thermal: armada: fix formula documentation comment
[linux-2.6-block.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
301a721e
MB
56#include <linux/string.h>
57#include <linux/slab.h>
2fc77572 58#include <linux/netdevice.h>
e2773c06 59
50174a7f 60#include <linux/if_link.h>
60063497 61#include <linux/atomic.h>
882214e2 62#include <linux/mmu_notifier.h>
7c0f6ba6 63#include <linux/uaccess.h>
43579b5f 64#include <linux/cgroup_rdma.h>
ea6819e1 65#include <uapi/rdma/ib_user_verbs.h>
1da177e4 66
9abb0d1b
LR
67#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
68
f0626710 69extern struct workqueue_struct *ib_wq;
14d3a3b2 70extern struct workqueue_struct *ib_comp_wq;
f0626710 71
1da177e4
LT
72union ib_gid {
73 u8 raw[16];
74 struct {
97f52eb4
SH
75 __be64 subnet_prefix;
76 __be64 interface_id;
1da177e4
LT
77 } global;
78};
79
e26be1bf
MS
80extern union ib_gid zgid;
81
b39ffa1d
MB
82enum ib_gid_type {
83 /* If link layer is Ethernet, this is RoCE V1 */
84 IB_GID_TYPE_IB = 0,
85 IB_GID_TYPE_ROCE = 0,
7766a99f 86 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
87 IB_GID_TYPE_SIZE
88};
89
7ead4bcb 90#define ROCE_V2_UDP_DPORT 4791
03db3a2d 91struct ib_gid_attr {
b39ffa1d 92 enum ib_gid_type gid_type;
03db3a2d
MB
93 struct net_device *ndev;
94};
95
07ebafba
TT
96enum rdma_node_type {
97 /* IB values map to NodeInfo:NodeType. */
98 RDMA_NODE_IB_CA = 1,
99 RDMA_NODE_IB_SWITCH,
100 RDMA_NODE_IB_ROUTER,
180771a3
UM
101 RDMA_NODE_RNIC,
102 RDMA_NODE_USNIC,
5db5765e 103 RDMA_NODE_USNIC_UDP,
1da177e4
LT
104};
105
a0c1b2a3
EC
106enum {
107 /* set the local administered indication */
108 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
109};
110
07ebafba
TT
111enum rdma_transport_type {
112 RDMA_TRANSPORT_IB,
180771a3 113 RDMA_TRANSPORT_IWARP,
248567f7
UM
114 RDMA_TRANSPORT_USNIC,
115 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
116};
117
6b90a6d6
MW
118enum rdma_protocol_type {
119 RDMA_PROTOCOL_IB,
120 RDMA_PROTOCOL_IBOE,
121 RDMA_PROTOCOL_IWARP,
122 RDMA_PROTOCOL_USNIC_UDP
123};
124
8385fd84
RD
125__attribute_const__ enum rdma_transport_type
126rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 127
c865f246
SK
128enum rdma_network_type {
129 RDMA_NETWORK_IB,
130 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
131 RDMA_NETWORK_IPV4,
132 RDMA_NETWORK_IPV6
133};
134
135static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
136{
137 if (network_type == RDMA_NETWORK_IPV4 ||
138 network_type == RDMA_NETWORK_IPV6)
139 return IB_GID_TYPE_ROCE_UDP_ENCAP;
140
141 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
142 return IB_GID_TYPE_IB;
143}
144
145static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
146 union ib_gid *gid)
147{
148 if (gid_type == IB_GID_TYPE_IB)
149 return RDMA_NETWORK_IB;
150
151 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
152 return RDMA_NETWORK_IPV4;
153 else
154 return RDMA_NETWORK_IPV6;
155}
156
a3f5adaf
EC
157enum rdma_link_layer {
158 IB_LINK_LAYER_UNSPECIFIED,
159 IB_LINK_LAYER_INFINIBAND,
160 IB_LINK_LAYER_ETHERNET,
161};
162
1da177e4 163enum ib_device_cap_flags {
7ca0bc53
LR
164 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
165 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
166 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
167 IB_DEVICE_RAW_MULTI = (1 << 3),
168 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
169 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
170 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
171 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
172 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
78b57f95 173 /* Not in use, former INIT_TYPE = (1 << 9),*/
7ca0bc53
LR
174 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
175 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
176 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
177 IB_DEVICE_SRQ_RESIZE = (1 << 13),
178 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
b1adc714
CH
179
180 /*
181 * This device supports a per-device lkey or stag that can be
182 * used without performing a memory registration for the local
183 * memory. Note that ULPs should never check this flag, but
184 * instead of use the local_dma_lkey flag in the ib_pd structure,
185 * which will always contain a usable lkey.
186 */
7ca0bc53 187 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
78b57f95 188 /* Reserved, old SEND_W_INV = (1 << 16),*/
7ca0bc53 189 IB_DEVICE_MEM_WINDOW = (1 << 17),
e0605d91
EC
190 /*
191 * Devices should set IB_DEVICE_UD_IP_SUM if they support
192 * insertion of UDP and TCP checksum on outgoing UD IPoIB
193 * messages and can verify the validity of checksum for
194 * incoming messages. Setting this flag implies that the
195 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
196 */
7ca0bc53
LR
197 IB_DEVICE_UD_IP_CSUM = (1 << 18),
198 IB_DEVICE_UD_TSO = (1 << 19),
199 IB_DEVICE_XRC = (1 << 20),
b1adc714
CH
200
201 /*
202 * This device supports the IB "base memory management extension",
203 * which includes support for fast registrations (IB_WR_REG_MR,
204 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
205 * also be set by any iWarp device which must support FRs to comply
206 * to the iWarp verbs spec. iWarp devices also support the
207 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
208 * stag.
209 */
7ca0bc53
LR
210 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
211 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
212 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
213 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
214 IB_DEVICE_RC_IP_CSUM = (1 << 25),
ebaaee25 215 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
7ca0bc53 216 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
8a06ce59
LR
217 /*
218 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
219 * support execution of WQEs that involve synchronization
220 * of I/O operations with single completion queue managed
221 * by hardware.
222 */
78b57f95 223 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
7ca0bc53
LR
224 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
225 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
47355b3c 226 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
f5aa9159 227 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
c7e162a4 228 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
ebaaee25 229 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
c7e162a4 230 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
62e45949 231 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
1b01d335
SG
232};
233
234enum ib_signature_prot_cap {
235 IB_PROT_T10DIF_TYPE_1 = 1,
236 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
237 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
238};
239
240enum ib_signature_guard_cap {
241 IB_GUARD_T10DIF_CRC = 1,
242 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
243};
244
245enum ib_atomic_cap {
246 IB_ATOMIC_NONE,
247 IB_ATOMIC_HCA,
248 IB_ATOMIC_GLOB
249};
250
860f10a7 251enum ib_odp_general_cap_bits {
25bf14d6
AK
252 IB_ODP_SUPPORT = 1 << 0,
253 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
860f10a7
SG
254};
255
256enum ib_odp_transport_cap_bits {
257 IB_ODP_SUPPORT_SEND = 1 << 0,
258 IB_ODP_SUPPORT_RECV = 1 << 1,
259 IB_ODP_SUPPORT_WRITE = 1 << 2,
260 IB_ODP_SUPPORT_READ = 1 << 3,
261 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
262};
263
264struct ib_odp_caps {
265 uint64_t general_caps;
266 struct {
267 uint32_t rc_odp_caps;
268 uint32_t uc_odp_caps;
269 uint32_t ud_odp_caps;
270 } per_transport_caps;
271};
272
ccf20562
YH
273struct ib_rss_caps {
274 /* Corresponding bit will be set if qp type from
275 * 'enum ib_qp_type' is supported, e.g.
276 * supported_qpts |= 1 << IB_QPT_UD
277 */
278 u32 supported_qpts;
279 u32 max_rwq_indirection_tables;
280 u32 max_rwq_indirection_table_size;
281};
282
6938fc1e
AK
283enum ib_tm_cap_flags {
284 /* Support tag matching on RC transport */
285 IB_TM_CAP_RC = 1 << 0,
286};
287
288struct ib_xrq_caps {
289 /* Max size of RNDV header */
290 u32 max_rndv_hdr_size;
291 /* Max number of entries in tag matching list */
292 u32 max_num_tags;
293 /* From enum ib_tm_cap_flags */
294 u32 flags;
295 /* Max number of outstanding list operations */
296 u32 max_ops;
297 /* Max number of SGE in tag matching entry */
298 u32 max_sge;
299};
300
b9926b92
MB
301enum ib_cq_creation_flags {
302 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
8a06ce59 303 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1,
b9926b92
MB
304};
305
bcf4c1ea
MB
306struct ib_cq_init_attr {
307 unsigned int cqe;
308 int comp_vector;
309 u32 flags;
310};
311
1da177e4
LT
312struct ib_device_attr {
313 u64 fw_ver;
97f52eb4 314 __be64 sys_image_guid;
1da177e4
LT
315 u64 max_mr_size;
316 u64 page_size_cap;
317 u32 vendor_id;
318 u32 vendor_part_id;
319 u32 hw_ver;
320 int max_qp;
321 int max_qp_wr;
fb532d6a 322 u64 device_cap_flags;
1da177e4
LT
323 int max_sge;
324 int max_sge_rd;
325 int max_cq;
326 int max_cqe;
327 int max_mr;
328 int max_pd;
329 int max_qp_rd_atom;
330 int max_ee_rd_atom;
331 int max_res_rd_atom;
332 int max_qp_init_rd_atom;
333 int max_ee_init_rd_atom;
334 enum ib_atomic_cap atomic_cap;
5e80ba8f 335 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
336 int max_ee;
337 int max_rdd;
338 int max_mw;
339 int max_raw_ipv6_qp;
340 int max_raw_ethy_qp;
341 int max_mcast_grp;
342 int max_mcast_qp_attach;
343 int max_total_mcast_qp_attach;
344 int max_ah;
345 int max_fmr;
346 int max_map_per_fmr;
347 int max_srq;
348 int max_srq_wr;
349 int max_srq_sge;
00f7ec36 350 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
351 u16 max_pkeys;
352 u8 local_ca_ack_delay;
1b01d335
SG
353 int sig_prot_cap;
354 int sig_guard_cap;
860f10a7 355 struct ib_odp_caps odp_caps;
24306dc6
MB
356 uint64_t timestamp_mask;
357 uint64_t hca_core_clock; /* in KHZ */
ccf20562
YH
358 struct ib_rss_caps rss_caps;
359 u32 max_wq_type_rq;
ebaaee25 360 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
6938fc1e 361 struct ib_xrq_caps xrq_caps;
1da177e4
LT
362};
363
364enum ib_mtu {
365 IB_MTU_256 = 1,
366 IB_MTU_512 = 2,
367 IB_MTU_1024 = 3,
368 IB_MTU_2048 = 4,
369 IB_MTU_4096 = 5
370};
371
372static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
373{
374 switch (mtu) {
375 case IB_MTU_256: return 256;
376 case IB_MTU_512: return 512;
377 case IB_MTU_1024: return 1024;
378 case IB_MTU_2048: return 2048;
379 case IB_MTU_4096: return 4096;
380 default: return -1;
381 }
382}
383
d3f4aadd
AR
384static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
385{
386 if (mtu >= 4096)
387 return IB_MTU_4096;
388 else if (mtu >= 2048)
389 return IB_MTU_2048;
390 else if (mtu >= 1024)
391 return IB_MTU_1024;
392 else if (mtu >= 512)
393 return IB_MTU_512;
394 else
395 return IB_MTU_256;
396}
397
1da177e4
LT
398enum ib_port_state {
399 IB_PORT_NOP = 0,
400 IB_PORT_DOWN = 1,
401 IB_PORT_INIT = 2,
402 IB_PORT_ARMED = 3,
403 IB_PORT_ACTIVE = 4,
404 IB_PORT_ACTIVE_DEFER = 5
405};
406
407enum ib_port_cap_flags {
408 IB_PORT_SM = 1 << 1,
409 IB_PORT_NOTICE_SUP = 1 << 2,
410 IB_PORT_TRAP_SUP = 1 << 3,
411 IB_PORT_OPT_IPD_SUP = 1 << 4,
412 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
413 IB_PORT_SL_MAP_SUP = 1 << 6,
414 IB_PORT_MKEY_NVRAM = 1 << 7,
415 IB_PORT_PKEY_NVRAM = 1 << 8,
416 IB_PORT_LED_INFO_SUP = 1 << 9,
417 IB_PORT_SM_DISABLED = 1 << 10,
418 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
419 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 420 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
421 IB_PORT_CM_SUP = 1 << 16,
422 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
423 IB_PORT_REINIT_SUP = 1 << 18,
424 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
425 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
426 IB_PORT_DR_NOTICE_SUP = 1 << 21,
427 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
428 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
429 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 430 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 431 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
432};
433
434enum ib_port_width {
435 IB_WIDTH_1X = 1,
436 IB_WIDTH_4X = 2,
437 IB_WIDTH_8X = 4,
438 IB_WIDTH_12X = 8
439};
440
441static inline int ib_width_enum_to_int(enum ib_port_width width)
442{
443 switch (width) {
444 case IB_WIDTH_1X: return 1;
445 case IB_WIDTH_4X: return 4;
446 case IB_WIDTH_8X: return 8;
447 case IB_WIDTH_12X: return 12;
448 default: return -1;
449 }
450}
451
2e96691c
OG
452enum ib_port_speed {
453 IB_SPEED_SDR = 1,
454 IB_SPEED_DDR = 2,
455 IB_SPEED_QDR = 4,
456 IB_SPEED_FDR10 = 8,
457 IB_SPEED_FDR = 16,
12113a35
NO
458 IB_SPEED_EDR = 32,
459 IB_SPEED_HDR = 64
2e96691c
OG
460};
461
b40f4757
CL
462/**
463 * struct rdma_hw_stats
464 * @timestamp - Used by the core code to track when the last update was
465 * @lifespan - Used by the core code to determine how old the counters
466 * should be before being updated again. Stored in jiffies, defaults
467 * to 10 milliseconds, drivers can override the default be specifying
468 * their own value during their allocation routine.
469 * @name - Array of pointers to static names used for the counters in
470 * directory.
471 * @num_counters - How many hardware counters there are. If name is
472 * shorter than this number, a kernel oops will result. Driver authors
473 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
474 * in their code to prevent this.
475 * @value - Array of u64 counters that are accessed by the sysfs code and
476 * filled in by the drivers get_stats routine
477 */
478struct rdma_hw_stats {
479 unsigned long timestamp;
480 unsigned long lifespan;
481 const char * const *names;
482 int num_counters;
483 u64 value[];
7f624d02
SW
484};
485
b40f4757
CL
486#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
487/**
488 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
489 * for drivers.
490 * @names - Array of static const char *
491 * @num_counters - How many elements in array
492 * @lifespan - How many milliseconds between updates
493 */
494static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
495 const char * const *names, int num_counters,
496 unsigned long lifespan)
497{
498 struct rdma_hw_stats *stats;
499
500 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
501 GFP_KERNEL);
502 if (!stats)
503 return NULL;
504 stats->names = names;
505 stats->num_counters = num_counters;
506 stats->lifespan = msecs_to_jiffies(lifespan);
507
508 return stats;
509}
510
511
f9b22e35
IW
512/* Define bits for the various functionality this port needs to be supported by
513 * the core.
514 */
515/* Management 0x00000FFF */
516#define RDMA_CORE_CAP_IB_MAD 0x00000001
517#define RDMA_CORE_CAP_IB_SMI 0x00000002
518#define RDMA_CORE_CAP_IB_CM 0x00000004
519#define RDMA_CORE_CAP_IW_CM 0x00000008
520#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 521#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
522
523/* Address format 0x000FF000 */
524#define RDMA_CORE_CAP_AF_IB 0x00001000
525#define RDMA_CORE_CAP_ETH_AH 0x00002000
94d595c5 526#define RDMA_CORE_CAP_OPA_AH 0x00004000
f9b22e35
IW
527
528/* Protocol 0xFFF00000 */
529#define RDMA_CORE_CAP_PROT_IB 0x00100000
530#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
531#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 532#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
aa773bd4 533#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
ce1e055f 534#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
f9b22e35
IW
535
536#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
537 | RDMA_CORE_CAP_IB_MAD \
538 | RDMA_CORE_CAP_IB_SMI \
539 | RDMA_CORE_CAP_IB_CM \
540 | RDMA_CORE_CAP_IB_SA \
541 | RDMA_CORE_CAP_AF_IB)
542#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
543 | RDMA_CORE_CAP_IB_MAD \
544 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
545 | RDMA_CORE_CAP_AF_IB \
546 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
547#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
548 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
549 | RDMA_CORE_CAP_IB_MAD \
550 | RDMA_CORE_CAP_IB_CM \
551 | RDMA_CORE_CAP_AF_IB \
552 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
553#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
554 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
555#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
556 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 557
aa773bd4
OG
558#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
559
ce1e055f
OG
560#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
561
1da177e4 562struct ib_port_attr {
fad61ad4 563 u64 subnet_prefix;
1da177e4
LT
564 enum ib_port_state state;
565 enum ib_mtu max_mtu;
566 enum ib_mtu active_mtu;
567 int gid_tbl_len;
568 u32 port_cap_flags;
569 u32 max_msg_sz;
570 u32 bad_pkey_cntr;
571 u32 qkey_viol_cntr;
572 u16 pkey_tbl_len;
db58540b 573 u32 sm_lid;
582faf31 574 u32 lid;
1da177e4
LT
575 u8 lmc;
576 u8 max_vl_num;
577 u8 sm_sl;
578 u8 subnet_timeout;
579 u8 init_type_reply;
580 u8 active_width;
581 u8 active_speed;
582 u8 phys_state;
a0c1b2a3 583 bool grh_required;
1da177e4
LT
584};
585
586enum ib_device_modify_flags {
c5bcbbb9
RD
587 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
588 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
589};
590
bd99fdea
YS
591#define IB_DEVICE_NODE_DESC_MAX 64
592
1da177e4
LT
593struct ib_device_modify {
594 u64 sys_image_guid;
bd99fdea 595 char node_desc[IB_DEVICE_NODE_DESC_MAX];
1da177e4
LT
596};
597
598enum ib_port_modify_flags {
599 IB_PORT_SHUTDOWN = 1,
600 IB_PORT_INIT_TYPE = (1<<2),
cb49366f
VN
601 IB_PORT_RESET_QKEY_CNTR = (1<<3),
602 IB_PORT_OPA_MASK_CHG = (1<<4)
1da177e4
LT
603};
604
605struct ib_port_modify {
606 u32 set_port_cap_mask;
607 u32 clr_port_cap_mask;
608 u8 init_type;
609};
610
611enum ib_event_type {
612 IB_EVENT_CQ_ERR,
613 IB_EVENT_QP_FATAL,
614 IB_EVENT_QP_REQ_ERR,
615 IB_EVENT_QP_ACCESS_ERR,
616 IB_EVENT_COMM_EST,
617 IB_EVENT_SQ_DRAINED,
618 IB_EVENT_PATH_MIG,
619 IB_EVENT_PATH_MIG_ERR,
620 IB_EVENT_DEVICE_FATAL,
621 IB_EVENT_PORT_ACTIVE,
622 IB_EVENT_PORT_ERR,
623 IB_EVENT_LID_CHANGE,
624 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
625 IB_EVENT_SM_CHANGE,
626 IB_EVENT_SRQ_ERR,
627 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 628 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
629 IB_EVENT_CLIENT_REREGISTER,
630 IB_EVENT_GID_CHANGE,
f213c052 631 IB_EVENT_WQ_FATAL,
1da177e4
LT
632};
633
db7489e0 634const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 635
1da177e4
LT
636struct ib_event {
637 struct ib_device *device;
638 union {
639 struct ib_cq *cq;
640 struct ib_qp *qp;
d41fcc67 641 struct ib_srq *srq;
f213c052 642 struct ib_wq *wq;
1da177e4
LT
643 u8 port_num;
644 } element;
645 enum ib_event_type event;
646};
647
648struct ib_event_handler {
649 struct ib_device *device;
650 void (*handler)(struct ib_event_handler *, struct ib_event *);
651 struct list_head list;
652};
653
654#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
655 do { \
656 (_ptr)->device = _device; \
657 (_ptr)->handler = _handler; \
658 INIT_LIST_HEAD(&(_ptr)->list); \
659 } while (0)
660
661struct ib_global_route {
662 union ib_gid dgid;
663 u32 flow_label;
664 u8 sgid_index;
665 u8 hop_limit;
666 u8 traffic_class;
667};
668
513789ed 669struct ib_grh {
97f52eb4
SH
670 __be32 version_tclass_flow;
671 __be16 paylen;
513789ed
HR
672 u8 next_hdr;
673 u8 hop_limit;
674 union ib_gid sgid;
675 union ib_gid dgid;
676};
677
c865f246
SK
678union rdma_network_hdr {
679 struct ib_grh ibgrh;
680 struct {
681 /* The IB spec states that if it's IPv4, the header
682 * is located in the last 20 bytes of the header.
683 */
684 u8 reserved[20];
685 struct iphdr roce4grh;
686 };
687};
688
7dafbab3
DH
689#define IB_QPN_MASK 0xFFFFFF
690
1da177e4
LT
691enum {
692 IB_MULTICAST_QPN = 0xffffff
693};
694
f3a7c66b 695#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
b4e64397 696#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
97f52eb4 697
1da177e4
LT
698enum ib_ah_flags {
699 IB_AH_GRH = 1
700};
701
bf6a9e31
JM
702enum ib_rate {
703 IB_RATE_PORT_CURRENT = 0,
704 IB_RATE_2_5_GBPS = 2,
705 IB_RATE_5_GBPS = 5,
706 IB_RATE_10_GBPS = 3,
707 IB_RATE_20_GBPS = 6,
708 IB_RATE_30_GBPS = 4,
709 IB_RATE_40_GBPS = 7,
710 IB_RATE_60_GBPS = 8,
711 IB_RATE_80_GBPS = 9,
71eeba16
MA
712 IB_RATE_120_GBPS = 10,
713 IB_RATE_14_GBPS = 11,
714 IB_RATE_56_GBPS = 12,
715 IB_RATE_112_GBPS = 13,
716 IB_RATE_168_GBPS = 14,
717 IB_RATE_25_GBPS = 15,
718 IB_RATE_100_GBPS = 16,
719 IB_RATE_200_GBPS = 17,
720 IB_RATE_300_GBPS = 18
bf6a9e31
JM
721};
722
723/**
724 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
725 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
726 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
727 * @rate: rate to convert.
728 */
8385fd84 729__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 730
71eeba16
MA
731/**
732 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
733 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
734 * @rate: rate to convert.
735 */
8385fd84 736__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 737
17cd3a2d
SG
738
739/**
9bee178b
SG
740 * enum ib_mr_type - memory region type
741 * @IB_MR_TYPE_MEM_REG: memory region that is used for
742 * normal registration
743 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
744 * signature operations (data-integrity
745 * capable regions)
f5aa9159
SG
746 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
747 * register any arbitrary sg lists (without
748 * the normal mr constraints - see
749 * ib_map_mr_sg)
17cd3a2d 750 */
9bee178b
SG
751enum ib_mr_type {
752 IB_MR_TYPE_MEM_REG,
753 IB_MR_TYPE_SIGNATURE,
f5aa9159 754 IB_MR_TYPE_SG_GAPS,
17cd3a2d
SG
755};
756
1b01d335 757/**
78eda2bb
SG
758 * Signature types
759 * IB_SIG_TYPE_NONE: Unprotected.
760 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 761 */
78eda2bb
SG
762enum ib_signature_type {
763 IB_SIG_TYPE_NONE,
764 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
765};
766
767/**
768 * Signature T10-DIF block-guard types
769 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
770 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
771 */
772enum ib_t10_dif_bg_type {
773 IB_T10DIF_CRC,
774 IB_T10DIF_CSUM
775};
776
777/**
778 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
779 * domain.
1b01d335
SG
780 * @bg_type: T10-DIF block guard type (CRC|CSUM)
781 * @pi_interval: protection information interval.
782 * @bg: seed of guard computation.
783 * @app_tag: application tag of guard block
784 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
785 * @ref_remap: Indicate wethear the reftag increments each block
786 * @app_escape: Indicate to skip block check if apptag=0xffff
787 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
788 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
789 */
790struct ib_t10_dif_domain {
1b01d335
SG
791 enum ib_t10_dif_bg_type bg_type;
792 u16 pi_interval;
793 u16 bg;
794 u16 app_tag;
795 u32 ref_tag;
78eda2bb
SG
796 bool ref_remap;
797 bool app_escape;
798 bool ref_escape;
799 u16 apptag_check_mask;
1b01d335
SG
800};
801
802/**
803 * struct ib_sig_domain - Parameters for signature domain
804 * @sig_type: specific signauture type
805 * @sig: union of all signature domain attributes that may
806 * be used to set domain layout.
807 */
808struct ib_sig_domain {
809 enum ib_signature_type sig_type;
810 union {
811 struct ib_t10_dif_domain dif;
812 } sig;
813};
814
815/**
816 * struct ib_sig_attrs - Parameters for signature handover operation
817 * @check_mask: bitmask for signature byte check (8 bytes)
818 * @mem: memory domain layout desciptor.
819 * @wire: wire domain layout desciptor.
820 */
821struct ib_sig_attrs {
822 u8 check_mask;
823 struct ib_sig_domain mem;
824 struct ib_sig_domain wire;
825};
826
827enum ib_sig_err_type {
828 IB_SIG_BAD_GUARD,
829 IB_SIG_BAD_REFTAG,
830 IB_SIG_BAD_APPTAG,
831};
832
833/**
834 * struct ib_sig_err - signature error descriptor
835 */
836struct ib_sig_err {
837 enum ib_sig_err_type err_type;
838 u32 expected;
839 u32 actual;
840 u64 sig_err_offset;
841 u32 key;
842};
843
844enum ib_mr_status_check {
845 IB_MR_CHECK_SIG_STATUS = 1,
846};
847
848/**
849 * struct ib_mr_status - Memory region status container
850 *
851 * @fail_status: Bitmask of MR checks status. For each
852 * failed check a corresponding status bit is set.
853 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
854 * failure.
855 */
856struct ib_mr_status {
857 u32 fail_status;
858 struct ib_sig_err sig_err;
859};
860
bf6a9e31
JM
861/**
862 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
863 * enum.
864 * @mult: multiple to convert.
865 */
8385fd84 866__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 867
44c58487
DC
868enum rdma_ah_attr_type {
869 RDMA_AH_ATTR_TYPE_IB,
870 RDMA_AH_ATTR_TYPE_ROCE,
64b4646e 871 RDMA_AH_ATTR_TYPE_OPA,
44c58487
DC
872};
873
874struct ib_ah_attr {
875 u16 dlid;
876 u8 src_path_bits;
877};
878
879struct roce_ah_attr {
880 u8 dmac[ETH_ALEN];
881};
882
64b4646e
DC
883struct opa_ah_attr {
884 u32 dlid;
885 u8 src_path_bits;
d98bb7f7 886 bool make_grd;
64b4646e
DC
887};
888
90898850 889struct rdma_ah_attr {
1da177e4 890 struct ib_global_route grh;
1da177e4 891 u8 sl;
1da177e4 892 u8 static_rate;
1da177e4 893 u8 port_num;
44c58487
DC
894 u8 ah_flags;
895 enum rdma_ah_attr_type type;
896 union {
897 struct ib_ah_attr ib;
898 struct roce_ah_attr roce;
64b4646e 899 struct opa_ah_attr opa;
44c58487 900 };
1da177e4
LT
901};
902
903enum ib_wc_status {
904 IB_WC_SUCCESS,
905 IB_WC_LOC_LEN_ERR,
906 IB_WC_LOC_QP_OP_ERR,
907 IB_WC_LOC_EEC_OP_ERR,
908 IB_WC_LOC_PROT_ERR,
909 IB_WC_WR_FLUSH_ERR,
910 IB_WC_MW_BIND_ERR,
911 IB_WC_BAD_RESP_ERR,
912 IB_WC_LOC_ACCESS_ERR,
913 IB_WC_REM_INV_REQ_ERR,
914 IB_WC_REM_ACCESS_ERR,
915 IB_WC_REM_OP_ERR,
916 IB_WC_RETRY_EXC_ERR,
917 IB_WC_RNR_RETRY_EXC_ERR,
918 IB_WC_LOC_RDD_VIOL_ERR,
919 IB_WC_REM_INV_RD_REQ_ERR,
920 IB_WC_REM_ABORT_ERR,
921 IB_WC_INV_EECN_ERR,
922 IB_WC_INV_EEC_STATE_ERR,
923 IB_WC_FATAL_ERR,
924 IB_WC_RESP_TIMEOUT_ERR,
925 IB_WC_GENERAL_ERR
926};
927
db7489e0 928const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 929
1da177e4
LT
930enum ib_wc_opcode {
931 IB_WC_SEND,
932 IB_WC_RDMA_WRITE,
933 IB_WC_RDMA_READ,
934 IB_WC_COMP_SWAP,
935 IB_WC_FETCH_ADD,
c93570f2 936 IB_WC_LSO,
00f7ec36 937 IB_WC_LOCAL_INV,
4c67e2bf 938 IB_WC_REG_MR,
5e80ba8f
VS
939 IB_WC_MASKED_COMP_SWAP,
940 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
941/*
942 * Set value of IB_WC_RECV so consumers can test if a completion is a
943 * receive by testing (opcode & IB_WC_RECV).
944 */
945 IB_WC_RECV = 1 << 7,
946 IB_WC_RECV_RDMA_WITH_IMM
947};
948
949enum ib_wc_flags {
950 IB_WC_GRH = 1,
00f7ec36
SW
951 IB_WC_WITH_IMM = (1<<1),
952 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 953 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
954 IB_WC_WITH_SMAC = (1<<4),
955 IB_WC_WITH_VLAN = (1<<5),
c865f246 956 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
957};
958
959struct ib_wc {
14d3a3b2
CH
960 union {
961 u64 wr_id;
962 struct ib_cqe *wr_cqe;
963 };
1da177e4
LT
964 enum ib_wc_status status;
965 enum ib_wc_opcode opcode;
966 u32 vendor_err;
967 u32 byte_len;
062dbb69 968 struct ib_qp *qp;
00f7ec36
SW
969 union {
970 __be32 imm_data;
971 u32 invalidate_rkey;
972 } ex;
1da177e4
LT
973 u32 src_qp;
974 int wc_flags;
975 u16 pkey_index;
7db20ecd 976 u32 slid;
1da177e4
LT
977 u8 sl;
978 u8 dlid_path_bits;
979 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
980 u8 smac[ETH_ALEN];
981 u16 vlan_id;
c865f246 982 u8 network_hdr_type;
1da177e4
LT
983};
984
ed23a727
RD
985enum ib_cq_notify_flags {
986 IB_CQ_SOLICITED = 1 << 0,
987 IB_CQ_NEXT_COMP = 1 << 1,
988 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
989 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
990};
991
96104eda 992enum ib_srq_type {
418d5130 993 IB_SRQT_BASIC,
9c2c8496
AK
994 IB_SRQT_XRC,
995 IB_SRQT_TM,
96104eda
SH
996};
997
1a56ff6d
AK
998static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
999{
9c2c8496
AK
1000 return srq_type == IB_SRQT_XRC ||
1001 srq_type == IB_SRQT_TM;
1a56ff6d
AK
1002}
1003
d41fcc67
RD
1004enum ib_srq_attr_mask {
1005 IB_SRQ_MAX_WR = 1 << 0,
1006 IB_SRQ_LIMIT = 1 << 1,
1007};
1008
1009struct ib_srq_attr {
1010 u32 max_wr;
1011 u32 max_sge;
1012 u32 srq_limit;
1013};
1014
1015struct ib_srq_init_attr {
1016 void (*event_handler)(struct ib_event *, void *);
1017 void *srq_context;
1018 struct ib_srq_attr attr;
96104eda 1019 enum ib_srq_type srq_type;
418d5130 1020
1a56ff6d
AK
1021 struct {
1022 struct ib_cq *cq;
1023 union {
1024 struct {
1025 struct ib_xrcd *xrcd;
1026 } xrc;
9c2c8496
AK
1027
1028 struct {
1029 u32 max_num_tags;
1030 } tag_matching;
1a56ff6d 1031 };
418d5130 1032 } ext;
d41fcc67
RD
1033};
1034
1da177e4
LT
1035struct ib_qp_cap {
1036 u32 max_send_wr;
1037 u32 max_recv_wr;
1038 u32 max_send_sge;
1039 u32 max_recv_sge;
1040 u32 max_inline_data;
a060b562
CH
1041
1042 /*
1043 * Maximum number of rdma_rw_ctx structures in flight at a time.
1044 * ib_create_qp() will calculate the right amount of neededed WRs
1045 * and MRs based on this.
1046 */
1047 u32 max_rdma_ctxs;
1da177e4
LT
1048};
1049
1050enum ib_sig_type {
1051 IB_SIGNAL_ALL_WR,
1052 IB_SIGNAL_REQ_WR
1053};
1054
1055enum ib_qp_type {
1056 /*
1057 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1058 * here (and in that order) since the MAD layer uses them as
1059 * indices into a 2-entry table.
1060 */
1061 IB_QPT_SMI,
1062 IB_QPT_GSI,
1063
1064 IB_QPT_RC,
1065 IB_QPT_UC,
1066 IB_QPT_UD,
1067 IB_QPT_RAW_IPV6,
b42b63cf 1068 IB_QPT_RAW_ETHERTYPE,
c938a616 1069 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
1070 IB_QPT_XRC_INI = 9,
1071 IB_QPT_XRC_TGT,
0134f16b
JM
1072 IB_QPT_MAX,
1073 /* Reserve a range for qp types internal to the low level driver.
1074 * These qp types will not be visible at the IB core layer, so the
1075 * IB_QPT_MAX usages should not be affected in the core layer
1076 */
1077 IB_QPT_RESERVED1 = 0x1000,
1078 IB_QPT_RESERVED2,
1079 IB_QPT_RESERVED3,
1080 IB_QPT_RESERVED4,
1081 IB_QPT_RESERVED5,
1082 IB_QPT_RESERVED6,
1083 IB_QPT_RESERVED7,
1084 IB_QPT_RESERVED8,
1085 IB_QPT_RESERVED9,
1086 IB_QPT_RESERVED10,
1da177e4
LT
1087};
1088
b846f25a 1089enum ib_qp_create_flags {
47ee1b9f
RL
1090 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1091 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
8a06ce59
LR
1092 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1093 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1094 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
90f1d1b4 1095 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 1096 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
7855f584 1097 /* FREE = 1 << 7, */
b531b909 1098 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
9c2b270e 1099 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
02984cc7 1100 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
d2b57063
JM
1101 /* reserve bits 26-31 for low level drivers' internal use */
1102 IB_QP_CREATE_RESERVED_START = 1 << 26,
1103 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
1104};
1105
73c40c61
YH
1106/*
1107 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1108 * callback to destroy the passed in QP.
1109 */
1110
1da177e4
LT
1111struct ib_qp_init_attr {
1112 void (*event_handler)(struct ib_event *, void *);
1113 void *qp_context;
1114 struct ib_cq *send_cq;
1115 struct ib_cq *recv_cq;
1116 struct ib_srq *srq;
b42b63cf 1117 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
1118 struct ib_qp_cap cap;
1119 enum ib_sig_type sq_sig_type;
1120 enum ib_qp_type qp_type;
b846f25a 1121 enum ib_qp_create_flags create_flags;
a060b562
CH
1122
1123 /*
1124 * Only needed for special QP types, or when using the RW API.
1125 */
1126 u8 port_num;
a9017e23 1127 struct ib_rwq_ind_table *rwq_ind_tbl;
02984cc7 1128 u32 source_qpn;
1da177e4
LT
1129};
1130
0e0ec7e0
SH
1131struct ib_qp_open_attr {
1132 void (*event_handler)(struct ib_event *, void *);
1133 void *qp_context;
1134 u32 qp_num;
1135 enum ib_qp_type qp_type;
1136};
1137
1da177e4
LT
1138enum ib_rnr_timeout {
1139 IB_RNR_TIMER_655_36 = 0,
1140 IB_RNR_TIMER_000_01 = 1,
1141 IB_RNR_TIMER_000_02 = 2,
1142 IB_RNR_TIMER_000_03 = 3,
1143 IB_RNR_TIMER_000_04 = 4,
1144 IB_RNR_TIMER_000_06 = 5,
1145 IB_RNR_TIMER_000_08 = 6,
1146 IB_RNR_TIMER_000_12 = 7,
1147 IB_RNR_TIMER_000_16 = 8,
1148 IB_RNR_TIMER_000_24 = 9,
1149 IB_RNR_TIMER_000_32 = 10,
1150 IB_RNR_TIMER_000_48 = 11,
1151 IB_RNR_TIMER_000_64 = 12,
1152 IB_RNR_TIMER_000_96 = 13,
1153 IB_RNR_TIMER_001_28 = 14,
1154 IB_RNR_TIMER_001_92 = 15,
1155 IB_RNR_TIMER_002_56 = 16,
1156 IB_RNR_TIMER_003_84 = 17,
1157 IB_RNR_TIMER_005_12 = 18,
1158 IB_RNR_TIMER_007_68 = 19,
1159 IB_RNR_TIMER_010_24 = 20,
1160 IB_RNR_TIMER_015_36 = 21,
1161 IB_RNR_TIMER_020_48 = 22,
1162 IB_RNR_TIMER_030_72 = 23,
1163 IB_RNR_TIMER_040_96 = 24,
1164 IB_RNR_TIMER_061_44 = 25,
1165 IB_RNR_TIMER_081_92 = 26,
1166 IB_RNR_TIMER_122_88 = 27,
1167 IB_RNR_TIMER_163_84 = 28,
1168 IB_RNR_TIMER_245_76 = 29,
1169 IB_RNR_TIMER_327_68 = 30,
1170 IB_RNR_TIMER_491_52 = 31
1171};
1172
1173enum ib_qp_attr_mask {
1174 IB_QP_STATE = 1,
1175 IB_QP_CUR_STATE = (1<<1),
1176 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1177 IB_QP_ACCESS_FLAGS = (1<<3),
1178 IB_QP_PKEY_INDEX = (1<<4),
1179 IB_QP_PORT = (1<<5),
1180 IB_QP_QKEY = (1<<6),
1181 IB_QP_AV = (1<<7),
1182 IB_QP_PATH_MTU = (1<<8),
1183 IB_QP_TIMEOUT = (1<<9),
1184 IB_QP_RETRY_CNT = (1<<10),
1185 IB_QP_RNR_RETRY = (1<<11),
1186 IB_QP_RQ_PSN = (1<<12),
1187 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1188 IB_QP_ALT_PATH = (1<<14),
1189 IB_QP_MIN_RNR_TIMER = (1<<15),
1190 IB_QP_SQ_PSN = (1<<16),
1191 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1192 IB_QP_PATH_MIG_STATE = (1<<18),
1193 IB_QP_CAP = (1<<19),
dd5f03be 1194 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1195 IB_QP_RESERVED1 = (1<<21),
1196 IB_QP_RESERVED2 = (1<<22),
1197 IB_QP_RESERVED3 = (1<<23),
1198 IB_QP_RESERVED4 = (1<<24),
528e5a1b 1199 IB_QP_RATE_LIMIT = (1<<25),
1da177e4
LT
1200};
1201
1202enum ib_qp_state {
1203 IB_QPS_RESET,
1204 IB_QPS_INIT,
1205 IB_QPS_RTR,
1206 IB_QPS_RTS,
1207 IB_QPS_SQD,
1208 IB_QPS_SQE,
1209 IB_QPS_ERR
1210};
1211
1212enum ib_mig_state {
1213 IB_MIG_MIGRATED,
1214 IB_MIG_REARM,
1215 IB_MIG_ARMED
1216};
1217
7083e42e
SM
1218enum ib_mw_type {
1219 IB_MW_TYPE_1 = 1,
1220 IB_MW_TYPE_2 = 2
1221};
1222
1da177e4
LT
1223struct ib_qp_attr {
1224 enum ib_qp_state qp_state;
1225 enum ib_qp_state cur_qp_state;
1226 enum ib_mtu path_mtu;
1227 enum ib_mig_state path_mig_state;
1228 u32 qkey;
1229 u32 rq_psn;
1230 u32 sq_psn;
1231 u32 dest_qp_num;
1232 int qp_access_flags;
1233 struct ib_qp_cap cap;
90898850
DC
1234 struct rdma_ah_attr ah_attr;
1235 struct rdma_ah_attr alt_ah_attr;
1da177e4
LT
1236 u16 pkey_index;
1237 u16 alt_pkey_index;
1238 u8 en_sqd_async_notify;
1239 u8 sq_draining;
1240 u8 max_rd_atomic;
1241 u8 max_dest_rd_atomic;
1242 u8 min_rnr_timer;
1243 u8 port_num;
1244 u8 timeout;
1245 u8 retry_cnt;
1246 u8 rnr_retry;
1247 u8 alt_port_num;
1248 u8 alt_timeout;
528e5a1b 1249 u32 rate_limit;
1da177e4
LT
1250};
1251
1252enum ib_wr_opcode {
1253 IB_WR_RDMA_WRITE,
1254 IB_WR_RDMA_WRITE_WITH_IMM,
1255 IB_WR_SEND,
1256 IB_WR_SEND_WITH_IMM,
1257 IB_WR_RDMA_READ,
1258 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1259 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1260 IB_WR_LSO,
1261 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1262 IB_WR_RDMA_READ_WITH_INV,
1263 IB_WR_LOCAL_INV,
4c67e2bf 1264 IB_WR_REG_MR,
5e80ba8f
VS
1265 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1266 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1b01d335 1267 IB_WR_REG_SIG_MR,
0134f16b
JM
1268 /* reserve values for low level drivers' internal use.
1269 * These values will not be used at all in the ib core layer.
1270 */
1271 IB_WR_RESERVED1 = 0xf0,
1272 IB_WR_RESERVED2,
1273 IB_WR_RESERVED3,
1274 IB_WR_RESERVED4,
1275 IB_WR_RESERVED5,
1276 IB_WR_RESERVED6,
1277 IB_WR_RESERVED7,
1278 IB_WR_RESERVED8,
1279 IB_WR_RESERVED9,
1280 IB_WR_RESERVED10,
1da177e4
LT
1281};
1282
1283enum ib_send_flags {
1284 IB_SEND_FENCE = 1,
1285 IB_SEND_SIGNALED = (1<<1),
1286 IB_SEND_SOLICITED = (1<<2),
e0605d91 1287 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1288 IB_SEND_IP_CSUM = (1<<4),
1289
1290 /* reserve bits 26-31 for low level drivers' internal use */
1291 IB_SEND_RESERVED_START = (1 << 26),
1292 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1293};
1294
1295struct ib_sge {
1296 u64 addr;
1297 u32 length;
1298 u32 lkey;
1299};
1300
14d3a3b2
CH
1301struct ib_cqe {
1302 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1303};
1304
1da177e4
LT
1305struct ib_send_wr {
1306 struct ib_send_wr *next;
14d3a3b2
CH
1307 union {
1308 u64 wr_id;
1309 struct ib_cqe *wr_cqe;
1310 };
1da177e4
LT
1311 struct ib_sge *sg_list;
1312 int num_sge;
1313 enum ib_wr_opcode opcode;
1314 int send_flags;
0f39cf3d
RD
1315 union {
1316 __be32 imm_data;
1317 u32 invalidate_rkey;
1318 } ex;
1da177e4
LT
1319};
1320
e622f2f4
CH
1321struct ib_rdma_wr {
1322 struct ib_send_wr wr;
1323 u64 remote_addr;
1324 u32 rkey;
1325};
1326
1327static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1328{
1329 return container_of(wr, struct ib_rdma_wr, wr);
1330}
1331
1332struct ib_atomic_wr {
1333 struct ib_send_wr wr;
1334 u64 remote_addr;
1335 u64 compare_add;
1336 u64 swap;
1337 u64 compare_add_mask;
1338 u64 swap_mask;
1339 u32 rkey;
1340};
1341
1342static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1343{
1344 return container_of(wr, struct ib_atomic_wr, wr);
1345}
1346
1347struct ib_ud_wr {
1348 struct ib_send_wr wr;
1349 struct ib_ah *ah;
1350 void *header;
1351 int hlen;
1352 int mss;
1353 u32 remote_qpn;
1354 u32 remote_qkey;
1355 u16 pkey_index; /* valid for GSI only */
1356 u8 port_num; /* valid for DR SMPs on switch only */
1357};
1358
1359static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1360{
1361 return container_of(wr, struct ib_ud_wr, wr);
1362}
1363
4c67e2bf
SG
1364struct ib_reg_wr {
1365 struct ib_send_wr wr;
1366 struct ib_mr *mr;
1367 u32 key;
1368 int access;
1369};
1370
1371static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1372{
1373 return container_of(wr, struct ib_reg_wr, wr);
1374}
1375
e622f2f4
CH
1376struct ib_sig_handover_wr {
1377 struct ib_send_wr wr;
1378 struct ib_sig_attrs *sig_attrs;
1379 struct ib_mr *sig_mr;
1380 int access_flags;
1381 struct ib_sge *prot;
1382};
1383
1384static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1385{
1386 return container_of(wr, struct ib_sig_handover_wr, wr);
1387}
1388
1da177e4
LT
1389struct ib_recv_wr {
1390 struct ib_recv_wr *next;
14d3a3b2
CH
1391 union {
1392 u64 wr_id;
1393 struct ib_cqe *wr_cqe;
1394 };
1da177e4
LT
1395 struct ib_sge *sg_list;
1396 int num_sge;
1397};
1398
1399enum ib_access_flags {
1400 IB_ACCESS_LOCAL_WRITE = 1,
1401 IB_ACCESS_REMOTE_WRITE = (1<<1),
1402 IB_ACCESS_REMOTE_READ = (1<<2),
1403 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1404 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1405 IB_ZERO_BASED = (1<<5),
1406 IB_ACCESS_ON_DEMAND = (1<<6),
0008b84e 1407 IB_ACCESS_HUGETLB = (1<<7),
1da177e4
LT
1408};
1409
b7d3e0a9
CH
1410/*
1411 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1412 * are hidden here instead of a uapi header!
1413 */
1da177e4
LT
1414enum ib_mr_rereg_flags {
1415 IB_MR_REREG_TRANS = 1,
1416 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1417 IB_MR_REREG_ACCESS = (1<<2),
1418 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1419};
1420
1da177e4
LT
1421struct ib_fmr_attr {
1422 int max_pages;
1423 int max_maps;
d36f34aa 1424 u8 page_shift;
1da177e4
LT
1425};
1426
882214e2
HE
1427struct ib_umem;
1428
38321256
MB
1429enum rdma_remove_reason {
1430 /* Userspace requested uobject deletion. Call could fail */
1431 RDMA_REMOVE_DESTROY,
1432 /* Context deletion. This call should delete the actual object itself */
1433 RDMA_REMOVE_CLOSE,
1434 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1435 RDMA_REMOVE_DRIVER_REMOVE,
1436 /* Context is being cleaned-up, but commit was just completed */
1437 RDMA_REMOVE_DURING_CLEANUP,
1438};
1439
43579b5f
PP
1440struct ib_rdmacg_object {
1441#ifdef CONFIG_CGROUP_RDMA
1442 struct rdma_cgroup *cg; /* owner rdma cgroup */
1443#endif
1444};
1445
e2773c06
RD
1446struct ib_ucontext {
1447 struct ib_device *device;
771addf6 1448 struct ib_uverbs_file *ufile;
f7c6a7b5 1449 int closing;
8ada2c1c 1450
38321256
MB
1451 /* locking the uobjects_list */
1452 struct mutex uobjects_lock;
1453 struct list_head uobjects;
1454 /* protects cleanup process from other actions */
1455 struct rw_semaphore cleanup_rwsem;
1456 enum rdma_remove_reason cleanup_reason;
1457
8ada2c1c 1458 struct pid *tgid;
882214e2 1459#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
f808c13f 1460 struct rb_root_cached umem_tree;
882214e2
HE
1461 /*
1462 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1463 * mmu notifiers registration.
1464 */
1465 struct rw_semaphore umem_rwsem;
1466 void (*invalidate_range)(struct ib_umem *umem,
1467 unsigned long start, unsigned long end);
1468
1469 struct mmu_notifier mn;
1470 atomic_t notifier_count;
1471 /* A list of umems that don't have private mmu notifier counters yet. */
1472 struct list_head no_private_counters;
1473 int odp_mrs_count;
1474#endif
43579b5f
PP
1475
1476 struct ib_rdmacg_object cg_obj;
e2773c06
RD
1477};
1478
1479struct ib_uobject {
1480 u64 user_handle; /* handle given to us by userspace */
1481 struct ib_ucontext *context; /* associated user context */
9ead190b 1482 void *object; /* containing object */
e2773c06 1483 struct list_head list; /* link to context's list */
43579b5f 1484 struct ib_rdmacg_object cg_obj; /* rdmacg object */
b3d636b0 1485 int id; /* index into kernel idr */
9ead190b 1486 struct kref ref;
38321256 1487 atomic_t usecnt; /* protects exclusive access */
d144da8c 1488 struct rcu_head rcu; /* kfree_rcu() overhead */
38321256
MB
1489
1490 const struct uverbs_obj_type *type;
e2773c06
RD
1491};
1492
cf8966b3
MB
1493struct ib_uobject_file {
1494 struct ib_uobject uobj;
1495 /* ufile contains the lock between context release and file close */
1496 struct ib_uverbs_file *ufile;
e2773c06
RD
1497};
1498
e2773c06 1499struct ib_udata {
309243ec 1500 const void __user *inbuf;
e2773c06
RD
1501 void __user *outbuf;
1502 size_t inlen;
1503 size_t outlen;
1504};
1505
1da177e4 1506struct ib_pd {
96249d70 1507 u32 local_dma_lkey;
ed082d36 1508 u32 flags;
e2773c06
RD
1509 struct ib_device *device;
1510 struct ib_uobject *uobject;
1511 atomic_t usecnt; /* count all resources */
50d46335 1512
ed082d36
CH
1513 u32 unsafe_global_rkey;
1514
50d46335
CH
1515 /*
1516 * Implementation details of the RDMA core, don't use in drivers:
1517 */
1518 struct ib_mr *__internal_mr;
1da177e4
LT
1519};
1520
59991f94
SH
1521struct ib_xrcd {
1522 struct ib_device *device;
d3d72d90 1523 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1524 struct inode *inode;
d3d72d90
SH
1525
1526 struct mutex tgt_qp_mutex;
1527 struct list_head tgt_qp_list;
59991f94
SH
1528};
1529
1da177e4
LT
1530struct ib_ah {
1531 struct ib_device *device;
1532 struct ib_pd *pd;
e2773c06 1533 struct ib_uobject *uobject;
44c58487 1534 enum rdma_ah_attr_type type;
1da177e4
LT
1535};
1536
1537typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1538
14d3a3b2
CH
1539enum ib_poll_context {
1540 IB_POLL_DIRECT, /* caller context, no hw completions */
1541 IB_POLL_SOFTIRQ, /* poll from softirq context */
1542 IB_POLL_WORKQUEUE, /* poll from workqueue */
1543};
1544
1da177e4 1545struct ib_cq {
e2773c06
RD
1546 struct ib_device *device;
1547 struct ib_uobject *uobject;
1548 ib_comp_handler comp_handler;
1549 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1550 void *cq_context;
e2773c06
RD
1551 int cqe;
1552 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1553 enum ib_poll_context poll_ctx;
1554 struct ib_wc *wc;
1555 union {
1556 struct irq_poll iop;
1557 struct work_struct work;
1558 };
1da177e4
LT
1559};
1560
1561struct ib_srq {
d41fcc67
RD
1562 struct ib_device *device;
1563 struct ib_pd *pd;
1564 struct ib_uobject *uobject;
1565 void (*event_handler)(struct ib_event *, void *);
1566 void *srq_context;
96104eda 1567 enum ib_srq_type srq_type;
1da177e4 1568 atomic_t usecnt;
418d5130 1569
1a56ff6d
AK
1570 struct {
1571 struct ib_cq *cq;
1572 union {
1573 struct {
1574 struct ib_xrcd *xrcd;
1575 u32 srq_num;
1576 } xrc;
1577 };
418d5130 1578 } ext;
1da177e4
LT
1579};
1580
ebaaee25
NO
1581enum ib_raw_packet_caps {
1582 /* Strip cvlan from incoming packet and report it in the matching work
1583 * completion is supported.
1584 */
1585 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1586 /* Scatter FCS field of an incoming packet to host memory is supported.
1587 */
1588 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1589 /* Checksum offloads are supported (for both send and receive). */
1590 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
7d9336d8
MG
1591 /* When a packet is received for an RQ with no receive WQEs, the
1592 * packet processing is delayed.
1593 */
1594 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
ebaaee25
NO
1595};
1596
5fd251c8
YH
1597enum ib_wq_type {
1598 IB_WQT_RQ
1599};
1600
1601enum ib_wq_state {
1602 IB_WQS_RESET,
1603 IB_WQS_RDY,
1604 IB_WQS_ERR
1605};
1606
1607struct ib_wq {
1608 struct ib_device *device;
1609 struct ib_uobject *uobject;
1610 void *wq_context;
1611 void (*event_handler)(struct ib_event *, void *);
1612 struct ib_pd *pd;
1613 struct ib_cq *cq;
1614 u32 wq_num;
1615 enum ib_wq_state state;
1616 enum ib_wq_type wq_type;
1617 atomic_t usecnt;
1618};
1619
10bac72b
NO
1620enum ib_wq_flags {
1621 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
27b0df11 1622 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
7d9336d8 1623 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
10bac72b
NO
1624};
1625
5fd251c8
YH
1626struct ib_wq_init_attr {
1627 void *wq_context;
1628 enum ib_wq_type wq_type;
1629 u32 max_wr;
1630 u32 max_sge;
1631 struct ib_cq *cq;
1632 void (*event_handler)(struct ib_event *, void *);
10bac72b 1633 u32 create_flags; /* Use enum ib_wq_flags */
5fd251c8
YH
1634};
1635
1636enum ib_wq_attr_mask {
10bac72b
NO
1637 IB_WQ_STATE = 1 << 0,
1638 IB_WQ_CUR_STATE = 1 << 1,
1639 IB_WQ_FLAGS = 1 << 2,
5fd251c8
YH
1640};
1641
1642struct ib_wq_attr {
1643 enum ib_wq_state wq_state;
1644 enum ib_wq_state curr_wq_state;
10bac72b
NO
1645 u32 flags; /* Use enum ib_wq_flags */
1646 u32 flags_mask; /* Use enum ib_wq_flags */
5fd251c8
YH
1647};
1648
6d39786b
YH
1649struct ib_rwq_ind_table {
1650 struct ib_device *device;
1651 struct ib_uobject *uobject;
1652 atomic_t usecnt;
1653 u32 ind_tbl_num;
1654 u32 log_ind_tbl_size;
1655 struct ib_wq **ind_tbl;
1656};
1657
1658struct ib_rwq_ind_table_init_attr {
1659 u32 log_ind_tbl_size;
1660 /* Each entry is a pointer to Receive Work Queue */
1661 struct ib_wq **ind_tbl;
1662};
1663
d291f1a6
DJ
1664enum port_pkey_state {
1665 IB_PORT_PKEY_NOT_VALID = 0,
1666 IB_PORT_PKEY_VALID = 1,
1667 IB_PORT_PKEY_LISTED = 2,
1668};
1669
1670struct ib_qp_security;
1671
1672struct ib_port_pkey {
1673 enum port_pkey_state state;
1674 u16 pkey_index;
1675 u8 port_num;
1676 struct list_head qp_list;
1677 struct list_head to_error_list;
1678 struct ib_qp_security *sec;
1679};
1680
1681struct ib_ports_pkeys {
1682 struct ib_port_pkey main;
1683 struct ib_port_pkey alt;
1684};
1685
1686struct ib_qp_security {
1687 struct ib_qp *qp;
1688 struct ib_device *dev;
1689 /* Hold this mutex when changing port and pkey settings. */
1690 struct mutex mutex;
1691 struct ib_ports_pkeys *ports_pkeys;
1692 /* A list of all open shared QP handles. Required to enforce security
1693 * properly for all users of a shared QP.
1694 */
1695 struct list_head shared_qp_list;
1696 void *security;
1697 bool destroying;
1698 atomic_t error_list_count;
1699 struct completion error_complete;
1700 int error_comps_pending;
1701};
1702
632bc3f6
BVA
1703/*
1704 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1705 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1706 */
1da177e4
LT
1707struct ib_qp {
1708 struct ib_device *device;
1709 struct ib_pd *pd;
1710 struct ib_cq *send_cq;
1711 struct ib_cq *recv_cq;
fffb0383
CH
1712 spinlock_t mr_lock;
1713 int mrs_used;
a060b562 1714 struct list_head rdma_mrs;
0e353e34 1715 struct list_head sig_mrs;
1da177e4 1716 struct ib_srq *srq;
b42b63cf 1717 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1718 struct list_head xrcd_list;
fffb0383 1719
319a441d
HHZ
1720 /* count times opened, mcast attaches, flow attaches */
1721 atomic_t usecnt;
0e0ec7e0
SH
1722 struct list_head open_list;
1723 struct ib_qp *real_qp;
e2773c06 1724 struct ib_uobject *uobject;
1da177e4
LT
1725 void (*event_handler)(struct ib_event *, void *);
1726 void *qp_context;
1727 u32 qp_num;
632bc3f6
BVA
1728 u32 max_write_sge;
1729 u32 max_read_sge;
1da177e4 1730 enum ib_qp_type qp_type;
a9017e23 1731 struct ib_rwq_ind_table *rwq_ind_tbl;
d291f1a6 1732 struct ib_qp_security *qp_sec;
498ca3c8 1733 u8 port;
1da177e4
LT
1734};
1735
1736struct ib_mr {
e2773c06
RD
1737 struct ib_device *device;
1738 struct ib_pd *pd;
e2773c06
RD
1739 u32 lkey;
1740 u32 rkey;
4c67e2bf
SG
1741 u64 iova;
1742 u32 length;
1743 unsigned int page_size;
d4a85c30 1744 bool need_inval;
fffb0383
CH
1745 union {
1746 struct ib_uobject *uobject; /* user */
1747 struct list_head qp_entry; /* FR */
1748 };
1da177e4
LT
1749};
1750
1751struct ib_mw {
1752 struct ib_device *device;
1753 struct ib_pd *pd;
e2773c06 1754 struct ib_uobject *uobject;
1da177e4 1755 u32 rkey;
7083e42e 1756 enum ib_mw_type type;
1da177e4
LT
1757};
1758
1759struct ib_fmr {
1760 struct ib_device *device;
1761 struct ib_pd *pd;
1762 struct list_head list;
1763 u32 lkey;
1764 u32 rkey;
1765};
1766
319a441d
HHZ
1767/* Supported steering options */
1768enum ib_flow_attr_type {
1769 /* steering according to rule specifications */
1770 IB_FLOW_ATTR_NORMAL = 0x0,
1771 /* default unicast and multicast rule -
1772 * receive all Eth traffic which isn't steered to any QP
1773 */
1774 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1775 /* default multicast rule -
1776 * receive all Eth multicast traffic which isn't steered to any QP
1777 */
1778 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1779 /* sniffer rule - receive all port traffic */
1780 IB_FLOW_ATTR_SNIFFER = 0x3
1781};
1782
1783/* Supported steering header types */
1784enum ib_flow_spec_type {
1785 /* L2 headers*/
76bd23b3
MR
1786 IB_FLOW_SPEC_ETH = 0x20,
1787 IB_FLOW_SPEC_IB = 0x22,
319a441d 1788 /* L3 header*/
76bd23b3
MR
1789 IB_FLOW_SPEC_IPV4 = 0x30,
1790 IB_FLOW_SPEC_IPV6 = 0x31,
319a441d 1791 /* L4 headers*/
76bd23b3
MR
1792 IB_FLOW_SPEC_TCP = 0x40,
1793 IB_FLOW_SPEC_UDP = 0x41,
0dbf3332 1794 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
fbf46860 1795 IB_FLOW_SPEC_INNER = 0x100,
460d0198
MR
1796 /* Actions */
1797 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
483a3966 1798 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
319a441d 1799};
240ae00e 1800#define IB_FLOW_SPEC_LAYER_MASK 0xF0
fbf46860 1801#define IB_FLOW_SPEC_SUPPORT_LAYERS 8
22878dbc 1802
319a441d
HHZ
1803/* Flow steering rule priority is set according to it's domain.
1804 * Lower domain value means higher priority.
1805 */
1806enum ib_flow_domain {
1807 IB_FLOW_DOMAIN_USER,
1808 IB_FLOW_DOMAIN_ETHTOOL,
1809 IB_FLOW_DOMAIN_RFS,
1810 IB_FLOW_DOMAIN_NIC,
1811 IB_FLOW_DOMAIN_NUM /* Must be last */
1812};
1813
a3100a78
MV
1814enum ib_flow_flags {
1815 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1816 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */
1817};
1818
319a441d
HHZ
1819struct ib_flow_eth_filter {
1820 u8 dst_mac[6];
1821 u8 src_mac[6];
1822 __be16 ether_type;
1823 __be16 vlan_tag;
15dfbd6b
MG
1824 /* Must be last */
1825 u8 real_sz[0];
319a441d
HHZ
1826};
1827
1828struct ib_flow_spec_eth {
fbf46860 1829 u32 type;
319a441d
HHZ
1830 u16 size;
1831 struct ib_flow_eth_filter val;
1832 struct ib_flow_eth_filter mask;
1833};
1834
240ae00e
MB
1835struct ib_flow_ib_filter {
1836 __be16 dlid;
1837 __u8 sl;
15dfbd6b
MG
1838 /* Must be last */
1839 u8 real_sz[0];
240ae00e
MB
1840};
1841
1842struct ib_flow_spec_ib {
fbf46860 1843 u32 type;
240ae00e
MB
1844 u16 size;
1845 struct ib_flow_ib_filter val;
1846 struct ib_flow_ib_filter mask;
1847};
1848
989a3a8f
MG
1849/* IPv4 header flags */
1850enum ib_ipv4_flags {
1851 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1852 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1853 last have this flag set */
1854};
1855
319a441d
HHZ
1856struct ib_flow_ipv4_filter {
1857 __be32 src_ip;
1858 __be32 dst_ip;
989a3a8f
MG
1859 u8 proto;
1860 u8 tos;
1861 u8 ttl;
1862 u8 flags;
15dfbd6b
MG
1863 /* Must be last */
1864 u8 real_sz[0];
319a441d
HHZ
1865};
1866
1867struct ib_flow_spec_ipv4 {
fbf46860 1868 u32 type;
319a441d
HHZ
1869 u16 size;
1870 struct ib_flow_ipv4_filter val;
1871 struct ib_flow_ipv4_filter mask;
1872};
1873
4c2aae71
MG
1874struct ib_flow_ipv6_filter {
1875 u8 src_ip[16];
1876 u8 dst_ip[16];
a72c6a2b
MG
1877 __be32 flow_label;
1878 u8 next_hdr;
1879 u8 traffic_class;
1880 u8 hop_limit;
15dfbd6b
MG
1881 /* Must be last */
1882 u8 real_sz[0];
4c2aae71
MG
1883};
1884
1885struct ib_flow_spec_ipv6 {
fbf46860 1886 u32 type;
4c2aae71
MG
1887 u16 size;
1888 struct ib_flow_ipv6_filter val;
1889 struct ib_flow_ipv6_filter mask;
1890};
1891
319a441d
HHZ
1892struct ib_flow_tcp_udp_filter {
1893 __be16 dst_port;
1894 __be16 src_port;
15dfbd6b
MG
1895 /* Must be last */
1896 u8 real_sz[0];
319a441d
HHZ
1897};
1898
1899struct ib_flow_spec_tcp_udp {
fbf46860 1900 u32 type;
319a441d
HHZ
1901 u16 size;
1902 struct ib_flow_tcp_udp_filter val;
1903 struct ib_flow_tcp_udp_filter mask;
1904};
1905
0dbf3332
MR
1906struct ib_flow_tunnel_filter {
1907 __be32 tunnel_id;
1908 u8 real_sz[0];
1909};
1910
1911/* ib_flow_spec_tunnel describes the Vxlan tunnel
1912 * the tunnel_id from val has the vni value
1913 */
1914struct ib_flow_spec_tunnel {
fbf46860 1915 u32 type;
0dbf3332
MR
1916 u16 size;
1917 struct ib_flow_tunnel_filter val;
1918 struct ib_flow_tunnel_filter mask;
1919};
1920
460d0198
MR
1921struct ib_flow_spec_action_tag {
1922 enum ib_flow_spec_type type;
1923 u16 size;
1924 u32 tag_id;
1925};
1926
483a3966
SS
1927struct ib_flow_spec_action_drop {
1928 enum ib_flow_spec_type type;
1929 u16 size;
1930};
1931
319a441d
HHZ
1932union ib_flow_spec {
1933 struct {
fbf46860 1934 u32 type;
319a441d
HHZ
1935 u16 size;
1936 };
1937 struct ib_flow_spec_eth eth;
240ae00e 1938 struct ib_flow_spec_ib ib;
319a441d
HHZ
1939 struct ib_flow_spec_ipv4 ipv4;
1940 struct ib_flow_spec_tcp_udp tcp_udp;
4c2aae71 1941 struct ib_flow_spec_ipv6 ipv6;
0dbf3332 1942 struct ib_flow_spec_tunnel tunnel;
460d0198 1943 struct ib_flow_spec_action_tag flow_tag;
483a3966 1944 struct ib_flow_spec_action_drop drop;
319a441d
HHZ
1945};
1946
1947struct ib_flow_attr {
1948 enum ib_flow_attr_type type;
1949 u16 size;
1950 u16 priority;
1951 u32 flags;
1952 u8 num_of_specs;
1953 u8 port;
1954 /* Following are the optional layers according to user request
1955 * struct ib_flow_spec_xxx
1956 * struct ib_flow_spec_yyy
1957 */
1958};
1959
1960struct ib_flow {
1961 struct ib_qp *qp;
1962 struct ib_uobject *uobject;
1963};
1964
4cd7c947 1965struct ib_mad_hdr;
1da177e4
LT
1966struct ib_grh;
1967
1968enum ib_process_mad_flags {
1969 IB_MAD_IGNORE_MKEY = 1,
1970 IB_MAD_IGNORE_BKEY = 2,
1971 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1972};
1973
1974enum ib_mad_result {
1975 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1976 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1977 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1978 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1979};
1980
21d6454a 1981struct ib_port_cache {
883c71fe 1982 u64 subnet_prefix;
21d6454a
JW
1983 struct ib_pkey_cache *pkey;
1984 struct ib_gid_table *gid;
1985 u8 lmc;
1986 enum ib_port_state port_state;
1987};
1988
1da177e4
LT
1989struct ib_cache {
1990 rwlock_t lock;
1991 struct ib_event_handler event_handler;
21d6454a 1992 struct ib_port_cache *ports;
1da177e4
LT
1993};
1994
07ebafba
TT
1995struct iw_cm_verbs;
1996
7738613e
IW
1997struct ib_port_immutable {
1998 int pkey_tbl_len;
1999 int gid_tbl_len;
f9b22e35 2000 u32 core_cap_flags;
337877a4 2001 u32 max_mad_size;
7738613e
IW
2002};
2003
2fc77572
VN
2004/* rdma netdev type - specifies protocol type */
2005enum rdma_netdev_t {
f0ad83ac
NV
2006 RDMA_NETDEV_OPA_VNIC,
2007 RDMA_NETDEV_IPOIB,
2fc77572
VN
2008};
2009
2010/**
2011 * struct rdma_netdev - rdma netdev
2012 * For cases where netstack interfacing is required.
2013 */
2014struct rdma_netdev {
2015 void *clnt_priv;
2016 struct ib_device *hca;
2017 u8 port_num;
2018
8e959601
NV
2019 /* cleanup function must be specified */
2020 void (*free_rdma_netdev)(struct net_device *netdev);
2021
2fc77572
VN
2022 /* control functions */
2023 void (*set_id)(struct net_device *netdev, int id);
f0ad83ac
NV
2024 /* send packet */
2025 int (*send)(struct net_device *dev, struct sk_buff *skb,
2026 struct ib_ah *address, u32 dqpn);
2027 /* multicast */
2028 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2029 union ib_gid *gid, u16 mlid,
2030 int set_qkey, u32 qkey);
2031 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2032 union ib_gid *gid, u16 mlid);
2fc77572
VN
2033};
2034
d291f1a6
DJ
2035struct ib_port_pkey_list {
2036 /* Lock to hold while modifying the list. */
2037 spinlock_t list_lock;
2038 struct list_head pkey_list;
2039};
2040
1da177e4 2041struct ib_device {
0957c29f
BVA
2042 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2043 struct device *dma_device;
2044
1da177e4
LT
2045 char name[IB_DEVICE_NAME_MAX];
2046
2047 struct list_head event_handler_list;
2048 spinlock_t event_handler_lock;
2049
17a55f79 2050 spinlock_t client_data_lock;
1da177e4 2051 struct list_head core_list;
7c1eb45a
HE
2052 /* Access to the client_data_list is protected by the client_data_lock
2053 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 2054 struct list_head client_data_list;
1da177e4
LT
2055
2056 struct ib_cache cache;
7738613e
IW
2057 /**
2058 * port_immutable is indexed by port number
2059 */
2060 struct ib_port_immutable *port_immutable;
1da177e4 2061
f4fd0b22
MT
2062 int num_comp_vectors;
2063
d291f1a6
DJ
2064 struct ib_port_pkey_list *port_pkey_list;
2065
07ebafba
TT
2066 struct iw_cm_verbs *iwcm;
2067
b40f4757
CL
2068 /**
2069 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2070 * driver initialized data. The struct is kfree()'ed by the sysfs
2071 * core when the device is removed. A lifespan of -1 in the return
2072 * struct tells the core to set a default lifespan.
2073 */
2074 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2075 u8 port_num);
2076 /**
2077 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2078 * @index - The index in the value array we wish to have updated, or
2079 * num_counters if we want all stats updated
2080 * Return codes -
2081 * < 0 - Error, no counters updated
2082 * index - Updated the single counter pointed to by index
2083 * num_counters - Updated all counters (will reset the timestamp
2084 * and prevent further calls for lifespan milliseconds)
2085 * Drivers are allowed to update all counters in leiu of just the
2086 * one given in index at their option
2087 */
2088 int (*get_hw_stats)(struct ib_device *device,
2089 struct rdma_hw_stats *stats,
2090 u8 port, int index);
1da177e4 2091 int (*query_device)(struct ib_device *device,
2528e33e
MB
2092 struct ib_device_attr *device_attr,
2093 struct ib_udata *udata);
1da177e4
LT
2094 int (*query_port)(struct ib_device *device,
2095 u8 port_num,
2096 struct ib_port_attr *port_attr);
a3f5adaf
EC
2097 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2098 u8 port_num);
03db3a2d
MB
2099 /* When calling get_netdev, the HW vendor's driver should return the
2100 * net device of device @device at port @port_num or NULL if such
2101 * a net device doesn't exist. The vendor driver should call dev_hold
2102 * on this net device. The HW vendor's device driver must guarantee
2103 * that this function returns NULL before the net device reaches
2104 * NETDEV_UNREGISTER_FINAL state.
2105 */
2106 struct net_device *(*get_netdev)(struct ib_device *device,
2107 u8 port_num);
1da177e4
LT
2108 int (*query_gid)(struct ib_device *device,
2109 u8 port_num, int index,
2110 union ib_gid *gid);
03db3a2d
MB
2111 /* When calling add_gid, the HW vendor's driver should
2112 * add the gid of device @device at gid index @index of
2113 * port @port_num to be @gid. Meta-info of that gid (for example,
2114 * the network device related to this gid is available
2115 * at @attr. @context allows the HW vendor driver to store extra
2116 * information together with a GID entry. The HW vendor may allocate
2117 * memory to contain this information and store it in @context when a
2118 * new GID entry is written to. Params are consistent until the next
2119 * call of add_gid or delete_gid. The function should return 0 on
2120 * success or error otherwise. The function could be called
2121 * concurrently for different ports. This function is only called
2122 * when roce_gid_table is used.
2123 */
2124 int (*add_gid)(struct ib_device *device,
2125 u8 port_num,
2126 unsigned int index,
2127 const union ib_gid *gid,
2128 const struct ib_gid_attr *attr,
2129 void **context);
2130 /* When calling del_gid, the HW vendor's driver should delete the
2131 * gid of device @device at gid index @index of port @port_num.
2132 * Upon the deletion of a GID entry, the HW vendor must free any
2133 * allocated memory. The caller will clear @context afterwards.
2134 * This function is only called when roce_gid_table is used.
2135 */
2136 int (*del_gid)(struct ib_device *device,
2137 u8 port_num,
2138 unsigned int index,
2139 void **context);
1da177e4
LT
2140 int (*query_pkey)(struct ib_device *device,
2141 u8 port_num, u16 index, u16 *pkey);
2142 int (*modify_device)(struct ib_device *device,
2143 int device_modify_mask,
2144 struct ib_device_modify *device_modify);
2145 int (*modify_port)(struct ib_device *device,
2146 u8 port_num, int port_modify_mask,
2147 struct ib_port_modify *port_modify);
e2773c06
RD
2148 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2149 struct ib_udata *udata);
2150 int (*dealloc_ucontext)(struct ib_ucontext *context);
2151 int (*mmap)(struct ib_ucontext *context,
2152 struct vm_area_struct *vma);
2153 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2154 struct ib_ucontext *context,
2155 struct ib_udata *udata);
1da177e4
LT
2156 int (*dealloc_pd)(struct ib_pd *pd);
2157 struct ib_ah * (*create_ah)(struct ib_pd *pd,
90898850 2158 struct rdma_ah_attr *ah_attr,
477864c8 2159 struct ib_udata *udata);
1da177e4 2160 int (*modify_ah)(struct ib_ah *ah,
90898850 2161 struct rdma_ah_attr *ah_attr);
1da177e4 2162 int (*query_ah)(struct ib_ah *ah,
90898850 2163 struct rdma_ah_attr *ah_attr);
1da177e4 2164 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
2165 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2166 struct ib_srq_init_attr *srq_init_attr,
2167 struct ib_udata *udata);
2168 int (*modify_srq)(struct ib_srq *srq,
2169 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
2170 enum ib_srq_attr_mask srq_attr_mask,
2171 struct ib_udata *udata);
d41fcc67
RD
2172 int (*query_srq)(struct ib_srq *srq,
2173 struct ib_srq_attr *srq_attr);
2174 int (*destroy_srq)(struct ib_srq *srq);
2175 int (*post_srq_recv)(struct ib_srq *srq,
2176 struct ib_recv_wr *recv_wr,
2177 struct ib_recv_wr **bad_recv_wr);
1da177e4 2178 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
2179 struct ib_qp_init_attr *qp_init_attr,
2180 struct ib_udata *udata);
1da177e4
LT
2181 int (*modify_qp)(struct ib_qp *qp,
2182 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
2183 int qp_attr_mask,
2184 struct ib_udata *udata);
1da177e4
LT
2185 int (*query_qp)(struct ib_qp *qp,
2186 struct ib_qp_attr *qp_attr,
2187 int qp_attr_mask,
2188 struct ib_qp_init_attr *qp_init_attr);
2189 int (*destroy_qp)(struct ib_qp *qp);
2190 int (*post_send)(struct ib_qp *qp,
2191 struct ib_send_wr *send_wr,
2192 struct ib_send_wr **bad_send_wr);
2193 int (*post_recv)(struct ib_qp *qp,
2194 struct ib_recv_wr *recv_wr,
2195 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
2196 struct ib_cq * (*create_cq)(struct ib_device *device,
2197 const struct ib_cq_init_attr *attr,
e2773c06
RD
2198 struct ib_ucontext *context,
2199 struct ib_udata *udata);
2dd57162
EC
2200 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2201 u16 cq_period);
1da177e4 2202 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
2203 int (*resize_cq)(struct ib_cq *cq, int cqe,
2204 struct ib_udata *udata);
1da177e4
LT
2205 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2206 struct ib_wc *wc);
2207 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2208 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 2209 enum ib_cq_notify_flags flags);
1da177e4
LT
2210 int (*req_ncomp_notif)(struct ib_cq *cq,
2211 int wc_cnt);
2212 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2213 int mr_access_flags);
e2773c06 2214 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
2215 u64 start, u64 length,
2216 u64 virt_addr,
e2773c06
RD
2217 int mr_access_flags,
2218 struct ib_udata *udata);
7e6edb9b
MB
2219 int (*rereg_user_mr)(struct ib_mr *mr,
2220 int flags,
2221 u64 start, u64 length,
2222 u64 virt_addr,
2223 int mr_access_flags,
2224 struct ib_pd *pd,
2225 struct ib_udata *udata);
1da177e4 2226 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
2227 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2228 enum ib_mr_type mr_type,
2229 u32 max_num_sg);
4c67e2bf
SG
2230 int (*map_mr_sg)(struct ib_mr *mr,
2231 struct scatterlist *sg,
ff2ba993 2232 int sg_nents,
9aa8b321 2233 unsigned int *sg_offset);
7083e42e 2234 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
b2a239df
MB
2235 enum ib_mw_type type,
2236 struct ib_udata *udata);
1da177e4
LT
2237 int (*dealloc_mw)(struct ib_mw *mw);
2238 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2239 int mr_access_flags,
2240 struct ib_fmr_attr *fmr_attr);
2241 int (*map_phys_fmr)(struct ib_fmr *fmr,
2242 u64 *page_list, int list_len,
2243 u64 iova);
2244 int (*unmap_fmr)(struct list_head *fmr_list);
2245 int (*dealloc_fmr)(struct ib_fmr *fmr);
2246 int (*attach_mcast)(struct ib_qp *qp,
2247 union ib_gid *gid,
2248 u16 lid);
2249 int (*detach_mcast)(struct ib_qp *qp,
2250 union ib_gid *gid,
2251 u16 lid);
2252 int (*process_mad)(struct ib_device *device,
2253 int process_mad_flags,
2254 u8 port_num,
a97e2d86
IW
2255 const struct ib_wc *in_wc,
2256 const struct ib_grh *in_grh,
4cd7c947
IW
2257 const struct ib_mad_hdr *in_mad,
2258 size_t in_mad_size,
2259 struct ib_mad_hdr *out_mad,
2260 size_t *out_mad_size,
2261 u16 *out_mad_pkey_index);
59991f94
SH
2262 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2263 struct ib_ucontext *ucontext,
2264 struct ib_udata *udata);
2265 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
2266 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2267 struct ib_flow_attr
2268 *flow_attr,
2269 int domain);
2270 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
2271 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2272 struct ib_mr_status *mr_status);
036b1063 2273 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
765d6774
SW
2274 void (*drain_rq)(struct ib_qp *qp);
2275 void (*drain_sq)(struct ib_qp *qp);
50174a7f
EC
2276 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2277 int state);
2278 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2279 struct ifla_vf_info *ivf);
2280 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2281 struct ifla_vf_stats *stats);
2282 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2283 int type);
5fd251c8
YH
2284 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2285 struct ib_wq_init_attr *init_attr,
2286 struct ib_udata *udata);
2287 int (*destroy_wq)(struct ib_wq *wq);
2288 int (*modify_wq)(struct ib_wq *wq,
2289 struct ib_wq_attr *attr,
2290 u32 wq_attr_mask,
2291 struct ib_udata *udata);
6d39786b
YH
2292 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2293 struct ib_rwq_ind_table_init_attr *init_attr,
2294 struct ib_udata *udata);
2295 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2fc77572 2296 /**
8e959601 2297 * rdma netdev operation
2fc77572
VN
2298 *
2299 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2300 * doesn't support the specified rdma netdev type.
2301 */
2302 struct net_device *(*alloc_rdma_netdev)(
2303 struct ib_device *device,
2304 u8 port_num,
2305 enum rdma_netdev_t type,
2306 const char *name,
2307 unsigned char name_assign_type,
2308 void (*setup)(struct net_device *));
9b513090 2309
e2773c06 2310 struct module *owner;
f4e91eb4 2311 struct device dev;
35be0681 2312 struct kobject *ports_parent;
1da177e4
LT
2313 struct list_head port_list;
2314
2315 enum {
2316 IB_DEV_UNINITIALIZED,
2317 IB_DEV_REGISTERED,
2318 IB_DEV_UNREGISTERED
2319 } reg_state;
2320
274c0891 2321 int uverbs_abi_ver;
17a55f79 2322 u64 uverbs_cmd_mask;
f21519b2 2323 u64 uverbs_ex_cmd_mask;
274c0891 2324
bd99fdea 2325 char node_desc[IB_DEVICE_NODE_DESC_MAX];
cf311cd4 2326 __be64 node_guid;
96f15c03 2327 u32 local_dma_lkey;
4139032b 2328 u16 is_switch:1;
1da177e4
LT
2329 u8 node_type;
2330 u8 phys_port_cnt;
3e153a93 2331 struct ib_device_attr attrs;
b40f4757
CL
2332 struct attribute_group *hw_stats_ag;
2333 struct rdma_hw_stats *hw_stats;
7738613e 2334
43579b5f
PP
2335#ifdef CONFIG_CGROUP_RDMA
2336 struct rdmacg_device cg_device;
2337#endif
2338
ecc82c53
LR
2339 u32 index;
2340
7738613e
IW
2341 /**
2342 * The following mandatory functions are used only at device
2343 * registration. Keep functions such as these at the end of this
2344 * structure to avoid cache line misses when accessing struct ib_device
2345 * in fast paths.
2346 */
2347 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
9abb0d1b 2348 void (*get_dev_fw_str)(struct ib_device *, char *str);
c66cd353
SG
2349 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2350 int comp_vector);
fac9658c
MB
2351
2352 struct uverbs_root_spec *specs_root;
1da177e4
LT
2353};
2354
2355struct ib_client {
2356 char *name;
2357 void (*add) (struct ib_device *);
7c1eb45a 2358 void (*remove)(struct ib_device *, void *client_data);
1da177e4 2359
9268f72d
YK
2360 /* Returns the net_dev belonging to this ib_client and matching the
2361 * given parameters.
2362 * @dev: An RDMA device that the net_dev use for communication.
2363 * @port: A physical port number on the RDMA device.
2364 * @pkey: P_Key that the net_dev uses if applicable.
2365 * @gid: A GID that the net_dev uses to communicate.
2366 * @addr: An IP address the net_dev is configured with.
2367 * @client_data: The device's client data set by ib_set_client_data().
2368 *
2369 * An ib_client that implements a net_dev on top of RDMA devices
2370 * (such as IP over IB) should implement this callback, allowing the
2371 * rdma_cm module to find the right net_dev for a given request.
2372 *
2373 * The caller is responsible for calling dev_put on the returned
2374 * netdev. */
2375 struct net_device *(*get_net_dev_by_params)(
2376 struct ib_device *dev,
2377 u8 port,
2378 u16 pkey,
2379 const union ib_gid *gid,
2380 const struct sockaddr *addr,
2381 void *client_data);
1da177e4
LT
2382 struct list_head list;
2383};
2384
2385struct ib_device *ib_alloc_device(size_t size);
2386void ib_dealloc_device(struct ib_device *device);
2387
9abb0d1b 2388void ib_get_device_fw_str(struct ib_device *device, char *str);
5fa76c20 2389
9a6edb60
RC
2390int ib_register_device(struct ib_device *device,
2391 int (*port_callback)(struct ib_device *,
2392 u8, struct kobject *));
1da177e4
LT
2393void ib_unregister_device(struct ib_device *device);
2394
2395int ib_register_client (struct ib_client *client);
2396void ib_unregister_client(struct ib_client *client);
2397
2398void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2399void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2400 void *data);
2401
e2773c06
RD
2402static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2403{
2404 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2405}
2406
2407static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2408{
43c61165 2409 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
2410}
2411
301a721e
MB
2412static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2413 size_t offset,
2414 size_t len)
2415{
2416 const void __user *p = udata->inbuf + offset;
92d27ae6 2417 bool ret;
301a721e
MB
2418 u8 *buf;
2419
2420 if (len > USHRT_MAX)
2421 return false;
2422
92d27ae6
ME
2423 buf = memdup_user(p, len);
2424 if (IS_ERR(buf))
301a721e
MB
2425 return false;
2426
301a721e 2427 ret = !memchr_inv(buf, 0, len);
301a721e
MB
2428 kfree(buf);
2429 return ret;
2430}
2431
8a51866f
RD
2432/**
2433 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2434 * contains all required attributes and no attributes not allowed for
2435 * the given QP state transition.
2436 * @cur_state: Current QP state
2437 * @next_state: Next QP state
2438 * @type: QP type
2439 * @mask: Mask of supplied QP attributes
dd5f03be 2440 * @ll : link layer of port
8a51866f
RD
2441 *
2442 * This function is a helper function that a low-level driver's
2443 * modify_qp method can use to validate the consumer's input. It
2444 * checks that cur_state and next_state are valid QP states, that a
2445 * transition from cur_state to next_state is allowed by the IB spec,
2446 * and that the attribute mask supplied is allowed for the transition.
2447 */
2448int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
2449 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2450 enum rdma_link_layer ll);
8a51866f 2451
dcc9881e
LR
2452void ib_register_event_handler(struct ib_event_handler *event_handler);
2453void ib_unregister_event_handler(struct ib_event_handler *event_handler);
1da177e4
LT
2454void ib_dispatch_event(struct ib_event *event);
2455
1da177e4
LT
2456int ib_query_port(struct ib_device *device,
2457 u8 port_num, struct ib_port_attr *port_attr);
2458
a3f5adaf
EC
2459enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2460 u8 port_num);
2461
4139032b
HR
2462/**
2463 * rdma_cap_ib_switch - Check if the device is IB switch
2464 * @device: Device to check
2465 *
2466 * Device driver is responsible for setting is_switch bit on
2467 * in ib_device structure at init time.
2468 *
2469 * Return: true if the device is IB switch.
2470 */
2471static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2472{
2473 return device->is_switch;
2474}
2475
0cf18d77
IW
2476/**
2477 * rdma_start_port - Return the first valid port number for the device
2478 * specified
2479 *
2480 * @device: Device to be checked
2481 *
2482 * Return start port number
2483 */
2484static inline u8 rdma_start_port(const struct ib_device *device)
2485{
4139032b 2486 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2487}
2488
2489/**
2490 * rdma_end_port - Return the last valid port number for the device
2491 * specified
2492 *
2493 * @device: Device to be checked
2494 *
2495 * Return last port number
2496 */
2497static inline u8 rdma_end_port(const struct ib_device *device)
2498{
4139032b 2499 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2500}
2501
24dc831b
YS
2502static inline int rdma_is_port_valid(const struct ib_device *device,
2503 unsigned int port)
2504{
2505 return (port >= rdma_start_port(device) &&
2506 port <= rdma_end_port(device));
2507}
2508
5ede9289 2509static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2510{
f9b22e35 2511 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2512}
2513
5ede9289 2514static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2515{
2516 return device->port_immutable[port_num].core_cap_flags &
2517 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2518}
2519
2520static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2521{
2522 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2523}
2524
2525static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2526{
f9b22e35 2527 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2528}
2529
5ede9289 2530static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2531{
f9b22e35 2532 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2533}
2534
5ede9289 2535static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2536{
7766a99f
MB
2537 return rdma_protocol_ib(device, port_num) ||
2538 rdma_protocol_roce(device, port_num);
de66be94
MW
2539}
2540
aa773bd4
OG
2541static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2542{
2543 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2544}
2545
ce1e055f
OG
2546static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2547{
2548 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2549}
2550
c757dea8 2551/**
296ec009 2552 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2553 * Management Datagrams.
296ec009
MW
2554 * @device: Device to check
2555 * @port_num: Port number to check
c757dea8 2556 *
296ec009
MW
2557 * Management Datagrams (MAD) are a required part of the InfiniBand
2558 * specification and are supported on all InfiniBand devices. A slightly
2559 * extended version are also supported on OPA interfaces.
c757dea8 2560 *
296ec009 2561 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2562 */
5ede9289 2563static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2564{
f9b22e35 2565 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2566}
2567
65995fee
IW
2568/**
2569 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2570 * Management Datagrams.
2571 * @device: Device to check
2572 * @port_num: Port number to check
2573 *
2574 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2575 * datagrams with their own versions. These OPA MADs share many but not all of
2576 * the characteristics of InfiniBand MADs.
2577 *
2578 * OPA MADs differ in the following ways:
2579 *
2580 * 1) MADs are variable size up to 2K
2581 * IBTA defined MADs remain fixed at 256 bytes
2582 * 2) OPA SMPs must carry valid PKeys
2583 * 3) OPA SMP packets are a different format
2584 *
2585 * Return: true if the port supports OPA MAD packet formats.
2586 */
2587static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2588{
2589 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2590 == RDMA_CORE_CAP_OPA_MAD;
2591}
2592
29541e3a 2593/**
296ec009
MW
2594 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2595 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2596 * @device: Device to check
2597 * @port_num: Port number to check
29541e3a 2598 *
296ec009
MW
2599 * Each InfiniBand node is required to provide a Subnet Management Agent
2600 * that the subnet manager can access. Prior to the fabric being fully
2601 * configured by the subnet manager, the SMA is accessed via a well known
2602 * interface called the Subnet Management Interface (SMI). This interface
2603 * uses directed route packets to communicate with the SM to get around the
2604 * chicken and egg problem of the SM needing to know what's on the fabric
2605 * in order to configure the fabric, and needing to configure the fabric in
2606 * order to send packets to the devices on the fabric. These directed
2607 * route packets do not need the fabric fully configured in order to reach
2608 * their destination. The SMI is the only method allowed to send
2609 * directed route packets on an InfiniBand fabric.
29541e3a 2610 *
296ec009 2611 * Return: true if the port provides an SMI.
29541e3a 2612 */
5ede9289 2613static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2614{
f9b22e35 2615 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2616}
2617
72219cea
MW
2618/**
2619 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2620 * Communication Manager.
296ec009
MW
2621 * @device: Device to check
2622 * @port_num: Port number to check
72219cea 2623 *
296ec009
MW
2624 * The InfiniBand Communication Manager is one of many pre-defined General
2625 * Service Agents (GSA) that are accessed via the General Service
2626 * Interface (GSI). It's role is to facilitate establishment of connections
2627 * between nodes as well as other management related tasks for established
2628 * connections.
72219cea 2629 *
296ec009
MW
2630 * Return: true if the port supports an IB CM (this does not guarantee that
2631 * a CM is actually running however).
72219cea 2632 */
5ede9289 2633static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2634{
f9b22e35 2635 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2636}
2637
04215330
MW
2638/**
2639 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2640 * Communication Manager.
296ec009
MW
2641 * @device: Device to check
2642 * @port_num: Port number to check
04215330 2643 *
296ec009
MW
2644 * Similar to above, but specific to iWARP connections which have a different
2645 * managment protocol than InfiniBand.
04215330 2646 *
296ec009
MW
2647 * Return: true if the port supports an iWARP CM (this does not guarantee that
2648 * a CM is actually running however).
04215330 2649 */
5ede9289 2650static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2651{
f9b22e35 2652 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2653}
2654
fe53ba2f
MW
2655/**
2656 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2657 * Subnet Administration.
296ec009
MW
2658 * @device: Device to check
2659 * @port_num: Port number to check
fe53ba2f 2660 *
296ec009
MW
2661 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2662 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2663 * fabrics, devices should resolve routes to other hosts by contacting the
2664 * SA to query the proper route.
fe53ba2f 2665 *
296ec009
MW
2666 * Return: true if the port should act as a client to the fabric Subnet
2667 * Administration interface. This does not imply that the SA service is
2668 * running locally.
fe53ba2f 2669 */
5ede9289 2670static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2671{
f9b22e35 2672 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2673}
2674
a31ad3b0
MW
2675/**
2676 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2677 * Multicast.
296ec009
MW
2678 * @device: Device to check
2679 * @port_num: Port number to check
a31ad3b0 2680 *
296ec009
MW
2681 * InfiniBand multicast registration is more complex than normal IPv4 or
2682 * IPv6 multicast registration. Each Host Channel Adapter must register
2683 * with the Subnet Manager when it wishes to join a multicast group. It
2684 * should do so only once regardless of how many queue pairs it subscribes
2685 * to this group. And it should leave the group only after all queue pairs
2686 * attached to the group have been detached.
a31ad3b0 2687 *
296ec009
MW
2688 * Return: true if the port must undertake the additional adminstrative
2689 * overhead of registering/unregistering with the SM and tracking of the
2690 * total number of queue pairs attached to the multicast group.
a31ad3b0 2691 */
5ede9289 2692static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2693{
2694 return rdma_cap_ib_sa(device, port_num);
2695}
2696
30a74ef4
MW
2697/**
2698 * rdma_cap_af_ib - Check if the port of device has the capability
2699 * Native Infiniband Address.
296ec009
MW
2700 * @device: Device to check
2701 * @port_num: Port number to check
30a74ef4 2702 *
296ec009
MW
2703 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2704 * GID. RoCE uses a different mechanism, but still generates a GID via
2705 * a prescribed mechanism and port specific data.
30a74ef4 2706 *
296ec009
MW
2707 * Return: true if the port uses a GID address to identify devices on the
2708 * network.
30a74ef4 2709 */
5ede9289 2710static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2711{
f9b22e35 2712 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2713}
2714
227128fc
MW
2715/**
2716 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2717 * Ethernet Address Handle.
2718 * @device: Device to check
2719 * @port_num: Port number to check
227128fc 2720 *
296ec009
MW
2721 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2722 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2723 * port. Normally, packet headers are generated by the sending host
2724 * adapter, but when sending connectionless datagrams, we must manually
2725 * inject the proper headers for the fabric we are communicating over.
227128fc 2726 *
296ec009
MW
2727 * Return: true if we are running as a RoCE port and must force the
2728 * addition of a Global Route Header built from our Ethernet Address
2729 * Handle into our header list for connectionless packets.
227128fc 2730 */
5ede9289 2731static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2732{
f9b22e35 2733 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2734}
2735
94d595c5
DC
2736/**
2737 * rdma_cap_opa_ah - Check if the port of device supports
2738 * OPA Address handles
2739 * @device: Device to check
2740 * @port_num: Port number to check
2741 *
2742 * Return: true if we are running on an OPA device which supports
2743 * the extended OPA addressing.
2744 */
2745static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
2746{
2747 return (device->port_immutable[port_num].core_cap_flags &
2748 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
2749}
2750
337877a4
IW
2751/**
2752 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2753 *
2754 * @device: Device
2755 * @port_num: Port number
2756 *
2757 * This MAD size includes the MAD headers and MAD payload. No other headers
2758 * are included.
2759 *
2760 * Return the max MAD size required by the Port. Will return 0 if the port
2761 * does not support MADs
2762 */
2763static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2764{
2765 return device->port_immutable[port_num].max_mad_size;
2766}
2767
03db3a2d
MB
2768/**
2769 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2770 * @device: Device to check
2771 * @port_num: Port number to check
2772 *
2773 * RoCE GID table mechanism manages the various GIDs for a device.
2774 *
2775 * NOTE: if allocating the port's GID table has failed, this call will still
2776 * return true, but any RoCE GID table API will fail.
2777 *
2778 * Return: true if the port uses RoCE GID table mechanism in order to manage
2779 * its GIDs.
2780 */
2781static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2782 u8 port_num)
2783{
2784 return rdma_protocol_roce(device, port_num) &&
2785 device->add_gid && device->del_gid;
2786}
2787
002516ed
CH
2788/*
2789 * Check if the device supports READ W/ INVALIDATE.
2790 */
2791static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
2792{
2793 /*
2794 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
2795 * has support for it yet.
2796 */
2797 return rdma_protocol_iwarp(dev, port_num);
2798}
2799
1da177e4 2800int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2801 u8 port_num, int index, union ib_gid *gid,
2802 struct ib_gid_attr *attr);
1da177e4 2803
50174a7f
EC
2804int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2805 int state);
2806int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2807 struct ifla_vf_info *info);
2808int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2809 struct ifla_vf_stats *stats);
2810int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2811 int type);
2812
1da177e4
LT
2813int ib_query_pkey(struct ib_device *device,
2814 u8 port_num, u16 index, u16 *pkey);
2815
2816int ib_modify_device(struct ib_device *device,
2817 int device_modify_mask,
2818 struct ib_device_modify *device_modify);
2819
2820int ib_modify_port(struct ib_device *device,
2821 u8 port_num, int port_modify_mask,
2822 struct ib_port_modify *port_modify);
2823
5eb620c8 2824int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2825 enum ib_gid_type gid_type, struct net_device *ndev,
2826 u8 *port_num, u16 *index);
5eb620c8
YE
2827
2828int ib_find_pkey(struct ib_device *device,
2829 u8 port_num, u16 pkey, u16 *index);
2830
ed082d36
CH
2831enum ib_pd_flags {
2832 /*
2833 * Create a memory registration for all memory in the system and place
2834 * the rkey for it into pd->unsafe_global_rkey. This can be used by
2835 * ULPs to avoid the overhead of dynamic MRs.
2836 *
2837 * This flag is generally considered unsafe and must only be used in
2838 * extremly trusted environments. Every use of it will log a warning
2839 * in the kernel log.
2840 */
2841 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
2842};
1da177e4 2843
ed082d36
CH
2844struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
2845 const char *caller);
2846#define ib_alloc_pd(device, flags) \
2847 __ib_alloc_pd((device), (flags), __func__)
7dd78647 2848void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2849
2850/**
0a18cfe4 2851 * rdma_create_ah - Creates an address handle for the given address vector.
1da177e4
LT
2852 * @pd: The protection domain associated with the address handle.
2853 * @ah_attr: The attributes of the address vector.
2854 *
2855 * The address handle is used to reference a local or global destination
2856 * in all UD QP post sends.
2857 */
0a18cfe4 2858struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
1da177e4 2859
850d8fd7
MS
2860/**
2861 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
2862 * work completion.
2863 * @hdr: the L3 header to parse
2864 * @net_type: type of header to parse
2865 * @sgid: place to store source gid
2866 * @dgid: place to store destination gid
2867 */
2868int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
2869 enum rdma_network_type net_type,
2870 union ib_gid *sgid, union ib_gid *dgid);
2871
2872/**
2873 * ib_get_rdma_header_version - Get the header version
2874 * @hdr: the L3 header to parse
2875 */
2876int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
2877
4e00d694
SH
2878/**
2879 * ib_init_ah_from_wc - Initializes address handle attributes from a
2880 * work completion.
2881 * @device: Device on which the received message arrived.
2882 * @port_num: Port on which the received message arrived.
2883 * @wc: Work completion associated with the received message.
2884 * @grh: References the received global route header. This parameter is
2885 * ignored unless the work completion indicates that the GRH is valid.
2886 * @ah_attr: Returned attributes that can be used when creating an address
2887 * handle for replying to the message.
2888 */
73cdaaee
IW
2889int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2890 const struct ib_wc *wc, const struct ib_grh *grh,
90898850 2891 struct rdma_ah_attr *ah_attr);
4e00d694 2892
513789ed
HR
2893/**
2894 * ib_create_ah_from_wc - Creates an address handle associated with the
2895 * sender of the specified work completion.
2896 * @pd: The protection domain associated with the address handle.
2897 * @wc: Work completion information associated with a received message.
2898 * @grh: References the received global route header. This parameter is
2899 * ignored unless the work completion indicates that the GRH is valid.
2900 * @port_num: The outbound port number to associate with the address.
2901 *
2902 * The address handle is used to reference a local or global destination
2903 * in all UD QP post sends.
2904 */
73cdaaee
IW
2905struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2906 const struct ib_grh *grh, u8 port_num);
513789ed 2907
1da177e4 2908/**
67b985b6 2909 * rdma_modify_ah - Modifies the address vector associated with an address
1da177e4
LT
2910 * handle.
2911 * @ah: The address handle to modify.
2912 * @ah_attr: The new address vector attributes to associate with the
2913 * address handle.
2914 */
67b985b6 2915int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
2916
2917/**
bfbfd661 2918 * rdma_query_ah - Queries the address vector associated with an address
1da177e4
LT
2919 * handle.
2920 * @ah: The address handle to query.
2921 * @ah_attr: The address vector attributes associated with the address
2922 * handle.
2923 */
bfbfd661 2924int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
1da177e4
LT
2925
2926/**
36523159 2927 * rdma_destroy_ah - Destroys an address handle.
1da177e4
LT
2928 * @ah: The address handle to destroy.
2929 */
36523159 2930int rdma_destroy_ah(struct ib_ah *ah);
1da177e4 2931
d41fcc67
RD
2932/**
2933 * ib_create_srq - Creates a SRQ associated with the specified protection
2934 * domain.
2935 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2936 * @srq_init_attr: A list of initial attributes required to create the
2937 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2938 * the actual capabilities of the created SRQ.
d41fcc67
RD
2939 *
2940 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2941 * requested size of the SRQ, and set to the actual values allocated
2942 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2943 * will always be at least as large as the requested values.
2944 */
2945struct ib_srq *ib_create_srq(struct ib_pd *pd,
2946 struct ib_srq_init_attr *srq_init_attr);
2947
2948/**
2949 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2950 * @srq: The SRQ to modify.
2951 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2952 * the current values of selected SRQ attributes are returned.
2953 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2954 * are being modified.
2955 *
2956 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2957 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2958 * the number of receives queued drops below the limit.
2959 */
2960int ib_modify_srq(struct ib_srq *srq,
2961 struct ib_srq_attr *srq_attr,
2962 enum ib_srq_attr_mask srq_attr_mask);
2963
2964/**
2965 * ib_query_srq - Returns the attribute list and current values for the
2966 * specified SRQ.
2967 * @srq: The SRQ to query.
2968 * @srq_attr: The attributes of the specified SRQ.
2969 */
2970int ib_query_srq(struct ib_srq *srq,
2971 struct ib_srq_attr *srq_attr);
2972
2973/**
2974 * ib_destroy_srq - Destroys the specified SRQ.
2975 * @srq: The SRQ to destroy.
2976 */
2977int ib_destroy_srq(struct ib_srq *srq);
2978
2979/**
2980 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2981 * @srq: The SRQ to post the work request on.
2982 * @recv_wr: A list of work requests to post on the receive queue.
2983 * @bad_recv_wr: On an immediate failure, this parameter will reference
2984 * the work request that failed to be posted on the QP.
2985 */
2986static inline int ib_post_srq_recv(struct ib_srq *srq,
2987 struct ib_recv_wr *recv_wr,
2988 struct ib_recv_wr **bad_recv_wr)
2989{
2990 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2991}
2992
1da177e4
LT
2993/**
2994 * ib_create_qp - Creates a QP associated with the specified protection
2995 * domain.
2996 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2997 * @qp_init_attr: A list of initial attributes required to create the
2998 * QP. If QP creation succeeds, then the attributes are updated to
2999 * the actual capabilities of the created QP.
1da177e4
LT
3000 */
3001struct ib_qp *ib_create_qp(struct ib_pd *pd,
3002 struct ib_qp_init_attr *qp_init_attr);
3003
a512c2fb
PP
3004/**
3005 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3006 * @qp: The QP to modify.
3007 * @attr: On input, specifies the QP attributes to modify. On output,
3008 * the current values of selected QP attributes are returned.
3009 * @attr_mask: A bit-mask used to specify which attributes of the QP
3010 * are being modified.
3011 * @udata: pointer to user's input output buffer information
3012 * are being modified.
3013 * It returns 0 on success and returns appropriate error code on error.
3014 */
3015int ib_modify_qp_with_udata(struct ib_qp *qp,
3016 struct ib_qp_attr *attr,
3017 int attr_mask,
3018 struct ib_udata *udata);
3019
1da177e4
LT
3020/**
3021 * ib_modify_qp - Modifies the attributes for the specified QP and then
3022 * transitions the QP to the given state.
3023 * @qp: The QP to modify.
3024 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3025 * the current values of selected QP attributes are returned.
3026 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3027 * are being modified.
3028 */
3029int ib_modify_qp(struct ib_qp *qp,
3030 struct ib_qp_attr *qp_attr,
3031 int qp_attr_mask);
3032
3033/**
3034 * ib_query_qp - Returns the attribute list and current values for the
3035 * specified QP.
3036 * @qp: The QP to query.
3037 * @qp_attr: The attributes of the specified QP.
3038 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3039 * @qp_init_attr: Additional attributes of the selected QP.
3040 *
3041 * The qp_attr_mask may be used to limit the query to gathering only the
3042 * selected attributes.
3043 */
3044int ib_query_qp(struct ib_qp *qp,
3045 struct ib_qp_attr *qp_attr,
3046 int qp_attr_mask,
3047 struct ib_qp_init_attr *qp_init_attr);
3048
3049/**
3050 * ib_destroy_qp - Destroys the specified QP.
3051 * @qp: The QP to destroy.
3052 */
3053int ib_destroy_qp(struct ib_qp *qp);
3054
d3d72d90 3055/**
0e0ec7e0
SH
3056 * ib_open_qp - Obtain a reference to an existing sharable QP.
3057 * @xrcd - XRC domain
3058 * @qp_open_attr: Attributes identifying the QP to open.
3059 *
3060 * Returns a reference to a sharable QP.
3061 */
3062struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3063 struct ib_qp_open_attr *qp_open_attr);
3064
3065/**
3066 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
3067 * @qp: The QP handle to release
3068 *
0e0ec7e0
SH
3069 * The opened QP handle is released by the caller. The underlying
3070 * shared QP is not destroyed until all internal references are released.
d3d72d90 3071 */
0e0ec7e0 3072int ib_close_qp(struct ib_qp *qp);
d3d72d90 3073
1da177e4
LT
3074/**
3075 * ib_post_send - Posts a list of work requests to the send queue of
3076 * the specified QP.
3077 * @qp: The QP to post the work request on.
3078 * @send_wr: A list of work requests to post on the send queue.
3079 * @bad_send_wr: On an immediate failure, this parameter will reference
3080 * the work request that failed to be posted on the QP.
55464d46
BVA
3081 *
3082 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3083 * error is returned, the QP state shall not be affected,
3084 * ib_post_send() will return an immediate error after queueing any
3085 * earlier work requests in the list.
1da177e4
LT
3086 */
3087static inline int ib_post_send(struct ib_qp *qp,
3088 struct ib_send_wr *send_wr,
3089 struct ib_send_wr **bad_send_wr)
3090{
3091 return qp->device->post_send(qp, send_wr, bad_send_wr);
3092}
3093
3094/**
3095 * ib_post_recv - Posts a list of work requests to the receive queue of
3096 * the specified QP.
3097 * @qp: The QP to post the work request on.
3098 * @recv_wr: A list of work requests to post on the receive queue.
3099 * @bad_recv_wr: On an immediate failure, this parameter will reference
3100 * the work request that failed to be posted on the QP.
3101 */
3102static inline int ib_post_recv(struct ib_qp *qp,
3103 struct ib_recv_wr *recv_wr,
3104 struct ib_recv_wr **bad_recv_wr)
3105{
3106 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
3107}
3108
14d3a3b2
CH
3109struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3110 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
3111void ib_free_cq(struct ib_cq *cq);
3112int ib_process_cq_direct(struct ib_cq *cq, int budget);
3113
1da177e4
LT
3114/**
3115 * ib_create_cq - Creates a CQ on the specified device.
3116 * @device: The device on which to create the CQ.
3117 * @comp_handler: A user-specified callback that is invoked when a
3118 * completion event occurs on the CQ.
3119 * @event_handler: A user-specified callback that is invoked when an
3120 * asynchronous event not associated with a completion occurs on the CQ.
3121 * @cq_context: Context associated with the CQ returned to the user via
3122 * the associated completion and event handlers.
8e37210b 3123 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
3124 *
3125 * Users can examine the cq structure to determine the actual CQ size.
3126 */
3127struct ib_cq *ib_create_cq(struct ib_device *device,
3128 ib_comp_handler comp_handler,
3129 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
3130 void *cq_context,
3131 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
3132
3133/**
3134 * ib_resize_cq - Modifies the capacity of the CQ.
3135 * @cq: The CQ to resize.
3136 * @cqe: The minimum size of the CQ.
3137 *
3138 * Users can examine the cq structure to determine the actual CQ size.
3139 */
3140int ib_resize_cq(struct ib_cq *cq, int cqe);
3141
2dd57162
EC
3142/**
3143 * ib_modify_cq - Modifies moderation params of the CQ
3144 * @cq: The CQ to modify.
3145 * @cq_count: number of CQEs that will trigger an event
3146 * @cq_period: max period of time in usec before triggering an event
3147 *
3148 */
3149int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3150
1da177e4
LT
3151/**
3152 * ib_destroy_cq - Destroys the specified CQ.
3153 * @cq: The CQ to destroy.
3154 */
3155int ib_destroy_cq(struct ib_cq *cq);
3156
3157/**
3158 * ib_poll_cq - poll a CQ for completion(s)
3159 * @cq:the CQ being polled
3160 * @num_entries:maximum number of completions to return
3161 * @wc:array of at least @num_entries &struct ib_wc where completions
3162 * will be returned
3163 *
3164 * Poll a CQ for (possibly multiple) completions. If the return value
3165 * is < 0, an error occurred. If the return value is >= 0, it is the
3166 * number of completions returned. If the return value is
3167 * non-negative and < num_entries, then the CQ was emptied.
3168 */
3169static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3170 struct ib_wc *wc)
3171{
3172 return cq->device->poll_cq(cq, num_entries, wc);
3173}
3174
3175/**
3176 * ib_peek_cq - Returns the number of unreaped completions currently
3177 * on the specified CQ.
3178 * @cq: The CQ to peek.
3179 * @wc_cnt: A minimum number of unreaped completions to check for.
3180 *
3181 * If the number of unreaped completions is greater than or equal to wc_cnt,
3182 * this function returns wc_cnt, otherwise, it returns the actual number of
3183 * unreaped completions.
3184 */
3185int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
3186
3187/**
3188 * ib_req_notify_cq - Request completion notification on a CQ.
3189 * @cq: The CQ to generate an event for.
ed23a727
RD
3190 * @flags:
3191 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3192 * to request an event on the next solicited event or next work
3193 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3194 * may also be |ed in to request a hint about missed events, as
3195 * described below.
3196 *
3197 * Return Value:
3198 * < 0 means an error occurred while requesting notification
3199 * == 0 means notification was requested successfully, and if
3200 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3201 * were missed and it is safe to wait for another event. In
3202 * this case is it guaranteed that any work completions added
3203 * to the CQ since the last CQ poll will trigger a completion
3204 * notification event.
3205 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3206 * in. It means that the consumer must poll the CQ again to
3207 * make sure it is empty to avoid missing an event because of a
3208 * race between requesting notification and an entry being
3209 * added to the CQ. This return value means it is possible
3210 * (but not guaranteed) that a work completion has been added
3211 * to the CQ since the last poll without triggering a
3212 * completion notification event.
1da177e4
LT
3213 */
3214static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 3215 enum ib_cq_notify_flags flags)
1da177e4 3216{
ed23a727 3217 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
3218}
3219
3220/**
3221 * ib_req_ncomp_notif - Request completion notification when there are
3222 * at least the specified number of unreaped completions on the CQ.
3223 * @cq: The CQ to generate an event for.
3224 * @wc_cnt: The number of unreaped completions that should be on the
3225 * CQ before an event is generated.
3226 */
3227static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3228{
3229 return cq->device->req_ncomp_notif ?
3230 cq->device->req_ncomp_notif(cq, wc_cnt) :
3231 -ENOSYS;
3232}
3233
9b513090
RC
3234/**
3235 * ib_dma_mapping_error - check a DMA addr for error
3236 * @dev: The device for which the dma_addr was created
3237 * @dma_addr: The DMA address to check
3238 */
3239static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3240{
0957c29f 3241 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
3242}
3243
3244/**
3245 * ib_dma_map_single - Map a kernel virtual address to DMA address
3246 * @dev: The device for which the dma_addr is to be created
3247 * @cpu_addr: The kernel virtual address
3248 * @size: The size of the region in bytes
3249 * @direction: The direction of the DMA
3250 */
3251static inline u64 ib_dma_map_single(struct ib_device *dev,
3252 void *cpu_addr, size_t size,
3253 enum dma_data_direction direction)
3254{
0957c29f 3255 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
3256}
3257
3258/**
3259 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3260 * @dev: The device for which the DMA address was created
3261 * @addr: The DMA address
3262 * @size: The size of the region in bytes
3263 * @direction: The direction of the DMA
3264 */
3265static inline void ib_dma_unmap_single(struct ib_device *dev,
3266 u64 addr, size_t size,
3267 enum dma_data_direction direction)
3268{
0957c29f 3269 dma_unmap_single(dev->dma_device, addr, size, direction);
cb9fbc5c
AK
3270}
3271
9b513090
RC
3272/**
3273 * ib_dma_map_page - Map a physical page to DMA address
3274 * @dev: The device for which the dma_addr is to be created
3275 * @page: The page to be mapped
3276 * @offset: The offset within the page
3277 * @size: The size of the region in bytes
3278 * @direction: The direction of the DMA
3279 */
3280static inline u64 ib_dma_map_page(struct ib_device *dev,
3281 struct page *page,
3282 unsigned long offset,
3283 size_t size,
3284 enum dma_data_direction direction)
3285{
0957c29f 3286 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
3287}
3288
3289/**
3290 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3291 * @dev: The device for which the DMA address was created
3292 * @addr: The DMA address
3293 * @size: The size of the region in bytes
3294 * @direction: The direction of the DMA
3295 */
3296static inline void ib_dma_unmap_page(struct ib_device *dev,
3297 u64 addr, size_t size,
3298 enum dma_data_direction direction)
3299{
0957c29f 3300 dma_unmap_page(dev->dma_device, addr, size, direction);
9b513090
RC
3301}
3302
3303/**
3304 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3305 * @dev: The device for which the DMA addresses are to be created
3306 * @sg: The array of scatter/gather entries
3307 * @nents: The number of scatter/gather entries
3308 * @direction: The direction of the DMA
3309 */
3310static inline int ib_dma_map_sg(struct ib_device *dev,
3311 struct scatterlist *sg, int nents,
3312 enum dma_data_direction direction)
3313{
0957c29f 3314 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3315}
3316
3317/**
3318 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3319 * @dev: The device for which the DMA addresses were created
3320 * @sg: The array of scatter/gather entries
3321 * @nents: The number of scatter/gather entries
3322 * @direction: The direction of the DMA
3323 */
3324static inline void ib_dma_unmap_sg(struct ib_device *dev,
3325 struct scatterlist *sg, int nents,
3326 enum dma_data_direction direction)
3327{
0957c29f 3328 dma_unmap_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
3329}
3330
cb9fbc5c
AK
3331static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3332 struct scatterlist *sg, int nents,
3333 enum dma_data_direction direction,
00085f1e 3334 unsigned long dma_attrs)
cb9fbc5c 3335{
0957c29f
BVA
3336 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3337 dma_attrs);
cb9fbc5c
AK
3338}
3339
3340static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3341 struct scatterlist *sg, int nents,
3342 enum dma_data_direction direction,
00085f1e 3343 unsigned long dma_attrs)
cb9fbc5c 3344{
0957c29f 3345 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
cb9fbc5c 3346}
9b513090
RC
3347/**
3348 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3349 * @dev: The device for which the DMA addresses were created
3350 * @sg: The scatter/gather entry
ea58a595
MM
3351 *
3352 * Note: this function is obsolete. To do: change all occurrences of
3353 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
3354 */
3355static inline u64 ib_sg_dma_address(struct ib_device *dev,
3356 struct scatterlist *sg)
3357{
d1998ef3 3358 return sg_dma_address(sg);
9b513090
RC
3359}
3360
3361/**
3362 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3363 * @dev: The device for which the DMA addresses were created
3364 * @sg: The scatter/gather entry
ea58a595
MM
3365 *
3366 * Note: this function is obsolete. To do: change all occurrences of
3367 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
3368 */
3369static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3370 struct scatterlist *sg)
3371{
d1998ef3 3372 return sg_dma_len(sg);
9b513090
RC
3373}
3374
3375/**
3376 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3377 * @dev: The device for which the DMA address was created
3378 * @addr: The DMA address
3379 * @size: The size of the region in bytes
3380 * @dir: The direction of the DMA
3381 */
3382static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3383 u64 addr,
3384 size_t size,
3385 enum dma_data_direction dir)
3386{
0957c29f 3387 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
9b513090
RC
3388}
3389
3390/**
3391 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3392 * @dev: The device for which the DMA address was created
3393 * @addr: The DMA address
3394 * @size: The size of the region in bytes
3395 * @dir: The direction of the DMA
3396 */
3397static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3398 u64 addr,
3399 size_t size,
3400 enum dma_data_direction dir)
3401{
0957c29f 3402 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
9b513090
RC
3403}
3404
3405/**
3406 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3407 * @dev: The device for which the DMA address is requested
3408 * @size: The size of the region to allocate in bytes
3409 * @dma_handle: A pointer for returning the DMA address of the region
3410 * @flag: memory allocator flags
3411 */
3412static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3413 size_t size,
d43dbacf 3414 dma_addr_t *dma_handle,
9b513090
RC
3415 gfp_t flag)
3416{
0957c29f 3417 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
9b513090
RC
3418}
3419
3420/**
3421 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3422 * @dev: The device for which the DMA addresses were allocated
3423 * @size: The size of the region
3424 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3425 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3426 */
3427static inline void ib_dma_free_coherent(struct ib_device *dev,
3428 size_t size, void *cpu_addr,
d43dbacf 3429 dma_addr_t dma_handle)
9b513090 3430{
0957c29f 3431 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
9b513090
RC
3432}
3433
1da177e4
LT
3434/**
3435 * ib_dereg_mr - Deregisters a memory region and removes it from the
3436 * HCA translation table.
3437 * @mr: The memory region to deregister.
7083e42e
SM
3438 *
3439 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
3440 */
3441int ib_dereg_mr(struct ib_mr *mr);
3442
9bee178b
SG
3443struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3444 enum ib_mr_type mr_type,
3445 u32 max_num_sg);
00f7ec36 3446
00f7ec36
SW
3447/**
3448 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3449 * R_Key and L_Key.
3450 * @mr - struct ib_mr pointer to be updated.
3451 * @newkey - new key to be used.
3452 */
3453static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3454{
3455 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3456 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3457}
3458
7083e42e
SM
3459/**
3460 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3461 * for calculating a new rkey for type 2 memory windows.
3462 * @rkey - the rkey to increment.
3463 */
3464static inline u32 ib_inc_rkey(u32 rkey)
3465{
3466 const u32 mask = 0x000000ff;
3467 return ((rkey + 1) & mask) | (rkey & ~mask);
3468}
3469
1da177e4
LT
3470/**
3471 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3472 * @pd: The protection domain associated with the unmapped region.
3473 * @mr_access_flags: Specifies the memory access rights.
3474 * @fmr_attr: Attributes of the unmapped region.
3475 *
3476 * A fast memory region must be mapped before it can be used as part of
3477 * a work request.
3478 */
3479struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3480 int mr_access_flags,
3481 struct ib_fmr_attr *fmr_attr);
3482
3483/**
3484 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3485 * @fmr: The fast memory region to associate with the pages.
3486 * @page_list: An array of physical pages to map to the fast memory region.
3487 * @list_len: The number of pages in page_list.
3488 * @iova: The I/O virtual address to use with the mapped region.
3489 */
3490static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3491 u64 *page_list, int list_len,
3492 u64 iova)
3493{
3494 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3495}
3496
3497/**
3498 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3499 * @fmr_list: A linked list of fast memory regions to unmap.
3500 */
3501int ib_unmap_fmr(struct list_head *fmr_list);
3502
3503/**
3504 * ib_dealloc_fmr - Deallocates a fast memory region.
3505 * @fmr: The fast memory region to deallocate.
3506 */
3507int ib_dealloc_fmr(struct ib_fmr *fmr);
3508
3509/**
3510 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3511 * @qp: QP to attach to the multicast group. The QP must be type
3512 * IB_QPT_UD.
3513 * @gid: Multicast group GID.
3514 * @lid: Multicast group LID in host byte order.
3515 *
3516 * In order to send and receive multicast packets, subnet
3517 * administration must have created the multicast group and configured
3518 * the fabric appropriately. The port associated with the specified
3519 * QP must also be a member of the multicast group.
3520 */
3521int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3522
3523/**
3524 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3525 * @qp: QP to detach from the multicast group.
3526 * @gid: Multicast group GID.
3527 * @lid: Multicast group LID in host byte order.
3528 */
3529int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3530
59991f94
SH
3531/**
3532 * ib_alloc_xrcd - Allocates an XRC domain.
3533 * @device: The device on which to allocate the XRC domain.
3534 */
3535struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3536
3537/**
3538 * ib_dealloc_xrcd - Deallocates an XRC domain.
3539 * @xrcd: The XRC domain to deallocate.
3540 */
3541int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3542
319a441d
HHZ
3543struct ib_flow *ib_create_flow(struct ib_qp *qp,
3544 struct ib_flow_attr *flow_attr, int domain);
3545int ib_destroy_flow(struct ib_flow *flow_id);
3546
1c636f80
EC
3547static inline int ib_check_mr_access(int flags)
3548{
3549 /*
3550 * Local write permission is required if remote write or
3551 * remote atomic permission is also requested.
3552 */
3553 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3554 !(flags & IB_ACCESS_LOCAL_WRITE))
3555 return -EINVAL;
3556
3557 return 0;
3558}
3559
1b01d335
SG
3560/**
3561 * ib_check_mr_status: lightweight check of MR status.
3562 * This routine may provide status checks on a selected
3563 * ib_mr. first use is for signature status check.
3564 *
3565 * @mr: A memory region.
3566 * @check_mask: Bitmask of which checks to perform from
3567 * ib_mr_status_check enumeration.
3568 * @mr_status: The container of relevant status checks.
3569 * failed checks will be indicated in the status bitmask
3570 * and the relevant info shall be in the error item.
3571 */
3572int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3573 struct ib_mr_status *mr_status);
3574
9268f72d
YK
3575struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3576 u16 pkey, const union ib_gid *gid,
3577 const struct sockaddr *addr);
5fd251c8
YH
3578struct ib_wq *ib_create_wq(struct ib_pd *pd,
3579 struct ib_wq_init_attr *init_attr);
3580int ib_destroy_wq(struct ib_wq *wq);
3581int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3582 u32 wq_attr_mask);
6d39786b
YH
3583struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3584 struct ib_rwq_ind_table_init_attr*
3585 wq_ind_table_init_attr);
3586int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
9268f72d 3587
ff2ba993 3588int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3589 unsigned int *sg_offset, unsigned int page_size);
4c67e2bf
SG
3590
3591static inline int
ff2ba993 3592ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
9aa8b321 3593 unsigned int *sg_offset, unsigned int page_size)
4c67e2bf
SG
3594{
3595 int n;
3596
ff2ba993 3597 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4c67e2bf
SG
3598 mr->iova = 0;
3599
3600 return n;
3601}
3602
ff2ba993 3603int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
9aa8b321 3604 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4c67e2bf 3605
765d6774
SW
3606void ib_drain_rq(struct ib_qp *qp);
3607void ib_drain_sq(struct ib_qp *qp);
3608void ib_drain_qp(struct ib_qp *qp);
850d8fd7 3609
c90ea9d8 3610int ib_resolve_eth_dmac(struct ib_device *device,
90898850 3611 struct rdma_ah_attr *ah_attr);
d4186194 3612int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
2224c47a
DC
3613
3614static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3615{
44c58487
DC
3616 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3617 return attr->roce.dmac;
3618 return NULL;
2224c47a
DC
3619}
3620
64b4646e 3621static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
2224c47a 3622{
44c58487 3623 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
64b4646e
DC
3624 attr->ib.dlid = (u16)dlid;
3625 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3626 attr->opa.dlid = dlid;
2224c47a
DC
3627}
3628
64b4646e 3629static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
2224c47a 3630{
44c58487
DC
3631 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3632 return attr->ib.dlid;
64b4646e
DC
3633 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3634 return attr->opa.dlid;
44c58487 3635 return 0;
2224c47a
DC
3636}
3637
3638static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3639{
3640 attr->sl = sl;
3641}
3642
3643static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3644{
3645 return attr->sl;
3646}
3647
3648static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3649 u8 src_path_bits)
3650{
44c58487
DC
3651 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3652 attr->ib.src_path_bits = src_path_bits;
64b4646e
DC
3653 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3654 attr->opa.src_path_bits = src_path_bits;
2224c47a
DC
3655}
3656
3657static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3658{
44c58487
DC
3659 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3660 return attr->ib.src_path_bits;
64b4646e
DC
3661 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3662 return attr->opa.src_path_bits;
44c58487 3663 return 0;
2224c47a
DC
3664}
3665
d98bb7f7
DH
3666static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3667 bool make_grd)
3668{
3669 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3670 attr->opa.make_grd = make_grd;
3671}
3672
3673static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3674{
3675 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3676 return attr->opa.make_grd;
3677 return false;
3678}
3679
2224c47a
DC
3680static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
3681{
3682 attr->port_num = port_num;
3683}
3684
3685static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
3686{
3687 return attr->port_num;
3688}
3689
3690static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
3691 u8 static_rate)
3692{
3693 attr->static_rate = static_rate;
3694}
3695
3696static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
3697{
3698 return attr->static_rate;
3699}
3700
3701static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
3702 enum ib_ah_flags flag)
3703{
3704 attr->ah_flags = flag;
3705}
3706
3707static inline enum ib_ah_flags
3708 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
3709{
3710 return attr->ah_flags;
3711}
3712
3713static inline const struct ib_global_route
3714 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
3715{
3716 return &attr->grh;
3717}
3718
3719/*To retrieve and modify the grh */
3720static inline struct ib_global_route
3721 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
3722{
3723 return &attr->grh;
3724}
3725
3726static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
3727{
3728 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3729
3730 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
3731}
3732
3733static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
3734 __be64 prefix)
3735{
3736 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3737
3738 grh->dgid.global.subnet_prefix = prefix;
3739}
3740
3741static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
3742 __be64 if_id)
3743{
3744 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3745
3746 grh->dgid.global.interface_id = if_id;
3747}
3748
3749static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
3750 union ib_gid *dgid, u32 flow_label,
3751 u8 sgid_index, u8 hop_limit,
3752 u8 traffic_class)
3753{
3754 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
3755
3756 attr->ah_flags = IB_AH_GRH;
3757 if (dgid)
3758 grh->dgid = *dgid;
3759 grh->flow_label = flow_label;
3760 grh->sgid_index = sgid_index;
3761 grh->hop_limit = hop_limit;
3762 grh->traffic_class = traffic_class;
3763}
44c58487
DC
3764
3765/*Get AH type */
3766static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
3767 u32 port_num)
3768{
3769 if ((rdma_protocol_roce(dev, port_num)) ||
3770 (rdma_protocol_iwarp(dev, port_num)))
3771 return RDMA_AH_ATTR_TYPE_ROCE;
64b4646e
DC
3772 else if ((rdma_protocol_ib(dev, port_num)) &&
3773 (rdma_cap_opa_ah(dev, port_num)))
3774 return RDMA_AH_ATTR_TYPE_OPA;
44c58487
DC
3775 else
3776 return RDMA_AH_ATTR_TYPE_IB;
3777}
7db20ecd 3778
62ede777
HD
3779/**
3780 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
3781 * In the current implementation the only way to get
3782 * get the 32bit lid is from other sources for OPA.
3783 * For IB, lids will always be 16bits so cast the
3784 * value accordingly.
3785 *
3786 * @lid: A 32bit LID
3787 */
3788static inline u16 ib_lid_cpu16(u32 lid)
7db20ecd 3789{
62ede777
HD
3790 WARN_ON_ONCE(lid & 0xFFFF0000);
3791 return (u16)lid;
7db20ecd
HD
3792}
3793
62ede777
HD
3794/**
3795 * ib_lid_be16 - Return lid in 16bit BE encoding.
3796 *
3797 * @lid: A 32bit LID
3798 */
3799static inline __be16 ib_lid_be16(u32 lid)
7db20ecd 3800{
62ede777
HD
3801 WARN_ON_ONCE(lid & 0xFFFF0000);
3802 return cpu_to_be16((u16)lid);
7db20ecd 3803}
32043830 3804
c66cd353
SG
3805/**
3806 * ib_get_vector_affinity - Get the affinity mappings of a given completion
3807 * vector
3808 * @device: the rdma device
3809 * @comp_vector: index of completion vector
3810 *
3811 * Returns NULL on failure, otherwise a corresponding cpu map of the
3812 * completion vector (returns all-cpus map if the device driver doesn't
3813 * implement get_vector_affinity).
3814 */
3815static inline const struct cpumask *
3816ib_get_vector_affinity(struct ib_device *device, int comp_vector)
3817{
3818 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
3819 !device->get_vector_affinity)
3820 return NULL;
3821
3822 return device->get_vector_affinity(device, comp_vector);
3823
3824}
3825
1da177e4 3826#endif /* IB_VERBS_H */