sched/debug: Move print_cfs_rq() declaration to kernel/sched/sched.h
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
a3b6714e
DW
61
62#include <asm/processor.h>
36d57ac4 63
d50dde5a
DF
64#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
65
66/*
67 * Extended scheduling parameters data structure.
68 *
69 * This is needed because the original struct sched_param can not be
70 * altered without introducing ABI issues with legacy applications
71 * (e.g., in sched_getparam()).
72 *
73 * However, the possibility of specifying more than just a priority for
74 * the tasks may be useful for a wide variety of application fields, e.g.,
75 * multimedia, streaming, automation and control, and many others.
76 *
77 * This variant (sched_attr) is meant at describing a so-called
78 * sporadic time-constrained task. In such model a task is specified by:
79 * - the activation period or minimum instance inter-arrival time;
80 * - the maximum (or average, depending on the actual scheduling
81 * discipline) computation time of all instances, a.k.a. runtime;
82 * - the deadline (relative to the actual activation time) of each
83 * instance.
84 * Very briefly, a periodic (sporadic) task asks for the execution of
85 * some specific computation --which is typically called an instance--
86 * (at most) every period. Moreover, each instance typically lasts no more
87 * than the runtime and must be completed by time instant t equal to
88 * the instance activation time + the deadline.
89 *
90 * This is reflected by the actual fields of the sched_attr structure:
91 *
92 * @size size of the structure, for fwd/bwd compat.
93 *
94 * @sched_policy task's scheduling policy
95 * @sched_flags for customizing the scheduler behaviour
96 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
97 * @sched_priority task's static priority (SCHED_FIFO/RR)
98 * @sched_deadline representative of the task's deadline
99 * @sched_runtime representative of the task's runtime
100 * @sched_period representative of the task's period
101 *
102 * Given this task model, there are a multiplicity of scheduling algorithms
103 * and policies, that can be used to ensure all the tasks will make their
104 * timing constraints.
aab03e05
DF
105 *
106 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
107 * only user of this new interface. More information about the algorithm
108 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
109 */
110struct sched_attr {
111 u32 size;
112
113 u32 sched_policy;
114 u64 sched_flags;
115
116 /* SCHED_NORMAL, SCHED_BATCH */
117 s32 sched_nice;
118
119 /* SCHED_FIFO, SCHED_RR */
120 u32 sched_priority;
121
122 /* SCHED_DEADLINE */
123 u64 sched_runtime;
124 u64 sched_deadline;
125 u64 sched_period;
126};
127
c87e2837 128struct futex_pi_state;
286100a6 129struct robust_list_head;
bddd87c7 130struct bio_list;
5ad4e53b 131struct fs_struct;
cdd6c482 132struct perf_event_context;
73c10101 133struct blk_plug;
c4ad8f98 134struct filename;
89076bc3 135struct nameidata;
1da177e4 136
615d6e87
DB
137#define VMACACHE_BITS 2
138#define VMACACHE_SIZE (1U << VMACACHE_BITS)
139#define VMACACHE_MASK (VMACACHE_SIZE - 1)
140
1da177e4
LT
141/*
142 * These are the constant used to fake the fixed-point load-average
143 * counting. Some notes:
144 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
145 * a load-average precision of 10 bits integer + 11 bits fractional
146 * - if you want to count load-averages more often, you need more
147 * precision, or rounding will get you. With 2-second counting freq,
148 * the EXP_n values would be 1981, 2034 and 2043 if still using only
149 * 11 bit fractions.
150 */
151extern unsigned long avenrun[]; /* Load averages */
2d02494f 152extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
153
154#define FSHIFT 11 /* nr of bits of precision */
155#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 156#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
157#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
158#define EXP_5 2014 /* 1/exp(5sec/5min) */
159#define EXP_15 2037 /* 1/exp(5sec/15min) */
160
161#define CALC_LOAD(load,exp,n) \
162 load *= exp; \
163 load += n*(FIXED_1-exp); \
164 load >>= FSHIFT;
165
166extern unsigned long total_forks;
167extern int nr_threads;
1da177e4
LT
168DECLARE_PER_CPU(unsigned long, process_counts);
169extern int nr_processes(void);
170extern unsigned long nr_running(void);
2ee507c4 171extern bool single_task_running(void);
1da177e4 172extern unsigned long nr_iowait(void);
8c215bd3 173extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 174extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 175
0f004f5a 176extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
177
178#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
5aaa0b7a 179extern void update_cpu_load_nohz(void);
3289bdb4
PZ
180#else
181static inline void update_cpu_load_nohz(void) { }
182#endif
1da177e4 183
7e49fcce
SR
184extern unsigned long get_parent_ip(unsigned long addr);
185
b637a328
PM
186extern void dump_cpu_task(int cpu);
187
43ae34cb
IM
188struct seq_file;
189struct cfs_rq;
4cf86d77 190struct task_group;
43ae34cb
IM
191#ifdef CONFIG_SCHED_DEBUG
192extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 194#endif
1da177e4 195
4a8342d2
LT
196/*
197 * Task state bitmask. NOTE! These bits are also
198 * encoded in fs/proc/array.c: get_task_state().
199 *
200 * We have two separate sets of flags: task->state
201 * is about runnability, while task->exit_state are
202 * about the task exiting. Confusing, but this way
203 * modifying one set can't modify the other one by
204 * mistake.
205 */
1da177e4
LT
206#define TASK_RUNNING 0
207#define TASK_INTERRUPTIBLE 1
208#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
209#define __TASK_STOPPED 4
210#define __TASK_TRACED 8
4a8342d2 211/* in tsk->exit_state */
ad86622b
ON
212#define EXIT_DEAD 16
213#define EXIT_ZOMBIE 32
abd50b39 214#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 215/* in tsk->state again */
af927232 216#define TASK_DEAD 64
f021a3c2 217#define TASK_WAKEKILL 128
e9c84311 218#define TASK_WAKING 256
f2530dc7 219#define TASK_PARKED 512
80ed87c8
PZ
220#define TASK_NOLOAD 1024
221#define TASK_STATE_MAX 2048
f021a3c2 222
80ed87c8 223#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 224
e1781538
PZ
225extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
227
228/* Convenience macros for the sake of set_task_state */
229#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 232
80ed87c8
PZ
233#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
234
92a1f4bc
MW
235/* Convenience macros for the sake of wake_up */
236#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 237#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
238
239/* get_task_state() */
240#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 241 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 242 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 243
f021a3c2
MW
244#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
245#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 246#define task_is_stopped_or_traced(task) \
f021a3c2 247 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 248#define task_contributes_to_load(task) \
e3c8ca83 249 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
250 (task->flags & PF_FROZEN) == 0 && \
251 (task->state & TASK_NOLOAD) == 0)
1da177e4 252
8eb23b9f
PZ
253#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254
255#define __set_task_state(tsk, state_value) \
256 do { \
257 (tsk)->task_state_change = _THIS_IP_; \
258 (tsk)->state = (state_value); \
259 } while (0)
260#define set_task_state(tsk, state_value) \
261 do { \
262 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 263 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
264 } while (0)
265
266/*
267 * set_current_state() includes a barrier so that the write of current->state
268 * is correctly serialised wrt the caller's subsequent test of whether to
269 * actually sleep:
270 *
271 * set_current_state(TASK_UNINTERRUPTIBLE);
272 * if (do_i_need_to_sleep())
273 * schedule();
274 *
275 * If the caller does not need such serialisation then use __set_current_state()
276 */
277#define __set_current_state(state_value) \
278 do { \
279 current->task_state_change = _THIS_IP_; \
280 current->state = (state_value); \
281 } while (0)
282#define set_current_state(state_value) \
283 do { \
284 current->task_state_change = _THIS_IP_; \
b92b8b35 285 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
286 } while (0)
287
288#else
289
1da177e4
LT
290#define __set_task_state(tsk, state_value) \
291 do { (tsk)->state = (state_value); } while (0)
292#define set_task_state(tsk, state_value) \
b92b8b35 293 smp_store_mb((tsk)->state, (state_value))
1da177e4 294
498d0c57
AM
295/*
296 * set_current_state() includes a barrier so that the write of current->state
297 * is correctly serialised wrt the caller's subsequent test of whether to
298 * actually sleep:
299 *
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (do_i_need_to_sleep())
302 * schedule();
303 *
304 * If the caller does not need such serialisation then use __set_current_state()
305 */
8eb23b9f 306#define __set_current_state(state_value) \
1da177e4 307 do { current->state = (state_value); } while (0)
8eb23b9f 308#define set_current_state(state_value) \
b92b8b35 309 smp_store_mb(current->state, (state_value))
1da177e4 310
8eb23b9f
PZ
311#endif
312
1da177e4
LT
313/* Task command name length */
314#define TASK_COMM_LEN 16
315
1da177e4
LT
316#include <linux/spinlock.h>
317
318/*
319 * This serializes "schedule()" and also protects
320 * the run-queue from deletions/modifications (but
321 * _adding_ to the beginning of the run-queue has
322 * a separate lock).
323 */
324extern rwlock_t tasklist_lock;
325extern spinlock_t mmlist_lock;
326
36c8b586 327struct task_struct;
1da177e4 328
db1466b3
PM
329#ifdef CONFIG_PROVE_RCU
330extern int lockdep_tasklist_lock_is_held(void);
331#endif /* #ifdef CONFIG_PROVE_RCU */
332
1da177e4
LT
333extern void sched_init(void);
334extern void sched_init_smp(void);
2d07b255 335extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 336extern void init_idle(struct task_struct *idle, int cpu);
1df21055 337extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 338
3fa0818b
RR
339extern cpumask_var_t cpu_isolated_map;
340
89f19f04 341extern int runqueue_is_locked(int cpu);
017730c1 342
3451d024 343#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 344extern void nohz_balance_enter_idle(int cpu);
69e1e811 345extern void set_cpu_sd_state_idle(void);
bc7a34b8 346extern int get_nohz_timer_target(void);
46cb4b7c 347#else
c1cc017c 348static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 349static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 350#endif
1da177e4 351
e59e2ae2 352/*
39bc89fd 353 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
354 */
355extern void show_state_filter(unsigned long state_filter);
356
357static inline void show_state(void)
358{
39bc89fd 359 show_state_filter(0);
e59e2ae2
IM
360}
361
1da177e4
LT
362extern void show_regs(struct pt_regs *);
363
364/*
365 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
366 * task), SP is the stack pointer of the first frame that should be shown in the back
367 * trace (or NULL if the entire call-chain of the task should be shown).
368 */
369extern void show_stack(struct task_struct *task, unsigned long *sp);
370
1da177e4
LT
371extern void cpu_init (void);
372extern void trap_init(void);
373extern void update_process_times(int user);
374extern void scheduler_tick(void);
375
82a1fcb9
IM
376extern void sched_show_task(struct task_struct *p);
377
19cc36c0 378#ifdef CONFIG_LOCKUP_DETECTOR
8446f1d3 379extern void touch_softlockup_watchdog(void);
d6ad3e28 380extern void touch_softlockup_watchdog_sync(void);
04c9167f 381extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
382extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
383 void __user *buffer,
384 size_t *lenp, loff_t *ppos);
9c44bc03 385extern unsigned int softlockup_panic;
004417a6 386void lockup_detector_init(void);
8446f1d3 387#else
8446f1d3
IM
388static inline void touch_softlockup_watchdog(void)
389{
390}
d6ad3e28
JW
391static inline void touch_softlockup_watchdog_sync(void)
392{
393}
04c9167f
JF
394static inline void touch_all_softlockup_watchdogs(void)
395{
396}
004417a6
PZ
397static inline void lockup_detector_init(void)
398{
399}
8446f1d3
IM
400#endif
401
8b414521
MT
402#ifdef CONFIG_DETECT_HUNG_TASK
403void reset_hung_task_detector(void);
404#else
405static inline void reset_hung_task_detector(void)
406{
407}
408#endif
409
1da177e4
LT
410/* Attach to any functions which should be ignored in wchan output. */
411#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
412
413/* Linker adds these: start and end of __sched functions */
414extern char __sched_text_start[], __sched_text_end[];
415
1da177e4
LT
416/* Is this address in the __sched functions? */
417extern int in_sched_functions(unsigned long addr);
418
419#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 420extern signed long schedule_timeout(signed long timeout);
64ed93a2 421extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 422extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 423extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 424asmlinkage void schedule(void);
c5491ea7 425extern void schedule_preempt_disabled(void);
1da177e4 426
9cff8ade
N
427extern long io_schedule_timeout(long timeout);
428
429static inline void io_schedule(void)
430{
431 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
432}
433
ab516013 434struct nsproxy;
acce292c 435struct user_namespace;
1da177e4 436
efc1a3b1
DH
437#ifdef CONFIG_MMU
438extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
439extern unsigned long
440arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
441 unsigned long, unsigned long);
442extern unsigned long
443arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
444 unsigned long len, unsigned long pgoff,
445 unsigned long flags);
efc1a3b1
DH
446#else
447static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
448#endif
1da177e4 449
d049f74f
KC
450#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
451#define SUID_DUMP_USER 1 /* Dump as user of process */
452#define SUID_DUMP_ROOT 2 /* Dump as root */
453
6c5d5238 454/* mm flags */
f8af4da3 455
7288e118 456/* for SUID_DUMP_* above */
3cb4a0bb 457#define MMF_DUMPABLE_BITS 2
f8af4da3 458#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 459
942be387
ON
460extern void set_dumpable(struct mm_struct *mm, int value);
461/*
462 * This returns the actual value of the suid_dumpable flag. For things
463 * that are using this for checking for privilege transitions, it must
464 * test against SUID_DUMP_USER rather than treating it as a boolean
465 * value.
466 */
467static inline int __get_dumpable(unsigned long mm_flags)
468{
469 return mm_flags & MMF_DUMPABLE_MASK;
470}
471
472static inline int get_dumpable(struct mm_struct *mm)
473{
474 return __get_dumpable(mm->flags);
475}
476
3cb4a0bb
KH
477/* coredump filter bits */
478#define MMF_DUMP_ANON_PRIVATE 2
479#define MMF_DUMP_ANON_SHARED 3
480#define MMF_DUMP_MAPPED_PRIVATE 4
481#define MMF_DUMP_MAPPED_SHARED 5
82df3973 482#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
483#define MMF_DUMP_HUGETLB_PRIVATE 7
484#define MMF_DUMP_HUGETLB_SHARED 8
f8af4da3 485
3cb4a0bb 486#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
e575f111 487#define MMF_DUMP_FILTER_BITS 7
3cb4a0bb
KH
488#define MMF_DUMP_FILTER_MASK \
489 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
490#define MMF_DUMP_FILTER_DEFAULT \
e575f111 491 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
492 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
493
494#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
495# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
496#else
497# define MMF_DUMP_MASK_DEFAULT_ELF 0
498#endif
f8af4da3
HD
499 /* leave room for more dump flags */
500#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 501#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 502#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 503
9f68f672
ON
504#define MMF_HAS_UPROBES 19 /* has uprobes */
505#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 506
f8af4da3 507#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 508
1da177e4
LT
509struct sighand_struct {
510 atomic_t count;
511 struct k_sigaction action[_NSIG];
512 spinlock_t siglock;
b8fceee1 513 wait_queue_head_t signalfd_wqh;
1da177e4
LT
514};
515
0e464814 516struct pacct_struct {
f6ec29a4
KK
517 int ac_flag;
518 long ac_exitcode;
0e464814 519 unsigned long ac_mem;
77787bfb
KK
520 cputime_t ac_utime, ac_stime;
521 unsigned long ac_minflt, ac_majflt;
0e464814
KK
522};
523
42c4ab41
SG
524struct cpu_itimer {
525 cputime_t expires;
526 cputime_t incr;
8356b5f9
SG
527 u32 error;
528 u32 incr_error;
42c4ab41
SG
529};
530
d37f761d
FW
531/**
532 * struct cputime - snaphsot of system and user cputime
533 * @utime: time spent in user mode
534 * @stime: time spent in system mode
535 *
536 * Gathers a generic snapshot of user and system time.
537 */
538struct cputime {
539 cputime_t utime;
540 cputime_t stime;
541};
542
f06febc9
FM
543/**
544 * struct task_cputime - collected CPU time counts
545 * @utime: time spent in user mode, in &cputime_t units
546 * @stime: time spent in kernel mode, in &cputime_t units
547 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 548 *
d37f761d
FW
549 * This is an extension of struct cputime that includes the total runtime
550 * spent by the task from the scheduler point of view.
551 *
552 * As a result, this structure groups together three kinds of CPU time
553 * that are tracked for threads and thread groups. Most things considering
f06febc9
FM
554 * CPU time want to group these counts together and treat all three
555 * of them in parallel.
556 */
557struct task_cputime {
558 cputime_t utime;
559 cputime_t stime;
560 unsigned long long sum_exec_runtime;
561};
562/* Alternate field names when used to cache expirations. */
563#define prof_exp stime
564#define virt_exp utime
565#define sched_exp sum_exec_runtime
566
4cd4c1b4
PZ
567#define INIT_CPUTIME \
568 (struct task_cputime) { \
64861634
MS
569 .utime = 0, \
570 .stime = 0, \
4cd4c1b4
PZ
571 .sum_exec_runtime = 0, \
572 }
573
971e8a98
JL
574/*
575 * This is the atomic variant of task_cputime, which can be used for
576 * storing and updating task_cputime statistics without locking.
577 */
578struct task_cputime_atomic {
579 atomic64_t utime;
580 atomic64_t stime;
581 atomic64_t sum_exec_runtime;
582};
583
584#define INIT_CPUTIME_ATOMIC \
585 (struct task_cputime_atomic) { \
586 .utime = ATOMIC64_INIT(0), \
587 .stime = ATOMIC64_INIT(0), \
588 .sum_exec_runtime = ATOMIC64_INIT(0), \
589 }
590
a233f112
PZ
591#ifdef CONFIG_PREEMPT_COUNT
592#define PREEMPT_DISABLED (1 + PREEMPT_ENABLED)
593#else
594#define PREEMPT_DISABLED PREEMPT_ENABLED
595#endif
596
c99e6efe
PZ
597/*
598 * Disable preemption until the scheduler is running.
599 * Reset by start_kernel()->sched_init()->init_idle().
d86ee480
PZ
600 *
601 * We include PREEMPT_ACTIVE to avoid cond_resched() from working
602 * before the scheduler is active -- see should_resched().
c99e6efe 603 */
a233f112 604#define INIT_PREEMPT_COUNT (PREEMPT_DISABLED + PREEMPT_ACTIVE)
c99e6efe 605
f06febc9 606/**
4cd4c1b4 607 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 608 * @cputime_atomic: atomic thread group interval timers.
4cd4c1b4
PZ
609 * @running: non-zero when there are timers running and
610 * @cputime receives updates.
f06febc9
FM
611 *
612 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 613 * used for thread group CPU timer calculations.
f06febc9 614 */
4cd4c1b4 615struct thread_group_cputimer {
71107445 616 struct task_cputime_atomic cputime_atomic;
4cd4c1b4 617 int running;
f06febc9 618};
f06febc9 619
4714d1d3 620#include <linux/rwsem.h>
5091faa4
MG
621struct autogroup;
622
1da177e4 623/*
e815f0a8 624 * NOTE! "signal_struct" does not have its own
1da177e4
LT
625 * locking, because a shared signal_struct always
626 * implies a shared sighand_struct, so locking
627 * sighand_struct is always a proper superset of
628 * the locking of signal_struct.
629 */
630struct signal_struct {
ea6d290c 631 atomic_t sigcnt;
1da177e4 632 atomic_t live;
b3ac022c 633 int nr_threads;
0c740d0a 634 struct list_head thread_head;
1da177e4
LT
635
636 wait_queue_head_t wait_chldexit; /* for wait4() */
637
638 /* current thread group signal load-balancing target: */
36c8b586 639 struct task_struct *curr_target;
1da177e4
LT
640
641 /* shared signal handling: */
642 struct sigpending shared_pending;
643
644 /* thread group exit support */
645 int group_exit_code;
646 /* overloaded:
647 * - notify group_exit_task when ->count is equal to notify_count
648 * - everyone except group_exit_task is stopped during signal delivery
649 * of fatal signals, group_exit_task processes the signal.
650 */
1da177e4 651 int notify_count;
07dd20e0 652 struct task_struct *group_exit_task;
1da177e4
LT
653
654 /* thread group stop support, overloads group_exit_code too */
655 int group_stop_count;
656 unsigned int flags; /* see SIGNAL_* flags below */
657
ebec18a6
LP
658 /*
659 * PR_SET_CHILD_SUBREAPER marks a process, like a service
660 * manager, to re-parent orphan (double-forking) child processes
661 * to this process instead of 'init'. The service manager is
662 * able to receive SIGCHLD signals and is able to investigate
663 * the process until it calls wait(). All children of this
664 * process will inherit a flag if they should look for a
665 * child_subreaper process at exit.
666 */
667 unsigned int is_child_subreaper:1;
668 unsigned int has_child_subreaper:1;
669
1da177e4 670 /* POSIX.1b Interval Timers */
5ed67f05
PE
671 int posix_timer_id;
672 struct list_head posix_timers;
1da177e4
LT
673
674 /* ITIMER_REAL timer for the process */
2ff678b8 675 struct hrtimer real_timer;
fea9d175 676 struct pid *leader_pid;
2ff678b8 677 ktime_t it_real_incr;
1da177e4 678
42c4ab41
SG
679 /*
680 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
681 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
682 * values are defined to 0 and 1 respectively
683 */
684 struct cpu_itimer it[2];
1da177e4 685
f06febc9 686 /*
4cd4c1b4
PZ
687 * Thread group totals for process CPU timers.
688 * See thread_group_cputimer(), et al, for details.
f06febc9 689 */
4cd4c1b4 690 struct thread_group_cputimer cputimer;
f06febc9
FM
691
692 /* Earliest-expiration cache. */
693 struct task_cputime cputime_expires;
694
695 struct list_head cpu_timers[3];
696
ab521dc0 697 struct pid *tty_old_pgrp;
1ec320af 698
1da177e4
LT
699 /* boolean value for session group leader */
700 int leader;
701
702 struct tty_struct *tty; /* NULL if no tty */
703
5091faa4
MG
704#ifdef CONFIG_SCHED_AUTOGROUP
705 struct autogroup *autogroup;
706#endif
1da177e4
LT
707 /*
708 * Cumulative resource counters for dead threads in the group,
709 * and for reaped dead child processes forked by this group.
710 * Live threads maintain their own counters and add to these
711 * in __exit_signal, except for the group leader.
712 */
e78c3496 713 seqlock_t stats_lock;
32bd671d 714 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
715 cputime_t gtime;
716 cputime_t cgtime;
9fbc42ea 717#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 718 struct cputime prev_cputime;
0cf55e1e 719#endif
1da177e4
LT
720 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
721 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 722 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 723 unsigned long maxrss, cmaxrss;
940389b8 724 struct task_io_accounting ioac;
1da177e4 725
32bd671d
PZ
726 /*
727 * Cumulative ns of schedule CPU time fo dead threads in the
728 * group, not including a zombie group leader, (This only differs
729 * from jiffies_to_ns(utime + stime) if sched_clock uses something
730 * other than jiffies.)
731 */
732 unsigned long long sum_sched_runtime;
733
1da177e4
LT
734 /*
735 * We don't bother to synchronize most readers of this at all,
736 * because there is no reader checking a limit that actually needs
737 * to get both rlim_cur and rlim_max atomically, and either one
738 * alone is a single word that can safely be read normally.
739 * getrlimit/setrlimit use task_lock(current->group_leader) to
740 * protect this instead of the siglock, because they really
741 * have no need to disable irqs.
742 */
743 struct rlimit rlim[RLIM_NLIMITS];
744
0e464814
KK
745#ifdef CONFIG_BSD_PROCESS_ACCT
746 struct pacct_struct pacct; /* per-process accounting information */
747#endif
ad4ecbcb 748#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
749 struct taskstats *stats;
750#endif
522ed776
MT
751#ifdef CONFIG_AUDIT
752 unsigned audit_tty;
46e959ea 753 unsigned audit_tty_log_passwd;
522ed776
MT
754 struct tty_audit_buf *tty_audit_buf;
755#endif
4714d1d3
BB
756#ifdef CONFIG_CGROUPS
757 /*
77e4ef99
TH
758 * group_rwsem prevents new tasks from entering the threadgroup and
759 * member tasks from exiting,a more specifically, setting of
760 * PF_EXITING. fork and exit paths are protected with this rwsem
761 * using threadgroup_change_begin/end(). Users which require
762 * threadgroup to remain stable should use threadgroup_[un]lock()
763 * which also takes care of exec path. Currently, cgroup is the
764 * only user.
4714d1d3 765 */
257058ae 766 struct rw_semaphore group_rwsem;
4714d1d3 767#endif
28b83c51 768
e1e12d2f 769 oom_flags_t oom_flags;
a9c58b90
DR
770 short oom_score_adj; /* OOM kill score adjustment */
771 short oom_score_adj_min; /* OOM kill score adjustment min value.
772 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
773
774 struct mutex cred_guard_mutex; /* guard against foreign influences on
775 * credential calculations
776 * (notably. ptrace) */
1da177e4
LT
777};
778
779/*
780 * Bits in flags field of signal_struct.
781 */
782#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
783#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
784#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 785#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
786/*
787 * Pending notifications to parent.
788 */
789#define SIGNAL_CLD_STOPPED 0x00000010
790#define SIGNAL_CLD_CONTINUED 0x00000020
791#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 792
fae5fa44
ON
793#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
794
ed5d2cac
ON
795/* If true, all threads except ->group_exit_task have pending SIGKILL */
796static inline int signal_group_exit(const struct signal_struct *sig)
797{
798 return (sig->flags & SIGNAL_GROUP_EXIT) ||
799 (sig->group_exit_task != NULL);
800}
801
1da177e4
LT
802/*
803 * Some day this will be a full-fledged user tracking system..
804 */
805struct user_struct {
806 atomic_t __count; /* reference count */
807 atomic_t processes; /* How many processes does this user have? */
1da177e4 808 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 809#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
810 atomic_t inotify_watches; /* How many inotify watches does this user have? */
811 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
812#endif
4afeff85
EP
813#ifdef CONFIG_FANOTIFY
814 atomic_t fanotify_listeners;
815#endif
7ef9964e 816#ifdef CONFIG_EPOLL
52bd19f7 817 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 818#endif
970a8645 819#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
820 /* protected by mq_lock */
821 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 822#endif
1da177e4
LT
823 unsigned long locked_shm; /* How many pages of mlocked shm ? */
824
825#ifdef CONFIG_KEYS
826 struct key *uid_keyring; /* UID specific keyring */
827 struct key *session_keyring; /* UID's default session keyring */
828#endif
829
830 /* Hash table maintenance information */
735de223 831 struct hlist_node uidhash_node;
7b44ab97 832 kuid_t uid;
24e377a8 833
cdd6c482 834#ifdef CONFIG_PERF_EVENTS
789f90fc
PZ
835 atomic_long_t locked_vm;
836#endif
1da177e4
LT
837};
838
eb41d946 839extern int uids_sysfs_init(void);
5cb350ba 840
7b44ab97 841extern struct user_struct *find_user(kuid_t);
1da177e4
LT
842
843extern struct user_struct root_user;
844#define INIT_USER (&root_user)
845
b6dff3ec 846
1da177e4
LT
847struct backing_dev_info;
848struct reclaim_state;
849
f6db8347 850#ifdef CONFIG_SCHED_INFO
1da177e4
LT
851struct sched_info {
852 /* cumulative counters */
2d72376b 853 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 854 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
855
856 /* timestamps */
172ba844
BS
857 unsigned long long last_arrival,/* when we last ran on a cpu */
858 last_queued; /* when we were last queued to run */
1da177e4 859};
f6db8347 860#endif /* CONFIG_SCHED_INFO */
1da177e4 861
ca74e92b
SN
862#ifdef CONFIG_TASK_DELAY_ACCT
863struct task_delay_info {
864 spinlock_t lock;
865 unsigned int flags; /* Private per-task flags */
866
867 /* For each stat XXX, add following, aligned appropriately
868 *
869 * struct timespec XXX_start, XXX_end;
870 * u64 XXX_delay;
871 * u32 XXX_count;
872 *
873 * Atomicity of updates to XXX_delay, XXX_count protected by
874 * single lock above (split into XXX_lock if contention is an issue).
875 */
0ff92245
SN
876
877 /*
878 * XXX_count is incremented on every XXX operation, the delay
879 * associated with the operation is added to XXX_delay.
880 * XXX_delay contains the accumulated delay time in nanoseconds.
881 */
9667a23d 882 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
883 u64 blkio_delay; /* wait for sync block io completion */
884 u64 swapin_delay; /* wait for swapin block io completion */
885 u32 blkio_count; /* total count of the number of sync block */
886 /* io operations performed */
887 u32 swapin_count; /* total count of the number of swapin block */
888 /* io operations performed */
873b4771 889
9667a23d 890 u64 freepages_start;
873b4771
KK
891 u64 freepages_delay; /* wait for memory reclaim */
892 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 893};
52f17b6c
CS
894#endif /* CONFIG_TASK_DELAY_ACCT */
895
896static inline int sched_info_on(void)
897{
898#ifdef CONFIG_SCHEDSTATS
899 return 1;
900#elif defined(CONFIG_TASK_DELAY_ACCT)
901 extern int delayacct_on;
902 return delayacct_on;
903#else
904 return 0;
ca74e92b 905#endif
52f17b6c 906}
ca74e92b 907
d15bcfdb
IM
908enum cpu_idle_type {
909 CPU_IDLE,
910 CPU_NOT_IDLE,
911 CPU_NEWLY_IDLE,
912 CPU_MAX_IDLE_TYPES
1da177e4
LT
913};
914
1399fa78 915/*
ca8ce3d0 916 * Increase resolution of cpu_capacity calculations
1399fa78 917 */
ca8ce3d0
NP
918#define SCHED_CAPACITY_SHIFT 10
919#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 920
76751049
PZ
921/*
922 * Wake-queues are lists of tasks with a pending wakeup, whose
923 * callers have already marked the task as woken internally,
924 * and can thus carry on. A common use case is being able to
925 * do the wakeups once the corresponding user lock as been
926 * released.
927 *
928 * We hold reference to each task in the list across the wakeup,
929 * thus guaranteeing that the memory is still valid by the time
930 * the actual wakeups are performed in wake_up_q().
931 *
932 * One per task suffices, because there's never a need for a task to be
933 * in two wake queues simultaneously; it is forbidden to abandon a task
934 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
935 * already in a wake queue, the wakeup will happen soon and the second
936 * waker can just skip it.
937 *
938 * The WAKE_Q macro declares and initializes the list head.
939 * wake_up_q() does NOT reinitialize the list; it's expected to be
940 * called near the end of a function, where the fact that the queue is
941 * not used again will be easy to see by inspection.
942 *
943 * Note that this can cause spurious wakeups. schedule() callers
944 * must ensure the call is done inside a loop, confirming that the
945 * wakeup condition has in fact occurred.
946 */
947struct wake_q_node {
948 struct wake_q_node *next;
949};
950
951struct wake_q_head {
952 struct wake_q_node *first;
953 struct wake_q_node **lastp;
954};
955
956#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
957
958#define WAKE_Q(name) \
959 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
960
961extern void wake_q_add(struct wake_q_head *head,
962 struct task_struct *task);
963extern void wake_up_q(struct wake_q_head *head);
964
1399fa78
NR
965/*
966 * sched-domains (multiprocessor balancing) declarations:
967 */
2dd73a4f 968#ifdef CONFIG_SMP
b5d978e0
PZ
969#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
970#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
971#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
972#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 973#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 974#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 975#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 976#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
977#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
978#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 979#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 980#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 981#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 982#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 983
143e1e28 984#ifdef CONFIG_SCHED_SMT
b6220ad6 985static inline int cpu_smt_flags(void)
143e1e28 986{
5d4dfddd 987 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
988}
989#endif
990
991#ifdef CONFIG_SCHED_MC
b6220ad6 992static inline int cpu_core_flags(void)
143e1e28
VG
993{
994 return SD_SHARE_PKG_RESOURCES;
995}
996#endif
997
998#ifdef CONFIG_NUMA
b6220ad6 999static inline int cpu_numa_flags(void)
143e1e28
VG
1000{
1001 return SD_NUMA;
1002}
1003#endif
532cb4c4 1004
1d3504fc
HS
1005struct sched_domain_attr {
1006 int relax_domain_level;
1007};
1008
1009#define SD_ATTR_INIT (struct sched_domain_attr) { \
1010 .relax_domain_level = -1, \
1011}
1012
60495e77
PZ
1013extern int sched_domain_level_max;
1014
5e6521ea
LZ
1015struct sched_group;
1016
1da177e4
LT
1017struct sched_domain {
1018 /* These fields must be setup */
1019 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1020 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1021 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1022 unsigned long min_interval; /* Minimum balance interval ms */
1023 unsigned long max_interval; /* Maximum balance interval ms */
1024 unsigned int busy_factor; /* less balancing by factor if busy */
1025 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1026 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1027 unsigned int busy_idx;
1028 unsigned int idle_idx;
1029 unsigned int newidle_idx;
1030 unsigned int wake_idx;
147cbb4b 1031 unsigned int forkexec_idx;
a52bfd73 1032 unsigned int smt_gain;
25f55d9d
VG
1033
1034 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1035 int flags; /* See SD_* */
60495e77 1036 int level;
1da177e4
LT
1037
1038 /* Runtime fields. */
1039 unsigned long last_balance; /* init to jiffies. units in jiffies */
1040 unsigned int balance_interval; /* initialise to 1. units in ms. */
1041 unsigned int nr_balance_failed; /* initialise to 0 */
1042
f48627e6 1043 /* idle_balance() stats */
9bd721c5 1044 u64 max_newidle_lb_cost;
f48627e6 1045 unsigned long next_decay_max_lb_cost;
2398f2c6 1046
1da177e4
LT
1047#ifdef CONFIG_SCHEDSTATS
1048 /* load_balance() stats */
480b9434
KC
1049 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1050 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1051 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1052 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1053 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1054 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1055 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1056 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1057
1058 /* Active load balancing */
480b9434
KC
1059 unsigned int alb_count;
1060 unsigned int alb_failed;
1061 unsigned int alb_pushed;
1da177e4 1062
68767a0a 1063 /* SD_BALANCE_EXEC stats */
480b9434
KC
1064 unsigned int sbe_count;
1065 unsigned int sbe_balanced;
1066 unsigned int sbe_pushed;
1da177e4 1067
68767a0a 1068 /* SD_BALANCE_FORK stats */
480b9434
KC
1069 unsigned int sbf_count;
1070 unsigned int sbf_balanced;
1071 unsigned int sbf_pushed;
68767a0a 1072
1da177e4 1073 /* try_to_wake_up() stats */
480b9434
KC
1074 unsigned int ttwu_wake_remote;
1075 unsigned int ttwu_move_affine;
1076 unsigned int ttwu_move_balance;
1da177e4 1077#endif
a5d8c348
IM
1078#ifdef CONFIG_SCHED_DEBUG
1079 char *name;
1080#endif
dce840a0
PZ
1081 union {
1082 void *private; /* used during construction */
1083 struct rcu_head rcu; /* used during destruction */
1084 };
6c99e9ad 1085
669c55e9 1086 unsigned int span_weight;
4200efd9
IM
1087 /*
1088 * Span of all CPUs in this domain.
1089 *
1090 * NOTE: this field is variable length. (Allocated dynamically
1091 * by attaching extra space to the end of the structure,
1092 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1093 */
1094 unsigned long span[0];
1da177e4
LT
1095};
1096
758b2cdc
RR
1097static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1098{
6c99e9ad 1099 return to_cpumask(sd->span);
758b2cdc
RR
1100}
1101
acc3f5d7 1102extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1103 struct sched_domain_attr *dattr_new);
029190c5 1104
acc3f5d7
RR
1105/* Allocate an array of sched domains, for partition_sched_domains(). */
1106cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1107void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1108
39be3501
PZ
1109bool cpus_share_cache(int this_cpu, int that_cpu);
1110
143e1e28 1111typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1112typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1113
1114#define SDTL_OVERLAP 0x01
1115
1116struct sd_data {
1117 struct sched_domain **__percpu sd;
1118 struct sched_group **__percpu sg;
63b2ca30 1119 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1120};
1121
1122struct sched_domain_topology_level {
1123 sched_domain_mask_f mask;
1124 sched_domain_flags_f sd_flags;
1125 int flags;
1126 int numa_level;
1127 struct sd_data data;
1128#ifdef CONFIG_SCHED_DEBUG
1129 char *name;
1130#endif
1131};
1132
1133extern struct sched_domain_topology_level *sched_domain_topology;
1134
1135extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1136extern void wake_up_if_idle(int cpu);
143e1e28
VG
1137
1138#ifdef CONFIG_SCHED_DEBUG
1139# define SD_INIT_NAME(type) .name = #type
1140#else
1141# define SD_INIT_NAME(type)
1142#endif
1143
1b427c15 1144#else /* CONFIG_SMP */
1da177e4 1145
1b427c15 1146struct sched_domain_attr;
d02c7a8c 1147
1b427c15 1148static inline void
acc3f5d7 1149partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1150 struct sched_domain_attr *dattr_new)
1151{
d02c7a8c 1152}
39be3501
PZ
1153
1154static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1155{
1156 return true;
1157}
1158
1b427c15 1159#endif /* !CONFIG_SMP */
1da177e4 1160
47fe38fc 1161
1da177e4 1162struct io_context; /* See blkdev.h */
1da177e4 1163
1da177e4 1164
383f2835 1165#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1166extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1167#else
1168static inline void prefetch_stack(struct task_struct *t) { }
1169#endif
1da177e4
LT
1170
1171struct audit_context; /* See audit.c */
1172struct mempolicy;
b92ce558 1173struct pipe_inode_info;
4865ecf1 1174struct uts_namespace;
1da177e4 1175
20b8a59f 1176struct load_weight {
9dbdb155
PZ
1177 unsigned long weight;
1178 u32 inv_weight;
20b8a59f
IM
1179};
1180
9d85f21c 1181struct sched_avg {
36ee28e4
VG
1182 u64 last_runnable_update;
1183 s64 decay_count;
1184 /*
1185 * utilization_avg_contrib describes the amount of time that a
1186 * sched_entity is running on a CPU. It is based on running_avg_sum
1187 * and is scaled in the range [0..SCHED_LOAD_SCALE].
1188 * load_avg_contrib described the amount of time that a sched_entity
1189 * is runnable on a rq. It is based on both runnable_avg_sum and the
1190 * weight of the task.
1191 */
1192 unsigned long load_avg_contrib, utilization_avg_contrib;
9d85f21c
PT
1193 /*
1194 * These sums represent an infinite geometric series and so are bound
239003ea 1195 * above by 1024/(1-y). Thus we only need a u32 to store them for all
9d85f21c 1196 * choices of y < 1-2^(-32)*1024.
36ee28e4
VG
1197 * running_avg_sum reflects the time that the sched_entity is
1198 * effectively running on the CPU.
1199 * runnable_avg_sum represents the amount of time a sched_entity is on
1200 * a runqueue which includes the running time that is monitored by
1201 * running_avg_sum.
9d85f21c 1202 */
36ee28e4 1203 u32 runnable_avg_sum, avg_period, running_avg_sum;
9d85f21c
PT
1204};
1205
94c18227 1206#ifdef CONFIG_SCHEDSTATS
41acab88 1207struct sched_statistics {
20b8a59f 1208 u64 wait_start;
94c18227 1209 u64 wait_max;
6d082592
AV
1210 u64 wait_count;
1211 u64 wait_sum;
8f0dfc34
AV
1212 u64 iowait_count;
1213 u64 iowait_sum;
94c18227 1214
20b8a59f 1215 u64 sleep_start;
20b8a59f 1216 u64 sleep_max;
94c18227
IM
1217 s64 sum_sleep_runtime;
1218
1219 u64 block_start;
20b8a59f
IM
1220 u64 block_max;
1221 u64 exec_max;
eba1ed4b 1222 u64 slice_max;
cc367732 1223
cc367732
IM
1224 u64 nr_migrations_cold;
1225 u64 nr_failed_migrations_affine;
1226 u64 nr_failed_migrations_running;
1227 u64 nr_failed_migrations_hot;
1228 u64 nr_forced_migrations;
cc367732
IM
1229
1230 u64 nr_wakeups;
1231 u64 nr_wakeups_sync;
1232 u64 nr_wakeups_migrate;
1233 u64 nr_wakeups_local;
1234 u64 nr_wakeups_remote;
1235 u64 nr_wakeups_affine;
1236 u64 nr_wakeups_affine_attempts;
1237 u64 nr_wakeups_passive;
1238 u64 nr_wakeups_idle;
41acab88
LDM
1239};
1240#endif
1241
1242struct sched_entity {
1243 struct load_weight load; /* for load-balancing */
1244 struct rb_node run_node;
1245 struct list_head group_node;
1246 unsigned int on_rq;
1247
1248 u64 exec_start;
1249 u64 sum_exec_runtime;
1250 u64 vruntime;
1251 u64 prev_sum_exec_runtime;
1252
41acab88
LDM
1253 u64 nr_migrations;
1254
41acab88
LDM
1255#ifdef CONFIG_SCHEDSTATS
1256 struct sched_statistics statistics;
94c18227
IM
1257#endif
1258
20b8a59f 1259#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1260 int depth;
20b8a59f
IM
1261 struct sched_entity *parent;
1262 /* rq on which this entity is (to be) queued: */
1263 struct cfs_rq *cfs_rq;
1264 /* rq "owned" by this entity/group: */
1265 struct cfs_rq *my_q;
1266#endif
8bd75c77 1267
141965c7 1268#ifdef CONFIG_SMP
f4e26b12 1269 /* Per-entity load-tracking */
9d85f21c
PT
1270 struct sched_avg avg;
1271#endif
20b8a59f 1272};
70b97a7f 1273
fa717060
PZ
1274struct sched_rt_entity {
1275 struct list_head run_list;
78f2c7db 1276 unsigned long timeout;
57d2aa00 1277 unsigned long watchdog_stamp;
bee367ed 1278 unsigned int time_slice;
6f505b16 1279
58d6c2d7 1280 struct sched_rt_entity *back;
052f1dc7 1281#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1282 struct sched_rt_entity *parent;
1283 /* rq on which this entity is (to be) queued: */
1284 struct rt_rq *rt_rq;
1285 /* rq "owned" by this entity/group: */
1286 struct rt_rq *my_q;
1287#endif
fa717060
PZ
1288};
1289
aab03e05
DF
1290struct sched_dl_entity {
1291 struct rb_node rb_node;
1292
1293 /*
1294 * Original scheduling parameters. Copied here from sched_attr
4027d080 1295 * during sched_setattr(), they will remain the same until
1296 * the next sched_setattr().
aab03e05
DF
1297 */
1298 u64 dl_runtime; /* maximum runtime for each instance */
1299 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1300 u64 dl_period; /* separation of two instances (period) */
332ac17e 1301 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1302
1303 /*
1304 * Actual scheduling parameters. Initialized with the values above,
1305 * they are continously updated during task execution. Note that
1306 * the remaining runtime could be < 0 in case we are in overrun.
1307 */
1308 s64 runtime; /* remaining runtime for this instance */
1309 u64 deadline; /* absolute deadline for this instance */
1310 unsigned int flags; /* specifying the scheduler behaviour */
1311
1312 /*
1313 * Some bool flags:
1314 *
1315 * @dl_throttled tells if we exhausted the runtime. If so, the
1316 * task has to wait for a replenishment to be performed at the
1317 * next firing of dl_timer.
1318 *
1319 * @dl_new tells if a new instance arrived. If so we must
1320 * start executing it with full runtime and reset its absolute
1321 * deadline;
2d3d891d
DF
1322 *
1323 * @dl_boosted tells if we are boosted due to DI. If so we are
1324 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1325 * exit the critical section);
1326 *
1327 * @dl_yielded tells if task gave up the cpu before consuming
1328 * all its available runtime during the last job.
aab03e05 1329 */
5bfd126e 1330 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1331
1332 /*
1333 * Bandwidth enforcement timer. Each -deadline task has its
1334 * own bandwidth to be enforced, thus we need one timer per task.
1335 */
1336 struct hrtimer dl_timer;
1337};
8bd75c77 1338
1d082fd0
PM
1339union rcu_special {
1340 struct {
1341 bool blocked;
1342 bool need_qs;
1343 } b;
1344 short s;
1345};
86848966
PM
1346struct rcu_node;
1347
8dc85d54
PZ
1348enum perf_event_task_context {
1349 perf_invalid_context = -1,
1350 perf_hw_context = 0,
89a1e187 1351 perf_sw_context,
8dc85d54
PZ
1352 perf_nr_task_contexts,
1353};
1354
1da177e4
LT
1355struct task_struct {
1356 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1357 void *stack;
1da177e4 1358 atomic_t usage;
97dc32cd
WC
1359 unsigned int flags; /* per process flags, defined below */
1360 unsigned int ptrace;
1da177e4 1361
2dd73a4f 1362#ifdef CONFIG_SMP
fa14ff4a 1363 struct llist_node wake_entry;
3ca7a440 1364 int on_cpu;
62470419
MW
1365 struct task_struct *last_wakee;
1366 unsigned long wakee_flips;
1367 unsigned long wakee_flip_decay_ts;
ac66f547
PZ
1368
1369 int wake_cpu;
2dd73a4f 1370#endif
fd2f4419 1371 int on_rq;
50e645a8 1372
b29739f9 1373 int prio, static_prio, normal_prio;
c7aceaba 1374 unsigned int rt_priority;
5522d5d5 1375 const struct sched_class *sched_class;
20b8a59f 1376 struct sched_entity se;
fa717060 1377 struct sched_rt_entity rt;
8323f26c
PZ
1378#ifdef CONFIG_CGROUP_SCHED
1379 struct task_group *sched_task_group;
1380#endif
aab03e05 1381 struct sched_dl_entity dl;
1da177e4 1382
e107be36
AK
1383#ifdef CONFIG_PREEMPT_NOTIFIERS
1384 /* list of struct preempt_notifier: */
1385 struct hlist_head preempt_notifiers;
1386#endif
1387
6c5c9341 1388#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1389 unsigned int btrace_seq;
6c5c9341 1390#endif
1da177e4 1391
97dc32cd 1392 unsigned int policy;
29baa747 1393 int nr_cpus_allowed;
1da177e4 1394 cpumask_t cpus_allowed;
1da177e4 1395
a57eb940 1396#ifdef CONFIG_PREEMPT_RCU
e260be67 1397 int rcu_read_lock_nesting;
1d082fd0 1398 union rcu_special rcu_read_unlock_special;
f41d911f 1399 struct list_head rcu_node_entry;
a57eb940 1400 struct rcu_node *rcu_blocked_node;
28f6569a 1401#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1402#ifdef CONFIG_TASKS_RCU
1403 unsigned long rcu_tasks_nvcsw;
1404 bool rcu_tasks_holdout;
1405 struct list_head rcu_tasks_holdout_list;
176f8f7a 1406 int rcu_tasks_idle_cpu;
8315f422 1407#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1408
f6db8347 1409#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1410 struct sched_info sched_info;
1411#endif
1412
1413 struct list_head tasks;
806c09a7 1414#ifdef CONFIG_SMP
917b627d 1415 struct plist_node pushable_tasks;
1baca4ce 1416 struct rb_node pushable_dl_tasks;
806c09a7 1417#endif
1da177e4
LT
1418
1419 struct mm_struct *mm, *active_mm;
615d6e87
DB
1420 /* per-thread vma caching */
1421 u32 vmacache_seqnum;
1422 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1423#if defined(SPLIT_RSS_COUNTING)
1424 struct task_rss_stat rss_stat;
1425#endif
1da177e4 1426/* task state */
97dc32cd 1427 int exit_state;
1da177e4
LT
1428 int exit_code, exit_signal;
1429 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1430 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1431
1432 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1433 unsigned int personality;
9b89f6ba 1434
f9ce1f1c
KT
1435 unsigned in_execve:1; /* Tell the LSMs that the process is doing an
1436 * execve */
8f0dfc34
AV
1437 unsigned in_iowait:1;
1438
ca94c442
LP
1439 /* Revert to default priority/policy when forking */
1440 unsigned sched_reset_on_fork:1;
a8e4f2ea 1441 unsigned sched_contributes_to_load:1;
ff303e66 1442 unsigned sched_migrated:1;
ca94c442 1443
6f185c29
VD
1444#ifdef CONFIG_MEMCG_KMEM
1445 unsigned memcg_kmem_skip_account:1;
1446#endif
ff303e66
PZ
1447#ifdef CONFIG_COMPAT_BRK
1448 unsigned brk_randomized:1;
1449#endif
6f185c29 1450
1d4457f9
KC
1451 unsigned long atomic_flags; /* Flags needing atomic access. */
1452
f56141e3
AL
1453 struct restart_block restart_block;
1454
1da177e4
LT
1455 pid_t pid;
1456 pid_t tgid;
0a425405 1457
1314562a 1458#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1459 /* Canary value for the -fstack-protector gcc feature */
1460 unsigned long stack_canary;
1314562a 1461#endif
4d1d61a6 1462 /*
1da177e4 1463 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1464 * older sibling, respectively. (p->father can be replaced with
f470021a 1465 * p->real_parent->pid)
1da177e4 1466 */
abd63bc3
KC
1467 struct task_struct __rcu *real_parent; /* real parent process */
1468 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1469 /*
f470021a 1470 * children/sibling forms the list of my natural children
1da177e4
LT
1471 */
1472 struct list_head children; /* list of my children */
1473 struct list_head sibling; /* linkage in my parent's children list */
1474 struct task_struct *group_leader; /* threadgroup leader */
1475
f470021a
RM
1476 /*
1477 * ptraced is the list of tasks this task is using ptrace on.
1478 * This includes both natural children and PTRACE_ATTACH targets.
1479 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1480 */
1481 struct list_head ptraced;
1482 struct list_head ptrace_entry;
1483
1da177e4 1484 /* PID/PID hash table linkage. */
92476d7f 1485 struct pid_link pids[PIDTYPE_MAX];
47e65328 1486 struct list_head thread_group;
0c740d0a 1487 struct list_head thread_node;
1da177e4
LT
1488
1489 struct completion *vfork_done; /* for vfork() */
1490 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1491 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1492
c66f08be 1493 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1494 cputime_t gtime;
9fbc42ea 1495#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d 1496 struct cputime prev_cputime;
6a61671b
FW
1497#endif
1498#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1499 seqlock_t vtime_seqlock;
1500 unsigned long long vtime_snap;
1501 enum {
1502 VTIME_SLEEPING = 0,
1503 VTIME_USER,
1504 VTIME_SYS,
1505 } vtime_snap_whence;
d99ca3b9 1506#endif
1da177e4 1507 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1508 u64 start_time; /* monotonic time in nsec */
57e0be04 1509 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1510/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1511 unsigned long min_flt, maj_flt;
1512
f06febc9 1513 struct task_cputime cputime_expires;
1da177e4
LT
1514 struct list_head cpu_timers[3];
1515
1516/* process credentials */
1b0ba1c9 1517 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1518 * credentials (COW) */
1b0ba1c9 1519 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1520 * credentials (COW) */
36772092
PBG
1521 char comm[TASK_COMM_LEN]; /* executable name excluding path
1522 - access with [gs]et_task_comm (which lock
1523 it with task_lock())
221af7f8 1524 - initialized normally by setup_new_exec */
1da177e4 1525/* file system info */
756daf26 1526 struct nameidata *nameidata;
3d5b6fcc 1527#ifdef CONFIG_SYSVIPC
1da177e4
LT
1528/* ipc stuff */
1529 struct sysv_sem sysvsem;
ab602f79 1530 struct sysv_shm sysvshm;
3d5b6fcc 1531#endif
e162b39a 1532#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1533/* hung task detection */
82a1fcb9
IM
1534 unsigned long last_switch_count;
1535#endif
1da177e4
LT
1536/* CPU-specific state of this task */
1537 struct thread_struct thread;
1538/* filesystem information */
1539 struct fs_struct *fs;
1540/* open file information */
1541 struct files_struct *files;
1651e14e 1542/* namespaces */
ab516013 1543 struct nsproxy *nsproxy;
1da177e4
LT
1544/* signal handlers */
1545 struct signal_struct *signal;
1546 struct sighand_struct *sighand;
1547
1548 sigset_t blocked, real_blocked;
f3de272b 1549 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1550 struct sigpending pending;
1551
1552 unsigned long sas_ss_sp;
1553 size_t sas_ss_size;
1554 int (*notifier)(void *priv);
1555 void *notifier_data;
1556 sigset_t *notifier_mask;
67d12145 1557 struct callback_head *task_works;
e73f8959 1558
1da177e4 1559 struct audit_context *audit_context;
bfef93a5 1560#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1561 kuid_t loginuid;
4746ec5b 1562 unsigned int sessionid;
bfef93a5 1563#endif
932ecebb 1564 struct seccomp seccomp;
1da177e4
LT
1565
1566/* Thread group tracking */
1567 u32 parent_exec_id;
1568 u32 self_exec_id;
58568d2a
MX
1569/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1570 * mempolicy */
1da177e4 1571 spinlock_t alloc_lock;
1da177e4 1572
b29739f9 1573 /* Protection of the PI data structures: */
1d615482 1574 raw_spinlock_t pi_lock;
b29739f9 1575
76751049
PZ
1576 struct wake_q_node wake_q;
1577
23f78d4a
IM
1578#ifdef CONFIG_RT_MUTEXES
1579 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1580 struct rb_root pi_waiters;
1581 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1582 /* Deadlock detection and priority inheritance handling */
1583 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1584#endif
1585
408894ee
IM
1586#ifdef CONFIG_DEBUG_MUTEXES
1587 /* mutex deadlock detection */
1588 struct mutex_waiter *blocked_on;
1589#endif
de30a2b3
IM
1590#ifdef CONFIG_TRACE_IRQFLAGS
1591 unsigned int irq_events;
de30a2b3 1592 unsigned long hardirq_enable_ip;
de30a2b3 1593 unsigned long hardirq_disable_ip;
fa1452e8 1594 unsigned int hardirq_enable_event;
de30a2b3 1595 unsigned int hardirq_disable_event;
fa1452e8
HS
1596 int hardirqs_enabled;
1597 int hardirq_context;
de30a2b3 1598 unsigned long softirq_disable_ip;
de30a2b3 1599 unsigned long softirq_enable_ip;
fa1452e8 1600 unsigned int softirq_disable_event;
de30a2b3 1601 unsigned int softirq_enable_event;
fa1452e8 1602 int softirqs_enabled;
de30a2b3
IM
1603 int softirq_context;
1604#endif
fbb9ce95 1605#ifdef CONFIG_LOCKDEP
bdb9441e 1606# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1607 u64 curr_chain_key;
1608 int lockdep_depth;
fbb9ce95 1609 unsigned int lockdep_recursion;
c7aceaba 1610 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1611 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1612#endif
408894ee 1613
1da177e4
LT
1614/* journalling filesystem info */
1615 void *journal_info;
1616
d89d8796 1617/* stacked block device info */
bddd87c7 1618 struct bio_list *bio_list;
d89d8796 1619
73c10101
JA
1620#ifdef CONFIG_BLOCK
1621/* stack plugging */
1622 struct blk_plug *plug;
1623#endif
1624
1da177e4
LT
1625/* VM state */
1626 struct reclaim_state *reclaim_state;
1627
1da177e4
LT
1628 struct backing_dev_info *backing_dev_info;
1629
1630 struct io_context *io_context;
1631
1632 unsigned long ptrace_message;
1633 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1634 struct task_io_accounting ioac;
8f0ab514 1635#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1636 u64 acct_rss_mem1; /* accumulated rss usage */
1637 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1638 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1639#endif
1640#ifdef CONFIG_CPUSETS
58568d2a 1641 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1642 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1643 int cpuset_mem_spread_rotor;
6adef3eb 1644 int cpuset_slab_spread_rotor;
1da177e4 1645#endif
ddbcc7e8 1646#ifdef CONFIG_CGROUPS
817929ec 1647 /* Control Group info protected by css_set_lock */
2c392b8c 1648 struct css_set __rcu *cgroups;
817929ec
PM
1649 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1650 struct list_head cg_list;
ddbcc7e8 1651#endif
42b2dd0a 1652#ifdef CONFIG_FUTEX
0771dfef 1653 struct robust_list_head __user *robust_list;
34f192c6
IM
1654#ifdef CONFIG_COMPAT
1655 struct compat_robust_list_head __user *compat_robust_list;
1656#endif
c87e2837
IM
1657 struct list_head pi_state_list;
1658 struct futex_pi_state *pi_state_cache;
c7aceaba 1659#endif
cdd6c482 1660#ifdef CONFIG_PERF_EVENTS
8dc85d54 1661 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1662 struct mutex perf_event_mutex;
1663 struct list_head perf_event_list;
a63eaf34 1664#endif
8f47b187
TG
1665#ifdef CONFIG_DEBUG_PREEMPT
1666 unsigned long preempt_disable_ip;
1667#endif
c7aceaba 1668#ifdef CONFIG_NUMA
58568d2a 1669 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1670 short il_next;
207205a2 1671 short pref_node_fork;
42b2dd0a 1672#endif
cbee9f88
PZ
1673#ifdef CONFIG_NUMA_BALANCING
1674 int numa_scan_seq;
cbee9f88 1675 unsigned int numa_scan_period;
598f0ec0 1676 unsigned int numa_scan_period_max;
de1c9ce6 1677 int numa_preferred_nid;
6b9a7460 1678 unsigned long numa_migrate_retry;
cbee9f88 1679 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1680 u64 last_task_numa_placement;
1681 u64 last_sum_exec_runtime;
cbee9f88 1682 struct callback_head numa_work;
f809ca9a 1683
8c8a743c
PZ
1684 struct list_head numa_entry;
1685 struct numa_group *numa_group;
1686
745d6147 1687 /*
44dba3d5
IM
1688 * numa_faults is an array split into four regions:
1689 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1690 * in this precise order.
1691 *
1692 * faults_memory: Exponential decaying average of faults on a per-node
1693 * basis. Scheduling placement decisions are made based on these
1694 * counts. The values remain static for the duration of a PTE scan.
1695 * faults_cpu: Track the nodes the process was running on when a NUMA
1696 * hinting fault was incurred.
1697 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1698 * during the current scan window. When the scan completes, the counts
1699 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1700 */
44dba3d5 1701 unsigned long *numa_faults;
83e1d2cd 1702 unsigned long total_numa_faults;
745d6147 1703
04bb2f94
RR
1704 /*
1705 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1706 * scan window were remote/local or failed to migrate. The task scan
1707 * period is adapted based on the locality of the faults with different
1708 * weights depending on whether they were shared or private faults
04bb2f94 1709 */
074c2381 1710 unsigned long numa_faults_locality[3];
04bb2f94 1711
b32e86b4 1712 unsigned long numa_pages_migrated;
cbee9f88
PZ
1713#endif /* CONFIG_NUMA_BALANCING */
1714
e56d0903 1715 struct rcu_head rcu;
b92ce558
JA
1716
1717 /*
1718 * cache last used pipe for splice
1719 */
1720 struct pipe_inode_info *splice_pipe;
5640f768
ED
1721
1722 struct page_frag task_frag;
1723
ca74e92b
SN
1724#ifdef CONFIG_TASK_DELAY_ACCT
1725 struct task_delay_info *delays;
f4f154fd
AM
1726#endif
1727#ifdef CONFIG_FAULT_INJECTION
1728 int make_it_fail;
ca74e92b 1729#endif
9d823e8f
WF
1730 /*
1731 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1732 * balance_dirty_pages() for some dirty throttling pause
1733 */
1734 int nr_dirtied;
1735 int nr_dirtied_pause;
83712358 1736 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1737
9745512c
AV
1738#ifdef CONFIG_LATENCYTOP
1739 int latency_record_count;
1740 struct latency_record latency_record[LT_SAVECOUNT];
1741#endif
6976675d
AV
1742 /*
1743 * time slack values; these are used to round up poll() and
1744 * select() etc timeout values. These are in nanoseconds.
1745 */
1746 unsigned long timer_slack_ns;
1747 unsigned long default_timer_slack_ns;
f8d570a4 1748
0b24becc
AR
1749#ifdef CONFIG_KASAN
1750 unsigned int kasan_depth;
1751#endif
fb52607a 1752#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1753 /* Index of current stored address in ret_stack */
f201ae23
FW
1754 int curr_ret_stack;
1755 /* Stack of return addresses for return function tracing */
1756 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1757 /* time stamp for last schedule */
1758 unsigned long long ftrace_timestamp;
f201ae23
FW
1759 /*
1760 * Number of functions that haven't been traced
1761 * because of depth overrun.
1762 */
1763 atomic_t trace_overrun;
380c4b14
FW
1764 /* Pause for the tracing */
1765 atomic_t tracing_graph_pause;
f201ae23 1766#endif
ea4e2bc4
SR
1767#ifdef CONFIG_TRACING
1768 /* state flags for use by tracers */
1769 unsigned long trace;
b1cff0ad 1770 /* bitmask and counter of trace recursion */
261842b7
SR
1771 unsigned long trace_recursion;
1772#endif /* CONFIG_TRACING */
6f185c29 1773#ifdef CONFIG_MEMCG
519e5247 1774 struct memcg_oom_info {
49426420
JW
1775 struct mem_cgroup *memcg;
1776 gfp_t gfp_mask;
1777 int order;
519e5247
JW
1778 unsigned int may_oom:1;
1779 } memcg_oom;
569b846d 1780#endif
0326f5a9
SD
1781#ifdef CONFIG_UPROBES
1782 struct uprobe_task *utask;
0326f5a9 1783#endif
cafe5635
KO
1784#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1785 unsigned int sequential_io;
1786 unsigned int sequential_io_avg;
1787#endif
8eb23b9f
PZ
1788#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1789 unsigned long task_state_change;
1790#endif
8bcbde54 1791 int pagefault_disabled;
1da177e4
LT
1792};
1793
76e6eee0 1794/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1795#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1796
6688cc05
PZ
1797#define TNF_MIGRATED 0x01
1798#define TNF_NO_GROUP 0x02
dabe1d99 1799#define TNF_SHARED 0x04
04bb2f94 1800#define TNF_FAULT_LOCAL 0x08
074c2381 1801#define TNF_MIGRATE_FAIL 0x10
6688cc05 1802
cbee9f88 1803#ifdef CONFIG_NUMA_BALANCING
6688cc05 1804extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1805extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1806extern void set_numabalancing_state(bool enabled);
82727018 1807extern void task_numa_free(struct task_struct *p);
10f39042
RR
1808extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1809 int src_nid, int dst_cpu);
cbee9f88 1810#else
ac8e895b 1811static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1812 int flags)
cbee9f88
PZ
1813{
1814}
e29cf08b
MG
1815static inline pid_t task_numa_group_id(struct task_struct *p)
1816{
1817 return 0;
1818}
1a687c2e
MG
1819static inline void set_numabalancing_state(bool enabled)
1820{
1821}
82727018
RR
1822static inline void task_numa_free(struct task_struct *p)
1823{
1824}
10f39042
RR
1825static inline bool should_numa_migrate_memory(struct task_struct *p,
1826 struct page *page, int src_nid, int dst_cpu)
1827{
1828 return true;
1829}
cbee9f88
PZ
1830#endif
1831
e868171a 1832static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1833{
1834 return task->pids[PIDTYPE_PID].pid;
1835}
1836
e868171a 1837static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1838{
1839 return task->group_leader->pids[PIDTYPE_PID].pid;
1840}
1841
6dda81f4
ON
1842/*
1843 * Without tasklist or rcu lock it is not safe to dereference
1844 * the result of task_pgrp/task_session even if task == current,
1845 * we can race with another thread doing sys_setsid/sys_setpgid.
1846 */
e868171a 1847static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1848{
1849 return task->group_leader->pids[PIDTYPE_PGID].pid;
1850}
1851
e868171a 1852static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1853{
1854 return task->group_leader->pids[PIDTYPE_SID].pid;
1855}
1856
7af57294
PE
1857struct pid_namespace;
1858
1859/*
1860 * the helpers to get the task's different pids as they are seen
1861 * from various namespaces
1862 *
1863 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1864 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1865 * current.
7af57294
PE
1866 * task_xid_nr_ns() : id seen from the ns specified;
1867 *
1868 * set_task_vxid() : assigns a virtual id to a task;
1869 *
7af57294
PE
1870 * see also pid_nr() etc in include/linux/pid.h
1871 */
52ee2dfd
ON
1872pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1873 struct pid_namespace *ns);
7af57294 1874
e868171a 1875static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1876{
1877 return tsk->pid;
1878}
1879
52ee2dfd
ON
1880static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1881 struct pid_namespace *ns)
1882{
1883 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1884}
7af57294
PE
1885
1886static inline pid_t task_pid_vnr(struct task_struct *tsk)
1887{
52ee2dfd 1888 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1889}
1890
1891
e868171a 1892static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1893{
1894 return tsk->tgid;
1895}
1896
2f2a3a46 1897pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1898
1899static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1900{
1901 return pid_vnr(task_tgid(tsk));
1902}
1903
1904
80e0b6e8 1905static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1906static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1907{
1908 pid_t pid = 0;
1909
1910 rcu_read_lock();
1911 if (pid_alive(tsk))
1912 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1913 rcu_read_unlock();
1914
1915 return pid;
1916}
1917
1918static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1919{
1920 return task_ppid_nr_ns(tsk, &init_pid_ns);
1921}
1922
52ee2dfd
ON
1923static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1924 struct pid_namespace *ns)
7af57294 1925{
52ee2dfd 1926 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1927}
1928
7af57294
PE
1929static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1930{
52ee2dfd 1931 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1932}
1933
1934
52ee2dfd
ON
1935static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1936 struct pid_namespace *ns)
7af57294 1937{
52ee2dfd 1938 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1939}
1940
7af57294
PE
1941static inline pid_t task_session_vnr(struct task_struct *tsk)
1942{
52ee2dfd 1943 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
1944}
1945
1b0f7ffd
ON
1946/* obsolete, do not use */
1947static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1948{
1949 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1950}
7af57294 1951
1da177e4
LT
1952/**
1953 * pid_alive - check that a task structure is not stale
1954 * @p: Task structure to be checked.
1955 *
1956 * Test if a process is not yet dead (at most zombie state)
1957 * If pid_alive fails, then pointers within the task structure
1958 * can be stale and must not be dereferenced.
e69f6186
YB
1959 *
1960 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 1961 */
ad36d282 1962static inline int pid_alive(const struct task_struct *p)
1da177e4 1963{
92476d7f 1964 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
1965}
1966
f400e198 1967/**
b460cbc5 1968 * is_global_init - check if a task structure is init
3260259f
H
1969 * @tsk: Task structure to be checked.
1970 *
1971 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
1972 *
1973 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 1974 */
e868171a 1975static inline int is_global_init(struct task_struct *tsk)
b461cc03
PE
1976{
1977 return tsk->pid == 1;
1978}
b460cbc5 1979
9ec52099
CLG
1980extern struct pid *cad_pid;
1981
1da177e4 1982extern void free_task(struct task_struct *tsk);
1da177e4 1983#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 1984
158d9ebd 1985extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
1986
1987static inline void put_task_struct(struct task_struct *t)
1988{
1989 if (atomic_dec_and_test(&t->usage))
8c7904a0 1990 __put_task_struct(t);
e56d0903 1991}
1da177e4 1992
6a61671b
FW
1993#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1994extern void task_cputime(struct task_struct *t,
1995 cputime_t *utime, cputime_t *stime);
1996extern void task_cputime_scaled(struct task_struct *t,
1997 cputime_t *utimescaled, cputime_t *stimescaled);
1998extern cputime_t task_gtime(struct task_struct *t);
1999#else
6fac4829
FW
2000static inline void task_cputime(struct task_struct *t,
2001 cputime_t *utime, cputime_t *stime)
2002{
2003 if (utime)
2004 *utime = t->utime;
2005 if (stime)
2006 *stime = t->stime;
2007}
2008
2009static inline void task_cputime_scaled(struct task_struct *t,
2010 cputime_t *utimescaled,
2011 cputime_t *stimescaled)
2012{
2013 if (utimescaled)
2014 *utimescaled = t->utimescaled;
2015 if (stimescaled)
2016 *stimescaled = t->stimescaled;
2017}
6a61671b
FW
2018
2019static inline cputime_t task_gtime(struct task_struct *t)
2020{
2021 return t->gtime;
2022}
2023#endif
e80d0a1a
FW
2024extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2025extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2026
1da177e4
LT
2027/*
2028 * Per process flags
2029 */
1da177e4 2030#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2031#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2032#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2033#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2034#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2035#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2036#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2037#define PF_DUMPCORE 0x00000200 /* dumped core */
2038#define PF_SIGNALED 0x00000400 /* killed by a signal */
2039#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2040#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2041#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2042#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2043#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2044#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2045#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2046#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2047#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2048#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2049#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2050#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2051#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2052#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2053#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2054#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2055#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2056#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2057
2058/*
2059 * Only the _current_ task can read/write to tsk->flags, but other
2060 * tasks can access tsk->flags in readonly mode for example
2061 * with tsk_used_math (like during threaded core dumping).
2062 * There is however an exception to this rule during ptrace
2063 * or during fork: the ptracer task is allowed to write to the
2064 * child->flags of its traced child (same goes for fork, the parent
2065 * can write to the child->flags), because we're guaranteed the
2066 * child is not running and in turn not changing child->flags
2067 * at the same time the parent does it.
2068 */
2069#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2070#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2071#define clear_used_math() clear_stopped_child_used_math(current)
2072#define set_used_math() set_stopped_child_used_math(current)
2073#define conditional_stopped_child_used_math(condition, child) \
2074 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2075#define conditional_used_math(condition) \
2076 conditional_stopped_child_used_math(condition, current)
2077#define copy_to_stopped_child_used_math(child) \
2078 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2079/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2080#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2081#define used_math() tsk_used_math(current)
2082
934f3072
JB
2083/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2084 * __GFP_FS is also cleared as it implies __GFP_IO.
2085 */
21caf2fc
ML
2086static inline gfp_t memalloc_noio_flags(gfp_t flags)
2087{
2088 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2089 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2090 return flags;
2091}
2092
2093static inline unsigned int memalloc_noio_save(void)
2094{
2095 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2096 current->flags |= PF_MEMALLOC_NOIO;
2097 return flags;
2098}
2099
2100static inline void memalloc_noio_restore(unsigned int flags)
2101{
2102 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2103}
2104
1d4457f9 2105/* Per-process atomic flags. */
a2b86f77 2106#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2107#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2108#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2109
1d4457f9 2110
e0e5070b
ZL
2111#define TASK_PFA_TEST(name, func) \
2112 static inline bool task_##func(struct task_struct *p) \
2113 { return test_bit(PFA_##name, &p->atomic_flags); }
2114#define TASK_PFA_SET(name, func) \
2115 static inline void task_set_##func(struct task_struct *p) \
2116 { set_bit(PFA_##name, &p->atomic_flags); }
2117#define TASK_PFA_CLEAR(name, func) \
2118 static inline void task_clear_##func(struct task_struct *p) \
2119 { clear_bit(PFA_##name, &p->atomic_flags); }
2120
2121TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2122TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2123
2ad654bc
ZL
2124TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2125TASK_PFA_SET(SPREAD_PAGE, spread_page)
2126TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2127
2128TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2129TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2130TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2131
e5c1902e 2132/*
a8f072c1 2133 * task->jobctl flags
e5c1902e 2134 */
a8f072c1 2135#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2136
a8f072c1
TH
2137#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2138#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2139#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2140#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2141#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2142#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2143#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2144
b76808e6
PD
2145#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2146#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2147#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2148#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2149#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2150#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2151#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2152
fb1d910c 2153#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2154#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2155
7dd3db54 2156extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2157 unsigned long mask);
73ddff2b 2158extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2159extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2160 unsigned long mask);
39efa3ef 2161
f41d911f
PM
2162static inline void rcu_copy_process(struct task_struct *p)
2163{
8315f422 2164#ifdef CONFIG_PREEMPT_RCU
f41d911f 2165 p->rcu_read_lock_nesting = 0;
1d082fd0 2166 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2167 p->rcu_blocked_node = NULL;
f41d911f 2168 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2169#endif /* #ifdef CONFIG_PREEMPT_RCU */
2170#ifdef CONFIG_TASKS_RCU
2171 p->rcu_tasks_holdout = false;
2172 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2173 p->rcu_tasks_idle_cpu = -1;
8315f422 2174#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2175}
2176
907aed48
MG
2177static inline void tsk_restore_flags(struct task_struct *task,
2178 unsigned long orig_flags, unsigned long flags)
2179{
2180 task->flags &= ~flags;
2181 task->flags |= orig_flags & flags;
2182}
2183
f82f8042
JL
2184extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2185 const struct cpumask *trial);
7f51412a
JL
2186extern int task_can_attach(struct task_struct *p,
2187 const struct cpumask *cs_cpus_allowed);
1da177e4 2188#ifdef CONFIG_SMP
1e1b6c51
KM
2189extern void do_set_cpus_allowed(struct task_struct *p,
2190 const struct cpumask *new_mask);
2191
cd8ba7cd 2192extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2193 const struct cpumask *new_mask);
1da177e4 2194#else
1e1b6c51
KM
2195static inline void do_set_cpus_allowed(struct task_struct *p,
2196 const struct cpumask *new_mask)
2197{
2198}
cd8ba7cd 2199static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2200 const struct cpumask *new_mask)
1da177e4 2201{
96f874e2 2202 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2203 return -EINVAL;
2204 return 0;
2205}
2206#endif
e0ad9556 2207
3451d024 2208#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2209void calc_load_enter_idle(void);
2210void calc_load_exit_idle(void);
2211#else
2212static inline void calc_load_enter_idle(void) { }
2213static inline void calc_load_exit_idle(void) { }
3451d024 2214#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2215
e0ad9556 2216#ifndef CONFIG_CPUMASK_OFFSTACK
cd8ba7cd
MT
2217static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
2218{
2219 return set_cpus_allowed_ptr(p, &new_mask);
2220}
e0ad9556 2221#endif
1da177e4 2222
b342501c 2223/*
c676329a
PZ
2224 * Do not use outside of architecture code which knows its limitations.
2225 *
2226 * sched_clock() has no promise of monotonicity or bounded drift between
2227 * CPUs, use (which you should not) requires disabling IRQs.
2228 *
2229 * Please use one of the three interfaces below.
b342501c 2230 */
1bbfa6f2 2231extern unsigned long long notrace sched_clock(void);
c676329a 2232/*
489a71b0 2233 * See the comment in kernel/sched/clock.c
c676329a
PZ
2234 */
2235extern u64 cpu_clock(int cpu);
2236extern u64 local_clock(void);
545a2bf7 2237extern u64 running_clock(void);
c676329a
PZ
2238extern u64 sched_clock_cpu(int cpu);
2239
e436d800 2240
c1955a3d 2241extern void sched_clock_init(void);
3e51f33f 2242
c1955a3d 2243#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2244static inline void sched_clock_tick(void)
2245{
2246}
2247
2248static inline void sched_clock_idle_sleep_event(void)
2249{
2250}
2251
2252static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2253{
2254}
2255#else
c676329a
PZ
2256/*
2257 * Architectures can set this to 1 if they have specified
2258 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2259 * but then during bootup it turns out that sched_clock()
2260 * is reliable after all:
2261 */
35af99e6
PZ
2262extern int sched_clock_stable(void);
2263extern void set_sched_clock_stable(void);
2264extern void clear_sched_clock_stable(void);
c676329a 2265
3e51f33f
PZ
2266extern void sched_clock_tick(void);
2267extern void sched_clock_idle_sleep_event(void);
2268extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2269#endif
2270
b52bfee4
VP
2271#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2272/*
2273 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2274 * The reason for this explicit opt-in is not to have perf penalty with
2275 * slow sched_clocks.
2276 */
2277extern void enable_sched_clock_irqtime(void);
2278extern void disable_sched_clock_irqtime(void);
2279#else
2280static inline void enable_sched_clock_irqtime(void) {}
2281static inline void disable_sched_clock_irqtime(void) {}
2282#endif
2283
36c8b586 2284extern unsigned long long
41b86e9c 2285task_sched_runtime(struct task_struct *task);
1da177e4
LT
2286
2287/* sched_exec is called by processes performing an exec */
2288#ifdef CONFIG_SMP
2289extern void sched_exec(void);
2290#else
2291#define sched_exec() {}
2292#endif
2293
2aa44d05
IM
2294extern void sched_clock_idle_sleep_event(void);
2295extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2296
1da177e4
LT
2297#ifdef CONFIG_HOTPLUG_CPU
2298extern void idle_task_exit(void);
2299#else
2300static inline void idle_task_exit(void) {}
2301#endif
2302
3451d024 2303#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2304extern void wake_up_nohz_cpu(int cpu);
06d8308c 2305#else
1c20091e 2306static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2307#endif
2308
ce831b38
FW
2309#ifdef CONFIG_NO_HZ_FULL
2310extern bool sched_can_stop_tick(void);
265f22a9 2311extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2312#else
2313static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2314#endif
2315
5091faa4 2316#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2317extern void sched_autogroup_create_attach(struct task_struct *p);
2318extern void sched_autogroup_detach(struct task_struct *p);
2319extern void sched_autogroup_fork(struct signal_struct *sig);
2320extern void sched_autogroup_exit(struct signal_struct *sig);
2321#ifdef CONFIG_PROC_FS
2322extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2323extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2324#endif
2325#else
2326static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2327static inline void sched_autogroup_detach(struct task_struct *p) { }
2328static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2329static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2330#endif
2331
fa93384f 2332extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2333extern void set_user_nice(struct task_struct *p, long nice);
2334extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2335/**
2336 * task_nice - return the nice value of a given task.
2337 * @p: the task in question.
2338 *
2339 * Return: The nice value [ -20 ... 0 ... 19 ].
2340 */
2341static inline int task_nice(const struct task_struct *p)
2342{
2343 return PRIO_TO_NICE((p)->static_prio);
2344}
36c8b586
IM
2345extern int can_nice(const struct task_struct *p, const int nice);
2346extern int task_curr(const struct task_struct *p);
1da177e4 2347extern int idle_cpu(int cpu);
fe7de49f
KM
2348extern int sched_setscheduler(struct task_struct *, int,
2349 const struct sched_param *);
961ccddd 2350extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2351 const struct sched_param *);
d50dde5a
DF
2352extern int sched_setattr(struct task_struct *,
2353 const struct sched_attr *);
36c8b586 2354extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2355/**
2356 * is_idle_task - is the specified task an idle task?
fa757281 2357 * @p: the task in question.
e69f6186
YB
2358 *
2359 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2360 */
7061ca3b 2361static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2362{
2363 return p->pid == 0;
2364}
36c8b586
IM
2365extern struct task_struct *curr_task(int cpu);
2366extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2367
2368void yield(void);
2369
1da177e4
LT
2370union thread_union {
2371 struct thread_info thread_info;
2372 unsigned long stack[THREAD_SIZE/sizeof(long)];
2373};
2374
2375#ifndef __HAVE_ARCH_KSTACK_END
2376static inline int kstack_end(void *addr)
2377{
2378 /* Reliable end of stack detection:
2379 * Some APM bios versions misalign the stack
2380 */
2381 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2382}
2383#endif
2384
2385extern union thread_union init_thread_union;
2386extern struct task_struct init_task;
2387
2388extern struct mm_struct init_mm;
2389
198fe21b
PE
2390extern struct pid_namespace init_pid_ns;
2391
2392/*
2393 * find a task by one of its numerical ids
2394 *
198fe21b
PE
2395 * find_task_by_pid_ns():
2396 * finds a task by its pid in the specified namespace
228ebcbe
PE
2397 * find_task_by_vpid():
2398 * finds a task by its virtual pid
198fe21b 2399 *
e49859e7 2400 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2401 */
2402
228ebcbe
PE
2403extern struct task_struct *find_task_by_vpid(pid_t nr);
2404extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2405 struct pid_namespace *ns);
198fe21b 2406
1da177e4 2407/* per-UID process charging. */
7b44ab97 2408extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2409static inline struct user_struct *get_uid(struct user_struct *u)
2410{
2411 atomic_inc(&u->__count);
2412 return u;
2413}
2414extern void free_uid(struct user_struct *);
1da177e4
LT
2415
2416#include <asm/current.h>
2417
f0af911a 2418extern void xtime_update(unsigned long ticks);
1da177e4 2419
b3c97528
HH
2420extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2421extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2422extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2423#ifdef CONFIG_SMP
2424 extern void kick_process(struct task_struct *tsk);
2425#else
2426 static inline void kick_process(struct task_struct *tsk) { }
2427#endif
aab03e05 2428extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2429extern void sched_dead(struct task_struct *p);
1da177e4 2430
1da177e4
LT
2431extern void proc_caches_init(void);
2432extern void flush_signals(struct task_struct *);
3bcac026 2433extern void __flush_signals(struct task_struct *);
10ab825b 2434extern void ignore_signals(struct task_struct *);
1da177e4
LT
2435extern void flush_signal_handlers(struct task_struct *, int force_default);
2436extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2437
2438static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
2439{
2440 unsigned long flags;
2441 int ret;
2442
2443 spin_lock_irqsave(&tsk->sighand->siglock, flags);
2444 ret = dequeue_signal(tsk, mask, info);
2445 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2446
2447 return ret;
53c8f9f1 2448}
1da177e4
LT
2449
2450extern void block_all_signals(int (*notifier)(void *priv), void *priv,
2451 sigset_t *mask);
2452extern void unblock_all_signals(void);
2453extern void release_task(struct task_struct * p);
2454extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2455extern int force_sigsegv(int, struct task_struct *);
2456extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2457extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2458extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2459extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2460 const struct cred *, u32);
c4b92fc1
EB
2461extern int kill_pgrp(struct pid *pid, int sig, int priv);
2462extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2463extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2464extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2465extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2466extern void force_sig(int, struct task_struct *);
1da177e4 2467extern int send_sig(int, struct task_struct *, int);
09faef11 2468extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2469extern struct sigqueue *sigqueue_alloc(void);
2470extern void sigqueue_free(struct sigqueue *);
ac5c2153 2471extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2472extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2473
51a7b448
AV
2474static inline void restore_saved_sigmask(void)
2475{
2476 if (test_and_clear_restore_sigmask())
77097ae5 2477 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2478}
2479
b7f9a11a
AV
2480static inline sigset_t *sigmask_to_save(void)
2481{
2482 sigset_t *res = &current->blocked;
2483 if (unlikely(test_restore_sigmask()))
2484 res = &current->saved_sigmask;
2485 return res;
2486}
2487
9ec52099
CLG
2488static inline int kill_cad_pid(int sig, int priv)
2489{
2490 return kill_pid(cad_pid, sig, priv);
2491}
2492
1da177e4
LT
2493/* These can be the second arg to send_sig_info/send_group_sig_info. */
2494#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2495#define SEND_SIG_PRIV ((struct siginfo *) 1)
2496#define SEND_SIG_FORCED ((struct siginfo *) 2)
2497
2a855dd0
SAS
2498/*
2499 * True if we are on the alternate signal stack.
2500 */
1da177e4
LT
2501static inline int on_sig_stack(unsigned long sp)
2502{
2a855dd0
SAS
2503#ifdef CONFIG_STACK_GROWSUP
2504 return sp >= current->sas_ss_sp &&
2505 sp - current->sas_ss_sp < current->sas_ss_size;
2506#else
2507 return sp > current->sas_ss_sp &&
2508 sp - current->sas_ss_sp <= current->sas_ss_size;
2509#endif
1da177e4
LT
2510}
2511
2512static inline int sas_ss_flags(unsigned long sp)
2513{
72f15c03
RW
2514 if (!current->sas_ss_size)
2515 return SS_DISABLE;
2516
2517 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2518}
2519
5a1b98d3
AV
2520static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2521{
2522 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2523#ifdef CONFIG_STACK_GROWSUP
2524 return current->sas_ss_sp;
2525#else
2526 return current->sas_ss_sp + current->sas_ss_size;
2527#endif
2528 return sp;
2529}
2530
1da177e4
LT
2531/*
2532 * Routines for handling mm_structs
2533 */
2534extern struct mm_struct * mm_alloc(void);
2535
2536/* mmdrop drops the mm and the page tables */
b3c97528 2537extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2538static inline void mmdrop(struct mm_struct * mm)
2539{
6fb43d7b 2540 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2541 __mmdrop(mm);
2542}
2543
2544/* mmput gets rid of the mappings and all user-space */
2545extern void mmput(struct mm_struct *);
2546/* Grab a reference to a task's mm, if it is not already going away */
2547extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2548/*
2549 * Grab a reference to a task's mm, if it is not already going away
2550 * and ptrace_may_access with the mode parameter passed to it
2551 * succeeds.
2552 */
2553extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2554/* Remove the current tasks stale references to the old mm_struct */
2555extern void mm_release(struct task_struct *, struct mm_struct *);
2556
6f2c55b8 2557extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2558 struct task_struct *);
1da177e4
LT
2559extern void flush_thread(void);
2560extern void exit_thread(void);
2561
1da177e4 2562extern void exit_files(struct task_struct *);
a7e5328a 2563extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2564
1da177e4 2565extern void exit_itimers(struct signal_struct *);
cbaffba1 2566extern void flush_itimer_signals(void);
1da177e4 2567
9402c95f 2568extern void do_group_exit(int);
1da177e4 2569
c4ad8f98 2570extern int do_execve(struct filename *,
d7627467 2571 const char __user * const __user *,
da3d4c5f 2572 const char __user * const __user *);
51f39a1f
DD
2573extern int do_execveat(int, struct filename *,
2574 const char __user * const __user *,
2575 const char __user * const __user *,
2576 int);
e80d6661 2577extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2578struct task_struct *fork_idle(int);
2aa3a7f8 2579extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2580
82b89778
AH
2581extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2582static inline void set_task_comm(struct task_struct *tsk, const char *from)
2583{
2584 __set_task_comm(tsk, from, false);
2585}
59714d65 2586extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2587
2588#ifdef CONFIG_SMP
317f3941 2589void scheduler_ipi(void);
85ba2d86 2590extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2591#else
184748cc 2592static inline void scheduler_ipi(void) { }
85ba2d86
RM
2593static inline unsigned long wait_task_inactive(struct task_struct *p,
2594 long match_state)
2595{
2596 return 1;
2597}
1da177e4
LT
2598#endif
2599
fafe870f
FW
2600#define tasklist_empty() \
2601 list_empty(&init_task.tasks)
2602
05725f7e
JP
2603#define next_task(p) \
2604 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2605
2606#define for_each_process(p) \
2607 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2608
5bb459bb 2609extern bool current_is_single_threaded(void);
d84f4f99 2610
1da177e4
LT
2611/*
2612 * Careful: do_each_thread/while_each_thread is a double loop so
2613 * 'break' will not work as expected - use goto instead.
2614 */
2615#define do_each_thread(g, t) \
2616 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2617
2618#define while_each_thread(g, t) \
2619 while ((t = next_thread(t)) != g)
2620
0c740d0a
ON
2621#define __for_each_thread(signal, t) \
2622 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2623
2624#define for_each_thread(p, t) \
2625 __for_each_thread((p)->signal, t)
2626
2627/* Careful: this is a double loop, 'break' won't work as expected. */
2628#define for_each_process_thread(p, t) \
2629 for_each_process(p) for_each_thread(p, t)
2630
7e49827c
ON
2631static inline int get_nr_threads(struct task_struct *tsk)
2632{
b3ac022c 2633 return tsk->signal->nr_threads;
7e49827c
ON
2634}
2635
087806b1
ON
2636static inline bool thread_group_leader(struct task_struct *p)
2637{
2638 return p->exit_signal >= 0;
2639}
1da177e4 2640
0804ef4b
EB
2641/* Do to the insanities of de_thread it is possible for a process
2642 * to have the pid of the thread group leader without actually being
2643 * the thread group leader. For iteration through the pids in proc
2644 * all we care about is that we have a task with the appropriate
2645 * pid, we don't actually care if we have the right task.
2646 */
e1403b8e 2647static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2648{
e1403b8e 2649 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2650}
2651
bac0abd6 2652static inline
e1403b8e 2653bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2654{
e1403b8e 2655 return p1->signal == p2->signal;
bac0abd6
PE
2656}
2657
36c8b586 2658static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2659{
05725f7e
JP
2660 return list_entry_rcu(p->thread_group.next,
2661 struct task_struct, thread_group);
47e65328
ON
2662}
2663
e868171a 2664static inline int thread_group_empty(struct task_struct *p)
1da177e4 2665{
47e65328 2666 return list_empty(&p->thread_group);
1da177e4
LT
2667}
2668
2669#define delay_group_leader(p) \
2670 (thread_group_leader(p) && !thread_group_empty(p))
2671
1da177e4 2672/*
260ea101 2673 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2674 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2675 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2676 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2677 *
2678 * Nests both inside and outside of read_lock(&tasklist_lock).
2679 * It must not be nested with write_lock_irq(&tasklist_lock),
2680 * neither inside nor outside.
2681 */
2682static inline void task_lock(struct task_struct *p)
2683{
2684 spin_lock(&p->alloc_lock);
2685}
2686
2687static inline void task_unlock(struct task_struct *p)
2688{
2689 spin_unlock(&p->alloc_lock);
2690}
2691
b8ed374e 2692extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2693 unsigned long *flags);
2694
9388dc30
AV
2695static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2696 unsigned long *flags)
2697{
2698 struct sighand_struct *ret;
2699
2700 ret = __lock_task_sighand(tsk, flags);
2701 (void)__cond_lock(&tsk->sighand->siglock, ret);
2702 return ret;
2703}
b8ed374e 2704
f63ee72e
ON
2705static inline void unlock_task_sighand(struct task_struct *tsk,
2706 unsigned long *flags)
2707{
2708 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2709}
2710
4714d1d3 2711#ifdef CONFIG_CGROUPS
257058ae 2712static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2713{
257058ae 2714 down_read(&tsk->signal->group_rwsem);
4714d1d3 2715}
257058ae 2716static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2717{
257058ae 2718 up_read(&tsk->signal->group_rwsem);
4714d1d3 2719}
77e4ef99
TH
2720
2721/**
2722 * threadgroup_lock - lock threadgroup
2723 * @tsk: member task of the threadgroup to lock
2724 *
2725 * Lock the threadgroup @tsk belongs to. No new task is allowed to enter
2726 * and member tasks aren't allowed to exit (as indicated by PF_EXITING) or
e56fb287
ON
2727 * change ->group_leader/pid. This is useful for cases where the threadgroup
2728 * needs to stay stable across blockable operations.
77e4ef99
TH
2729 *
2730 * fork and exit paths explicitly call threadgroup_change_{begin|end}() for
2731 * synchronization. While held, no new task will be added to threadgroup
2732 * and no existing live task will have its PF_EXITING set.
2733 *
e56fb287
ON
2734 * de_thread() does threadgroup_change_{begin|end}() when a non-leader
2735 * sub-thread becomes a new leader.
77e4ef99 2736 */
257058ae 2737static inline void threadgroup_lock(struct task_struct *tsk)
4714d1d3 2738{
257058ae 2739 down_write(&tsk->signal->group_rwsem);
4714d1d3 2740}
77e4ef99
TH
2741
2742/**
2743 * threadgroup_unlock - unlock threadgroup
2744 * @tsk: member task of the threadgroup to unlock
2745 *
2746 * Reverse threadgroup_lock().
2747 */
257058ae 2748static inline void threadgroup_unlock(struct task_struct *tsk)
4714d1d3 2749{
257058ae 2750 up_write(&tsk->signal->group_rwsem);
4714d1d3
BB
2751}
2752#else
257058ae
TH
2753static inline void threadgroup_change_begin(struct task_struct *tsk) {}
2754static inline void threadgroup_change_end(struct task_struct *tsk) {}
2755static inline void threadgroup_lock(struct task_struct *tsk) {}
2756static inline void threadgroup_unlock(struct task_struct *tsk) {}
4714d1d3
BB
2757#endif
2758
f037360f
AV
2759#ifndef __HAVE_THREAD_FUNCTIONS
2760
f7e4217b
RZ
2761#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2762#define task_stack_page(task) ((task)->stack)
a1261f54 2763
10ebffde
AV
2764static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2765{
2766 *task_thread_info(p) = *task_thread_info(org);
2767 task_thread_info(p)->task = p;
2768}
2769
6a40281a
CE
2770/*
2771 * Return the address of the last usable long on the stack.
2772 *
2773 * When the stack grows down, this is just above the thread
2774 * info struct. Going any lower will corrupt the threadinfo.
2775 *
2776 * When the stack grows up, this is the highest address.
2777 * Beyond that position, we corrupt data on the next page.
2778 */
10ebffde
AV
2779static inline unsigned long *end_of_stack(struct task_struct *p)
2780{
6a40281a
CE
2781#ifdef CONFIG_STACK_GROWSUP
2782 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2783#else
f7e4217b 2784 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2785#endif
10ebffde
AV
2786}
2787
f037360f 2788#endif
a70857e4
AT
2789#define task_stack_end_corrupted(task) \
2790 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2791
8b05c7e6
FT
2792static inline int object_is_on_stack(void *obj)
2793{
2794 void *stack = task_stack_page(current);
2795
2796 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2797}
2798
8c9843e5
BH
2799extern void thread_info_cache_init(void);
2800
7c9f8861
ES
2801#ifdef CONFIG_DEBUG_STACK_USAGE
2802static inline unsigned long stack_not_used(struct task_struct *p)
2803{
2804 unsigned long *n = end_of_stack(p);
2805
2806 do { /* Skip over canary */
2807 n++;
2808 } while (!*n);
2809
2810 return (unsigned long)n - (unsigned long)end_of_stack(p);
2811}
2812#endif
d4311ff1 2813extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2814
1da177e4
LT
2815/* set thread flags in other task's structures
2816 * - see asm/thread_info.h for TIF_xxxx flags available
2817 */
2818static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2819{
a1261f54 2820 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2821}
2822
2823static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2824{
a1261f54 2825 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2826}
2827
2828static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2829{
a1261f54 2830 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2831}
2832
2833static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2834{
a1261f54 2835 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2836}
2837
2838static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2839{
a1261f54 2840 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2841}
2842
2843static inline void set_tsk_need_resched(struct task_struct *tsk)
2844{
2845 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2846}
2847
2848static inline void clear_tsk_need_resched(struct task_struct *tsk)
2849{
2850 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2851}
2852
8ae121ac
GH
2853static inline int test_tsk_need_resched(struct task_struct *tsk)
2854{
2855 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2856}
2857
690cc3ff
EB
2858static inline int restart_syscall(void)
2859{
2860 set_tsk_thread_flag(current, TIF_SIGPENDING);
2861 return -ERESTARTNOINTR;
2862}
2863
1da177e4
LT
2864static inline int signal_pending(struct task_struct *p)
2865{
2866 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2867}
f776d12d 2868
d9588725
RM
2869static inline int __fatal_signal_pending(struct task_struct *p)
2870{
2871 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2872}
f776d12d
MW
2873
2874static inline int fatal_signal_pending(struct task_struct *p)
2875{
2876 return signal_pending(p) && __fatal_signal_pending(p);
2877}
2878
16882c1e
ON
2879static inline int signal_pending_state(long state, struct task_struct *p)
2880{
2881 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2882 return 0;
2883 if (!signal_pending(p))
2884 return 0;
2885
16882c1e
ON
2886 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2887}
2888
1da177e4
LT
2889/*
2890 * cond_resched() and cond_resched_lock(): latency reduction via
2891 * explicit rescheduling in places that are safe. The return
2892 * value indicates whether a reschedule was done in fact.
2893 * cond_resched_lock() will drop the spinlock before scheduling,
2894 * cond_resched_softirq() will enable bhs before scheduling.
2895 */
c3921ab7 2896extern int _cond_resched(void);
6f80bd98 2897
613afbf8 2898#define cond_resched() ({ \
3427445a 2899 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2900 _cond_resched(); \
2901})
6f80bd98 2902
613afbf8
FW
2903extern int __cond_resched_lock(spinlock_t *lock);
2904
bdd4e85d 2905#ifdef CONFIG_PREEMPT_COUNT
716a4234 2906#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
02b67cc3 2907#else
716a4234 2908#define PREEMPT_LOCK_OFFSET 0
02b67cc3 2909#endif
716a4234 2910
613afbf8 2911#define cond_resched_lock(lock) ({ \
3427445a 2912 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2913 __cond_resched_lock(lock); \
2914})
2915
2916extern int __cond_resched_softirq(void);
2917
75e1056f 2918#define cond_resched_softirq() ({ \
3427445a 2919 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2920 __cond_resched_softirq(); \
613afbf8 2921})
1da177e4 2922
f6f3c437
SH
2923static inline void cond_resched_rcu(void)
2924{
2925#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2926 rcu_read_unlock();
2927 cond_resched();
2928 rcu_read_lock();
2929#endif
2930}
2931
1da177e4
LT
2932/*
2933 * Does a critical section need to be broken due to another
95c354fe
NP
2934 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2935 * but a general need for low latency)
1da177e4 2936 */
95c354fe 2937static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2938{
95c354fe
NP
2939#ifdef CONFIG_PREEMPT
2940 return spin_is_contended(lock);
2941#else
1da177e4 2942 return 0;
95c354fe 2943#endif
1da177e4
LT
2944}
2945
ee761f62
TG
2946/*
2947 * Idle thread specific functions to determine the need_resched
69dd0f84 2948 * polling state.
ee761f62 2949 */
69dd0f84 2950#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
2951static inline int tsk_is_polling(struct task_struct *p)
2952{
2953 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
2954}
ea811747
PZ
2955
2956static inline void __current_set_polling(void)
3a98f871
TG
2957{
2958 set_thread_flag(TIF_POLLING_NRFLAG);
2959}
2960
ea811747
PZ
2961static inline bool __must_check current_set_polling_and_test(void)
2962{
2963 __current_set_polling();
2964
2965 /*
2966 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2967 * paired by resched_curr()
ea811747 2968 */
4e857c58 2969 smp_mb__after_atomic();
ea811747
PZ
2970
2971 return unlikely(tif_need_resched());
2972}
2973
2974static inline void __current_clr_polling(void)
3a98f871
TG
2975{
2976 clear_thread_flag(TIF_POLLING_NRFLAG);
2977}
ea811747
PZ
2978
2979static inline bool __must_check current_clr_polling_and_test(void)
2980{
2981 __current_clr_polling();
2982
2983 /*
2984 * Polling state must be visible before we test NEED_RESCHED,
8875125e 2985 * paired by resched_curr()
ea811747 2986 */
4e857c58 2987 smp_mb__after_atomic();
ea811747
PZ
2988
2989 return unlikely(tif_need_resched());
2990}
2991
ee761f62
TG
2992#else
2993static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
2994static inline void __current_set_polling(void) { }
2995static inline void __current_clr_polling(void) { }
2996
2997static inline bool __must_check current_set_polling_and_test(void)
2998{
2999 return unlikely(tif_need_resched());
3000}
3001static inline bool __must_check current_clr_polling_and_test(void)
3002{
3003 return unlikely(tif_need_resched());
3004}
ee761f62
TG
3005#endif
3006
8cb75e0c
PZ
3007static inline void current_clr_polling(void)
3008{
3009 __current_clr_polling();
3010
3011 /*
3012 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3013 * Once the bit is cleared, we'll get IPIs with every new
3014 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3015 * fold.
3016 */
8875125e 3017 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3018
3019 preempt_fold_need_resched();
3020}
3021
75f93fed
PZ
3022static __always_inline bool need_resched(void)
3023{
3024 return unlikely(tif_need_resched());
3025}
3026
f06febc9
FM
3027/*
3028 * Thread group CPU time accounting.
3029 */
4cd4c1b4 3030void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3031void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3032
7bb44ade
RM
3033/*
3034 * Reevaluate whether the task has signals pending delivery.
3035 * Wake the task if so.
3036 * This is required every time the blocked sigset_t changes.
3037 * callers must hold sighand->siglock.
3038 */
3039extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3040extern void recalc_sigpending(void);
3041
910ffdb1
ON
3042extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3043
3044static inline void signal_wake_up(struct task_struct *t, bool resume)
3045{
3046 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3047}
3048static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3049{
3050 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3051}
1da177e4
LT
3052
3053/*
3054 * Wrappers for p->thread_info->cpu access. No-op on UP.
3055 */
3056#ifdef CONFIG_SMP
3057
3058static inline unsigned int task_cpu(const struct task_struct *p)
3059{
a1261f54 3060 return task_thread_info(p)->cpu;
1da177e4
LT
3061}
3062
b32e86b4
IM
3063static inline int task_node(const struct task_struct *p)
3064{
3065 return cpu_to_node(task_cpu(p));
3066}
3067
c65cc870 3068extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3069
3070#else
3071
3072static inline unsigned int task_cpu(const struct task_struct *p)
3073{
3074 return 0;
3075}
3076
3077static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3078{
3079}
3080
3081#endif /* CONFIG_SMP */
3082
96f874e2
RR
3083extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3084extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3085
7c941438 3086#ifdef CONFIG_CGROUP_SCHED
07e06b01 3087extern struct task_group root_task_group;
8323f26c 3088#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3089
54e99124
DG
3090extern int task_can_switch_user(struct user_struct *up,
3091 struct task_struct *tsk);
3092
4b98d11b
AD
3093#ifdef CONFIG_TASK_XACCT
3094static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3095{
940389b8 3096 tsk->ioac.rchar += amt;
4b98d11b
AD
3097}
3098
3099static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3100{
940389b8 3101 tsk->ioac.wchar += amt;
4b98d11b
AD
3102}
3103
3104static inline void inc_syscr(struct task_struct *tsk)
3105{
940389b8 3106 tsk->ioac.syscr++;
4b98d11b
AD
3107}
3108
3109static inline void inc_syscw(struct task_struct *tsk)
3110{
940389b8 3111 tsk->ioac.syscw++;
4b98d11b
AD
3112}
3113#else
3114static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3115{
3116}
3117
3118static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3119{
3120}
3121
3122static inline void inc_syscr(struct task_struct *tsk)
3123{
3124}
3125
3126static inline void inc_syscw(struct task_struct *tsk)
3127{
3128}
3129#endif
3130
82455257
DH
3131#ifndef TASK_SIZE_OF
3132#define TASK_SIZE_OF(tsk) TASK_SIZE
3133#endif
3134
f98bafa0 3135#ifdef CONFIG_MEMCG
cf475ad2 3136extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3137#else
3138static inline void mm_update_next_owner(struct mm_struct *mm)
3139{
3140}
f98bafa0 3141#endif /* CONFIG_MEMCG */
cf475ad2 3142
3e10e716
JS
3143static inline unsigned long task_rlimit(const struct task_struct *tsk,
3144 unsigned int limit)
3145{
316c1608 3146 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3147}
3148
3149static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3150 unsigned int limit)
3151{
316c1608 3152 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3153}
3154
3155static inline unsigned long rlimit(unsigned int limit)
3156{
3157 return task_rlimit(current, limit);
3158}
3159
3160static inline unsigned long rlimit_max(unsigned int limit)
3161{
3162 return task_rlimit_max(current, limit);
3163}
3164
1da177e4 3165#endif