stddef.h: move offsetofend inside #ifndef/#endif guard, neaten
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
a3b6714e
DW
61
62#include <asm/processor.h>
36d57ac4 63
d50dde5a
DF
64#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66/*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
aab03e05
DF
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
109 */
110struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126};
127
c87e2837 128struct futex_pi_state;
286100a6 129struct robust_list_head;
bddd87c7 130struct bio_list;
5ad4e53b 131struct fs_struct;
cdd6c482 132struct perf_event_context;
73c10101 133struct blk_plug;
c4ad8f98 134struct filename;
89076bc3 135struct nameidata;
1da177e4 136
615d6e87
DB
137#define VMACACHE_BITS 2
138#define VMACACHE_SIZE (1U << VMACACHE_BITS)
139#define VMACACHE_MASK (VMACACHE_SIZE - 1)
140
1da177e4
LT
141/*
142 * These are the constant used to fake the fixed-point load-average
143 * counting. Some notes:
144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
145 * a load-average precision of 10 bits integer + 11 bits fractional
146 * - if you want to count load-averages more often, you need more
147 * precision, or rounding will get you. With 2-second counting freq,
148 * the EXP_n values would be 1981, 2034 and 2043 if still using only
149 * 11 bit fractions.
150 */
151extern unsigned long avenrun[]; /* Load averages */
2d02494f 152extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
153
154#define FSHIFT 11 /* nr of bits of precision */
155#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 156#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
157#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
158#define EXP_5 2014 /* 1/exp(5sec/5min) */
159#define EXP_15 2037 /* 1/exp(5sec/15min) */
160
161#define CALC_LOAD(load,exp,n) \
162 load *= exp; \
163 load += n*(FIXED_1-exp); \
164 load >>= FSHIFT;
165
166extern unsigned long total_forks;
167extern int nr_threads;
1da177e4
LT
168DECLARE_PER_CPU(unsigned long, process_counts);
169extern int nr_processes(void);
170extern unsigned long nr_running(void);
2ee507c4 171extern bool single_task_running(void);
1da177e4 172extern unsigned long nr_iowait(void);
8c215bd3 173extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 174extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 175
0f004f5a 176extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
177
178#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 179extern void update_cpu_load_nohz(void);
3289bdb4
PZ
180#else
181static inline void update_cpu_load_nohz(void) { }
182#endif
1da177e4 183
7e49fcce
SR
184extern unsigned long get_parent_ip(unsigned long addr);
185
b637a328
PM
186extern void dump_cpu_task(int cpu);
187
43ae34cb
IM
188struct seq_file;
189struct cfs_rq;
4cf86d77 190struct task_group;
43ae34cb
IM
191#ifdef CONFIG_SCHED_DEBUG
192extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193extern void proc_sched_set_task(struct task_struct *p);
194extern void
5cef9eca 195print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
43ae34cb 196#endif
1da177e4 197
4a8342d2
LT
198/*
199 * Task state bitmask. NOTE! These bits are also
200 * encoded in fs/proc/array.c: get_task_state().
201 *
202 * We have two separate sets of flags: task->state
203 * is about runnability, while task->exit_state are
204 * about the task exiting. Confusing, but this way
205 * modifying one set can't modify the other one by
206 * mistake.
207 */
1da177e4
LT
208#define TASK_RUNNING 0
209#define TASK_INTERRUPTIBLE 1
210#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
211#define __TASK_STOPPED 4
212#define __TASK_TRACED 8
4a8342d2 213/* in tsk->exit_state */
ad86622b
ON
214#define EXIT_DEAD 16
215#define EXIT_ZOMBIE 32
abd50b39 216#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 217/* in tsk->state again */
af927232 218#define TASK_DEAD 64
f021a3c2 219#define TASK_WAKEKILL 128
e9c84311 220#define TASK_WAKING 256
f2530dc7 221#define TASK_PARKED 512
80ed87c8
PZ
222#define TASK_NOLOAD 1024
223#define TASK_STATE_MAX 2048
f021a3c2 224
80ed87c8 225#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 226
e1781538
PZ
227extern char ___assert_task_state[1 - 2*!!(
228 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
229
230/* Convenience macros for the sake of set_task_state */
231#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
232#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
233#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 234
80ed87c8
PZ
235#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
236
92a1f4bc
MW
237/* Convenience macros for the sake of wake_up */
238#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 239#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
240
241/* get_task_state() */
242#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 243 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 244 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 245
f021a3c2
MW
246#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
247#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 248#define task_is_stopped_or_traced(task) \
f021a3c2 249 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 250#define task_contributes_to_load(task) \
e3c8ca83 251 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
252 (task->flags & PF_FROZEN) == 0 && \
253 (task->state & TASK_NOLOAD) == 0)
1da177e4 254
8eb23b9f
PZ
255#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
256
257#define __set_task_state(tsk, state_value) \
258 do { \
259 (tsk)->task_state_change = _THIS_IP_; \
260 (tsk)->state = (state_value); \
261 } while (0)
262#define set_task_state(tsk, state_value) \
263 do { \
264 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 265 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
266 } while (0)
267
268/*
269 * set_current_state() includes a barrier so that the write of current->state
270 * is correctly serialised wrt the caller's subsequent test of whether to
271 * actually sleep:
272 *
273 * set_current_state(TASK_UNINTERRUPTIBLE);
274 * if (do_i_need_to_sleep())
275 * schedule();
276 *
277 * If the caller does not need such serialisation then use __set_current_state()
278 */
279#define __set_current_state(state_value) \
280 do { \
281 current->task_state_change = _THIS_IP_; \
282 current->state = (state_value); \
283 } while (0)
284#define set_current_state(state_value) \
285 do { \
286 current->task_state_change = _THIS_IP_; \
b92b8b35 287 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
288 } while (0)
289
290#else
291
1da177e4
LT
292#define __set_task_state(tsk, state_value) \
293 do { (tsk)->state = (state_value); } while (0)
294#define set_task_state(tsk, state_value) \
b92b8b35 295 smp_store_mb((tsk)->state, (state_value))
1da177e4 296
498d0c57
AM
297/*
298 * set_current_state() includes a barrier so that the write of current->state
299 * is correctly serialised wrt the caller's subsequent test of whether to
300 * actually sleep:
301 *
302 * set_current_state(TASK_UNINTERRUPTIBLE);
303 * if (do_i_need_to_sleep())
304 * schedule();
305 *
306 * If the caller does not need such serialisation then use __set_current_state()
307 */
8eb23b9f 308#define __set_current_state(state_value) \
1da177e4 309 do { current->state = (state_value); } while (0)
8eb23b9f 310#define set_current_state(state_value) \
b92b8b35 311 smp_store_mb(current->state, (state_value))
1da177e4 312
8eb23b9f
PZ
313#endif
314
1da177e4
LT
315/* Task command name length */
316#define TASK_COMM_LEN 16
317
1da177e4
LT
318#include <linux/spinlock.h>
319
320/*
321 * This serializes "schedule()" and also protects
322 * the run-queue from deletions/modifications (but
323 * _adding_ to the beginning of the run-queue has
324 * a separate lock).
325 */
326extern rwlock_t tasklist_lock;
327extern spinlock_t mmlist_lock;
328
36c8b586 329struct task_struct;
1da177e4 330
db1466b3
PM
331#ifdef CONFIG_PROVE_RCU
332extern int lockdep_tasklist_lock_is_held(void);
333#endif /* #ifdef CONFIG_PROVE_RCU */
334
1da177e4
LT
335extern void sched_init(void);
336extern void sched_init_smp(void);
2d07b255 337extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 338extern void init_idle(struct task_struct *idle, int cpu);
1df21055 339extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 340
3fa0818b
RR
341extern cpumask_var_t cpu_isolated_map;
342
89f19f04 343extern int runqueue_is_locked(int cpu);
017730c1 344
3451d024 345#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 346extern void nohz_balance_enter_idle(int cpu);
69e1e811 347extern void set_cpu_sd_state_idle(void);
bc7a34b8 348extern int get_nohz_timer_target(void);
46cb4b7c 349#else
c1cc017c 350static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 351static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 352#endif
1da177e4 353
e59e2ae2 354/*
39bc89fd 355 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
356 */
357extern void show_state_filter(unsigned long state_filter);
358
359static inline void show_state(void)
360{
39bc89fd 361 show_state_filter(0);
e59e2ae2
IM
362}
363
1da177e4
LT
364extern void show_regs(struct pt_regs *);
365
366/*
367 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
368 * task), SP is the stack pointer of the first frame that should be shown in the back
369 * trace (or NULL if the entire call-chain of the task should be shown).
370 */
371extern void show_stack(struct task_struct *task, unsigned long *sp);
372
1da177e4
LT
373extern void cpu_init (void);
374extern void trap_init(void);
375extern void update_process_times(int user);
376extern void scheduler_tick(void);
377
82a1fcb9
IM
378extern void sched_show_task(struct task_struct *p);
379
19cc36c0 380#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 381extern void touch_softlockup_watchdog(void);
d6ad3e28 382extern void touch_softlockup_watchdog_sync(void);
04c9167f 383extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
384extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
385 void __user *buffer,
386 size_t *lenp, loff_t *ppos);
9c44bc03 387extern unsigned int softlockup_panic;
004417a6 388void lockup_detector_init(void);
8446f1d3 389#else
8446f1d3
IM
390static inline void touch_softlockup_watchdog(void)
391{
392}
d6ad3e28
JW
393static inline void touch_softlockup_watchdog_sync(void)
394{
395}
04c9167f
JF
396static inline void touch_all_softlockup_watchdogs(void)
397{
398}
004417a6
PZ
399static inline void lockup_detector_init(void)
400{
401}
8446f1d3
IM
402#endif
403
8b414521
MT
404#ifdef CONFIG_DETECT_HUNG_TASK
405void reset_hung_task_detector(void);
406#else
407static inline void reset_hung_task_detector(void)
408{
409}
410#endif
411
1da177e4
LT
412/* Attach to any functions which should be ignored in wchan output. */
413#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
414
415/* Linker adds these: start and end of __sched functions */
416extern char __sched_text_start[], __sched_text_end[];
417
1da177e4
LT
418/* Is this address in the __sched functions? */
419extern int in_sched_functions(unsigned long addr);
420
421#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 422extern signed long schedule_timeout(signed long timeout);
64ed93a2 423extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 424extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 425extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 426asmlinkage void schedule(void);
c5491ea7 427extern void schedule_preempt_disabled(void);
1da177e4 428
9cff8ade
N
429extern long io_schedule_timeout(long timeout);
430
431static inline void io_schedule(void)
432{
433 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
434}
435
ab516013 436struct nsproxy;
acce292c 437struct user_namespace;
1da177e4 438
efc1a3b1
DH
439#ifdef CONFIG_MMU
440extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
441extern unsigned long
442arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
443 unsigned long, unsigned long);
444extern unsigned long
445arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
446 unsigned long len, unsigned long pgoff,
447 unsigned long flags);
efc1a3b1
DH
448#else
449static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
450#endif
1da177e4 451
d049f74f
KC
452#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
453#define SUID_DUMP_USER 1 /* Dump as user of process */
454#define SUID_DUMP_ROOT 2 /* Dump as root */
455
6c5d5238 456/* mm flags */
f8af4da3 457
7288e118 458/* for SUID_DUMP_* above */
3cb4a0bb 459#define MMF_DUMPABLE_BITS 2
f8af4da3 460#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 461
942be387
ON
462extern void set_dumpable(struct mm_struct *mm, int value);
463/*
464 * This returns the actual value of the suid_dumpable flag. For things
465 * that are using this for checking for privilege transitions, it must
466 * test against SUID_DUMP_USER rather than treating it as a boolean
467 * value.
468 */
469static inline int __get_dumpable(unsigned long mm_flags)
470{
471 return mm_flags & MMF_DUMPABLE_MASK;
472}
473
474static inline int get_dumpable(struct mm_struct *mm)
475{
476 return __get_dumpable(mm->flags);
477}
478
3cb4a0bb
KH
479/* coredump filter bits */
480#define MMF_DUMP_ANON_PRIVATE 2
481#define MMF_DUMP_ANON_SHARED 3
482#define MMF_DUMP_MAPPED_PRIVATE 4
483#define MMF_DUMP_MAPPED_SHARED 5
82df3973 484#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
485#define MMF_DUMP_HUGETLB_PRIVATE 7
486#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 487
3cb4a0bb 488#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 489#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
490#define MMF_DUMP_FILTER_MASK \
491 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
492#define MMF_DUMP_FILTER_DEFAULT \
e575f111 493 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
494 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
495
496#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
497# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
498#else
499# define MMF_DUMP_MASK_DEFAULT_ELF 0
500#endif
f8af4da3
HD
501 /* leave room for more dump flags */
502#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 503#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 504#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 505
9f68f672
ON
506#define MMF_HAS_UPROBES 19 /* has uprobes */
507#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 508
f8af4da3 509#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 510
1da177e4
LT
511struct sighand_struct {
512 atomic_t count;
513 struct k_sigaction action[_NSIG];
514 spinlock_t siglock;
b8fceee1 515 wait_queue_head_t signalfd_wqh;
1da177e4
LT
516};
517
0e464814 518struct pacct_struct {
f6ec29a4
KK
519 int ac_flag;
520 long ac_exitcode;
0e464814 521 unsigned long ac_mem;
77787bfb
KK
522 cputime_t ac_utime, ac_stime;
523 unsigned long ac_minflt, ac_majflt;
0e464814
KK
524};
525
42c4ab41
SG
526struct cpu_itimer {
527 cputime_t expires;
528 cputime_t incr;
8356b5f9
SG
529 u32 error;
530 u32 incr_error;
42c4ab41
SG
531};
532
d37f761d
FW
533/**
534 * struct cputime - snaphsot of system and user cputime
535 * @utime: time spent in user mode
536 * @stime: time spent in system mode
537 *
538 * Gathers a generic snapshot of user and system time.
539 */
540struct cputime {
541 cputime_t utime;
542 cputime_t stime;
543};
544
f06febc9
FM
545/**
546 * struct task_cputime - collected CPU time counts
547 * @utime: time spent in user mode, in &cputime_t units
548 * @stime: time spent in kernel mode, in &cputime_t units
549 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 550 *
d37f761d
FW
551 * This is an extension of struct cputime that includes the total runtime
552 * spent by the task from the scheduler point of view.
553 *
554 * As a result, this structure groups together three kinds of CPU time
555 * that are tracked for threads and thread groups. Most things considering
f06febc9
FM
556 * CPU time want to group these counts together and treat all three
557 * of them in parallel.
558 */
559struct task_cputime {
560 cputime_t utime;
561 cputime_t stime;
562 unsigned long long sum_exec_runtime;
563};
564/* Alternate field names when used to cache expirations. */
565#define prof_exp stime
566#define virt_exp utime
567#define sched_exp sum_exec_runtime
568
4cd4c1b4
PZ
569#define INIT_CPUTIME \
570 (struct task_cputime) { \
64861634
MS
571 .utime = 0, \
572 .stime = 0, \
4cd4c1b4
PZ
573 .sum_exec_runtime = 0, \
574 }
575
971e8a98
JL
576/*
577 * This is the atomic variant of task_cputime, which can be used for
578 * storing and updating task_cputime statistics without locking.
579 */
580struct task_cputime_atomic {
581 atomic64_t utime;
582 atomic64_t stime;
583 atomic64_t sum_exec_runtime;
584};
585
586#define INIT_CPUTIME_ATOMIC \
587 (struct task_cputime_atomic) { \
588 .utime = ATOMIC64_INIT(0), \
589 .stime = ATOMIC64_INIT(0), \
590 .sum_exec_runtime = ATOMIC64_INIT(0), \
591 }
592
a233f112
PZ
593#ifdef CONFIG_PREEMPT_COUNT
594#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
595#else
596#define PREEMPT_DISABLED PREEMPT_ENABLED
597#endif
598
c99e6efe
PZ
599/*
600 * Disable preemption until the scheduler is running.
601 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
602 *
603 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
604 * before the scheduler is active -- see should_resched().
c99e6efe 605 */
a233f112 606#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 607
f06febc9 608/**
4cd4c1b4 609 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 610 * @cputime_atomic: atomic thread group interval timers.
4cd4c1b4
PZ
611 * @running: non-zero when there are timers running and
612 * @cputime receives updates.
f06febc9
FM
613 *
614 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 615 * used for thread group CPU timer calculations.
f06febc9 616 */
4cd4c1b4 617struct thread_group_cputimer {
71107445 618 struct task_cputime_atomic cputime_atomic;
4cd4c1b4 619 int running;
f06febc9 620};
f06febc9 621
4714d1d3 622#include <linux/rwsem.h>
5091faa4
MG
623struct autogroup;
624
1da177e4 625/*
e815f0a8 626 * NOTE! "signal_struct" does not have its own
1da177e4
LT
627 * locking, because a shared signal_struct always
628 * implies a shared sighand_struct, so locking
629 * sighand_struct is always a proper superset of
630 * the locking of signal_struct.
631 */
632struct signal_struct {
ea6d290c 633 atomic_t sigcnt;
1da177e4 634 atomic_t live;
b3ac022c 635 int nr_threads;
0c740d0a 636 struct list_head thread_head;
1da177e4
LT
637
638 wait_queue_head_t wait_chldexit; /* for wait4() */
639
640 /* current thread group signal load-balancing target: */
36c8b586 641 struct task_struct *curr_target;
1da177e4
LT
642
643 /* shared signal handling: */
644 struct sigpending shared_pending;
645
646 /* thread group exit support */
647 int group_exit_code;
648 /* overloaded:
649 * - notify group_exit_task when ->count is equal to notify_count
650 * - everyone except group_exit_task is stopped during signal delivery
651 * of fatal signals, group_exit_task processes the signal.
652 */
1da177e4 653 int notify_count;
07dd20e0 654 struct task_struct *group_exit_task;
1da177e4
LT
655
656 /* thread group stop support, overloads group_exit_code too */
657 int group_stop_count;
658 unsigned int flags; /* see SIGNAL_* flags below */
659
ebec18a6
LP
660 /*
661 * PR_SET_CHILD_SUBREAPER marks a process, like a service
662 * manager, to re-parent orphan (double-forking) child processes
663 * to this process instead of 'init'. The service manager is
664 * able to receive SIGCHLD signals and is able to investigate
665 * the process until it calls wait(). All children of this
666 * process will inherit a flag if they should look for a
667 * child_subreaper process at exit.
668 */
669 unsigned int is_child_subreaper:1;
670 unsigned int has_child_subreaper:1;
671
1da177e4 672 /* POSIX.1b Interval Timers */
5ed67f05
PE
673 int posix_timer_id;
674 struct list_head posix_timers;
1da177e4
LT
675
676 /* ITIMER_REAL timer for the process */
2ff678b8 677 struct hrtimer real_timer;
fea9d175 678 struct pid *leader_pid;
2ff678b8 679 ktime_t it_real_incr;
1da177e4 680
42c4ab41
SG
681 /*
682 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
683 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
684 * values are defined to 0 and 1 respectively
685 */
686 struct cpu_itimer it[2];
1da177e4 687
f06febc9 688 /*
4cd4c1b4
PZ
689 * Thread group totals for process CPU timers.
690 * See thread_group_cputimer(), et al, for details.
f06febc9 691 */
4cd4c1b4 692 struct thread_group_cputimer cputimer;
f06febc9
FM
693
694 /* Earliest-expiration cache. */
695 struct task_cputime cputime_expires;
696
697 struct list_head cpu_timers[3];
698
ab521dc0 699 struct pid *tty_old_pgrp;
1ec320af 700
1da177e4
LT
701 /* boolean value for session group leader */
702 int leader;
703
704 struct tty_struct *tty; /* NULL if no tty */
705
5091faa4
MG
706#ifdef CONFIG_SCHED_AUTOGROUP
707 struct autogroup *autogroup;
708#endif
1da177e4
LT
709 /*
710 * Cumulative resource counters for dead threads in the group,
711 * and for reaped dead child processes forked by this group.
712 * Live threads maintain their own counters and add to these
713 * in __exit_signal, except for the group leader.
714 */
e78c3496 715 seqlock_t stats_lock;
32bd671d 716 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
717 cputime_t gtime;
718 cputime_t cgtime;
9fbc42ea 719#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 720 struct cputime prev_cputime;
0cf55e1e 721#endif
1da177e4
LT
722 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
723 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 724 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 725 unsigned long maxrss, cmaxrss;
940389b8 726 struct task_io_accounting ioac;
1da177e4 727
32bd671d
PZ
728 /*
729 * Cumulative ns of schedule CPU time fo dead threads in the
730 * group, not including a zombie group leader, (This only differs
731 * from jiffies_to_ns(utime + stime) if sched_clock uses something
732 * other than jiffies.)
733 */
734 unsigned long long sum_sched_runtime;
735
1da177e4
LT
736 /*
737 * We don't bother to synchronize most readers of this at all,
738 * because there is no reader checking a limit that actually needs
739 * to get both rlim_cur and rlim_max atomically, and either one
740 * alone is a single word that can safely be read normally.
741 * getrlimit/setrlimit use task_lock(current->group_leader) to
742 * protect this instead of the siglock, because they really
743 * have no need to disable irqs.
744 */
745 struct rlimit rlim[RLIM_NLIMITS];
746
0e464814
KK
747#ifdef CONFIG_BSD_PROCESS_ACCT
748 struct pacct_struct pacct; /* per-process accounting information */
749#endif
ad4ecbcb 750#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
751 struct taskstats *stats;
752#endif
522ed776
MT
753#ifdef CONFIG_AUDIT
754 unsigned audit_tty;
46e959ea 755 unsigned audit_tty_log_passwd;
522ed776
MT
756 struct tty_audit_buf *tty_audit_buf;
757#endif
4714d1d3
BB
758#ifdef CONFIG_CGROUPS
759 /*
77e4ef99
TH
760 * group_rwsem prevents new tasks from entering the threadgroup and
761 * member tasks from exiting,a more specifically, setting of
762 * PF_EXITING. fork and exit paths are protected with this rwsem
763 * using threadgroup_change_begin/end(). Users which require
764 * threadgroup to remain stable should use threadgroup_[un]lock()
765 * which also takes care of exec path. Currently, cgroup is the
766 * only user.
4714d1d3 767 */
257058ae 768 struct rw_semaphore group_rwsem;
4714d1d3 769#endif
28b83c51 770
e1e12d2f 771 oom_flags_t oom_flags;
a9c58b90
DR
772 short oom_score_adj; /* OOM kill score adjustment */
773 short oom_score_adj_min; /* OOM kill score adjustment min value.
774 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
775
776 struct mutex cred_guard_mutex; /* guard against foreign influences on
777 * credential calculations
778 * (notably. ptrace) */
1da177e4
LT
779};
780
781/*
782 * Bits in flags field of signal_struct.
783 */
784#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
785#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
786#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 787#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
788/*
789 * Pending notifications to parent.
790 */
791#define SIGNAL_CLD_STOPPED 0x00000010
792#define SIGNAL_CLD_CONTINUED 0x00000020
793#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 794
fae5fa44
ON
795#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
796
ed5d2cac
ON
797/* If true, all threads except ->group_exit_task have pending SIGKILL */
798static inline int signal_group_exit(const struct signal_struct *sig)
799{
800 return (sig->flags & SIGNAL_GROUP_EXIT) ||
801 (sig->group_exit_task != NULL);
802}
803
1da177e4
LT
804/*
805 * Some day this will be a full-fledged user tracking system..
806 */
807struct user_struct {
808 atomic_t __count; /* reference count */
809 atomic_t processes; /* How many processes does this user have? */
1da177e4 810 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 811#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
812 atomic_t inotify_watches; /* How many inotify watches does this user have? */
813 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
814#endif
4afeff85
EP
815#ifdef CONFIG_FANOTIFY
816 atomic_t fanotify_listeners;
817#endif
7ef9964e 818#ifdef CONFIG_EPOLL
52bd19f7 819 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 820#endif
970a8645 821#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
822 /* protected by mq_lock */
823 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 824#endif
1da177e4
LT
825 unsigned long locked_shm; /* How many pages of mlocked shm ? */
826
827#ifdef CONFIG_KEYS
828 struct key *uid_keyring; /* UID specific keyring */
829 struct key *session_keyring; /* UID's default session keyring */
830#endif
831
832 /* Hash table maintenance information */
735de223 833 struct hlist_node uidhash_node;
7b44ab97 834 kuid_t uid;
24e377a8 835
cdd6c482 836#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
837 atomic_long_t locked_vm;
838#endif
1da177e4
LT
839};
840
eb41d946 841extern int uids_sysfs_init(void);
5cb350ba 842
7b44ab97 843extern struct user_struct *find_user(kuid_t);
1da177e4
LT
844
845extern struct user_struct root_user;
846#define INIT_USER (&root_user)
847
b6dff3ec 848
1da177e4
LT
849struct backing_dev_info;
850struct reclaim_state;
851
52f17b6c 852#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
853struct sched_info {
854 /* cumulative counters */
2d72376b 855 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 856 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
857
858 /* timestamps */
172ba844
BS
859 unsigned long long last_arrival,/* when we last ran on a cpu */
860 last_queued; /* when we were last queued to run */
1da177e4 861};
52f17b6c 862#endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
1da177e4 863
ca74e92b
SN
864#ifdef CONFIG_TASK_DELAY_ACCT
865struct task_delay_info {
866 spinlock_t lock;
867 unsigned int flags; /* Private per-task flags */
868
869 /* For each stat XXX, add following, aligned appropriately
870 *
871 * struct timespec XXX_start, XXX_end;
872 * u64 XXX_delay;
873 * u32 XXX_count;
874 *
875 * Atomicity of updates to XXX_delay, XXX_count protected by
876 * single lock above (split into XXX_lock if contention is an issue).
877 */
0ff92245
SN
878
879 /*
880 * XXX_count is incremented on every XXX operation, the delay
881 * associated with the operation is added to XXX_delay.
882 * XXX_delay contains the accumulated delay time in nanoseconds.
883 */
9667a23d 884 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
885 u64 blkio_delay; /* wait for sync block io completion */
886 u64 swapin_delay; /* wait for swapin block io completion */
887 u32 blkio_count; /* total count of the number of sync block */
888 /* io operations performed */
889 u32 swapin_count; /* total count of the number of swapin block */
890 /* io operations performed */
873b4771 891
9667a23d 892 u64 freepages_start;
873b4771
KK
893 u64 freepages_delay; /* wait for memory reclaim */
894 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 895};
52f17b6c
CS
896#endif /* CONFIG_TASK_DELAY_ACCT */
897
898static inline int sched_info_on(void)
899{
900#ifdef CONFIG_SCHEDSTATS
901 return 1;
902#elif defined(CONFIG_TASK_DELAY_ACCT)
903 extern int delayacct_on;
904 return delayacct_on;
905#else
906 return 0;
ca74e92b 907#endif
52f17b6c 908}
ca74e92b 909
d15bcfdb
IM
910enum cpu_idle_type {
911 CPU_IDLE,
912 CPU_NOT_IDLE,
913 CPU_NEWLY_IDLE,
914 CPU_MAX_IDLE_TYPES
1da177e4
LT
915};
916
1399fa78 917/*
ca8ce3d0 918 * Increase resolution of cpu_capacity calculations
1399fa78 919 */
ca8ce3d0
NP
920#define SCHED_CAPACITY_SHIFT 10
921#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 922
76751049
PZ
923/*
924 * Wake-queues are lists of tasks with a pending wakeup, whose
925 * callers have already marked the task as woken internally,
926 * and can thus carry on. A common use case is being able to
927 * do the wakeups once the corresponding user lock as been
928 * released.
929 *
930 * We hold reference to each task in the list across the wakeup,
931 * thus guaranteeing that the memory is still valid by the time
932 * the actual wakeups are performed in wake_up_q().
933 *
934 * One per task suffices, because there's never a need for a task to be
935 * in two wake queues simultaneously; it is forbidden to abandon a task
936 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
937 * already in a wake queue, the wakeup will happen soon and the second
938 * waker can just skip it.
939 *
940 * The WAKE_Q macro declares and initializes the list head.
941 * wake_up_q() does NOT reinitialize the list; it's expected to be
942 * called near the end of a function, where the fact that the queue is
943 * not used again will be easy to see by inspection.
944 *
945 * Note that this can cause spurious wakeups. schedule() callers
946 * must ensure the call is done inside a loop, confirming that the
947 * wakeup condition has in fact occurred.
948 */
949struct wake_q_node {
950 struct wake_q_node *next;
951};
952
953struct wake_q_head {
954 struct wake_q_node *first;
955 struct wake_q_node **lastp;
956};
957
958#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
959
960#define WAKE_Q(name) \
961 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
962
963extern void wake_q_add(struct wake_q_head *head,
964 struct task_struct *task);
965extern void wake_up_q(struct wake_q_head *head);
966
1399fa78
NR
967/*
968 * sched-domains (multiprocessor balancing) declarations:
969 */
2dd73a4f 970#ifdef CONFIG_SMP
b5d978e0
PZ
971#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
972#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
973#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
974#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 975#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 976#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 977#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 978#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
979#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
980#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 981#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 982#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 983#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 984#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 985
143e1e28 986#ifdef CONFIG_SCHED_SMT
b6220ad6 987static inline int cpu_smt_flags(void)
143e1e28 988{
5d4dfddd 989 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
990}
991#endif
992
993#ifdef CONFIG_SCHED_MC
b6220ad6 994static inline int cpu_core_flags(void)
143e1e28
VG
995{
996 return SD_SHARE_PKG_RESOURCES;
997}
998#endif
999
1000#ifdef CONFIG_NUMA
b6220ad6 1001static inline int cpu_numa_flags(void)
143e1e28
VG
1002{
1003 return SD_NUMA;
1004}
1005#endif
532cb4c4 1006
1d3504fc
HS
1007struct sched_domain_attr {
1008 int relax_domain_level;
1009};
1010
1011#define SD_ATTR_INIT (struct sched_domain_attr) { \
1012 .relax_domain_level = -1, \
1013}
1014
60495e77
PZ
1015extern int sched_domain_level_max;
1016
5e6521ea
LZ
1017struct sched_group;
1018
1da177e4
LT
1019struct sched_domain {
1020 /* These fields must be setup */
1021 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1022 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1023 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1024 unsigned long min_interval; /* Minimum balance interval ms */
1025 unsigned long max_interval; /* Maximum balance interval ms */
1026 unsigned int busy_factor; /* less balancing by factor if busy */
1027 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1028 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1029 unsigned int busy_idx;
1030 unsigned int idle_idx;
1031 unsigned int newidle_idx;
1032 unsigned int wake_idx;
147cbb4b 1033 unsigned int forkexec_idx;
a52bfd73 1034 unsigned int smt_gain;
25f55d9d
VG
1035
1036 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1037 int flags; /* See SD_* */
60495e77 1038 int level;
1da177e4
LT
1039
1040 /* Runtime fields. */
1041 unsigned long last_balance; /* init to jiffies. units in jiffies */
1042 unsigned int balance_interval; /* initialise to 1. units in ms. */
1043 unsigned int nr_balance_failed; /* initialise to 0 */
1044
f48627e6 1045 /* idle_balance() stats */
9bd721c5 1046 u64 max_newidle_lb_cost;
f48627e6 1047 unsigned long next_decay_max_lb_cost;
2398f2c6 1048
1da177e4
LT
1049#ifdef CONFIG_SCHEDSTATS
1050 /* load_balance() stats */
480b9434
KC
1051 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1052 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1053 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1054 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1055 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1056 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1057 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1058 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1059
1060 /* Active load balancing */
480b9434
KC
1061 unsigned int alb_count;
1062 unsigned int alb_failed;
1063 unsigned int alb_pushed;
1da177e4 1064
68767a0a 1065 /* SD_BALANCE_EXEC stats */
480b9434
KC
1066 unsigned int sbe_count;
1067 unsigned int sbe_balanced;
1068 unsigned int sbe_pushed;
1da177e4 1069
68767a0a 1070 /* SD_BALANCE_FORK stats */
480b9434
KC
1071 unsigned int sbf_count;
1072 unsigned int sbf_balanced;
1073 unsigned int sbf_pushed;
68767a0a 1074
1da177e4 1075 /* try_to_wake_up() stats */
480b9434
KC
1076 unsigned int ttwu_wake_remote;
1077 unsigned int ttwu_move_affine;
1078 unsigned int ttwu_move_balance;
1da177e4 1079#endif
a5d8c348
IM
1080#ifdef CONFIG_SCHED_DEBUG
1081 char *name;
1082#endif
dce840a0
PZ
1083 union {
1084 void *private; /* used during construction */
1085 struct rcu_head rcu; /* used during destruction */
1086 };
6c99e9ad 1087
669c55e9 1088 unsigned int span_weight;
4200efd9
IM
1089 /*
1090 * Span of all CPUs in this domain.
1091 *
1092 * NOTE: this field is variable length. (Allocated dynamically
1093 * by attaching extra space to the end of the structure,
1094 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1095 */
1096 unsigned long span[0];
1da177e4
LT
1097};
1098
758b2cdc
RR
1099static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1100{
6c99e9ad 1101 return to_cpumask(sd->span);
758b2cdc
RR
1102}
1103
acc3f5d7 1104extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1105 struct sched_domain_attr *dattr_new);
029190c5 1106
acc3f5d7
RR
1107/* Allocate an array of sched domains, for partition_sched_domains(). */
1108cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1109void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1110
39be3501
PZ
1111bool cpus_share_cache(int this_cpu, int that_cpu);
1112
143e1e28 1113typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1114typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1115
1116#define SDTL_OVERLAP 0x01
1117
1118struct sd_data {
1119 struct sched_domain **__percpu sd;
1120 struct sched_group **__percpu sg;
63b2ca30 1121 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1122};
1123
1124struct sched_domain_topology_level {
1125 sched_domain_mask_f mask;
1126 sched_domain_flags_f sd_flags;
1127 int flags;
1128 int numa_level;
1129 struct sd_data data;
1130#ifdef CONFIG_SCHED_DEBUG
1131 char *name;
1132#endif
1133};
1134
1135extern struct sched_domain_topology_level *sched_domain_topology;
1136
1137extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1138extern void wake_up_if_idle(int cpu);
143e1e28
VG
1139
1140#ifdef CONFIG_SCHED_DEBUG
1141# define SD_INIT_NAME(type) .name = #type
1142#else
1143# define SD_INIT_NAME(type)
1144#endif
1145
1b427c15 1146#else /* CONFIG_SMP */
1da177e4 1147
1b427c15 1148struct sched_domain_attr;
d02c7a8c 1149
1b427c15 1150static inline void
acc3f5d7 1151partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1152 struct sched_domain_attr *dattr_new)
1153{
d02c7a8c 1154}
39be3501
PZ
1155
1156static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1157{
1158 return true;
1159}
1160
1b427c15 1161#endif /* !CONFIG_SMP */
1da177e4 1162
47fe38fc 1163
1da177e4 1164struct io_context; /* See blkdev.h */
1da177e4 1165
1da177e4 1166
383f2835 1167#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1168extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1169#else
1170static inline void prefetch_stack(struct task_struct *t) { }
1171#endif
1da177e4
LT
1172
1173struct audit_context; /* See audit.c */
1174struct mempolicy;
b92ce558 1175struct pipe_inode_info;
4865ecf1 1176struct uts_namespace;
1da177e4 1177
20b8a59f 1178struct load_weight {
9dbdb155
PZ
1179 unsigned long weight;
1180 u32 inv_weight;
20b8a59f
IM
1181};
1182
9d85f21c 1183struct sched_avg {
36ee28e4
VG
1184 u64 last_runnable_update;
1185 s64 decay_count;
1186 /*
1187 * utilization_avg_contrib describes the amount of time that a
1188 * sched_entity is running on a CPU. It is based on running_avg_sum
1189 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1190 * load_avg_contrib described the amount of time that a sched_entity
1191 * is runnable on a rq. It is based on both runnable_avg_sum and the
1192 * weight of the task.
1193 */
1194 unsigned long load_avg_contrib, utilization_avg_contrib;
9d85f21c
PT
1195 /*
1196 * These sums represent an infinite geometric series and so are bound
239003ea 1197 * above by 1024/(1-y). Thus we only need a u32 to store them for all
9d85f21c 1198 * choices of y < 1-2^(-32)*1024.
36ee28e4
VG
1199 * running_avg_sum reflects the time that the sched_entity is
1200 * effectively running on the CPU.
1201 * runnable_avg_sum represents the amount of time a sched_entity is on
1202 * a runqueue which includes the running time that is monitored by
1203 * running_avg_sum.
9d85f21c 1204 */
36ee28e4 1205 u32 runnable_avg_sum, avg_period, running_avg_sum;
9d85f21c
PT
1206};
1207
94c18227 1208#ifdef CONFIG_SCHEDSTATS
41acab88 1209struct sched_statistics {
20b8a59f 1210 u64 wait_start;
94c18227 1211 u64 wait_max;
6d082592
AV
1212 u64 wait_count;
1213 u64 wait_sum;
8f0dfc34
AV
1214 u64 iowait_count;
1215 u64 iowait_sum;
94c18227 1216
20b8a59f 1217 u64 sleep_start;
20b8a59f 1218 u64 sleep_max;
94c18227
IM
1219 s64 sum_sleep_runtime;
1220
1221 u64 block_start;
20b8a59f
IM
1222 u64 block_max;
1223 u64 exec_max;
eba1ed4b 1224 u64 slice_max;
cc367732 1225
cc367732
IM
1226 u64 nr_migrations_cold;
1227 u64 nr_failed_migrations_affine;
1228 u64 nr_failed_migrations_running;
1229 u64 nr_failed_migrations_hot;
1230 u64 nr_forced_migrations;
cc367732
IM
1231
1232 u64 nr_wakeups;
1233 u64 nr_wakeups_sync;
1234 u64 nr_wakeups_migrate;
1235 u64 nr_wakeups_local;
1236 u64 nr_wakeups_remote;
1237 u64 nr_wakeups_affine;
1238 u64 nr_wakeups_affine_attempts;
1239 u64 nr_wakeups_passive;
1240 u64 nr_wakeups_idle;
41acab88
LDM
1241};
1242#endif
1243
1244struct sched_entity {
1245 struct load_weight load; /* for load-balancing */
1246 struct rb_node run_node;
1247 struct list_head group_node;
1248 unsigned int on_rq;
1249
1250 u64 exec_start;
1251 u64 sum_exec_runtime;
1252 u64 vruntime;
1253 u64 prev_sum_exec_runtime;
1254
41acab88
LDM
1255 u64 nr_migrations;
1256
41acab88
LDM
1257#ifdef CONFIG_SCHEDSTATS
1258 struct sched_statistics statistics;
94c18227
IM
1259#endif
1260
20b8a59f 1261#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1262 int depth;
20b8a59f
IM
1263 struct sched_entity *parent;
1264 /* rq on which this entity is (to be) queued: */
1265 struct cfs_rq *cfs_rq;
1266 /* rq "owned" by this entity/group: */
1267 struct cfs_rq *my_q;
1268#endif
8bd75c77 1269
141965c7 1270#ifdef CONFIG_SMP
f4e26b12 1271 /* Per-entity load-tracking */
9d85f21c
PT
1272 struct sched_avg avg;
1273#endif
20b8a59f 1274};
70b97a7f 1275
fa717060
PZ
1276struct sched_rt_entity {
1277 struct list_head run_list;
78f2c7db 1278 unsigned long timeout;
57d2aa00 1279 unsigned long watchdog_stamp;
bee367ed 1280 unsigned int time_slice;
6f505b16 1281
58d6c2d7 1282 struct sched_rt_entity *back;
052f1dc7 1283#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1284 struct sched_rt_entity *parent;
1285 /* rq on which this entity is (to be) queued: */
1286 struct rt_rq *rt_rq;
1287 /* rq "owned" by this entity/group: */
1288 struct rt_rq *my_q;
1289#endif
fa717060
PZ
1290};
1291
aab03e05
DF
1292struct sched_dl_entity {
1293 struct rb_node rb_node;
1294
1295 /*
1296 * Original scheduling parameters. Copied here from sched_attr
4027d080 1297 * during sched_setattr(), they will remain the same until
1298 * the next sched_setattr().
aab03e05
DF
1299 */
1300 u64 dl_runtime; /* maximum runtime for each instance */
1301 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1302 u64 dl_period; /* separation of two instances (period) */
332ac17e 1303 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1304
1305 /*
1306 * Actual scheduling parameters. Initialized with the values above,
1307 * they are continously updated during task execution. Note that
1308 * the remaining runtime could be < 0 in case we are in overrun.
1309 */
1310 s64 runtime; /* remaining runtime for this instance */
1311 u64 deadline; /* absolute deadline for this instance */
1312 unsigned int flags; /* specifying the scheduler behaviour */
1313
1314 /*
1315 * Some bool flags:
1316 *
1317 * @dl_throttled tells if we exhausted the runtime. If so, the
1318 * task has to wait for a replenishment to be performed at the
1319 * next firing of dl_timer.
1320 *
1321 * @dl_new tells if a new instance arrived. If so we must
1322 * start executing it with full runtime and reset its absolute
1323 * deadline;
2d3d891d
DF
1324 *
1325 * @dl_boosted tells if we are boosted due to DI. If so we are
1326 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1327 * exit the critical section);
1328 *
1329 * @dl_yielded tells if task gave up the cpu before consuming
1330 * all its available runtime during the last job.
aab03e05 1331 */
5bfd126e 1332 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1333
1334 /*
1335 * Bandwidth enforcement timer. Each -deadline task has its
1336 * own bandwidth to be enforced, thus we need one timer per task.
1337 */
1338 struct hrtimer dl_timer;
1339};
8bd75c77 1340
1d082fd0
PM
1341union rcu_special {
1342 struct {
1343 bool blocked;
1344 bool need_qs;
1345 } b;
1346 short s;
1347};
86848966
PM
1348struct rcu_node;
1349
8dc85d54
PZ
1350enum perf_event_task_context {
1351 perf_invalid_context = -1,
1352 perf_hw_context = 0,
89a1e187 1353 perf_sw_context,
8dc85d54
PZ
1354 perf_nr_task_contexts,
1355};
1356
1da177e4
LT
1357struct task_struct {
1358 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1359 void *stack;
1da177e4 1360 atomic_t usage;
97dc32cd
WC
1361 unsigned int flags; /* per process flags, defined below */
1362 unsigned int ptrace;
1da177e4 1363
2dd73a4f 1364#ifdef CONFIG_SMP
fa14ff4a 1365 struct llist_node wake_entry;
3ca7a440 1366 int on_cpu;
62470419
MW
1367 struct task_struct *last_wakee;
1368 unsigned long wakee_flips;
1369 unsigned long wakee_flip_decay_ts;
ac66f547
PZ
1370
1371 int wake_cpu;
2dd73a4f 1372#endif
fd2f4419 1373 int on_rq;
50e645a8 1374
b29739f9 1375 int prio, static_prio, normal_prio;
c7aceaba 1376 unsigned int rt_priority;
5522d5d5 1377 const struct sched_class *sched_class;
20b8a59f 1378 struct sched_entity se;
fa717060 1379 struct sched_rt_entity rt;
8323f26c
PZ
1380#ifdef CONFIG_CGROUP_SCHED
1381 struct task_group *sched_task_group;
1382#endif
aab03e05 1383 struct sched_dl_entity dl;
1da177e4 1384
e107be36
AK
1385#ifdef CONFIG_PREEMPT_NOTIFIERS
1386 /* list of struct preempt_notifier: */
1387 struct hlist_head preempt_notifiers;
1388#endif
1389
6c5c9341 1390#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1391 unsigned int btrace_seq;
6c5c9341 1392#endif
1da177e4 1393
97dc32cd 1394 unsigned int policy;
29baa747 1395 int nr_cpus_allowed;
1da177e4 1396 cpumask_t cpus_allowed;
1da177e4 1397
a57eb940 1398#ifdef CONFIG_PREEMPT_RCU
e260be67 1399 int rcu_read_lock_nesting;
1d082fd0 1400 union rcu_special rcu_read_unlock_special;
f41d911f 1401 struct list_head rcu_node_entry;
a57eb940 1402 struct rcu_node *rcu_blocked_node;
28f6569a 1403#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1404#ifdef CONFIG_TASKS_RCU
1405 unsigned long rcu_tasks_nvcsw;
1406 bool rcu_tasks_holdout;
1407 struct list_head rcu_tasks_holdout_list;
176f8f7a 1408 int rcu_tasks_idle_cpu;
8315f422 1409#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1410
52f17b6c 1411#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
1412 struct sched_info sched_info;
1413#endif
1414
1415 struct list_head tasks;
806c09a7 1416#ifdef CONFIG_SMP
917b627d 1417 struct plist_node pushable_tasks;
1baca4ce 1418 struct rb_node pushable_dl_tasks;
806c09a7 1419#endif
1da177e4
LT
1420
1421 struct mm_struct *mm, *active_mm;
615d6e87
DB
1422 /* per-thread vma caching */
1423 u32 vmacache_seqnum;
1424 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1425#if defined(SPLIT_RSS_COUNTING)
1426 struct task_rss_stat rss_stat;
1427#endif
1da177e4 1428/* task state */
97dc32cd 1429 int exit_state;
1da177e4
LT
1430 int exit_code, exit_signal;
1431 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1432 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1433
1434 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1435 unsigned int personality;
9b89f6ba 1436
f9ce1f1c
KT
1437 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1438 * execve */
8f0dfc34
AV
1439 unsigned in_iowait:1;
1440
ca94c442
LP
1441 /* Revert to default priority/policy when forking */
1442 unsigned sched_reset_on_fork:1;
a8e4f2ea 1443 unsigned sched_contributes_to_load:1;
ff303e66 1444 unsigned sched_migrated:1;
ca94c442 1445
6f185c29
VD
1446#ifdef CONFIG_MEMCG_KMEM
1447 unsigned memcg_kmem_skip_account:1;
1448#endif
ff303e66
PZ
1449#ifdef CONFIG_COMPAT_BRK
1450 unsigned brk_randomized:1;
1451#endif
6f185c29 1452
1d4457f9
KC
1453 unsigned long atomic_flags; /* Flags needing atomic access. */
1454
f56141e3
AL
1455 struct restart_block restart_block;
1456
1da177e4
LT
1457 pid_t pid;
1458 pid_t tgid;
0a425405 1459
1314562a 1460#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1461 /* Canary value for the -fstack-protector gcc feature */
1462 unsigned long stack_canary;
1314562a 1463#endif
4d1d61a6 1464 /*
1da177e4 1465 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1466 * older sibling, respectively. (p->father can be replaced with
f470021a 1467 * p->real_parent->pid)
1da177e4 1468 */
abd63bc3
KC
1469 struct task_struct __rcu *real_parent; /* real parent process */
1470 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1471 /*
f470021a 1472 * children/sibling forms the list of my natural children
1da177e4
LT
1473 */
1474 struct list_head children; /* list of my children */
1475 struct list_head sibling; /* linkage in my parent's children list */
1476 struct task_struct *group_leader; /* threadgroup leader */
1477
f470021a
RM
1478 /*
1479 * ptraced is the list of tasks this task is using ptrace on.
1480 * This includes both natural children and PTRACE_ATTACH targets.
1481 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1482 */
1483 struct list_head ptraced;
1484 struct list_head ptrace_entry;
1485
1da177e4 1486 /* PID/PID hash table linkage. */
92476d7f 1487 struct pid_link pids[PIDTYPE_MAX];
47e65328 1488 struct list_head thread_group;
0c740d0a 1489 struct list_head thread_node;
1da177e4
LT
1490
1491 struct completion *vfork_done; /* for vfork() */
1492 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1493 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1494
c66f08be 1495 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1496 cputime_t gtime;
9fbc42ea 1497#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 1498 struct cputime prev_cputime;
6a61671b
FW
1499#endif
1500#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1501 seqlock_t vtime_seqlock;
1502 unsigned long long vtime_snap;
1503 enum {
1504 VTIME_SLEEPING = 0,
1505 VTIME_USER,
1506 VTIME_SYS,
1507 } vtime_snap_whence;
d99ca3b9 1508#endif
1da177e4 1509 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1510 u64 start_time; /* monotonic time in nsec */
57e0be04 1511 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1512/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1513 unsigned long min_flt, maj_flt;
1514
f06febc9 1515 struct task_cputime cputime_expires;
1da177e4
LT
1516 struct list_head cpu_timers[3];
1517
1518/* process credentials */
1b0ba1c9 1519 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1520 * credentials (COW) */
1b0ba1c9 1521 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1522 * credentials (COW) */
36772092
PBG
1523 char comm[TASK_COMM_LEN]; /* executable name excluding path
1524 - access with [gs]et_task_comm (which lock
1525 it with task_lock())
221af7f8 1526 - initialized normally by setup_new_exec */
1da177e4 1527/* file system info */
756daf26 1528 struct nameidata *nameidata;
3d5b6fcc 1529#ifdef CONFIG_SYSVIPC
1da177e4
LT
1530/* ipc stuff */
1531 struct sysv_sem sysvsem;
ab602f79 1532 struct sysv_shm sysvshm;
3d5b6fcc 1533#endif
e162b39a 1534#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1535/* hung task detection */
82a1fcb9
IM
1536 unsigned long last_switch_count;
1537#endif
1da177e4
LT
1538/* CPU-specific state of this task */
1539 struct thread_struct thread;
1540/* filesystem information */
1541 struct fs_struct *fs;
1542/* open file information */
1543 struct files_struct *files;
1651e14e 1544/* namespaces */
ab516013 1545 struct nsproxy *nsproxy;
1da177e4
LT
1546/* signal handlers */
1547 struct signal_struct *signal;
1548 struct sighand_struct *sighand;
1549
1550 sigset_t blocked, real_blocked;
f3de272b 1551 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1552 struct sigpending pending;
1553
1554 unsigned long sas_ss_sp;
1555 size_t sas_ss_size;
1556 int (*notifier)(void *priv);
1557 void *notifier_data;
1558 sigset_t *notifier_mask;
67d12145 1559 struct callback_head *task_works;
e73f8959 1560
1da177e4 1561 struct audit_context *audit_context;
bfef93a5 1562#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1563 kuid_t loginuid;
4746ec5b 1564 unsigned int sessionid;
bfef93a5 1565#endif
932ecebb 1566 struct seccomp seccomp;
1da177e4
LT
1567
1568/* Thread group tracking */
1569 u32 parent_exec_id;
1570 u32 self_exec_id;
58568d2a
MX
1571/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1572 * mempolicy */
1da177e4 1573 spinlock_t alloc_lock;
1da177e4 1574
b29739f9 1575 /* Protection of the PI data structures: */
1d615482 1576 raw_spinlock_t pi_lock;
b29739f9 1577
76751049
PZ
1578 struct wake_q_node wake_q;
1579
23f78d4a
IM
1580#ifdef CONFIG_RT_MUTEXES
1581 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1582 struct rb_root pi_waiters;
1583 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1584 /* Deadlock detection and priority inheritance handling */
1585 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1586#endif
1587
408894ee
IM
1588#ifdef CONFIG_DEBUG_MUTEXES
1589 /* mutex deadlock detection */
1590 struct mutex_waiter *blocked_on;
1591#endif
de30a2b3
IM
1592#ifdef CONFIG_TRACE_IRQFLAGS
1593 unsigned int irq_events;
de30a2b3 1594 unsigned long hardirq_enable_ip;
de30a2b3 1595 unsigned long hardirq_disable_ip;
fa1452e8 1596 unsigned int hardirq_enable_event;
de30a2b3 1597 unsigned int hardirq_disable_event;
fa1452e8
HS
1598 int hardirqs_enabled;
1599 int hardirq_context;
de30a2b3 1600 unsigned long softirq_disable_ip;
de30a2b3 1601 unsigned long softirq_enable_ip;
fa1452e8 1602 unsigned int softirq_disable_event;
de30a2b3 1603 unsigned int softirq_enable_event;
fa1452e8 1604 int softirqs_enabled;
de30a2b3
IM
1605 int softirq_context;
1606#endif
fbb9ce95 1607#ifdef CONFIG_LOCKDEP
bdb9441e 1608# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1609 u64 curr_chain_key;
1610 int lockdep_depth;
fbb9ce95 1611 unsigned int lockdep_recursion;
c7aceaba 1612 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1613 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1614#endif
408894ee 1615
1da177e4
LT
1616/* journalling filesystem info */
1617 void *journal_info;
1618
d89d8796 1619/* stacked block device info */
bddd87c7 1620 struct bio_list *bio_list;
d89d8796 1621
73c10101
JA
1622#ifdef CONFIG_BLOCK
1623/* stack plugging */
1624 struct blk_plug *plug;
1625#endif
1626
1da177e4
LT
1627/* VM state */
1628 struct reclaim_state *reclaim_state;
1629
1da177e4
LT
1630 struct backing_dev_info *backing_dev_info;
1631
1632 struct io_context *io_context;
1633
1634 unsigned long ptrace_message;
1635 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1636 struct task_io_accounting ioac;
8f0ab514 1637#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1638 u64 acct_rss_mem1; /* accumulated rss usage */
1639 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1640 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1641#endif
1642#ifdef CONFIG_CPUSETS
58568d2a 1643 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1644 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1645 int cpuset_mem_spread_rotor;
6adef3eb 1646 int cpuset_slab_spread_rotor;
1da177e4 1647#endif
ddbcc7e8 1648#ifdef CONFIG_CGROUPS
817929ec 1649 /* Control Group info protected by css_set_lock */
2c392b8c 1650 struct css_set __rcu *cgroups;
817929ec
PM
1651 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1652 struct list_head cg_list;
ddbcc7e8 1653#endif
42b2dd0a 1654#ifdef CONFIG_FUTEX
0771dfef 1655 struct robust_list_head __user *robust_list;
34f192c6
IM
1656#ifdef CONFIG_COMPAT
1657 struct compat_robust_list_head __user *compat_robust_list;
1658#endif
c87e2837
IM
1659 struct list_head pi_state_list;
1660 struct futex_pi_state *pi_state_cache;
c7aceaba 1661#endif
cdd6c482 1662#ifdef CONFIG_PERF_EVENTS
8dc85d54 1663 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1664 struct mutex perf_event_mutex;
1665 struct list_head perf_event_list;
a63eaf34 1666#endif
8f47b187
TG
1667#ifdef CONFIG_DEBUG_PREEMPT
1668 unsigned long preempt_disable_ip;
1669#endif
c7aceaba 1670#ifdef CONFIG_NUMA
58568d2a 1671 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1672 short il_next;
207205a2 1673 short pref_node_fork;
42b2dd0a 1674#endif
cbee9f88
PZ
1675#ifdef CONFIG_NUMA_BALANCING
1676 int numa_scan_seq;
cbee9f88 1677 unsigned int numa_scan_period;
598f0ec0 1678 unsigned int numa_scan_period_max;
de1c9ce6 1679 int numa_preferred_nid;
6b9a7460 1680 unsigned long numa_migrate_retry;
cbee9f88 1681 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1682 u64 last_task_numa_placement;
1683 u64 last_sum_exec_runtime;
cbee9f88 1684 struct callback_head numa_work;
f809ca9a 1685
8c8a743c
PZ
1686 struct list_head numa_entry;
1687 struct numa_group *numa_group;
1688
745d6147 1689 /*
44dba3d5
IM
1690 * numa_faults is an array split into four regions:
1691 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1692 * in this precise order.
1693 *
1694 * faults_memory: Exponential decaying average of faults on a per-node
1695 * basis. Scheduling placement decisions are made based on these
1696 * counts. The values remain static for the duration of a PTE scan.
1697 * faults_cpu: Track the nodes the process was running on when a NUMA
1698 * hinting fault was incurred.
1699 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1700 * during the current scan window. When the scan completes, the counts
1701 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1702 */
44dba3d5 1703 unsigned long *numa_faults;
83e1d2cd 1704 unsigned long total_numa_faults;
745d6147 1705
04bb2f94
RR
1706 /*
1707 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1708 * scan window were remote/local or failed to migrate. The task scan
1709 * period is adapted based on the locality of the faults with different
1710 * weights depending on whether they were shared or private faults
04bb2f94 1711 */
074c2381 1712 unsigned long numa_faults_locality[3];
04bb2f94 1713
b32e86b4 1714 unsigned long numa_pages_migrated;
cbee9f88
PZ
1715#endif /* CONFIG_NUMA_BALANCING */
1716
e56d0903 1717 struct rcu_head rcu;
b92ce558
JA
1718
1719 /*
1720 * cache last used pipe for splice
1721 */
1722 struct pipe_inode_info *splice_pipe;
5640f768
ED
1723
1724 struct page_frag task_frag;
1725
ca74e92b
SN
1726#ifdef CONFIG_TASK_DELAY_ACCT
1727 struct task_delay_info *delays;
f4f154fd
AM
1728#endif
1729#ifdef CONFIG_FAULT_INJECTION
1730 int make_it_fail;
ca74e92b 1731#endif
9d823e8f
WF
1732 /*
1733 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1734 * balance_dirty_pages() for some dirty throttling pause
1735 */
1736 int nr_dirtied;
1737 int nr_dirtied_pause;
83712358 1738 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1739
9745512c
AV
1740#ifdef CONFIG_LATENCYTOP
1741 int latency_record_count;
1742 struct latency_record latency_record[LT_SAVECOUNT];
1743#endif
6976675d
AV
1744 /*
1745 * time slack values; these are used to round up poll() and
1746 * select() etc timeout values. These are in nanoseconds.
1747 */
1748 unsigned long timer_slack_ns;
1749 unsigned long default_timer_slack_ns;
f8d570a4 1750
0b24becc
AR
1751#ifdef CONFIG_KASAN
1752 unsigned int kasan_depth;
1753#endif
fb52607a 1754#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1755 /* Index of current stored address in ret_stack */
f201ae23
FW
1756 int curr_ret_stack;
1757 /* Stack of return addresses for return function tracing */
1758 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1759 /* time stamp for last schedule */
1760 unsigned long long ftrace_timestamp;
f201ae23
FW
1761 /*
1762 * Number of functions that haven't been traced
1763 * because of depth overrun.
1764 */
1765 atomic_t trace_overrun;
380c4b14
FW
1766 /* Pause for the tracing */
1767 atomic_t tracing_graph_pause;
f201ae23 1768#endif
ea4e2bc4
SR
1769#ifdef CONFIG_TRACING
1770 /* state flags for use by tracers */
1771 unsigned long trace;
b1cff0ad 1772 /* bitmask and counter of trace recursion */
261842b7
SR
1773 unsigned long trace_recursion;
1774#endif /* CONFIG_TRACING */
6f185c29 1775#ifdef CONFIG_MEMCG
519e5247 1776 struct memcg_oom_info {
49426420
JW
1777 struct mem_cgroup *memcg;
1778 gfp_t gfp_mask;
1779 int order;
519e5247
JW
1780 unsigned int may_oom:1;
1781 } memcg_oom;
569b846d 1782#endif
0326f5a9
SD
1783#ifdef CONFIG_UPROBES
1784 struct uprobe_task *utask;
0326f5a9 1785#endif
cafe5635
KO
1786#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1787 unsigned int sequential_io;
1788 unsigned int sequential_io_avg;
1789#endif
8eb23b9f
PZ
1790#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1791 unsigned long task_state_change;
1792#endif
8bcbde54 1793 int pagefault_disabled;
1da177e4
LT
1794};
1795
76e6eee0 1796/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1797#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1798
6688cc05
PZ
1799#define TNF_MIGRATED 0x01
1800#define TNF_NO_GROUP 0x02
dabe1d99 1801#define TNF_SHARED 0x04
04bb2f94 1802#define TNF_FAULT_LOCAL 0x08
074c2381 1803#define TNF_MIGRATE_FAIL 0x10
6688cc05 1804
cbee9f88 1805#ifdef CONFIG_NUMA_BALANCING
6688cc05 1806extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1807extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1808extern void set_numabalancing_state(bool enabled);
82727018 1809extern void task_numa_free(struct task_struct *p);
10f39042
RR
1810extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1811 int src_nid, int dst_cpu);
cbee9f88 1812#else
ac8e895b 1813static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1814 int flags)
cbee9f88
PZ
1815{
1816}
e29cf08b
MG
1817static inline pid_t task_numa_group_id(struct task_struct *p)
1818{
1819 return 0;
1820}
1a687c2e
MG
1821static inline void set_numabalancing_state(bool enabled)
1822{
1823}
82727018
RR
1824static inline void task_numa_free(struct task_struct *p)
1825{
1826}
10f39042
RR
1827static inline bool should_numa_migrate_memory(struct task_struct *p,
1828 struct page *page, int src_nid, int dst_cpu)
1829{
1830 return true;
1831}
cbee9f88
PZ
1832#endif
1833
e868171a 1834static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1835{
1836 return task->pids[PIDTYPE_PID].pid;
1837}
1838
e868171a 1839static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1840{
1841 return task->group_leader->pids[PIDTYPE_PID].pid;
1842}
1843
6dda81f4
ON
1844/*
1845 * Without tasklist or rcu lock it is not safe to dereference
1846 * the result of task_pgrp/task_session even if task == current,
1847 * we can race with another thread doing sys_setsid/sys_setpgid.
1848 */
e868171a 1849static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1850{
1851 return task->group_leader->pids[PIDTYPE_PGID].pid;
1852}
1853
e868171a 1854static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1855{
1856 return task->group_leader->pids[PIDTYPE_SID].pid;
1857}
1858
7af57294
PE
1859struct pid_namespace;
1860
1861/*
1862 * the helpers to get the task's different pids as they are seen
1863 * from various namespaces
1864 *
1865 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1866 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1867 * current.
7af57294
PE
1868 * task_xid_nr_ns() : id seen from the ns specified;
1869 *
1870 * set_task_vxid() : assigns a virtual id to a task;
1871 *
7af57294
PE
1872 * see also pid_nr() etc in include/linux/pid.h
1873 */
52ee2dfd
ON
1874pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1875 struct pid_namespace *ns);
7af57294 1876
e868171a 1877static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1878{
1879 return tsk->pid;
1880}
1881
52ee2dfd
ON
1882static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1883 struct pid_namespace *ns)
1884{
1885 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1886}
7af57294
PE
1887
1888static inline pid_t task_pid_vnr(struct task_struct *tsk)
1889{
52ee2dfd 1890 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1891}
1892
1893
e868171a 1894static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1895{
1896 return tsk->tgid;
1897}
1898
2f2a3a46 1899pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1900
1901static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1902{
1903 return pid_vnr(task_tgid(tsk));
1904}
1905
1906
80e0b6e8 1907static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1908static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1909{
1910 pid_t pid = 0;
1911
1912 rcu_read_lock();
1913 if (pid_alive(tsk))
1914 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1915 rcu_read_unlock();
1916
1917 return pid;
1918}
1919
1920static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1921{
1922 return task_ppid_nr_ns(tsk, &init_pid_ns);
1923}
1924
52ee2dfd
ON
1925static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1926 struct pid_namespace *ns)
7af57294 1927{
52ee2dfd 1928 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1929}
1930
7af57294
PE
1931static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1932{
52ee2dfd 1933 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1934}
1935
1936
52ee2dfd
ON
1937static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1938 struct pid_namespace *ns)
7af57294 1939{
52ee2dfd 1940 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1941}
1942
7af57294
PE
1943static inline pid_t task_session_vnr(struct task_struct *tsk)
1944{
52ee2dfd 1945 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1946}
1947
1b0f7ffd
ON
1948/* obsolete, do not use */
1949static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1950{
1951 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1952}
7af57294 1953
1da177e4
LT
1954/**
1955 * pid_alive - check that a task structure is not stale
1956 * @p: Task structure to be checked.
1957 *
1958 * Test if a process is not yet dead (at most zombie state)
1959 * If pid_alive fails, then pointers within the task structure
1960 * can be stale and must not be dereferenced.
e69f6186
YB
1961 *
1962 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1963 */
ad36d282 1964static inline int pid_alive(const struct task_struct *p)
1da177e4 1965{
92476d7f 1966 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1967}
1968
f400e198 1969/**
b460cbc5 1970 * is_global_init - check if a task structure is init
3260259f
H
1971 * @tsk: Task structure to be checked.
1972 *
1973 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1974 *
1975 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1976 */
e868171a 1977static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1978{
1979 return tsk->pid == 1;
1980}
b460cbc5 1981
9ec52099
CLG
1982extern struct pid *cad_pid;
1983
1da177e4 1984extern void free_task(struct task_struct *tsk);
1da177e4 1985#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 1986
158d9ebd 1987extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
1988
1989static inline void put_task_struct(struct task_struct *t)
1990{
1991 if (atomic_dec_and_test(&t->usage))
8c7904a0 1992 __put_task_struct(t);
e56d0903 1993}
1da177e4 1994
6a61671b
FW
1995#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1996extern void task_cputime(struct task_struct *t,
1997 cputime_t *utime, cputime_t *stime);
1998extern void task_cputime_scaled(struct task_struct *t,
1999 cputime_t *utimescaled, cputime_t *stimescaled);
2000extern cputime_t task_gtime(struct task_struct *t);
2001#else
6fac4829
FW
2002static inline void task_cputime(struct task_struct *t,
2003 cputime_t *utime, cputime_t *stime)
2004{
2005 if (utime)
2006 *utime = t->utime;
2007 if (stime)
2008 *stime = t->stime;
2009}
2010
2011static inline void task_cputime_scaled(struct task_struct *t,
2012 cputime_t *utimescaled,
2013 cputime_t *stimescaled)
2014{
2015 if (utimescaled)
2016 *utimescaled = t->utimescaled;
2017 if (stimescaled)
2018 *stimescaled = t->stimescaled;
2019}
6a61671b
FW
2020
2021static inline cputime_t task_gtime(struct task_struct *t)
2022{
2023 return t->gtime;
2024}
2025#endif
e80d0a1a
FW
2026extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2027extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2028
1da177e4
LT
2029/*
2030 * Per process flags
2031 */
1da177e4 2032#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2033#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2034#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2035#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2036#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2037#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2038#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2039#define PF_DUMPCORE 0x00000200 /* dumped core */
2040#define PF_SIGNALED 0x00000400 /* killed by a signal */
2041#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2042#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2043#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2044#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2045#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2046#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2047#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2048#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2049#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2050#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2051#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2052#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2053#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2054#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2055#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2056#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2057#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2058#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2059
2060/*
2061 * Only the _current_ task can read/write to tsk->flags, but other
2062 * tasks can access tsk->flags in readonly mode for example
2063 * with tsk_used_math (like during threaded core dumping).
2064 * There is however an exception to this rule during ptrace
2065 * or during fork: the ptracer task is allowed to write to the
2066 * child->flags of its traced child (same goes for fork, the parent
2067 * can write to the child->flags), because we're guaranteed the
2068 * child is not running and in turn not changing child->flags
2069 * at the same time the parent does it.
2070 */
2071#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2072#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2073#define clear_used_math() clear_stopped_child_used_math(current)
2074#define set_used_math() set_stopped_child_used_math(current)
2075#define conditional_stopped_child_used_math(condition, child) \
2076 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2077#define conditional_used_math(condition) \
2078 conditional_stopped_child_used_math(condition, current)
2079#define copy_to_stopped_child_used_math(child) \
2080 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2081/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2082#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2083#define used_math() tsk_used_math(current)
2084
934f3072
JB
2085/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2086 * __GFP_FS is also cleared as it implies __GFP_IO.
2087 */
21caf2fc
ML
2088static inline gfp_t memalloc_noio_flags(gfp_t flags)
2089{
2090 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2091 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2092 return flags;
2093}
2094
2095static inline unsigned int memalloc_noio_save(void)
2096{
2097 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2098 current->flags |= PF_MEMALLOC_NOIO;
2099 return flags;
2100}
2101
2102static inline void memalloc_noio_restore(unsigned int flags)
2103{
2104 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2105}
2106
1d4457f9 2107/* Per-process atomic flags. */
a2b86f77 2108#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2109#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2110#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2111
1d4457f9 2112
e0e5070b
ZL
2113#define TASK_PFA_TEST(name, func) \
2114 static inline bool task_##func(struct task_struct *p) \
2115 { return test_bit(PFA_##name, &p->atomic_flags); }
2116#define TASK_PFA_SET(name, func) \
2117 static inline void task_set_##func(struct task_struct *p) \
2118 { set_bit(PFA_##name, &p->atomic_flags); }
2119#define TASK_PFA_CLEAR(name, func) \
2120 static inline void task_clear_##func(struct task_struct *p) \
2121 { clear_bit(PFA_##name, &p->atomic_flags); }
2122
2123TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2124TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2125
2ad654bc
ZL
2126TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2127TASK_PFA_SET(SPREAD_PAGE, spread_page)
2128TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2129
2130TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2131TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2132TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2133
e5c1902e 2134/*
a8f072c1 2135 * task->jobctl flags
e5c1902e 2136 */
a8f072c1 2137#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2138
a8f072c1
TH
2139#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2140#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2141#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2142#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2143#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2144#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2145#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2146
b76808e6
PD
2147#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2148#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2149#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2150#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2151#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2152#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2153#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2154
fb1d910c 2155#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2156#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2157
7dd3db54 2158extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2159 unsigned long mask);
73ddff2b 2160extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2161extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2162 unsigned long mask);
39efa3ef 2163
f41d911f
PM
2164static inline void rcu_copy_process(struct task_struct *p)
2165{
8315f422 2166#ifdef CONFIG_PREEMPT_RCU
f41d911f 2167 p->rcu_read_lock_nesting = 0;
1d082fd0 2168 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2169 p->rcu_blocked_node = NULL;
f41d911f 2170 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2171#endif /* #ifdef CONFIG_PREEMPT_RCU */
2172#ifdef CONFIG_TASKS_RCU
2173 p->rcu_tasks_holdout = false;
2174 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2175 p->rcu_tasks_idle_cpu = -1;
8315f422 2176#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2177}
2178
907aed48
MG
2179static inline void tsk_restore_flags(struct task_struct *task,
2180 unsigned long orig_flags, unsigned long flags)
2181{
2182 task->flags &= ~flags;
2183 task->flags |= orig_flags & flags;
2184}
2185
f82f8042
JL
2186extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2187 const struct cpumask *trial);
7f51412a
JL
2188extern int task_can_attach(struct task_struct *p,
2189 const struct cpumask *cs_cpus_allowed);
1da177e4 2190#ifdef CONFIG_SMP
1e1b6c51
KM
2191extern void do_set_cpus_allowed(struct task_struct *p,
2192 const struct cpumask *new_mask);
2193
cd8ba7cd 2194extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2195 const struct cpumask *new_mask);
1da177e4 2196#else
1e1b6c51
KM
2197static inline void do_set_cpus_allowed(struct task_struct *p,
2198 const struct cpumask *new_mask)
2199{
2200}
cd8ba7cd 2201static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2202 const struct cpumask *new_mask)
1da177e4 2203{
96f874e2 2204 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2205 return -EINVAL;
2206 return 0;
2207}
2208#endif
e0ad9556 2209
3451d024 2210#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2211void calc_load_enter_idle(void);
2212void calc_load_exit_idle(void);
2213#else
2214static inline void calc_load_enter_idle(void) { }
2215static inline void calc_load_exit_idle(void) { }
3451d024 2216#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2217
e0ad9556 2218#ifndef CONFIG_CPUMASK_OFFSTACK
cd8ba7cd
MT
2219static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2220{
2221 return set_cpus_allowed_ptr(p, &new_mask);
2222}
e0ad9556 2223#endif
1da177e4 2224
b342501c 2225/*
c676329a
PZ
2226 * Do not use outside of architecture code which knows its limitations.
2227 *
2228 * sched_clock() has no promise of monotonicity or bounded drift between
2229 * CPUs, use (which you should not) requires disabling IRQs.
2230 *
2231 * Please use one of the three interfaces below.
b342501c 2232 */
1bbfa6f2 2233extern unsigned long long notrace sched_clock(void);
c676329a 2234/*
489a71b0 2235 * See the comment in kernel/sched/clock.c
c676329a
PZ
2236 */
2237extern u64 cpu_clock(int cpu);
2238extern u64 local_clock(void);
545a2bf7 2239extern u64 running_clock(void);
c676329a
PZ
2240extern u64 sched_clock_cpu(int cpu);
2241
e436d800 2242
c1955a3d 2243extern void sched_clock_init(void);
3e51f33f 2244
c1955a3d 2245#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2246static inline void sched_clock_tick(void)
2247{
2248}
2249
2250static inline void sched_clock_idle_sleep_event(void)
2251{
2252}
2253
2254static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2255{
2256}
2257#else
c676329a
PZ
2258/*
2259 * Architectures can set this to 1 if they have specified
2260 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2261 * but then during bootup it turns out that sched_clock()
2262 * is reliable after all:
2263 */
35af99e6
PZ
2264extern int sched_clock_stable(void);
2265extern void set_sched_clock_stable(void);
2266extern void clear_sched_clock_stable(void);
c676329a 2267
3e51f33f
PZ
2268extern void sched_clock_tick(void);
2269extern void sched_clock_idle_sleep_event(void);
2270extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2271#endif
2272
b52bfee4
VP
2273#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2274/*
2275 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2276 * The reason for this explicit opt-in is not to have perf penalty with
2277 * slow sched_clocks.
2278 */
2279extern void enable_sched_clock_irqtime(void);
2280extern void disable_sched_clock_irqtime(void);
2281#else
2282static inline void enable_sched_clock_irqtime(void) {}
2283static inline void disable_sched_clock_irqtime(void) {}
2284#endif
2285
36c8b586 2286extern unsigned long long
41b86e9c 2287task_sched_runtime(struct task_struct *task);
1da177e4
LT
2288
2289/* sched_exec is called by processes performing an exec */
2290#ifdef CONFIG_SMP
2291extern void sched_exec(void);
2292#else
2293#define sched_exec() {}
2294#endif
2295
2aa44d05
IM
2296extern void sched_clock_idle_sleep_event(void);
2297extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2298
1da177e4
LT
2299#ifdef CONFIG_HOTPLUG_CPU
2300extern void idle_task_exit(void);
2301#else
2302static inline void idle_task_exit(void) {}
2303#endif
2304
3451d024 2305#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2306extern void wake_up_nohz_cpu(int cpu);
06d8308c 2307#else
1c20091e 2308static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2309#endif
2310
ce831b38
FW
2311#ifdef CONFIG_NO_HZ_FULL
2312extern bool sched_can_stop_tick(void);
265f22a9 2313extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2314#else
2315static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2316#endif
2317
5091faa4 2318#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2319extern void sched_autogroup_create_attach(struct task_struct *p);
2320extern void sched_autogroup_detach(struct task_struct *p);
2321extern void sched_autogroup_fork(struct signal_struct *sig);
2322extern void sched_autogroup_exit(struct signal_struct *sig);
2323#ifdef CONFIG_PROC_FS
2324extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2325extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2326#endif
2327#else
2328static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2329static inline void sched_autogroup_detach(struct task_struct *p) { }
2330static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2331static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2332#endif
2333
fa93384f 2334extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2335extern void set_user_nice(struct task_struct *p, long nice);
2336extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2337/**
2338 * task_nice - return the nice value of a given task.
2339 * @p: the task in question.
2340 *
2341 * Return: The nice value [ -20 ... 0 ... 19 ].
2342 */
2343static inline int task_nice(const struct task_struct *p)
2344{
2345 return PRIO_TO_NICE((p)->static_prio);
2346}
36c8b586
IM
2347extern int can_nice(const struct task_struct *p, const int nice);
2348extern int task_curr(const struct task_struct *p);
1da177e4 2349extern int idle_cpu(int cpu);
fe7de49f
KM
2350extern int sched_setscheduler(struct task_struct *, int,
2351 const struct sched_param *);
961ccddd 2352extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2353 const struct sched_param *);
d50dde5a
DF
2354extern int sched_setattr(struct task_struct *,
2355 const struct sched_attr *);
36c8b586 2356extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2357/**
2358 * is_idle_task - is the specified task an idle task?
fa757281 2359 * @p: the task in question.
e69f6186
YB
2360 *
2361 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2362 */
7061ca3b 2363static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2364{
2365 return p->pid == 0;
2366}
36c8b586
IM
2367extern struct task_struct *curr_task(int cpu);
2368extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2369
2370void yield(void);
2371
1da177e4
LT
2372union thread_union {
2373 struct thread_info thread_info;
2374 unsigned long stack[THREAD_SIZE/sizeof(long)];
2375};
2376
2377#ifndef __HAVE_ARCH_KSTACK_END
2378static inline int kstack_end(void *addr)
2379{
2380 /* Reliable end of stack detection:
2381 * Some APM bios versions misalign the stack
2382 */
2383 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2384}
2385#endif
2386
2387extern union thread_union init_thread_union;
2388extern struct task_struct init_task;
2389
2390extern struct mm_struct init_mm;
2391
198fe21b
PE
2392extern struct pid_namespace init_pid_ns;
2393
2394/*
2395 * find a task by one of its numerical ids
2396 *
198fe21b
PE
2397 * find_task_by_pid_ns():
2398 * finds a task by its pid in the specified namespace
228ebcbe
PE
2399 * find_task_by_vpid():
2400 * finds a task by its virtual pid
198fe21b 2401 *
e49859e7 2402 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2403 */
2404
228ebcbe
PE
2405extern struct task_struct *find_task_by_vpid(pid_t nr);
2406extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2407 struct pid_namespace *ns);
198fe21b 2408
1da177e4 2409/* per-UID process charging. */
7b44ab97 2410extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2411static inline struct user_struct *get_uid(struct user_struct *u)
2412{
2413 atomic_inc(&u->__count);
2414 return u;
2415}
2416extern void free_uid(struct user_struct *);
1da177e4
LT
2417
2418#include <asm/current.h>
2419
f0af911a 2420extern void xtime_update(unsigned long ticks);
1da177e4 2421
b3c97528
HH
2422extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2423extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2424extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2425#ifdef CONFIG_SMP
2426 extern void kick_process(struct task_struct *tsk);
2427#else
2428 static inline void kick_process(struct task_struct *tsk) { }
2429#endif
aab03e05 2430extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2431extern void sched_dead(struct task_struct *p);
1da177e4 2432
1da177e4
LT
2433extern void proc_caches_init(void);
2434extern void flush_signals(struct task_struct *);
3bcac026 2435extern void __flush_signals(struct task_struct *);
10ab825b 2436extern void ignore_signals(struct task_struct *);
1da177e4
LT
2437extern void flush_signal_handlers(struct task_struct *, int force_default);
2438extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2439
2440static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2441{
2442 unsigned long flags;
2443 int ret;
2444
2445 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2446 ret = dequeue_signal(tsk, mask, info);
2447 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2448
2449 return ret;
53c8f9f1 2450}
1da177e4
LT
2451
2452extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2453 sigset_t *mask);
2454extern void unblock_all_signals(void);
2455extern void release_task(struct task_struct * p);
2456extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2457extern int force_sigsegv(int, struct task_struct *);
2458extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2459extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2460extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2461extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2462 const struct cred *, u32);
c4b92fc1
EB
2463extern int kill_pgrp(struct pid *pid, int sig, int priv);
2464extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2465extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2466extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2467extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2468extern void force_sig(int, struct task_struct *);
1da177e4 2469extern int send_sig(int, struct task_struct *, int);
09faef11 2470extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2471extern struct sigqueue *sigqueue_alloc(void);
2472extern void sigqueue_free(struct sigqueue *);
ac5c2153 2473extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2474extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2475
51a7b448
AV
2476static inline void restore_saved_sigmask(void)
2477{
2478 if (test_and_clear_restore_sigmask())
77097ae5 2479 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2480}
2481
b7f9a11a
AV
2482static inline sigset_t *sigmask_to_save(void)
2483{
2484 sigset_t *res = &current->blocked;
2485 if (unlikely(test_restore_sigmask()))
2486 res = &current->saved_sigmask;
2487 return res;
2488}
2489
9ec52099
CLG
2490static inline int kill_cad_pid(int sig, int priv)
2491{
2492 return kill_pid(cad_pid, sig, priv);
2493}
2494
1da177e4
LT
2495/* These can be the second arg to send_sig_info/send_group_sig_info. */
2496#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2497#define SEND_SIG_PRIV ((struct siginfo *) 1)
2498#define SEND_SIG_FORCED ((struct siginfo *) 2)
2499
2a855dd0
SAS
2500/*
2501 * True if we are on the alternate signal stack.
2502 */
1da177e4
LT
2503static inline int on_sig_stack(unsigned long sp)
2504{
2a855dd0
SAS
2505#ifdef CONFIG_STACK_GROWSUP
2506 return sp >= current->sas_ss_sp &&
2507 sp - current->sas_ss_sp < current->sas_ss_size;
2508#else
2509 return sp > current->sas_ss_sp &&
2510 sp - current->sas_ss_sp <= current->sas_ss_size;
2511#endif
1da177e4
LT
2512}
2513
2514static inline int sas_ss_flags(unsigned long sp)
2515{
72f15c03
RW
2516 if (!current->sas_ss_size)
2517 return SS_DISABLE;
2518
2519 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2520}
2521
5a1b98d3
AV
2522static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2523{
2524 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2525#ifdef CONFIG_STACK_GROWSUP
2526 return current->sas_ss_sp;
2527#else
2528 return current->sas_ss_sp + current->sas_ss_size;
2529#endif
2530 return sp;
2531}
2532
1da177e4
LT
2533/*
2534 * Routines for handling mm_structs
2535 */
2536extern struct mm_struct * mm_alloc(void);
2537
2538/* mmdrop drops the mm and the page tables */
b3c97528 2539extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2540static inline void mmdrop(struct mm_struct * mm)
2541{
6fb43d7b 2542 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2543 __mmdrop(mm);
2544}
2545
2546/* mmput gets rid of the mappings and all user-space */
2547extern void mmput(struct mm_struct *);
2548/* Grab a reference to a task's mm, if it is not already going away */
2549extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2550/*
2551 * Grab a reference to a task's mm, if it is not already going away
2552 * and ptrace_may_access with the mode parameter passed to it
2553 * succeeds.
2554 */
2555extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2556/* Remove the current tasks stale references to the old mm_struct */
2557extern void mm_release(struct task_struct *, struct mm_struct *);
2558
6f2c55b8 2559extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2560 struct task_struct *);
1da177e4
LT
2561extern void flush_thread(void);
2562extern void exit_thread(void);
2563
1da177e4 2564extern void exit_files(struct task_struct *);
a7e5328a 2565extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2566
1da177e4 2567extern void exit_itimers(struct signal_struct *);
cbaffba1 2568extern void flush_itimer_signals(void);
1da177e4 2569
9402c95f 2570extern void do_group_exit(int);
1da177e4 2571
c4ad8f98 2572extern int do_execve(struct filename *,
d7627467 2573 const char __user * const __user *,
da3d4c5f 2574 const char __user * const __user *);
51f39a1f
DD
2575extern int do_execveat(int, struct filename *,
2576 const char __user * const __user *,
2577 const char __user * const __user *,
2578 int);
e80d6661 2579extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2580struct task_struct *fork_idle(int);
2aa3a7f8 2581extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2582
82b89778
AH
2583extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2584static inline void set_task_comm(struct task_struct *tsk, const char *from)
2585{
2586 __set_task_comm(tsk, from, false);
2587}
59714d65 2588extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2589
2590#ifdef CONFIG_SMP
317f3941 2591void scheduler_ipi(void);
85ba2d86 2592extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2593#else
184748cc 2594static inline void scheduler_ipi(void) { }
85ba2d86
RM
2595static inline unsigned long wait_task_inactive(struct task_struct *p,
2596 long match_state)
2597{
2598 return 1;
2599}
1da177e4
LT
2600#endif
2601
fafe870f
FW
2602#define tasklist_empty() \
2603 list_empty(&init_task.tasks)
2604
05725f7e
JP
2605#define next_task(p) \
2606 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2607
2608#define for_each_process(p) \
2609 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2610
5bb459bb 2611extern bool current_is_single_threaded(void);
d84f4f99 2612
1da177e4
LT
2613/*
2614 * Careful: do_each_thread/while_each_thread is a double loop so
2615 * 'break' will not work as expected - use goto instead.
2616 */
2617#define do_each_thread(g, t) \
2618 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2619
2620#define while_each_thread(g, t) \
2621 while ((t = next_thread(t)) != g)
2622
0c740d0a
ON
2623#define __for_each_thread(signal, t) \
2624 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2625
2626#define for_each_thread(p, t) \
2627 __for_each_thread((p)->signal, t)
2628
2629/* Careful: this is a double loop, 'break' won't work as expected. */
2630#define for_each_process_thread(p, t) \
2631 for_each_process(p) for_each_thread(p, t)
2632
7e49827c
ON
2633static inline int get_nr_threads(struct task_struct *tsk)
2634{
b3ac022c 2635 return tsk->signal->nr_threads;
7e49827c
ON
2636}
2637
087806b1
ON
2638static inline bool thread_group_leader(struct task_struct *p)
2639{
2640 return p->exit_signal >= 0;
2641}
1da177e4 2642
0804ef4b
EB
2643/* Do to the insanities of de_thread it is possible for a process
2644 * to have the pid of the thread group leader without actually being
2645 * the thread group leader. For iteration through the pids in proc
2646 * all we care about is that we have a task with the appropriate
2647 * pid, we don't actually care if we have the right task.
2648 */
e1403b8e 2649static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2650{
e1403b8e 2651 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2652}
2653
bac0abd6 2654static inline
e1403b8e 2655bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2656{
e1403b8e 2657 return p1->signal == p2->signal;
bac0abd6
PE
2658}
2659
36c8b586 2660static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2661{
05725f7e
JP
2662 return list_entry_rcu(p->thread_group.next,
2663 struct task_struct, thread_group);
47e65328
ON
2664}
2665
e868171a 2666static inline int thread_group_empty(struct task_struct *p)
1da177e4 2667{
47e65328 2668 return list_empty(&p->thread_group);
1da177e4
LT
2669}
2670
2671#define delay_group_leader(p) \
2672 (thread_group_leader(p) && !thread_group_empty(p))
2673
1da177e4 2674/*
260ea101 2675 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2676 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2677 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2678 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2679 *
2680 * Nests both inside and outside of read_lock(&tasklist_lock).
2681 * It must not be nested with write_lock_irq(&tasklist_lock),
2682 * neither inside nor outside.
2683 */
2684static inline void task_lock(struct task_struct *p)
2685{
2686 spin_lock(&p->alloc_lock);
2687}
2688
2689static inline void task_unlock(struct task_struct *p)
2690{
2691 spin_unlock(&p->alloc_lock);
2692}
2693
b8ed374e 2694extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2695 unsigned long *flags);
2696
9388dc30
AV
2697static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2698 unsigned long *flags)
2699{
2700 struct sighand_struct *ret;
2701
2702 ret = __lock_task_sighand(tsk, flags);
2703 (void)__cond_lock(&tsk->sighand->siglock, ret);
2704 return ret;
2705}
b8ed374e 2706
f63ee72e
ON
2707static inline void unlock_task_sighand(struct task_struct *tsk,
2708 unsigned long *flags)
2709{
2710 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2711}
2712
4714d1d3 2713#ifdef CONFIG_CGROUPS
257058ae 2714static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2715{
257058ae 2716 down_read(&tsk->signal->group_rwsem);
4714d1d3 2717}
257058ae 2718static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2719{
257058ae 2720 up_read(&tsk->signal->group_rwsem);
4714d1d3 2721}
77e4ef99
TH
2722
2723/**
2724 * threadgroup_lock - lock threadgroup
2725 * @tsk: member task of the threadgroup to lock
2726 *
2727 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2728 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
e56fb287
ON
2729 * change ->group_leader/pid. This is useful for cases where the threadgroup
2730 * needs to stay stable across blockable operations.
77e4ef99
TH
2731 *
2732 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2733 * synchronization. While held, no new task will be added to threadgroup
2734 * and no existing live task will have its PF_EXITING set.
2735 *
e56fb287
ON
2736 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2737 * sub-thread becomes a new leader.
77e4ef99 2738 */
257058ae 2739static inline void threadgroup_lock(struct task_struct *tsk)
4714d1d3 2740{
257058ae 2741 down_write(&tsk->signal->group_rwsem);
4714d1d3 2742}
77e4ef99
TH
2743
2744/**
2745 * threadgroup_unlock - unlock threadgroup
2746 * @tsk: member task of the threadgroup to unlock
2747 *
2748 * Reverse threadgroup_lock().
2749 */
257058ae 2750static inline void threadgroup_unlock(struct task_struct *tsk)
4714d1d3 2751{
257058ae 2752 up_write(&tsk->signal->group_rwsem);
4714d1d3
BB
2753}
2754#else
257058ae
TH
2755static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2756static inline void threadgroup_change_end(struct task_struct *tsk) {}
2757static inline void threadgroup_lock(struct task_struct *tsk) {}
2758static inline void threadgroup_unlock(struct task_struct *tsk) {}
4714d1d3
BB
2759#endif
2760
f037360f
AV
2761#ifndef __HAVE_THREAD_FUNCTIONS
2762
f7e4217b
RZ
2763#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2764#define task_stack_page(task) ((task)->stack)
a1261f54 2765
10ebffde
AV
2766static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2767{
2768 *task_thread_info(p) = *task_thread_info(org);
2769 task_thread_info(p)->task = p;
2770}
2771
6a40281a
CE
2772/*
2773 * Return the address of the last usable long on the stack.
2774 *
2775 * When the stack grows down, this is just above the thread
2776 * info struct. Going any lower will corrupt the threadinfo.
2777 *
2778 * When the stack grows up, this is the highest address.
2779 * Beyond that position, we corrupt data on the next page.
2780 */
10ebffde
AV
2781static inline unsigned long *end_of_stack(struct task_struct *p)
2782{
6a40281a
CE
2783#ifdef CONFIG_STACK_GROWSUP
2784 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2785#else
f7e4217b 2786 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2787#endif
10ebffde
AV
2788}
2789
f037360f 2790#endif
a70857e4
AT
2791#define task_stack_end_corrupted(task) \
2792 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2793
8b05c7e6
FT
2794static inline int object_is_on_stack(void *obj)
2795{
2796 void *stack = task_stack_page(current);
2797
2798 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2799}
2800
8c9843e5
BH
2801extern void thread_info_cache_init(void);
2802
7c9f8861
ES
2803#ifdef CONFIG_DEBUG_STACK_USAGE
2804static inline unsigned long stack_not_used(struct task_struct *p)
2805{
2806 unsigned long *n = end_of_stack(p);
2807
2808 do { /* Skip over canary */
2809 n++;
2810 } while (!*n);
2811
2812 return (unsigned long)n - (unsigned long)end_of_stack(p);
2813}
2814#endif
d4311ff1 2815extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2816
1da177e4
LT
2817/* set thread flags in other task's structures
2818 * - see asm/thread_info.h for TIF_xxxx flags available
2819 */
2820static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2821{
a1261f54 2822 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2823}
2824
2825static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2826{
a1261f54 2827 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2828}
2829
2830static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2831{
a1261f54 2832 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2833}
2834
2835static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2836{
a1261f54 2837 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2838}
2839
2840static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2841{
a1261f54 2842 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2843}
2844
2845static inline void set_tsk_need_resched(struct task_struct *tsk)
2846{
2847 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2848}
2849
2850static inline void clear_tsk_need_resched(struct task_struct *tsk)
2851{
2852 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2853}
2854
8ae121ac
GH
2855static inline int test_tsk_need_resched(struct task_struct *tsk)
2856{
2857 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2858}
2859
690cc3ff
EB
2860static inline int restart_syscall(void)
2861{
2862 set_tsk_thread_flag(current, TIF_SIGPENDING);
2863 return -ERESTARTNOINTR;
2864}
2865
1da177e4
LT
2866static inline int signal_pending(struct task_struct *p)
2867{
2868 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2869}
f776d12d 2870
d9588725
RM
2871static inline int __fatal_signal_pending(struct task_struct *p)
2872{
2873 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2874}
f776d12d
MW
2875
2876static inline int fatal_signal_pending(struct task_struct *p)
2877{
2878 return signal_pending(p) && __fatal_signal_pending(p);
2879}
2880
16882c1e
ON
2881static inline int signal_pending_state(long state, struct task_struct *p)
2882{
2883 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2884 return 0;
2885 if (!signal_pending(p))
2886 return 0;
2887
16882c1e
ON
2888 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2889}
2890
1da177e4
LT
2891/*
2892 * cond_resched() and cond_resched_lock(): latency reduction via
2893 * explicit rescheduling in places that are safe. The return
2894 * value indicates whether a reschedule was done in fact.
2895 * cond_resched_lock() will drop the spinlock before scheduling,
2896 * cond_resched_softirq() will enable bhs before scheduling.
2897 */
c3921ab7 2898extern int _cond_resched(void);
6f80bd98 2899
613afbf8 2900#define cond_resched() ({ \
3427445a 2901 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2902 _cond_resched(); \
2903})
6f80bd98 2904
613afbf8
FW
2905extern int __cond_resched_lock(spinlock_t *lock);
2906
bdd4e85d 2907#ifdef CONFIG_PREEMPT_COUNT
716a4234 2908#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
02b67cc3 2909#else
716a4234 2910#define PREEMPT_LOCK_OFFSET 0
02b67cc3 2911#endif
716a4234 2912
613afbf8 2913#define cond_resched_lock(lock) ({ \
3427445a 2914 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2915 __cond_resched_lock(lock); \
2916})
2917
2918extern int __cond_resched_softirq(void);
2919
75e1056f 2920#define cond_resched_softirq() ({ \
3427445a 2921 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2922 __cond_resched_softirq(); \
613afbf8 2923})
1da177e4 2924
f6f3c437
SH
2925static inline void cond_resched_rcu(void)
2926{
2927#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2928 rcu_read_unlock();
2929 cond_resched();
2930 rcu_read_lock();
2931#endif
2932}
2933
1da177e4
LT
2934/*
2935 * Does a critical section need to be broken due to another
95c354fe
NP
2936 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2937 * but a general need for low latency)
1da177e4 2938 */
95c354fe 2939static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2940{
95c354fe
NP
2941#ifdef CONFIG_PREEMPT
2942 return spin_is_contended(lock);
2943#else
1da177e4 2944 return 0;
95c354fe 2945#endif
1da177e4
LT
2946}
2947
ee761f62
TG
2948/*
2949 * Idle thread specific functions to determine the need_resched
69dd0f84 2950 * polling state.
ee761f62 2951 */
69dd0f84 2952#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2953static inline int tsk_is_polling(struct task_struct *p)
2954{
2955 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2956}
ea811747
PZ
2957
2958static inline void __current_set_polling(void)
3a98f871
TG
2959{
2960 set_thread_flag(TIF_POLLING_NRFLAG);
2961}
2962
ea811747
PZ
2963static inline bool __must_check current_set_polling_and_test(void)
2964{
2965 __current_set_polling();
2966
2967 /*
2968 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2969 * paired by resched_curr()
ea811747 2970 */
4e857c58 2971 smp_mb__after_atomic();
ea811747
PZ
2972
2973 return unlikely(tif_need_resched());
2974}
2975
2976static inline void __current_clr_polling(void)
3a98f871
TG
2977{
2978 clear_thread_flag(TIF_POLLING_NRFLAG);
2979}
ea811747
PZ
2980
2981static inline bool __must_check current_clr_polling_and_test(void)
2982{
2983 __current_clr_polling();
2984
2985 /*
2986 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2987 * paired by resched_curr()
ea811747 2988 */
4e857c58 2989 smp_mb__after_atomic();
ea811747
PZ
2990
2991 return unlikely(tif_need_resched());
2992}
2993
ee761f62
TG
2994#else
2995static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2996static inline void __current_set_polling(void) { }
2997static inline void __current_clr_polling(void) { }
2998
2999static inline bool __must_check current_set_polling_and_test(void)
3000{
3001 return unlikely(tif_need_resched());
3002}
3003static inline bool __must_check current_clr_polling_and_test(void)
3004{
3005 return unlikely(tif_need_resched());
3006}
ee761f62
TG
3007#endif
3008
8cb75e0c
PZ
3009static inline void current_clr_polling(void)
3010{
3011 __current_clr_polling();
3012
3013 /*
3014 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3015 * Once the bit is cleared, we'll get IPIs with every new
3016 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3017 * fold.
3018 */
8875125e 3019 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3020
3021 preempt_fold_need_resched();
3022}
3023
75f93fed
PZ
3024static __always_inline bool need_resched(void)
3025{
3026 return unlikely(tif_need_resched());
3027}
3028
f06febc9
FM
3029/*
3030 * Thread group CPU time accounting.
3031 */
4cd4c1b4 3032void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3033void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3034
7bb44ade
RM
3035/*
3036 * Reevaluate whether the task has signals pending delivery.
3037 * Wake the task if so.
3038 * This is required every time the blocked sigset_t changes.
3039 * callers must hold sighand->siglock.
3040 */
3041extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3042extern void recalc_sigpending(void);
3043
910ffdb1
ON
3044extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3045
3046static inline void signal_wake_up(struct task_struct *t, bool resume)
3047{
3048 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3049}
3050static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3051{
3052 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3053}
1da177e4
LT
3054
3055/*
3056 * Wrappers for p->thread_info->cpu access. No-op on UP.
3057 */
3058#ifdef CONFIG_SMP
3059
3060static inline unsigned int task_cpu(const struct task_struct *p)
3061{
a1261f54 3062 return task_thread_info(p)->cpu;
1da177e4
LT
3063}
3064
b32e86b4
IM
3065static inline int task_node(const struct task_struct *p)
3066{
3067 return cpu_to_node(task_cpu(p));
3068}
3069
c65cc870 3070extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3071
3072#else
3073
3074static inline unsigned int task_cpu(const struct task_struct *p)
3075{
3076 return 0;
3077}
3078
3079static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3080{
3081}
3082
3083#endif /* CONFIG_SMP */
3084
96f874e2
RR
3085extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3086extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3087
7c941438 3088#ifdef CONFIG_CGROUP_SCHED
07e06b01 3089extern struct task_group root_task_group;
8323f26c 3090#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3091
54e99124
DG
3092extern int task_can_switch_user(struct user_struct *up,
3093 struct task_struct *tsk);
3094
4b98d11b
AD
3095#ifdef CONFIG_TASK_XACCT
3096static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3097{
940389b8 3098 tsk->ioac.rchar += amt;
4b98d11b
AD
3099}
3100
3101static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3102{
940389b8 3103 tsk->ioac.wchar += amt;
4b98d11b
AD
3104}
3105
3106static inline void inc_syscr(struct task_struct *tsk)
3107{
940389b8 3108 tsk->ioac.syscr++;
4b98d11b
AD
3109}
3110
3111static inline void inc_syscw(struct task_struct *tsk)
3112{
940389b8 3113 tsk->ioac.syscw++;
4b98d11b
AD
3114}
3115#else
3116static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3117{
3118}
3119
3120static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3121{
3122}
3123
3124static inline void inc_syscr(struct task_struct *tsk)
3125{
3126}
3127
3128static inline void inc_syscw(struct task_struct *tsk)
3129{
3130}
3131#endif
3132
82455257
DH
3133#ifndef TASK_SIZE_OF
3134#define TASK_SIZE_OF(tsk) TASK_SIZE
3135#endif
3136
f98bafa0 3137#ifdef CONFIG_MEMCG
cf475ad2 3138extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3139#else
3140static inline void mm_update_next_owner(struct mm_struct *mm)
3141{
3142}
f98bafa0 3143#endif /* CONFIG_MEMCG */
cf475ad2 3144
3e10e716
JS
3145static inline unsigned long task_rlimit(const struct task_struct *tsk,
3146 unsigned int limit)
3147{
316c1608 3148 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3149}
3150
3151static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3152 unsigned int limit)
3153{
316c1608 3154 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3155}
3156
3157static inline unsigned long rlimit(unsigned int limit)
3158{
3159 return task_rlimit(current, limit);
3160}
3161
3162static inline unsigned long rlimit_max(unsigned int limit)
3163{
3164 return task_rlimit_max(current, limit);
3165}
3166
1da177e4 3167#endif