey main;
1721 struct ib_port_pkey alt;
1722};
1723
1724struct ib_qp_security {
1725 struct ib_qp *qp;
1726 struct ib_device *dev;
1727 /* Hold this mutex when changing port and pkey settings. */
1728 struct mutex mutex;
1729 struct ib_ports_pkeys *ports_pkeys;
1730 /* A list of all open shared QP handles. Required to enforce security
1731 * properly for all users of a shared QP.
1732 */
1733 struct list_head shared_qp_list;
1734 void *security;
1735 bool destroying;
1736 atomic_t error_list_count;
1737 struct completion error_complete;
1738 int error_comps_pending;
1739};
1740
632bc3f6
BVA
1741/*
1742 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1743 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1744 */
1da177e4
LT
1745struct ib_qp {
1746 struct ib_device *device;
1747 struct ib_pd *pd;
1748 struct ib_cq *send_cq;
1749 struct ib_cq *recv_cq;
fffb0383
CH
1750 spinlock_t mr_lock;
1751 int mrs_used;
a060b562 1752 struct list_head rdma_mrs;
0e353e34 1753 struct list_head sig_mrs;
1da177e4 1754 struct ib_srq *srq;
b42b63cf 1755 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1756 struct list_head xrcd_list;
fffb0383 1757
319a441d
HHZ
1758 /* count times opened, mcast attaches, flow attaches */
1759 atomic_t usecnt;
0e0ec7e0
SH
1760 struct list_head open_list;
1761 struct ib_qp *real_qp;
e2773c06 1762 struct ib_uobject *uobject;
1da177e4
LT
1763 void (*event_handler)(struct ib_event *, void *);
1764 void *qp_context;
1a1f460f
JG
1765 /* sgid_attrs associated with the AV's */
1766 const struct ib_gid_attr *av_sgid_attr;
1767 const struct ib_gid_attr *alt_path_sgid_attr;
1da177e4 1768 u32 qp_num;
632bc3f6
BVA
1769 u32 max_write_sge;
1770 u32 max_read_sge;
1da177e4 1771 enum ib_qp_type qp_type;
a9017e23 1772 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1773 struct ib_qp_security *qp_sec;
498ca3c8 1774 u8 port;
02d8883f
LR
1775
1776 /*
1777 * Implementation details of the RDMA core, don't use in drivers:
1778 */
1779 struct rdma_restrack_entry res;
1da177e4
LT
1780};
1781
bee76d7a
AL
1782struct ib_dm {
1783 struct ib_device *device;
1784 u32 length;
1785 u32 flags;
1786 struct ib_uobject *uobject;
1787 atomic_t usecnt;
1788};
1789
1da177e4 1790struct ib_mr {
e2773c06
RD
1791 struct ib_device *device;
1792 struct ib_pd *pd;
e2773c06
RD
1793 u32 lkey;
1794 u32 rkey;
4c67e2bf 1795 u64 iova;
edd31551 1796 u64 length;
4c67e2bf 1797 unsigned int page_size;
d4a85c30 1798 bool need_inval;
fffb0383
CH
1799 union {
1800 struct ib_uobject *uobject; /* user */
1801 struct list_head qp_entry; /* FR */
1802 };
fccec5b8 1803
be934cca
AL
1804 struct ib_dm *dm;
1805
fccec5b8
SW
1806 /*
1807 * Implementation details of the RDMA core, don't use in drivers:
1808 */
1809 struct rdma_restrack_entry res;
1da177e4
LT
1810};
1811
1812struct ib_mw {
1813 struct ib_device *device;
1814 struct ib_pd *pd;
e2773c06 1815 struct ib_uobject *uobject;
1da177e4 1816 u32 rkey;
7083e42e 1817 enum ib_mw_type type;
1da177e4
LT
1818};
1819
1820struct ib_fmr {
1821 struct ib_device *device;
1822 struct ib_pd *pd;
1823 struct list_head list;
1824 u32 lkey;
1825 u32 rkey;
1826};
1827
319a441d
HHZ
1828/* Supported steering options */
1829enum ib_flow_attr_type {
1830 /* steering according to rule specifications */
1831 IB_FLOW_ATTR_NORMAL = 0x0,
1832 /* default unicast and multicast rule -
1833 * receive all Eth traffic which isn't steered to any QP
1834 */
1835 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1836 /* default multicast rule -
1837 * receive all Eth multicast traffic which isn't steered to any QP
1838 */
1839 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1840 /* sniffer rule - receive all port traffic */
1841 IB_FLOW_ATTR_SNIFFER = 0x3
1842};
1843
1844/* Supported steering header types */
1845enum ib_flow_spec_type {
1846 /* L2 headers*/
76bd23b3
MR
1847 IB_FLOW_SPEC_ETH = 0x20,
1848 IB_FLOW_SPEC_IB = 0x22,
319a441d 1849 /* L3 header*/
76bd23b3
MR
1850 IB_FLOW_SPEC_IPV4 = 0x30,
1851 IB_FLOW_SPEC_IPV6 = 0x31,
56ab0b38 1852 IB_FLOW_SPEC_ESP = 0x34,
319a441d 1853 /* L4 headers*/
76bd23b3
MR
1854 IB_FLOW_SPEC_TCP = 0x40,
1855 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1856 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
d90e5e50 1857 IB_FLOW_SPEC_GRE = 0x51,
b04f0f03 1858 IB_FLOW_SPEC_MPLS = 0x60,
fbf46860 1859 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1860 /* Actions */
1861 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1862 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
9b828441 1863 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
7eea23a5 1864 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
319a441d 1865};
240ae00e 1866#define IB_FLOW_SPEC_LAYER_MASK 0xF0
7eea23a5 1867#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
22878dbc 1868
319a441d
HHZ
1869/* Flow steering rule priority is set according to it's domain.
1870 * Lower domain value means higher priority.
1871 */
1872enum ib_flow_domain {
1873 IB_FLOW_DOMAIN_USER,
1874 IB_FLOW_DOMAIN_ETHTOOL,
1875 IB_FLOW_DOMAIN_RFS,
1876 IB_FLOW_DOMAIN_NIC,
1877 IB_FLOW_DOMAIN_NUM /* Must be last */
1878};
1879
a3100a78
MV
1880enum ib_flow_flags {
1881 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
21e82d3e
BP
1882 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1883 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
a3100a78
MV
1884};
1885
319a441d
HHZ
1886struct ib_flow_eth_filter {
1887 u8 dst_mac[6];
1888 u8 src_mac[6];
1889 __be16 ether_type;
1890 __be16 vlan_tag;
15dfbd6b
MG
1891 /* Must be last */
1892 u8 real_sz[0];
319a441d
HHZ
1893};
1894
1895struct ib_flow_spec_eth {
fbf46860 1896 u32 type;
319a441d
HHZ
1897 u16 size;
1898 struct ib_flow_eth_filter val;
1899 struct ib_flow_eth_filter mask;
1900};
1901
240ae00e
MB
1902struct ib_flow_ib_filter {
1903 __be16 dlid;
1904 __u8 sl;
15dfbd6b
MG
1905 /* Must be last */
1906 u8 real_sz[0];
240ae00e
MB
1907};
1908
1909struct ib_flow_spec_ib {
fbf46860 1910 u32 type;
240ae00e
MB
1911 u16 size;
1912 struct ib_flow_ib_filter val;
1913 struct ib_flow_ib_filter mask;
1914};
1915
989a3a8f
MG
1916/* IPv4 header flags */
1917enum ib_ipv4_flags {
1918 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1919 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1920 last have this flag set */
1921};
1922
319a441d
HHZ
1923struct ib_flow_ipv4_filter {
1924 __be32 src_ip;
1925 __be32 dst_ip;
989a3a8f
MG
1926 u8 proto;
1927 u8 tos;
1928 u8 ttl;
1929 u8 flags;
15dfbd6b
MG
1930 /* Must be last */
1931 u8 real_sz[0];
319a441d
HHZ
1932};
1933
1934struct ib_flow_spec_ipv4 {
fbf46860 1935 u32 type;
319a441d
HHZ
1936 u16 size;
1937 struct ib_flow_ipv4_filter val;
1938 struct ib_flow_ipv4_filter mask;
1939};
1940
4c2aae71
MG
1941struct ib_flow_ipv6_filter {
1942 u8 src_ip[16];
1943 u8 dst_ip[16];
a72c6a2b
MG
1944 __be32 flow_label;
1945 u8 next_hdr;
1946 u8 traffic_class;
1947 u8 hop_limit;
15dfbd6b
MG
1948 /* Must be last */
1949 u8 real_sz[0];
4c2aae71
MG
1950};
1951
1952struct ib_flow_spec_ipv6 {
fbf46860 1953 u32 type;
4c2aae71
MG
1954 u16 size;
1955 struct ib_flow_ipv6_filter val;
1956 struct ib_flow_ipv6_filter mask;
1957};
1958
319a441d
HHZ
1959struct ib_flow_tcp_udp_filter {
1960 __be16 dst_port;
1961 __be16 src_port;
15dfbd6b
MG
1962 /* Must be last */
1963 u8 real_sz[0];
319a441d
HHZ
1964};
1965
1966struct ib_flow_spec_tcp_udp {
fbf46860 1967 u32 type;
319a441d
HHZ
1968 u16 size;
1969 struct ib_flow_tcp_udp_filter val;
1970 struct ib_flow_tcp_udp_filter mask;
1971};
1972
0dbf3332
MR
1973struct ib_flow_tunnel_filter {
1974 __be32 tunnel_id;
1975 u8 real_sz[0];
1976};
1977
1978/* ib_flow_spec_tunnel describes the Vxlan tunnel
1979 * the tunnel_id from val has the vni value
1980 */
1981struct ib_flow_spec_tunnel {
fbf46860 1982 u32 type;
0dbf3332
MR
1983 u16 size;
1984 struct ib_flow_tunnel_filter val;
1985 struct ib_flow_tunnel_filter mask;
1986};
1987
56ab0b38
MB
1988struct ib_flow_esp_filter {
1989 __be32 spi;
1990 __be32 seq;
1991 /* Must be last */
1992 u8 real_sz[0];
1993};
1994
1995struct ib_flow_spec_esp {
1996 u32 type;
1997 u16 size;
1998 struct ib_flow_esp_filter val;
1999 struct ib_flow_esp_filter mask;
2000};
2001
d90e5e50
AL
2002struct ib_flow_gre_filter {
2003 __be16 c_ks_res0_ver;
2004 __be16 protocol;
2005 __be32 key;
2006 /* Must be last */
2007 u8 real_sz[0];
2008};
2009
2010struct ib_flow_spec_gre {
2011 u32 type;
2012 u16 size;
2013 struct ib_flow_gre_filter val;
2014 struct ib_flow_gre_filter mask;
2015};
2016
b04f0f03
AL
2017struct ib_flow_mpls_filter {
2018 __be32 tag;
2019 /* Must be last */
2020 u8 real_sz[0];
2021};
2022
2023struct ib_flow_spec_mpls {
2024 u32 type;
2025 u16 size;
2026 struct ib_flow_mpls_filter val;
2027 struct ib_flow_mpls_filter mask;
2028};
2029
460d0198
MR
2030struct ib_flow_spec_action_tag {
2031 enum ib_flow_spec_type type;
2032 u16 size;
2033 u32 tag_id;
2034};
2035
483a3966
SS
2036struct ib_flow_spec_action_drop {
2037 enum ib_flow_spec_type type;
2038 u16 size;
2039};
2040
9b828441
MB
2041struct ib_flow_spec_action_handle {
2042 enum ib_flow_spec_type type;
2043 u16 size;
2044 struct ib_flow_action *act;
2045};
2046
7eea23a5
RS
2047enum ib_counters_description {
2048 IB_COUNTER_PACKETS,
2049 IB_COUNTER_BYTES,
2050};
2051
2052struct ib_flow_spec_action_count {
2053 enum ib_flow_spec_type type;
2054 u16 size;
2055 struct ib_counters *counters;
2056};
2057
319a441d
HHZ
2058union ib_flow_spec {
2059 struct {
fbf46860 2060 u32 type;
319a441d
HHZ
2061 u16 size;
2062 };
2063 struct ib_flow_spec_eth eth;
240ae00e 2064 struct ib_flow_spec_ib ib;
319a441d
HHZ
2065 struct ib_flow_spec_ipv4 ipv4;
2066 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 2067 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 2068 struct ib_flow_spec_tunnel tunnel;
56ab0b38 2069 struct ib_flow_spec_esp esp;
d90e5e50 2070 struct ib_flow_spec_gre gre;
b04f0f03 2071 struct ib_flow_spec_mpls mpls;
460d0198 2072 struct ib_flow_spec_action_tag flow_tag;
483a3966 2073 struct ib_flow_spec_action_drop drop;
9b828441 2074 struct ib_flow_spec_action_handle action;
7eea23a5 2075 struct ib_flow_spec_action_count flow_count;
319a441d
HHZ
2076};
2077
2078struct ib_flow_attr {
2079 enum ib_flow_attr_type type;
2080 u16 size;
2081 u16 priority;
2082 u32 flags;
2083 u8 num_of_specs;
2084 u8 port;
7654cb1b 2085 union ib_flow_spec flows[];
319a441d
HHZ
2086};
2087
2088struct ib_flow {
2089 struct ib_qp *qp;
6cd080a6 2090 struct ib_device *device;
319a441d
HHZ
2091 struct ib_uobject *uobject;
2092};
2093
2eb9beae
MB
2094enum ib_flow_action_type {
2095 IB_FLOW_ACTION_UNSPECIFIED,
2096 IB_FLOW_ACTION_ESP = 1,
2097};
2098
2099struct ib_flow_action_attrs_esp_keymats {
2100 enum ib_uverbs_flow_action_esp_keymat protocol;
2101 union {
2102 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2103 } keymat;
2104};
2105
2106struct ib_flow_action_attrs_esp_replays {
2107 enum ib_uverbs_flow_action_esp_replay protocol;
2108 union {
2109 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2110 } replay;
2111};
2112
2113enum ib_flow_action_attrs_esp_flags {
2114 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2115 * This is done in order to share the same flags between user-space and
2116 * kernel and spare an unnecessary translation.
2117 */
2118
2119 /* Kernel flags */
2120 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
7d12f8d5 2121 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2eb9beae
MB
2122};
2123
2124struct ib_flow_spec_list {
2125 struct ib_flow_spec_list *next;
2126 union ib_flow_spec spec;
2127};
2128
2129struct ib_flow_action_attrs_esp {
2130 struct ib_flow_action_attrs_esp_keymats *keymat;
2131 struct ib_flow_action_attrs_esp_replays *replay;
2132 struct ib_flow_spec_list *encap;
2133 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2134 * Value of 0 is a valid value.
2135 */
2136 u32 esn;
2137 u32 spi;
2138 u32 seq;
2139 u32 tfc_pad;
2140 /* Use enum ib_flow_action_attrs_esp_flags */
2141 u64 flags;
2142 u64 hard_limit_pkts;
2143};
2144
2145struct ib_flow_action {
2146 struct ib_device *device;
2147 struct ib_uobject *uobject;
2148 enum ib_flow_action_type type;
2149 atomic_t usecnt;
2150};
2151
4cd7c947 2152struct ib_mad_hdr;
1da177e4
LT
2153struct ib_grh;
2154
2155enum ib_process_mad_flags {
2156 IB_MAD_IGNORE_MKEY = 1,
2157 IB_MAD_IGNORE_BKEY = 2,
2158 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2159};
2160
2161enum ib_mad_result {
2162 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2163 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2164 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2165 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2166};
2167
21d6454a 2168struct ib_port_cache {
883c71fe 2169 u64 subnet_prefix;
21d6454a
JW
2170 struct ib_pkey_cache *pkey;
2171 struct ib_gid_table *gid;
2172 u8 lmc;
2173 enum ib_port_state port_state;
2174};
2175
1da177e4
LT
2176struct ib_cache {
2177 rwlock_t lock;
2178 struct ib_event_handler event_handler;
21d6454a 2179 struct ib_port_cache *ports;
1da177e4
LT
2180};
2181
07ebafba
TT
2182struct iw_cm_verbs;
2183
7738613e
IW
2184struct ib_port_immutable {
2185 int pkey_tbl_len;
2186 int gid_tbl_len;
f9b22e35 2187 u32 core_cap_flags;
337877a4 2188 u32 max_mad_size;
7738613e
IW
2189};
2190
2fc77572
VN
2191/* rdma netdev type - specifies protocol type */
2192enum rdma_netdev_t {
f0ad83ac
NV
2193 RDMA_NETDEV_OPA_VNIC,
2194 RDMA_NETDEV_IPOIB,
2fc77572
VN
2195};
2196
2197/**
2198 * struct rdma_netdev - rdma netdev
2199 * For cases where netstack interfacing is required.
2200 */
2201struct rdma_netdev {
2202 void *clnt_priv;
2203 struct ib_device *hca;
2204 u8 port_num;
2205
8e959601
NV
2206 /* cleanup function must be specified */
2207 void (*free_rdma_netdev)(struct net_device *netdev);
2208
2fc77572
VN
2209 /* control functions */
2210 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2211 /* send packet */
2212 int (*send)(struct net_device *dev, struct sk_buff *skb,
2213 struct ib_ah *address, u32 dqpn);
2214 /* multicast */
2215 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2216 union ib_gid *gid, u16 mlid,
2217 int set_qkey, u32 qkey);
2218 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2219 union ib_gid *gid, u16 mlid);
2fc77572
VN
2220};
2221
d291f1a6
DJ
2222struct ib_port_pkey_list {
2223 /* Lock to hold while modifying the list. */
2224 spinlock_t list_lock;
2225 struct list_head pkey_list;
2226};
2227
fa9b1802
RS
2228struct ib_counters {
2229 struct ib_device *device;
2230 struct ib_uobject *uobject;
2231 /* num of objects attached */
2232 atomic_t usecnt;
2233};
2234
51d7a538
RS
2235struct ib_counters_read_attr {
2236 u64 *counters_buff;
2237 u32 ncounters;
2238 u32 flags; /* use enum ib_read_counters_flags */
2239};
2240
2eb9beae
MB
2241struct uverbs_attr_bundle;
2242
1da177e4 2243struct ib_device {
0957c29f
BVA
2244 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2245 struct device *dma_device;
2246
1da177e4
LT
2247 char name[IB_DEVICE_NAME_MAX];
2248
2249 struct list_head event_handler_list;
2250 spinlock_t event_handler_lock;
2251
17a55f79 2252 spinlock_t client_data_lock;
1da177e4 2253 struct list_head core_list;
7c1eb45a
HE
2254 /* Access to the client_data_list is protected by the client_data_lock
2255 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 2256 struct list_head client_data_list;
1da177e4
LT
2257
2258 struct ib_cache cache;
7738613e
IW
2259 /**
2260 * port_immutable is indexed by port number
2261 */
2262 struct ib_port_immutable *port_immutable;
1da177e4 2263
f4fd0b22
MT
2264 int num_comp_vectors;
2265
d291f1a6
DJ
2266 struct ib_port_pkey_list *port_pkey_list;
2267
07ebafba
TT
2268 struct iw_cm_verbs *iwcm;
2269
b40f4757
CL
2270 /**
2271 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2272 * driver initialized data. The struct is kfree()'ed by the sysfs
2273 * core when the device is removed. A lifespan of -1 in the return
2274 * struct tells the core to set a default lifespan.
2275 */
2276 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2277 u8 port_num);
2278 /**
2279 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2280 * @index - The index in the value array we wish to have updated, or
2281 * num_counters if we want all stats updated
2282 * Return codes -
2283 * < 0 - Error, no counters updated
2284 * index - Updated the single counter pointed to by index
2285 * num_counters - Updated all counters (will reset the timestamp
2286 * and prevent further calls for lifespan milliseconds)
2287 * Drivers are allowed to update all counters in leiu of just the
2288 * one given in index at their option
2289 */
2290 int (*get_hw_stats)(struct ib_device *device,
2291 struct rdma_hw_stats *stats,
2292 u8 port, int index);
1da177e4 2293 int (*query_device)(struct ib_device *device,
2528e33e
MB
2294 struct ib_device_attr *device_attr,
2295 struct ib_udata *udata);
1da177e4
LT
2296 int (*query_port)(struct ib_device *device,
2297 u8 port_num,
2298 struct ib_port_attr *port_attr);
a3f5adaf
EC
2299 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2300 u8 port_num);
03db3a2d
MB
2301 /* When calling get_netdev, the HW vendor's driver should return the
2302 * net device of device @device at port @port_num or NULL if such
2303 * a net device doesn't exist. The vendor driver should call dev_hold
2304 * on this net device. The HW vendor's device driver must guarantee
070f2d7e
KT
2305 * that this function returns NULL before the net device has finished
2306 * NETDEV_UNREGISTER state.
03db3a2d
MB
2307 */
2308 struct net_device *(*get_netdev)(struct ib_device *device,
2309 u8 port_num);
72e1ff0f
PP
2310 /* query_gid should be return GID value for @device, when @port_num
2311 * link layer is either IB or iWarp. It is no-op if @port_num port
2312 * is RoCE link layer.
2313 */
1da177e4
LT
2314 int (*query_gid)(struct ib_device *device,
2315 u8 port_num, int index,
2316 union ib_gid *gid);
414448d2
PP
2317 /* When calling add_gid, the HW vendor's driver should add the gid
2318 * of device of port at gid index available at @attr. Meta-info of
2319 * that gid (for example, the network device related to this gid) is
2320 * available at @attr. @context allows the HW vendor driver to store
2321 * extra information together with a GID entry. The HW vendor driver may
2322 * allocate memory to contain this information and store it in @context
2323 * when a new GID entry is written to. Params are consistent until the
2324 * next call of add_gid or delete_gid. The function should return 0 on
03db3a2d 2325 * success or error otherwise. The function could be called
414448d2
PP
2326 * concurrently for different ports. This function is only called when
2327 * roce_gid_table is used.
03db3a2d 2328 */
f4df9a7c 2329 int (*add_gid)(const struct ib_gid_attr *attr,
03db3a2d
MB
2330 void **context);
2331 /* When calling del_gid, the HW vendor's driver should delete the
414448d2
PP
2332 * gid of device @device at gid index gid_index of port port_num
2333 * available in @attr.
03db3a2d
MB
2334 * Upon the deletion of a GID entry, the HW vendor must free any
2335 * allocated memory. The caller will clear @context afterwards.
2336 * This function is only called when roce_gid_table is used.
2337 */
414448d2 2338 int (*del_gid)(const struct ib_gid_attr *attr,
03db3a2d 2339 void **context);
1da177e4
LT
2340 int (*query_pkey)(struct ib_device *device,
2341 u8 port_num, u16 index, u16 *pkey);
2342 int (*modify_device)(struct ib_device *device,
2343 int device_modify_mask,
2344 struct ib_device_modify *device_modify);
2345 int (*modify_port)(struct ib_device *device,
2346 u8 port_num, int port_modify_mask,
2347 struct ib_port_modify *port_modify);
e2773c06
RD
2348 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2349 struct ib_udata *udata);
2350 int (*dealloc_ucontext)(struct ib_ucontext *context);
2351 int (*mmap)(struct ib_ucontext *context,
2352 struct vm_area_struct *vma);
2353 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2354 struct ib_ucontext *context,
2355 struct ib_udata *udata);
1da177e4
LT
2356 int (*dealloc_pd)(struct ib_pd *pd);
2357 struct ib_ah * (*create_ah)(struct ib_pd *pd,
90898850 2358 struct rdma_ah_attr *ah_attr,
477864c8 2359 struct ib_udata *udata);
1da177e4 2360 int (*modify_ah)(struct ib_ah *ah,
90898850 2361 struct rdma_ah_attr *ah_attr);
1da177e4 2362 int (*query_ah)(struct ib_ah *ah,
90898850 2363 struct rdma_ah_attr *ah_attr);
1da177e4 2364 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2365 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2366 struct ib_srq_init_attr *srq_init_attr,
2367 struct ib_udata *udata);
2368 int (*modify_srq)(struct ib_srq *srq,
2369 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2370 enum ib_srq_attr_mask srq_attr_mask,
2371 struct ib_udata *udata);
d41fcc67
RD
2372 int (*query_srq)(struct ib_srq *srq,
2373 struct ib_srq_attr *srq_attr);
2374 int (*destroy_srq)(struct ib_srq *srq);
2375 int (*post_srq_recv)(struct ib_srq *srq,
d34ac5cd
BVA
2376 const struct ib_recv_wr *recv_wr,
2377 const struct ib_recv_wr **bad_recv_wr);
1da177e4 2378 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2379 struct ib_qp_init_attr *qp_init_attr,
2380 struct ib_udata *udata);
1da177e4
LT
2381 int (*modify_qp)(struct ib_qp *qp,
2382 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2383 int qp_attr_mask,
2384 struct ib_udata *udata);
1da177e4
LT
2385 int (*query_qp)(struct ib_qp *qp,
2386 struct ib_qp_attr *qp_attr,
2387 int qp_attr_mask,
2388 struct ib_qp_init_attr *qp_init_attr);
2389 int (*destroy_qp)(struct ib_qp *qp);
2390 int (*post_send)(struct ib_qp *qp,
d34ac5cd
BVA
2391 const struct ib_send_wr *send_wr,
2392 const struct ib_send_wr **bad_send_wr);
1da177e4 2393 int (*post_recv)(struct ib_qp *qp,
d34ac5cd
BVA
2394 const struct ib_recv_wr *recv_wr,
2395 const struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2396 struct ib_cq * (*create_cq)(struct ib_device *device,
2397 const struct ib_cq_init_attr *attr,
e2773c06
RD
2398 struct ib_ucontext *context,
2399 struct ib_udata *udata);
2dd57162
EC
2400 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2401 u16 cq_period);
1da177e4 2402 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2403 int (*resize_cq)(struct ib_cq *cq, int cqe,
2404 struct ib_udata *udata);
1da177e4
LT
2405 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2406 struct ib_wc *wc);
2407 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2408 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2409 enum ib_cq_notify_flags flags);
1da177e4
LT
2410 int (*req_ncomp_notif)(struct ib_cq *cq,
2411 int wc_cnt);
2412 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2413 int mr_access_flags);
e2773c06 2414 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2415 u64 start, u64 length,
2416 u64 virt_addr,
e2773c06
RD
2417 int mr_access_flags,
2418 struct ib_udata *udata);
7e6edb9b
MB
2419 int (*rereg_user_mr)(struct ib_mr *mr,
2420 int flags,
2421 u64 start, u64 length,
2422 u64 virt_addr,
2423 int mr_access_flags,
2424 struct ib_pd *pd,
2425 struct ib_udata *udata);
1da177e4 2426 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2427 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2428 enum ib_mr_type mr_type,
2429 u32 max_num_sg);
4c67e2bf
SG
2430 int (*map_mr_sg)(struct ib_mr *mr,
2431 struct scatterlist *sg,
ff2ba993 2432 int sg_nents,
9aa8b321 2433 unsigned int *sg_offset);
7083e42e 2434 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2435 enum ib_mw_type type,
2436 struct ib_udata *udata);
1da177e4
LT
2437 int (*dealloc_mw)(struct ib_mw *mw);
2438 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2439 int mr_access_flags,
2440 struct ib_fmr_attr *fmr_attr);
2441 int (*map_phys_fmr)(struct ib_fmr *fmr,
2442 u64 *page_list, int list_len,
2443 u64 iova);
2444 int (*unmap_fmr)(struct list_head *fmr_list);
2445 int (*dealloc_fmr)(struct ib_fmr *fmr);
2446 int (*attach_mcast)(struct ib_qp *qp,
2447 union ib_gid *gid,
2448 u16 lid);
2449 int (*detach_mcast)(struct ib_qp *qp,
2450 union ib_gid *gid,
2451 u16 lid);
2452 int (*process_mad)(struct ib_device *device,
2453 int process_mad_flags,
2454 u8 port_num,
a97e2d86
IW
2455 const struct ib_wc *in_wc,
2456 const struct ib_grh *in_grh,
4cd7c947
IW
2457 const struct ib_mad_hdr *in_mad,
2458 size_t in_mad_size,
2459 struct ib_mad_hdr *out_mad,
2460 size_t *out_mad_size,
2461 u16 *out_mad_pkey_index);
59991f94
SH
2462 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2463 struct ib_ucontext *ucontext,
2464 struct ib_udata *udata);
2465 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2466 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2467 struct ib_flow_attr
2468 *flow_attr,
59082a32
MB
2469 int domain,
2470 struct ib_udata *udata);
319a441d 2471 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2472 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2473 struct ib_mr_status *mr_status);
036b1063 2474 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2475 void (*drain_rq)(struct ib_qp *qp);
2476 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2477 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2478 int state);
2479 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2480 struct ifla_vf_info *ivf);
2481 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2482 struct ifla_vf_stats *stats);
2483 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2484 int type);
5fd251c8
YH
2485 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2486 struct ib_wq_init_attr *init_attr,
2487 struct ib_udata *udata);
2488 int (*destroy_wq)(struct ib_wq *wq);
2489 int (*modify_wq)(struct ib_wq *wq,
2490 struct ib_wq_attr *attr,
2491 u32 wq_attr_mask,
2492 struct ib_udata *udata);
6d39786b
YH
2493 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2494 struct ib_rwq_ind_table_init_attr *init_attr,
2495 struct ib_udata *udata);
2496 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2eb9beae
MB
2497 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device,
2498 const struct ib_flow_action_attrs_esp *attr,
2499 struct uverbs_attr_bundle *attrs);
2500 int (*destroy_flow_action)(struct ib_flow_action *action);
7d12f8d5
MB
2501 int (*modify_flow_action_esp)(struct ib_flow_action *action,
2502 const struct ib_flow_action_attrs_esp *attr,
2503 struct uverbs_attr_bundle *attrs);
bee76d7a
AL
2504 struct ib_dm * (*alloc_dm)(struct ib_device *device,
2505 struct ib_ucontext *context,
2506 struct ib_dm_alloc_attr *attr,
2507 struct uverbs_attr_bundle *attrs);
2508 int (*dealloc_dm)(struct ib_dm *dm);
be934cca
AL
2509 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2510 struct ib_dm_mr_attr *attr,
2511 struct uverbs_attr_bundle *attrs);
fa9b1802
RS
2512 struct ib_counters * (*create_counters)(struct ib_device *device,
2513 struct uverbs_attr_bundle *attrs);
2514 int (*destroy_counters)(struct ib_counters *counters);
51d7a538
RS
2515 int (*read_counters)(struct ib_counters *counters,
2516 struct ib_counters_read_attr *counters_read_attr,
2517 struct uverbs_attr_bundle *attrs);
fa9b1802 2518
2fc77572 2519 /**
8e959601 2520 * rdma netdev operation
2fc77572
VN
2521 *
2522 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2523 * doesn't support the specified rdma netdev type.
2524 */
2525 struct net_device *(*alloc_rdma_netdev)(
2526 struct ib_device *device,
2527 u8 port_num,
2528 enum rdma_netdev_t type,
2529 const char *name,
2530 unsigned char name_assign_type,
2531 void (*setup)(struct net_device *));
9b513090 2532
e2773c06 2533 struct module *owner;
f4e91eb4 2534 struct device dev;
35be0681 2535 struct kobject *ports_parent;
1da177e4
LT
2536 struct list_head port_list;
2537
2538 enum {
2539 IB_DEV_UNINITIALIZED,
2540 IB_DEV_REGISTERED,
2541 IB_DEV_UNREGISTERED
2542 } reg_state;
2543
274c0891 2544 int uverbs_abi_ver;
17a55f79 2545 u64 uverbs_cmd_mask;
f21519b2 2546 u64 uverbs_ex_cmd_mask;
274c0891 2547
bd99fdea 2548 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2549 __be64 node_guid;
96f15c03 2550 u32 local_dma_lkey;
4139032b 2551 u16 is_switch:1;
1da177e4
LT
2552 u8 node_type;
2553 u8 phys_port_cnt;
3e153a93 2554 struct ib_device_attr attrs;
b40f4757
CL
2555 struct attribute_group *hw_stats_ag;
2556 struct rdma_hw_stats *hw_stats;
7738613e 2557
43579b5f
PP
2558#ifdef CONFIG_CGROUP_RDMA
2559 struct rdmacg_device cg_device;
2560#endif
2561
ecc82c53 2562 u32 index;
02d8883f
LR
2563 /*
2564 * Implementation details of the RDMA core, don't use in drivers
2565 */
2566 struct rdma_restrack_root res;
ecc82c53 2567
7738613e
IW
2568 /**
2569 * The following mandatory functions are used only at device
2570 * registration. Keep functions such as these at the end of this
2571 * structure to avoid cache line misses when accessing struct ib_device
2572 * in fast paths.
2573 */
2574 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
9abb0d1b 2575 void (*get_dev_fw_str)(struct ib_device *, char *str);
c66cd353
SG
2576 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2577 int comp_vector);
fac9658c 2578
87fc2a62 2579 struct uverbs_root_spec *driver_specs_root;
0ede73bc 2580 enum rdma_driver_id driver_id;
1da177e4
LT
2581};
2582
2583struct ib_client {
2584 char *name;
2585 void (*add) (struct ib_device *);
7c1eb45a 2586 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2587
9268f72d
YK
2588 /* Returns the net_dev belonging to this ib_client and matching the
2589 * given parameters.
2590 * @dev: An RDMA device that the net_dev use for communication.
2591 * @port: A physical port number on the RDMA device.
2592 * @pkey: P_Key that the net_dev uses if applicable.
2593 * @gid: A GID that the net_dev uses to communicate.
2594 * @addr: An IP address the net_dev is configured with.
2595 * @client_data: The device's client data set by ib_set_client_data().
2596 *
2597 * An ib_client that implements a net_dev on top of RDMA devices
2598 * (such as IP over IB) should implement this callback, allowing the
2599 * rdma_cm module to find the right net_dev for a given request.
2600 *
2601 * The caller is responsible for calling dev_put on the returned
2602 * netdev. */
2603 struct net_device *(*get_net_dev_by_params)(
2604 struct ib_device *dev,
2605 u8 port,
2606 u16 pkey,
2607 const union ib_gid *gid,
2608 const struct sockaddr *addr,
2609 void *client_data);
1da177e4
LT
2610 struct list_head list;
2611};
2612
2613struct ib_device *ib_alloc_device(size_t size);
2614void ib_dealloc_device(struct ib_device *device);
2615
9abb0d1b 2616void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2617
9a6edb60
RC
2618int ib_register_device(struct ib_device *device,
2619 int (*port_callback)(struct ib_device *,
2620 u8, struct kobject *));
1da177e4
LT
2621void ib_unregister_device(struct ib_device *device);
2622
2623int ib_register_client (struct ib_client *client);
2624void ib_unregister_client(struct ib_client *client);
2625
2626void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2627void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2628 void *data);
2629
e2773c06
RD
2630static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2631{
2632 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2633}
2634
2635static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2636{
43c61165 2637 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2638}
2639
c66db311
MB
2640static inline bool ib_is_buffer_cleared(const void __user *p,
2641 size_t len)
301a721e 2642{
92d27ae6 2643 bool ret;
301a721e
MB
2644 u8 *buf;
2645
2646 if (len > USHRT_MAX)
2647 return false;
2648
92d27ae6
ME
2649 buf = memdup_user(p, len);
2650 if (IS_ERR(buf))
301a721e
MB
2651 return false;
2652
301a721e 2653 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2654 kfree(buf);
2655 return ret;
2656}
2657
c66db311
MB
2658static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2659 size_t offset,
2660 size_t len)
2661{
2662 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2663}
2664
1c77483e
YH
2665/**
2666 * ib_is_destroy_retryable - Check whether the uobject destruction
2667 * is retryable.
2668 * @ret: The initial destruction return code
2669 * @why: remove reason
2670 * @uobj: The uobject that is destroyed
2671 *
2672 * This function is a helper function that IB layer and low-level drivers
2673 * can use to consider whether the destruction of the given uobject is
2674 * retry-able.
2675 * It checks the original return code, if it wasn't success the destruction
2676 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2677 * the remove reason. (i.e. why).
2678 * Must be called with the object locked for destroy.
2679 */
2680static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2681 struct ib_uobject *uobj)
2682{
2683 return ret && (why == RDMA_REMOVE_DESTROY ||
2684 uobj->context->cleanup_retryable);
2685}
2686
2687/**
2688 * ib_destroy_usecnt - Called during destruction to check the usecnt
2689 * @usecnt: The usecnt atomic
2690 * @why: remove reason
2691 * @uobj: The uobject that is destroyed
2692 *
2693 * Non-zero usecnts will block destruction unless destruction was triggered by
2694 * a ucontext cleanup.
2695 */
2696static inline int ib_destroy_usecnt(atomic_t *usecnt,
2697 enum rdma_remove_reason why,
2698 struct ib_uobject *uobj)
2699{
2700 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2701 return -EBUSY;
2702 return 0;
2703}
2704
8a51866f
RD
2705/**
2706 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2707 * contains all required attributes and no attributes not allowed for
2708 * the given QP state transition.
2709 * @cur_state: Current QP state
2710 * @next_state: Next QP state
2711 * @type: QP type
2712 * @mask: Mask of supplied QP attributes
dd5f03be 2713 * @ll : link layer of port
8a51866f
RD
2714 *
2715 * This function is a helper function that a low-level driver's
2716 * modify_qp method can use to validate the consumer's input. It
2717 * checks that cur_state and next_state are valid QP states, that a
2718 * transition from cur_state to next_state is allowed by the IB spec,
2719 * and that the attribute mask supplied is allowed for the transition.
2720 */
19b1f540
LR
2721bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2722 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2723 enum rdma_link_layer ll);
8a51866f 2724
dcc9881e
LR
2725void ib_register_event_handler(struct ib_event_handler *event_handler);
2726void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2727void ib_dispatch_event(struct ib_event *event);
2728
1da177e4
LT
2729int ib_query_port(struct ib_device *device,
2730 u8 port_num, struct ib_port_attr *port_attr);
2731
a3f5adaf
EC
2732enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2733 u8 port_num);
2734
4139032b
HR
2735/**
2736 * rdma_cap_ib_switch - Check if the device is IB switch
2737 * @device: Device to check
2738 *
2739 * Device driver is responsible for setting is_switch bit on
2740 * in ib_device structure at init time.
2741 *
2742 * Return: true if the device is IB switch.
2743 */
2744static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2745{
2746 return device->is_switch;
2747}
2748
0cf18d77
IW
2749/**
2750 * rdma_start_port - Return the first valid port number for the device
2751 * specified
2752 *
2753 * @device: Device to be checked
2754 *
2755 * Return start port number
2756 */
2757static inline u8 rdma_start_port(const struct ib_device *device)
2758{
4139032b 2759 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2760}
2761
2762/**
2763 * rdma_end_port - Return the last valid port number for the device
2764 * specified
2765 *
2766 * @device: Device to be checked
2767 *
2768 * Return last port number
2769 */
2770static inline u8 rdma_end_port(const struct ib_device *device)
2771{
4139032b 2772 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2773}
2774
24dc831b
YS
2775static inline int rdma_is_port_valid(const struct ib_device *device,
2776 unsigned int port)
2777{
2778 return (port >= rdma_start_port(device) &&
2779 port <= rdma_end_port(device));
2780}
2781
b02289b3
AK
2782static inline bool rdma_is_grh_required(const struct ib_device *device,
2783 u8 port_num)
2784{
2785 return device->port_immutable[port_num].core_cap_flags &
2786 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2787}
2788
5ede9289 2789static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2790{
f9b22e35 2791 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2792}
2793
5ede9289 2794static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2795{
2796 return device->port_immutable[port_num].core_cap_flags &
2797 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2798}
2799
2800static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2801{
2802 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2803}
2804
2805static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2806{
f9b22e35 2807 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2808}
2809
5ede9289 2810static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2811{
f9b22e35 2812 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2813}
2814
5ede9289 2815static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2816{
7766a99f
MB
2817 return rdma_protocol_ib(device, port_num) ||
2818 rdma_protocol_roce(device, port_num);
de66be94
MW
2819}
2820
aa773bd4
OG
2821static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2822{
2823 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2824}
2825
ce1e055f
OG
2826static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2827{
2828 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2829}
2830
c757dea8 2831/**
296ec009 2832 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2833 * Management Datagrams.
296ec009
MW
2834 * @device: Device to check
2835 * @port_num: Port number to check
c757dea8 2836 *
296ec009
MW
2837 * Management Datagrams (MAD) are a required part of the InfiniBand
2838 * specification and are supported on all InfiniBand devices. A slightly
2839 * extended version are also supported on OPA interfaces.
c757dea8 2840 *
296ec009 2841 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2842 */
5ede9289 2843static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2844{
f9b22e35 2845 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2846}
2847
65995fee
IW
2848/**
2849 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2850 * Management Datagrams.
2851 * @device: Device to check
2852 * @port_num: Port number to check
2853 *
2854 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2855 * datagrams with their own versions. These OPA MADs share many but not all of
2856 * the characteristics of InfiniBand MADs.
2857 *
2858 * OPA MADs differ in the following ways:
2859 *
2860 * 1) MADs are variable size up to 2K
2861 * IBTA defined MADs remain fixed at 256 bytes
2862 * 2) OPA SMPs must carry valid PKeys
2863 * 3) OPA SMP packets are a different format
2864 *
2865 * Return: true if the port supports OPA MAD packet formats.
2866 */
2867static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2868{
2869 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2870 == RDMA_CORE_CAP_OPA_MAD;
2871}
2872
29541e3a 2873/**
296ec009
MW
2874 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2875 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2876 * @device: Device to check
2877 * @port_num: Port number to check
29541e3a 2878 *
296ec009
MW
2879 * Each InfiniBand node is required to provide a Subnet Management Agent
2880 * that the subnet manager can access. Prior to the fabric being fully
2881 * configured by the subnet manager, the SMA is accessed via a well known
2882 * interface called the Subnet Management Interface (SMI). This interface
2883 * uses directed route packets to communicate with the SM to get around the
2884 * chicken and egg problem of the SM needing to know what's on the fabric
2885 * in order to configure the fabric, and needing to configure the fabric in
2886 * order to send packets to the devices on the fabric. These directed
2887 * route packets do not need the fabric fully configured in order to reach
2888 * their destination. The SMI is the only method allowed to send
2889 * directed route packets on an InfiniBand fabric.
29541e3a 2890 *
296ec009 2891 * Return: true if the port provides an SMI.
29541e3a 2892 */
5ede9289 2893static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2894{
f9b22e35 2895 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2896}
2897
72219cea
MW
2898/**
2899 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2900 * Communication Manager.
296ec009
MW
2901 * @device: Device to check
2902 * @port_num: Port number to check
72219cea 2903 *
296ec009
MW
2904 * The InfiniBand Communication Manager is one of many pre-defined General
2905 * Service Agents (GSA) that are accessed via the General Service
2906 * Interface (GSI). It's role is to facilitate establishment of connections
2907 * between nodes as well as other management related tasks for established
2908 * connections.
72219cea 2909 *
296ec009
MW
2910 * Return: true if the port supports an IB CM (this does not guarantee that
2911 * a CM is actually running however).
72219cea 2912 */
5ede9289 2913static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2914{
f9b22e35 2915 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2916}
2917
04215330
MW
2918/**
2919 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2920 * Communication Manager.
296ec009
MW
2921 * @device: Device to check
2922 * @port_num: Port number to check
04215330 2923 *
296ec009
MW
2924 * Similar to above, but specific to iWARP connections which have a different
2925 * managment protocol than InfiniBand.
04215330 2926 *
296ec009
MW
2927 * Return: true if the port supports an iWARP CM (this does not guarantee that
2928 * a CM is actually running however).
04215330 2929 */
5ede9289 2930static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2931{
f9b22e35 2932 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2933}
2934
fe53ba2f
MW
2935/**
2936 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2937 * Subnet Administration.
296ec009
MW
2938 * @device: Device to check
2939 * @port_num: Port number to check
fe53ba2f 2940 *
296ec009
MW
2941 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2942 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2943 * fabrics, devices should resolve routes to other hosts by contacting the
2944 * SA to query the proper route.
fe53ba2f 2945 *
296ec009
MW
2946 * Return: true if the port should act as a client to the fabric Subnet
2947 * Administration interface. This does not imply that the SA service is
2948 * running locally.
fe53ba2f 2949 */
5ede9289 2950static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2951{
f9b22e35 2952 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2953}
2954
a31ad3b0
MW
2955/**
2956 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2957 * Multicast.
296ec009
MW
2958 * @device: Device to check
2959 * @port_num: Port number to check
a31ad3b0 2960 *
296ec009
MW
2961 * InfiniBand multicast registration is more complex than normal IPv4 or
2962 * IPv6 multicast registration. Each Host Channel Adapter must register
2963 * with the Subnet Manager when it wishes to join a multicast group. It
2964 * should do so only once regardless of how many queue pairs it subscribes
2965 * to this group. And it should leave the group only after all queue pairs
2966 * attached to the group have been detached.
a31ad3b0 2967 *
296ec009
MW
2968 * Return: true if the port must undertake the additional adminstrative
2969 * overhead of registering/unregistering with the SM and tracking of the
2970 * total number of queue pairs attached to the multicast group.
a31ad3b0 2971 */
5ede9289 2972static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2973{
2974 return rdma_cap_ib_sa(device, port_num);
2975}
2976
30a74ef4
MW
2977/**
2978 * rdma_cap_af_ib - Check if the port of device has the capability
2979 * Native Infiniband Address.
296ec009
MW
2980 * @device: Device to check
2981 * @port_num: Port number to check
30a74ef4 2982 *
296ec009
MW
2983 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2984 * GID. RoCE uses a different mechanism, but still generates a GID via
2985 * a prescribed mechanism and port specific data.
30a74ef4 2986 *
296ec009
MW
2987 * Return: true if the port uses a GID address to identify devices on the
2988 * network.
30a74ef4 2989 */
5ede9289 2990static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2991{
f9b22e35 2992 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2993}
2994
227128fc
MW
2995/**
2996 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2997 * Ethernet Address Handle.
2998 * @device: Device to check
2999 * @port_num: Port number to check
227128fc 3000 *
296ec009
MW
3001 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3002 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3003 * port. Normally, packet headers are generated by the sending host
3004 * adapter, but when sending connectionless datagrams, we must manually
3005 * inject the proper headers for the fabric we are communicating over.
227128fc 3006 *
296ec009
MW
3007 * Return: true if we are running as a RoCE port and must force the
3008 * addition of a Global Route Header built from our Ethernet Address
3009 * Handle into our header list for connectionless packets.
227128fc 3010 */
5ede9289 3011static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 3012{
f9b22e35 3013 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
3014}
3015
94d595c5
DC
3016/**
3017 * rdma_cap_opa_ah - Check if the port of device supports
3018 * OPA Address handles
3019 * @device: Device to check
3020 * @port_num: Port number to check
3021 *
3022 * Return: true if we are running on an OPA device which supports
3023 * the extended OPA addressing.
3024 */
3025static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3026{
3027 return (device->port_immutable[port_num].core_cap_flags &
3028 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3029}
3030
337877a4
IW
3031/**
3032 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3033 *
3034 * @device: Device
3035 * @port_num: Port number
3036 *
3037 * This MAD size includes the MAD headers and MAD payload. No other headers
3038 * are included.
3039 *
3040 * Return the max MAD size required by the Port. Will return 0 if the port
3041 * does not support MADs
3042 */
3043static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3044{
3045 return device->port_immutable[port_num].max_mad_size;
3046}
3047
03db3a2d
MB
3048/**
3049 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3050 * @device: Device to check
3051 * @port_num: Port number to check
3052 *
3053 * RoCE GID table mechanism manages the various GIDs for a device.
3054 *
3055 * NOTE: if allocating the port's GID table has failed, this call will still
3056 * return true, but any RoCE GID table API will fail.
3057 *
3058 * Return: true if the port uses RoCE GID table mechanism in order to manage
3059 * its GIDs.
3060 */
3061static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3062 u8 port_num)
3063{
3064 return rdma_protocol_roce(device, port_num) &&
3065 device->add_gid && device->del_gid;
3066}
3067
002516ed
CH
3068/*
3069 * Check if the device supports READ W/ INVALIDATE.
3070 */
3071static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3072{
3073 /*
3074 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3075 * has support for it yet.
3076 */
3077 return rdma_protocol_iwarp(dev, port_num);
3078}
3079
50174a7f
EC
3080int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3081 int state);
3082int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3083 struct ifla_vf_info *info);
3084int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3085 struct ifla_vf_stats *stats);
3086int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3087 int type);
3088
1da177e4
LT
3089int ib_query_pkey(struct ib_device *device,
3090 u8 port_num, u16 index, u16 *pkey);
3091
3092int ib_modify_device(struct ib_device *device,
3093 int device_modify_mask,
3094 struct ib_device_modify *device_modify);
3095
3096int ib_modify_port(struct ib_device *device,
3097 u8 port_num, int port_modify_mask,
3098 struct ib_port_modify *port_modify);
3099
5eb620c8 3100int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b26c4a11 3101 u8 *port_num, u16 *index);
5eb620c8
YE
3102
3103int ib_find_pkey(struct ib_device *device,
3104 u8 port_num, u16 pkey, u16 *index);
3105
ed082d36
CH
3106enum ib_pd_flags {
3107 /*
3108 * Create a memory registration for all memory in the system and place
3109 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3110 * ULPs to avoid the overhead of dynamic MRs.
3111 *
3112 * This flag is generally considered unsafe and must only be used in
3113 * extremly trusted environments. Every use of it will log a warning
3114 * in the kernel log.
3115 */
3116 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3117};
1da177e4 3118
ed082d36
CH
3119struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3120 const char *caller);
3121#define ib_alloc_pd(device, flags) \
e4496447 3122 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
7dd78647 3123void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
3124
3125/**
0a18cfe4 3126 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
3127 * @pd: The protection domain associated with the address handle.
3128 * @ah_attr: The attributes of the address vector.
3129 *
3130 * The address handle is used to reference a local or global destination
3131 * in all UD QP post sends.
3132 */
0a18cfe4 3133struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
1da177e4 3134
5cda6587
PP
3135/**
3136 * rdma_create_user_ah - Creates an address handle for the given address vector.
3137 * It resolves destination mac address for ah attribute of RoCE type.
3138 * @pd: The protection domain associated with the address handle.
3139 * @ah_attr: The attributes of the address vector.
3140 * @udata: pointer to user's input output buffer information need by
3141 * provider driver.
3142 *
3143 * It returns 0 on success and returns appropriate error code on error.
3144 * The address handle is used to reference a local or global destination
3145 * in all UD QP post sends.
3146 */
3147struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3148 struct rdma_ah_attr *ah_attr,
3149 struct ib_udata *udata);
850d8fd7
MS
3150/**
3151 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3152 * work completion.
3153 * @hdr: the L3 header to parse
3154 * @net_type: type of header to parse
3155 * @sgid: place to store source gid
3156 * @dgid: place to store destination gid
3157 */
3158int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3159 enum rdma_network_type net_type,
3160 union ib_gid *sgid, union ib_gid *dgid);
3161
3162/**
3163 * ib_get_rdma_header_version - Get the header version
3164 * @hdr: the L3 header to parse
3165 */
3166int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3167
4e00d694 3168/**
f6bdb142 3169 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
4e00d694
SH
3170 * work completion.
3171 * @device: Device on which the received message arrived.
3172 * @port_num: Port on which the received message arrived.
3173 * @wc: Work completion associated with the received message.
3174 * @grh: References the received global route header. This parameter is
3175 * ignored unless the work completion indicates that the GRH is valid.
3176 * @ah_attr: Returned attributes that can be used when creating an address
3177 * handle for replying to the message.
b7403217
PP
3178 * When ib_init_ah_attr_from_wc() returns success,
3179 * (a) for IB link layer it optionally contains a reference to SGID attribute
3180 * when GRH is present for IB link layer.
3181 * (b) for RoCE link layer it contains a reference to SGID attribute.
3182 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3183 * attributes which are initialized using ib_init_ah_attr_from_wc().
3184 *
4e00d694 3185 */
f6bdb142
PP
3186int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3187 const struct ib_wc *wc, const struct ib_grh *grh,
3188 struct rdma_ah_attr *ah_attr);
4e00d694 3189
513789ed
HR
3190/**
3191 * ib_create_ah_from_wc - Creates an address handle associated with the
3192 * sender of the specified work completion.
3193 * @pd: The protection domain associated with the address handle.
3194 * @wc: Work completion information associated with a received message.
3195 * @grh: References the received global route header. This parameter is
3196 * ignored unless the work completion indicates that the GRH is valid.
3197 * @port_num: The outbound port number to associate with the address.
3198 *
3199 * The address handle is used to reference a local or global destination
3200 * in all UD QP post sends.
3201 */
73cdaaee
IW
3202struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3203 const struct ib_grh *grh, u8 port_num);
513789ed 3204
1da177e4 3205/**
67b985b6 3206 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
3207 * handle.
3208 * @ah: The address handle to modify.
3209 * @ah_attr: The new address vector attributes to associate with the
3210 * address handle.
3211 */
67b985b6 3212int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3213
3214/**
bfbfd661 3215 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
3216 * handle.
3217 * @ah: The address handle to query.
3218 * @ah_attr: The address vector attributes associated with the address
3219 * handle.
3220 */
bfbfd661 3221int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
3222
3223/**
36523159 3224 * rdma_destroy_ah - Destroys an address handle.
1da177e4
LT
3225 * @ah: The address handle to destroy.
3226 */
36523159 3227int rdma_destroy_ah(struct ib_ah *ah);
1da177e4 3228
d41fcc67
RD
3229/**
3230 * ib_create_srq - Creates a SRQ associated with the specified protection
3231 * domain.
3232 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
3233 * @srq_init_attr: A list of initial attributes required to create the
3234 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3235 * the actual capabilities of the created SRQ.
d41fcc67
RD
3236 *
3237 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3238 * requested size of the SRQ, and set to the actual values allocated
3239 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3240 * will always be at least as large as the requested values.
3241 */
3242struct ib_srq *ib_create_srq(struct ib_pd *pd,
3243 struct ib_srq_init_attr *srq_init_attr);
3244
3245/**
3246 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3247 * @srq: The SRQ to modify.
3248 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3249 * the current values of selected SRQ attributes are returned.
3250 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3251 * are being modified.
3252 *
3253 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3254 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3255 * the number of receives queued drops below the limit.
3256 */
3257int ib_modify_srq(struct ib_srq *srq,
3258 struct ib_srq_attr *srq_attr,
3259 enum ib_srq_attr_mask srq_attr_mask);
3260
3261/**
3262 * ib_query_srq - Returns the attribute list and current values for the
3263 * specified SRQ.
3264 * @srq: The SRQ to query.
3265 * @srq_attr: The attributes of the specified SRQ.
3266 */
3267int ib_query_srq(struct ib_srq *srq,
3268 struct ib_srq_attr *srq_attr);
3269
3270/**
3271 * ib_destroy_srq - Destroys the specified SRQ.
3272 * @srq: The SRQ to destroy.
3273 */
3274int ib_destroy_srq(struct ib_srq *srq);
3275
3276/**
3277 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3278 * @srq: The SRQ to post the work request on.
3279 * @recv_wr: A list of work requests to post on the receive queue.
3280 * @bad_recv_wr: On an immediate failure, this parameter will reference
3281 * the work request that failed to be posted on the QP.
3282 */
3283static inline int ib_post_srq_recv(struct ib_srq *srq,
d34ac5cd
BVA
3284 const struct ib_recv_wr *recv_wr,
3285 const struct ib_recv_wr **bad_recv_wr)
d41fcc67 3286{
d34ac5cd 3287 const struct ib_recv_wr *dummy;
bb039a87
BVA
3288
3289 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy);
d41fcc67
RD
3290}
3291
1da177e4
LT
3292/**
3293 * ib_create_qp - Creates a QP associated with the specified protection
3294 * domain.
3295 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
3296 * @qp_init_attr: A list of initial attributes required to create the
3297 * QP. If QP creation succeeds, then the attributes are updated to
3298 * the actual capabilities of the created QP.
1da177e4
LT
3299 */
3300struct ib_qp *ib_create_qp(struct ib_pd *pd,
3301 struct ib_qp_init_attr *qp_init_attr);
3302
a512c2fb
PP
3303/**
3304 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3305 * @qp: The QP to modify.
3306 * @attr: On input, specifies the QP attributes to modify. On output,
3307 * the current values of selected QP attributes are returned.
3308 * @attr_mask: A bit-mask used to specify which attributes of the QP
3309 * are being modified.
3310 * @udata: pointer to user's input output buffer information
3311 * are being modified.
3312 * It returns 0 on success and returns appropriate error code on error.
3313 */
3314int ib_modify_qp_with_udata(struct ib_qp *qp,
3315 struct ib_qp_attr *attr,
3316 int attr_mask,
3317 struct ib_udata *udata);
3318
1da177e4
LT
3319/**
3320 * ib_modify_qp - Modifies the attributes for the specified QP and then
3321 * transitions the QP to the given state.
3322 * @qp: The QP to modify.
3323 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3324 * the current values of selected QP attributes are returned.
3325 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3326 * are being modified.
3327 */
3328int ib_modify_qp(struct ib_qp *qp,
3329 struct ib_qp_attr *qp_attr,
3330 int qp_attr_mask);
3331
3332/**
3333 * ib_query_qp - Returns the attribute list and current values for the
3334 * specified QP.
3335 * @qp: The QP to query.
3336 * @qp_attr: The attributes of the specified QP.
3337 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3338 * @qp_init_attr: Additional attributes of the selected QP.
3339 *
3340 * The qp_attr_mask may be used to limit the query to gathering only the
3341 * selected attributes.
3342 */
3343int ib_query_qp(struct ib_qp *qp,
3344 struct ib_qp_attr *qp_attr,
3345 int qp_attr_mask,
3346 struct ib_qp_init_attr *qp_init_attr);
3347
3348/**
3349 * ib_destroy_qp - Destroys the specified QP.
3350 * @qp: The QP to destroy.
3351 */
3352int ib_destroy_qp(struct ib_qp *qp);
3353
d3d72d90 3354/**
0e0ec7e0
SH
3355 * ib_open_qp - Obtain a reference to an existing sharable QP.
3356 * @xrcd - XRC domain
3357 * @qp_open_attr: Attributes identifying the QP to open.
3358 *
3359 * Returns a reference to a sharable QP.
3360 */
3361struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3362 struct ib_qp_open_attr *qp_open_attr);
3363
3364/**
3365 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3366 * @qp: The QP handle to release
3367 *
0e0ec7e0
SH
3368 * The opened QP handle is released by the caller. The underlying
3369 * shared QP is not destroyed until all internal references are released.
d3d72d90 3370 */
0e0ec7e0 3371int ib_close_qp(struct ib_qp *qp);
d3d72d90 3372
1da177e4
LT
3373/**
3374 * ib_post_send - Posts a list of work requests to the send queue of
3375 * the specified QP.
3376 * @qp: The QP to post the work request on.
3377 * @send_wr: A list of work requests to post on the send queue.
3378 * @bad_send_wr: On an immediate failure, this parameter will reference
3379 * the work request that failed to be posted on the QP.
55464d46
BVA
3380 *
3381 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3382 * error is returned, the QP state shall not be affected,
3383 * ib_post_send() will return an immediate error after queueing any
3384 * earlier work requests in the list.
1da177e4
LT
3385 */
3386static inline int ib_post_send(struct ib_qp *qp,
d34ac5cd
BVA
3387 const struct ib_send_wr *send_wr,
3388 const struct ib_send_wr **bad_send_wr)
1da177e4 3389{
d34ac5cd 3390 const struct ib_send_wr *dummy;
bb039a87
BVA
3391
3392 return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy);
1da177e4
LT
3393}
3394
3395/**
3396 * ib_post_recv - Posts a list of work requests to the receive queue of
3397 * the specified QP.
3398 * @qp: The QP to post the work request on.
3399 * @recv_wr: A list of work requests to post on the receive queue.
3400 * @bad_recv_wr: On an immediate failure, this parameter will reference
3401 * the work request that failed to be posted on the QP.
3402 */
3403static inline int ib_post_recv(struct ib_qp *qp,
d34ac5cd
BVA
3404 const struct ib_recv_wr *recv_wr,
3405 const struct ib_recv_wr **bad_recv_wr)
1da177e4 3406{
d34ac5cd 3407 const struct ib_recv_wr *dummy;
bb039a87
BVA
3408
3409 return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
1da177e4
LT
3410}
3411
f66c8ba4
LR
3412struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3413 int nr_cqe, int comp_vector,
3414 enum ib_poll_context poll_ctx, const char *caller);
3415#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3416 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3417
14d3a3b2
CH
3418void ib_free_cq(struct ib_cq *cq);
3419int ib_process_cq_direct(struct ib_cq *cq, int budget);
3420
1da177e4
LT
3421/**
3422 * ib_create_cq - Creates a CQ on the specified device.
3423 * @device: The device on which to create the CQ.
3424 * @comp_handler: A user-specified callback that is invoked when a
3425 * completion event occurs on the CQ.
3426 * @event_handler: A user-specified callback that is invoked when an
3427 * asynchronous event not associated with a completion occurs on the CQ.
3428 * @cq_context: Context associated with the CQ returned to the user via
3429 * the associated completion and event handlers.
8e37210b 3430 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3431 *
3432 * Users can examine the cq structure to determine the actual CQ size.
3433 */
3434struct ib_cq *ib_create_cq(struct ib_device *device,
3435 ib_comp_handler comp_handler,
3436 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
3437 void *cq_context,
3438 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
3439
3440/**
3441 * ib_resize_cq - Modifies the capacity of the CQ.
3442 * @cq: The CQ to resize.
3443 * @cqe: The minimum size of the CQ.
3444 *
3445 * Users can examine the cq structure to determine the actual CQ size.
3446 */
3447int ib_resize_cq(struct ib_cq *cq, int cqe);
3448
2dd57162 3449/**
4190b4e9 3450 * rdma_set_cq_moderation - Modifies moderation params of the CQ
2dd57162
EC
3451 * @cq: The CQ to modify.
3452 * @cq_count: number of CQEs that will trigger an event
3453 * @cq_period: max period of time in usec before triggering an event
3454 *
3455 */
4190b4e9 3456int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2dd57162 3457
1da177e4
LT
3458/**
3459 * ib_destroy_cq - Destroys the specified CQ.
3460 * @cq: The CQ to destroy.
3461 */
3462int ib_destroy_cq(struct ib_cq *cq);
3463
3464/**
3465 * ib_poll_cq - poll a CQ for completion(s)
3466 * @cq:the CQ being polled
3467 * @num_entries:maximum number of completions to return
3468 * @wc:array of at least @num_entries &struct ib_wc where completions
3469 * will be returned
3470 *
3471 * Poll a CQ for (possibly multiple) completions. If the return value
3472 * is < 0, an error occurred. If the return value is >= 0, it is the
3473 * number of completions returned. If the return value is
3474 * non-negative and < num_entries, then the CQ was emptied.
3475 */
3476static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3477 struct ib_wc *wc)
3478{
3479 return cq->device->poll_cq(cq, num_entries, wc);
3480}
3481
1da177e4
LT
3482/**
3483 * ib_req_notify_cq - Request completion notification on a CQ.
3484 * @cq: The CQ to generate an event for.
ed23a727
RD
3485 * @flags:
3486 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3487 * to request an event on the next solicited event or next work
3488 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3489 * may also be |ed in to request a hint about missed events, as
3490 * described below.
3491 *
3492 * Return Value:
3493 * < 0 means an error occurred while requesting notification
3494 * == 0 means notification was requested successfully, and if
3495 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3496 * were missed and it is safe to wait for another event. In
3497 * this case is it guaranteed that any work completions added
3498 * to the CQ since the last CQ poll will trigger a completion
3499 * notification event.
3500 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3501 * in. It means that the consumer must poll the CQ again to
3502 * make sure it is empty to avoid missing an event because of a
3503 * race between requesting notification and an entry being
3504 * added to the CQ. This return value means it is possible
3505 * (but not guaranteed) that a work completion has been added
3506 * to the CQ since the last poll without triggering a
3507 * completion notification event.
1da177e4
LT
3508 */
3509static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3510 enum ib_cq_notify_flags flags)
1da177e4 3511{
ed23a727 3512 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
3513}
3514
3515/**
3516 * ib_req_ncomp_notif - Request completion notification when there are
3517 * at least the specified number of unreaped completions on the CQ.
3518 * @cq: The CQ to generate an event for.
3519 * @wc_cnt: The number of unreaped completions that should be on the
3520 * CQ before an event is generated.
3521 */
3522static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3523{
3524 return cq->device->req_ncomp_notif ?
3525 cq->device->req_ncomp_notif(cq, wc_cnt) :
3526 -ENOSYS;
3527}
3528
9b513090
RC
3529/**
3530 * ib_dma_mapping_error - check a DMA addr for error
3531 * @dev: The device for which the dma_addr was created
3532 * @dma_addr: The DMA address to check
3533 */
3534static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3535{
0957c29f 3536 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3537}
3538
3539/**
3540 * ib_dma_map_single - Map a kernel virtual address to DMA address
3541 * @dev: The device for which the dma_addr is to be created
3542 * @cpu_addr: The kernel virtual address
3543 * @size: The size of the region in bytes
3544 * @direction: The direction of the DMA
3545 */
3546static inline u64 ib_dma_map_single(struct ib_device *dev,
3547 void *cpu_addr, size_t size,
3548 enum dma_data_direction direction)
3549{
0957c29f 3550 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3551}
3552
3553/**
3554 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3555 * @dev: The device for which the DMA address was created
3556 * @addr: The DMA address
3557 * @size: The size of the region in bytes
3558 * @direction: The direction of the DMA
3559 */
3560static inline void ib_dma_unmap_single(struct ib_device *dev,
3561 u64 addr, size_t size,
3562 enum dma_data_direction direction)
3563{
0957c29f 3564 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3565}
3566
9b513090
RC
3567/**
3568 * ib_dma_map_page - Map a physical page to DMA address
3569 * @dev: The device for which the dma_addr is to be created
3570 * @page: The page to be mapped
3571 * @offset: The offset within the page
3572 * @size: The size of the region in bytes
3573 * @direction: The direction of the DMA
3574 */
3575static inline u64 ib_dma_map_page(struct ib_device *dev,
3576 struct page *page,
3577 unsigned long offset,
3578 size_t size,
3579 enum dma_data_direction direction)
3580{
0957c29f 3581 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3582}
3583
3584/**
3585 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3586 * @dev: The device for which the DMA address was created
3587 * @addr: The DMA address
3588 * @size: The size of the region in bytes
3589 * @direction: The direction of the DMA
3590 */
3591static inline void ib_dma_unmap_page(struct ib_device *dev,
3592 u64 addr, size_t size,
3593 enum dma_data_direction direction)
3594{
0957c29f 3595 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3596}
3597
3598/**
3599 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3600 * @dev: The device for which the DMA addresses are to be created
3601 * @sg: The array of scatter/gather entries
3602 * @nents: The number of scatter/gather entries
3603 * @direction: The direction of the DMA
3604 */
3605static inline int ib_dma_map_sg(struct ib_device *dev,
3606 struct scatterlist *sg, int nents,
3607 enum dma_data_direction direction)
3608{
0957c29f 3609 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3610}
3611
3612/**
3613 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3614 * @dev: The device for which the DMA addresses were created
3615 * @sg: The array of scatter/gather entries
3616 * @nents: The number of scatter/gather entries
3617 * @direction: The direction of the DMA
3618 */
3619static inline void ib_dma_unmap_sg(struct ib_device *dev,
3620 struct scatterlist *sg, int nents,
3621 enum dma_data_direction direction)
3622{
0957c29f 3623 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3624}
3625
cb9fbc5c
AK
3626static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3627 struct scatterlist *sg, int nents,
3628 enum dma_data_direction direction,
00085f1e 3629 unsigned long dma_attrs)
cb9fbc5c 3630{
0957c29f
BVA
3631 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3632 dma_attrs);
cb9fbc5c
AK
3633}
3634
3635static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3636 struct scatterlist *sg, int nents,
3637 enum dma_data_direction direction,
00085f1e 3638 unsigned long dma_attrs)
cb9fbc5c 3639{
0957c29f 3640 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3641}
9b513090
RC
3642/**
3643 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3644 * @dev: The device for which the DMA addresses were created
3645 * @sg: The scatter/gather entry
ea58a595
MM
3646 *
3647 * Note: this function is obsolete. To do: change all occurrences of
3648 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3649 */
3650static inline u64 ib_sg_dma_address(struct ib_device *dev,
3651 struct scatterlist *sg)
3652{
d1998ef3 3653 return sg_dma_address(sg);
9b513090
RC
3654}
3655
3656/**
3657 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3658 * @dev: The device for which the DMA addresses were created
3659 * @sg: The scatter/gather entry
ea58a595
MM
3660 *
3661 * Note: this function is obsolete. To do: change all occurrences of
3662 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3663 */
3664static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3665 struct scatterlist *sg)
3666{
d1998ef3 3667 return sg_dma_len(sg);
9b513090
RC
3668}
3669
3670/**
3671 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3672 * @dev: The device for which the DMA address was created
3673 * @addr: The DMA address
3674 * @size: The size of the region in bytes
3675 * @dir: The direction of the DMA
3676 */
3677static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3678 u64 addr,
3679 size_t size,
3680 enum dma_data_direction dir)
3681{
0957c29f 3682 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3683}
3684
3685/**
3686 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3687 * @dev: The device for which the DMA address was created
3688 * @addr: The DMA address
3689 * @size: The size of the region in bytes
3690 * @dir: The direction of the DMA
3691 */
3692static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3693 u64 addr,
3694 size_t size,
3695 enum dma_data_direction dir)
3696{
0957c29f 3697 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3698}
3699
3700/**
3701 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3702 * @dev: The device for which the DMA address is requested
3703 * @size: The size of the region to allocate in bytes
3704 * @dma_handle: A pointer for returning the DMA address of the region
3705 * @flag: memory allocator flags
3706 */
3707static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3708 size_t size,
d43dbacf 3709 dma_addr_t *dma_handle,
9b513090
RC
3710 gfp_t flag)
3711{
0957c29f 3712 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3713}
3714
3715/**
3716 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3717 * @dev: The device for which the DMA addresses were allocated
3718 * @size: The size of the region
3719 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3720 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3721 */
3722static inline void ib_dma_free_coherent(struct ib_device *dev,
3723 size_t size, void *cpu_addr,
d43dbacf 3724 dma_addr_t dma_handle)
9b513090 3725{
0957c29f 3726 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3727}
3728
1da177e4
LT
3729/**
3730 * ib_dereg_mr - Deregisters a memory region and removes it from the
3731 * HCA translation table.
3732 * @mr: The memory region to deregister.
7083e42e
SM
3733 *
3734 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3735 */
3736int ib_dereg_mr(struct ib_mr *mr);
3737
9bee178b
SG
3738struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3739 enum ib_mr_type mr_type,
3740 u32 max_num_sg);
00f7ec36 3741
00f7ec36
SW
3742/**
3743 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3744 * R_Key and L_Key.
3745 * @mr - struct ib_mr pointer to be updated.
3746 * @newkey - new key to be used.
3747 */
3748static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3749{
3750 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3751 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3752}
3753
7083e42e
SM
3754/**
3755 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3756 * for calculating a new rkey for type 2 memory windows.
3757 * @rkey - the rkey to increment.
3758 */
3759static inline u32 ib_inc_rkey(u32 rkey)
3760{
3761 const u32 mask = 0x000000ff;
3762 return ((rkey + 1) & mask) | (rkey & ~mask);
3763}
3764
1da177e4
LT
3765/**
3766 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3767 * @pd: The protection domain associated with the unmapped region.
3768 * @mr_access_flags: Specifies the memory access rights.
3769 * @fmr_attr: Attributes of the unmapped region.
3770 *
3771 * A fast memory region must be mapped before it can be used as part of
3772 * a work request.
3773 */
3774struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3775 int mr_access_flags,
3776 struct ib_fmr_attr *fmr_attr);
3777
3778/**
3779 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3780 * @fmr: The fast memory region to associate with the pages.
3781 * @page_list: An array of physical pages to map to the fast memory region.
3782 * @list_len: The number of pages in page_list.
3783 * @iova: The I/O virtual address to use with the mapped region.
3784 */
3785static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3786 u64 *page_list, int list_len,
3787 u64 iova)
3788{
3789 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3790}
3791
3792/**
3793 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3794 * @fmr_list: A linked list of fast memory regions to unmap.
3795 */
3796int ib_unmap_fmr(struct list_head *fmr_list);
3797
3798/**
3799 * ib_dealloc_fmr - Deallocates a fast memory region.
3800 * @fmr: The fast memory region to deallocate.
3801 */
3802int ib_dealloc_fmr(struct ib_fmr *fmr);
3803
3804/**
3805 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3806 * @qp: QP to attach to the multicast group. The QP must be type
3807 * IB_QPT_UD.
3808 * @gid: Multicast group GID.
3809 * @lid: Multicast group LID in host byte order.
3810 *
3811 * In order to send and receive multicast packets, subnet
3812 * administration must have created the multicast group and configured
3813 * the fabric appropriately. The port associated with the specified
3814 * QP must also be a member of the multicast group.
3815 */
3816int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3817
3818/**
3819 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3820 * @qp: QP to detach from the multicast group.
3821 * @gid: Multicast group GID.
3822 * @lid: Multicast group LID in host byte order.
3823 */
3824int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3825
59991f94
SH
3826/**
3827 * ib_alloc_xrcd - Allocates an XRC domain.
3828 * @device: The device on which to allocate the XRC domain.
f66c8ba4 3829 * @caller: Module name for kernel consumers
59991f94 3830 */
f66c8ba4
LR
3831struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3832#define ib_alloc_xrcd(device) \
3833 __ib_alloc_xrcd((device), KBUILD_MODNAME)
59991f94
SH
3834
3835/**
3836 * ib_dealloc_xrcd - Deallocates an XRC domain.
3837 * @xrcd: The XRC domain to deallocate.
3838 */
3839int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3840
1c636f80
EC
3841static inline int ib_check_mr_access(int flags)
3842{
3843 /*
3844 * Local write permission is required if remote write or
3845 * remote atomic permission is also requested.
3846 */
3847 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3848 !(flags & IB_ACCESS_LOCAL_WRITE))
3849 return -EINVAL;
3850
3851 return 0;
3852}
3853
08bb558a
JM
3854static inline bool ib_access_writable(int access_flags)
3855{
3856 /*
3857 * We have writable memory backing the MR if any of the following
3858 * access flags are set. "Local write" and "remote write" obviously
3859 * require write access. "Remote atomic" can do things like fetch and
3860 * add, which will modify memory, and "MW bind" can change permissions
3861 * by binding a window.
3862 */
3863 return access_flags &
3864 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3865 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3866}
3867
1b01d335
SG
3868/**
3869 * ib_check_mr_status: lightweight check of MR status.
3870 * This routine may provide status checks on a selected
3871 * ib_mr. first use is for signature status check.
3872 *
3873 * @mr: A memory region.
3874 * @check_mask: Bitmask of which checks to perform from
3875 * ib_mr_status_check enumeration.
3876 * @mr_status: The container of relevant status checks.
3877 * failed checks will be indicated in the status bitmask
3878 * and the relevant info shall be in the error item.
3879 */
3880int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3881 struct ib_mr_status *mr_status);
3882
9268f72d
YK
3883struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3884 u16 pkey, const union ib_gid *gid,
3885 const struct sockaddr *addr);
5fd251c8
YH
3886struct ib_wq *ib_create_wq(struct ib_pd *pd,
3887 struct ib_wq_init_attr *init_attr);
3888int ib_destroy_wq(struct ib_wq *wq);
3889int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3890 u32 wq_attr_mask);
6d39786b
YH
3891struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3892 struct ib_rwq_ind_table_init_attr*
3893 wq_ind_table_init_attr);
3894int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3895
ff2ba993 3896int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3897 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3898
3899static inline int
ff2ba993 3900ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3901 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3902{
3903 int n;
3904
ff2ba993 3905 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3906 mr->iova = 0;
3907
3908 return n;
3909}
3910
ff2ba993 3911int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3912 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3913
765d6774
SW
3914void ib_drain_rq(struct ib_qp *qp);
3915void ib_drain_sq(struct ib_qp *qp);
3916void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3917
d4186194 3918int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
3919
3920static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3921{
44c58487
DC
3922 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3923 return attr->roce.dmac;
3924 return NULL;
2224c47a
DC
3925}
3926
64b4646e 3927static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 3928{
44c58487 3929 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
3930 attr->ib.dlid = (u16)dlid;
3931 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3932 attr->opa.dlid = dlid;
2224c47a
DC
3933}
3934
64b4646e 3935static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 3936{
44c58487
DC
3937 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3938 return attr->ib.dlid;
64b4646e
DC
3939 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3940 return attr->opa.dlid;
44c58487 3941 return 0;
2224c47a
DC
3942}
3943
3944static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3945{
3946 attr->sl = sl;
3947}
3948
3949static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3950{
3951 return attr->sl;
3952}
3953
3954static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3955 u8 src_path_bits)
3956{
44c58487
DC
3957 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3958 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
3959 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3960 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
3961}
3962
3963static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3964{
44c58487
DC
3965 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3966 return attr->ib.src_path_bits;
64b4646e
DC
3967 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3968 return attr->opa.src_path_bits;
44c58487 3969 return 0;
2224c47a
DC
3970}
3971
d98bb7f7
DH
3972static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3973 bool make_grd)
3974{
3975 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3976 attr->opa.make_grd = make_grd;
3977}
3978
3979static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3980{
3981 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3982 return attr->opa.make_grd;
3983 return false;
3984}
3985
2224c47a
DC
3986static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3987{
3988 attr->port_num = port_num;
3989}
3990
3991static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3992{
3993 return attr->port_num;
3994}
3995
3996static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3997 u8 static_rate)
3998{
3999 attr->static_rate = static_rate;
4000}
4001
4002static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4003{
4004 return attr->static_rate;
4005}
4006
4007static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4008 enum ib_ah_flags flag)
4009{
4010 attr->ah_flags = flag;
4011}
4012
4013static inline enum ib_ah_flags
4014 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4015{
4016 return attr->ah_flags;
4017}
4018
4019static inline const struct ib_global_route
4020 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4021{
4022 return &attr->grh;
4023}
4024
4025/*To retrieve and modify the grh */
4026static inline struct ib_global_route
4027 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4028{
4029 return &attr->grh;
4030}
4031
4032static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4033{
4034 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4035
4036 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4037}
4038
4039static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4040 __be64 prefix)
4041{
4042 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4043
4044 grh->dgid.global.subnet_prefix = prefix;
4045}
4046
4047static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4048 __be64 if_id)
4049{
4050 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4051
4052 grh->dgid.global.interface_id = if_id;
4053}
4054
4055static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4056 union ib_gid *dgid, u32 flow_label,
4057 u8 sgid_index, u8 hop_limit,
4058 u8 traffic_class)
4059{
4060 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4061
4062 attr->ah_flags = IB_AH_GRH;
4063 if (dgid)
4064 grh->dgid = *dgid;
4065 grh->flow_label = flow_label;
4066 grh->sgid_index = sgid_index;
4067 grh->hop_limit = hop_limit;
4068 grh->traffic_class = traffic_class;
8d9ec9ad 4069 grh->sgid_attr = NULL;
2224c47a 4070}
44c58487 4071
8d9ec9ad
JG
4072void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4073void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4074 u32 flow_label, u8 hop_limit, u8 traffic_class,
4075 const struct ib_gid_attr *sgid_attr);
d97099fe
JG
4076void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4077 const struct rdma_ah_attr *src);
4078void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4079 const struct rdma_ah_attr *new);
4080void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
8d9ec9ad 4081
87daac68
DH
4082/**
4083 * rdma_ah_find_type - Return address handle type.
4084 *
4085 * @dev: Device to be checked
4086 * @port_num: Port number
4087 */
44c58487 4088static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
87daac68 4089 u8 port_num)
44c58487 4090{
a6532e71 4091 if (rdma_protocol_roce(dev, port_num))
44c58487 4092 return RDMA_AH_ATTR_TYPE_ROCE;
87daac68
DH
4093 if (rdma_protocol_ib(dev, port_num)) {
4094 if (rdma_cap_opa_ah(dev, port_num))
4095 return RDMA_AH_ATTR_TYPE_OPA;
44c58487 4096 return RDMA_AH_ATTR_TYPE_IB;
87daac68
DH
4097 }
4098
4099 return RDMA_AH_ATTR_TYPE_UNDEFINED;
44c58487 4100}
7db20ecd 4101
62ede777
HD
4102/**
4103 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4104 * In the current implementation the only way to get
4105 * get the 32bit lid is from other sources for OPA.
4106 * For IB, lids will always be 16bits so cast the
4107 * value accordingly.
4108 *
4109 * @lid: A 32bit LID
4110 */
4111static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 4112{
62ede777
HD
4113 WARN_ON_ONCE(lid & 0xFFFF0000);
4114 return (u16)lid;
7db20ecd
HD
4115}
4116
62ede777
HD
4117/**
4118 * ib_lid_be16 - Return lid in 16bit BE encoding.
4119 *
4120 * @lid: A 32bit LID
4121 */
4122static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 4123{
62ede777
HD
4124 WARN_ON_ONCE(lid & 0xFFFF0000);
4125 return cpu_to_be16((u16)lid);
7db20ecd 4126}
32043830 4127
c66cd353
SG
4128/**
4129 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4130 * vector
4131 * @device: the rdma device
4132 * @comp_vector: index of completion vector
4133 *
4134 * Returns NULL on failure, otherwise a corresponding cpu map of the
4135 * completion vector (returns all-cpus map if the device driver doesn't
4136 * implement get_vector_affinity).
4137 */
4138static inline const struct cpumask *
4139ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4140{
4141 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4142 !device->get_vector_affinity)
4143 return NULL;
4144
4145 return device->get_vector_affinity(device, comp_vector);
4146
4147}
4148
32269441
YH
4149static inline void ib_set_flow(struct ib_uobject *uobj, struct ib_flow *ibflow,
4150 struct ib_qp *qp, struct ib_device *device)
4151{
4152 uobj->object = ibflow;
4153 ibflow->uobject = uobj;
4154
4155 if (qp) {
4156 atomic_inc(&qp->usecnt);
4157 ibflow->qp = qp;
4158 }
4159
4160 ibflow->device = device;
4161}
4162
32f69e4b
DJ
4163/**
4164 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4165 * and add their gids, as needed, to the relevant RoCE devices.
4166 *
4167 * @device: the rdma device
4168 */
4169void rdma_roce_rescan_device(struct ib_device *ibdev);
4170
7dc08dcf
YH
4171struct ib_ucontext *ib_uverbs_get_ucontext(struct ib_uverbs_file *ufile);
4172
528922af
YH
4173int uverbs_destroy_def_handler(struct ib_device *ib_dev,
4174 struct ib_uverbs_file *file,
4175 struct uverbs_attr_bundle *attrs);
1da177e4 4176#endif /* IB_VERBS_H */