sched/vtime: Record CPU under seqcount for kcpustat needs
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5eca1c10
IM
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
b7b3c76a 9
5eca1c10 10#include <uapi/linux/sched.h>
5c228079 11
5eca1c10 12#include <asm/current.h>
1da177e4 13
5eca1c10 14#include <linux/pid.h>
1da177e4 15#include <linux/sem.h>
ab602f79 16#include <linux/shm.h>
5eca1c10
IM
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
1da177e4 21#include <linux/seccomp.h>
5eca1c10 22#include <linux/nodemask.h>
b68070e1 23#include <linux/rcupdate.h>
ec1d2819 24#include <linux/refcount.h>
a3b6714e 25#include <linux/resource.h>
9745512c 26#include <linux/latencytop.h>
5eca1c10 27#include <linux/sched/prio.h>
9eacb5c7 28#include <linux/sched/types.h>
5eca1c10
IM
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
2b69942f 32#include <linux/posix-timers.h>
d7822b1e 33#include <linux/rseq.h>
a3b6714e 34
5eca1c10 35/* task_struct member predeclarations (sorted alphabetically): */
c7af7877 36struct audit_context;
c7af7877 37struct backing_dev_info;
bddd87c7 38struct bio_list;
73c10101 39struct blk_plug;
3c93a0c0 40struct capture_control;
c7af7877 41struct cfs_rq;
c7af7877
IM
42struct fs_struct;
43struct futex_pi_state;
44struct io_context;
45struct mempolicy;
89076bc3 46struct nameidata;
c7af7877
IM
47struct nsproxy;
48struct perf_event_context;
49struct pid_namespace;
50struct pipe_inode_info;
51struct rcu_node;
52struct reclaim_state;
53struct robust_list_head;
3c93a0c0
QY
54struct root_domain;
55struct rq;
c7af7877
IM
56struct sched_attr;
57struct sched_param;
43ae34cb 58struct seq_file;
c7af7877
IM
59struct sighand_struct;
60struct signal_struct;
61struct task_delay_info;
4cf86d77 62struct task_group;
1da177e4 63
4a8342d2
LT
64/*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
5eca1c10
IM
74
75/* Used in tsk->state: */
92c4bc9f
PZ
76#define TASK_RUNNING 0x0000
77#define TASK_INTERRUPTIBLE 0x0001
78#define TASK_UNINTERRUPTIBLE 0x0002
79#define __TASK_STOPPED 0x0004
80#define __TASK_TRACED 0x0008
5eca1c10 81/* Used in tsk->exit_state: */
92c4bc9f
PZ
82#define EXIT_DEAD 0x0010
83#define EXIT_ZOMBIE 0x0020
5eca1c10
IM
84#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85/* Used in tsk->state again: */
8ef9925b
PZ
86#define TASK_PARKED 0x0040
87#define TASK_DEAD 0x0080
88#define TASK_WAKEKILL 0x0100
89#define TASK_WAKING 0x0200
92c4bc9f
PZ
90#define TASK_NOLOAD 0x0400
91#define TASK_NEW 0x0800
92#define TASK_STATE_MAX 0x1000
5eca1c10 93
5eca1c10
IM
94/* Convenience macros for the sake of set_current_state: */
95#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101/* Convenience macros for the sake of wake_up(): */
102#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
5eca1c10
IM
103
104/* get_task_state(): */
105#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
8ef9925b
PZ
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
5eca1c10
IM
109
110#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
1da177e4 119
8eb23b9f
PZ
120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
b5bf9a90
PZ
122/*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126#define is_special_task_state(state) \
1cef1150 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
b5bf9a90 128
8eb23b9f
PZ
129#define __set_current_state(state_value) \
130 do { \
b5bf9a90 131 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f
PZ
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
b5bf9a90 135
8eb23b9f
PZ
136#define set_current_state(state_value) \
137 do { \
b5bf9a90 138 WARN_ON_ONCE(is_special_task_state(state_value));\
8eb23b9f 139 current->task_state_change = _THIS_IP_; \
a2250238 140 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
141 } while (0)
142
b5bf9a90
PZ
143#define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(&current->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
151 } while (0)
8eb23b9f 152#else
498d0c57
AM
153/*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
a2250238 158 * for (;;) {
498d0c57 159 * set_current_state(TASK_UNINTERRUPTIBLE);
a2250238
PZ
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
b5bf9a90
PZ
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
a2250238 175 *
7696f991
AP
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
a2250238
PZ
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
498d0c57 182 *
b5bf9a90 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
dfcb245e 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
b5bf9a90
PZ
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
498d0c57 187 *
a2250238 188 * Also see the comments of try_to_wake_up().
498d0c57 189 */
b5bf9a90
PZ
190#define __set_current_state(state_value) \
191 current->state = (state_value)
192
193#define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196/*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202#define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(&current->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \
208 } while (0)
209
8eb23b9f
PZ
210#endif
211
5eca1c10
IM
212/* Task command name length: */
213#define TASK_COMM_LEN 16
1da177e4 214
1da177e4
LT
215extern void scheduler_tick(void);
216
5eca1c10
IM
217#define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219extern long schedule_timeout(long timeout);
220extern long schedule_timeout_interruptible(long timeout);
221extern long schedule_timeout_killable(long timeout);
222extern long schedule_timeout_uninterruptible(long timeout);
223extern long schedule_timeout_idle(long timeout);
1da177e4 224asmlinkage void schedule(void);
c5491ea7 225extern void schedule_preempt_disabled(void);
1da177e4 226
10ab5643
TH
227extern int __must_check io_schedule_prepare(void);
228extern void io_schedule_finish(int token);
9cff8ade 229extern long io_schedule_timeout(long timeout);
10ab5643 230extern void io_schedule(void);
9cff8ade 231
d37f761d 232/**
0ba42a59 233 * struct prev_cputime - snapshot of system and user cputime
d37f761d
FW
234 * @utime: time spent in user mode
235 * @stime: time spent in system mode
9d7fb042 236 * @lock: protects the above two fields
d37f761d 237 *
9d7fb042
PZ
238 * Stores previous user/system time values such that we can guarantee
239 * monotonicity.
d37f761d 240 */
9d7fb042
PZ
241struct prev_cputime {
242#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
5eca1c10
IM
243 u64 utime;
244 u64 stime;
245 raw_spinlock_t lock;
9d7fb042 246#endif
d37f761d
FW
247};
248
bac5b6b6
FW
249enum vtime_state {
250 /* Task is sleeping or running in a CPU with VTIME inactive: */
251 VTIME_INACTIVE = 0,
252 /* Task runs in userspace in a CPU with VTIME active: */
253 VTIME_USER,
254 /* Task runs in kernelspace in a CPU with VTIME active: */
255 VTIME_SYS,
256};
257
258struct vtime {
259 seqcount_t seqcount;
260 unsigned long long starttime;
261 enum vtime_state state;
802f4a82 262 unsigned int cpu;
2a42eb95
WL
263 u64 utime;
264 u64 stime;
265 u64 gtime;
bac5b6b6
FW
266};
267
69842cba
PB
268/*
269 * Utilization clamp constraints.
270 * @UCLAMP_MIN: Minimum utilization
271 * @UCLAMP_MAX: Maximum utilization
272 * @UCLAMP_CNT: Utilization clamp constraints count
273 */
274enum uclamp_id {
275 UCLAMP_MIN = 0,
276 UCLAMP_MAX,
277 UCLAMP_CNT
278};
279
f9a25f77
MP
280#ifdef CONFIG_SMP
281extern struct root_domain def_root_domain;
282extern struct mutex sched_domains_mutex;
283#endif
284
1da177e4 285struct sched_info {
7f5f8e8d 286#ifdef CONFIG_SCHED_INFO
5eca1c10
IM
287 /* Cumulative counters: */
288
289 /* # of times we have run on this CPU: */
290 unsigned long pcount;
291
292 /* Time spent waiting on a runqueue: */
293 unsigned long long run_delay;
294
295 /* Timestamps: */
296
297 /* When did we last run on a CPU? */
298 unsigned long long last_arrival;
299
300 /* When were we last queued to run? */
301 unsigned long long last_queued;
1da177e4 302
f6db8347 303#endif /* CONFIG_SCHED_INFO */
7f5f8e8d 304};
1da177e4 305
6ecdd749
YD
306/*
307 * Integer metrics need fixed point arithmetic, e.g., sched/fair
308 * has a few: load, load_avg, util_avg, freq, and capacity.
309 *
310 * We define a basic fixed point arithmetic range, and then formalize
311 * all these metrics based on that basic range.
312 */
5eca1c10
IM
313# define SCHED_FIXEDPOINT_SHIFT 10
314# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
6ecdd749 315
69842cba
PB
316/* Increase resolution of cpu_capacity calculations */
317# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
318# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
319
20b8a59f 320struct load_weight {
5eca1c10
IM
321 unsigned long weight;
322 u32 inv_weight;
20b8a59f
IM
323};
324
7f65ea42
PB
325/**
326 * struct util_est - Estimation utilization of FAIR tasks
327 * @enqueued: instantaneous estimated utilization of a task/cpu
328 * @ewma: the Exponential Weighted Moving Average (EWMA)
329 * utilization of a task
330 *
331 * Support data structure to track an Exponential Weighted Moving Average
332 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
333 * average each time a task completes an activation. Sample's weight is chosen
334 * so that the EWMA will be relatively insensitive to transient changes to the
335 * task's workload.
336 *
337 * The enqueued attribute has a slightly different meaning for tasks and cpus:
338 * - task: the task's util_avg at last task dequeue time
339 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
340 * Thus, the util_est.enqueued of a task represents the contribution on the
341 * estimated utilization of the CPU where that task is currently enqueued.
342 *
343 * Only for tasks we track a moving average of the past instantaneous
344 * estimated utilization. This allows to absorb sporadic drops in utilization
345 * of an otherwise almost periodic task.
346 */
347struct util_est {
348 unsigned int enqueued;
349 unsigned int ewma;
350#define UTIL_EST_WEIGHT_SHIFT 2
317d359d 351} __attribute__((__aligned__(sizeof(u64))));
7f65ea42 352
9d89c257 353/*
7b595334
YD
354 * The load_avg/util_avg accumulates an infinite geometric series
355 * (see __update_load_avg() in kernel/sched/fair.c).
356 *
357 * [load_avg definition]
358 *
359 * load_avg = runnable% * scale_load_down(load)
360 *
361 * where runnable% is the time ratio that a sched_entity is runnable.
362 * For cfs_rq, it is the aggregated load_avg of all runnable and
9d89c257 363 * blocked sched_entities.
7b595334 364 *
7b595334
YD
365 * [util_avg definition]
366 *
367 * util_avg = running% * SCHED_CAPACITY_SCALE
368 *
369 * where running% is the time ratio that a sched_entity is running on
370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
371 * and blocked sched_entities.
372 *
23127296
VG
373 * load_avg and util_avg don't direcly factor frequency scaling and CPU
374 * capacity scaling. The scaling is done through the rq_clock_pelt that
375 * is used for computing those signals (see update_rq_clock_pelt())
7b595334 376 *
23127296
VG
377 * N.B., the above ratios (runnable% and running%) themselves are in the
378 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
379 * to as large a range as necessary. This is for example reflected by
380 * util_avg's SCHED_CAPACITY_SCALE.
7b595334
YD
381 *
382 * [Overflow issue]
383 *
384 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
385 * with the highest load (=88761), always runnable on a single cfs_rq,
386 * and should not overflow as the number already hits PID_MAX_LIMIT.
387 *
388 * For all other cases (including 32-bit kernels), struct load_weight's
389 * weight will overflow first before we do, because:
390 *
391 * Max(load_avg) <= Max(load.weight)
392 *
393 * Then it is the load_weight's responsibility to consider overflow
394 * issues.
9d89c257 395 */
9d85f21c 396struct sched_avg {
5eca1c10
IM
397 u64 last_update_time;
398 u64 load_sum;
1ea6c46a 399 u64 runnable_load_sum;
5eca1c10
IM
400 u32 util_sum;
401 u32 period_contrib;
402 unsigned long load_avg;
1ea6c46a 403 unsigned long runnable_load_avg;
5eca1c10 404 unsigned long util_avg;
7f65ea42 405 struct util_est util_est;
317d359d 406} ____cacheline_aligned;
9d85f21c 407
41acab88 408struct sched_statistics {
7f5f8e8d 409#ifdef CONFIG_SCHEDSTATS
5eca1c10
IM
410 u64 wait_start;
411 u64 wait_max;
412 u64 wait_count;
413 u64 wait_sum;
414 u64 iowait_count;
415 u64 iowait_sum;
416
417 u64 sleep_start;
418 u64 sleep_max;
419 s64 sum_sleep_runtime;
420
421 u64 block_start;
422 u64 block_max;
423 u64 exec_max;
424 u64 slice_max;
425
426 u64 nr_migrations_cold;
427 u64 nr_failed_migrations_affine;
428 u64 nr_failed_migrations_running;
429 u64 nr_failed_migrations_hot;
430 u64 nr_forced_migrations;
431
432 u64 nr_wakeups;
433 u64 nr_wakeups_sync;
434 u64 nr_wakeups_migrate;
435 u64 nr_wakeups_local;
436 u64 nr_wakeups_remote;
437 u64 nr_wakeups_affine;
438 u64 nr_wakeups_affine_attempts;
439 u64 nr_wakeups_passive;
440 u64 nr_wakeups_idle;
41acab88 441#endif
7f5f8e8d 442};
41acab88
LDM
443
444struct sched_entity {
5eca1c10
IM
445 /* For load-balancing: */
446 struct load_weight load;
1ea6c46a 447 unsigned long runnable_weight;
5eca1c10
IM
448 struct rb_node run_node;
449 struct list_head group_node;
450 unsigned int on_rq;
41acab88 451
5eca1c10
IM
452 u64 exec_start;
453 u64 sum_exec_runtime;
454 u64 vruntime;
455 u64 prev_sum_exec_runtime;
41acab88 456
5eca1c10 457 u64 nr_migrations;
41acab88 458
5eca1c10 459 struct sched_statistics statistics;
94c18227 460
20b8a59f 461#ifdef CONFIG_FAIR_GROUP_SCHED
5eca1c10
IM
462 int depth;
463 struct sched_entity *parent;
20b8a59f 464 /* rq on which this entity is (to be) queued: */
5eca1c10 465 struct cfs_rq *cfs_rq;
20b8a59f 466 /* rq "owned" by this entity/group: */
5eca1c10 467 struct cfs_rq *my_q;
20b8a59f 468#endif
8bd75c77 469
141965c7 470#ifdef CONFIG_SMP
5a107804
JO
471 /*
472 * Per entity load average tracking.
473 *
474 * Put into separate cache line so it does not
475 * collide with read-mostly values above.
476 */
317d359d 477 struct sched_avg avg;
9d85f21c 478#endif
20b8a59f 479};
70b97a7f 480
fa717060 481struct sched_rt_entity {
5eca1c10
IM
482 struct list_head run_list;
483 unsigned long timeout;
484 unsigned long watchdog_stamp;
485 unsigned int time_slice;
486 unsigned short on_rq;
487 unsigned short on_list;
488
489 struct sched_rt_entity *back;
052f1dc7 490#ifdef CONFIG_RT_GROUP_SCHED
5eca1c10 491 struct sched_rt_entity *parent;
6f505b16 492 /* rq on which this entity is (to be) queued: */
5eca1c10 493 struct rt_rq *rt_rq;
6f505b16 494 /* rq "owned" by this entity/group: */
5eca1c10 495 struct rt_rq *my_q;
6f505b16 496#endif
3859a271 497} __randomize_layout;
fa717060 498
aab03e05 499struct sched_dl_entity {
5eca1c10 500 struct rb_node rb_node;
aab03e05
DF
501
502 /*
503 * Original scheduling parameters. Copied here from sched_attr
4027d080 504 * during sched_setattr(), they will remain the same until
505 * the next sched_setattr().
aab03e05 506 */
5eca1c10
IM
507 u64 dl_runtime; /* Maximum runtime for each instance */
508 u64 dl_deadline; /* Relative deadline of each instance */
509 u64 dl_period; /* Separation of two instances (period) */
54d6d303 510 u64 dl_bw; /* dl_runtime / dl_period */
3effcb42 511 u64 dl_density; /* dl_runtime / dl_deadline */
aab03e05
DF
512
513 /*
514 * Actual scheduling parameters. Initialized with the values above,
dfcb245e 515 * they are continuously updated during task execution. Note that
aab03e05
DF
516 * the remaining runtime could be < 0 in case we are in overrun.
517 */
5eca1c10
IM
518 s64 runtime; /* Remaining runtime for this instance */
519 u64 deadline; /* Absolute deadline for this instance */
520 unsigned int flags; /* Specifying the scheduler behaviour */
aab03e05
DF
521
522 /*
523 * Some bool flags:
524 *
525 * @dl_throttled tells if we exhausted the runtime. If so, the
526 * task has to wait for a replenishment to be performed at the
527 * next firing of dl_timer.
528 *
2d3d891d
DF
529 * @dl_boosted tells if we are boosted due to DI. If so we are
530 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
531 * exit the critical section);
532 *
5eca1c10 533 * @dl_yielded tells if task gave up the CPU before consuming
5bfd126e 534 * all its available runtime during the last job.
209a0cbd
LA
535 *
536 * @dl_non_contending tells if the task is inactive while still
537 * contributing to the active utilization. In other words, it
538 * indicates if the inactive timer has been armed and its handler
539 * has not been executed yet. This flag is useful to avoid race
540 * conditions between the inactive timer handler and the wakeup
541 * code.
34be3930
JL
542 *
543 * @dl_overrun tells if the task asked to be informed about runtime
544 * overruns.
aab03e05 545 */
aa5222e9
DC
546 unsigned int dl_throttled : 1;
547 unsigned int dl_boosted : 1;
548 unsigned int dl_yielded : 1;
549 unsigned int dl_non_contending : 1;
34be3930 550 unsigned int dl_overrun : 1;
aab03e05
DF
551
552 /*
553 * Bandwidth enforcement timer. Each -deadline task has its
554 * own bandwidth to be enforced, thus we need one timer per task.
555 */
5eca1c10 556 struct hrtimer dl_timer;
209a0cbd
LA
557
558 /*
559 * Inactive timer, responsible for decreasing the active utilization
560 * at the "0-lag time". When a -deadline task blocks, it contributes
561 * to GRUB's active utilization until the "0-lag time", hence a
562 * timer is needed to decrease the active utilization at the correct
563 * time.
564 */
565 struct hrtimer inactive_timer;
aab03e05 566};
8bd75c77 567
69842cba
PB
568#ifdef CONFIG_UCLAMP_TASK
569/* Number of utilization clamp buckets (shorter alias) */
570#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
571
572/*
573 * Utilization clamp for a scheduling entity
574 * @value: clamp value "assigned" to a se
575 * @bucket_id: bucket index corresponding to the "assigned" value
e8f14172 576 * @active: the se is currently refcounted in a rq's bucket
a509a7cd 577 * @user_defined: the requested clamp value comes from user-space
69842cba
PB
578 *
579 * The bucket_id is the index of the clamp bucket matching the clamp value
580 * which is pre-computed and stored to avoid expensive integer divisions from
581 * the fast path.
e8f14172
PB
582 *
583 * The active bit is set whenever a task has got an "effective" value assigned,
584 * which can be different from the clamp value "requested" from user-space.
585 * This allows to know a task is refcounted in the rq's bucket corresponding
586 * to the "effective" bucket_id.
a509a7cd
PB
587 *
588 * The user_defined bit is set whenever a task has got a task-specific clamp
589 * value requested from userspace, i.e. the system defaults apply to this task
590 * just as a restriction. This allows to relax default clamps when a less
591 * restrictive task-specific value has been requested, thus allowing to
592 * implement a "nice" semantic. For example, a task running with a 20%
593 * default boost can still drop its own boosting to 0%.
69842cba
PB
594 */
595struct uclamp_se {
596 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
597 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
e8f14172 598 unsigned int active : 1;
a509a7cd 599 unsigned int user_defined : 1;
69842cba
PB
600};
601#endif /* CONFIG_UCLAMP_TASK */
602
1d082fd0
PM
603union rcu_special {
604 struct {
5eca1c10
IM
605 u8 blocked;
606 u8 need_qs;
05f41571 607 u8 exp_hint; /* Hint for performance. */
23634ebc 608 u8 deferred_qs;
8203d6d0 609 } b; /* Bits. */
05f41571 610 u32 s; /* Set of bits. */
1d082fd0 611};
86848966 612
8dc85d54
PZ
613enum perf_event_task_context {
614 perf_invalid_context = -1,
615 perf_hw_context = 0,
89a1e187 616 perf_sw_context,
8dc85d54
PZ
617 perf_nr_task_contexts,
618};
619
eb61baf6
IM
620struct wake_q_node {
621 struct wake_q_node *next;
622};
623
1da177e4 624struct task_struct {
c65eacbe
AL
625#ifdef CONFIG_THREAD_INFO_IN_TASK
626 /*
627 * For reasons of header soup (see current_thread_info()), this
628 * must be the first element of task_struct.
629 */
5eca1c10 630 struct thread_info thread_info;
c65eacbe 631#endif
5eca1c10
IM
632 /* -1 unrunnable, 0 runnable, >0 stopped: */
633 volatile long state;
29e48ce8
KC
634
635 /*
636 * This begins the randomizable portion of task_struct. Only
637 * scheduling-critical items should be added above here.
638 */
639 randomized_struct_fields_start
640
5eca1c10 641 void *stack;
ec1d2819 642 refcount_t usage;
5eca1c10
IM
643 /* Per task flags (PF_*), defined further below: */
644 unsigned int flags;
645 unsigned int ptrace;
1da177e4 646
2dd73a4f 647#ifdef CONFIG_SMP
5eca1c10
IM
648 struct llist_node wake_entry;
649 int on_cpu;
c65eacbe 650#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10
IM
651 /* Current CPU: */
652 unsigned int cpu;
c65eacbe 653#endif
5eca1c10
IM
654 unsigned int wakee_flips;
655 unsigned long wakee_flip_decay_ts;
656 struct task_struct *last_wakee;
ac66f547 657
32e839dd
MG
658 /*
659 * recent_used_cpu is initially set as the last CPU used by a task
660 * that wakes affine another task. Waker/wakee relationships can
661 * push tasks around a CPU where each wakeup moves to the next one.
662 * Tracking a recently used CPU allows a quick search for a recently
663 * used CPU that may be idle.
664 */
665 int recent_used_cpu;
5eca1c10 666 int wake_cpu;
2dd73a4f 667#endif
5eca1c10
IM
668 int on_rq;
669
670 int prio;
671 int static_prio;
672 int normal_prio;
673 unsigned int rt_priority;
50e645a8 674
5eca1c10
IM
675 const struct sched_class *sched_class;
676 struct sched_entity se;
677 struct sched_rt_entity rt;
8323f26c 678#ifdef CONFIG_CGROUP_SCHED
5eca1c10 679 struct task_group *sched_task_group;
8323f26c 680#endif
5eca1c10 681 struct sched_dl_entity dl;
1da177e4 682
69842cba 683#ifdef CONFIG_UCLAMP_TASK
e8f14172
PB
684 /* Clamp values requested for a scheduling entity */
685 struct uclamp_se uclamp_req[UCLAMP_CNT];
686 /* Effective clamp values used for a scheduling entity */
69842cba
PB
687 struct uclamp_se uclamp[UCLAMP_CNT];
688#endif
689
e107be36 690#ifdef CONFIG_PREEMPT_NOTIFIERS
5eca1c10
IM
691 /* List of struct preempt_notifier: */
692 struct hlist_head preempt_notifiers;
e107be36
AK
693#endif
694
6c5c9341 695#ifdef CONFIG_BLK_DEV_IO_TRACE
5eca1c10 696 unsigned int btrace_seq;
6c5c9341 697#endif
1da177e4 698
5eca1c10
IM
699 unsigned int policy;
700 int nr_cpus_allowed;
3bd37062
SAS
701 const cpumask_t *cpus_ptr;
702 cpumask_t cpus_mask;
1da177e4 703
a57eb940 704#ifdef CONFIG_PREEMPT_RCU
5eca1c10
IM
705 int rcu_read_lock_nesting;
706 union rcu_special rcu_read_unlock_special;
707 struct list_head rcu_node_entry;
708 struct rcu_node *rcu_blocked_node;
28f6569a 709#endif /* #ifdef CONFIG_PREEMPT_RCU */
5eca1c10 710
8315f422 711#ifdef CONFIG_TASKS_RCU
5eca1c10 712 unsigned long rcu_tasks_nvcsw;
ccdd29ff
PM
713 u8 rcu_tasks_holdout;
714 u8 rcu_tasks_idx;
5eca1c10 715 int rcu_tasks_idle_cpu;
ccdd29ff 716 struct list_head rcu_tasks_holdout_list;
8315f422 717#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 718
5eca1c10 719 struct sched_info sched_info;
1da177e4 720
5eca1c10 721 struct list_head tasks;
806c09a7 722#ifdef CONFIG_SMP
5eca1c10
IM
723 struct plist_node pushable_tasks;
724 struct rb_node pushable_dl_tasks;
806c09a7 725#endif
1da177e4 726
5eca1c10
IM
727 struct mm_struct *mm;
728 struct mm_struct *active_mm;
314ff785
IM
729
730 /* Per-thread vma caching: */
5eca1c10 731 struct vmacache vmacache;
314ff785 732
5eca1c10
IM
733#ifdef SPLIT_RSS_COUNTING
734 struct task_rss_stat rss_stat;
34e55232 735#endif
5eca1c10
IM
736 int exit_state;
737 int exit_code;
738 int exit_signal;
739 /* The signal sent when the parent dies: */
740 int pdeath_signal;
741 /* JOBCTL_*, siglock protected: */
742 unsigned long jobctl;
743
744 /* Used for emulating ABI behavior of previous Linux versions: */
745 unsigned int personality;
746
747 /* Scheduler bits, serialized by scheduler locks: */
748 unsigned sched_reset_on_fork:1;
749 unsigned sched_contributes_to_load:1;
750 unsigned sched_migrated:1;
751 unsigned sched_remote_wakeup:1;
eb414681
JW
752#ifdef CONFIG_PSI
753 unsigned sched_psi_wake_requeue:1;
754#endif
755
5eca1c10
IM
756 /* Force alignment to the next boundary: */
757 unsigned :0;
758
759 /* Unserialized, strictly 'current' */
760
761 /* Bit to tell LSMs we're in execve(): */
762 unsigned in_execve:1;
763 unsigned in_iowait:1;
764#ifndef TIF_RESTORE_SIGMASK
765 unsigned restore_sigmask:1;
7e781418 766#endif
626ebc41 767#ifdef CONFIG_MEMCG
29ef680a 768 unsigned in_user_fault:1;
127424c8 769#endif
ff303e66 770#ifdef CONFIG_COMPAT_BRK
5eca1c10 771 unsigned brk_randomized:1;
ff303e66 772#endif
77f88796
TH
773#ifdef CONFIG_CGROUPS
774 /* disallow userland-initiated cgroup migration */
775 unsigned no_cgroup_migration:1;
76f969e8
RG
776 /* task is frozen/stopped (used by the cgroup freezer) */
777 unsigned frozen:1;
77f88796 778#endif
d09d8df3
JB
779#ifdef CONFIG_BLK_CGROUP
780 /* to be used once the psi infrastructure lands upstream. */
781 unsigned use_memdelay:1;
782#endif
6f185c29 783
5eca1c10 784 unsigned long atomic_flags; /* Flags requiring atomic access. */
1d4457f9 785
5eca1c10 786 struct restart_block restart_block;
f56141e3 787
5eca1c10
IM
788 pid_t pid;
789 pid_t tgid;
0a425405 790
050e9baa 791#ifdef CONFIG_STACKPROTECTOR
5eca1c10
IM
792 /* Canary value for the -fstack-protector GCC feature: */
793 unsigned long stack_canary;
1314562a 794#endif
4d1d61a6 795 /*
5eca1c10 796 * Pointers to the (original) parent process, youngest child, younger sibling,
4d1d61a6 797 * older sibling, respectively. (p->father can be replaced with
f470021a 798 * p->real_parent->pid)
1da177e4 799 */
5eca1c10
IM
800
801 /* Real parent process: */
802 struct task_struct __rcu *real_parent;
803
804 /* Recipient of SIGCHLD, wait4() reports: */
805 struct task_struct __rcu *parent;
806
1da177e4 807 /*
5eca1c10 808 * Children/sibling form the list of natural children:
1da177e4 809 */
5eca1c10
IM
810 struct list_head children;
811 struct list_head sibling;
812 struct task_struct *group_leader;
1da177e4 813
f470021a 814 /*
5eca1c10
IM
815 * 'ptraced' is the list of tasks this task is using ptrace() on.
816 *
f470021a 817 * This includes both natural children and PTRACE_ATTACH targets.
5eca1c10 818 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
f470021a 819 */
5eca1c10
IM
820 struct list_head ptraced;
821 struct list_head ptrace_entry;
f470021a 822
1da177e4 823 /* PID/PID hash table linkage. */
2c470475
EB
824 struct pid *thread_pid;
825 struct hlist_node pid_links[PIDTYPE_MAX];
5eca1c10
IM
826 struct list_head thread_group;
827 struct list_head thread_node;
828
829 struct completion *vfork_done;
1da177e4 830
5eca1c10
IM
831 /* CLONE_CHILD_SETTID: */
832 int __user *set_child_tid;
1da177e4 833
5eca1c10
IM
834 /* CLONE_CHILD_CLEARTID: */
835 int __user *clear_child_tid;
836
837 u64 utime;
838 u64 stime;
40565b5a 839#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
5eca1c10
IM
840 u64 utimescaled;
841 u64 stimescaled;
40565b5a 842#endif
5eca1c10
IM
843 u64 gtime;
844 struct prev_cputime prev_cputime;
6a61671b 845#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6 846 struct vtime vtime;
d99ca3b9 847#endif
d027d45d
FW
848
849#ifdef CONFIG_NO_HZ_FULL
5eca1c10 850 atomic_t tick_dep_mask;
d027d45d 851#endif
5eca1c10
IM
852 /* Context switch counts: */
853 unsigned long nvcsw;
854 unsigned long nivcsw;
855
856 /* Monotonic time in nsecs: */
857 u64 start_time;
858
859 /* Boot based time in nsecs: */
860 u64 real_start_time;
861
862 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
863 unsigned long min_flt;
864 unsigned long maj_flt;
1da177e4 865
2b69942f
TG
866 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
867 struct posix_cputimers posix_cputimers;
1da177e4 868
5eca1c10
IM
869 /* Process credentials: */
870
871 /* Tracer's credentials at attach: */
872 const struct cred __rcu *ptracer_cred;
873
874 /* Objective and real subjective task credentials (COW): */
875 const struct cred __rcu *real_cred;
876
877 /* Effective (overridable) subjective task credentials (COW): */
878 const struct cred __rcu *cred;
879
7743c48e
DH
880#ifdef CONFIG_KEYS
881 /* Cached requested key. */
882 struct key *cached_requested_key;
883#endif
884
5eca1c10
IM
885 /*
886 * executable name, excluding path.
887 *
888 * - normally initialized setup_new_exec()
889 * - access it with [gs]et_task_comm()
890 * - lock it with task_lock()
891 */
892 char comm[TASK_COMM_LEN];
893
894 struct nameidata *nameidata;
895
3d5b6fcc 896#ifdef CONFIG_SYSVIPC
5eca1c10
IM
897 struct sysv_sem sysvsem;
898 struct sysv_shm sysvshm;
3d5b6fcc 899#endif
e162b39a 900#ifdef CONFIG_DETECT_HUNG_TASK
5eca1c10 901 unsigned long last_switch_count;
a2e51445 902 unsigned long last_switch_time;
82a1fcb9 903#endif
5eca1c10
IM
904 /* Filesystem information: */
905 struct fs_struct *fs;
906
907 /* Open file information: */
908 struct files_struct *files;
909
910 /* Namespaces: */
911 struct nsproxy *nsproxy;
912
913 /* Signal handlers: */
914 struct signal_struct *signal;
915 struct sighand_struct *sighand;
916 sigset_t blocked;
917 sigset_t real_blocked;
918 /* Restored if set_restore_sigmask() was used: */
919 sigset_t saved_sigmask;
920 struct sigpending pending;
921 unsigned long sas_ss_sp;
922 size_t sas_ss_size;
923 unsigned int sas_ss_flags;
924
925 struct callback_head *task_works;
926
4b7d248b 927#ifdef CONFIG_AUDIT
bfef93a5 928#ifdef CONFIG_AUDITSYSCALL
5f3d544f
RGB
929 struct audit_context *audit_context;
930#endif
5eca1c10
IM
931 kuid_t loginuid;
932 unsigned int sessionid;
bfef93a5 933#endif
5eca1c10
IM
934 struct seccomp seccomp;
935
936 /* Thread group tracking: */
937 u32 parent_exec_id;
938 u32 self_exec_id;
1da177e4 939
5eca1c10
IM
940 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
941 spinlock_t alloc_lock;
1da177e4 942
b29739f9 943 /* Protection of the PI data structures: */
5eca1c10 944 raw_spinlock_t pi_lock;
b29739f9 945
5eca1c10 946 struct wake_q_node wake_q;
76751049 947
23f78d4a 948#ifdef CONFIG_RT_MUTEXES
5eca1c10 949 /* PI waiters blocked on a rt_mutex held by this task: */
a23ba907 950 struct rb_root_cached pi_waiters;
e96a7705
XP
951 /* Updated under owner's pi_lock and rq lock */
952 struct task_struct *pi_top_task;
5eca1c10
IM
953 /* Deadlock detection and priority inheritance handling: */
954 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
955#endif
956
408894ee 957#ifdef CONFIG_DEBUG_MUTEXES
5eca1c10
IM
958 /* Mutex deadlock detection: */
959 struct mutex_waiter *blocked_on;
408894ee 960#endif
5eca1c10 961
312364f3
DV
962#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
963 int non_block_count;
964#endif
965
de30a2b3 966#ifdef CONFIG_TRACE_IRQFLAGS
5eca1c10
IM
967 unsigned int irq_events;
968 unsigned long hardirq_enable_ip;
969 unsigned long hardirq_disable_ip;
970 unsigned int hardirq_enable_event;
971 unsigned int hardirq_disable_event;
972 int hardirqs_enabled;
973 int hardirq_context;
974 unsigned long softirq_disable_ip;
975 unsigned long softirq_enable_ip;
976 unsigned int softirq_disable_event;
977 unsigned int softirq_enable_event;
978 int softirqs_enabled;
979 int softirq_context;
de30a2b3 980#endif
5eca1c10 981
fbb9ce95 982#ifdef CONFIG_LOCKDEP
5eca1c10
IM
983# define MAX_LOCK_DEPTH 48UL
984 u64 curr_chain_key;
985 int lockdep_depth;
986 unsigned int lockdep_recursion;
987 struct held_lock held_locks[MAX_LOCK_DEPTH];
fbb9ce95 988#endif
5eca1c10 989
c6d30853 990#ifdef CONFIG_UBSAN
5eca1c10 991 unsigned int in_ubsan;
c6d30853 992#endif
408894ee 993
5eca1c10
IM
994 /* Journalling filesystem info: */
995 void *journal_info;
1da177e4 996
5eca1c10
IM
997 /* Stacked block device info: */
998 struct bio_list *bio_list;
d89d8796 999
73c10101 1000#ifdef CONFIG_BLOCK
5eca1c10
IM
1001 /* Stack plugging: */
1002 struct blk_plug *plug;
73c10101
JA
1003#endif
1004
5eca1c10
IM
1005 /* VM state: */
1006 struct reclaim_state *reclaim_state;
1007
1008 struct backing_dev_info *backing_dev_info;
1da177e4 1009
5eca1c10 1010 struct io_context *io_context;
1da177e4 1011
5e1f0f09
MG
1012#ifdef CONFIG_COMPACTION
1013 struct capture_control *capture_control;
1014#endif
5eca1c10
IM
1015 /* Ptrace state: */
1016 unsigned long ptrace_message;
ae7795bc 1017 kernel_siginfo_t *last_siginfo;
1da177e4 1018
5eca1c10 1019 struct task_io_accounting ioac;
eb414681
JW
1020#ifdef CONFIG_PSI
1021 /* Pressure stall state */
1022 unsigned int psi_flags;
1023#endif
5eca1c10
IM
1024#ifdef CONFIG_TASK_XACCT
1025 /* Accumulated RSS usage: */
1026 u64 acct_rss_mem1;
1027 /* Accumulated virtual memory usage: */
1028 u64 acct_vm_mem1;
1029 /* stime + utime since last update: */
1030 u64 acct_timexpd;
1da177e4
LT
1031#endif
1032#ifdef CONFIG_CPUSETS
5eca1c10
IM
1033 /* Protected by ->alloc_lock: */
1034 nodemask_t mems_allowed;
1035 /* Seqence number to catch updates: */
1036 seqcount_t mems_allowed_seq;
1037 int cpuset_mem_spread_rotor;
1038 int cpuset_slab_spread_rotor;
1da177e4 1039#endif
ddbcc7e8 1040#ifdef CONFIG_CGROUPS
5eca1c10
IM
1041 /* Control Group info protected by css_set_lock: */
1042 struct css_set __rcu *cgroups;
1043 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1044 struct list_head cg_list;
ddbcc7e8 1045#endif
e6d42931 1046#ifdef CONFIG_X86_CPU_RESCTRL
0734ded1 1047 u32 closid;
d6aaba61 1048 u32 rmid;
e02737d5 1049#endif
42b2dd0a 1050#ifdef CONFIG_FUTEX
5eca1c10 1051 struct robust_list_head __user *robust_list;
34f192c6
IM
1052#ifdef CONFIG_COMPAT
1053 struct compat_robust_list_head __user *compat_robust_list;
1054#endif
5eca1c10
IM
1055 struct list_head pi_state_list;
1056 struct futex_pi_state *pi_state_cache;
c7aceaba 1057#endif
cdd6c482 1058#ifdef CONFIG_PERF_EVENTS
5eca1c10
IM
1059 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1060 struct mutex perf_event_mutex;
1061 struct list_head perf_event_list;
a63eaf34 1062#endif
8f47b187 1063#ifdef CONFIG_DEBUG_PREEMPT
5eca1c10 1064 unsigned long preempt_disable_ip;
8f47b187 1065#endif
c7aceaba 1066#ifdef CONFIG_NUMA
5eca1c10
IM
1067 /* Protected by alloc_lock: */
1068 struct mempolicy *mempolicy;
45816682 1069 short il_prev;
5eca1c10 1070 short pref_node_fork;
42b2dd0a 1071#endif
cbee9f88 1072#ifdef CONFIG_NUMA_BALANCING
5eca1c10
IM
1073 int numa_scan_seq;
1074 unsigned int numa_scan_period;
1075 unsigned int numa_scan_period_max;
1076 int numa_preferred_nid;
1077 unsigned long numa_migrate_retry;
1078 /* Migration stamp: */
1079 u64 node_stamp;
1080 u64 last_task_numa_placement;
1081 u64 last_sum_exec_runtime;
1082 struct callback_head numa_work;
1083
cb361d8c
JH
1084 /*
1085 * This pointer is only modified for current in syscall and
1086 * pagefault context (and for tasks being destroyed), so it can be read
1087 * from any of the following contexts:
1088 * - RCU read-side critical section
1089 * - current->numa_group from everywhere
1090 * - task's runqueue locked, task not running
1091 */
1092 struct numa_group __rcu *numa_group;
8c8a743c 1093
745d6147 1094 /*
44dba3d5
IM
1095 * numa_faults is an array split into four regions:
1096 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1097 * in this precise order.
1098 *
1099 * faults_memory: Exponential decaying average of faults on a per-node
1100 * basis. Scheduling placement decisions are made based on these
1101 * counts. The values remain static for the duration of a PTE scan.
1102 * faults_cpu: Track the nodes the process was running on when a NUMA
1103 * hinting fault was incurred.
1104 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1105 * during the current scan window. When the scan completes, the counts
1106 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1107 */
5eca1c10
IM
1108 unsigned long *numa_faults;
1109 unsigned long total_numa_faults;
745d6147 1110
04bb2f94
RR
1111 /*
1112 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1113 * scan window were remote/local or failed to migrate. The task scan
1114 * period is adapted based on the locality of the faults with different
1115 * weights depending on whether they were shared or private faults
04bb2f94 1116 */
5eca1c10 1117 unsigned long numa_faults_locality[3];
04bb2f94 1118
5eca1c10 1119 unsigned long numa_pages_migrated;
cbee9f88
PZ
1120#endif /* CONFIG_NUMA_BALANCING */
1121
d7822b1e
MD
1122#ifdef CONFIG_RSEQ
1123 struct rseq __user *rseq;
d7822b1e
MD
1124 u32 rseq_sig;
1125 /*
1126 * RmW on rseq_event_mask must be performed atomically
1127 * with respect to preemption.
1128 */
1129 unsigned long rseq_event_mask;
1130#endif
1131
5eca1c10 1132 struct tlbflush_unmap_batch tlb_ubc;
72b252ae 1133
3fbd7ee2
EB
1134 union {
1135 refcount_t rcu_users;
1136 struct rcu_head rcu;
1137 };
b92ce558 1138
5eca1c10
IM
1139 /* Cache last used pipe for splice(): */
1140 struct pipe_inode_info *splice_pipe;
5640f768 1141
5eca1c10 1142 struct page_frag task_frag;
5640f768 1143
47913d4e
IM
1144#ifdef CONFIG_TASK_DELAY_ACCT
1145 struct task_delay_info *delays;
f4f154fd 1146#endif
47913d4e 1147
f4f154fd 1148#ifdef CONFIG_FAULT_INJECTION
5eca1c10 1149 int make_it_fail;
9049f2f6 1150 unsigned int fail_nth;
ca74e92b 1151#endif
9d823e8f 1152 /*
5eca1c10
IM
1153 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1154 * balance_dirty_pages() for a dirty throttling pause:
9d823e8f 1155 */
5eca1c10
IM
1156 int nr_dirtied;
1157 int nr_dirtied_pause;
1158 /* Start of a write-and-pause period: */
1159 unsigned long dirty_paused_when;
9d823e8f 1160
9745512c 1161#ifdef CONFIG_LATENCYTOP
5eca1c10
IM
1162 int latency_record_count;
1163 struct latency_record latency_record[LT_SAVECOUNT];
9745512c 1164#endif
6976675d 1165 /*
5eca1c10 1166 * Time slack values; these are used to round up poll() and
6976675d
AV
1167 * select() etc timeout values. These are in nanoseconds.
1168 */
5eca1c10
IM
1169 u64 timer_slack_ns;
1170 u64 default_timer_slack_ns;
f8d570a4 1171
0b24becc 1172#ifdef CONFIG_KASAN
5eca1c10 1173 unsigned int kasan_depth;
0b24becc 1174#endif
5eca1c10 1175
fb52607a 1176#ifdef CONFIG_FUNCTION_GRAPH_TRACER
5eca1c10
IM
1177 /* Index of current stored address in ret_stack: */
1178 int curr_ret_stack;
39eb456d 1179 int curr_ret_depth;
5eca1c10
IM
1180
1181 /* Stack of return addresses for return function tracing: */
1182 struct ftrace_ret_stack *ret_stack;
1183
1184 /* Timestamp for last schedule: */
1185 unsigned long long ftrace_timestamp;
1186
f201ae23
FW
1187 /*
1188 * Number of functions that haven't been traced
5eca1c10 1189 * because of depth overrun:
f201ae23 1190 */
5eca1c10
IM
1191 atomic_t trace_overrun;
1192
1193 /* Pause tracing: */
1194 atomic_t tracing_graph_pause;
f201ae23 1195#endif
5eca1c10 1196
ea4e2bc4 1197#ifdef CONFIG_TRACING
5eca1c10
IM
1198 /* State flags for use by tracers: */
1199 unsigned long trace;
1200
1201 /* Bitmask and counter of trace recursion: */
1202 unsigned long trace_recursion;
261842b7 1203#endif /* CONFIG_TRACING */
5eca1c10 1204
5c9a8750 1205#ifdef CONFIG_KCOV
5eca1c10 1206 /* Coverage collection mode enabled for this task (0 if disabled): */
0ed557aa 1207 unsigned int kcov_mode;
5eca1c10
IM
1208
1209 /* Size of the kcov_area: */
1210 unsigned int kcov_size;
1211
1212 /* Buffer for coverage collection: */
1213 void *kcov_area;
1214
1215 /* KCOV descriptor wired with this task or NULL: */
1216 struct kcov *kcov;
5c9a8750 1217#endif
5eca1c10 1218
6f185c29 1219#ifdef CONFIG_MEMCG
5eca1c10
IM
1220 struct mem_cgroup *memcg_in_oom;
1221 gfp_t memcg_oom_gfp_mask;
1222 int memcg_oom_order;
b23afb93 1223
5eca1c10
IM
1224 /* Number of pages to reclaim on returning to userland: */
1225 unsigned int memcg_nr_pages_over_high;
d46eb14b
SB
1226
1227 /* Used by memcontrol for targeted memcg charge: */
1228 struct mem_cgroup *active_memcg;
569b846d 1229#endif
5eca1c10 1230
d09d8df3
JB
1231#ifdef CONFIG_BLK_CGROUP
1232 struct request_queue *throttle_queue;
1233#endif
1234
0326f5a9 1235#ifdef CONFIG_UPROBES
5eca1c10 1236 struct uprobe_task *utask;
0326f5a9 1237#endif
cafe5635 1238#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
5eca1c10
IM
1239 unsigned int sequential_io;
1240 unsigned int sequential_io_avg;
cafe5635 1241#endif
8eb23b9f 1242#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5eca1c10 1243 unsigned long task_state_change;
8eb23b9f 1244#endif
5eca1c10 1245 int pagefault_disabled;
03049269 1246#ifdef CONFIG_MMU
5eca1c10 1247 struct task_struct *oom_reaper_list;
03049269 1248#endif
ba14a194 1249#ifdef CONFIG_VMAP_STACK
5eca1c10 1250 struct vm_struct *stack_vm_area;
ba14a194 1251#endif
68f24b08 1252#ifdef CONFIG_THREAD_INFO_IN_TASK
5eca1c10 1253 /* A live task holds one reference: */
f0b89d39 1254 refcount_t stack_refcount;
d83a7cb3
JP
1255#endif
1256#ifdef CONFIG_LIVEPATCH
1257 int patch_state;
0302e28d 1258#endif
e4e55b47
TH
1259#ifdef CONFIG_SECURITY
1260 /* Used by LSM modules for access restriction: */
1261 void *security;
68f24b08 1262#endif
29e48ce8 1263
afaef01c
AP
1264#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1265 unsigned long lowest_stack;
c8d12627 1266 unsigned long prev_lowest_stack;
afaef01c
AP
1267#endif
1268
29e48ce8
KC
1269 /*
1270 * New fields for task_struct should be added above here, so that
1271 * they are included in the randomized portion of task_struct.
1272 */
1273 randomized_struct_fields_end
1274
5eca1c10
IM
1275 /* CPU-specific state of this task: */
1276 struct thread_struct thread;
1277
1278 /*
1279 * WARNING: on x86, 'thread_struct' contains a variable-sized
1280 * structure. It *MUST* be at the end of 'task_struct'.
1281 *
1282 * Do not put anything below here!
1283 */
1da177e4
LT
1284};
1285
e868171a 1286static inline struct pid *task_pid(struct task_struct *task)
22c935f4 1287{
2c470475 1288 return task->thread_pid;
22c935f4
EB
1289}
1290
7af57294
PE
1291/*
1292 * the helpers to get the task's different pids as they are seen
1293 * from various namespaces
1294 *
1295 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1296 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1297 * current.
7af57294
PE
1298 * task_xid_nr_ns() : id seen from the ns specified;
1299 *
7af57294
PE
1300 * see also pid_nr() etc in include/linux/pid.h
1301 */
5eca1c10 1302pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
7af57294 1303
e868171a 1304static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1305{
1306 return tsk->pid;
1307}
1308
5eca1c10 1309static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
52ee2dfd
ON
1310{
1311 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1312}
7af57294
PE
1313
1314static inline pid_t task_pid_vnr(struct task_struct *tsk)
1315{
52ee2dfd 1316 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1317}
1318
1319
e868171a 1320static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1321{
1322 return tsk->tgid;
1323}
1324
5eca1c10
IM
1325/**
1326 * pid_alive - check that a task structure is not stale
1327 * @p: Task structure to be checked.
1328 *
1329 * Test if a process is not yet dead (at most zombie state)
1330 * If pid_alive fails, then pointers within the task structure
1331 * can be stale and must not be dereferenced.
1332 *
1333 * Return: 1 if the process is alive. 0 otherwise.
1334 */
1335static inline int pid_alive(const struct task_struct *p)
1336{
2c470475 1337 return p->thread_pid != NULL;
5eca1c10 1338}
7af57294 1339
5eca1c10 1340static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1341{
52ee2dfd 1342 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1343}
1344
7af57294
PE
1345static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1346{
52ee2dfd 1347 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1348}
1349
1350
5eca1c10 1351static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
7af57294 1352{
52ee2dfd 1353 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1354}
1355
7af57294
PE
1356static inline pid_t task_session_vnr(struct task_struct *tsk)
1357{
52ee2dfd 1358 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1359}
1360
dd1c1f2f
ON
1361static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1362{
6883f81a 1363 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
dd1c1f2f
ON
1364}
1365
1366static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1367{
6883f81a 1368 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
dd1c1f2f
ON
1369}
1370
1371static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1372{
1373 pid_t pid = 0;
1374
1375 rcu_read_lock();
1376 if (pid_alive(tsk))
1377 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1378 rcu_read_unlock();
1379
1380 return pid;
1381}
1382
1383static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1384{
1385 return task_ppid_nr_ns(tsk, &init_pid_ns);
1386}
1387
5eca1c10 1388/* Obsolete, do not use: */
1b0f7ffd
ON
1389static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1390{
1391 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1392}
7af57294 1393
06eb6184
PZ
1394#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1395#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1396
1d48b080 1397static inline unsigned int task_state_index(struct task_struct *tsk)
20435d84 1398{
1593baab
PZ
1399 unsigned int tsk_state = READ_ONCE(tsk->state);
1400 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
20435d84 1401
06eb6184
PZ
1402 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1403
06eb6184
PZ
1404 if (tsk_state == TASK_IDLE)
1405 state = TASK_REPORT_IDLE;
1406
1593baab
PZ
1407 return fls(state);
1408}
1409
1d48b080 1410static inline char task_index_to_char(unsigned int state)
1593baab 1411{
8ef9925b 1412 static const char state_char[] = "RSDTtXZPI";
1593baab 1413
06eb6184 1414 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
20435d84 1415
1593baab
PZ
1416 return state_char[state];
1417}
1418
1419static inline char task_state_to_char(struct task_struct *tsk)
1420{
1d48b080 1421 return task_index_to_char(task_state_index(tsk));
20435d84
XX
1422}
1423
f400e198 1424/**
570f5241
SS
1425 * is_global_init - check if a task structure is init. Since init
1426 * is free to have sub-threads we need to check tgid.
3260259f
H
1427 * @tsk: Task structure to be checked.
1428 *
1429 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1430 *
1431 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1432 */
e868171a 1433static inline int is_global_init(struct task_struct *tsk)
b461cc03 1434{
570f5241 1435 return task_tgid_nr(tsk) == 1;
b461cc03 1436}
b460cbc5 1437
9ec52099
CLG
1438extern struct pid *cad_pid;
1439
1da177e4
LT
1440/*
1441 * Per process flags
1442 */
5eca1c10
IM
1443#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1444#define PF_EXITING 0x00000004 /* Getting shut down */
1445#define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1446#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1447#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1448#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1449#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1450#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1451#define PF_DUMPCORE 0x00000200 /* Dumped core */
1452#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1453#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1454#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1455#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1456#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1457#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1458#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
7dea19f9
MH
1459#define PF_KSWAPD 0x00020000 /* I am kswapd */
1460#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1461#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
5eca1c10
IM
1462#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1463#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1464#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1465#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
eb414681 1466#define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
73ab1cb2 1467#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
3bd37062 1468#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
5eca1c10 1469#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
d7fefcc8 1470#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
5eca1c10
IM
1471#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1472#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1da177e4
LT
1473
1474/*
1475 * Only the _current_ task can read/write to tsk->flags, but other
1476 * tasks can access tsk->flags in readonly mode for example
1477 * with tsk_used_math (like during threaded core dumping).
1478 * There is however an exception to this rule during ptrace
1479 * or during fork: the ptracer task is allowed to write to the
1480 * child->flags of its traced child (same goes for fork, the parent
1481 * can write to the child->flags), because we're guaranteed the
1482 * child is not running and in turn not changing child->flags
1483 * at the same time the parent does it.
1484 */
5eca1c10
IM
1485#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1486#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1487#define clear_used_math() clear_stopped_child_used_math(current)
1488#define set_used_math() set_stopped_child_used_math(current)
1489
1da177e4
LT
1490#define conditional_stopped_child_used_math(condition, child) \
1491 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
5eca1c10
IM
1492
1493#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1494
1da177e4
LT
1495#define copy_to_stopped_child_used_math(child) \
1496 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
5eca1c10 1497
1da177e4 1498/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
5eca1c10
IM
1499#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1500#define used_math() tsk_used_math(current)
1da177e4 1501
62ec05dd
TG
1502static inline bool is_percpu_thread(void)
1503{
1504#ifdef CONFIG_SMP
1505 return (current->flags & PF_NO_SETAFFINITY) &&
1506 (current->nr_cpus_allowed == 1);
1507#else
1508 return true;
1509#endif
1510}
1511
1d4457f9 1512/* Per-process atomic flags. */
5eca1c10
IM
1513#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1514#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1515#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
356e4bff
TG
1516#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1517#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
9137bb27
TG
1518#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1519#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
71368af9 1520#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1d4457f9 1521
e0e5070b
ZL
1522#define TASK_PFA_TEST(name, func) \
1523 static inline bool task_##func(struct task_struct *p) \
1524 { return test_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1525
e0e5070b
ZL
1526#define TASK_PFA_SET(name, func) \
1527 static inline void task_set_##func(struct task_struct *p) \
1528 { set_bit(PFA_##name, &p->atomic_flags); }
5eca1c10 1529
e0e5070b
ZL
1530#define TASK_PFA_CLEAR(name, func) \
1531 static inline void task_clear_##func(struct task_struct *p) \
1532 { clear_bit(PFA_##name, &p->atomic_flags); }
1533
1534TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1535TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 1536
2ad654bc
ZL
1537TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1538TASK_PFA_SET(SPREAD_PAGE, spread_page)
1539TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1540
1541TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1542TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1543TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 1544
356e4bff
TG
1545TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1546TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1547TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1548
71368af9
WL
1549TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1550TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1551TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1552
356e4bff
TG
1553TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1554TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1555
9137bb27
TG
1556TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1557TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1558TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1559
1560TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1561TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1562
5eca1c10 1563static inline void
717a94b5 1564current_restore_flags(unsigned long orig_flags, unsigned long flags)
907aed48 1565{
717a94b5
N
1566 current->flags &= ~flags;
1567 current->flags |= orig_flags & flags;
907aed48
MG
1568}
1569
5eca1c10
IM
1570extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1571extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1da177e4 1572#ifdef CONFIG_SMP
5eca1c10
IM
1573extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1574extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1da177e4 1575#else
5eca1c10 1576static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1e1b6c51
KM
1577{
1578}
5eca1c10 1579static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 1580{
96f874e2 1581 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
1582 return -EINVAL;
1583 return 0;
1584}
1585#endif
e0ad9556 1586
fa93384f 1587extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
1588extern void set_user_nice(struct task_struct *p, long nice);
1589extern int task_prio(const struct task_struct *p);
5eca1c10 1590
d0ea0268
DY
1591/**
1592 * task_nice - return the nice value of a given task.
1593 * @p: the task in question.
1594 *
1595 * Return: The nice value [ -20 ... 0 ... 19 ].
1596 */
1597static inline int task_nice(const struct task_struct *p)
1598{
1599 return PRIO_TO_NICE((p)->static_prio);
1600}
5eca1c10 1601
36c8b586
IM
1602extern int can_nice(const struct task_struct *p, const int nice);
1603extern int task_curr(const struct task_struct *p);
1da177e4 1604extern int idle_cpu(int cpu);
943d355d 1605extern int available_idle_cpu(int cpu);
5eca1c10
IM
1606extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1607extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1608extern int sched_setattr(struct task_struct *, const struct sched_attr *);
794a56eb 1609extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
36c8b586 1610extern struct task_struct *idle_task(int cpu);
5eca1c10 1611
c4f30608
PM
1612/**
1613 * is_idle_task - is the specified task an idle task?
fa757281 1614 * @p: the task in question.
e69f6186
YB
1615 *
1616 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 1617 */
7061ca3b 1618static inline bool is_idle_task(const struct task_struct *p)
c4f30608 1619{
c1de45ca 1620 return !!(p->flags & PF_IDLE);
c4f30608 1621}
5eca1c10 1622
36c8b586 1623extern struct task_struct *curr_task(int cpu);
a458ae2e 1624extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
1625
1626void yield(void);
1627
1da177e4 1628union thread_union {
0500871f
DH
1629#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1630 struct task_struct task;
1631#endif
c65eacbe 1632#ifndef CONFIG_THREAD_INFO_IN_TASK
1da177e4 1633 struct thread_info thread_info;
c65eacbe 1634#endif
1da177e4
LT
1635 unsigned long stack[THREAD_SIZE/sizeof(long)];
1636};
1637
0500871f
DH
1638#ifndef CONFIG_THREAD_INFO_IN_TASK
1639extern struct thread_info init_thread_info;
1640#endif
1641
1642extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1643
f3ac6067
IM
1644#ifdef CONFIG_THREAD_INFO_IN_TASK
1645static inline struct thread_info *task_thread_info(struct task_struct *task)
1646{
1647 return &task->thread_info;
1648}
1649#elif !defined(__HAVE_THREAD_FUNCTIONS)
1650# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1651#endif
1652
198fe21b
PE
1653/*
1654 * find a task by one of its numerical ids
1655 *
198fe21b
PE
1656 * find_task_by_pid_ns():
1657 * finds a task by its pid in the specified namespace
228ebcbe
PE
1658 * find_task_by_vpid():
1659 * finds a task by its virtual pid
198fe21b 1660 *
e49859e7 1661 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
1662 */
1663
228ebcbe 1664extern struct task_struct *find_task_by_vpid(pid_t nr);
5eca1c10 1665extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
198fe21b 1666
2ee08260
MR
1667/*
1668 * find a task by its virtual pid and get the task struct
1669 */
1670extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1671
b3c97528
HH
1672extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1673extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 1674extern void wake_up_new_task(struct task_struct *tsk);
5eca1c10 1675
1da177e4 1676#ifdef CONFIG_SMP
5eca1c10 1677extern void kick_process(struct task_struct *tsk);
1da177e4 1678#else
5eca1c10 1679static inline void kick_process(struct task_struct *tsk) { }
1da177e4 1680#endif
1da177e4 1681
82b89778 1682extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
5eca1c10 1683
82b89778
AH
1684static inline void set_task_comm(struct task_struct *tsk, const char *from)
1685{
1686 __set_task_comm(tsk, from, false);
1687}
5eca1c10 1688
3756f640
AB
1689extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1690#define get_task_comm(buf, tsk) ({ \
1691 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1692 __get_task_comm(buf, sizeof(buf), tsk); \
1693})
1da177e4
LT
1694
1695#ifdef CONFIG_SMP
317f3941 1696void scheduler_ipi(void);
85ba2d86 1697extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 1698#else
184748cc 1699static inline void scheduler_ipi(void) { }
5eca1c10 1700static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
85ba2d86
RM
1701{
1702 return 1;
1703}
1da177e4
LT
1704#endif
1705
5eca1c10
IM
1706/*
1707 * Set thread flags in other task's structures.
1708 * See asm/thread_info.h for TIF_xxxx flags available:
1da177e4
LT
1709 */
1710static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1711{
a1261f54 1712 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1713}
1714
1715static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1716{
a1261f54 1717 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1718}
1719
93ee37c2
DM
1720static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1721 bool value)
1722{
1723 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1724}
1725
1da177e4
LT
1726static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1727{
a1261f54 1728 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1729}
1730
1731static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1732{
a1261f54 1733 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1734}
1735
1736static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1737{
a1261f54 1738 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
1739}
1740
1741static inline void set_tsk_need_resched(struct task_struct *tsk)
1742{
1743 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1744}
1745
1746static inline void clear_tsk_need_resched(struct task_struct *tsk)
1747{
1748 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1749}
1750
8ae121ac
GH
1751static inline int test_tsk_need_resched(struct task_struct *tsk)
1752{
1753 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1754}
1755
1da177e4
LT
1756/*
1757 * cond_resched() and cond_resched_lock(): latency reduction via
1758 * explicit rescheduling in places that are safe. The return
1759 * value indicates whether a reschedule was done in fact.
1760 * cond_resched_lock() will drop the spinlock before scheduling,
1da177e4 1761 */
c1a280b6 1762#ifndef CONFIG_PREEMPTION
c3921ab7 1763extern int _cond_resched(void);
35a773a0
PZ
1764#else
1765static inline int _cond_resched(void) { return 0; }
1766#endif
6f80bd98 1767
613afbf8 1768#define cond_resched() ({ \
3427445a 1769 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
1770 _cond_resched(); \
1771})
6f80bd98 1772
613afbf8
FW
1773extern int __cond_resched_lock(spinlock_t *lock);
1774
1775#define cond_resched_lock(lock) ({ \
3427445a 1776 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
1777 __cond_resched_lock(lock); \
1778})
1779
f6f3c437
SH
1780static inline void cond_resched_rcu(void)
1781{
1782#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1783 rcu_read_unlock();
1784 cond_resched();
1785 rcu_read_lock();
1786#endif
1787}
1788
1da177e4
LT
1789/*
1790 * Does a critical section need to be broken due to another
c1a280b6 1791 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
95c354fe 1792 * but a general need for low latency)
1da177e4 1793 */
95c354fe 1794static inline int spin_needbreak(spinlock_t *lock)
1da177e4 1795{
c1a280b6 1796#ifdef CONFIG_PREEMPTION
95c354fe
NP
1797 return spin_is_contended(lock);
1798#else
1da177e4 1799 return 0;
95c354fe 1800#endif
1da177e4
LT
1801}
1802
75f93fed
PZ
1803static __always_inline bool need_resched(void)
1804{
1805 return unlikely(tif_need_resched());
1806}
1807
1da177e4
LT
1808/*
1809 * Wrappers for p->thread_info->cpu access. No-op on UP.
1810 */
1811#ifdef CONFIG_SMP
1812
1813static inline unsigned int task_cpu(const struct task_struct *p)
1814{
c65eacbe 1815#ifdef CONFIG_THREAD_INFO_IN_TASK
c546951d 1816 return READ_ONCE(p->cpu);
c65eacbe 1817#else
c546951d 1818 return READ_ONCE(task_thread_info(p)->cpu);
c65eacbe 1819#endif
1da177e4
LT
1820}
1821
c65cc870 1822extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
1823
1824#else
1825
1826static inline unsigned int task_cpu(const struct task_struct *p)
1827{
1828 return 0;
1829}
1830
1831static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1832{
1833}
1834
1835#endif /* CONFIG_SMP */
1836
d9345c65
PX
1837/*
1838 * In order to reduce various lock holder preemption latencies provide an
1839 * interface to see if a vCPU is currently running or not.
1840 *
1841 * This allows us to terminate optimistic spin loops and block, analogous to
1842 * the native optimistic spin heuristic of testing if the lock owner task is
1843 * running or not.
1844 */
1845#ifndef vcpu_is_preempted
42fd8baa
QC
1846static inline bool vcpu_is_preempted(int cpu)
1847{
1848 return false;
1849}
d9345c65
PX
1850#endif
1851
96f874e2
RR
1852extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1853extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 1854
82455257
DH
1855#ifndef TASK_SIZE_OF
1856#define TASK_SIZE_OF(tsk) TASK_SIZE
1857#endif
1858
d7822b1e
MD
1859#ifdef CONFIG_RSEQ
1860
1861/*
1862 * Map the event mask on the user-space ABI enum rseq_cs_flags
1863 * for direct mask checks.
1864 */
1865enum rseq_event_mask_bits {
1866 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1867 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1868 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1869};
1870
1871enum rseq_event_mask {
1872 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1873 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1874 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1875};
1876
1877static inline void rseq_set_notify_resume(struct task_struct *t)
1878{
1879 if (t->rseq)
1880 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1881}
1882
784e0300 1883void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
d7822b1e 1884
784e0300
WD
1885static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1886 struct pt_regs *regs)
d7822b1e
MD
1887{
1888 if (current->rseq)
784e0300 1889 __rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1890}
1891
784e0300
WD
1892static inline void rseq_signal_deliver(struct ksignal *ksig,
1893 struct pt_regs *regs)
d7822b1e
MD
1894{
1895 preempt_disable();
1896 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1897 preempt_enable();
784e0300 1898 rseq_handle_notify_resume(ksig, regs);
d7822b1e
MD
1899}
1900
1901/* rseq_preempt() requires preemption to be disabled. */
1902static inline void rseq_preempt(struct task_struct *t)
1903{
1904 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1905 rseq_set_notify_resume(t);
1906}
1907
1908/* rseq_migrate() requires preemption to be disabled. */
1909static inline void rseq_migrate(struct task_struct *t)
1910{
1911 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1912 rseq_set_notify_resume(t);
1913}
1914
1915/*
1916 * If parent process has a registered restartable sequences area, the
9a789fcf 1917 * child inherits. Only applies when forking a process, not a thread.
d7822b1e
MD
1918 */
1919static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1920{
1921 if (clone_flags & CLONE_THREAD) {
1922 t->rseq = NULL;
d7822b1e
MD
1923 t->rseq_sig = 0;
1924 t->rseq_event_mask = 0;
1925 } else {
1926 t->rseq = current->rseq;
d7822b1e
MD
1927 t->rseq_sig = current->rseq_sig;
1928 t->rseq_event_mask = current->rseq_event_mask;
d7822b1e
MD
1929 }
1930}
1931
1932static inline void rseq_execve(struct task_struct *t)
1933{
1934 t->rseq = NULL;
d7822b1e
MD
1935 t->rseq_sig = 0;
1936 t->rseq_event_mask = 0;
1937}
1938
1939#else
1940
1941static inline void rseq_set_notify_resume(struct task_struct *t)
1942{
1943}
784e0300
WD
1944static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1945 struct pt_regs *regs)
d7822b1e
MD
1946{
1947}
784e0300
WD
1948static inline void rseq_signal_deliver(struct ksignal *ksig,
1949 struct pt_regs *regs)
d7822b1e
MD
1950{
1951}
1952static inline void rseq_preempt(struct task_struct *t)
1953{
1954}
1955static inline void rseq_migrate(struct task_struct *t)
1956{
1957}
1958static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1959{
1960}
1961static inline void rseq_execve(struct task_struct *t)
1962{
1963}
1964
1965#endif
1966
73ab1cb2
TY
1967void __exit_umh(struct task_struct *tsk);
1968
1969static inline void exit_umh(struct task_struct *tsk)
1970{
1971 if (unlikely(tsk->flags & PF_UMH))
1972 __exit_umh(tsk);
1973}
1974
d7822b1e
MD
1975#ifdef CONFIG_DEBUG_RSEQ
1976
1977void rseq_syscall(struct pt_regs *regs);
1978
1979#else
1980
1981static inline void rseq_syscall(struct pt_regs *regs)
1982{
1983}
1984
1985#endif
1986
3c93a0c0
QY
1987const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1988char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1989int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1990
1991const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1992const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1993const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1994
1995int sched_trace_rq_cpu(struct rq *rq);
1996
1997const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
1998
1da177e4 1999#endif