Merge tag 'cxl-fixes-6.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[linux-2.6-block.git] / include / linux / skbuff.h
CommitLineData
2874c5fd 1/* SPDX-License-Identifier: GPL-2.0-or-later */
1da177e4
LT
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
1da177e4
LT
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
187f1882 16#include <linux/bug.h>
8842d285 17#include <linux/bvec.h>
1da177e4 18#include <linux/cache.h>
56b17425 19#include <linux/rbtree.h>
51f3d02b 20#include <linux/socket.h>
c1d1b437 21#include <linux/refcount.h>
1da177e4 22
60063497 23#include <linux/atomic.h>
1da177e4
LT
24#include <asm/types.h>
25#include <linux/spinlock.h>
1da177e4 26#include <net/checksum.h>
a80958f4 27#include <linux/rcupdate.h>
131ea667 28#include <linux/dma-mapping.h>
c8f44aff 29#include <linux/netdev_features.h>
1bd758eb 30#include <net/flow_dissector.h>
72b31f72 31#include <linux/in6.h>
8b10cab6 32#include <linux/if_packet.h>
f35f8219 33#include <linux/llist.h>
f70ea018 34#include <net/flow.h>
261db6c2
JS
35#if IS_ENABLED(CONFIG_NF_CONNTRACK)
36#include <linux/netfilter/nf_conntrack_common.h>
37#endif
66e4c8d9 38#include <net/net_debug.h>
5b8285cc 39#include <net/dropreason-core.h>
21d2e673 40#include <net/netmem.h>
1da177e4 41
9facd941
JK
42/**
43 * DOC: skb checksums
44 *
45 * The interface for checksum offload between the stack and networking drivers
7a6ae71b
TH
46 * is as follows...
47 *
9facd941
JK
48 * IP checksum related features
49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
7a6ae71b
TH
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
db1f00fb
DC
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
7a6ae71b
TH
54 * to its device.
55 *
9facd941
JK
56 * .. flat-table:: Checksum related device features
57 * :widths: 1 10
58 *
59 * * - %NETIF_F_HW_CSUM
60 * - The driver (or its device) is able to compute one
61 * IP (one's complement) checksum for any combination
62 * of protocols or protocol layering. The checksum is
63 * computed and set in a packet per the CHECKSUM_PARTIAL
64 * interface (see below).
65 *
66 * * - %NETIF_F_IP_CSUM
67 * - Driver (device) is only able to checksum plain
68 * TCP or UDP packets over IPv4. These are specifically
69 * unencapsulated packets of the form IPv4|TCP or
70 * IPv4|UDP where the Protocol field in the IPv4 header
71 * is TCP or UDP. The IPv4 header may contain IP options.
72 * This feature cannot be set in features for a device
73 * with NETIF_F_HW_CSUM also set. This feature is being
74 * DEPRECATED (see below).
75 *
76 * * - %NETIF_F_IPV6_CSUM
77 * - Driver (device) is only able to checksum plain
78 * TCP or UDP packets over IPv6. These are specifically
79 * unencapsulated packets of the form IPv6|TCP or
80 * IPv6|UDP where the Next Header field in the IPv6
81 * header is either TCP or UDP. IPv6 extension headers
82 * are not supported with this feature. This feature
83 * cannot be set in features for a device with
84 * NETIF_F_HW_CSUM also set. This feature is being
85 * DEPRECATED (see below).
86 *
87 * * - %NETIF_F_RXCSUM
88 * - Driver (device) performs receive checksum offload.
89 * This flag is only used to disable the RX checksum
90 * feature for a device. The stack will accept receive
91 * checksum indication in packets received on a device
92 * regardless of whether NETIF_F_RXCSUM is set.
93 *
94 * Checksumming of received packets by device
95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 *
97 * Indication of checksum verification is set in &sk_buff.ip_summed.
98 * Possible values are:
99 *
100 * - %CHECKSUM_NONE
78ea85f1 101 *
7a6ae71b 102 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
103 * The packet contains full (though not verified) checksum in packet but
104 * not in skb->csum. Thus, skb->csum is undefined in this case.
105 *
9facd941 106 * - %CHECKSUM_UNNECESSARY
78ea85f1
DB
107 *
108 * The hardware you're dealing with doesn't calculate the full checksum
9facd941
JK
109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111 * if their checksums are okay. &sk_buff.csum is still undefined in this case
7a6ae71b
TH
112 * though. A driver or device must never modify the checksum field in the
113 * packet even if checksum is verified.
77cffe23 114 *
9facd941
JK
115 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
116 *
117 * - TCP: IPv6 and IPv4.
118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
77cffe23
TH
119 * zero UDP checksum for either IPv4 or IPv6, the networking stack
120 * may perform further validation in this case.
9facd941
JK
121 * - GRE: only if the checksum is present in the header.
122 * - SCTP: indicates the CRC in SCTP header has been validated.
123 * - FCOE: indicates the CRC in FC frame has been validated.
77cffe23 124 *
9facd941
JK
125 * &sk_buff.csum_level indicates the number of consecutive checksums found in
126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
77cffe23
TH
127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128 * and a device is able to verify the checksums for UDP (possibly zero),
9facd941 129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
77cffe23 130 * two. If the device were only able to verify the UDP checksum and not
db1f00fb 131 * GRE, either because it doesn't support GRE checksum or because GRE
77cffe23
TH
132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133 * not considered in this case).
78ea85f1 134 *
9facd941 135 * - %CHECKSUM_COMPLETE
78ea85f1
DB
136 *
137 * This is the most generic way. The device supplied checksum of the _whole_
9facd941 138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
78ea85f1
DB
139 * hardware doesn't need to parse L3/L4 headers to implement this.
140 *
b4759dcd 141 * Notes:
9facd941 142 *
b4759dcd
DC
143 * - Even if device supports only some protocols, but is able to produce
144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1 146 *
9facd941 147 * - %CHECKSUM_PARTIAL
78ea85f1 148 *
6edec0e6
TH
149 * A checksum is set up to be offloaded to a device as described in the
150 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 151 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
152 * on the same host, or it may be set in the input path in GRO or remote
153 * checksum offload. For the purposes of checksum verification, the checksum
154 * referred to by skb->csum_start + skb->csum_offset and any preceding
155 * checksums in the packet are considered verified. Any checksums in the
156 * packet that are after the checksum being offloaded are not considered to
157 * be verified.
78ea85f1 158 *
9facd941
JK
159 * Checksumming on transmit for non-GSO
160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
78ea85f1 161 *
9facd941
JK
162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163 * Values are:
164 *
165 * - %CHECKSUM_PARTIAL
78ea85f1 166 *
7a6ae71b 167 * The driver is required to checksum the packet as seen by hard_start_xmit()
9facd941
JK
168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
169 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
170 * A driver may verify that the
7a6ae71b 171 * csum_start and csum_offset values are valid values given the length and
db1f00fb
DC
172 * offset of the packet, but it should not attempt to validate that the
173 * checksum refers to a legitimate transport layer checksum -- it is the
7a6ae71b
TH
174 * purview of the stack to validate that csum_start and csum_offset are set
175 * correctly.
176 *
177 * When the stack requests checksum offload for a packet, the driver MUST
178 * ensure that the checksum is set correctly. A driver can either offload the
179 * checksum calculation to the device, or call skb_checksum_help (in the case
180 * that the device does not support offload for a particular checksum).
181 *
9facd941
JK
182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
43c26a1a 184 * checksum offload capability.
9facd941 185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
43c26a1a 186 * on network device checksumming capabilities: if a packet does not match
9facd941
JK
187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188 * &sk_buff.csum_not_inet, see :ref:`crc`)
189 * is called to resolve the checksum.
78ea85f1 190 *
9facd941 191 * - %CHECKSUM_NONE
78ea85f1 192 *
7a6ae71b
TH
193 * The skb was already checksummed by the protocol, or a checksum is not
194 * required.
78ea85f1 195 *
9facd941 196 * - %CHECKSUM_UNNECESSARY
78ea85f1 197 *
db1f00fb 198 * This has the same meaning as CHECKSUM_NONE for checksum offload on
7a6ae71b 199 * output.
78ea85f1 200 *
9facd941
JK
201 * - %CHECKSUM_COMPLETE
202 *
7a6ae71b 203 * Not used in checksum output. If a driver observes a packet with this value
9facd941
JK
204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205 *
206 * .. _crc:
207 *
208 * Non-IP checksum (CRC) offloads
209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210 *
211 * .. flat-table::
212 * :widths: 1 10
213 *
214 * * - %NETIF_F_SCTP_CRC
215 * - This feature indicates that a device is capable of
216 * offloading the SCTP CRC in a packet. To perform this offload the stack
217 * will set csum_start and csum_offset accordingly, set ip_summed to
218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220 * A driver that supports both IP checksum offload and SCTP CRC32c offload
221 * must verify which offload is configured for a packet by testing the
222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224 *
225 * * - %NETIF_F_FCOE_CRC
226 * - This feature indicates that a device is capable of offloading the FCOE
227 * CRC in a packet. To perform this offload the stack will set ip_summed
228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229 * accordingly. Note that there is no indication in the skbuff that the
230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231 * both IP checksum offload and FCOE CRC offload must verify which offload
232 * is configured for a packet, presumably by inspecting packet headers.
233 *
234 * Checksumming on output with GSO
235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236 *
237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
7a6ae71b 238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
9facd941 239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
7a6ae71b 240 * part of the GSO operation is implied. If a checksum is being offloaded
9facd941 241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
db1f00fb
DC
242 * csum_offset are set to refer to the outermost checksum being offloaded
243 * (two offloaded checksums are possible with UDP encapsulation).
78ea85f1
DB
244 */
245
60476372 246/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
247#define CHECKSUM_NONE 0
248#define CHECKSUM_UNNECESSARY 1
249#define CHECKSUM_COMPLETE 2
250#define CHECKSUM_PARTIAL 3
1da177e4 251
77cffe23
TH
252/* Maximum value in skb->csum_level */
253#define SKB_MAX_CSUM_LEVEL 3
254
0bec8c88 255#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 256#define SKB_WITH_OVERHEAD(X) \
deea84b0 257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
115f1a5c
ED
258
259/* For X bytes available in skb->head, what is the minimal
260 * allocation needed, knowing struct skb_shared_info needs
261 * to be aligned.
262 */
263#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265
fc910a27
DM
266#define SKB_MAX_ORDER(X, ORDER) \
267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
268#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
269#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
270
87fb4b7b
ED
271/* return minimum truesize of one skb containing X bytes of data */
272#define SKB_TRUESIZE(X) ((X) + \
273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275
7999096f 276struct ahash_request;
1da177e4 277struct net_device;
716ea3a7 278struct scatterlist;
9c55e01c 279struct pipe_inode_info;
a8f820aa 280struct iov_iter;
fd11a83d 281struct napi_struct;
d58e468b
PP
282struct bpf_prog;
283union bpf_attr;
df5042f4 284struct skb_ext;
2195e2a0 285struct ts_config;
1da177e4 286
34666d46 287#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 288struct nf_bridge_info {
3eaf4025
FW
289 enum {
290 BRNF_PROTO_UNCHANGED,
291 BRNF_PROTO_8021Q,
292 BRNF_PROTO_PPPOE
7fb48c5b 293 } orig_proto:8;
72b1e5e4
FW
294 u8 pkt_otherhost:1;
295 u8 in_prerouting:1;
296 u8 bridged_dnat:1;
94623f57 297 u8 sabotage_in_done:1;
411ffb4f 298 __u16 frag_max_size;
98748088 299 int physinif;
63cdbc06
FW
300
301 /* always valid & non-NULL from FORWARD on, for physdev match */
302 struct net_device *physoutdev;
7fb48c5b 303 union {
72b1e5e4 304 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
305 __be32 ipv4_daddr;
306 struct in6_addr ipv6_daddr;
72b1e5e4
FW
307
308 /* after prerouting + nat detected: store original source
309 * mac since neigh resolution overwrites it, only used while
310 * skb is out in neigh layer.
311 */
312 char neigh_header[8];
72b31f72 313 };
1da177e4
LT
314};
315#endif
316
95a7233c
PB
317#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318/* Chain in tc_skb_ext will be used to share the tc chain with
319 * ovs recirc_id. It will be set to the current chain by tc
320 * and read by ovs to recirc_id.
321 */
322struct tc_skb_ext {
80cd22c3
PB
323 union {
324 u64 act_miss_cookie;
325 __u32 chain;
326 };
038ebb1a 327 __u16 mru;
635d448a 328 __u16 zone;
6f022c2d
PB
329 u8 post_ct:1;
330 u8 post_ct_snat:1;
331 u8 post_ct_dnat:1;
80cd22c3 332 u8 act_miss:1; /* Set if act_miss_cookie is used */
7b4858df 333 u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
95a7233c
PB
334};
335#endif
336
1da177e4 337struct sk_buff_head {
1a2fb220
KC
338 /* These two members must be first to match sk_buff. */
339 struct_group_tagged(sk_buff_list, list,
340 struct sk_buff *next;
341 struct sk_buff *prev;
342 );
1da177e4
LT
343
344 __u32 qlen;
345 spinlock_t lock;
346};
347
348struct sk_buff;
349
3948b059
ED
350#ifndef CONFIG_MAX_SKB_FRAGS
351# define CONFIG_MAX_SKB_FRAGS 17
a715dea3 352#endif
3948b059
ED
353
354#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355
3953c46c
MRL
356/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357 * segment using its current segmentation instead.
358 */
359#define GSO_BY_FRAGS 0xFFFF
360
21d2e673
MA
361typedef struct skb_frag {
362 netmem_ref netmem;
363 unsigned int len;
364 unsigned int offset;
365} skb_frag_t;
1da177e4 366
161e6137 367/**
7240b60c 368 * skb_frag_size() - Returns the size of a skb fragment
161e6137
PT
369 * @frag: skb fragment
370 */
9e903e08
ED
371static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372{
21d2e673 373 return frag->len;
9e903e08
ED
374}
375
161e6137 376/**
7240b60c 377 * skb_frag_size_set() - Sets the size of a skb fragment
161e6137
PT
378 * @frag: skb fragment
379 * @size: size of fragment
380 */
9e903e08
ED
381static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382{
21d2e673 383 frag->len = size;
9e903e08
ED
384}
385
161e6137 386/**
7240b60c 387 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
161e6137
PT
388 * @frag: skb fragment
389 * @delta: value to add
390 */
9e903e08
ED
391static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392{
21d2e673 393 frag->len += delta;
9e903e08
ED
394}
395
161e6137 396/**
7240b60c 397 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
161e6137
PT
398 * @frag: skb fragment
399 * @delta: value to subtract
400 */
9e903e08
ED
401static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402{
21d2e673 403 frag->len -= delta;
9e903e08
ED
404}
405
161e6137
PT
406/**
407 * skb_frag_must_loop - Test if %p is a high memory page
408 * @p: fragment's page
409 */
c613c209
WB
410static inline bool skb_frag_must_loop(struct page *p)
411{
412#if defined(CONFIG_HIGHMEM)
29766bcf 413 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
c613c209
WB
414 return true;
415#endif
416 return false;
417}
418
419/**
420 * skb_frag_foreach_page - loop over pages in a fragment
421 *
422 * @f: skb frag to operate on
21d2e673 423 * @f_off: offset from start of f->netmem
c613c209
WB
424 * @f_len: length from f_off to loop over
425 * @p: (temp var) current page
426 * @p_off: (temp var) offset from start of current page,
427 * non-zero only on first page.
428 * @p_len: (temp var) length in current page,
429 * < PAGE_SIZE only on first and last page.
430 * @copied: (temp var) length so far, excluding current p_len.
431 *
432 * A fragment can hold a compound page, in which case per-page
433 * operations, notably kmap_atomic, must be called for each
434 * regular page.
435 */
436#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
437 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
438 p_off = (f_off) & (PAGE_SIZE - 1), \
439 p_len = skb_frag_must_loop(p) ? \
440 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
441 copied = 0; \
442 copied < f_len; \
443 copied += p_len, p++, p_off = 0, \
444 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
445
ac45f602 446/**
d3a21be8 447 * struct skb_shared_hwtstamps - hardware time stamps
97dc7cd9
GE
448 * @hwtstamp: hardware time stamp transformed into duration
449 * since arbitrary point in time
450 * @netdev_data: address/cookie of network device driver used as
451 * reference to actual hardware time stamp
ac45f602
PO
452 *
453 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 454 * skb->tstamp.
ac45f602
PO
455 *
456 * hwtstamps can only be compared against other hwtstamps from
457 * the same device.
458 *
459 * This structure is attached to packets as part of the
460 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461 */
462struct skb_shared_hwtstamps {
97dc7cd9
GE
463 union {
464 ktime_t hwtstamp;
465 void *netdev_data;
466 };
ac45f602
PO
467};
468
2244d07b
OH
469/* Definitions for tx_flags in struct skb_shared_info */
470enum {
471 /* generate hardware time stamp */
472 SKBTX_HW_TSTAMP = 1 << 0,
473
e7fd2885 474 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
475 SKBTX_SW_TSTAMP = 1 << 1,
476
477 /* device driver is going to provide hardware time stamp */
478 SKBTX_IN_PROGRESS = 1 << 2,
479
51eb7492
GE
480 /* generate hardware time stamp based on cycles if supported */
481 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
482
6e3e939f 483 /* generate wifi status information (where possible) */
62b1a8ab 484 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4 485
97dc7cd9
GE
486 /* determine hardware time stamp based on time or cycles */
487 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
488
e7fd2885
WB
489 /* generate software time stamp when entering packet scheduling */
490 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
491};
492
e1c8a607 493#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 494 SKBTX_SCHED_TSTAMP)
51eb7492
GE
495#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
496 SKBTX_HW_TSTAMP_USE_CYCLES | \
497 SKBTX_ANY_SW_TSTAMP)
f24b9be5 498
06b4feb3
JL
499/* Definitions for flags in struct skb_shared_info */
500enum {
501 /* use zcopy routines */
502 SKBFL_ZEROCOPY_ENABLE = BIT(0),
503
504 /* This indicates at least one fragment might be overwritten
505 * (as in vmsplice(), sendfile() ...)
506 * If we need to compute a TX checksum, we'll need to copy
507 * all frags to avoid possible bad checksum
508 */
509 SKBFL_SHARED_FRAG = BIT(1),
9b65b17d
TA
510
511 /* segment contains only zerocopy data and should not be
512 * charged to the kernel memory.
513 */
514 SKBFL_PURE_ZEROCOPY = BIT(2),
2e07a521
PB
515
516 SKBFL_DONT_ORPHAN = BIT(3),
753f1ca4
PB
517
518 /* page references are managed by the ubuf_info, so it's safe to
519 * use frags only up until ubuf_info is released
520 */
521 SKBFL_MANAGED_FRAG_REFS = BIT(4),
06b4feb3
JL
522};
523
524#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
2e07a521 525#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
753f1ca4 526 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
06b4feb3 527
7ab4f16f
PB
528struct ubuf_info_ops {
529 void (*complete)(struct sk_buff *, struct ubuf_info *,
530 bool zerocopy_success);
65bada80
PB
531 /* has to be compatible with skb_zcopy_set() */
532 int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
7ab4f16f
PB
533};
534
a6686f2f
SM
535/*
536 * The callback notifies userspace to release buffers when skb DMA is done in
537 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
538 * The zerocopy_success argument is true if zero copy transmit occurred,
539 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
540 * The ctx field is used to track device context.
541 * The desc field is used to track userspace buffer index.
a6686f2f
SM
542 */
543struct ubuf_info {
7ab4f16f 544 const struct ubuf_info_ops *ops;
c1d1b437 545 refcount_t refcnt;
04c2d33e 546 u8 flags;
ac45f602
PO
547};
548
6eaab4df
PB
549struct ubuf_info_msgzc {
550 struct ubuf_info ubuf;
551
552 union {
553 struct {
554 unsigned long desc;
555 void *ctx;
556 };
557 struct {
558 u32 id;
559 u16 len;
560 u16 zerocopy:1;
561 u32 bytelen;
562 };
563 };
564
e7d2b510
PB
565 struct mmpin {
566 struct user_struct *user;
567 unsigned int num_pg;
568 } mmp;
6eaab4df
PB
569};
570
52267790 571#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
6eaab4df
PB
572#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
573 ubuf)
52267790 574
6f89dbce
SV
575int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
576void mm_unaccount_pinned_pages(struct mmpin *mmp);
577
48eb03dd
SF
578/* Preserve some data across TX submission and completion.
579 *
580 * Note, this state is stored in the driver. Extending the layout
581 * might need some special care.
582 */
583struct xsk_tx_metadata_compl {
584 __u64 *tx_timestamp;
585};
586
1da177e4
LT
587/* This data is invariant across clones and lives at
588 * the end of the header data, ie. at skb->end.
589 */
590struct skb_shared_info {
06b4feb3 591 __u8 flags;
de8f3a83
DB
592 __u8 meta_len;
593 __u8 nr_frags;
9f42f126 594 __u8 tx_flags;
7967168c
HX
595 unsigned short gso_size;
596 /* Warning: this field is not always filled in (UFO)! */
597 unsigned short gso_segs;
1da177e4 598 struct sk_buff *frag_list;
48eb03dd
SF
599 union {
600 struct skb_shared_hwtstamps hwtstamps;
601 struct xsk_tx_metadata_compl xsk_meta;
602 };
7f564528 603 unsigned int gso_type;
09c2d251 604 u32 tskey;
ec7d2f2c
ED
605
606 /*
607 * Warning : all fields before dataref are cleared in __alloc_skb()
608 */
609 atomic_t dataref;
d16697cb 610 unsigned int xdp_frags_size;
ec7d2f2c 611
69e3c75f
JB
612 /* Intermediate layers must ensure that destructor_arg
613 * remains valid until skb destructor */
614 void * destructor_arg;
a6686f2f 615
fed66381
ED
616 /* must be last field, see pskb_expand_head() */
617 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
618};
619
9ec7ea14
JK
620/**
621 * DOC: dataref and headerless skbs
622 *
623 * Transport layers send out clones of payload skbs they hold for
624 * retransmissions. To allow lower layers of the stack to prepend their headers
625 * we split &skb_shared_info.dataref into two halves.
626 * The lower 16 bits count the overall number of references.
627 * The higher 16 bits indicate how many of the references are payload-only.
628 * skb_header_cloned() checks if skb is allowed to add / write the headers.
629 *
630 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
631 * (via __skb_header_release()). Any clone created from marked skb will get
632 * &sk_buff.hdr_len populated with the available headroom.
633 * If there's the only clone in existence it's able to modify the headroom
634 * at will. The sequence of calls inside the transport layer is::
635 *
636 * <alloc skb>
637 * skb_reserve()
638 * __skb_header_release()
639 * skb_clone()
640 * // send the clone down the stack
641 *
642 * This is not a very generic construct and it depends on the transport layers
643 * doing the right thing. In practice there's usually only one payload-only skb.
644 * Having multiple payload-only skbs with different lengths of hdr_len is not
645 * possible. The payload-only skbs should never leave their owner.
1da177e4
LT
646 */
647#define SKB_DATAREF_SHIFT 16
648#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
649
d179cd12
DM
650
651enum {
c8753d55
VS
652 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
653 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
654 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
655};
656
7967168c
HX
657enum {
658 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
659
660 /* This indicates the skb is from an untrusted source. */
d9d30adf 661 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
662
663 /* This indicates the tcp segment has CWR set. */
d9d30adf 664 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 665
d9d30adf 666 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 667
d9d30adf 668 SKB_GSO_TCPV6 = 1 << 4,
68c33163 669
d9d30adf 670 SKB_GSO_FCOE = 1 << 5,
73136267 671
d9d30adf 672 SKB_GSO_GRE = 1 << 6,
0d89d203 673
d9d30adf 674 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 675
d9d30adf 676 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 677
d9d30adf 678 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 679
d9d30adf 680 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 681
d9d30adf 682 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 683
d9d30adf 684 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 685
d9d30adf 686 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 687
d9d30adf 688 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 689
d9d30adf 690 SKB_GSO_ESP = 1 << 15,
0c19f846
WB
691
692 SKB_GSO_UDP = 1 << 16,
ee80d1eb
WB
693
694 SKB_GSO_UDP_L4 = 1 << 17,
3b335832
SK
695
696 SKB_GSO_FRAGLIST = 1 << 18,
7967168c
HX
697};
698
2e07fa9c
ACM
699#if BITS_PER_LONG > 32
700#define NET_SKBUFF_DATA_USES_OFFSET 1
701#endif
702
703#ifdef NET_SKBUFF_DATA_USES_OFFSET
704typedef unsigned int sk_buff_data_t;
705#else
706typedef unsigned char *sk_buff_data_t;
707#endif
708
ddccc9ef
JK
709/**
710 * DOC: Basic sk_buff geometry
711 *
712 * struct sk_buff itself is a metadata structure and does not hold any packet
713 * data. All the data is held in associated buffers.
714 *
715 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
716 * into two parts:
717 *
718 * - data buffer, containing headers and sometimes payload;
719 * this is the part of the skb operated on by the common helpers
720 * such as skb_put() or skb_pull();
721 * - shared info (struct skb_shared_info) which holds an array of pointers
722 * to read-only data in the (page, offset, length) format.
723 *
724 * Optionally &skb_shared_info.frag_list may point to another skb.
725 *
726 * Basic diagram may look like this::
727 *
728 * ---------------
729 * | sk_buff |
730 * ---------------
731 * ,--------------------------- + head
732 * / ,----------------- + data
733 * / / ,----------- + tail
734 * | | | , + end
735 * | | | |
736 * v v v v
737 * -----------------------------------------------
738 * | headroom | data | tailroom | skb_shared_info |
739 * -----------------------------------------------
740 * + [page frag]
741 * + [page frag]
742 * + [page frag]
743 * + [page frag] ---------
744 * + frag_list --> | sk_buff |
745 * ---------
746 *
747 */
748
161e6137 749/**
1da177e4
LT
750 * struct sk_buff - socket buffer
751 * @next: Next buffer in list
752 * @prev: Previous buffer in list
363ec392 753 * @tstamp: Time we arrived/left
d2f273f0
RD
754 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
755 * for retransmit timer
56b17425 756 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d2f273f0 757 * @list: queue head
df6160de 758 * @ll_node: anchor in an llist (eg socket defer_list)
d84e0bd7 759 * @sk: Socket we are owned by
1da177e4 760 * @dev: Device we arrived on/are leaving by
d2f273f0 761 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
d84e0bd7 762 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 763 * @_skb_refdst: destination entry (with norefcount bit)
1da177e4
LT
764 * @len: Length of actual data
765 * @data_len: Data length
766 * @mac_len: Length of link layer header
334a8132 767 * @hdr_len: writable header length of cloned skb
663ead3b
HX
768 * @csum: Checksum (must include start/offset pair)
769 * @csum_start: Offset from skb->head where checksumming should start
770 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 771 * @priority: Packet queueing priority
60ff7467 772 * @ignore_df: allow local fragmentation
1da177e4 773 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 774 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
775 * @nohdr: Payload reference only, must not modify header
776 * @pkt_type: Packet class
c83c2486 777 * @fclone: skbuff clone status
c83c2486 778 * @ipvs_property: skbuff is owned by ipvs
d2f273f0
RD
779 * @inner_protocol_type: whether the inner protocol is
780 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
781 * @remcsum_offload: remote checksum offload is enabled
875e8939
IS
782 * @offload_fwd_mark: Packet was L2-forwarded in hardware
783 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
e7246e12 784 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 785 * @tc_at_ingress: used within tc_classify to distinguish in/egress
2c64605b
PNA
786 * @redirected: packet was redirected by packet classifier
787 * @from_ingress: packet was redirected from the ingress path
42df6e1d 788 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
31729363
RD
789 * @peeked: this packet has been seen already, so stats have been
790 * done for it, don't do them again
ba9dda3a 791 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
792 * @protocol: Packet protocol from driver
793 * @destructor: Destruct function
e2080072 794 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
6ed6e1c7 795 * @_sk_redir: socket redirection information for skmsg
a9e419dc 796 * @_nfct: Associated connection, if any (with nfctinfo bits)
8964be4a 797 * @skb_iif: ifindex of device we arrived on
1da177e4 798 * @tc_index: Traffic control index
61b905da 799 * @hash: the packet hash
d84e0bd7 800 * @queue_mapping: Queue mapping for multiqueue devices
d2f273f0
RD
801 * @head_frag: skb was allocated from page fragments,
802 * not allocated by kmalloc() or vmalloc().
8b700862 803 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
6a5bcd84
IA
804 * @pp_recycle: mark the packet for recycling instead of freeing (implies
805 * page_pool support on driver)
df5042f4 806 * @active_extensions: active extensions (skb_ext_id types)
553a5672 807 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 808 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 809 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 810 * ports.
a3b18ddb 811 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
812 * @wifi_acked_valid: wifi_acked was set
813 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 814 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
d2f273f0
RD
815 * @encapsulation: indicates the inner headers in the skbuff are valid
816 * @encap_hdr_csum: software checksum is needed
817 * @csum_valid: checksum is already valid
dba00306 818 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
d2f273f0
RD
819 * @csum_complete_sw: checksum was completed by software
820 * @csum_level: indicates the number of consecutive checksums found in
821 * the packet minus one that have been verified as
822 * CHECKSUM_UNNECESSARY (max 3)
4ff06203 823 * @dst_pending_confirm: need to confirm neighbour
a48d189e 824 * @decrypted: Decrypted SKB
5fc88f93 825 * @slow_gro: state present at GRO time, slower prepare step required
a1ac9c8a 826 * @mono_delivery_time: When set, skb->tstamp has the
35c3e279
AC
827 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
828 * skb->tstamp has the (rcv) timestamp at ingress and
829 * delivery_time at egress.
161e6137 830 * @napi_id: id of the NAPI struct this skb came from
d2f273f0 831 * @sender_cpu: (aka @napi_id) source CPU in XPS
68822bdf 832 * @alloc_cpu: CPU which did the skb allocation.
984bc16c 833 * @secmark: security marking
d84e0bd7 834 * @mark: Generic packet mark
d2f273f0
RD
835 * @reserved_tailroom: (aka @mark) number of bytes of free space available
836 * at the tail of an sk_buff
354259fa 837 * @vlan_all: vlan fields (proto & tci)
86a9bad3 838 * @vlan_proto: vlan encapsulation protocol
6aa895b0 839 * @vlan_tci: vlan tag control information
0d89d203 840 * @inner_protocol: Protocol (encapsulation)
d2f273f0
RD
841 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
842 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
6a674e9c
JG
843 * @inner_transport_header: Inner transport layer header (encapsulation)
844 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 845 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
846 * @transport_header: Transport layer header
847 * @network_header: Network layer header
848 * @mac_header: Link layer header
fa69ee5a 849 * @kcov_handle: KCOV remote handle for remote coverage collection
d84e0bd7
DB
850 * @tail: Tail pointer
851 * @end: End pointer
852 * @head: Head of buffer
853 * @data: Data head pointer
854 * @truesize: Buffer size
855 * @users: User count - see {datagram,tcp}.c
df5042f4 856 * @extensions: allocated extensions, valid if active_extensions is nonzero
1da177e4
LT
857 */
858
859struct sk_buff {
363ec392 860 union {
56b17425 861 struct {
1a2fb220 862 /* These two members must be first to match sk_buff_head. */
56b17425
ED
863 struct sk_buff *next;
864 struct sk_buff *prev;
865
866 union {
bffa72cf
ED
867 struct net_device *dev;
868 /* Some protocols might use this space to store information,
869 * while device pointer would be NULL.
870 * UDP receive path is one user.
871 */
872 unsigned long dev_scratch;
56b17425
ED
873 };
874 };
fa0f5273 875 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
d4546c25 876 struct list_head list;
f35f8219 877 struct llist_node ll_node;
363ec392 878 };
fa0f5273 879
18685451 880 struct sock *sk;
1da177e4 881
c84d9490 882 union {
bffa72cf 883 ktime_t tstamp;
d3edd06e 884 u64 skb_mstamp_ns; /* earliest departure time */
c84d9490 885 };
1da177e4
LT
886 /*
887 * This is the control buffer. It is free to use for every
888 * layer. Please put your private variables there. If you
889 * want to keep them across layers you have to do a skb_clone()
890 * first. This is owned by whoever has the skb queued ATM.
891 */
da3f5cf1 892 char cb[48] __aligned(8);
1da177e4 893
e2080072
ED
894 union {
895 struct {
896 unsigned long _skb_refdst;
897 void (*destructor)(struct sk_buff *skb);
898 };
899 struct list_head tcp_tsorted_anchor;
e3526bb9
CW
900#ifdef CONFIG_NET_SOCK_MSG
901 unsigned long _sk_redir;
902#endif
e2080072
ED
903 };
904
b1937227 905#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 906 unsigned long _nfct;
da3f5cf1 907#endif
1da177e4 908 unsigned int len,
334a8132
PM
909 data_len;
910 __u16 mac_len,
911 hdr_len;
b1937227
ED
912
913 /* Following fields are _not_ copied in __copy_skb_header()
914 * Note that queue_mapping is here mostly to fill a hole.
915 */
b1937227 916 __u16 queue_mapping;
36bbef52
DB
917
918/* if you move cloned around you also must adapt those constants */
919#ifdef __BIG_ENDIAN_BITFIELD
920#define CLONED_MASK (1 << 7)
921#else
922#define CLONED_MASK 1
923#endif
fba84957 924#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
36bbef52 925
d2f273f0 926 /* private: */
36bbef52 927 __u8 __cloned_offset[0];
d2f273f0 928 /* public: */
b1937227 929 __u8 cloned:1,
6869c4d8 930 nohdr:1,
b84f4cc9 931 fclone:2,
a59322be 932 peeked:1,
b1937227 933 head_frag:1,
6a5bcd84
IA
934 pfmemalloc:1,
935 pp_recycle:1; /* page_pool recycle indicator */
df5042f4
FW
936#ifdef CONFIG_SKB_EXTENSIONS
937 __u8 active_extensions;
938#endif
6a5bcd84 939
03f61041 940 /* Fields enclosed in headers group are copied
b1937227
ED
941 * using a single memcpy() in __copy_skb_header()
942 */
03f61041 943 struct_group(headers,
4031ae6e 944
d2f273f0 945 /* private: */
233577a2 946 __u8 __pkt_type_offset[0];
d2f273f0 947 /* public: */
fba84957 948 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
b1937227 949 __u8 ignore_df:1;
4c60d04c 950 __u8 dst_pending_confirm:1;
b1937227 951 __u8 ip_summed:2;
3853b584 952 __u8 ooo_okay:1;
8b700862 953
d2f273f0 954 /* private: */
04aae213 955 __u8 __mono_tc_offset[0];
d2f273f0 956 /* public: */
3b5d4ddf 957 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
e420bed0 958#ifdef CONFIG_NET_XGRESS
3b5d4ddf 959 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
c0ba8611 960 __u8 tc_skip_classify:1;
7449197d 961#endif
c0ba8611
JK
962 __u8 remcsum_offload:1;
963 __u8 csum_complete_sw:1;
964 __u8 csum_level:2;
4c60d04c 965 __u8 inner_protocol_type:1;
b94e032b 966
61b905da 967 __u8 l4_hash:1;
a3b18ddb 968 __u8 sw_hash:1;
eb6fba75 969#ifdef CONFIG_WIRELESS
6e3e939f
JB
970 __u8 wifi_acked_valid:1;
971 __u8 wifi_acked:1;
eb6fba75 972#endif
3bdc0eba 973 __u8 no_fcs:1;
77cffe23 974 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 975 __u8 encapsulation:1;
7e2b10c1 976 __u8 encap_hdr_csum:1;
5d0c2b95 977 __u8 csum_valid:1;
b1937227
ED
978#ifdef CONFIG_IPV6_NDISC_NODETYPE
979 __u8 ndisc_nodetype:2;
980#endif
8b700862 981
48d80c39 982#if IS_ENABLED(CONFIG_IP_VS)
0c4b2d37 983 __u8 ipvs_property:1;
48d80c39
JK
984#endif
985#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4c60d04c 986 __u8 nf_trace:1;
48d80c39 987#endif
6bc506b4
IS
988#ifdef CONFIG_NET_SWITCHDEV
989 __u8 offload_fwd_mark:1;
875e8939 990 __u8 offload_l3_fwd_mark:1;
2c64605b 991#endif
2c64605b 992 __u8 redirected:1;
11941f8a 993#ifdef CONFIG_NET_REDIRECT
2c64605b 994 __u8 from_ingress:1;
e7246e12 995#endif
42df6e1d
LW
996#ifdef CONFIG_NETFILTER_SKIP_EGRESS
997 __u8 nf_skip_egress:1;
998#endif
9f06f87f 999#ifdef CONFIG_SKB_DECRYPTED
a48d189e
SB
1000 __u8 decrypted:1;
1001#endif
5fc88f93 1002 __u8 slow_gro:1;
c24831a1 1003#if IS_ENABLED(CONFIG_IP_SCTP)
7449197d 1004 __u8 csum_not_inet:1;
c24831a1 1005#endif
b1937227 1006
e420bed0 1007#if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
b1937227 1008 __u16 tc_index; /* traffic control index */
b1937227 1009#endif
fe55f6d5 1010
4398f3f6
JK
1011 u16 alloc_cpu;
1012
b1937227
ED
1013 union {
1014 __wsum csum;
1015 struct {
1016 __u16 csum_start;
1017 __u16 csum_offset;
1018 };
1019 };
1020 __u32 priority;
1021 int skb_iif;
1022 __u32 hash;
354259fa
ED
1023 union {
1024 u32 vlan_all;
1025 struct {
1026 __be16 vlan_proto;
1027 __u16 vlan_tci;
1028 };
1029 };
2bd82484
ED
1030#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1031 union {
1032 unsigned int napi_id;
1033 unsigned int sender_cpu;
1034 };
97fc2f08 1035#endif
984bc16c 1036#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 1037 __u32 secmark;
0c4f691f 1038#endif
0c4f691f 1039
3b885787
NH
1040 union {
1041 __u32 mark;
16fad69c 1042 __u32 reserved_tailroom;
3b885787 1043 };
1da177e4 1044
8bce6d7d
TH
1045 union {
1046 __be16 inner_protocol;
1047 __u8 inner_ipproto;
1048 };
1049
1a37e412
SH
1050 __u16 inner_transport_header;
1051 __u16 inner_network_header;
1052 __u16 inner_mac_header;
b1937227
ED
1053
1054 __be16 protocol;
1a37e412
SH
1055 __u16 transport_header;
1056 __u16 network_header;
1057 __u16 mac_header;
b1937227 1058
fa69ee5a
ME
1059#ifdef CONFIG_KCOV
1060 u64 kcov_handle;
1061#endif
1062
03f61041 1063 ); /* end headers group */
b1937227 1064
1da177e4 1065 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 1066 sk_buff_data_t tail;
4305b541 1067 sk_buff_data_t end;
1da177e4 1068 unsigned char *head,
4305b541 1069 *data;
27a884dc 1070 unsigned int truesize;
63354797 1071 refcount_t users;
df5042f4
FW
1072
1073#ifdef CONFIG_SKB_EXTENSIONS
bf873a80 1074 /* only usable after checking ->active_extensions != 0 */
df5042f4
FW
1075 struct skb_ext *extensions;
1076#endif
1da177e4
LT
1077};
1078
fba84957
KC
1079/* if you move pkt_type around you also must adapt those constants */
1080#ifdef __BIG_ENDIAN_BITFIELD
1081#define PKT_TYPE_MAX (7 << 5)
1082#else
1083#define PKT_TYPE_MAX 7
1084#endif
1085#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1086
354259fa 1087/* if you move tc_at_ingress or mono_delivery_time
3b5d4ddf
MKL
1088 * around, you also must adapt these constants.
1089 */
fba84957 1090#ifdef __BIG_ENDIAN_BITFIELD
c0ba8611
JK
1091#define SKB_MONO_DELIVERY_TIME_MASK (1 << 7)
1092#define TC_AT_INGRESS_MASK (1 << 6)
fba84957 1093#else
c0ba8611
JK
1094#define SKB_MONO_DELIVERY_TIME_MASK (1 << 0)
1095#define TC_AT_INGRESS_MASK (1 << 1)
fba84957 1096#endif
04aae213 1097#define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
fba84957 1098
1da177e4
LT
1099#ifdef __KERNEL__
1100/*
1101 * Handling routines are only of interest to the kernel
1102 */
1da177e4 1103
c93bdd0e
MG
1104#define SKB_ALLOC_FCLONE 0x01
1105#define SKB_ALLOC_RX 0x02
fd11a83d 1106#define SKB_ALLOC_NAPI 0x04
c93bdd0e 1107
161e6137
PT
1108/**
1109 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1110 * @skb: buffer
1111 */
c93bdd0e
MG
1112static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1113{
1114 return unlikely(skb->pfmemalloc);
1115}
1116
7fee226a
ED
1117/*
1118 * skb might have a dst pointer attached, refcounted or not.
1119 * _skb_refdst low order bit is set if refcount was _not_ taken
1120 */
1121#define SKB_DST_NOREF 1UL
1122#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1123
1124/**
1125 * skb_dst - returns skb dst_entry
1126 * @skb: buffer
1127 *
1128 * Returns skb dst_entry, regardless of reference taken or not.
1129 */
adf30907
ED
1130static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1131{
161e6137 1132 /* If refdst was not refcounted, check we still are in a
7fee226a
ED
1133 * rcu_read_lock section
1134 */
1135 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1136 !rcu_read_lock_held() &&
1137 !rcu_read_lock_bh_held());
1138 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
1139}
1140
7fee226a
ED
1141/**
1142 * skb_dst_set - sets skb dst
1143 * @skb: buffer
1144 * @dst: dst entry
1145 *
1146 * Sets skb dst, assuming a reference was taken on dst and should
1147 * be released by skb_dst_drop()
1148 */
adf30907
ED
1149static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1150{
8a886b14 1151 skb->slow_gro |= !!dst;
7fee226a
ED
1152 skb->_skb_refdst = (unsigned long)dst;
1153}
1154
932bc4d7
JA
1155/**
1156 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1157 * @skb: buffer
1158 * @dst: dst entry
1159 *
1160 * Sets skb dst, assuming a reference was not taken on dst.
1161 * If dst entry is cached, we do not take reference and dst_release
1162 * will be avoided by refdst_drop. If dst entry is not cached, we take
1163 * reference, so that last dst_release can destroy the dst immediately.
1164 */
1165static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1166{
dbfc4fb7 1167 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
a432934a 1168 skb->slow_gro |= !!dst;
dbfc4fb7 1169 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 1170}
7fee226a
ED
1171
1172/**
25985edc 1173 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
1174 * @skb: buffer
1175 */
1176static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1177{
1178 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
1179}
1180
8b10cab6
JHS
1181/* For mangling skb->pkt_type from user space side from applications
1182 * such as nft, tc, etc, we only allow a conservative subset of
1183 * possible pkt_types to be set.
1184*/
1185static inline bool skb_pkt_type_ok(u32 ptype)
1186{
1187 return ptype <= PACKET_OTHERHOST;
1188}
1189
161e6137
PT
1190/**
1191 * skb_napi_id - Returns the skb's NAPI id
1192 * @skb: buffer
1193 */
90b602f8
ML
1194static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1195{
1196#ifdef CONFIG_NET_RX_BUSY_POLL
1197 return skb->napi_id;
1198#else
1199 return 0;
eb6fba75
JK
1200#endif
1201}
1202
1203static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1204{
1205#ifdef CONFIG_WIRELESS
1206 return skb->wifi_acked_valid;
1207#else
1208 return 0;
90b602f8
ML
1209#endif
1210}
1211
161e6137
PT
1212/**
1213 * skb_unref - decrement the skb's reference count
1214 * @skb: buffer
1215 *
1216 * Returns true if we can free the skb.
1217 */
3889a803
PA
1218static inline bool skb_unref(struct sk_buff *skb)
1219{
1220 if (unlikely(!skb))
1221 return false;
63354797 1222 if (likely(refcount_read(&skb->users) == 1))
3889a803 1223 smp_rmb();
63354797 1224 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
1225 return false;
1226
1227 return true;
1228}
1229
1cface55
ED
1230static inline bool skb_data_unref(const struct sk_buff *skb,
1231 struct skb_shared_info *shinfo)
1232{
1233 int bias;
1234
1235 if (!skb->cloned)
1236 return true;
1237
1238 bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1239
1240 if (atomic_read(&shinfo->dataref) == bias)
1241 smp_rmb();
1242 else if (atomic_sub_return(bias, &shinfo->dataref))
1243 return false;
1244
1245 return true;
1246}
1247
c205cc75
MD
1248void __fix_address
1249kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
c504e5c2
MD
1250
1251/**
1252 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1253 * @skb: buffer to free
1254 */
1255static inline void kfree_skb(struct sk_buff *skb)
1256{
1257 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1258}
1259
0a463c78 1260void skb_release_head_state(struct sk_buff *skb);
215b0f19
MD
1261void kfree_skb_list_reason(struct sk_buff *segs,
1262 enum skb_drop_reason reason);
6413139d 1263void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
7965bd4d 1264void skb_tx_error(struct sk_buff *skb);
be769db2 1265
215b0f19
MD
1266static inline void kfree_skb_list(struct sk_buff *segs)
1267{
1268 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1269}
1270
be769db2 1271#ifdef CONFIG_TRACEPOINTS
7965bd4d 1272void consume_skb(struct sk_buff *skb);
be769db2
HX
1273#else
1274static inline void consume_skb(struct sk_buff *skb)
1275{
1276 return kfree_skb(skb);
1277}
1278#endif
1279
ca2c1418 1280void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 1281void __kfree_skb(struct sk_buff *skb);
bad43ca8 1282
7965bd4d
JP
1283void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1284bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1285 bool *fragstolen, int *delta_truesize);
bad43ca8 1286
7965bd4d
JP
1287struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1288 int node);
2ea2f62c 1289struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 1290struct sk_buff *build_skb(void *data, unsigned int frag_size);
ba0509b6
JDB
1291struct sk_buff *build_skb_around(struct sk_buff *skb,
1292 void *data, unsigned int frag_size);
68822bdf 1293void skb_attempt_defer_free(struct sk_buff *skb);
161e6137 1294
f450d539 1295struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
ce098da1 1296struct sk_buff *slab_build_skb(void *data);
f450d539 1297
161e6137
PT
1298/**
1299 * alloc_skb - allocate a network buffer
1300 * @size: size to allocate
1301 * @priority: allocation mask
1302 *
1303 * This function is a convenient wrapper around __alloc_skb().
1304 */
d179cd12 1305static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 1306 gfp_t priority)
d179cd12 1307{
564824b0 1308 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
1309}
1310
2e4e4410
ED
1311struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1312 unsigned long data_len,
1313 int max_page_order,
1314 int *errcode,
1315 gfp_t gfp_mask);
da29e4b4 1316struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
2e4e4410 1317
d0bf4a9e
ED
1318/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1319struct sk_buff_fclones {
1320 struct sk_buff skb1;
1321
1322 struct sk_buff skb2;
1323
2638595a 1324 refcount_t fclone_ref;
d0bf4a9e
ED
1325};
1326
1327/**
1328 * skb_fclone_busy - check if fclone is busy
293de7de 1329 * @sk: socket
d0bf4a9e
ED
1330 * @skb: buffer
1331 *
bda13fed 1332 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62 1333 * Some drivers call skb_orphan() in their ndo_start_xmit(),
8527ca77 1334 * so we also check that didn't happen.
d0bf4a9e 1335 */
39bb5e62
ED
1336static inline bool skb_fclone_busy(const struct sock *sk,
1337 const struct sk_buff *skb)
d0bf4a9e
ED
1338{
1339 const struct sk_buff_fclones *fclones;
1340
1341 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1342
1343 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1344 refcount_read(&fclones->fclone_ref) > 1 &&
f4dae54e 1345 READ_ONCE(fclones->skb2.sk) == sk;
d0bf4a9e
ED
1346}
1347
161e6137
PT
1348/**
1349 * alloc_skb_fclone - allocate a network buffer from fclone cache
1350 * @size: size to allocate
1351 * @priority: allocation mask
1352 *
1353 * This function is a convenient wrapper around __alloc_skb().
1354 */
d179cd12 1355static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1356 gfp_t priority)
d179cd12 1357{
c93bdd0e 1358 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1359}
1360
7965bd4d 1361struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
b0768a86 1362void skb_headers_offset_update(struct sk_buff *skb, int off);
7965bd4d
JP
1363int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1364struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
08303c18 1365void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
7965bd4d 1366struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1367struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1368 gfp_t gfp_mask, bool fclone);
1369static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1370 gfp_t gfp_mask)
1371{
1372 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1373}
7965bd4d
JP
1374
1375int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1376struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1377 unsigned int headroom);
f1260ff1 1378struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
7965bd4d
JP
1379struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1380 int newtailroom, gfp_t priority);
48a1df65
JD
1381int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1382 int offset, int len);
1383int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1384 int offset, int len);
7965bd4d 1385int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1386int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1387
1388/**
1389 * skb_pad - zero pad the tail of an skb
1390 * @skb: buffer to pad
1391 * @pad: space to pad
1392 *
1393 * Ensure that a buffer is followed by a padding area that is zero
1394 * filled. Used by network drivers which may DMA or transfer data
1395 * beyond the buffer end onto the wire.
1396 *
1397 * May return error in out of memory cases. The skb is freed on error.
1398 */
1399static inline int skb_pad(struct sk_buff *skb, int pad)
1400{
1401 return __skb_pad(skb, pad, true);
1402}
ead2ceb0 1403#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1404
be12a1fe 1405int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
96449f90 1406 int offset, size_t size, size_t max_frags);
be12a1fe 1407
d94d9fee 1408struct skb_seq_state {
677e90ed
TG
1409 __u32 lower_offset;
1410 __u32 upper_offset;
1411 __u32 frag_idx;
1412 __u32 stepped_offset;
1413 struct sk_buff *root_skb;
1414 struct sk_buff *cur_skb;
1415 __u8 *frag_data;
97550f6f 1416 __u32 frag_off;
677e90ed
TG
1417};
1418
7965bd4d
JP
1419void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1420 unsigned int to, struct skb_seq_state *st);
1421unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1422 struct skb_seq_state *st);
1423void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1424
7965bd4d 1425unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1426 unsigned int to, struct ts_config *config);
3fc7e8a6 1427
09323cc4
TH
1428/*
1429 * Packet hash types specify the type of hash in skb_set_hash.
1430 *
1431 * Hash types refer to the protocol layer addresses which are used to
1432 * construct a packet's hash. The hashes are used to differentiate or identify
1433 * flows of the protocol layer for the hash type. Hash types are either
1434 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1435 *
1436 * Properties of hashes:
1437 *
1438 * 1) Two packets in different flows have different hash values
1439 * 2) Two packets in the same flow should have the same hash value
1440 *
1441 * A hash at a higher layer is considered to be more specific. A driver should
1442 * set the most specific hash possible.
1443 *
1444 * A driver cannot indicate a more specific hash than the layer at which a hash
1445 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1446 *
1447 * A driver may indicate a hash level which is less specific than the
1448 * actual layer the hash was computed on. For instance, a hash computed
1449 * at L4 may be considered an L3 hash. This should only be done if the
1450 * driver can't unambiguously determine that the HW computed the hash at
1451 * the higher layer. Note that the "should" in the second property above
1452 * permits this.
1453 */
1454enum pkt_hash_types {
1455 PKT_HASH_TYPE_NONE, /* Undefined type */
1456 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1457 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1458 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1459};
1460
bcc83839 1461static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1462{
bcc83839 1463 skb->hash = 0;
a3b18ddb 1464 skb->sw_hash = 0;
bcc83839
TH
1465 skb->l4_hash = 0;
1466}
1467
1468static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1469{
1470 if (!skb->l4_hash)
1471 skb_clear_hash(skb);
1472}
1473
1474static inline void
1475__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1476{
1477 skb->l4_hash = is_l4;
1478 skb->sw_hash = is_sw;
61b905da 1479 skb->hash = hash;
09323cc4
TH
1480}
1481
bcc83839
TH
1482static inline void
1483skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1484{
1485 /* Used by drivers to set hash from HW */
1486 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1487}
1488
1489static inline void
1490__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1491{
1492 __skb_set_hash(skb, hash, true, is_l4);
1493}
1494
e5276937 1495void __skb_get_hash(struct sk_buff *skb);
b917783c 1496u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937 1497u32 skb_get_poff(const struct sk_buff *skb);
f96533cd 1498u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
72a338bc 1499 const struct flow_keys_basic *keys, int hlen);
e5276937 1500__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
f96533cd 1501 const void *data, int hlen_proto);
e5276937
TH
1502
1503static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1504 int thoff, u8 ip_proto)
1505{
1506 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1507}
1508
1509void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1510 const struct flow_dissector_key *key,
1511 unsigned int key_count);
1512
089b19a9 1513struct bpf_flow_dissector;
0ba98502
SL
1514u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1515 __be16 proto, int nhoff, int hlen, unsigned int flags);
089b19a9 1516
3cbf4ffb
SF
1517bool __skb_flow_dissect(const struct net *net,
1518 const struct sk_buff *skb,
e5276937 1519 struct flow_dissector *flow_dissector,
f96533cd
AL
1520 void *target_container, const void *data,
1521 __be16 proto, int nhoff, int hlen, unsigned int flags);
e5276937
TH
1522
1523static inline bool skb_flow_dissect(const struct sk_buff *skb,
1524 struct flow_dissector *flow_dissector,
cd79a238 1525 void *target_container, unsigned int flags)
e5276937 1526{
3cbf4ffb
SF
1527 return __skb_flow_dissect(NULL, skb, flow_dissector,
1528 target_container, NULL, 0, 0, 0, flags);
e5276937
TH
1529}
1530
1531static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1532 struct flow_keys *flow,
1533 unsigned int flags)
e5276937
TH
1534{
1535 memset(flow, 0, sizeof(*flow));
3cbf4ffb
SF
1536 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1537 flow, NULL, 0, 0, 0, flags);
e5276937
TH
1538}
1539
72a338bc 1540static inline bool
3cbf4ffb
SF
1541skb_flow_dissect_flow_keys_basic(const struct net *net,
1542 const struct sk_buff *skb,
f96533cd
AL
1543 struct flow_keys_basic *flow,
1544 const void *data, __be16 proto,
1545 int nhoff, int hlen, unsigned int flags)
e5276937
TH
1546{
1547 memset(flow, 0, sizeof(*flow));
3cbf4ffb 1548 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
cd79a238 1549 data, proto, nhoff, hlen, flags);
e5276937
TH
1550}
1551
82828b88
JP
1552void skb_flow_dissect_meta(const struct sk_buff *skb,
1553 struct flow_dissector *flow_dissector,
1554 void *target_container);
1555
75a56758 1556/* Gets a skb connection tracking info, ctinfo map should be a
2ff17117 1557 * map of mapsize to translate enum ip_conntrack_info states
75a56758
PB
1558 * to user states.
1559 */
1560void
1561skb_flow_dissect_ct(const struct sk_buff *skb,
1562 struct flow_dissector *flow_dissector,
1563 void *target_container,
7baf2429 1564 u16 *ctinfo_map, size_t mapsize,
38495958 1565 bool post_ct, u16 zone);
62b32379
SH
1566void
1567skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1568 struct flow_dissector *flow_dissector,
1569 void *target_container);
1570
0cb09aff
AL
1571void skb_flow_dissect_hash(const struct sk_buff *skb,
1572 struct flow_dissector *flow_dissector,
1573 void *target_container);
1574
3958afa1 1575static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1576{
a3b18ddb 1577 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1578 __skb_get_hash(skb);
bfb564e7 1579
61b905da 1580 return skb->hash;
bfb564e7
KK
1581}
1582
20a17bf6 1583static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1584{
c6cc1ca7
TH
1585 if (!skb->l4_hash && !skb->sw_hash) {
1586 struct flow_keys keys;
de4c1f8b 1587 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1588
de4c1f8b 1589 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1590 }
f70ea018
TH
1591
1592 return skb->hash;
1593}
1594
55667441
ED
1595__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1596 const siphash_key_t *perturb);
50fb7992 1597
57bdf7f4
TH
1598static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1599{
61b905da 1600 return skb->hash;
57bdf7f4
TH
1601}
1602
3df7a74e
TH
1603static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1604{
61b905da 1605 to->hash = from->hash;
a3b18ddb 1606 to->sw_hash = from->sw_hash;
61b905da 1607 to->l4_hash = from->l4_hash;
3df7a74e
TH
1608};
1609
14c4be92
JK
1610static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1611 const struct sk_buff *skb2)
1612{
9f06f87f 1613#ifdef CONFIG_SKB_DECRYPTED
14c4be92
JK
1614 return skb2->decrypted - skb1->decrypted;
1615#else
1616 return 0;
1617#endif
1618}
1619
9f06f87f
JK
1620static inline bool skb_is_decrypted(const struct sk_buff *skb)
1621{
1622#ifdef CONFIG_SKB_DECRYPTED
1623 return skb->decrypted;
1624#else
1625 return false;
1626#endif
1627}
1628
41477662
JK
1629static inline void skb_copy_decrypted(struct sk_buff *to,
1630 const struct sk_buff *from)
1631{
9f06f87f 1632#ifdef CONFIG_SKB_DECRYPTED
41477662
JK
1633 to->decrypted = from->decrypted;
1634#endif
1635}
1636
4305b541
ACM
1637#ifdef NET_SKBUFF_DATA_USES_OFFSET
1638static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1639{
1640 return skb->head + skb->end;
1641}
ec47ea82
AD
1642
1643static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1644{
1645 return skb->end;
1646}
763087da
ED
1647
1648static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1649{
1650 skb->end = offset;
1651}
4305b541
ACM
1652#else
1653static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1654{
1655 return skb->end;
1656}
ec47ea82
AD
1657
1658static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1659{
1660 return skb->end - skb->head;
1661}
763087da
ED
1662
1663static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1664{
1665 skb->end = skb->head + offset;
1666}
4305b541
ACM
1667#endif
1668
7ab4f16f
PB
1669extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1670
657dd5f9
PB
1671struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1672 struct ubuf_info *uarg);
1673
1674void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1675
ebe73a28
DA
1676int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1677 struct sk_buff *skb, struct iov_iter *from,
1678 size_t length);
657dd5f9
PB
1679
1680static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1681 struct msghdr *msg, int len)
1682{
ebe73a28 1683 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
657dd5f9
PB
1684}
1685
1686int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1687 struct msghdr *msg, int len,
1688 struct ubuf_info *uarg);
1689
1da177e4 1690/* Internal */
4305b541 1691#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1692
ac45f602
PO
1693static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1694{
1695 return &skb_shinfo(skb)->hwtstamps;
1696}
1697
52267790
WB
1698static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1699{
06b4feb3 1700 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
52267790
WB
1701
1702 return is_zcopy ? skb_uarg(skb) : NULL;
1703}
1704
9b65b17d
TA
1705static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1706{
1707 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1708}
1709
753f1ca4
PB
1710static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1711{
1712 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1713}
1714
9b65b17d
TA
1715static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1716 const struct sk_buff *skb2)
1717{
1718 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1719}
1720
8e044917 1721static inline void net_zcopy_get(struct ubuf_info *uarg)
e76d46cf
JL
1722{
1723 refcount_inc(&uarg->refcnt);
1724}
1725
9ee5e5ad
JL
1726static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1727{
1728 skb_shinfo(skb)->destructor_arg = uarg;
1729 skb_shinfo(skb)->flags |= uarg->flags;
1730}
1731
52900d22
WB
1732static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1733 bool *have_ref)
52267790
WB
1734{
1735 if (skb && uarg && !skb_zcopy(skb)) {
52900d22
WB
1736 if (unlikely(have_ref && *have_ref))
1737 *have_ref = false;
1738 else
8e044917 1739 net_zcopy_get(uarg);
9ee5e5ad 1740 skb_zcopy_init(skb, uarg);
52267790
WB
1741 }
1742}
1743
5cd8d46e
WB
1744static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1745{
1746 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
06b4feb3 1747 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
5cd8d46e
WB
1748}
1749
1750static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1751{
1752 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1753}
1754
1755static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1756{
1757 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1758}
1759
8e044917 1760static inline void net_zcopy_put(struct ubuf_info *uarg)
59776362
JL
1761{
1762 if (uarg)
7ab4f16f 1763 uarg->ops->complete(NULL, uarg, true);
59776362
JL
1764}
1765
8e044917 1766static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
236a6b1c
JL
1767{
1768 if (uarg) {
7ab4f16f 1769 if (uarg->ops == &msg_zerocopy_ubuf_ops)
8c793822 1770 msg_zerocopy_put_abort(uarg, have_uref);
236a6b1c 1771 else if (have_uref)
8e044917 1772 net_zcopy_put(uarg);
236a6b1c
JL
1773 }
1774}
1775
52267790 1776/* Release a reference on a zerocopy structure */
36177832 1777static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
52267790
WB
1778{
1779 struct ubuf_info *uarg = skb_zcopy(skb);
1780
1781 if (uarg) {
36177832 1782 if (!skb_zcopy_is_nouarg(skb))
7ab4f16f 1783 uarg->ops->complete(skb, uarg, zerocopy_success);
0a4a060b 1784
9b65b17d 1785 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
52267790
WB
1786 }
1787}
1788
753f1ca4
PB
1789void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1790
1791static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1792{
1793 if (unlikely(skb_zcopy_managed(skb)))
1794 __skb_zcopy_downgrade_managed(skb);
1795}
1796
a8305bff
DM
1797static inline void skb_mark_not_on_list(struct sk_buff *skb)
1798{
1799 skb->next = NULL;
1800}
1801
9dde0cd3
JDB
1802static inline void skb_poison_list(struct sk_buff *skb)
1803{
1804#ifdef CONFIG_DEBUG_NET
1805 skb->next = SKB_LIST_POISON_NEXT;
1806#endif
1807}
1808
dcfea72e 1809/* Iterate through singly-linked GSO fragments of an skb. */
5eee7bd7
JD
1810#define skb_list_walk_safe(first, skb, next_skb) \
1811 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1812 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
dcfea72e 1813
992cba7e
DM
1814static inline void skb_list_del_init(struct sk_buff *skb)
1815{
1816 __list_del_entry(&skb->list);
1817 skb_mark_not_on_list(skb);
1818}
1819
1da177e4
LT
1820/**
1821 * skb_queue_empty - check if a queue is empty
1822 * @list: queue head
1823 *
1824 * Returns true if the queue is empty, false otherwise.
1825 */
1826static inline int skb_queue_empty(const struct sk_buff_head *list)
1827{
fd44b93c 1828 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1829}
1830
d7d16a89
ED
1831/**
1832 * skb_queue_empty_lockless - check if a queue is empty
1833 * @list: queue head
1834 *
1835 * Returns true if the queue is empty, false otherwise.
1836 * This variant can be used in lockless contexts.
1837 */
1838static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1839{
1840 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1841}
1842
1843
fc7ebb21
DM
1844/**
1845 * skb_queue_is_last - check if skb is the last entry in the queue
1846 * @list: queue head
1847 * @skb: buffer
1848 *
1849 * Returns true if @skb is the last buffer on the list.
1850 */
1851static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1852 const struct sk_buff *skb)
1853{
fd44b93c 1854 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1855}
1856
832d11c5
IJ
1857/**
1858 * skb_queue_is_first - check if skb is the first entry in the queue
1859 * @list: queue head
1860 * @skb: buffer
1861 *
1862 * Returns true if @skb is the first buffer on the list.
1863 */
1864static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1865 const struct sk_buff *skb)
1866{
fd44b93c 1867 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1868}
1869
249c8b42
DM
1870/**
1871 * skb_queue_next - return the next packet in the queue
1872 * @list: queue head
1873 * @skb: current buffer
1874 *
1875 * Return the next packet in @list after @skb. It is only valid to
1876 * call this if skb_queue_is_last() evaluates to false.
1877 */
1878static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1879 const struct sk_buff *skb)
1880{
1881 /* This BUG_ON may seem severe, but if we just return then we
1882 * are going to dereference garbage.
1883 */
1884 BUG_ON(skb_queue_is_last(list, skb));
1885 return skb->next;
1886}
1887
832d11c5
IJ
1888/**
1889 * skb_queue_prev - return the prev packet in the queue
1890 * @list: queue head
1891 * @skb: current buffer
1892 *
1893 * Return the prev packet in @list before @skb. It is only valid to
1894 * call this if skb_queue_is_first() evaluates to false.
1895 */
1896static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1897 const struct sk_buff *skb)
1898{
1899 /* This BUG_ON may seem severe, but if we just return then we
1900 * are going to dereference garbage.
1901 */
1902 BUG_ON(skb_queue_is_first(list, skb));
1903 return skb->prev;
1904}
1905
1da177e4
LT
1906/**
1907 * skb_get - reference buffer
1908 * @skb: buffer to reference
1909 *
1910 * Makes another reference to a socket buffer and returns a pointer
1911 * to the buffer.
1912 */
1913static inline struct sk_buff *skb_get(struct sk_buff *skb)
1914{
63354797 1915 refcount_inc(&skb->users);
1da177e4
LT
1916 return skb;
1917}
1918
1919/*
f8821f96 1920 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1da177e4
LT
1921 */
1922
1da177e4
LT
1923/**
1924 * skb_cloned - is the buffer a clone
1925 * @skb: buffer to check
1926 *
1927 * Returns true if the buffer was generated with skb_clone() and is
1928 * one of multiple shared copies of the buffer. Cloned buffers are
1929 * shared data so must not be written to under normal circumstances.
1930 */
1931static inline int skb_cloned(const struct sk_buff *skb)
1932{
1933 return skb->cloned &&
1934 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1935}
1936
14bbd6a5
PS
1937static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1938{
d0164adc 1939 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1940
1941 if (skb_cloned(skb))
1942 return pskb_expand_head(skb, 0, 0, pri);
1943
1944 return 0;
1945}
1946
2b88cba5
ED
1947/* This variant of skb_unclone() makes sure skb->truesize
1948 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1949 *
1950 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1951 * when various debugging features are in place.
1952 */
1953int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
c4777efa
ED
1954static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1955{
1956 might_sleep_if(gfpflags_allow_blocking(pri));
1957
2b88cba5
ED
1958 if (skb_cloned(skb))
1959 return __skb_unclone_keeptruesize(skb, pri);
c4777efa
ED
1960 return 0;
1961}
1962
1da177e4
LT
1963/**
1964 * skb_header_cloned - is the header a clone
1965 * @skb: buffer to check
1966 *
1967 * Returns true if modifying the header part of the buffer requires
1968 * the data to be copied.
1969 */
1970static inline int skb_header_cloned(const struct sk_buff *skb)
1971{
1972 int dataref;
1973
1974 if (!skb->cloned)
1975 return 0;
1976
1977 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1978 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1979 return dataref != 1;
1980}
1981
9580bf2e
ED
1982static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1983{
1984 might_sleep_if(gfpflags_allow_blocking(pri));
1985
1986 if (skb_header_cloned(skb))
1987 return pskb_expand_head(skb, 0, 0, pri);
1988
1989 return 0;
1990}
1991
f4a775d1 1992/**
9ec7ea14
JK
1993 * __skb_header_release() - allow clones to use the headroom
1994 * @skb: buffer to operate on
1995 *
1996 * See "DOC: dataref and headerless skbs".
f4a775d1
ED
1997 */
1998static inline void __skb_header_release(struct sk_buff *skb)
1999{
2000 skb->nohdr = 1;
2001 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2002}
2003
2004
1da177e4
LT
2005/**
2006 * skb_shared - is the buffer shared
2007 * @skb: buffer to check
2008 *
2009 * Returns true if more than one person has a reference to this
2010 * buffer.
2011 */
2012static inline int skb_shared(const struct sk_buff *skb)
2013{
63354797 2014 return refcount_read(&skb->users) != 1;
1da177e4
LT
2015}
2016
2017/**
2018 * skb_share_check - check if buffer is shared and if so clone it
2019 * @skb: buffer to check
2020 * @pri: priority for memory allocation
2021 *
2022 * If the buffer is shared the buffer is cloned and the old copy
2023 * drops a reference. A new clone with a single reference is returned.
2024 * If the buffer is not shared the original buffer is returned. When
2025 * being called from interrupt status or with spinlocks held pri must
2026 * be GFP_ATOMIC.
2027 *
2028 * NULL is returned on a memory allocation failure.
2029 */
47061bc4 2030static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 2031{
d0164adc 2032 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
2033 if (skb_shared(skb)) {
2034 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
2035
2036 if (likely(nskb))
2037 consume_skb(skb);
2038 else
2039 kfree_skb(skb);
1da177e4
LT
2040 skb = nskb;
2041 }
2042 return skb;
2043}
2044
2045/*
2046 * Copy shared buffers into a new sk_buff. We effectively do COW on
2047 * packets to handle cases where we have a local reader and forward
2048 * and a couple of other messy ones. The normal one is tcpdumping
8527ca77 2049 * a packet that's being forwarded.
1da177e4
LT
2050 */
2051
2052/**
2053 * skb_unshare - make a copy of a shared buffer
2054 * @skb: buffer to check
2055 * @pri: priority for memory allocation
2056 *
2057 * If the socket buffer is a clone then this function creates a new
2058 * copy of the data, drops a reference count on the old copy and returns
2059 * the new copy with the reference count at 1. If the buffer is not a clone
2060 * the original buffer is returned. When called with a spinlock held or
2061 * from interrupt state @pri must be %GFP_ATOMIC
2062 *
2063 * %NULL is returned on a memory allocation failure.
2064 */
e2bf521d 2065static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 2066 gfp_t pri)
1da177e4 2067{
d0164adc 2068 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
2069 if (skb_cloned(skb)) {
2070 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
2071
2072 /* Free our shared copy */
2073 if (likely(nskb))
2074 consume_skb(skb);
2075 else
2076 kfree_skb(skb);
1da177e4
LT
2077 skb = nskb;
2078 }
2079 return skb;
2080}
2081
2082/**
1a5778aa 2083 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
2084 * @list_: list to peek at
2085 *
2086 * Peek an &sk_buff. Unlike most other operations you _MUST_
2087 * be careful with this one. A peek leaves the buffer on the
2088 * list and someone else may run off with it. You must hold
2089 * the appropriate locks or have a private queue to do this.
2090 *
2091 * Returns %NULL for an empty list or a pointer to the head element.
2092 * The reference count is not incremented and the reference is therefore
2093 * volatile. Use with caution.
2094 */
05bdd2f1 2095static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 2096{
18d07000
ED
2097 struct sk_buff *skb = list_->next;
2098
2099 if (skb == (struct sk_buff *)list_)
2100 skb = NULL;
2101 return skb;
1da177e4
LT
2102}
2103
8b69bd7d
DM
2104/**
2105 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2106 * @list_: list to peek at
2107 *
2108 * Like skb_peek(), but the caller knows that the list is not empty.
2109 */
2110static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2111{
2112 return list_->next;
2113}
2114
da5ef6e5
PE
2115/**
2116 * skb_peek_next - peek skb following the given one from a queue
2117 * @skb: skb to start from
2118 * @list_: list to peek at
2119 *
2120 * Returns %NULL when the end of the list is met or a pointer to the
2121 * next element. The reference count is not incremented and the
2122 * reference is therefore volatile. Use with caution.
2123 */
2124static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2125 const struct sk_buff_head *list_)
2126{
2127 struct sk_buff *next = skb->next;
18d07000 2128
da5ef6e5
PE
2129 if (next == (struct sk_buff *)list_)
2130 next = NULL;
2131 return next;
2132}
2133
1da177e4 2134/**
1a5778aa 2135 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
2136 * @list_: list to peek at
2137 *
2138 * Peek an &sk_buff. Unlike most other operations you _MUST_
2139 * be careful with this one. A peek leaves the buffer on the
2140 * list and someone else may run off with it. You must hold
2141 * the appropriate locks or have a private queue to do this.
2142 *
2143 * Returns %NULL for an empty list or a pointer to the tail element.
2144 * The reference count is not incremented and the reference is therefore
2145 * volatile. Use with caution.
2146 */
05bdd2f1 2147static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 2148{
f8cc62ca 2149 struct sk_buff *skb = READ_ONCE(list_->prev);
18d07000
ED
2150
2151 if (skb == (struct sk_buff *)list_)
2152 skb = NULL;
2153 return skb;
2154
1da177e4
LT
2155}
2156
2157/**
2158 * skb_queue_len - get queue length
2159 * @list_: list to measure
2160 *
2161 * Return the length of an &sk_buff queue.
2162 */
2163static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2164{
2165 return list_->qlen;
2166}
2167
86b18aaa
QC
2168/**
2169 * skb_queue_len_lockless - get queue length
2170 * @list_: list to measure
2171 *
2172 * Return the length of an &sk_buff queue.
2173 * This variant can be used in lockless contexts.
2174 */
2175static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2176{
2177 return READ_ONCE(list_->qlen);
2178}
2179
67fed459
DM
2180/**
2181 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2182 * @list: queue to initialize
2183 *
2184 * This initializes only the list and queue length aspects of
2185 * an sk_buff_head object. This allows to initialize the list
2186 * aspects of an sk_buff_head without reinitializing things like
2187 * the spinlock. It can also be used for on-stack sk_buff_head
2188 * objects where the spinlock is known to not be used.
2189 */
2190static inline void __skb_queue_head_init(struct sk_buff_head *list)
2191{
2192 list->prev = list->next = (struct sk_buff *)list;
2193 list->qlen = 0;
2194}
2195
76f10ad0
AV
2196/*
2197 * This function creates a split out lock class for each invocation;
2198 * this is needed for now since a whole lot of users of the skb-queue
2199 * infrastructure in drivers have different locking usage (in hardirq)
2200 * than the networking core (in softirq only). In the long run either the
2201 * network layer or drivers should need annotation to consolidate the
2202 * main types of usage into 3 classes.
2203 */
1da177e4
LT
2204static inline void skb_queue_head_init(struct sk_buff_head *list)
2205{
2206 spin_lock_init(&list->lock);
67fed459 2207 __skb_queue_head_init(list);
1da177e4
LT
2208}
2209
c2ecba71
PE
2210static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2211 struct lock_class_key *class)
2212{
2213 skb_queue_head_init(list);
2214 lockdep_set_class(&list->lock, class);
2215}
2216
1da177e4 2217/*
bf299275 2218 * Insert an sk_buff on a list.
1da177e4
LT
2219 *
2220 * The "__skb_xxxx()" functions are the non-atomic ones that
2221 * can only be called with interrupts disabled.
2222 */
bf299275
GR
2223static inline void __skb_insert(struct sk_buff *newsk,
2224 struct sk_buff *prev, struct sk_buff *next,
2225 struct sk_buff_head *list)
2226{
f8cc62ca
ED
2227 /* See skb_queue_empty_lockless() and skb_peek_tail()
2228 * for the opposite READ_ONCE()
2229 */
d7d16a89
ED
2230 WRITE_ONCE(newsk->next, next);
2231 WRITE_ONCE(newsk->prev, prev);
1a2fb220
KC
2232 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2233 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
04f08eb4 2234 WRITE_ONCE(list->qlen, list->qlen + 1);
bf299275 2235}
1da177e4 2236
67fed459
DM
2237static inline void __skb_queue_splice(const struct sk_buff_head *list,
2238 struct sk_buff *prev,
2239 struct sk_buff *next)
2240{
2241 struct sk_buff *first = list->next;
2242 struct sk_buff *last = list->prev;
2243
d7d16a89
ED
2244 WRITE_ONCE(first->prev, prev);
2245 WRITE_ONCE(prev->next, first);
67fed459 2246
d7d16a89
ED
2247 WRITE_ONCE(last->next, next);
2248 WRITE_ONCE(next->prev, last);
67fed459
DM
2249}
2250
2251/**
2252 * skb_queue_splice - join two skb lists, this is designed for stacks
2253 * @list: the new list to add
2254 * @head: the place to add it in the first list
2255 */
2256static inline void skb_queue_splice(const struct sk_buff_head *list,
2257 struct sk_buff_head *head)
2258{
2259 if (!skb_queue_empty(list)) {
2260 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 2261 head->qlen += list->qlen;
67fed459
DM
2262 }
2263}
2264
2265/**
d9619496 2266 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
2267 * @list: the new list to add
2268 * @head: the place to add it in the first list
2269 *
2270 * The list at @list is reinitialised
2271 */
2272static inline void skb_queue_splice_init(struct sk_buff_head *list,
2273 struct sk_buff_head *head)
2274{
2275 if (!skb_queue_empty(list)) {
2276 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 2277 head->qlen += list->qlen;
67fed459
DM
2278 __skb_queue_head_init(list);
2279 }
2280}
2281
2282/**
2283 * skb_queue_splice_tail - join two skb lists, each list being a queue
2284 * @list: the new list to add
2285 * @head: the place to add it in the first list
2286 */
2287static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2288 struct sk_buff_head *head)
2289{
2290 if (!skb_queue_empty(list)) {
2291 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 2292 head->qlen += list->qlen;
67fed459
DM
2293 }
2294}
2295
2296/**
d9619496 2297 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
2298 * @list: the new list to add
2299 * @head: the place to add it in the first list
2300 *
2301 * Each of the lists is a queue.
2302 * The list at @list is reinitialised
2303 */
2304static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2305 struct sk_buff_head *head)
2306{
2307 if (!skb_queue_empty(list)) {
2308 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 2309 head->qlen += list->qlen;
67fed459
DM
2310 __skb_queue_head_init(list);
2311 }
2312}
2313
1da177e4 2314/**
300ce174 2315 * __skb_queue_after - queue a buffer at the list head
1da177e4 2316 * @list: list to use
300ce174 2317 * @prev: place after this buffer
1da177e4
LT
2318 * @newsk: buffer to queue
2319 *
300ce174 2320 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
2321 * and you must therefore hold required locks before calling it.
2322 *
2323 * A buffer cannot be placed on two lists at the same time.
2324 */
300ce174
SH
2325static inline void __skb_queue_after(struct sk_buff_head *list,
2326 struct sk_buff *prev,
2327 struct sk_buff *newsk)
1da177e4 2328{
1a2fb220 2329 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
1da177e4
LT
2330}
2331
7965bd4d
JP
2332void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2333 struct sk_buff_head *list);
7de6c033 2334
f5572855
GR
2335static inline void __skb_queue_before(struct sk_buff_head *list,
2336 struct sk_buff *next,
2337 struct sk_buff *newsk)
2338{
1a2fb220 2339 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
f5572855
GR
2340}
2341
300ce174
SH
2342/**
2343 * __skb_queue_head - queue a buffer at the list head
2344 * @list: list to use
2345 * @newsk: buffer to queue
2346 *
2347 * Queue a buffer at the start of a list. This function takes no locks
2348 * and you must therefore hold required locks before calling it.
2349 *
2350 * A buffer cannot be placed on two lists at the same time.
2351 */
300ce174
SH
2352static inline void __skb_queue_head(struct sk_buff_head *list,
2353 struct sk_buff *newsk)
2354{
2355 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2356}
4ea7b0cf 2357void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174 2358
1da177e4
LT
2359/**
2360 * __skb_queue_tail - queue a buffer at the list tail
2361 * @list: list to use
2362 * @newsk: buffer to queue
2363 *
2364 * Queue a buffer at the end of a list. This function takes no locks
2365 * and you must therefore hold required locks before calling it.
2366 *
2367 * A buffer cannot be placed on two lists at the same time.
2368 */
1da177e4
LT
2369static inline void __skb_queue_tail(struct sk_buff_head *list,
2370 struct sk_buff *newsk)
2371{
f5572855 2372 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4 2373}
4ea7b0cf 2374void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4 2375
1da177e4
LT
2376/*
2377 * remove sk_buff from list. _Must_ be called atomically, and with
2378 * the list known..
2379 */
7965bd4d 2380void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
2381static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2382{
2383 struct sk_buff *next, *prev;
2384
86b18aaa 2385 WRITE_ONCE(list->qlen, list->qlen - 1);
1da177e4
LT
2386 next = skb->next;
2387 prev = skb->prev;
2388 skb->next = skb->prev = NULL;
d7d16a89
ED
2389 WRITE_ONCE(next->prev, prev);
2390 WRITE_ONCE(prev->next, next);
1da177e4
LT
2391}
2392
f525c06d
GR
2393/**
2394 * __skb_dequeue - remove from the head of the queue
2395 * @list: list to dequeue from
2396 *
2397 * Remove the head of the list. This function does not take any locks
2398 * so must be used with appropriate locks held only. The head item is
2399 * returned or %NULL if the list is empty.
2400 */
f525c06d
GR
2401static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2402{
2403 struct sk_buff *skb = skb_peek(list);
2404 if (skb)
2405 __skb_unlink(skb, list);
2406 return skb;
2407}
4ea7b0cf 2408struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1da177e4
LT
2409
2410/**
2411 * __skb_dequeue_tail - remove from the tail of the queue
2412 * @list: list to dequeue from
2413 *
2414 * Remove the tail of the list. This function does not take any locks
2415 * so must be used with appropriate locks held only. The tail item is
2416 * returned or %NULL if the list is empty.
2417 */
1da177e4
LT
2418static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2419{
2420 struct sk_buff *skb = skb_peek_tail(list);
2421 if (skb)
2422 __skb_unlink(skb, list);
2423 return skb;
2424}
4ea7b0cf 2425struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
2426
2427
bdcc0924 2428static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
2429{
2430 return skb->data_len;
2431}
2432
2433static inline unsigned int skb_headlen(const struct sk_buff *skb)
2434{
2435 return skb->len - skb->data_len;
2436}
2437
3ece7826 2438static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 2439{
c72d8cda 2440 unsigned int i, len = 0;
1da177e4 2441
c72d8cda 2442 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 2443 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
2444 return len;
2445}
2446
2447static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2448{
2449 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
2450}
2451
21d2e673
MA
2452static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2453 netmem_ref netmem, int off,
2454 int size)
2455{
2456 frag->netmem = netmem;
2457 frag->offset = off;
2458 skb_frag_size_set(frag, size);
2459}
2460
b51f4113
YL
2461static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2462 struct page *page,
2463 int off, int size)
2464{
21d2e673
MA
2465 skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2466}
2467
2468static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2469 int i, netmem_ref netmem,
2470 int off, int size)
2471{
2472 skb_frag_t *frag = &shinfo->frags[i];
2473
2474 skb_frag_fill_netmem_desc(frag, netmem, off, size);
b51f4113
YL
2475}
2476
84ce071e
PB
2477static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2478 int i, struct page *page,
2479 int off, int size)
2480{
21d2e673
MA
2481 __skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2482 size);
84ce071e
PB
2483}
2484
ede57d58
RG
2485/**
2486 * skb_len_add - adds a number to len fields of skb
2487 * @skb: buffer to add len to
2488 * @delta: number of bytes to add
2489 */
2490static inline void skb_len_add(struct sk_buff *skb, int delta)
2491{
2492 skb->len += delta;
2493 skb->data_len += delta;
2494 skb->truesize += delta;
2495}
2496
131ea667 2497/**
21d2e673 2498 * __skb_fill_netmem_desc - initialise a fragment in an skb
131ea667 2499 * @skb: buffer containing fragment to be initialised
21d2e673
MA
2500 * @i: fragment index to initialise
2501 * @netmem: the netmem to use for this fragment
131ea667
IC
2502 * @off: the offset to the data with @page
2503 * @size: the length of the data
2504 *
2505 * Initialises the @i'th fragment of @skb to point to &size bytes at
2506 * offset @off within @page.
2507 *
2508 * Does not take any additional reference on the fragment.
2509 */
21d2e673
MA
2510static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2511 netmem_ref netmem, int off, int size)
1da177e4 2512{
21d2e673
MA
2513 struct page *page = netmem_to_page(netmem);
2514
2515 __skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
8b334851
YL
2516
2517 /* Propagate page pfmemalloc to the skb if we can. The problem is
2518 * that not all callers have unique ownership of the page but rely
2519 * on page_is_pfmemalloc doing the right thing(tm).
2520 */
cca7af38 2521 page = compound_head(page);
2f064f34 2522 if (page_is_pfmemalloc(page))
21d2e673
MA
2523 skb->pfmemalloc = true;
2524}
2525
2526static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2527 struct page *page, int off, int size)
2528{
2529 __skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2530}
2531
2532static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2533 netmem_ref netmem, int off, int size)
2534{
2535 __skb_fill_netmem_desc(skb, i, netmem, off, size);
2536 skb_shinfo(skb)->nr_frags = i + 1;
131ea667
IC
2537}
2538
2539/**
2540 * skb_fill_page_desc - initialise a paged fragment in an skb
2541 * @skb: buffer containing fragment to be initialised
2542 * @i: paged fragment index to initialise
2543 * @page: the page to use for this fragment
2544 * @off: the offset to the data with @page
2545 * @size: the length of the data
2546 *
2547 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 2548 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
2549 * addition updates @skb such that @i is the last fragment.
2550 *
2551 * Does not take any additional reference on the fragment.
2552 */
2553static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2554 struct page *page, int off, int size)
2555{
21d2e673 2556 skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
1da177e4
LT
2557}
2558
32614006
ED
2559/**
2560 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2561 * @skb: buffer containing fragment to be initialised
2562 * @i: paged fragment index to initialise
2563 * @page: the page to use for this fragment
2564 * @off: the offset to the data with @page
2565 * @size: the length of the data
2566 *
2567 * Variant of skb_fill_page_desc() which does not deal with
2568 * pfmemalloc, if page is not owned by us.
2569 */
2570static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2571 struct page *page, int off,
2572 int size)
2573{
2574 struct skb_shared_info *shinfo = skb_shinfo(skb);
2575
2576 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2577 shinfo->nr_frags = i + 1;
2578}
2579
21d2e673
MA
2580void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2581 int off, int size, unsigned int truesize);
2582
2583static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2584 struct page *page, int off, int size,
2585 unsigned int truesize)
2586{
2587 skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2588 truesize);
2589}
654bed16 2590
f8e617e1
JW
2591void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2592 unsigned int truesize);
2593
1da177e4
LT
2594#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2595
27a884dc
ACM
2596#ifdef NET_SKBUFF_DATA_USES_OFFSET
2597static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2598{
2599 return skb->head + skb->tail;
2600}
2601
2602static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2603{
2604 skb->tail = skb->data - skb->head;
2605}
2606
2607static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2608{
2609 skb_reset_tail_pointer(skb);
2610 skb->tail += offset;
2611}
7cc46190 2612
27a884dc
ACM
2613#else /* NET_SKBUFF_DATA_USES_OFFSET */
2614static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2615{
2616 return skb->tail;
2617}
2618
2619static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2620{
2621 skb->tail = skb->data;
2622}
2623
2624static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2625{
2626 skb->tail = skb->data + offset;
2627}
4305b541 2628
27a884dc
ACM
2629#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2630
fd189422
ZS
2631static inline void skb_assert_len(struct sk_buff *skb)
2632{
2633#ifdef CONFIG_DEBUG_NET
2634 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2635 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2636#endif /* CONFIG_DEBUG_NET */
2637}
2638
1da177e4
LT
2639/*
2640 * Add data to an sk_buff
2641 */
4df864c1
JB
2642void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2643void *skb_put(struct sk_buff *skb, unsigned int len);
2644static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2645{
4df864c1 2646 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2647 SKB_LINEAR_ASSERT(skb);
2648 skb->tail += len;
2649 skb->len += len;
2650 return tmp;
2651}
2652
de77b966 2653static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2654{
2655 void *tmp = __skb_put(skb, len);
2656
2657 memset(tmp, 0, len);
2658 return tmp;
2659}
2660
2661static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2662 unsigned int len)
2663{
2664 void *tmp = __skb_put(skb, len);
2665
2666 memcpy(tmp, data, len);
2667 return tmp;
2668}
2669
2670static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2671{
2672 *(u8 *)__skb_put(skb, 1) = val;
2673}
2674
83ad357d 2675static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2676{
83ad357d 2677 void *tmp = skb_put(skb, len);
e45a79da
JB
2678
2679 memset(tmp, 0, len);
2680
2681 return tmp;
2682}
2683
59ae1d12
JB
2684static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2685 unsigned int len)
2686{
2687 void *tmp = skb_put(skb, len);
2688
2689 memcpy(tmp, data, len);
2690
2691 return tmp;
2692}
2693
634fef61
JB
2694static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2695{
2696 *(u8 *)skb_put(skb, 1) = val;
2697}
2698
d58ff351
JB
2699void *skb_push(struct sk_buff *skb, unsigned int len);
2700static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4 2701{
219eee9c
FW
2702 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2703
1da177e4
LT
2704 skb->data -= len;
2705 skb->len += len;
2706 return skb->data;
2707}
2708
af72868b
JB
2709void *skb_pull(struct sk_buff *skb, unsigned int len);
2710static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4 2711{
219eee9c
FW
2712 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2713
1da177e4 2714 skb->len -= len;
22296a5c
ED
2715 if (unlikely(skb->len < skb->data_len)) {
2716#if defined(CONFIG_DEBUG_NET)
2717 skb->len += len;
2718 pr_err("__skb_pull(len=%u)\n", len);
2719 skb_dump(KERN_ERR, skb, false);
2720#endif
2721 BUG();
2722 }
1da177e4
LT
2723 return skb->data += len;
2724}
2725
af72868b 2726static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2727{
2728 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2729}
2730
13244ccc
LAD
2731void *skb_pull_data(struct sk_buff *skb, size_t len);
2732
af72868b 2733void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2734
1fb2d415
ED
2735static inline enum skb_drop_reason
2736pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
1da177e4 2737{
219eee9c
FW
2738 DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2739
1da177e4 2740 if (likely(len <= skb_headlen(skb)))
1fb2d415
ED
2741 return SKB_NOT_DROPPED_YET;
2742
1da177e4 2743 if (unlikely(len > skb->len))
1fb2d415
ED
2744 return SKB_DROP_REASON_PKT_TOO_SMALL;
2745
2746 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2747 return SKB_DROP_REASON_NOMEM;
2748
2749 return SKB_NOT_DROPPED_YET;
2750}
2751
2752static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2753{
2754 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
1da177e4
LT
2755}
2756
d427c899
RG
2757static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2758{
2759 if (!pskb_may_pull(skb, len))
2760 return NULL;
2761
2762 skb->len -= len;
2763 return skb->data += len;
2764}
2765
c8c8b127
ED
2766void skb_condense(struct sk_buff *skb);
2767
1da177e4
LT
2768/**
2769 * skb_headroom - bytes at buffer head
2770 * @skb: buffer to check
2771 *
2772 * Return the number of bytes of free space at the head of an &sk_buff.
2773 */
c2636b4d 2774static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2775{
2776 return skb->data - skb->head;
2777}
2778
2779/**
2780 * skb_tailroom - bytes at buffer end
2781 * @skb: buffer to check
2782 *
2783 * Return the number of bytes of free space at the tail of an sk_buff
2784 */
2785static inline int skb_tailroom(const struct sk_buff *skb)
2786{
4305b541 2787 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2788}
2789
a21d4572
ED
2790/**
2791 * skb_availroom - bytes at buffer end
2792 * @skb: buffer to check
2793 *
2794 * Return the number of bytes of free space at the tail of an sk_buff
2795 * allocated by sk_stream_alloc()
2796 */
2797static inline int skb_availroom(const struct sk_buff *skb)
2798{
16fad69c
ED
2799 if (skb_is_nonlinear(skb))
2800 return 0;
2801
2802 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2803}
2804
1da177e4
LT
2805/**
2806 * skb_reserve - adjust headroom
2807 * @skb: buffer to alter
2808 * @len: bytes to move
2809 *
2810 * Increase the headroom of an empty &sk_buff by reducing the tail
2811 * room. This is only allowed for an empty buffer.
2812 */
8243126c 2813static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2814{
2815 skb->data += len;
2816 skb->tail += len;
2817}
2818
1837b2e2
BP
2819/**
2820 * skb_tailroom_reserve - adjust reserved_tailroom
2821 * @skb: buffer to alter
2822 * @mtu: maximum amount of headlen permitted
2823 * @needed_tailroom: minimum amount of reserved_tailroom
2824 *
2825 * Set reserved_tailroom so that headlen can be as large as possible but
2826 * not larger than mtu and tailroom cannot be smaller than
2827 * needed_tailroom.
2828 * The required headroom should already have been reserved before using
2829 * this function.
2830 */
2831static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2832 unsigned int needed_tailroom)
2833{
2834 SKB_LINEAR_ASSERT(skb);
2835 if (mtu < skb_tailroom(skb) - needed_tailroom)
2836 /* use at most mtu */
2837 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2838 else
2839 /* use up to all available space */
2840 skb->reserved_tailroom = needed_tailroom;
2841}
2842
8bce6d7d
TH
2843#define ENCAP_TYPE_ETHER 0
2844#define ENCAP_TYPE_IPPROTO 1
2845
2846static inline void skb_set_inner_protocol(struct sk_buff *skb,
2847 __be16 protocol)
2848{
2849 skb->inner_protocol = protocol;
2850 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2851}
2852
2853static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2854 __u8 ipproto)
2855{
2856 skb->inner_ipproto = ipproto;
2857 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2858}
2859
6a674e9c
JG
2860static inline void skb_reset_inner_headers(struct sk_buff *skb)
2861{
aefbd2b3 2862 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2863 skb->inner_network_header = skb->network_header;
2864 skb->inner_transport_header = skb->transport_header;
2865}
2866
0b5c9db1
JP
2867static inline void skb_reset_mac_len(struct sk_buff *skb)
2868{
2869 skb->mac_len = skb->network_header - skb->mac_header;
2870}
2871
6a674e9c
JG
2872static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2873 *skb)
2874{
2875 return skb->head + skb->inner_transport_header;
2876}
2877
55dc5a9f
TH
2878static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2879{
2880 return skb_inner_transport_header(skb) - skb->data;
2881}
2882
6a674e9c
JG
2883static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2884{
2885 skb->inner_transport_header = skb->data - skb->head;
2886}
2887
2888static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2889 const int offset)
2890{
2891 skb_reset_inner_transport_header(skb);
2892 skb->inner_transport_header += offset;
2893}
2894
2895static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2896{
2897 return skb->head + skb->inner_network_header;
2898}
2899
2900static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2901{
2902 skb->inner_network_header = skb->data - skb->head;
2903}
2904
2905static inline void skb_set_inner_network_header(struct sk_buff *skb,
2906 const int offset)
2907{
2908 skb_reset_inner_network_header(skb);
2909 skb->inner_network_header += offset;
2910}
2911
025f8ad2
FW
2912static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2913{
2914 return skb->inner_network_header > 0;
2915}
2916
aefbd2b3
PS
2917static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2918{
2919 return skb->head + skb->inner_mac_header;
2920}
2921
2922static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2923{
2924 skb->inner_mac_header = skb->data - skb->head;
2925}
2926
2927static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2928 const int offset)
2929{
2930 skb_reset_inner_mac_header(skb);
2931 skb->inner_mac_header += offset;
2932}
fda55eca
ED
2933static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2934{
35d04610 2935 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2936}
2937
9c70220b
ACM
2938static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2939{
66e4c8d9 2940 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2e07fa9c 2941 return skb->head + skb->transport_header;
9c70220b
ACM
2942}
2943
badff6d0
ACM
2944static inline void skb_reset_transport_header(struct sk_buff *skb)
2945{
2e07fa9c 2946 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2947}
2948
967b05f6
ACM
2949static inline void skb_set_transport_header(struct sk_buff *skb,
2950 const int offset)
2951{
2e07fa9c
ACM
2952 skb_reset_transport_header(skb);
2953 skb->transport_header += offset;
ea2ae17d
ACM
2954}
2955
d56f90a7
ACM
2956static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2957{
2e07fa9c 2958 return skb->head + skb->network_header;
d56f90a7
ACM
2959}
2960
c1d2bbe1
ACM
2961static inline void skb_reset_network_header(struct sk_buff *skb)
2962{
2e07fa9c 2963 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2964}
2965
c14d2450
ACM
2966static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2967{
2e07fa9c
ACM
2968 skb_reset_network_header(skb);
2969 skb->network_header += offset;
c14d2450
ACM
2970}
2971
f9aefd6b
ED
2972static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2973{
2974 return skb->mac_header != (typeof(skb->mac_header))~0U;
2975}
2976
2e07fa9c 2977static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2978{
f9aefd6b 2979 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2e07fa9c 2980 return skb->head + skb->mac_header;
bbe735e4
ACM
2981}
2982
ea6da4fd
AV
2983static inline int skb_mac_offset(const struct sk_buff *skb)
2984{
2985 return skb_mac_header(skb) - skb->data;
2986}
2987
0daf4349
DB
2988static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2989{
f9aefd6b 2990 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
0daf4349
DB
2991 return skb->network_header - skb->mac_header;
2992}
2993
b4ab3141
DB
2994static inline void skb_unset_mac_header(struct sk_buff *skb)
2995{
2996 skb->mac_header = (typeof(skb->mac_header))~0U;
2997}
2998
2e07fa9c
ACM
2999static inline void skb_reset_mac_header(struct sk_buff *skb)
3000{
3001 skb->mac_header = skb->data - skb->head;
3002}
3003
3004static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3005{
3006 skb_reset_mac_header(skb);
3007 skb->mac_header += offset;
3008}
3009
0e3da5bb
TT
3010static inline void skb_pop_mac_header(struct sk_buff *skb)
3011{
3012 skb->mac_header = skb->network_header;
3013}
3014
d2aa125d 3015static inline void skb_probe_transport_header(struct sk_buff *skb)
fbbdb8f0 3016{
72a338bc 3017 struct flow_keys_basic keys;
fbbdb8f0
YX
3018
3019 if (skb_transport_header_was_set(skb))
3020 return;
72a338bc 3021
3cbf4ffb
SF
3022 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3023 NULL, 0, 0, 0, 0))
42aecaa9 3024 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
3025}
3026
03606895
ED
3027static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3028{
3029 if (skb_mac_header_was_set(skb)) {
3030 const unsigned char *old_mac = skb_mac_header(skb);
3031
3032 skb_set_mac_header(skb, -skb->mac_len);
3033 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3034 }
3035}
3036
58fbfeca
PD
3037/* Move the full mac header up to current network_header.
3038 * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3039 * Must be provided the complete mac header length.
3040 */
3041static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3042{
3043 if (skb_mac_header_was_set(skb)) {
3044 const unsigned char *old_mac = skb_mac_header(skb);
3045
3046 skb_set_mac_header(skb, -full_mac_len);
3047 memmove(skb_mac_header(skb), old_mac, full_mac_len);
3048 __skb_push(skb, full_mac_len - skb->mac_len);
3049 }
3050}
3051
04fb451e
MM
3052static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3053{
3054 return skb->csum_start - skb_headroom(skb);
3055}
3056
08b64fcc
AD
3057static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3058{
3059 return skb->head + skb->csum_start;
3060}
3061
2e07fa9c
ACM
3062static inline int skb_transport_offset(const struct sk_buff *skb)
3063{
3064 return skb_transport_header(skb) - skb->data;
3065}
3066
3067static inline u32 skb_network_header_len(const struct sk_buff *skb)
3068{
cc15bd10 3069 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2e07fa9c
ACM
3070 return skb->transport_header - skb->network_header;
3071}
3072
6a674e9c
JG
3073static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3074{
3075 return skb->inner_transport_header - skb->inner_network_header;
3076}
3077
2e07fa9c
ACM
3078static inline int skb_network_offset(const struct sk_buff *skb)
3079{
3080 return skb_network_header(skb) - skb->data;
3081}
48d49d0c 3082
6a674e9c
JG
3083static inline int skb_inner_network_offset(const struct sk_buff *skb)
3084{
3085 return skb_inner_network_header(skb) - skb->data;
3086}
3087
f9599ce1
CG
3088static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3089{
3090 return pskb_may_pull(skb, skb_network_offset(skb) + len);
3091}
3092
1da177e4
LT
3093/*
3094 * CPUs often take a performance hit when accessing unaligned memory
3095 * locations. The actual performance hit varies, it can be small if the
3096 * hardware handles it or large if we have to take an exception and fix it
3097 * in software.
3098 *
3099 * Since an ethernet header is 14 bytes network drivers often end up with
3100 * the IP header at an unaligned offset. The IP header can be aligned by
3101 * shifting the start of the packet by 2 bytes. Drivers should do this
3102 * with:
3103 *
8660c124 3104 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
3105 *
3106 * The downside to this alignment of the IP header is that the DMA is now
3107 * unaligned. On some architectures the cost of an unaligned DMA is high
3108 * and this cost outweighs the gains made by aligning the IP header.
8660c124 3109 *
1da177e4
LT
3110 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3111 * to be overridden.
3112 */
3113#ifndef NET_IP_ALIGN
3114#define NET_IP_ALIGN 2
3115#endif
3116
025be81e
AB
3117/*
3118 * The networking layer reserves some headroom in skb data (via
3119 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3120 * the header has to grow. In the default case, if the header has to grow
d6301d3d 3121 * 32 bytes or less we avoid the reallocation.
025be81e
AB
3122 *
3123 * Unfortunately this headroom changes the DMA alignment of the resulting
3124 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3125 * on some architectures. An architecture can override this value,
3126 * perhaps setting it to a cacheline in size (since that will maintain
3127 * cacheline alignment of the DMA). It must be a power of 2.
3128 *
d6301d3d 3129 * Various parts of the networking layer expect at least 32 bytes of
025be81e 3130 * headroom, you should not reduce this.
5933dd2f
ED
3131 *
3132 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3133 * to reduce average number of cache lines per packet.
645f0897 3134 * get_rps_cpu() for example only access one 64 bytes aligned block :
18e8c134 3135 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
3136 */
3137#ifndef NET_SKB_PAD
5933dd2f 3138#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
3139#endif
3140
7965bd4d 3141int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 3142
5293efe6 3143static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 3144{
5e1abdc3 3145 if (WARN_ON(skb_is_nonlinear(skb)))
3cc0e873 3146 return;
27a884dc
ACM
3147 skb->len = len;
3148 skb_set_tail_pointer(skb, len);
1da177e4
LT
3149}
3150
5293efe6
DB
3151static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3152{
3153 __skb_set_length(skb, len);
3154}
3155
7965bd4d 3156void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
3157
3158static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3159{
3cc0e873
HX
3160 if (skb->data_len)
3161 return ___pskb_trim(skb, len);
3162 __skb_trim(skb, len);
3163 return 0;
1da177e4
LT
3164}
3165
3166static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3167{
3168 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3169}
3170
e9fa4f7b
HX
3171/**
3172 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3173 * @skb: buffer to alter
3174 * @len: new length
3175 *
3176 * This is identical to pskb_trim except that the caller knows that
3177 * the skb is not cloned so we should never get an error due to out-
3178 * of-memory.
3179 */
3180static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3181{
3182 int err = pskb_trim(skb, len);
3183 BUG_ON(err);
3184}
3185
5293efe6
DB
3186static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3187{
3188 unsigned int diff = len - skb->len;
3189
3190 if (skb_tailroom(skb) < diff) {
3191 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3192 GFP_ATOMIC);
3193 if (ret)
3194 return ret;
3195 }
3196 __skb_set_length(skb, len);
3197 return 0;
3198}
3199
1da177e4
LT
3200/**
3201 * skb_orphan - orphan a buffer
3202 * @skb: buffer to orphan
3203 *
3204 * If a buffer currently has an owner then we call the owner's
3205 * destructor function and make the @skb unowned. The buffer continues
3206 * to exist but is no longer charged to its former owner.
3207 */
3208static inline void skb_orphan(struct sk_buff *skb)
3209{
c34a7612 3210 if (skb->destructor) {
1da177e4 3211 skb->destructor(skb);
c34a7612
ED
3212 skb->destructor = NULL;
3213 skb->sk = NULL;
376c7311
ED
3214 } else {
3215 BUG_ON(skb->sk);
c34a7612 3216 }
1da177e4
LT
3217}
3218
a353e0ce
MT
3219/**
3220 * skb_orphan_frags - orphan the frags contained in a buffer
3221 * @skb: buffer to orphan frags from
3222 * @gfp_mask: allocation mask for replacement pages
3223 *
3224 * For each frag in the SKB which needs a destructor (i.e. has an
3225 * owner) create a copy of that frag and release the original
3226 * page by calling the destructor.
3227 */
3228static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3229{
1f8b977a
WB
3230 if (likely(!skb_zcopy(skb)))
3231 return 0;
2e07a521 3232 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
1f8b977a
WB
3233 return 0;
3234 return skb_copy_ubufs(skb, gfp_mask);
3235}
3236
3237/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3238static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3239{
3240 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
3241 return 0;
3242 return skb_copy_ubufs(skb, gfp_mask);
3243}
3244
1da177e4 3245/**
4025d3e7 3246 * __skb_queue_purge_reason - empty a list
1da177e4 3247 * @list: list to empty
4025d3e7 3248 * @reason: drop reason
1da177e4
LT
3249 *
3250 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3251 * the list and one reference dropped. This function does not take the
3252 * list lock and the caller must hold the relevant locks to use it.
3253 */
4025d3e7
ED
3254static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3255 enum skb_drop_reason reason)
1da177e4
LT
3256{
3257 struct sk_buff *skb;
4025d3e7 3258
1da177e4 3259 while ((skb = __skb_dequeue(list)) != NULL)
4025d3e7
ED
3260 kfree_skb_reason(skb, reason);
3261}
3262
3263static inline void __skb_queue_purge(struct sk_buff_head *list)
3264{
3265 __skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3266}
3267
3268void skb_queue_purge_reason(struct sk_buff_head *list,
3269 enum skb_drop_reason reason);
3270
3271static inline void skb_queue_purge(struct sk_buff_head *list)
3272{
3273 skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
1da177e4
LT
3274}
3275
385114de 3276unsigned int skb_rbtree_purge(struct rb_root *root);
0f158b32 3277void skb_errqueue_purge(struct sk_buff_head *list);
9f5afeae 3278
3f6e687d
KH
3279void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3280
3281/**
3282 * netdev_alloc_frag - allocate a page fragment
3283 * @fragsz: fragment size
3284 *
3285 * Allocates a frag from a page for receive buffer.
3286 * Uses GFP_ATOMIC allocations.
3287 */
3288static inline void *netdev_alloc_frag(unsigned int fragsz)
3289{
3290 return __netdev_alloc_frag_align(fragsz, ~0u);
3291}
3292
3293static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3294 unsigned int align)
3295{
3296 WARN_ON_ONCE(!is_power_of_2(align));
3297 return __netdev_alloc_frag_align(fragsz, -align);
3298}
1da177e4 3299
7965bd4d
JP
3300struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3301 gfp_t gfp_mask);
8af27456
CH
3302
3303/**
3304 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3305 * @dev: network device to receive on
3306 * @length: length to allocate
3307 *
3308 * Allocate a new &sk_buff and assign it a usage count of one. The
3309 * buffer has unspecified headroom built in. Users should allocate
3310 * the headroom they think they need without accounting for the
3311 * built in space. The built in space is used for optimisations.
3312 *
3313 * %NULL is returned if there is no free memory. Although this function
3314 * allocates memory it can be called from an interrupt.
3315 */
3316static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 3317 unsigned int length)
8af27456
CH
3318{
3319 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3320}
3321
6f532612
ED
3322/* legacy helper around __netdev_alloc_skb() */
3323static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3324 gfp_t gfp_mask)
3325{
3326 return __netdev_alloc_skb(NULL, length, gfp_mask);
3327}
3328
3329/* legacy helper around netdev_alloc_skb() */
3330static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3331{
3332 return netdev_alloc_skb(NULL, length);
3333}
3334
3335
4915a0de
ED
3336static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3337 unsigned int length, gfp_t gfp)
61321bbd 3338{
4915a0de 3339 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
3340
3341 if (NET_IP_ALIGN && skb)
3342 skb_reserve(skb, NET_IP_ALIGN);
3343 return skb;
3344}
3345
4915a0de
ED
3346static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3347 unsigned int length)
3348{
3349 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3350}
3351
181edb2b
AD
3352static inline void skb_free_frag(void *addr)
3353{
8c2dd3e4 3354 page_frag_free(addr);
181edb2b
AD
3355}
3356
3f6e687d
KH
3357void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3358
3359static inline void *napi_alloc_frag(unsigned int fragsz)
3360{
3361 return __napi_alloc_frag_align(fragsz, ~0u);
3362}
3363
3364static inline void *napi_alloc_frag_align(unsigned int fragsz,
3365 unsigned int align)
3366{
3367 WARN_ON_ONCE(!is_power_of_2(align));
3368 return __napi_alloc_frag_align(fragsz, -align);
3369}
3370
6e9b0190 3371struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
795bb1c0
JDB
3372void napi_consume_skb(struct sk_buff *skb, int budget);
3373
9243adfc 3374void napi_skb_free_stolen_head(struct sk_buff *skb);
8fa66e4a 3375void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
ffde7328 3376
71dfda58
AD
3377/**
3378 * __dev_alloc_pages - allocate page for network Rx
3379 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3380 * @order: size of the allocation
3381 *
3382 * Allocate a new page.
3383 *
3384 * %NULL is returned if there is no free memory.
3385*/
2c321f3f 3386static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
71dfda58
AD
3387 unsigned int order)
3388{
3389 /* This piece of code contains several assumptions.
bf873a80 3390 * 1. This is for device Rx, therefore a cold page is preferred.
71dfda58
AD
3391 * 2. The expectation is the user wants a compound page.
3392 * 3. If requesting a order 0 page it will not be compound
3393 * due to the check to see if order has a value in prep_new_page
3394 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3395 * code in gfp_to_alloc_flags that should be enforcing this.
3396 */
453f85d4 3397 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
71dfda58 3398
2c321f3f 3399 return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
71dfda58 3400}
2c321f3f 3401#define __dev_alloc_pages(...) alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
71dfda58 3402
2c321f3f 3403#define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
71dfda58
AD
3404
3405/**
3406 * __dev_alloc_page - allocate a page for network Rx
3407 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3408 *
3409 * Allocate a new page.
3410 *
3411 * %NULL is returned if there is no free memory.
3412 */
2c321f3f 3413static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
71dfda58 3414{
2c321f3f 3415 return __dev_alloc_pages_noprof(gfp_mask, 0);
71dfda58 3416}
2c321f3f 3417#define __dev_alloc_page(...) alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
71dfda58 3418
2c321f3f 3419#define dev_alloc_page() dev_alloc_pages(0)
71dfda58 3420
bc38f30f
AL
3421/**
3422 * dev_page_is_reusable - check whether a page can be reused for network Rx
3423 * @page: the page to test
3424 *
3425 * A page shouldn't be considered for reusing/recycling if it was allocated
3426 * under memory pressure or at a distant memory node.
3427 *
3428 * Returns false if this page should be returned to page allocator, true
3429 * otherwise.
3430 */
3431static inline bool dev_page_is_reusable(const struct page *page)
3432{
3433 return likely(page_to_nid(page) == numa_mem_id() &&
3434 !page_is_pfmemalloc(page));
3435}
3436
0614002b
MG
3437/**
3438 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3439 * @page: The page that was allocated from skb_alloc_page
3440 * @skb: The skb that may need pfmemalloc set
3441 */
48f971c9
AL
3442static inline void skb_propagate_pfmemalloc(const struct page *page,
3443 struct sk_buff *skb)
0614002b 3444{
2f064f34 3445 if (page_is_pfmemalloc(page))
0614002b
MG
3446 skb->pfmemalloc = true;
3447}
3448
7240b60c
JL
3449/**
3450 * skb_frag_off() - Returns the offset of a skb fragment
3451 * @frag: the paged fragment
3452 */
3453static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3454{
21d2e673 3455 return frag->offset;
7240b60c
JL
3456}
3457
3458/**
3459 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3460 * @frag: skb fragment
3461 * @delta: value to add
3462 */
3463static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3464{
21d2e673 3465 frag->offset += delta;
7240b60c
JL
3466}
3467
3468/**
3469 * skb_frag_off_set() - Sets the offset of a skb fragment
3470 * @frag: skb fragment
3471 * @offset: offset of fragment
3472 */
3473static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3474{
21d2e673 3475 frag->offset = offset;
7240b60c
JL
3476}
3477
3478/**
3479 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3480 * @fragto: skb fragment where offset is set
3481 * @fragfrom: skb fragment offset is copied from
3482 */
3483static inline void skb_frag_off_copy(skb_frag_t *fragto,
3484 const skb_frag_t *fragfrom)
3485{
21d2e673 3486 fragto->offset = fragfrom->offset;
7240b60c
JL
3487}
3488
131ea667 3489/**
e227867f 3490 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
3491 * @frag: the paged fragment
3492 *
3493 * Returns the &struct page associated with @frag.
3494 */
3495static inline struct page *skb_frag_page(const skb_frag_t *frag)
3496{
21d2e673 3497 return netmem_to_page(frag->netmem);
131ea667
IC
3498}
3499
27accb3c
LB
3500int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3501 unsigned int headroom);
e6d5dbdd
LB
3502int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3503 struct bpf_prog *prog);
131ea667
IC
3504/**
3505 * skb_frag_address - gets the address of the data contained in a paged fragment
3506 * @frag: the paged fragment buffer
3507 *
3508 * Returns the address of the data within @frag. The page must already
3509 * be mapped.
3510 */
3511static inline void *skb_frag_address(const skb_frag_t *frag)
3512{
7240b60c 3513 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
131ea667
IC
3514}
3515
3516/**
3517 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3518 * @frag: the paged fragment buffer
3519 *
3520 * Returns the address of the data within @frag. Checks that the page
3521 * is mapped and returns %NULL otherwise.
3522 */
3523static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3524{
3525 void *ptr = page_address(skb_frag_page(frag));
3526 if (unlikely(!ptr))
3527 return NULL;
3528
7240b60c
JL
3529 return ptr + skb_frag_off(frag);
3530}
3531
3532/**
3533 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3534 * @fragto: skb fragment where page is set
3535 * @fragfrom: skb fragment page is copied from
3536 */
3537static inline void skb_frag_page_copy(skb_frag_t *fragto,
3538 const skb_frag_t *fragfrom)
3539{
21d2e673 3540 fragto->netmem = fragfrom->netmem;
131ea667
IC
3541}
3542
400dfd3a
ED
3543bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3544
131ea667
IC
3545/**
3546 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 3547 * @dev: the device to map the fragment to
131ea667
IC
3548 * @frag: the paged fragment to map
3549 * @offset: the offset within the fragment (starting at the
3550 * fragment's own offset)
3551 * @size: the number of bytes to map
771b00a8 3552 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
3553 *
3554 * Maps the page associated with @frag to @device.
3555 */
3556static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3557 const skb_frag_t *frag,
3558 size_t offset, size_t size,
3559 enum dma_data_direction dir)
3560{
3561 return dma_map_page(dev, skb_frag_page(frag),
7240b60c 3562 skb_frag_off(frag) + offset, size, dir);
131ea667
IC
3563}
3564
117632e6
ED
3565static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3566 gfp_t gfp_mask)
3567{
3568 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3569}
3570
bad93e9d
OP
3571
3572static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3573 gfp_t gfp_mask)
3574{
3575 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3576}
3577
3578
334a8132
PM
3579/**
3580 * skb_clone_writable - is the header of a clone writable
3581 * @skb: buffer to check
3582 * @len: length up to which to write
3583 *
3584 * Returns true if modifying the header part of the cloned buffer
3585 * does not requires the data to be copied.
3586 */
05bdd2f1 3587static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
3588{
3589 return !skb_header_cloned(skb) &&
3590 skb_headroom(skb) + len <= skb->hdr_len;
3591}
3592
3697649f
DB
3593static inline int skb_try_make_writable(struct sk_buff *skb,
3594 unsigned int write_len)
3595{
3596 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3597 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3598}
3599
d9cc2048
HX
3600static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3601 int cloned)
3602{
3603 int delta = 0;
3604
d9cc2048
HX
3605 if (headroom > skb_headroom(skb))
3606 delta = headroom - skb_headroom(skb);
3607
3608 if (delta || cloned)
3609 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3610 GFP_ATOMIC);
3611 return 0;
3612}
3613
1da177e4
LT
3614/**
3615 * skb_cow - copy header of skb when it is required
3616 * @skb: buffer to cow
3617 * @headroom: needed headroom
3618 *
3619 * If the skb passed lacks sufficient headroom or its data part
3620 * is shared, data is reallocated. If reallocation fails, an error
3621 * is returned and original skb is not changed.
3622 *
3623 * The result is skb with writable area skb->head...skb->tail
3624 * and at least @headroom of space at head.
3625 */
3626static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3627{
d9cc2048
HX
3628 return __skb_cow(skb, headroom, skb_cloned(skb));
3629}
1da177e4 3630
d9cc2048
HX
3631/**
3632 * skb_cow_head - skb_cow but only making the head writable
3633 * @skb: buffer to cow
3634 * @headroom: needed headroom
3635 *
3636 * This function is identical to skb_cow except that we replace the
3637 * skb_cloned check by skb_header_cloned. It should be used when
3638 * you only need to push on some header and do not need to modify
3639 * the data.
3640 */
3641static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3642{
3643 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
3644}
3645
3646/**
3647 * skb_padto - pad an skbuff up to a minimal size
3648 * @skb: buffer to pad
3649 * @len: minimal length
3650 *
3651 * Pads up a buffer to ensure the trailing bytes exist and are
3652 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
3653 * is untouched. Otherwise it is extended. Returns zero on
3654 * success. The skb is freed on error.
1da177e4 3655 */
5b057c6b 3656static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
3657{
3658 unsigned int size = skb->len;
3659 if (likely(size >= len))
5b057c6b 3660 return 0;
987c402a 3661 return skb_pad(skb, len - size);
1da177e4
LT
3662}
3663
9c0c1124 3664/**
4ea7b0cf 3665 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
9c0c1124
AD
3666 * @skb: buffer to pad
3667 * @len: minimal length
cd0a137a 3668 * @free_on_error: free buffer on error
9c0c1124
AD
3669 *
3670 * Pads up a buffer to ensure the trailing bytes exist and are
3671 * blanked. If the buffer already contains sufficient data it
3672 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 3673 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 3674 */
4a009cb0
ED
3675static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3676 unsigned int len,
3677 bool free_on_error)
9c0c1124
AD
3678{
3679 unsigned int size = skb->len;
3680
3681 if (unlikely(size < len)) {
3682 len -= size;
cd0a137a 3683 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
3684 return -ENOMEM;
3685 __skb_put(skb, len);
3686 }
3687 return 0;
3688}
3689
cd0a137a
FF
3690/**
3691 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3692 * @skb: buffer to pad
3693 * @len: minimal length
3694 *
3695 * Pads up a buffer to ensure the trailing bytes exist and are
3696 * blanked. If the buffer already contains sufficient data it
3697 * is untouched. Otherwise it is extended. Returns zero on
3698 * success. The skb is freed on error.
3699 */
4a009cb0 3700static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
cd0a137a
FF
3701{
3702 return __skb_put_padto(skb, len, true);
3703}
3704
7c6f353e
DH
3705bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3706 __must_check;
6d0d4199 3707
1da177e4 3708static inline int skb_add_data(struct sk_buff *skb,
af2b040e 3709 struct iov_iter *from, int copy)
1da177e4
LT
3710{
3711 const int off = skb->len;
3712
3713 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 3714 __wsum csum = 0;
15e6cb46
AV
3715 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3716 &csum, from)) {
1da177e4
LT
3717 skb->csum = csum_block_add(skb->csum, csum, off);
3718 return 0;
3719 }
15e6cb46 3720 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3721 return 0;
3722
3723 __skb_trim(skb, off);
3724 return -EFAULT;
3725}
3726
38ba0a65
ED
3727static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3728 const struct page *page, int off)
1da177e4 3729{
1f8b977a
WB
3730 if (skb_zcopy(skb))
3731 return false;
1da177e4 3732 if (i) {
d8e18a51 3733 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3734
ea2ab693 3735 return page == skb_frag_page(frag) &&
7240b60c 3736 off == skb_frag_off(frag) + skb_frag_size(frag);
1da177e4 3737 }
38ba0a65 3738 return false;
1da177e4
LT
3739}
3740
364c6bad
HX
3741static inline int __skb_linearize(struct sk_buff *skb)
3742{
3743 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3744}
3745
1da177e4
LT
3746/**
3747 * skb_linearize - convert paged skb to linear one
3748 * @skb: buffer to linarize
1da177e4
LT
3749 *
3750 * If there is no free memory -ENOMEM is returned, otherwise zero
3751 * is returned and the old skb data released.
3752 */
364c6bad
HX
3753static inline int skb_linearize(struct sk_buff *skb)
3754{
3755 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3756}
3757
cef401de
ED
3758/**
3759 * skb_has_shared_frag - can any frag be overwritten
3760 * @skb: buffer to test
3761 *
3762 * Return true if the skb has at least one frag that might be modified
3763 * by an external entity (as in vmsplice()/sendfile())
3764 */
3765static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3766{
c9af6db4 3767 return skb_is_nonlinear(skb) &&
06b4feb3 3768 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
cef401de
ED
3769}
3770
364c6bad
HX
3771/**
3772 * skb_linearize_cow - make sure skb is linear and writable
3773 * @skb: buffer to process
3774 *
3775 * If there is no free memory -ENOMEM is returned, otherwise zero
3776 * is returned and the old skb data released.
3777 */
3778static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3779{
364c6bad
HX
3780 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3781 __skb_linearize(skb) : 0;
1da177e4
LT
3782}
3783
479ffccc
DB
3784static __always_inline void
3785__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3786 unsigned int off)
3787{
3788 if (skb->ip_summed == CHECKSUM_COMPLETE)
3789 skb->csum = csum_block_sub(skb->csum,
3790 csum_partial(start, len, 0), off);
3791 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3792 skb_checksum_start_offset(skb) < 0)
3793 skb->ip_summed = CHECKSUM_NONE;
3794}
3795
1da177e4
LT
3796/**
3797 * skb_postpull_rcsum - update checksum for received skb after pull
3798 * @skb: buffer to update
3799 * @start: start of data before pull
3800 * @len: length of data pulled
3801 *
3802 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3803 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3804 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3805 */
1da177e4 3806static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3807 const void *start, unsigned int len)
1da177e4 3808{
29c30026 3809 if (skb->ip_summed == CHECKSUM_COMPLETE)
45cac675
ED
3810 skb->csum = wsum_negate(csum_partial(start, len,
3811 wsum_negate(skb->csum)));
29c30026
ED
3812 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3813 skb_checksum_start_offset(skb) < 0)
3814 skb->ip_summed = CHECKSUM_NONE;
1da177e4
LT
3815}
3816
479ffccc
DB
3817static __always_inline void
3818__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3819 unsigned int off)
3820{
3821 if (skb->ip_summed == CHECKSUM_COMPLETE)
3822 skb->csum = csum_block_add(skb->csum,
3823 csum_partial(start, len, 0), off);
3824}
cbb042f9 3825
479ffccc
DB
3826/**
3827 * skb_postpush_rcsum - update checksum for received skb after push
3828 * @skb: buffer to update
3829 * @start: start of data after push
3830 * @len: length of data pushed
3831 *
3832 * After doing a push on a received packet, you need to call this to
3833 * update the CHECKSUM_COMPLETE checksum.
3834 */
f8ffad69
DB
3835static inline void skb_postpush_rcsum(struct sk_buff *skb,
3836 const void *start, unsigned int len)
3837{
479ffccc 3838 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3839}
3840
af72868b 3841void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3842
82a31b92
WC
3843/**
3844 * skb_push_rcsum - push skb and update receive checksum
3845 * @skb: buffer to update
3846 * @len: length of data pulled
3847 *
3848 * This function performs an skb_push on the packet and updates
3849 * the CHECKSUM_COMPLETE checksum. It should be used on
3850 * receive path processing instead of skb_push unless you know
3851 * that the checksum difference is zero (e.g., a valid IP header)
3852 * or you are setting ip_summed to CHECKSUM_NONE.
3853 */
d58ff351 3854static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3855{
3856 skb_push(skb, len);
3857 skb_postpush_rcsum(skb, skb->data, len);
3858 return skb->data;
3859}
3860
88078d98 3861int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
7ce5a27f
DM
3862/**
3863 * pskb_trim_rcsum - trim received skb and update checksum
3864 * @skb: buffer to trim
3865 * @len: new length
3866 *
3867 * This is exactly the same as pskb_trim except that it ensures the
3868 * checksum of received packets are still valid after the operation.
6c57f045 3869 * It can change skb pointers.
7ce5a27f
DM
3870 */
3871
3872static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3873{
3874 if (likely(len >= skb->len))
3875 return 0;
88078d98 3876 return pskb_trim_rcsum_slow(skb, len);
7ce5a27f
DM
3877}
3878
5293efe6
DB
3879static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3880{
3881 if (skb->ip_summed == CHECKSUM_COMPLETE)
3882 skb->ip_summed = CHECKSUM_NONE;
3883 __skb_trim(skb, len);
3884 return 0;
3885}
3886
3887static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3888{
3889 if (skb->ip_summed == CHECKSUM_COMPLETE)
3890 skb->ip_summed = CHECKSUM_NONE;
3891 return __skb_grow(skb, len);
3892}
3893
18a4c0ea
ED
3894#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3895#define skb_rb_first(root) rb_to_skb(rb_first(root))
3896#define skb_rb_last(root) rb_to_skb(rb_last(root))
3897#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3898#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3899
1da177e4
LT
3900#define skb_queue_walk(queue, skb) \
3901 for (skb = (queue)->next; \
a1e4891f 3902 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3903 skb = skb->next)
3904
46f8914e
JC
3905#define skb_queue_walk_safe(queue, skb, tmp) \
3906 for (skb = (queue)->next, tmp = skb->next; \
3907 skb != (struct sk_buff *)(queue); \
3908 skb = tmp, tmp = skb->next)
3909
1164f52a 3910#define skb_queue_walk_from(queue, skb) \
a1e4891f 3911 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3912 skb = skb->next)
3913
18a4c0ea
ED
3914#define skb_rbtree_walk(skb, root) \
3915 for (skb = skb_rb_first(root); skb != NULL; \
3916 skb = skb_rb_next(skb))
3917
3918#define skb_rbtree_walk_from(skb) \
3919 for (; skb != NULL; \
3920 skb = skb_rb_next(skb))
3921
3922#define skb_rbtree_walk_from_safe(skb, tmp) \
3923 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3924 skb = tmp)
3925
1164f52a
DM
3926#define skb_queue_walk_from_safe(queue, skb, tmp) \
3927 for (tmp = skb->next; \
3928 skb != (struct sk_buff *)(queue); \
3929 skb = tmp, tmp = skb->next)
3930
300ce174
SH
3931#define skb_queue_reverse_walk(queue, skb) \
3932 for (skb = (queue)->prev; \
a1e4891f 3933 skb != (struct sk_buff *)(queue); \
300ce174
SH
3934 skb = skb->prev)
3935
686a2955
DM
3936#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3937 for (skb = (queue)->prev, tmp = skb->prev; \
3938 skb != (struct sk_buff *)(queue); \
3939 skb = tmp, tmp = skb->prev)
3940
3941#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3942 for (tmp = skb->prev; \
3943 skb != (struct sk_buff *)(queue); \
3944 skb = tmp, tmp = skb->prev)
1da177e4 3945
21dc3301 3946static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3947{
3948 return skb_shinfo(skb)->frag_list != NULL;
3949}
3950
3951static inline void skb_frag_list_init(struct sk_buff *skb)
3952{
3953 skb_shinfo(skb)->frag_list = NULL;
3954}
3955
ee039871
DM
3956#define skb_walk_frags(skb, iter) \
3957 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3958
ea3793ee 3959
b50b0580
SD
3960int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3961 int *err, long *timeo_p,
ea3793ee 3962 const struct sk_buff *skb);
65101aec
PA
3963struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3964 struct sk_buff_head *queue,
3965 unsigned int flags,
fd69c399 3966 int *off, int *err,
65101aec 3967 struct sk_buff **last);
b50b0580
SD
3968struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3969 struct sk_buff_head *queue,
e427cad6 3970 unsigned int flags, int *off, int *err,
ea3793ee 3971 struct sk_buff **last);
b50b0580
SD
3972struct sk_buff *__skb_recv_datagram(struct sock *sk,
3973 struct sk_buff_head *sk_queue,
e427cad6 3974 unsigned int flags, int *off, int *err);
f4b41f06 3975struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
a11e1d43
LT
3976__poll_t datagram_poll(struct file *file, struct socket *sock,
3977 struct poll_table_struct *wait);
c0371da6
AV
3978int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3979 struct iov_iter *to, int size);
51f3d02b
DM
3980static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3981 struct msghdr *msg, int size)
3982{
e5a4b0bb 3983 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3984}
e5a4b0bb
AV
3985int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3986 struct msghdr *msg);
65d69e25
SG
3987int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3988 struct iov_iter *to, int len,
3989 struct ahash_request *hash);
3a654f97
AV
3990int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3991 struct iov_iter *from, int len);
3a654f97 3992int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3993void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
7965bd4d 3994int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3995int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3996int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3997__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
8d5930df 3998 int len);
a60e3cc7 3999int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 4000 struct pipe_inode_info *pipe, unsigned int len,
25869262 4001 unsigned int flags);
20bf50de
TH
4002int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4003 int len);
0739cd28 4004int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 4005void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 4006unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
4007int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4008 int len, int hlen);
7965bd4d
JP
4009void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4010int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4011void skb_scrub_packet(struct sk_buff *skb, bool xnet);
7965bd4d 4012struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3a1296a3
SK
4013struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4014 unsigned int offset);
0d5501c1 4015struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
92ece280 4016int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
90abde49 4017int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
bfca4c52 4018int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
4019int skb_vlan_pop(struct sk_buff *skb);
4020int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
19fbcb36
GN
4021int skb_eth_pop(struct sk_buff *skb);
4022int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4023 const unsigned char *src);
fa4e0f88 4024int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
d04ac224 4025 int mac_len, bool ethernet);
040b5cfb
MV
4026int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4027 bool ethernet);
d27cf5c5 4028int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
2a2ea508 4029int skb_mpls_dec_ttl(struct sk_buff *skb);
6fa01ccd
SV
4030struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4031 gfp_t gfp);
20380731 4032
6ce8e9ce
AV
4033static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4034{
3073f070 4035 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
4036}
4037
7eab8d9e
AV
4038static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4039{
e5a4b0bb 4040 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
4041}
4042
2817a336
DB
4043struct skb_checksum_ops {
4044 __wsum (*update)(const void *mem, int len, __wsum wsum);
4045 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4046};
4047
9617813d
DC
4048extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4049
2817a336
DB
4050__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4051 __wsum csum, const struct skb_checksum_ops *ops);
4052__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4053 __wsum csum);
4054
1e98a0f0 4055static inline void * __must_check
e3305138
AL
4056__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4057 const void *data, int hlen, void *buffer)
1da177e4 4058{
d206121f 4059 if (likely(hlen - offset >= len))
e3305138 4060 return (void *)data + offset;
1da177e4 4061
6f5a630d 4062 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
1da177e4
LT
4063 return NULL;
4064
4065 return buffer;
4066}
4067
1e98a0f0
ED
4068static inline void * __must_check
4069skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
4070{
4071 return __skb_header_pointer(skb, offset, len, skb->data,
4072 skb_headlen(skb), buffer);
4073}
4074
6f5a630d
AS
4075static inline void * __must_check
4076skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4077{
4078 if (likely(skb_headlen(skb) - offset >= len))
4079 return skb->data + offset;
4080 return NULL;
4081}
4082
4262e5cc
DB
4083/**
4084 * skb_needs_linearize - check if we need to linearize a given skb
4085 * depending on the given device features.
4086 * @skb: socket buffer to check
4087 * @features: net device features
4088 *
4089 * Returns true if either:
4090 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4091 * 2. skb is fragmented and the device does not support SG.
4092 */
4093static inline bool skb_needs_linearize(struct sk_buff *skb,
4094 netdev_features_t features)
4095{
4096 return skb_is_nonlinear(skb) &&
4097 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4098 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4099}
4100
d626f62b
ACM
4101static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4102 void *to,
4103 const unsigned int len)
4104{
4105 memcpy(to, skb->data, len);
4106}
4107
4108static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4109 const int offset, void *to,
4110 const unsigned int len)
4111{
4112 memcpy(to, skb->data + offset, len);
4113}
4114
27d7ff46
ACM
4115static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4116 const void *from,
4117 const unsigned int len)
4118{
4119 memcpy(skb->data, from, len);
4120}
4121
4122static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4123 const int offset,
4124 const void *from,
4125 const unsigned int len)
4126{
4127 memcpy(skb->data + offset, from, len);
4128}
4129
7965bd4d 4130void skb_init(void);
1da177e4 4131
ac45f602
PO
4132static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4133{
4134 return skb->tstamp;
4135}
4136
a61bbcf2
PM
4137/**
4138 * skb_get_timestamp - get timestamp from a skb
4139 * @skb: skb to get stamp from
13c6ee2a 4140 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
a61bbcf2
PM
4141 *
4142 * Timestamps are stored in the skb as offsets to a base timestamp.
4143 * This function converts the offset back to a struct timeval and stores
4144 * it in stamp.
4145 */
ac45f602 4146static inline void skb_get_timestamp(const struct sk_buff *skb,
13c6ee2a 4147 struct __kernel_old_timeval *stamp)
a61bbcf2 4148{
13c6ee2a 4149 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
a61bbcf2
PM
4150}
4151
887feae3
DD
4152static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4153 struct __kernel_sock_timeval *stamp)
4154{
4155 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4156
4157 stamp->tv_sec = ts.tv_sec;
4158 stamp->tv_usec = ts.tv_nsec / 1000;
4159}
4160
ac45f602 4161static inline void skb_get_timestampns(const struct sk_buff *skb,
df1b4ba9 4162 struct __kernel_old_timespec *stamp)
ac45f602 4163{
df1b4ba9
AB
4164 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4165
4166 stamp->tv_sec = ts.tv_sec;
4167 stamp->tv_nsec = ts.tv_nsec;
ac45f602
PO
4168}
4169
887feae3
DD
4170static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4171 struct __kernel_timespec *stamp)
4172{
4173 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4174
4175 stamp->tv_sec = ts.tv_sec;
4176 stamp->tv_nsec = ts.tv_nsec;
4177}
4178
b7aa0bf7 4179static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 4180{
b7aa0bf7 4181 skb->tstamp = ktime_get_real();
d93376f5 4182 skb->mono_delivery_time = 0;
a61bbcf2
PM
4183}
4184
164891aa
SH
4185static inline ktime_t net_timedelta(ktime_t t)
4186{
4187 return ktime_sub(ktime_get_real(), t);
4188}
4189
a1ac9c8a
MKL
4190static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4191 bool mono)
4192{
4193 skb->tstamp = kt;
d98d58a0 4194 skb->mono_delivery_time = kt && mono;
a1ac9c8a
MKL
4195}
4196
27942a15
MKL
4197DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4198
4199/* It is used in the ingress path to clear the delivery_time.
4200 * If needed, set the skb->tstamp to the (rcv) timestamp.
4201 */
4202static inline void skb_clear_delivery_time(struct sk_buff *skb)
4203{
4204 if (skb->mono_delivery_time) {
4205 skb->mono_delivery_time = 0;
4206 if (static_branch_unlikely(&netstamp_needed_key))
4207 skb->tstamp = ktime_get_real();
4208 else
4209 skb->tstamp = 0;
4210 }
4211}
4212
de799101
MKL
4213static inline void skb_clear_tstamp(struct sk_buff *skb)
4214{
4215 if (skb->mono_delivery_time)
4216 return;
4217
4218 skb->tstamp = 0;
4219}
4220
27942a15
MKL
4221static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4222{
4223 if (skb->mono_delivery_time)
4224 return 0;
4225
4226 return skb->tstamp;
4227}
4228
b6561f84
MKL
4229static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4230{
4231 if (!skb->mono_delivery_time && skb->tstamp)
4232 return skb->tstamp;
4233
4234 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4235 return ktime_get_real();
4236
4237 return 0;
4238}
4239
de8f3a83
DB
4240static inline u8 skb_metadata_len(const struct sk_buff *skb)
4241{
4242 return skb_shinfo(skb)->meta_len;
4243}
4244
4245static inline void *skb_metadata_end(const struct sk_buff *skb)
4246{
4247 return skb_mac_header(skb);
4248}
4249
4250static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4251 const struct sk_buff *skb_b,
4252 u8 meta_len)
4253{
4254 const void *a = skb_metadata_end(skb_a);
4255 const void *b = skb_metadata_end(skb_b);
de8f3a83
DB
4256 u64 diffs = 0;
4257
2ebe81c8
AL
4258 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4259 BITS_PER_LONG != 64)
4260 goto slow;
4261
4262 /* Using more efficient variant than plain call to memcmp(). */
de8f3a83
DB
4263 switch (meta_len) {
4264#define __it(x, op) (x -= sizeof(u##op))
4265#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4266 case 32: diffs |= __it_diff(a, b, 64);
df561f66 4267 fallthrough;
de8f3a83 4268 case 24: diffs |= __it_diff(a, b, 64);
df561f66 4269 fallthrough;
de8f3a83 4270 case 16: diffs |= __it_diff(a, b, 64);
df561f66 4271 fallthrough;
de8f3a83
DB
4272 case 8: diffs |= __it_diff(a, b, 64);
4273 break;
4274 case 28: diffs |= __it_diff(a, b, 64);
df561f66 4275 fallthrough;
de8f3a83 4276 case 20: diffs |= __it_diff(a, b, 64);
df561f66 4277 fallthrough;
de8f3a83 4278 case 12: diffs |= __it_diff(a, b, 64);
df561f66 4279 fallthrough;
de8f3a83
DB
4280 case 4: diffs |= __it_diff(a, b, 32);
4281 break;
2ebe81c8
AL
4282 default:
4283slow:
4284 return memcmp(a - meta_len, b - meta_len, meta_len);
de8f3a83
DB
4285 }
4286 return diffs;
de8f3a83
DB
4287}
4288
4289static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4290 const struct sk_buff *skb_b)
4291{
4292 u8 len_a = skb_metadata_len(skb_a);
4293 u8 len_b = skb_metadata_len(skb_b);
4294
4295 if (!(len_a | len_b))
4296 return false;
4297
4298 return len_a != len_b ?
4299 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4300}
4301
4302static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4303{
4304 skb_shinfo(skb)->meta_len = meta_len;
4305}
4306
4307static inline void skb_metadata_clear(struct sk_buff *skb)
4308{
4309 skb_metadata_set(skb, 0);
4310}
4311
62bccb8c
AD
4312struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4313
c1f19b51
RC
4314#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4315
7965bd4d
JP
4316void skb_clone_tx_timestamp(struct sk_buff *skb);
4317bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
4318
4319#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4320
4321static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4322{
4323}
4324
4325static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4326{
4327 return false;
4328}
4329
4330#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4331
4332/**
4333 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4334 *
da92b194
RC
4335 * PHY drivers may accept clones of transmitted packets for
4336 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
4337 * must call this function to return the skb back to the stack with a
4338 * timestamp.
da92b194 4339 *
2ff17117 4340 * @skb: clone of the original outgoing packet
7a76a021 4341 * @hwtstamps: hardware time stamps
c1f19b51
RC
4342 *
4343 */
4344void skb_complete_tx_timestamp(struct sk_buff *skb,
4345 struct skb_shared_hwtstamps *hwtstamps);
4346
e7ed11ee 4347void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
e7fd2885
WB
4348 struct skb_shared_hwtstamps *hwtstamps,
4349 struct sock *sk, int tstype);
4350
ac45f602
PO
4351/**
4352 * skb_tstamp_tx - queue clone of skb with send time stamps
4353 * @orig_skb: the original outgoing packet
4354 * @hwtstamps: hardware time stamps, may be NULL if not available
4355 *
4356 * If the skb has a socket associated, then this function clones the
4357 * skb (thus sharing the actual data and optional structures), stores
4358 * the optional hardware time stamping information (if non NULL) or
4359 * generates a software time stamp (otherwise), then queues the clone
4360 * to the error queue of the socket. Errors are silently ignored.
4361 */
7965bd4d
JP
4362void skb_tstamp_tx(struct sk_buff *orig_skb,
4363 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 4364
4507a715
RC
4365/**
4366 * skb_tx_timestamp() - Driver hook for transmit timestamping
4367 *
4368 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 4369 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 4370 *
73409f3b
DM
4371 * Specifically, one should make absolutely sure that this function is
4372 * called before TX completion of this packet can trigger. Otherwise
4373 * the packet could potentially already be freed.
4374 *
4507a715
RC
4375 * @skb: A socket buffer.
4376 */
4377static inline void skb_tx_timestamp(struct sk_buff *skb)
4378{
c1f19b51 4379 skb_clone_tx_timestamp(skb);
b50a5c70
ML
4380 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4381 skb_tstamp_tx(skb, NULL);
4507a715
RC
4382}
4383
6e3e939f
JB
4384/**
4385 * skb_complete_wifi_ack - deliver skb with wifi status
4386 *
4387 * @skb: the original outgoing packet
4388 * @acked: ack status
4389 *
4390 */
4391void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4392
7965bd4d
JP
4393__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4394__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 4395
60476372
HX
4396static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4397{
6edec0e6
TH
4398 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4399 skb->csum_valid ||
4400 (skb->ip_summed == CHECKSUM_PARTIAL &&
4401 skb_checksum_start_offset(skb) >= 0));
60476372
HX
4402}
4403
fb286bb2
HX
4404/**
4405 * skb_checksum_complete - Calculate checksum of an entire packet
4406 * @skb: packet to process
4407 *
4408 * This function calculates the checksum over the entire packet plus
4409 * the value of skb->csum. The latter can be used to supply the
4410 * checksum of a pseudo header as used by TCP/UDP. It returns the
4411 * checksum.
4412 *
4413 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4414 * this function can be used to verify that checksum on received
4415 * packets. In that case the function should return zero if the
4416 * checksum is correct. In particular, this function will return zero
4417 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4418 * hardware has already verified the correctness of the checksum.
4419 */
4381ca3c 4420static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 4421{
60476372
HX
4422 return skb_csum_unnecessary(skb) ?
4423 0 : __skb_checksum_complete(skb);
fb286bb2
HX
4424}
4425
77cffe23
TH
4426static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4427{
4428 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4429 if (skb->csum_level == 0)
4430 skb->ip_summed = CHECKSUM_NONE;
4431 else
4432 skb->csum_level--;
4433 }
4434}
4435
4436static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4437{
4438 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4439 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4440 skb->csum_level++;
4441 } else if (skb->ip_summed == CHECKSUM_NONE) {
4442 skb->ip_summed = CHECKSUM_UNNECESSARY;
4443 skb->csum_level = 0;
4444 }
4445}
4446
836e66c2
DB
4447static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4448{
4449 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4450 skb->ip_summed = CHECKSUM_NONE;
4451 skb->csum_level = 0;
4452 }
4453}
4454
76ba0aae
TH
4455/* Check if we need to perform checksum complete validation.
4456 *
4457 * Returns true if checksum complete is needed, false otherwise
4458 * (either checksum is unnecessary or zero checksum is allowed).
4459 */
4460static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4461 bool zero_okay,
4462 __sum16 check)
4463{
5d0c2b95
TH
4464 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4465 skb->csum_valid = 1;
77cffe23 4466 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
4467 return false;
4468 }
4469
4470 return true;
4471}
4472
da279887 4473/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
76ba0aae
TH
4474 * in checksum_init.
4475 */
4476#define CHECKSUM_BREAK 76
4477
4e18b9ad
TH
4478/* Unset checksum-complete
4479 *
4480 * Unset checksum complete can be done when packet is being modified
4481 * (uncompressed for instance) and checksum-complete value is
4482 * invalidated.
4483 */
4484static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4485{
4486 if (skb->ip_summed == CHECKSUM_COMPLETE)
4487 skb->ip_summed = CHECKSUM_NONE;
4488}
4489
76ba0aae
TH
4490/* Validate (init) checksum based on checksum complete.
4491 *
4492 * Return values:
4493 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4494 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4495 * checksum is stored in skb->csum for use in __skb_checksum_complete
4496 * non-zero: value of invalid checksum
4497 *
4498 */
4499static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4500 bool complete,
4501 __wsum psum)
4502{
4503 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4504 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 4505 skb->csum_valid = 1;
76ba0aae
TH
4506 return 0;
4507 }
4508 }
4509
4510 skb->csum = psum;
4511
5d0c2b95
TH
4512 if (complete || skb->len <= CHECKSUM_BREAK) {
4513 __sum16 csum;
4514
4515 csum = __skb_checksum_complete(skb);
4516 skb->csum_valid = !csum;
4517 return csum;
4518 }
76ba0aae
TH
4519
4520 return 0;
4521}
4522
4523static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4524{
4525 return 0;
4526}
4527
4528/* Perform checksum validate (init). Note that this is a macro since we only
4529 * want to calculate the pseudo header which is an input function if necessary.
4530 * First we try to validate without any computation (checksum unnecessary) and
4531 * then calculate based on checksum complete calling the function to compute
4532 * pseudo header.
4533 *
4534 * Return values:
4535 * 0: checksum is validated or try to in skb_checksum_complete
4536 * non-zero: value of invalid checksum
4537 */
4538#define __skb_checksum_validate(skb, proto, complete, \
4539 zero_okay, check, compute_pseudo) \
4540({ \
4541 __sum16 __ret = 0; \
5d0c2b95 4542 skb->csum_valid = 0; \
76ba0aae
TH
4543 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4544 __ret = __skb_checksum_validate_complete(skb, \
4545 complete, compute_pseudo(skb, proto)); \
4546 __ret; \
4547})
4548
4549#define skb_checksum_init(skb, proto, compute_pseudo) \
4550 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4551
4552#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4553 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4554
4555#define skb_checksum_validate(skb, proto, compute_pseudo) \
4556 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4557
4558#define skb_checksum_validate_zero_check(skb, proto, check, \
4559 compute_pseudo) \
096a4cfa 4560 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
4561
4562#define skb_checksum_simple_validate(skb) \
4563 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4564
d96535a1
TH
4565static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4566{
219f1d79 4567 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
4568}
4569
e4aa33ad 4570static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
d96535a1
TH
4571{
4572 skb->csum = ~pseudo;
4573 skb->ip_summed = CHECKSUM_COMPLETE;
4574}
4575
e4aa33ad 4576#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
d96535a1
TH
4577do { \
4578 if (__skb_checksum_convert_check(skb)) \
e4aa33ad 4579 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
d96535a1
TH
4580} while (0)
4581
15e2396d
TH
4582static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4583 u16 start, u16 offset)
4584{
4585 skb->ip_summed = CHECKSUM_PARTIAL;
4586 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4587 skb->csum_offset = offset - start;
4588}
4589
dcdc8994
TH
4590/* Update skbuf and packet to reflect the remote checksum offload operation.
4591 * When called, ptr indicates the starting point for skb->csum when
4592 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4593 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4594 */
4595static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 4596 int start, int offset, bool nopartial)
dcdc8994
TH
4597{
4598 __wsum delta;
4599
15e2396d
TH
4600 if (!nopartial) {
4601 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4602 return;
4603 }
4604
10a2308f 4605 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
dcdc8994
TH
4606 __skb_checksum_complete(skb);
4607 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4608 }
4609
4610 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4611
4612 /* Adjust skb->csum since we changed the packet */
4613 skb->csum = csum_add(skb->csum, delta);
4614}
4615
cb9c6836
FW
4616static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4617{
4618#if IS_ENABLED(CONFIG_NF_CONNTRACK)
261db6c2 4619 return (void *)(skb->_nfct & NFCT_PTRMASK);
cb9c6836
FW
4620#else
4621 return NULL;
4622#endif
4623}
4624
261db6c2 4625static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
1da177e4 4626{
261db6c2
JS
4627#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4628 return skb->_nfct;
4629#else
4630 return 0UL;
4631#endif
1da177e4 4632}
261db6c2
JS
4633
4634static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
1da177e4 4635{
261db6c2 4636#if IS_ENABLED(CONFIG_NF_CONNTRACK)
5fc88f93 4637 skb->slow_gro |= !!nfct;
261db6c2 4638 skb->_nfct = nfct;
2fc72c7b 4639#endif
261db6c2 4640}
df5042f4
FW
4641
4642#ifdef CONFIG_SKB_EXTENSIONS
4643enum skb_ext_id {
4644#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4645 SKB_EXT_BRIDGE_NF,
4165079b
FW
4646#endif
4647#ifdef CONFIG_XFRM
4648 SKB_EXT_SEC_PATH,
95a7233c
PB
4649#endif
4650#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4651 TC_SKB_EXT,
3ee17bc7
MM
4652#endif
4653#if IS_ENABLED(CONFIG_MPTCP)
4654 SKB_EXT_MPTCP,
78476d31
JK
4655#endif
4656#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4657 SKB_EXT_MCTP,
df5042f4
FW
4658#endif
4659 SKB_EXT_NUM, /* must be last */
4660};
4661
4662/**
4663 * struct skb_ext - sk_buff extensions
4664 * @refcnt: 1 on allocation, deallocated on 0
4665 * @offset: offset to add to @data to obtain extension address
4666 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4667 * @data: start of extension data, variable sized
4668 *
4669 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4670 * to use 'u8' types while allowing up to 2kb worth of extension data.
4671 */
4672struct skb_ext {
4673 refcount_t refcnt;
4674 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4675 u8 chunks; /* same */
5c91aa1d 4676 char data[] __aligned(8);
df5042f4
FW
4677};
4678
4930f483 4679struct skb_ext *__skb_ext_alloc(gfp_t flags);
8b69a803
PA
4680void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4681 struct skb_ext *ext);
df5042f4
FW
4682void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4683void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4684void __skb_ext_put(struct skb_ext *ext);
4685
4686static inline void skb_ext_put(struct sk_buff *skb)
4687{
4688 if (skb->active_extensions)
4689 __skb_ext_put(skb->extensions);
4690}
4691
df5042f4
FW
4692static inline void __skb_ext_copy(struct sk_buff *dst,
4693 const struct sk_buff *src)
4694{
4695 dst->active_extensions = src->active_extensions;
4696
4697 if (src->active_extensions) {
4698 struct skb_ext *ext = src->extensions;
4699
4700 refcount_inc(&ext->refcnt);
4701 dst->extensions = ext;
4702 }
4703}
4704
4705static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4706{
4707 skb_ext_put(dst);
4708 __skb_ext_copy(dst, src);
4709}
4710
4711static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4712{
4713 return !!ext->offset[i];
4714}
4715
4716static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4717{
4718 return skb->active_extensions & (1 << id);
4719}
4720
4721static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4722{
4723 if (skb_ext_exist(skb, id))
4724 __skb_ext_del(skb, id);
4725}
4726
4727static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4728{
4729 if (skb_ext_exist(skb, id)) {
4730 struct skb_ext *ext = skb->extensions;
4731
4732 return (void *)ext + (ext->offset[id] << 3);
4733 }
4734
4735 return NULL;
4736}
174e2381
FW
4737
4738static inline void skb_ext_reset(struct sk_buff *skb)
4739{
4740 if (unlikely(skb->active_extensions)) {
4741 __skb_ext_put(skb->extensions);
4742 skb->active_extensions = 0;
4743 }
4744}
677bf08c
FW
4745
4746static inline bool skb_has_extensions(struct sk_buff *skb)
4747{
4748 return unlikely(skb->active_extensions);
4749}
df5042f4
FW
4750#else
4751static inline void skb_ext_put(struct sk_buff *skb) {}
174e2381 4752static inline void skb_ext_reset(struct sk_buff *skb) {}
df5042f4
FW
4753static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4754static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4755static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
677bf08c 4756static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
df5042f4
FW
4757#endif /* CONFIG_SKB_EXTENSIONS */
4758
895b5c9f 4759static inline void nf_reset_ct(struct sk_buff *skb)
a193a4ab 4760{
5f79e0f9 4761#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4762 nf_conntrack_put(skb_nfct(skb));
4763 skb->_nfct = 0;
2fc72c7b 4764#endif
a193a4ab
PM
4765}
4766
124dff01
PM
4767static inline void nf_reset_trace(struct sk_buff *skb)
4768{
c55c0e91 4769#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
130549fe
G
4770 skb->nf_trace = 0;
4771#endif
a193a4ab
PM
4772}
4773
2b5ec1a5
YY
4774static inline void ipvs_reset(struct sk_buff *skb)
4775{
4776#if IS_ENABLED(CONFIG_IP_VS)
4777 skb->ipvs_property = 0;
4778#endif
4779}
4780
de8bda1d 4781/* Note: This doesn't put any conntrack info in dst. */
b1937227
ED
4782static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4783 bool copy)
edda553c 4784{
5f79e0f9 4785#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
4786 dst->_nfct = src->_nfct;
4787 nf_conntrack_get(skb_nfct(src));
2fc72c7b 4788#endif
c55c0e91 4789#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
b1937227
ED
4790 if (copy)
4791 dst->nf_trace = src->nf_trace;
478b360a 4792#endif
edda553c
YK
4793}
4794
e7ac05f3
YK
4795static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4796{
e7ac05f3 4797#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 4798 nf_conntrack_put(skb_nfct(dst));
e7ac05f3 4799#endif
5fc88f93 4800 dst->slow_gro = src->slow_gro;
b1937227 4801 __nf_copy(dst, src, true);
e7ac05f3
YK
4802}
4803
984bc16c
JM
4804#ifdef CONFIG_NETWORK_SECMARK
4805static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4806{
4807 to->secmark = from->secmark;
4808}
4809
4810static inline void skb_init_secmark(struct sk_buff *skb)
4811{
4812 skb->secmark = 0;
4813}
4814#else
4815static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4816{ }
4817
4818static inline void skb_init_secmark(struct sk_buff *skb)
4819{ }
4820#endif
4821
7af8f4ca
FW
4822static inline int secpath_exists(const struct sk_buff *skb)
4823{
4824#ifdef CONFIG_XFRM
4165079b 4825 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
7af8f4ca
FW
4826#else
4827 return 0;
4828#endif
4829}
4830
574f7194
EB
4831static inline bool skb_irq_freeable(const struct sk_buff *skb)
4832{
4833 return !skb->destructor &&
7af8f4ca 4834 !secpath_exists(skb) &&
cb9c6836 4835 !skb_nfct(skb) &&
574f7194
EB
4836 !skb->_skb_refdst &&
4837 !skb_has_frag_list(skb);
4838}
4839
f25f4e44
PWJ
4840static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4841{
f25f4e44 4842 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
4843}
4844
9247744e 4845static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 4846{
4e3ab47a 4847 return skb->queue_mapping;
4e3ab47a
PE
4848}
4849
f25f4e44
PWJ
4850static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4851{
f25f4e44 4852 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
4853}
4854
d5a9e24a
DM
4855static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4856{
4857 skb->queue_mapping = rx_queue + 1;
4858}
4859
9247744e 4860static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
4861{
4862 return skb->queue_mapping - 1;
4863}
4864
9247744e 4865static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 4866{
a02cec21 4867 return skb->queue_mapping != 0;
d5a9e24a
DM
4868}
4869
4ff06203
JA
4870static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4871{
4872 skb->dst_pending_confirm = val;
4873}
4874
4875static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4876{
4877 return skb->dst_pending_confirm != 0;
4878}
4879
2294be0f 4880static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
def8b4fa 4881{
0b3d8e08 4882#ifdef CONFIG_XFRM
4165079b 4883 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
def8b4fa 4884#else
def8b4fa 4885 return NULL;
def8b4fa 4886#endif
0b3d8e08 4887}
def8b4fa 4888
bdcc0924 4889static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
4890{
4891 return skb_shinfo(skb)->gso_size;
4892}
4893
36a8f39e 4894/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 4895static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
4896{
4897 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4898}
4899
d02f51cb
DA
4900/* Note: Should be called only if skb_is_gso(skb) is true */
4901static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4902{
4903 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4904}
4905
4c3024de 4906/* Note: Should be called only if skb_is_gso(skb) is true */
b90efd22
WB
4907static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4908{
4c3024de 4909 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
b90efd22
WB
4910}
4911
5293efe6
DB
4912static inline void skb_gso_reset(struct sk_buff *skb)
4913{
4914 skb_shinfo(skb)->gso_size = 0;
4915 skb_shinfo(skb)->gso_segs = 0;
4916 skb_shinfo(skb)->gso_type = 0;
4917}
4918
d02f51cb
DA
4919static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4920 u16 increment)
4921{
4922 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4923 return;
4924 shinfo->gso_size += increment;
4925}
4926
4927static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4928 u16 decrement)
4929{
4930 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4931 return;
4932 shinfo->gso_size -= decrement;
4933}
4934
7965bd4d 4935void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
4936
4937static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4938{
4939 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4940 * wanted then gso_type will be set. */
05bdd2f1
ED
4941 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4942
b78462eb
AD
4943 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4944 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
4945 __skb_warn_lro_forwarding(skb);
4946 return true;
4947 }
4948 return false;
4949}
4950
35fc92a9
HX
4951static inline void skb_forward_csum(struct sk_buff *skb)
4952{
4953 /* Unfortunately we don't support this one. Any brave souls? */
4954 if (skb->ip_summed == CHECKSUM_COMPLETE)
4955 skb->ip_summed = CHECKSUM_NONE;
4956}
4957
bc8acf2c
ED
4958/**
4959 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4960 * @skb: skb to check
4961 *
4962 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4963 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4964 * use this helper, to document places where we make this assertion.
4965 */
05bdd2f1 4966static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c 4967{
0df65743 4968 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
bc8acf2c
ED
4969}
4970
f35d9d8a 4971bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4972
ed1f50c3 4973int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4974struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4975 unsigned int transport_len,
4976 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4977
3a7c1ee4
AD
4978/**
4979 * skb_head_is_locked - Determine if the skb->head is locked down
4980 * @skb: skb to check
4981 *
4982 * The head on skbs build around a head frag can be removed if they are
4983 * not cloned. This function returns true if the skb head is locked down
4984 * due to either being allocated via kmalloc, or by being a clone with
4985 * multiple references to the head.
4986 */
4987static inline bool skb_head_is_locked(const struct sk_buff *skb)
4988{
4989 return !skb->head_frag || skb_cloned(skb);
4990}
fe6cc55f 4991
179bc67f
EC
4992/* Local Checksum Offload.
4993 * Compute outer checksum based on the assumption that the
4994 * inner checksum will be offloaded later.
d0dcde64 4995 * See Documentation/networking/checksum-offloads.rst for
e8ae7b00 4996 * explanation of how this works.
179bc67f
EC
4997 * Fill in outer checksum adjustment (e.g. with sum of outer
4998 * pseudo-header) before calling.
4999 * Also ensure that inner checksum is in linear data area.
5000 */
5001static inline __wsum lco_csum(struct sk_buff *skb)
5002{
9e74a6da
AD
5003 unsigned char *csum_start = skb_checksum_start(skb);
5004 unsigned char *l4_hdr = skb_transport_header(skb);
5005 __wsum partial;
179bc67f
EC
5006
5007 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
5008 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5009 skb->csum_offset));
5010
179bc67f 5011 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 5012 * adjustment filled in by caller) and return result.
179bc67f 5013 */
9e74a6da 5014 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
5015}
5016
2c64605b
PNA
5017static inline bool skb_is_redirected(const struct sk_buff *skb)
5018{
2c64605b 5019 return skb->redirected;
2c64605b
PNA
5020}
5021
5022static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5023{
2c64605b 5024 skb->redirected = 1;
11941f8a 5025#ifdef CONFIG_NET_REDIRECT
2c64605b
PNA
5026 skb->from_ingress = from_ingress;
5027 if (skb->from_ingress)
de799101 5028 skb_clear_tstamp(skb);
2c64605b
PNA
5029#endif
5030}
5031
5032static inline void skb_reset_redirect(struct sk_buff *skb)
5033{
2c64605b 5034 skb->redirected = 0;
2c64605b
PNA
5035}
5036
59e498a3
DB
5037static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5038 bool from_ingress)
5039{
5040 skb->redirected = 1;
5041#ifdef CONFIG_NET_REDIRECT
5042 skb->from_ingress = from_ingress;
5043#endif
5044}
5045
fa821170
XL
5046static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5047{
c24831a1 5048#if IS_ENABLED(CONFIG_IP_SCTP)
fa821170 5049 return skb->csum_not_inet;
c24831a1
JK
5050#else
5051 return 0;
5052#endif
5053}
5054
5055static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5056{
5057 skb->ip_summed = CHECKSUM_NONE;
5058#if IS_ENABLED(CONFIG_IP_SCTP)
5059 skb->csum_not_inet = 0;
5060#endif
fa821170
XL
5061}
5062
6370cc3b
AN
5063static inline void skb_set_kcov_handle(struct sk_buff *skb,
5064 const u64 kcov_handle)
5065{
fa69ee5a
ME
5066#ifdef CONFIG_KCOV
5067 skb->kcov_handle = kcov_handle;
5068#endif
6370cc3b
AN
5069}
5070
5071static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5072{
fa69ee5a
ME
5073#ifdef CONFIG_KCOV
5074 return skb->kcov_handle;
6370cc3b 5075#else
fa69ee5a
ME
5076 return 0;
5077#endif
5078}
6370cc3b 5079
57f05bc2 5080static inline void skb_mark_for_recycle(struct sk_buff *skb)
6a5bcd84 5081{
2c854e5f 5082#ifdef CONFIG_PAGE_POOL
6a5bcd84 5083 skb->pp_recycle = 1;
6a5bcd84 5084#endif
2c854e5f 5085}
6a5bcd84 5086
2e910b95
DH
5087ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5088 ssize_t maxsize, gfp_t gfp);
5089
1da177e4
LT
5090#endif /* __KERNEL__ */
5091#endif /* _LINUX_SKBUFF_H */