slab: annotate on-slab caches nodelist locks
[linux-2.6-block.git] / include / linux / slab.h
CommitLineData
1da177e4 1/*
2e892f43
CL
2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
3 *
cde53535 4 * (C) SGI 2006, Christoph Lameter
2e892f43
CL
5 * Cleaned up and restructured to ease the addition of alternative
6 * implementations of SLAB allocators.
1da177e4
LT
7 */
8
9#ifndef _LINUX_SLAB_H
10#define _LINUX_SLAB_H
11
1b1cec4b 12#include <linux/gfp.h>
1b1cec4b 13#include <linux/types.h>
1da177e4 14
2e892f43
CL
15/*
16 * Flags to pass to kmem_cache_create().
17 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
1da177e4 18 */
55935a34 19#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
55935a34
CL
20#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
21#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
22#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
2e892f43 23#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
2e892f43 24#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
2e892f43 25#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
d7de4c1d
PZ
26/*
27 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
28 *
29 * This delays freeing the SLAB page by a grace period, it does _NOT_
30 * delay object freeing. This means that if you do kmem_cache_free()
31 * that memory location is free to be reused at any time. Thus it may
32 * be possible to see another object there in the same RCU grace period.
33 *
34 * This feature only ensures the memory location backing the object
35 * stays valid, the trick to using this is relying on an independent
36 * object validation pass. Something like:
37 *
38 * rcu_read_lock()
39 * again:
40 * obj = lockless_lookup(key);
41 * if (obj) {
42 * if (!try_get_ref(obj)) // might fail for free objects
43 * goto again;
44 *
45 * if (obj->key != key) { // not the object we expected
46 * put_ref(obj);
47 * goto again;
48 * }
49 * }
50 * rcu_read_unlock();
51 *
52 * See also the comment on struct slab_rcu in mm/slab.c.
53 */
2e892f43 54#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
101a5001 55#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
81819f0f 56#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
1da177e4 57
30327acf
TG
58/* Flag to prevent checks on free */
59#ifdef CONFIG_DEBUG_OBJECTS
60# define SLAB_DEBUG_OBJECTS 0x00400000UL
61#else
62# define SLAB_DEBUG_OBJECTS 0x00000000UL
63#endif
64
d5cff635
CM
65#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */
66
2dff4405
VN
67/* Don't track use of uninitialized memory */
68#ifdef CONFIG_KMEMCHECK
69# define SLAB_NOTRACK 0x01000000UL
70#else
71# define SLAB_NOTRACK 0x00000000UL
72#endif
4c13dd3b
DM
73#ifdef CONFIG_FAILSLAB
74# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */
75#else
76# define SLAB_FAILSLAB 0x00000000UL
77#endif
2dff4405 78
e12ba74d
MG
79/* The following flags affect the page allocator grouping pages by mobility */
80#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
81#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
6cb8f913
CL
82/*
83 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
84 *
85 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
86 *
87 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
88 * Both make kfree a no-op.
89 */
90#define ZERO_SIZE_PTR ((void *)16)
91
1d4ec7b1 92#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
6cb8f913
CL
93 (unsigned long)ZERO_SIZE_PTR)
94
3b0efdfa
CL
95/*
96 * Common fields provided in kmem_cache by all slab allocators
97 * This struct is either used directly by the allocator (SLOB)
98 * or the allocator must include definitions for all fields
99 * provided in kmem_cache_common in their definition of kmem_cache.
100 *
101 * Once we can do anonymous structs (C11 standard) we could put a
102 * anonymous struct definition in these allocators so that the
103 * separate allocations in the kmem_cache structure of SLAB and
104 * SLUB is no longer needed.
105 */
106#ifdef CONFIG_SLOB
107struct kmem_cache {
108 unsigned int object_size;/* The original size of the object */
109 unsigned int size; /* The aligned/padded/added on size */
110 unsigned int align; /* Alignment as calculated */
111 unsigned long flags; /* Active flags on the slab */
112 const char *name; /* Slab name for sysfs */
113 int refcount; /* Use counter */
114 void (*ctor)(void *); /* Called on object slot creation */
115 struct list_head list; /* List of all slab caches on the system */
116};
117#endif
118
2e892f43
CL
119/*
120 * struct kmem_cache related prototypes
121 */
122void __init kmem_cache_init(void);
81819f0f 123int slab_is_available(void);
1da177e4 124
2e892f43 125struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
ebe29738 126 unsigned long,
51cc5068 127 void (*)(void *));
2e892f43
CL
128void kmem_cache_destroy(struct kmem_cache *);
129int kmem_cache_shrink(struct kmem_cache *);
2e892f43 130void kmem_cache_free(struct kmem_cache *, void *);
2e892f43 131
0a31bd5f
CL
132/*
133 * Please use this macro to create slab caches. Simply specify the
134 * name of the structure and maybe some flags that are listed above.
135 *
136 * The alignment of the struct determines object alignment. If you
137 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
138 * then the objects will be properly aligned in SMP configurations.
139 */
140#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
141 sizeof(struct __struct), __alignof__(struct __struct),\
20c2df83 142 (__flags), NULL)
0a31bd5f 143
0aa817f0
CL
144/*
145 * The largest kmalloc size supported by the slab allocators is
146 * 32 megabyte (2^25) or the maximum allocatable page order if that is
147 * less than 32 MB.
148 *
149 * WARNING: Its not easy to increase this value since the allocators have
150 * to do various tricks to work around compiler limitations in order to
151 * ensure proper constant folding.
152 */
debee076
CL
153#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
154 (MAX_ORDER + PAGE_SHIFT - 1) : 25)
0aa817f0
CL
155
156#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
157#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
158
90810645
CL
159/*
160 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
161 * alignment larger than the alignment of a 64-bit integer.
162 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
163 */
3192b920
CL
164#ifdef ARCH_DMA_MINALIGN
165#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
166#else
167#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
168#endif
169
90810645
CL
170/*
171 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
172 * Intended for arches that get misalignment faults even for 64 bit integer
173 * aligned buffers.
174 */
3192b920
CL
175#ifndef ARCH_SLAB_MINALIGN
176#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
177#endif
178
ba6c496e
GC
179/*
180 * This is the main placeholder for memcg-related information in kmem caches.
181 * struct kmem_cache will hold a pointer to it, so the memory cost while
182 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it
183 * would otherwise be if that would be bundled in kmem_cache: we'll need an
184 * extra pointer chase. But the trade off clearly lays in favor of not
185 * penalizing non-users.
186 *
187 * Both the root cache and the child caches will have it. For the root cache,
188 * this will hold a dynamically allocated array large enough to hold
189 * information about the currently limited memcgs in the system.
190 *
191 * Child caches will hold extra metadata needed for its operation. Fields are:
192 *
193 * @memcg: pointer to the memcg this cache belongs to
194 */
195struct memcg_cache_params {
196 bool is_root_cache;
197 union {
198 struct kmem_cache *memcg_caches[0];
199 struct mem_cgroup *memcg;
200 };
201};
202
2e892f43
CL
203/*
204 * Common kmalloc functions provided by all allocators
205 */
93bc4e89 206void * __must_check __krealloc(const void *, size_t, gfp_t);
fd76bab2 207void * __must_check krealloc(const void *, size_t, gfp_t);
2e892f43 208void kfree(const void *);
3ef0e5ba 209void kzfree(const void *);
fd76bab2 210size_t ksize(const void *);
2e892f43 211
81cda662
CL
212/*
213 * Allocator specific definitions. These are mainly used to establish optimized
214 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
215 * selecting the appropriate general cache at compile time.
216 *
217 * Allocators must define at least:
218 *
219 * kmem_cache_alloc()
220 * __kmalloc()
221 * kmalloc()
222 *
223 * Those wishing to support NUMA must also define:
224 *
225 * kmem_cache_alloc_node()
226 * kmalloc_node()
227 *
228 * See each allocator definition file for additional comments and
229 * implementation notes.
230 */
231#ifdef CONFIG_SLUB
232#include <linux/slub_def.h>
233#elif defined(CONFIG_SLOB)
234#include <linux/slob_def.h>
235#else
236#include <linux/slab_def.h>
237#endif
238
2e892f43 239/**
a8203725 240 * kmalloc_array - allocate memory for an array.
2e892f43
CL
241 * @n: number of elements.
242 * @size: element size.
243 * @flags: the type of memory to allocate.
800590f5
PD
244 *
245 * The @flags argument may be one of:
246 *
247 * %GFP_USER - Allocate memory on behalf of user. May sleep.
248 *
249 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
250 *
6193a2ff 251 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
800590f5
PD
252 * For example, use this inside interrupt handlers.
253 *
254 * %GFP_HIGHUSER - Allocate pages from high memory.
255 *
256 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
257 *
258 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
259 *
6193a2ff
PM
260 * %GFP_NOWAIT - Allocation will not sleep.
261 *
262 * %GFP_THISNODE - Allocate node-local memory only.
263 *
264 * %GFP_DMA - Allocation suitable for DMA.
265 * Should only be used for kmalloc() caches. Otherwise, use a
266 * slab created with SLAB_DMA.
267 *
800590f5
PD
268 * Also it is possible to set different flags by OR'ing
269 * in one or more of the following additional @flags:
270 *
271 * %__GFP_COLD - Request cache-cold pages instead of
272 * trying to return cache-warm pages.
273 *
800590f5
PD
274 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
275 *
800590f5
PD
276 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
277 * (think twice before using).
278 *
279 * %__GFP_NORETRY - If memory is not immediately available,
280 * then give up at once.
281 *
282 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
283 *
284 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
6193a2ff
PM
285 *
286 * There are other flags available as well, but these are not intended
287 * for general use, and so are not documented here. For a full list of
288 * potential flags, always refer to linux/gfp.h.
800590f5 289 */
a8203725 290static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
1da177e4 291{
a3860c1c 292 if (size != 0 && n > SIZE_MAX / size)
6193a2ff 293 return NULL;
a8203725
XW
294 return __kmalloc(n * size, flags);
295}
296
297/**
298 * kcalloc - allocate memory for an array. The memory is set to zero.
299 * @n: number of elements.
300 * @size: element size.
301 * @flags: the type of memory to allocate (see kmalloc).
302 */
303static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
304{
305 return kmalloc_array(n, size, flags | __GFP_ZERO);
1da177e4
LT
306}
307
6193a2ff
PM
308#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
309/**
310 * kmalloc_node - allocate memory from a specific node
311 * @size: how many bytes of memory are required.
312 * @flags: the type of memory to allocate (see kcalloc).
313 * @node: node to allocate from.
314 *
315 * kmalloc() for non-local nodes, used to allocate from a specific node
316 * if available. Equivalent to kmalloc() in the non-NUMA single-node
317 * case.
318 */
55935a34
CL
319static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
320{
321 return kmalloc(size, flags);
322}
323
324static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
325{
326 return __kmalloc(size, flags);
327}
6193a2ff
PM
328
329void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
330
331static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
332 gfp_t flags, int node)
333{
334 return kmem_cache_alloc(cachep, flags);
335}
336#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
55935a34 337
1d2c8eea
CH
338/*
339 * kmalloc_track_caller is a special version of kmalloc that records the
340 * calling function of the routine calling it for slab leak tracking instead
341 * of just the calling function (confusing, eh?).
342 * It's useful when the call to kmalloc comes from a widely-used standard
343 * allocator where we care about the real place the memory allocation
344 * request comes from.
345 */
7adde04a 346#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
347 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
348 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 349extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
1d2c8eea 350#define kmalloc_track_caller(size, flags) \
ce71e27c 351 __kmalloc_track_caller(size, flags, _RET_IP_)
2e892f43
CL
352#else
353#define kmalloc_track_caller(size, flags) \
354 __kmalloc(size, flags)
355#endif /* DEBUG_SLAB */
1da177e4 356
97e2bde4 357#ifdef CONFIG_NUMA
8b98c169
CH
358/*
359 * kmalloc_node_track_caller is a special version of kmalloc_node that
360 * records the calling function of the routine calling it for slab leak
361 * tracking instead of just the calling function (confusing, eh?).
362 * It's useful when the call to kmalloc_node comes from a widely-used
363 * standard allocator where we care about the real place the memory
364 * allocation request comes from.
365 */
7adde04a 366#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \
f3f74101
EG
367 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \
368 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING))
ce71e27c 369extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
8b98c169
CH
370#define kmalloc_node_track_caller(size, flags, node) \
371 __kmalloc_node_track_caller(size, flags, node, \
ce71e27c 372 _RET_IP_)
2e892f43
CL
373#else
374#define kmalloc_node_track_caller(size, flags, node) \
375 __kmalloc_node(size, flags, node)
8b98c169 376#endif
2e892f43 377
8b98c169 378#else /* CONFIG_NUMA */
8b98c169
CH
379
380#define kmalloc_node_track_caller(size, flags, node) \
381 kmalloc_track_caller(size, flags)
97e2bde4 382
dfcd3610 383#endif /* CONFIG_NUMA */
10cef602 384
81cda662
CL
385/*
386 * Shortcuts
387 */
388static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
389{
390 return kmem_cache_alloc(k, flags | __GFP_ZERO);
391}
392
393/**
394 * kzalloc - allocate memory. The memory is set to zero.
395 * @size: how many bytes of memory are required.
396 * @flags: the type of memory to allocate (see kmalloc).
397 */
398static inline void *kzalloc(size_t size, gfp_t flags)
399{
400 return kmalloc(size, flags | __GFP_ZERO);
401}
402
979b0fea
JL
403/**
404 * kzalloc_node - allocate zeroed memory from a particular memory node.
405 * @size: how many bytes of memory are required.
406 * @flags: the type of memory to allocate (see kmalloc).
407 * @node: memory node from which to allocate
408 */
409static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
410{
411 return kmalloc_node(size, flags | __GFP_ZERO, node);
412}
413
242860a4
EG
414/*
415 * Determine the size of a slab object
416 */
417static inline unsigned int kmem_cache_size(struct kmem_cache *s)
418{
419 return s->object_size;
420}
421
7e85ee0c
PE
422void __init kmem_cache_init_late(void);
423
1da177e4 424#endif /* _LINUX_SLAB_H */