[PATCH] Add removal schedule of register_serial/unregister_serial to appropriate...
[linux-2.6-block.git] / include / net / tcp.h
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18#ifndef _TCP_H
19#define _TCP_H
20
21#define TCP_DEBUG 1
22#define FASTRETRANS_DEBUG 1
23
24/* Cancel timers, when they are not required. */
25#undef TCP_CLEAR_TIMERS
26
27#include <linux/config.h>
28#include <linux/list.h>
29#include <linux/tcp.h>
30#include <linux/slab.h>
31#include <linux/cache.h>
32#include <linux/percpu.h>
33#include <net/checksum.h>
2e6599cb 34#include <net/request_sock.h>
1da177e4
LT
35#include <net/sock.h>
36#include <net/snmp.h>
37#include <net/ip.h>
38#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
39#include <linux/ipv6.h>
40#endif
41#include <linux/seq_file.h>
42
43/* This is for all connections with a full identity, no wildcards.
44 * New scheme, half the table is for TIME_WAIT, the other half is
45 * for the rest. I'll experiment with dynamic table growth later.
46 */
47struct tcp_ehash_bucket {
48 rwlock_t lock;
49 struct hlist_head chain;
50} __attribute__((__aligned__(8)));
51
52/* This is for listening sockets, thus all sockets which possess wildcards. */
53#define TCP_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */
54
55/* There are a few simple rules, which allow for local port reuse by
56 * an application. In essence:
57 *
58 * 1) Sockets bound to different interfaces may share a local port.
59 * Failing that, goto test 2.
60 * 2) If all sockets have sk->sk_reuse set, and none of them are in
61 * TCP_LISTEN state, the port may be shared.
62 * Failing that, goto test 3.
63 * 3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local
64 * address, and none of them are the same, the port may be
65 * shared.
66 * Failing this, the port cannot be shared.
67 *
68 * The interesting point, is test #2. This is what an FTP server does
69 * all day. To optimize this case we use a specific flag bit defined
70 * below. As we add sockets to a bind bucket list, we perform a
71 * check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN))
72 * As long as all sockets added to a bind bucket pass this test,
73 * the flag bit will be set.
74 * The resulting situation is that tcp_v[46]_verify_bind() can just check
75 * for this flag bit, if it is set and the socket trying to bind has
76 * sk->sk_reuse set, we don't even have to walk the owners list at all,
77 * we return that it is ok to bind this socket to the requested local port.
78 *
79 * Sounds like a lot of work, but it is worth it. In a more naive
80 * implementation (ie. current FreeBSD etc.) the entire list of ports
81 * must be walked for each data port opened by an ftp server. Needless
82 * to say, this does not scale at all. With a couple thousand FTP
83 * users logged onto your box, isn't it nice to know that new data
84 * ports are created in O(1) time? I thought so. ;-) -DaveM
85 */
86struct tcp_bind_bucket {
87 unsigned short port;
88 signed short fastreuse;
89 struct hlist_node node;
90 struct hlist_head owners;
91};
92
93#define tb_for_each(tb, node, head) hlist_for_each_entry(tb, node, head, node)
94
95struct tcp_bind_hashbucket {
96 spinlock_t lock;
97 struct hlist_head chain;
98};
99
100static inline struct tcp_bind_bucket *__tb_head(struct tcp_bind_hashbucket *head)
101{
102 return hlist_entry(head->chain.first, struct tcp_bind_bucket, node);
103}
104
105static inline struct tcp_bind_bucket *tb_head(struct tcp_bind_hashbucket *head)
106{
107 return hlist_empty(&head->chain) ? NULL : __tb_head(head);
108}
109
110extern struct tcp_hashinfo {
111 /* This is for sockets with full identity only. Sockets here will
112 * always be without wildcards and will have the following invariant:
113 *
114 * TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE
115 *
116 * First half of the table is for sockets not in TIME_WAIT, second half
117 * is for TIME_WAIT sockets only.
118 */
119 struct tcp_ehash_bucket *__tcp_ehash;
120
121 /* Ok, let's try this, I give up, we do need a local binding
122 * TCP hash as well as the others for fast bind/connect.
123 */
124 struct tcp_bind_hashbucket *__tcp_bhash;
125
126 int __tcp_bhash_size;
127 int __tcp_ehash_size;
128
129 /* All sockets in TCP_LISTEN state will be in here. This is the only
130 * table where wildcard'd TCP sockets can exist. Hash function here
131 * is just local port number.
132 */
133 struct hlist_head __tcp_listening_hash[TCP_LHTABLE_SIZE];
134
135 /* All the above members are written once at bootup and
136 * never written again _or_ are predominantly read-access.
137 *
138 * Now align to a new cache line as all the following members
139 * are often dirty.
140 */
141 rwlock_t __tcp_lhash_lock ____cacheline_aligned;
142 atomic_t __tcp_lhash_users;
143 wait_queue_head_t __tcp_lhash_wait;
144 spinlock_t __tcp_portalloc_lock;
145} tcp_hashinfo;
146
147#define tcp_ehash (tcp_hashinfo.__tcp_ehash)
148#define tcp_bhash (tcp_hashinfo.__tcp_bhash)
149#define tcp_ehash_size (tcp_hashinfo.__tcp_ehash_size)
150#define tcp_bhash_size (tcp_hashinfo.__tcp_bhash_size)
151#define tcp_listening_hash (tcp_hashinfo.__tcp_listening_hash)
152#define tcp_lhash_lock (tcp_hashinfo.__tcp_lhash_lock)
153#define tcp_lhash_users (tcp_hashinfo.__tcp_lhash_users)
154#define tcp_lhash_wait (tcp_hashinfo.__tcp_lhash_wait)
155#define tcp_portalloc_lock (tcp_hashinfo.__tcp_portalloc_lock)
156
157extern kmem_cache_t *tcp_bucket_cachep;
158extern struct tcp_bind_bucket *tcp_bucket_create(struct tcp_bind_hashbucket *head,
159 unsigned short snum);
160extern void tcp_bucket_destroy(struct tcp_bind_bucket *tb);
161extern void tcp_bucket_unlock(struct sock *sk);
162extern int tcp_port_rover;
163
164/* These are AF independent. */
165static __inline__ int tcp_bhashfn(__u16 lport)
166{
167 return (lport & (tcp_bhash_size - 1));
168}
169
170extern void tcp_bind_hash(struct sock *sk, struct tcp_bind_bucket *tb,
171 unsigned short snum);
172
173#if (BITS_PER_LONG == 64)
174#define TCP_ADDRCMP_ALIGN_BYTES 8
175#else
176#define TCP_ADDRCMP_ALIGN_BYTES 4
177#endif
178
179/* This is a TIME_WAIT bucket. It works around the memory consumption
180 * problems of sockets in such a state on heavily loaded servers, but
181 * without violating the protocol specification.
182 */
183struct tcp_tw_bucket {
184 /*
185 * Now struct sock also uses sock_common, so please just
186 * don't add nothing before this first member (__tw_common) --acme
187 */
188 struct sock_common __tw_common;
189#define tw_family __tw_common.skc_family
190#define tw_state __tw_common.skc_state
191#define tw_reuse __tw_common.skc_reuse
192#define tw_bound_dev_if __tw_common.skc_bound_dev_if
193#define tw_node __tw_common.skc_node
194#define tw_bind_node __tw_common.skc_bind_node
195#define tw_refcnt __tw_common.skc_refcnt
196 volatile unsigned char tw_substate;
197 unsigned char tw_rcv_wscale;
198 __u16 tw_sport;
199 /* Socket demultiplex comparisons on incoming packets. */
200 /* these five are in inet_sock */
201 __u32 tw_daddr
202 __attribute__((aligned(TCP_ADDRCMP_ALIGN_BYTES)));
203 __u32 tw_rcv_saddr;
204 __u16 tw_dport;
205 __u16 tw_num;
206 /* And these are ours. */
207 int tw_hashent;
208 int tw_timeout;
209 __u32 tw_rcv_nxt;
210 __u32 tw_snd_nxt;
211 __u32 tw_rcv_wnd;
212 __u32 tw_ts_recent;
213 long tw_ts_recent_stamp;
214 unsigned long tw_ttd;
215 struct tcp_bind_bucket *tw_tb;
216 struct hlist_node tw_death_node;
217#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
218 struct in6_addr tw_v6_daddr;
219 struct in6_addr tw_v6_rcv_saddr;
220 int tw_v6_ipv6only;
221#endif
222};
223
224static __inline__ void tw_add_node(struct tcp_tw_bucket *tw,
225 struct hlist_head *list)
226{
227 hlist_add_head(&tw->tw_node, list);
228}
229
230static __inline__ void tw_add_bind_node(struct tcp_tw_bucket *tw,
231 struct hlist_head *list)
232{
233 hlist_add_head(&tw->tw_bind_node, list);
234}
235
236static inline int tw_dead_hashed(struct tcp_tw_bucket *tw)
237{
238 return tw->tw_death_node.pprev != NULL;
239}
240
241static __inline__ void tw_dead_node_init(struct tcp_tw_bucket *tw)
242{
243 tw->tw_death_node.pprev = NULL;
244}
245
246static __inline__ void __tw_del_dead_node(struct tcp_tw_bucket *tw)
247{
248 __hlist_del(&tw->tw_death_node);
249 tw_dead_node_init(tw);
250}
251
252static __inline__ int tw_del_dead_node(struct tcp_tw_bucket *tw)
253{
254 if (tw_dead_hashed(tw)) {
255 __tw_del_dead_node(tw);
256 return 1;
257 }
258 return 0;
259}
260
261#define tw_for_each(tw, node, head) \
262 hlist_for_each_entry(tw, node, head, tw_node)
263
264#define tw_for_each_inmate(tw, node, jail) \
265 hlist_for_each_entry(tw, node, jail, tw_death_node)
266
267#define tw_for_each_inmate_safe(tw, node, safe, jail) \
268 hlist_for_each_entry_safe(tw, node, safe, jail, tw_death_node)
269
270#define tcptw_sk(__sk) ((struct tcp_tw_bucket *)(__sk))
271
272static inline u32 tcp_v4_rcv_saddr(const struct sock *sk)
273{
274 return likely(sk->sk_state != TCP_TIME_WAIT) ?
275 inet_sk(sk)->rcv_saddr : tcptw_sk(sk)->tw_rcv_saddr;
276}
277
278#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
279static inline struct in6_addr *__tcp_v6_rcv_saddr(const struct sock *sk)
280{
281 return likely(sk->sk_state != TCP_TIME_WAIT) ?
282 &inet6_sk(sk)->rcv_saddr : &tcptw_sk(sk)->tw_v6_rcv_saddr;
283}
284
285static inline struct in6_addr *tcp_v6_rcv_saddr(const struct sock *sk)
286{
287 return sk->sk_family == AF_INET6 ? __tcp_v6_rcv_saddr(sk) : NULL;
288}
289
290#define tcptw_sk_ipv6only(__sk) (tcptw_sk(__sk)->tw_v6_ipv6only)
291
292static inline int tcp_v6_ipv6only(const struct sock *sk)
293{
294 return likely(sk->sk_state != TCP_TIME_WAIT) ?
295 ipv6_only_sock(sk) : tcptw_sk_ipv6only(sk);
296}
297#else
298# define __tcp_v6_rcv_saddr(__sk) NULL
299# define tcp_v6_rcv_saddr(__sk) NULL
300# define tcptw_sk_ipv6only(__sk) 0
301# define tcp_v6_ipv6only(__sk) 0
302#endif
303
304extern kmem_cache_t *tcp_timewait_cachep;
305
306static inline void tcp_tw_put(struct tcp_tw_bucket *tw)
307{
308 if (atomic_dec_and_test(&tw->tw_refcnt)) {
309#ifdef INET_REFCNT_DEBUG
310 printk(KERN_DEBUG "tw_bucket %p released\n", tw);
311#endif
312 kmem_cache_free(tcp_timewait_cachep, tw);
313 }
314}
315
316extern atomic_t tcp_orphan_count;
317extern int tcp_tw_count;
318extern void tcp_time_wait(struct sock *sk, int state, int timeo);
319extern void tcp_tw_deschedule(struct tcp_tw_bucket *tw);
320
321
322/* Socket demux engine toys. */
323#ifdef __BIG_ENDIAN
324#define TCP_COMBINED_PORTS(__sport, __dport) \
325 (((__u32)(__sport)<<16) | (__u32)(__dport))
326#else /* __LITTLE_ENDIAN */
327#define TCP_COMBINED_PORTS(__sport, __dport) \
328 (((__u32)(__dport)<<16) | (__u32)(__sport))
329#endif
330
331#if (BITS_PER_LONG == 64)
332#ifdef __BIG_ENDIAN
333#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
334 __u64 __name = (((__u64)(__saddr))<<32)|((__u64)(__daddr));
335#else /* __LITTLE_ENDIAN */
336#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr) \
337 __u64 __name = (((__u64)(__daddr))<<32)|((__u64)(__saddr));
338#endif /* __BIG_ENDIAN */
339#define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
340 (((*((__u64 *)&(inet_sk(__sk)->daddr)))== (__cookie)) && \
341 ((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports)) && \
342 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
343#define TCP_IPV4_TW_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
344 (((*((__u64 *)&(tcptw_sk(__sk)->tw_daddr))) == (__cookie)) && \
345 ((*((__u32 *)&(tcptw_sk(__sk)->tw_dport))) == (__ports)) && \
346 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
347#else /* 32-bit arch */
348#define TCP_V4_ADDR_COOKIE(__name, __saddr, __daddr)
349#define TCP_IPV4_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
350 ((inet_sk(__sk)->daddr == (__saddr)) && \
351 (inet_sk(__sk)->rcv_saddr == (__daddr)) && \
352 ((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports)) && \
353 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
354#define TCP_IPV4_TW_MATCH(__sk, __cookie, __saddr, __daddr, __ports, __dif)\
355 ((tcptw_sk(__sk)->tw_daddr == (__saddr)) && \
356 (tcptw_sk(__sk)->tw_rcv_saddr == (__daddr)) && \
357 ((*((__u32 *)&(tcptw_sk(__sk)->tw_dport))) == (__ports)) && \
358 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
359#endif /* 64-bit arch */
360
361#define TCP_IPV6_MATCH(__sk, __saddr, __daddr, __ports, __dif) \
362 (((*((__u32 *)&(inet_sk(__sk)->dport)))== (__ports)) && \
363 ((__sk)->sk_family == AF_INET6) && \
364 ipv6_addr_equal(&inet6_sk(__sk)->daddr, (__saddr)) && \
365 ipv6_addr_equal(&inet6_sk(__sk)->rcv_saddr, (__daddr)) && \
366 (!((__sk)->sk_bound_dev_if) || ((__sk)->sk_bound_dev_if == (__dif))))
367
368/* These can have wildcards, don't try too hard. */
369static __inline__ int tcp_lhashfn(unsigned short num)
370{
371 return num & (TCP_LHTABLE_SIZE - 1);
372}
373
374static __inline__ int tcp_sk_listen_hashfn(struct sock *sk)
375{
376 return tcp_lhashfn(inet_sk(sk)->num);
377}
378
379#define MAX_TCP_HEADER (128 + MAX_HEADER)
380
381/*
382 * Never offer a window over 32767 without using window scaling. Some
383 * poor stacks do signed 16bit maths!
384 */
385#define MAX_TCP_WINDOW 32767U
386
387/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
388#define TCP_MIN_MSS 88U
389
390/* Minimal RCV_MSS. */
391#define TCP_MIN_RCVMSS 536U
392
393/* After receiving this amount of duplicate ACKs fast retransmit starts. */
394#define TCP_FASTRETRANS_THRESH 3
395
396/* Maximal reordering. */
397#define TCP_MAX_REORDERING 127
398
399/* Maximal number of ACKs sent quickly to accelerate slow-start. */
400#define TCP_MAX_QUICKACKS 16U
401
402/* urg_data states */
403#define TCP_URG_VALID 0x0100
404#define TCP_URG_NOTYET 0x0200
405#define TCP_URG_READ 0x0400
406
407#define TCP_RETR1 3 /*
408 * This is how many retries it does before it
409 * tries to figure out if the gateway is
410 * down. Minimal RFC value is 3; it corresponds
411 * to ~3sec-8min depending on RTO.
412 */
413
414#define TCP_RETR2 15 /*
415 * This should take at least
416 * 90 minutes to time out.
417 * RFC1122 says that the limit is 100 sec.
418 * 15 is ~13-30min depending on RTO.
419 */
420
421#define TCP_SYN_RETRIES 5 /* number of times to retry active opening a
422 * connection: ~180sec is RFC minumum */
423
424#define TCP_SYNACK_RETRIES 5 /* number of times to retry passive opening a
425 * connection: ~180sec is RFC minumum */
426
427
428#define TCP_ORPHAN_RETRIES 7 /* number of times to retry on an orphaned
429 * socket. 7 is ~50sec-16min.
430 */
431
432
433#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
434 * state, about 60 seconds */
435#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
436 /* BSD style FIN_WAIT2 deadlock breaker.
437 * It used to be 3min, new value is 60sec,
438 * to combine FIN-WAIT-2 timeout with
439 * TIME-WAIT timer.
440 */
441
442#define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
443#if HZ >= 100
444#define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
445#define TCP_ATO_MIN ((unsigned)(HZ/25))
446#else
447#define TCP_DELACK_MIN 4U
448#define TCP_ATO_MIN 4U
449#endif
450#define TCP_RTO_MAX ((unsigned)(120*HZ))
451#define TCP_RTO_MIN ((unsigned)(HZ/5))
452#define TCP_TIMEOUT_INIT ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value */
453
454#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
455 * for local resources.
456 */
457
458#define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
459#define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
460#define TCP_KEEPALIVE_INTVL (75*HZ)
461
462#define MAX_TCP_KEEPIDLE 32767
463#define MAX_TCP_KEEPINTVL 32767
464#define MAX_TCP_KEEPCNT 127
465#define MAX_TCP_SYNCNT 127
466
467#define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
468#define TCP_SYNQ_HSIZE 512 /* Size of SYNACK hash table */
469
470#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
471#define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
472 * after this time. It should be equal
473 * (or greater than) TCP_TIMEWAIT_LEN
474 * to provide reliability equal to one
475 * provided by timewait state.
476 */
477#define TCP_PAWS_WINDOW 1 /* Replay window for per-host
478 * timestamps. It must be less than
479 * minimal timewait lifetime.
480 */
481
482#define TCP_TW_RECYCLE_SLOTS_LOG 5
483#define TCP_TW_RECYCLE_SLOTS (1<<TCP_TW_RECYCLE_SLOTS_LOG)
484
485/* If time > 4sec, it is "slow" path, no recycling is required,
486 so that we select tick to get range about 4 seconds.
487 */
488
489#if HZ <= 16 || HZ > 4096
490# error Unsupported: HZ <= 16 or HZ > 4096
491#elif HZ <= 32
492# define TCP_TW_RECYCLE_TICK (5+2-TCP_TW_RECYCLE_SLOTS_LOG)
493#elif HZ <= 64
494# define TCP_TW_RECYCLE_TICK (6+2-TCP_TW_RECYCLE_SLOTS_LOG)
495#elif HZ <= 128
496# define TCP_TW_RECYCLE_TICK (7+2-TCP_TW_RECYCLE_SLOTS_LOG)
497#elif HZ <= 256
498# define TCP_TW_RECYCLE_TICK (8+2-TCP_TW_RECYCLE_SLOTS_LOG)
499#elif HZ <= 512
500# define TCP_TW_RECYCLE_TICK (9+2-TCP_TW_RECYCLE_SLOTS_LOG)
501#elif HZ <= 1024
502# define TCP_TW_RECYCLE_TICK (10+2-TCP_TW_RECYCLE_SLOTS_LOG)
503#elif HZ <= 2048
504# define TCP_TW_RECYCLE_TICK (11+2-TCP_TW_RECYCLE_SLOTS_LOG)
505#else
506# define TCP_TW_RECYCLE_TICK (12+2-TCP_TW_RECYCLE_SLOTS_LOG)
507#endif
508
509#define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
510 * max_cwnd = snd_cwnd * beta
511 */
512#define BICTCP_MAX_INCREMENT 32 /*
513 * Limit on the amount of
514 * increment allowed during
515 * binary search.
516 */
517#define BICTCP_FUNC_OF_MIN_INCR 11 /*
518 * log(B/Smin)/log(B/(B-1))+1,
519 * Smin:min increment
520 * B:log factor
521 */
522#define BICTCP_B 4 /*
523 * In binary search,
524 * go to point (max+min)/N
525 */
526
527/*
528 * TCP option
529 */
530
531#define TCPOPT_NOP 1 /* Padding */
532#define TCPOPT_EOL 0 /* End of options */
533#define TCPOPT_MSS 2 /* Segment size negotiating */
534#define TCPOPT_WINDOW 3 /* Window scaling */
535#define TCPOPT_SACK_PERM 4 /* SACK Permitted */
536#define TCPOPT_SACK 5 /* SACK Block */
537#define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
538
539/*
540 * TCP option lengths
541 */
542
543#define TCPOLEN_MSS 4
544#define TCPOLEN_WINDOW 3
545#define TCPOLEN_SACK_PERM 2
546#define TCPOLEN_TIMESTAMP 10
547
548/* But this is what stacks really send out. */
549#define TCPOLEN_TSTAMP_ALIGNED 12
550#define TCPOLEN_WSCALE_ALIGNED 4
551#define TCPOLEN_SACKPERM_ALIGNED 4
552#define TCPOLEN_SACK_BASE 2
553#define TCPOLEN_SACK_BASE_ALIGNED 4
554#define TCPOLEN_SACK_PERBLOCK 8
555
556#define TCP_TIME_RETRANS 1 /* Retransmit timer */
557#define TCP_TIME_DACK 2 /* Delayed ack timer */
558#define TCP_TIME_PROBE0 3 /* Zero window probe timer */
559#define TCP_TIME_KEEPOPEN 4 /* Keepalive timer */
560
561/* Flags in tp->nonagle */
562#define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
563#define TCP_NAGLE_CORK 2 /* Socket is corked */
564#define TCP_NAGLE_PUSH 4 /* Cork is overriden for already queued data */
565
566/* sysctl variables for tcp */
1da177e4
LT
567extern int sysctl_tcp_timestamps;
568extern int sysctl_tcp_window_scaling;
569extern int sysctl_tcp_sack;
570extern int sysctl_tcp_fin_timeout;
571extern int sysctl_tcp_tw_recycle;
572extern int sysctl_tcp_keepalive_time;
573extern int sysctl_tcp_keepalive_probes;
574extern int sysctl_tcp_keepalive_intvl;
575extern int sysctl_tcp_syn_retries;
576extern int sysctl_tcp_synack_retries;
577extern int sysctl_tcp_retries1;
578extern int sysctl_tcp_retries2;
579extern int sysctl_tcp_orphan_retries;
580extern int sysctl_tcp_syncookies;
581extern int sysctl_tcp_retrans_collapse;
582extern int sysctl_tcp_stdurg;
583extern int sysctl_tcp_rfc1337;
584extern int sysctl_tcp_abort_on_overflow;
585extern int sysctl_tcp_max_orphans;
586extern int sysctl_tcp_max_tw_buckets;
587extern int sysctl_tcp_fack;
588extern int sysctl_tcp_reordering;
589extern int sysctl_tcp_ecn;
590extern int sysctl_tcp_dsack;
591extern int sysctl_tcp_mem[3];
592extern int sysctl_tcp_wmem[3];
593extern int sysctl_tcp_rmem[3];
594extern int sysctl_tcp_app_win;
595extern int sysctl_tcp_adv_win_scale;
596extern int sysctl_tcp_tw_reuse;
597extern int sysctl_tcp_frto;
598extern int sysctl_tcp_low_latency;
599extern int sysctl_tcp_westwood;
600extern int sysctl_tcp_vegas_cong_avoid;
601extern int sysctl_tcp_vegas_alpha;
602extern int sysctl_tcp_vegas_beta;
603extern int sysctl_tcp_vegas_gamma;
604extern int sysctl_tcp_nometrics_save;
605extern int sysctl_tcp_bic;
606extern int sysctl_tcp_bic_fast_convergence;
607extern int sysctl_tcp_bic_low_window;
608extern int sysctl_tcp_bic_beta;
609extern int sysctl_tcp_moderate_rcvbuf;
610extern int sysctl_tcp_tso_win_divisor;
611
612extern atomic_t tcp_memory_allocated;
613extern atomic_t tcp_sockets_allocated;
614extern int tcp_memory_pressure;
615
1da177e4
LT
616#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
617#define TCP_INET_FAMILY(fam) ((fam) == AF_INET)
618#else
619#define TCP_INET_FAMILY(fam) 1
620#endif
621
622/*
623 * Pointers to address related TCP functions
624 * (i.e. things that depend on the address family)
625 */
626
627struct tcp_func {
628 int (*queue_xmit) (struct sk_buff *skb,
629 int ipfragok);
630
631 void (*send_check) (struct sock *sk,
632 struct tcphdr *th,
633 int len,
634 struct sk_buff *skb);
635
636 int (*rebuild_header) (struct sock *sk);
637
638 int (*conn_request) (struct sock *sk,
639 struct sk_buff *skb);
640
641 struct sock * (*syn_recv_sock) (struct sock *sk,
642 struct sk_buff *skb,
60236fdd 643 struct request_sock *req,
1da177e4
LT
644 struct dst_entry *dst);
645
646 int (*remember_stamp) (struct sock *sk);
647
648 __u16 net_header_len;
649
650 int (*setsockopt) (struct sock *sk,
651 int level,
652 int optname,
653 char __user *optval,
654 int optlen);
655
656 int (*getsockopt) (struct sock *sk,
657 int level,
658 int optname,
659 char __user *optval,
660 int __user *optlen);
661
662
663 void (*addr2sockaddr) (struct sock *sk,
664 struct sockaddr *);
665
666 int sockaddr_len;
667};
668
669/*
670 * The next routines deal with comparing 32 bit unsigned ints
671 * and worry about wraparound (automatic with unsigned arithmetic).
672 */
673
674static inline int before(__u32 seq1, __u32 seq2)
675{
676 return (__s32)(seq1-seq2) < 0;
677}
678
679static inline int after(__u32 seq1, __u32 seq2)
680{
681 return (__s32)(seq2-seq1) < 0;
682}
683
684
685/* is s2<=s1<=s3 ? */
686static inline int between(__u32 seq1, __u32 seq2, __u32 seq3)
687{
688 return seq3 - seq2 >= seq1 - seq2;
689}
690
691
692extern struct proto tcp_prot;
693
694DECLARE_SNMP_STAT(struct tcp_mib, tcp_statistics);
695#define TCP_INC_STATS(field) SNMP_INC_STATS(tcp_statistics, field)
696#define TCP_INC_STATS_BH(field) SNMP_INC_STATS_BH(tcp_statistics, field)
697#define TCP_INC_STATS_USER(field) SNMP_INC_STATS_USER(tcp_statistics, field)
698#define TCP_DEC_STATS(field) SNMP_DEC_STATS(tcp_statistics, field)
699#define TCP_ADD_STATS_BH(field, val) SNMP_ADD_STATS_BH(tcp_statistics, field, val)
700#define TCP_ADD_STATS_USER(field, val) SNMP_ADD_STATS_USER(tcp_statistics, field, val)
701
702extern void tcp_put_port(struct sock *sk);
703extern void tcp_inherit_port(struct sock *sk, struct sock *child);
704
705extern void tcp_v4_err(struct sk_buff *skb, u32);
706
707extern void tcp_shutdown (struct sock *sk, int how);
708
709extern int tcp_v4_rcv(struct sk_buff *skb);
710
711extern int tcp_v4_remember_stamp(struct sock *sk);
712
713extern int tcp_v4_tw_remember_stamp(struct tcp_tw_bucket *tw);
714
715extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk,
716 struct msghdr *msg, size_t size);
717extern ssize_t tcp_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags);
718
719extern int tcp_ioctl(struct sock *sk,
720 int cmd,
721 unsigned long arg);
722
723extern int tcp_rcv_state_process(struct sock *sk,
724 struct sk_buff *skb,
725 struct tcphdr *th,
726 unsigned len);
727
728extern int tcp_rcv_established(struct sock *sk,
729 struct sk_buff *skb,
730 struct tcphdr *th,
731 unsigned len);
732
733extern void tcp_rcv_space_adjust(struct sock *sk);
734
735enum tcp_ack_state_t
736{
737 TCP_ACK_SCHED = 1,
738 TCP_ACK_TIMER = 2,
739 TCP_ACK_PUSHED= 4
740};
741
742static inline void tcp_schedule_ack(struct tcp_sock *tp)
743{
744 tp->ack.pending |= TCP_ACK_SCHED;
745}
746
747static inline int tcp_ack_scheduled(struct tcp_sock *tp)
748{
749 return tp->ack.pending&TCP_ACK_SCHED;
750}
751
752static __inline__ void tcp_dec_quickack_mode(struct tcp_sock *tp)
753{
754 if (tp->ack.quick && --tp->ack.quick == 0) {
755 /* Leaving quickack mode we deflate ATO. */
756 tp->ack.ato = TCP_ATO_MIN;
757 }
758}
759
760extern void tcp_enter_quickack_mode(struct tcp_sock *tp);
761
762static __inline__ void tcp_delack_init(struct tcp_sock *tp)
763{
764 memset(&tp->ack, 0, sizeof(tp->ack));
765}
766
767static inline void tcp_clear_options(struct tcp_options_received *rx_opt)
768{
769 rx_opt->tstamp_ok = rx_opt->sack_ok = rx_opt->wscale_ok = rx_opt->snd_wscale = 0;
770}
771
772enum tcp_tw_status
773{
774 TCP_TW_SUCCESS = 0,
775 TCP_TW_RST = 1,
776 TCP_TW_ACK = 2,
777 TCP_TW_SYN = 3
778};
779
780
781extern enum tcp_tw_status tcp_timewait_state_process(struct tcp_tw_bucket *tw,
782 struct sk_buff *skb,
783 struct tcphdr *th,
784 unsigned len);
785
786extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
60236fdd
ACM
787 struct request_sock *req,
788 struct request_sock **prev);
1da177e4
LT
789extern int tcp_child_process(struct sock *parent,
790 struct sock *child,
791 struct sk_buff *skb);
792extern void tcp_enter_frto(struct sock *sk);
793extern void tcp_enter_loss(struct sock *sk, int how);
794extern void tcp_clear_retrans(struct tcp_sock *tp);
795extern void tcp_update_metrics(struct sock *sk);
796
797extern void tcp_close(struct sock *sk,
798 long timeout);
799extern struct sock * tcp_accept(struct sock *sk, int flags, int *err);
800extern unsigned int tcp_poll(struct file * file, struct socket *sock, struct poll_table_struct *wait);
801
802extern int tcp_getsockopt(struct sock *sk, int level,
803 int optname,
804 char __user *optval,
805 int __user *optlen);
806extern int tcp_setsockopt(struct sock *sk, int level,
807 int optname, char __user *optval,
808 int optlen);
809extern void tcp_set_keepalive(struct sock *sk, int val);
810extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk,
811 struct msghdr *msg,
812 size_t len, int nonblock,
813 int flags, int *addr_len);
814
815extern int tcp_listen_start(struct sock *sk);
816
817extern void tcp_parse_options(struct sk_buff *skb,
818 struct tcp_options_received *opt_rx,
819 int estab);
820
821/*
822 * TCP v4 functions exported for the inet6 API
823 */
824
825extern int tcp_v4_rebuild_header(struct sock *sk);
826
827extern int tcp_v4_build_header(struct sock *sk,
828 struct sk_buff *skb);
829
830extern void tcp_v4_send_check(struct sock *sk,
831 struct tcphdr *th, int len,
832 struct sk_buff *skb);
833
834extern int tcp_v4_conn_request(struct sock *sk,
835 struct sk_buff *skb);
836
837extern struct sock * tcp_create_openreq_child(struct sock *sk,
60236fdd 838 struct request_sock *req,
1da177e4
LT
839 struct sk_buff *skb);
840
841extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk,
842 struct sk_buff *skb,
60236fdd 843 struct request_sock *req,
1da177e4
LT
844 struct dst_entry *dst);
845
846extern int tcp_v4_do_rcv(struct sock *sk,
847 struct sk_buff *skb);
848
849extern int tcp_v4_connect(struct sock *sk,
850 struct sockaddr *uaddr,
851 int addr_len);
852
853extern int tcp_connect(struct sock *sk);
854
855extern struct sk_buff * tcp_make_synack(struct sock *sk,
856 struct dst_entry *dst,
60236fdd 857 struct request_sock *req);
1da177e4
LT
858
859extern int tcp_disconnect(struct sock *sk, int flags);
860
861extern void tcp_unhash(struct sock *sk);
862
863extern int tcp_v4_hash_connecting(struct sock *sk);
864
865
866/* From syncookies.c */
867extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
868 struct ip_options *opt);
869extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
870 __u16 *mss);
871
872/* tcp_output.c */
873
874extern int tcp_write_xmit(struct sock *, int nonagle);
875extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
876extern void tcp_xmit_retransmit_queue(struct sock *);
877extern void tcp_simple_retransmit(struct sock *);
878extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
879
880extern void tcp_send_probe0(struct sock *);
881extern void tcp_send_partial(struct sock *);
882extern int tcp_write_wakeup(struct sock *);
883extern void tcp_send_fin(struct sock *sk);
884extern void tcp_send_active_reset(struct sock *sk, int priority);
885extern int tcp_send_synack(struct sock *);
886extern void tcp_push_one(struct sock *, unsigned mss_now);
887extern void tcp_send_ack(struct sock *sk);
888extern void tcp_send_delayed_ack(struct sock *sk);
889
890/* tcp_timer.c */
891extern void tcp_init_xmit_timers(struct sock *);
892extern void tcp_clear_xmit_timers(struct sock *);
893
894extern void tcp_delete_keepalive_timer(struct sock *);
895extern void tcp_reset_keepalive_timer(struct sock *, unsigned long);
896extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
897extern unsigned int tcp_current_mss(struct sock *sk, int large);
898
899#ifdef TCP_DEBUG
900extern const char tcp_timer_bug_msg[];
901#endif
902
903/* tcp_diag.c */
904extern void tcp_get_info(struct sock *, struct tcp_info *);
905
906/* Read 'sendfile()'-style from a TCP socket */
907typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
908 unsigned int, size_t);
909extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
910 sk_read_actor_t recv_actor);
911
912static inline void tcp_clear_xmit_timer(struct sock *sk, int what)
913{
914 struct tcp_sock *tp = tcp_sk(sk);
915
916 switch (what) {
917 case TCP_TIME_RETRANS:
918 case TCP_TIME_PROBE0:
919 tp->pending = 0;
920
921#ifdef TCP_CLEAR_TIMERS
922 sk_stop_timer(sk, &tp->retransmit_timer);
923#endif
924 break;
925 case TCP_TIME_DACK:
926 tp->ack.blocked = 0;
927 tp->ack.pending = 0;
928
929#ifdef TCP_CLEAR_TIMERS
930 sk_stop_timer(sk, &tp->delack_timer);
931#endif
932 break;
933 default:
934#ifdef TCP_DEBUG
935 printk(tcp_timer_bug_msg);
936#endif
937 return;
938 };
939
940}
941
942/*
943 * Reset the retransmission timer
944 */
945static inline void tcp_reset_xmit_timer(struct sock *sk, int what, unsigned long when)
946{
947 struct tcp_sock *tp = tcp_sk(sk);
948
949 if (when > TCP_RTO_MAX) {
950#ifdef TCP_DEBUG
951 printk(KERN_DEBUG "reset_xmit_timer sk=%p %d when=0x%lx, caller=%p\n", sk, what, when, current_text_addr());
952#endif
953 when = TCP_RTO_MAX;
954 }
955
956 switch (what) {
957 case TCP_TIME_RETRANS:
958 case TCP_TIME_PROBE0:
959 tp->pending = what;
960 tp->timeout = jiffies+when;
961 sk_reset_timer(sk, &tp->retransmit_timer, tp->timeout);
962 break;
963
964 case TCP_TIME_DACK:
965 tp->ack.pending |= TCP_ACK_TIMER;
966 tp->ack.timeout = jiffies+when;
967 sk_reset_timer(sk, &tp->delack_timer, tp->ack.timeout);
968 break;
969
970 default:
971#ifdef TCP_DEBUG
972 printk(tcp_timer_bug_msg);
973#endif
974 return;
975 };
976}
977
978/* Initialize RCV_MSS value.
979 * RCV_MSS is an our guess about MSS used by the peer.
980 * We haven't any direct information about the MSS.
981 * It's better to underestimate the RCV_MSS rather than overestimate.
982 * Overestimations make us ACKing less frequently than needed.
983 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
984 */
985
986static inline void tcp_initialize_rcv_mss(struct sock *sk)
987{
988 struct tcp_sock *tp = tcp_sk(sk);
989 unsigned int hint = min(tp->advmss, tp->mss_cache_std);
990
991 hint = min(hint, tp->rcv_wnd/2);
992 hint = min(hint, TCP_MIN_RCVMSS);
993 hint = max(hint, TCP_MIN_MSS);
994
995 tp->ack.rcv_mss = hint;
996}
997
998static __inline__ void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
999{
1000 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
1001 ntohl(TCP_FLAG_ACK) |
1002 snd_wnd);
1003}
1004
1005static __inline__ void tcp_fast_path_on(struct tcp_sock *tp)
1006{
1007 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
1008}
1009
1010static inline void tcp_fast_path_check(struct sock *sk, struct tcp_sock *tp)
1011{
1012 if (skb_queue_len(&tp->out_of_order_queue) == 0 &&
1013 tp->rcv_wnd &&
1014 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
1015 !tp->urg_data)
1016 tcp_fast_path_on(tp);
1017}
1018
1019/* Compute the actual receive window we are currently advertising.
1020 * Rcv_nxt can be after the window if our peer push more data
1021 * than the offered window.
1022 */
1023static __inline__ u32 tcp_receive_window(const struct tcp_sock *tp)
1024{
1025 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
1026
1027 if (win < 0)
1028 win = 0;
1029 return (u32) win;
1030}
1031
1032/* Choose a new window, without checks for shrinking, and without
1033 * scaling applied to the result. The caller does these things
1034 * if necessary. This is a "raw" window selection.
1035 */
1036extern u32 __tcp_select_window(struct sock *sk);
1037
1038/* TCP timestamps are only 32-bits, this causes a slight
1039 * complication on 64-bit systems since we store a snapshot
1040 * of jiffies in the buffer control blocks below. We decidely
1041 * only use of the low 32-bits of jiffies and hide the ugly
1042 * casts with the following macro.
1043 */
1044#define tcp_time_stamp ((__u32)(jiffies))
1045
1046/* This is what the send packet queueing engine uses to pass
1047 * TCP per-packet control information to the transmission
1048 * code. We also store the host-order sequence numbers in
1049 * here too. This is 36 bytes on 32-bit architectures,
1050 * 40 bytes on 64-bit machines, if this grows please adjust
1051 * skbuff.h:skbuff->cb[xxx] size appropriately.
1052 */
1053struct tcp_skb_cb {
1054 union {
1055 struct inet_skb_parm h4;
1056#if defined(CONFIG_IPV6) || defined (CONFIG_IPV6_MODULE)
1057 struct inet6_skb_parm h6;
1058#endif
1059 } header; /* For incoming frames */
1060 __u32 seq; /* Starting sequence number */
1061 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
1062 __u32 when; /* used to compute rtt's */
1063 __u8 flags; /* TCP header flags. */
1064
1065 /* NOTE: These must match up to the flags byte in a
1066 * real TCP header.
1067 */
1068#define TCPCB_FLAG_FIN 0x01
1069#define TCPCB_FLAG_SYN 0x02
1070#define TCPCB_FLAG_RST 0x04
1071#define TCPCB_FLAG_PSH 0x08
1072#define TCPCB_FLAG_ACK 0x10
1073#define TCPCB_FLAG_URG 0x20
1074#define TCPCB_FLAG_ECE 0x40
1075#define TCPCB_FLAG_CWR 0x80
1076
1077 __u8 sacked; /* State flags for SACK/FACK. */
1078#define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
1079#define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
1080#define TCPCB_LOST 0x04 /* SKB is lost */
1081#define TCPCB_TAGBITS 0x07 /* All tag bits */
1082
1083#define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
1084#define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
1085
1086#define TCPCB_URG 0x20 /* Urgent pointer advenced here */
1087
1088#define TCPCB_AT_TAIL (TCPCB_URG)
1089
1090 __u16 urg_ptr; /* Valid w/URG flags is set. */
1091 __u32 ack_seq; /* Sequence number ACK'd */
1092};
1093
1094#define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
1095
1096#include <net/tcp_ecn.h>
1097
1098/* Due to TSO, an SKB can be composed of multiple actual
1099 * packets. To keep these tracked properly, we use this.
1100 */
1101static inline int tcp_skb_pcount(const struct sk_buff *skb)
1102{
1103 return skb_shinfo(skb)->tso_segs;
1104}
1105
1106/* This is valid iff tcp_skb_pcount() > 1. */
1107static inline int tcp_skb_mss(const struct sk_buff *skb)
1108{
1109 return skb_shinfo(skb)->tso_size;
1110}
1111
1112static inline void tcp_dec_pcount_approx(__u32 *count,
1113 const struct sk_buff *skb)
1114{
1115 if (*count) {
1116 *count -= tcp_skb_pcount(skb);
1117 if ((int)*count < 0)
1118 *count = 0;
1119 }
1120}
1121
1122static inline void tcp_packets_out_inc(struct sock *sk,
1123 struct tcp_sock *tp,
1124 const struct sk_buff *skb)
1125{
1126 int orig = tp->packets_out;
1127
1128 tp->packets_out += tcp_skb_pcount(skb);
1129 if (!orig)
1130 tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);
1131}
1132
1133static inline void tcp_packets_out_dec(struct tcp_sock *tp,
1134 const struct sk_buff *skb)
1135{
1136 tp->packets_out -= tcp_skb_pcount(skb);
1137}
1138
1139/* This determines how many packets are "in the network" to the best
1140 * of our knowledge. In many cases it is conservative, but where
1141 * detailed information is available from the receiver (via SACK
1142 * blocks etc.) we can make more aggressive calculations.
1143 *
1144 * Use this for decisions involving congestion control, use just
1145 * tp->packets_out to determine if the send queue is empty or not.
1146 *
1147 * Read this equation as:
1148 *
1149 * "Packets sent once on transmission queue" MINUS
1150 * "Packets left network, but not honestly ACKed yet" PLUS
1151 * "Packets fast retransmitted"
1152 */
1153static __inline__ unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1154{
1155 return (tp->packets_out - tp->left_out + tp->retrans_out);
1156}
1157
1158/*
1159 * Which congestion algorithim is in use on the connection.
1160 */
1161#define tcp_is_vegas(__tp) ((__tp)->adv_cong == TCP_VEGAS)
1162#define tcp_is_westwood(__tp) ((__tp)->adv_cong == TCP_WESTWOOD)
1163#define tcp_is_bic(__tp) ((__tp)->adv_cong == TCP_BIC)
1164
1165/* Recalculate snd_ssthresh, we want to set it to:
1166 *
1167 * Reno:
1168 * one half the current congestion window, but no
1169 * less than two segments
1170 *
1171 * BIC:
1172 * behave like Reno until low_window is reached,
1173 * then increase congestion window slowly
1174 */
1175static inline __u32 tcp_recalc_ssthresh(struct tcp_sock *tp)
1176{
1177 if (tcp_is_bic(tp)) {
1178 if (sysctl_tcp_bic_fast_convergence &&
1179 tp->snd_cwnd < tp->bictcp.last_max_cwnd)
1180 tp->bictcp.last_max_cwnd = (tp->snd_cwnd *
1181 (BICTCP_BETA_SCALE
1182 + sysctl_tcp_bic_beta))
1183 / (2 * BICTCP_BETA_SCALE);
1184 else
1185 tp->bictcp.last_max_cwnd = tp->snd_cwnd;
1186
1187 if (tp->snd_cwnd > sysctl_tcp_bic_low_window)
1188 return max((tp->snd_cwnd * sysctl_tcp_bic_beta)
1189 / BICTCP_BETA_SCALE, 2U);
1190 }
1191
1192 return max(tp->snd_cwnd >> 1U, 2U);
1193}
1194
1195/* Stop taking Vegas samples for now. */
1196#define tcp_vegas_disable(__tp) ((__tp)->vegas.doing_vegas_now = 0)
1197
1198static inline void tcp_vegas_enable(struct tcp_sock *tp)
1199{
1200 /* There are several situations when we must "re-start" Vegas:
1201 *
1202 * o when a connection is established
1203 * o after an RTO
1204 * o after fast recovery
1205 * o when we send a packet and there is no outstanding
1206 * unacknowledged data (restarting an idle connection)
1207 *
1208 * In these circumstances we cannot do a Vegas calculation at the
1209 * end of the first RTT, because any calculation we do is using
1210 * stale info -- both the saved cwnd and congestion feedback are
1211 * stale.
1212 *
1213 * Instead we must wait until the completion of an RTT during
1214 * which we actually receive ACKs.
1215 */
1216
1217 /* Begin taking Vegas samples next time we send something. */
1218 tp->vegas.doing_vegas_now = 1;
1219
1220 /* Set the beginning of the next send window. */
1221 tp->vegas.beg_snd_nxt = tp->snd_nxt;
1222
1223 tp->vegas.cntRTT = 0;
1224 tp->vegas.minRTT = 0x7fffffff;
1225}
1226
1227/* Should we be taking Vegas samples right now? */
1228#define tcp_vegas_enabled(__tp) ((__tp)->vegas.doing_vegas_now)
1229
1230extern void tcp_ca_init(struct tcp_sock *tp);
1231
1232static inline void tcp_set_ca_state(struct tcp_sock *tp, u8 ca_state)
1233{
1234 if (tcp_is_vegas(tp)) {
1235 if (ca_state == TCP_CA_Open)
1236 tcp_vegas_enable(tp);
1237 else
1238 tcp_vegas_disable(tp);
1239 }
1240 tp->ca_state = ca_state;
1241}
1242
1243/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1244 * The exception is rate halving phase, when cwnd is decreasing towards
1245 * ssthresh.
1246 */
1247static inline __u32 tcp_current_ssthresh(struct tcp_sock *tp)
1248{
1249 if ((1<<tp->ca_state)&(TCPF_CA_CWR|TCPF_CA_Recovery))
1250 return tp->snd_ssthresh;
1251 else
1252 return max(tp->snd_ssthresh,
1253 ((tp->snd_cwnd >> 1) +
1254 (tp->snd_cwnd >> 2)));
1255}
1256
1257static inline void tcp_sync_left_out(struct tcp_sock *tp)
1258{
1259 if (tp->rx_opt.sack_ok &&
1260 (tp->sacked_out >= tp->packets_out - tp->lost_out))
1261 tp->sacked_out = tp->packets_out - tp->lost_out;
1262 tp->left_out = tp->sacked_out + tp->lost_out;
1263}
1264
1265extern void tcp_cwnd_application_limited(struct sock *sk);
1266
1267/* Congestion window validation. (RFC2861) */
1268
1269static inline void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp)
1270{
1271 __u32 packets_out = tp->packets_out;
1272
1273 if (packets_out >= tp->snd_cwnd) {
1274 /* Network is feed fully. */
1275 tp->snd_cwnd_used = 0;
1276 tp->snd_cwnd_stamp = tcp_time_stamp;
1277 } else {
1278 /* Network starves. */
1279 if (tp->packets_out > tp->snd_cwnd_used)
1280 tp->snd_cwnd_used = tp->packets_out;
1281
1282 if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= tp->rto)
1283 tcp_cwnd_application_limited(sk);
1284 }
1285}
1286
1287/* Set slow start threshould and cwnd not falling to slow start */
1288static inline void __tcp_enter_cwr(struct tcp_sock *tp)
1289{
1290 tp->undo_marker = 0;
1291 tp->snd_ssthresh = tcp_recalc_ssthresh(tp);
1292 tp->snd_cwnd = min(tp->snd_cwnd,
1293 tcp_packets_in_flight(tp) + 1U);
1294 tp->snd_cwnd_cnt = 0;
1295 tp->high_seq = tp->snd_nxt;
1296 tp->snd_cwnd_stamp = tcp_time_stamp;
1297 TCP_ECN_queue_cwr(tp);
1298}
1299
1300static inline void tcp_enter_cwr(struct tcp_sock *tp)
1301{
1302 tp->prior_ssthresh = 0;
1303 if (tp->ca_state < TCP_CA_CWR) {
1304 __tcp_enter_cwr(tp);
1305 tcp_set_ca_state(tp, TCP_CA_CWR);
1306 }
1307}
1308
1309extern __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst);
1310
1311/* Slow start with delack produces 3 packets of burst, so that
1312 * it is safe "de facto".
1313 */
1314static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
1315{
1316 return 3;
1317}
1318
1319static __inline__ int tcp_minshall_check(const struct tcp_sock *tp)
1320{
1321 return after(tp->snd_sml,tp->snd_una) &&
1322 !after(tp->snd_sml, tp->snd_nxt);
1323}
1324
1325static __inline__ void tcp_minshall_update(struct tcp_sock *tp, int mss,
1326 const struct sk_buff *skb)
1327{
1328 if (skb->len < mss)
1329 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1330}
1331
1332/* Return 0, if packet can be sent now without violation Nagle's rules:
1333 1. It is full sized.
1334 2. Or it contains FIN.
1335 3. Or TCP_NODELAY was set.
1336 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1337 With Minshall's modification: all sent small packets are ACKed.
1338 */
1339
1340static __inline__ int
1341tcp_nagle_check(const struct tcp_sock *tp, const struct sk_buff *skb,
1342 unsigned mss_now, int nonagle)
1343{
1344 return (skb->len < mss_now &&
1345 !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
1346 ((nonagle&TCP_NAGLE_CORK) ||
1347 (!nonagle &&
1348 tp->packets_out &&
1349 tcp_minshall_check(tp))));
1350}
1351
d5ac99a6 1352extern void tcp_set_skb_tso_segs(struct sock *, struct sk_buff *);
1da177e4
LT
1353
1354/* This checks if the data bearing packet SKB (usually sk->sk_send_head)
1355 * should be put on the wire right now.
1356 */
d5ac99a6 1357static __inline__ int tcp_snd_test(struct sock *sk,
1da177e4
LT
1358 struct sk_buff *skb,
1359 unsigned cur_mss, int nonagle)
1360{
d5ac99a6 1361 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1362 int pkts = tcp_skb_pcount(skb);
1363
1364 if (!pkts) {
d5ac99a6 1365 tcp_set_skb_tso_segs(sk, skb);
1da177e4
LT
1366 pkts = tcp_skb_pcount(skb);
1367 }
1368
1369 /* RFC 1122 - section 4.2.3.4
1370 *
1371 * We must queue if
1372 *
1373 * a) The right edge of this frame exceeds the window
1374 * b) There are packets in flight and we have a small segment
1375 * [SWS avoidance and Nagle algorithm]
1376 * (part of SWS is done on packetization)
1377 * Minshall version sounds: there are no _small_
1378 * segments in flight. (tcp_nagle_check)
1379 * c) We have too many packets 'in flight'
1380 *
1381 * Don't use the nagle rule for urgent data (or
1382 * for the final FIN -DaveM).
1383 *
1384 * Also, Nagle rule does not apply to frames, which
1385 * sit in the middle of queue (they have no chances
1386 * to get new data) and if room at tail of skb is
1387 * not enough to save something seriously (<32 for now).
1388 */
1389
1390 /* Don't be strict about the congestion window for the
1391 * final FIN frame. -DaveM
1392 */
1393 return (((nonagle&TCP_NAGLE_PUSH) || tp->urg_mode
1394 || !tcp_nagle_check(tp, skb, cur_mss, nonagle)) &&
1395 (((tcp_packets_in_flight(tp) + (pkts-1)) < tp->snd_cwnd) ||
1396 (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) &&
1397 !after(TCP_SKB_CB(skb)->end_seq, tp->snd_una + tp->snd_wnd));
1398}
1399
1400static __inline__ void tcp_check_probe_timer(struct sock *sk, struct tcp_sock *tp)
1401{
1402 if (!tp->packets_out && !tp->pending)
1403 tcp_reset_xmit_timer(sk, TCP_TIME_PROBE0, tp->rto);
1404}
1405
1406static __inline__ int tcp_skb_is_last(const struct sock *sk,
1407 const struct sk_buff *skb)
1408{
1409 return skb->next == (struct sk_buff *)&sk->sk_write_queue;
1410}
1411
1412/* Push out any pending frames which were held back due to
1413 * TCP_CORK or attempt at coalescing tiny packets.
1414 * The socket must be locked by the caller.
1415 */
1416static __inline__ void __tcp_push_pending_frames(struct sock *sk,
1417 struct tcp_sock *tp,
1418 unsigned cur_mss,
1419 int nonagle)
1420{
1421 struct sk_buff *skb = sk->sk_send_head;
1422
1423 if (skb) {
1424 if (!tcp_skb_is_last(sk, skb))
1425 nonagle = TCP_NAGLE_PUSH;
d5ac99a6 1426 if (!tcp_snd_test(sk, skb, cur_mss, nonagle) ||
1da177e4
LT
1427 tcp_write_xmit(sk, nonagle))
1428 tcp_check_probe_timer(sk, tp);
1429 }
1430 tcp_cwnd_validate(sk, tp);
1431}
1432
1433static __inline__ void tcp_push_pending_frames(struct sock *sk,
1434 struct tcp_sock *tp)
1435{
1436 __tcp_push_pending_frames(sk, tp, tcp_current_mss(sk, 1), tp->nonagle);
1437}
1438
1439static __inline__ int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp)
1440{
1441 struct sk_buff *skb = sk->sk_send_head;
1442
1443 return (skb &&
d5ac99a6 1444 tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
1da177e4
LT
1445 tcp_skb_is_last(sk, skb) ? TCP_NAGLE_PUSH : tp->nonagle));
1446}
1447
1448static __inline__ void tcp_init_wl(struct tcp_sock *tp, u32 ack, u32 seq)
1449{
1450 tp->snd_wl1 = seq;
1451}
1452
1453static __inline__ void tcp_update_wl(struct tcp_sock *tp, u32 ack, u32 seq)
1454{
1455 tp->snd_wl1 = seq;
1456}
1457
1458extern void tcp_destroy_sock(struct sock *sk);
1459
1460
1461/*
1462 * Calculate(/check) TCP checksum
1463 */
1464static __inline__ u16 tcp_v4_check(struct tcphdr *th, int len,
1465 unsigned long saddr, unsigned long daddr,
1466 unsigned long base)
1467{
1468 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1469}
1470
1471static __inline__ int __tcp_checksum_complete(struct sk_buff *skb)
1472{
1473 return (unsigned short)csum_fold(skb_checksum(skb, 0, skb->len, skb->csum));
1474}
1475
1476static __inline__ int tcp_checksum_complete(struct sk_buff *skb)
1477{
1478 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1479 __tcp_checksum_complete(skb);
1480}
1481
1482/* Prequeue for VJ style copy to user, combined with checksumming. */
1483
1484static __inline__ void tcp_prequeue_init(struct tcp_sock *tp)
1485{
1486 tp->ucopy.task = NULL;
1487 tp->ucopy.len = 0;
1488 tp->ucopy.memory = 0;
1489 skb_queue_head_init(&tp->ucopy.prequeue);
1490}
1491
1492/* Packet is added to VJ-style prequeue for processing in process
1493 * context, if a reader task is waiting. Apparently, this exciting
1494 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1495 * failed somewhere. Latency? Burstiness? Well, at least now we will
1496 * see, why it failed. 8)8) --ANK
1497 *
1498 * NOTE: is this not too big to inline?
1499 */
1500static __inline__ int tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1501{
1502 struct tcp_sock *tp = tcp_sk(sk);
1503
1504 if (!sysctl_tcp_low_latency && tp->ucopy.task) {
1505 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1506 tp->ucopy.memory += skb->truesize;
1507 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1508 struct sk_buff *skb1;
1509
1510 BUG_ON(sock_owned_by_user(sk));
1511
1512 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1513 sk->sk_backlog_rcv(sk, skb1);
1514 NET_INC_STATS_BH(LINUX_MIB_TCPPREQUEUEDROPPED);
1515 }
1516
1517 tp->ucopy.memory = 0;
1518 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1519 wake_up_interruptible(sk->sk_sleep);
1520 if (!tcp_ack_scheduled(tp))
1521 tcp_reset_xmit_timer(sk, TCP_TIME_DACK, (3*TCP_RTO_MIN)/4);
1522 }
1523 return 1;
1524 }
1525 return 0;
1526}
1527
1528
1529#undef STATE_TRACE
1530
1531#ifdef STATE_TRACE
1532static const char *statename[]={
1533 "Unused","Established","Syn Sent","Syn Recv",
1534 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1535 "Close Wait","Last ACK","Listen","Closing"
1536};
1537#endif
1538
1539static __inline__ void tcp_set_state(struct sock *sk, int state)
1540{
1541 int oldstate = sk->sk_state;
1542
1543 switch (state) {
1544 case TCP_ESTABLISHED:
1545 if (oldstate != TCP_ESTABLISHED)
1546 TCP_INC_STATS(TCP_MIB_CURRESTAB);
1547 break;
1548
1549 case TCP_CLOSE:
1550 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1551 TCP_INC_STATS(TCP_MIB_ESTABRESETS);
1552
1553 sk->sk_prot->unhash(sk);
1554 if (tcp_sk(sk)->bind_hash &&
1555 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1556 tcp_put_port(sk);
1557 /* fall through */
1558 default:
1559 if (oldstate==TCP_ESTABLISHED)
1560 TCP_DEC_STATS(TCP_MIB_CURRESTAB);
1561 }
1562
1563 /* Change state AFTER socket is unhashed to avoid closed
1564 * socket sitting in hash tables.
1565 */
1566 sk->sk_state = state;
1567
1568#ifdef STATE_TRACE
1569 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n",sk, statename[oldstate],statename[state]);
1570#endif
1571}
1572
1573static __inline__ void tcp_done(struct sock *sk)
1574{
1575 tcp_set_state(sk, TCP_CLOSE);
1576 tcp_clear_xmit_timers(sk);
1577
1578 sk->sk_shutdown = SHUTDOWN_MASK;
1579
1580 if (!sock_flag(sk, SOCK_DEAD))
1581 sk->sk_state_change(sk);
1582 else
1583 tcp_destroy_sock(sk);
1584}
1585
1586static __inline__ void tcp_sack_reset(struct tcp_options_received *rx_opt)
1587{
1588 rx_opt->dsack = 0;
1589 rx_opt->eff_sacks = 0;
1590 rx_opt->num_sacks = 0;
1591}
1592
1593static __inline__ void tcp_build_and_update_options(__u32 *ptr, struct tcp_sock *tp, __u32 tstamp)
1594{
1595 if (tp->rx_opt.tstamp_ok) {
1596 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
1597 (TCPOPT_NOP << 16) |
1598 (TCPOPT_TIMESTAMP << 8) |
1599 TCPOLEN_TIMESTAMP);
1600 *ptr++ = htonl(tstamp);
1601 *ptr++ = htonl(tp->rx_opt.ts_recent);
1602 }
1603 if (tp->rx_opt.eff_sacks) {
1604 struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks;
1605 int this_sack;
1606
1607 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) |
1608 (TCPOPT_NOP << 16) |
1609 (TCPOPT_SACK << 8) |
1610 (TCPOLEN_SACK_BASE +
1611 (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)));
1612 for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) {
1613 *ptr++ = htonl(sp[this_sack].start_seq);
1614 *ptr++ = htonl(sp[this_sack].end_seq);
1615 }
1616 if (tp->rx_opt.dsack) {
1617 tp->rx_opt.dsack = 0;
1618 tp->rx_opt.eff_sacks--;
1619 }
1620 }
1621}
1622
1623/* Construct a tcp options header for a SYN or SYN_ACK packet.
1624 * If this is every changed make sure to change the definition of
1625 * MAX_SYN_SIZE to match the new maximum number of options that you
1626 * can generate.
1627 */
1628static inline void tcp_syn_build_options(__u32 *ptr, int mss, int ts, int sack,
1629 int offer_wscale, int wscale, __u32 tstamp, __u32 ts_recent)
1630{
1631 /* We always get an MSS option.
1632 * The option bytes which will be seen in normal data
1633 * packets should timestamps be used, must be in the MSS
1634 * advertised. But we subtract them from tp->mss_cache so
1635 * that calculations in tcp_sendmsg are simpler etc.
1636 * So account for this fact here if necessary. If we
1637 * don't do this correctly, as a receiver we won't
1638 * recognize data packets as being full sized when we
1639 * should, and thus we won't abide by the delayed ACK
1640 * rules correctly.
1641 * SACKs don't matter, we never delay an ACK when we
1642 * have any of those going out.
1643 */
1644 *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss);
1645 if (ts) {
1646 if(sack)
1647 *ptr++ = __constant_htonl((TCPOPT_SACK_PERM << 24) | (TCPOLEN_SACK_PERM << 16) |
1648 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
1649 else
1650 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
1651 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP);
1652 *ptr++ = htonl(tstamp); /* TSVAL */
1653 *ptr++ = htonl(ts_recent); /* TSECR */
1654 } else if(sack)
1655 *ptr++ = __constant_htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
1656 (TCPOPT_SACK_PERM << 8) | TCPOLEN_SACK_PERM);
1657 if (offer_wscale)
1658 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_WINDOW << 16) | (TCPOLEN_WINDOW << 8) | (wscale));
1659}
1660
1661/* Determine a window scaling and initial window to offer. */
1662extern void tcp_select_initial_window(int __space, __u32 mss,
1663 __u32 *rcv_wnd, __u32 *window_clamp,
1664 int wscale_ok, __u8 *rcv_wscale);
1665
1666static inline int tcp_win_from_space(int space)
1667{
1668 return sysctl_tcp_adv_win_scale<=0 ?
1669 (space>>(-sysctl_tcp_adv_win_scale)) :
1670 space - (space>>sysctl_tcp_adv_win_scale);
1671}
1672
1673/* Note: caller must be prepared to deal with negative returns */
1674static inline int tcp_space(const struct sock *sk)
1675{
1676 return tcp_win_from_space(sk->sk_rcvbuf -
1677 atomic_read(&sk->sk_rmem_alloc));
1678}
1679
1680static inline int tcp_full_space(const struct sock *sk)
1681{
1682 return tcp_win_from_space(sk->sk_rcvbuf);
1683}
1684
60236fdd 1685static inline void tcp_acceptq_queue(struct sock *sk, struct request_sock *req,
1da177e4
LT
1686 struct sock *child)
1687{
0e87506f 1688 reqsk_queue_add(&tcp_sk(sk)->accept_queue, req, sk, child);
1da177e4
LT
1689}
1690
1da177e4 1691static inline void
60236fdd 1692tcp_synq_removed(struct sock *sk, struct request_sock *req)
1da177e4 1693{
0e87506f 1694 if (reqsk_queue_removed(&tcp_sk(sk)->accept_queue, req) == 0)
1da177e4 1695 tcp_delete_keepalive_timer(sk);
1da177e4
LT
1696}
1697
1698static inline void tcp_synq_added(struct sock *sk)
1699{
0e87506f 1700 if (reqsk_queue_added(&tcp_sk(sk)->accept_queue) == 0)
1da177e4 1701 tcp_reset_keepalive_timer(sk, TCP_TIMEOUT_INIT);
1da177e4
LT
1702}
1703
1704static inline int tcp_synq_len(struct sock *sk)
1705{
0e87506f 1706 return reqsk_queue_len(&tcp_sk(sk)->accept_queue);
1da177e4
LT
1707}
1708
1709static inline int tcp_synq_young(struct sock *sk)
1710{
0e87506f 1711 return reqsk_queue_len_young(&tcp_sk(sk)->accept_queue);
1da177e4
LT
1712}
1713
1714static inline int tcp_synq_is_full(struct sock *sk)
1715{
0e87506f 1716 return reqsk_queue_is_full(&tcp_sk(sk)->accept_queue);
1da177e4
LT
1717}
1718
60236fdd 1719static inline void tcp_synq_unlink(struct tcp_sock *tp, struct request_sock *req,
0e87506f 1720 struct request_sock **prev)
1da177e4 1721{
0e87506f 1722 reqsk_queue_unlink(&tp->accept_queue, req, prev);
1da177e4
LT
1723}
1724
60236fdd
ACM
1725static inline void tcp_synq_drop(struct sock *sk, struct request_sock *req,
1726 struct request_sock **prev)
1da177e4
LT
1727{
1728 tcp_synq_unlink(tcp_sk(sk), req, prev);
1729 tcp_synq_removed(sk, req);
60236fdd 1730 reqsk_free(req);
1da177e4
LT
1731}
1732
60236fdd 1733static __inline__ void tcp_openreq_init(struct request_sock *req,
1da177e4
LT
1734 struct tcp_options_received *rx_opt,
1735 struct sk_buff *skb)
1736{
2e6599cb
ACM
1737 struct inet_request_sock *ireq = inet_rsk(req);
1738
1da177e4 1739 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
2e6599cb 1740 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1741 req->mss = rx_opt->mss_clamp;
1742 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
2e6599cb
ACM
1743 ireq->tstamp_ok = rx_opt->tstamp_ok;
1744 ireq->sack_ok = rx_opt->sack_ok;
1745 ireq->snd_wscale = rx_opt->snd_wscale;
1746 ireq->wscale_ok = rx_opt->wscale_ok;
1747 ireq->acked = 0;
1748 ireq->ecn_ok = 0;
1749 ireq->rmt_port = skb->h.th->source;
1da177e4
LT
1750}
1751
1752extern void tcp_enter_memory_pressure(void);
1753
1754extern void tcp_listen_wlock(void);
1755
1756/* - We may sleep inside this lock.
1757 * - If sleeping is not required (or called from BH),
1758 * use plain read_(un)lock(&tcp_lhash_lock).
1759 */
1760
1761static inline void tcp_listen_lock(void)
1762{
1763 /* read_lock synchronizes to candidates to writers */
1764 read_lock(&tcp_lhash_lock);
1765 atomic_inc(&tcp_lhash_users);
1766 read_unlock(&tcp_lhash_lock);
1767}
1768
1769static inline void tcp_listen_unlock(void)
1770{
1771 if (atomic_dec_and_test(&tcp_lhash_users))
1772 wake_up(&tcp_lhash_wait);
1773}
1774
1775static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1776{
1777 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1778}
1779
1780static inline int keepalive_time_when(const struct tcp_sock *tp)
1781{
1782 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1783}
1784
1785static inline int tcp_fin_time(const struct tcp_sock *tp)
1786{
1787 int fin_timeout = tp->linger2 ? : sysctl_tcp_fin_timeout;
1788
1789 if (fin_timeout < (tp->rto<<2) - (tp->rto>>1))
1790 fin_timeout = (tp->rto<<2) - (tp->rto>>1);
1791
1792 return fin_timeout;
1793}
1794
1795static inline int tcp_paws_check(const struct tcp_options_received *rx_opt, int rst)
1796{
1797 if ((s32)(rx_opt->rcv_tsval - rx_opt->ts_recent) >= 0)
1798 return 0;
1799 if (xtime.tv_sec >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)
1800 return 0;
1801
1802 /* RST segments are not recommended to carry timestamp,
1803 and, if they do, it is recommended to ignore PAWS because
1804 "their cleanup function should take precedence over timestamps."
1805 Certainly, it is mistake. It is necessary to understand the reasons
1806 of this constraint to relax it: if peer reboots, clock may go
1807 out-of-sync and half-open connections will not be reset.
1808 Actually, the problem would be not existing if all
1809 the implementations followed draft about maintaining clock
1810 via reboots. Linux-2.2 DOES NOT!
1811
1812 However, we can relax time bounds for RST segments to MSL.
1813 */
1814 if (rst && xtime.tv_sec >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1815 return 0;
1816 return 1;
1817}
1818
1819static inline void tcp_v4_setup_caps(struct sock *sk, struct dst_entry *dst)
1820{
1821 sk->sk_route_caps = dst->dev->features;
1822 if (sk->sk_route_caps & NETIF_F_TSO) {
1823 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len)
1824 sk->sk_route_caps &= ~NETIF_F_TSO;
1825 }
1826}
1827
1828#define TCP_CHECK_TIMER(sk) do { } while (0)
1829
1830static inline int tcp_use_frto(const struct sock *sk)
1831{
1832 const struct tcp_sock *tp = tcp_sk(sk);
1833
1834 /* F-RTO must be activated in sysctl and there must be some
1835 * unsent new data, and the advertised window should allow
1836 * sending it.
1837 */
1838 return (sysctl_tcp_frto && sk->sk_send_head &&
1839 !after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
1840 tp->snd_una + tp->snd_wnd));
1841}
1842
1843static inline void tcp_mib_init(void)
1844{
1845 /* See RFC 2012 */
1846 TCP_ADD_STATS_USER(TCP_MIB_RTOALGORITHM, 1);
1847 TCP_ADD_STATS_USER(TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1848 TCP_ADD_STATS_USER(TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1849 TCP_ADD_STATS_USER(TCP_MIB_MAXCONN, -1);
1850}
1851
1852/* /proc */
1853enum tcp_seq_states {
1854 TCP_SEQ_STATE_LISTENING,
1855 TCP_SEQ_STATE_OPENREQ,
1856 TCP_SEQ_STATE_ESTABLISHED,
1857 TCP_SEQ_STATE_TIME_WAIT,
1858};
1859
1860struct tcp_seq_afinfo {
1861 struct module *owner;
1862 char *name;
1863 sa_family_t family;
1864 int (*seq_show) (struct seq_file *m, void *v);
1865 struct file_operations *seq_fops;
1866};
1867
1868struct tcp_iter_state {
1869 sa_family_t family;
1870 enum tcp_seq_states state;
1871 struct sock *syn_wait_sk;
1872 int bucket, sbucket, num, uid;
1873 struct seq_operations seq_ops;
1874};
1875
1876extern int tcp_proc_register(struct tcp_seq_afinfo *afinfo);
1877extern void tcp_proc_unregister(struct tcp_seq_afinfo *afinfo);
1878
1879/* TCP Westwood functions and constants */
1880
1881#define TCP_WESTWOOD_INIT_RTT (20*HZ) /* maybe too conservative?! */
1882#define TCP_WESTWOOD_RTT_MIN (HZ/20) /* 50ms */
1883
1884static inline void tcp_westwood_update_rtt(struct tcp_sock *tp, __u32 rtt_seq)
1885{
1886 if (tcp_is_westwood(tp))
1887 tp->westwood.rtt = rtt_seq;
1888}
1889
1890static inline __u32 __tcp_westwood_bw_rttmin(const struct tcp_sock *tp)
1891{
1892 return max((tp->westwood.bw_est) * (tp->westwood.rtt_min) /
1893 (__u32) (tp->mss_cache_std),
1894 2U);
1895}
1896
1897static inline __u32 tcp_westwood_bw_rttmin(const struct tcp_sock *tp)
1898{
1899 return tcp_is_westwood(tp) ? __tcp_westwood_bw_rttmin(tp) : 0;
1900}
1901
1902static inline int tcp_westwood_ssthresh(struct tcp_sock *tp)
1903{
1904 __u32 ssthresh = 0;
1905
1906 if (tcp_is_westwood(tp)) {
1907 ssthresh = __tcp_westwood_bw_rttmin(tp);
1908 if (ssthresh)
1909 tp->snd_ssthresh = ssthresh;
1910 }
1911
1912 return (ssthresh != 0);
1913}
1914
1915static inline int tcp_westwood_cwnd(struct tcp_sock *tp)
1916{
1917 __u32 cwnd = 0;
1918
1919 if (tcp_is_westwood(tp)) {
1920 cwnd = __tcp_westwood_bw_rttmin(tp);
1921 if (cwnd)
1922 tp->snd_cwnd = cwnd;
1923 }
1924
1925 return (cwnd != 0);
1926}
1927#endif /* _TCP_H */