sched/core: Remove duplicated sched_group_set_shares() prototype
[linux-2.6-block.git] / include / linux / sched.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_SCHED_H
2#define _LINUX_SCHED_H
3
607ca46e 4#include <uapi/linux/sched.h>
b7b3c76a 5
5c228079
DY
6#include <linux/sched/prio.h>
7
b7b3c76a
DW
8
9struct sched_param {
10 int sched_priority;
11};
12
1da177e4
LT
13#include <asm/param.h> /* for HZ */
14
1da177e4
LT
15#include <linux/capability.h>
16#include <linux/threads.h>
17#include <linux/kernel.h>
18#include <linux/types.h>
19#include <linux/timex.h>
20#include <linux/jiffies.h>
fb00aca4 21#include <linux/plist.h>
1da177e4
LT
22#include <linux/rbtree.h>
23#include <linux/thread_info.h>
24#include <linux/cpumask.h>
25#include <linux/errno.h>
26#include <linux/nodemask.h>
c92ff1bd 27#include <linux/mm_types.h>
92cf2118 28#include <linux/preempt.h>
1da177e4 29
1da177e4
LT
30#include <asm/page.h>
31#include <asm/ptrace.h>
bfc3f028 32#include <linux/cputime.h>
1da177e4
LT
33
34#include <linux/smp.h>
35#include <linux/sem.h>
ab602f79 36#include <linux/shm.h>
1da177e4 37#include <linux/signal.h>
1da177e4
LT
38#include <linux/compiler.h>
39#include <linux/completion.h>
40#include <linux/pid.h>
41#include <linux/percpu.h>
42#include <linux/topology.h>
3e26c149 43#include <linux/proportions.h>
1da177e4 44#include <linux/seccomp.h>
e56d0903 45#include <linux/rcupdate.h>
05725f7e 46#include <linux/rculist.h>
23f78d4a 47#include <linux/rtmutex.h>
1da177e4 48
a3b6714e
DW
49#include <linux/time.h>
50#include <linux/param.h>
51#include <linux/resource.h>
52#include <linux/timer.h>
53#include <linux/hrtimer.h>
7c3ab738 54#include <linux/task_io_accounting.h>
9745512c 55#include <linux/latencytop.h>
9e2b2dc4 56#include <linux/cred.h>
fa14ff4a 57#include <linux/llist.h>
7b44ab97 58#include <linux/uidgid.h>
21caf2fc 59#include <linux/gfp.h>
d4311ff1 60#include <linux/magic.h>
7d7efec3 61#include <linux/cgroup-defs.h>
a3b6714e
DW
62
63#include <asm/processor.h>
36d57ac4 64
d50dde5a
DF
65#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
66
67/*
68 * Extended scheduling parameters data structure.
69 *
70 * This is needed because the original struct sched_param can not be
71 * altered without introducing ABI issues with legacy applications
72 * (e.g., in sched_getparam()).
73 *
74 * However, the possibility of specifying more than just a priority for
75 * the tasks may be useful for a wide variety of application fields, e.g.,
76 * multimedia, streaming, automation and control, and many others.
77 *
78 * This variant (sched_attr) is meant at describing a so-called
79 * sporadic time-constrained task. In such model a task is specified by:
80 * - the activation period or minimum instance inter-arrival time;
81 * - the maximum (or average, depending on the actual scheduling
82 * discipline) computation time of all instances, a.k.a. runtime;
83 * - the deadline (relative to the actual activation time) of each
84 * instance.
85 * Very briefly, a periodic (sporadic) task asks for the execution of
86 * some specific computation --which is typically called an instance--
87 * (at most) every period. Moreover, each instance typically lasts no more
88 * than the runtime and must be completed by time instant t equal to
89 * the instance activation time + the deadline.
90 *
91 * This is reflected by the actual fields of the sched_attr structure:
92 *
93 * @size size of the structure, for fwd/bwd compat.
94 *
95 * @sched_policy task's scheduling policy
96 * @sched_flags for customizing the scheduler behaviour
97 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
98 * @sched_priority task's static priority (SCHED_FIFO/RR)
99 * @sched_deadline representative of the task's deadline
100 * @sched_runtime representative of the task's runtime
101 * @sched_period representative of the task's period
102 *
103 * Given this task model, there are a multiplicity of scheduling algorithms
104 * and policies, that can be used to ensure all the tasks will make their
105 * timing constraints.
aab03e05
DF
106 *
107 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
108 * only user of this new interface. More information about the algorithm
109 * available in the scheduling class file or in Documentation/.
d50dde5a
DF
110 */
111struct sched_attr {
112 u32 size;
113
114 u32 sched_policy;
115 u64 sched_flags;
116
117 /* SCHED_NORMAL, SCHED_BATCH */
118 s32 sched_nice;
119
120 /* SCHED_FIFO, SCHED_RR */
121 u32 sched_priority;
122
123 /* SCHED_DEADLINE */
124 u64 sched_runtime;
125 u64 sched_deadline;
126 u64 sched_period;
127};
128
c87e2837 129struct futex_pi_state;
286100a6 130struct robust_list_head;
bddd87c7 131struct bio_list;
5ad4e53b 132struct fs_struct;
cdd6c482 133struct perf_event_context;
73c10101 134struct blk_plug;
c4ad8f98 135struct filename;
89076bc3 136struct nameidata;
1da177e4 137
615d6e87
DB
138#define VMACACHE_BITS 2
139#define VMACACHE_SIZE (1U << VMACACHE_BITS)
140#define VMACACHE_MASK (VMACACHE_SIZE - 1)
141
1da177e4
LT
142/*
143 * These are the constant used to fake the fixed-point load-average
144 * counting. Some notes:
145 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
146 * a load-average precision of 10 bits integer + 11 bits fractional
147 * - if you want to count load-averages more often, you need more
148 * precision, or rounding will get you. With 2-second counting freq,
149 * the EXP_n values would be 1981, 2034 and 2043 if still using only
150 * 11 bit fractions.
151 */
152extern unsigned long avenrun[]; /* Load averages */
2d02494f 153extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
1da177e4
LT
154
155#define FSHIFT 11 /* nr of bits of precision */
156#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
0c2043ab 157#define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
1da177e4
LT
158#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
159#define EXP_5 2014 /* 1/exp(5sec/5min) */
160#define EXP_15 2037 /* 1/exp(5sec/15min) */
161
162#define CALC_LOAD(load,exp,n) \
163 load *= exp; \
164 load += n*(FIXED_1-exp); \
165 load >>= FSHIFT;
166
167extern unsigned long total_forks;
168extern int nr_threads;
1da177e4
LT
169DECLARE_PER_CPU(unsigned long, process_counts);
170extern int nr_processes(void);
171extern unsigned long nr_running(void);
2ee507c4 172extern bool single_task_running(void);
1da177e4 173extern unsigned long nr_iowait(void);
8c215bd3 174extern unsigned long nr_iowait_cpu(int cpu);
372ba8cb 175extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
69d25870 176
0f004f5a 177extern void calc_global_load(unsigned long ticks);
3289bdb4
PZ
178
179#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
525705d1 180extern void update_cpu_load_nohz(int active);
3289bdb4 181#else
525705d1 182static inline void update_cpu_load_nohz(int active) { }
3289bdb4 183#endif
1da177e4 184
7e49fcce
SR
185extern unsigned long get_parent_ip(unsigned long addr);
186
b637a328
PM
187extern void dump_cpu_task(int cpu);
188
43ae34cb
IM
189struct seq_file;
190struct cfs_rq;
4cf86d77 191struct task_group;
43ae34cb
IM
192#ifdef CONFIG_SCHED_DEBUG
193extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
194extern void proc_sched_set_task(struct task_struct *p);
43ae34cb 195#endif
1da177e4 196
4a8342d2
LT
197/*
198 * Task state bitmask. NOTE! These bits are also
199 * encoded in fs/proc/array.c: get_task_state().
200 *
201 * We have two separate sets of flags: task->state
202 * is about runnability, while task->exit_state are
203 * about the task exiting. Confusing, but this way
204 * modifying one set can't modify the other one by
205 * mistake.
206 */
1da177e4
LT
207#define TASK_RUNNING 0
208#define TASK_INTERRUPTIBLE 1
209#define TASK_UNINTERRUPTIBLE 2
f021a3c2
MW
210#define __TASK_STOPPED 4
211#define __TASK_TRACED 8
4a8342d2 212/* in tsk->exit_state */
ad86622b
ON
213#define EXIT_DEAD 16
214#define EXIT_ZOMBIE 32
abd50b39 215#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
4a8342d2 216/* in tsk->state again */
af927232 217#define TASK_DEAD 64
f021a3c2 218#define TASK_WAKEKILL 128
e9c84311 219#define TASK_WAKING 256
f2530dc7 220#define TASK_PARKED 512
80ed87c8
PZ
221#define TASK_NOLOAD 1024
222#define TASK_STATE_MAX 2048
f021a3c2 223
80ed87c8 224#define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
73342151 225
e1781538
PZ
226extern char ___assert_task_state[1 - 2*!!(
227 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
f021a3c2
MW
228
229/* Convenience macros for the sake of set_task_state */
230#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
231#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
232#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
1da177e4 233
80ed87c8
PZ
234#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
235
92a1f4bc
MW
236/* Convenience macros for the sake of wake_up */
237#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
f021a3c2 238#define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
92a1f4bc
MW
239
240/* get_task_state() */
241#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
f021a3c2 242 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
74e37200 243 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
92a1f4bc 244
f021a3c2
MW
245#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
246#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
92a1f4bc 247#define task_is_stopped_or_traced(task) \
f021a3c2 248 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
92a1f4bc 249#define task_contributes_to_load(task) \
e3c8ca83 250 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
80ed87c8
PZ
251 (task->flags & PF_FROZEN) == 0 && \
252 (task->state & TASK_NOLOAD) == 0)
1da177e4 253
8eb23b9f
PZ
254#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
255
256#define __set_task_state(tsk, state_value) \
257 do { \
258 (tsk)->task_state_change = _THIS_IP_; \
259 (tsk)->state = (state_value); \
260 } while (0)
261#define set_task_state(tsk, state_value) \
262 do { \
263 (tsk)->task_state_change = _THIS_IP_; \
b92b8b35 264 smp_store_mb((tsk)->state, (state_value)); \
8eb23b9f
PZ
265 } while (0)
266
267/*
268 * set_current_state() includes a barrier so that the write of current->state
269 * is correctly serialised wrt the caller's subsequent test of whether to
270 * actually sleep:
271 *
272 * set_current_state(TASK_UNINTERRUPTIBLE);
273 * if (do_i_need_to_sleep())
274 * schedule();
275 *
276 * If the caller does not need such serialisation then use __set_current_state()
277 */
278#define __set_current_state(state_value) \
279 do { \
280 current->task_state_change = _THIS_IP_; \
281 current->state = (state_value); \
282 } while (0)
283#define set_current_state(state_value) \
284 do { \
285 current->task_state_change = _THIS_IP_; \
b92b8b35 286 smp_store_mb(current->state, (state_value)); \
8eb23b9f
PZ
287 } while (0)
288
289#else
290
1da177e4
LT
291#define __set_task_state(tsk, state_value) \
292 do { (tsk)->state = (state_value); } while (0)
293#define set_task_state(tsk, state_value) \
b92b8b35 294 smp_store_mb((tsk)->state, (state_value))
1da177e4 295
498d0c57
AM
296/*
297 * set_current_state() includes a barrier so that the write of current->state
298 * is correctly serialised wrt the caller's subsequent test of whether to
299 * actually sleep:
300 *
301 * set_current_state(TASK_UNINTERRUPTIBLE);
302 * if (do_i_need_to_sleep())
303 * schedule();
304 *
305 * If the caller does not need such serialisation then use __set_current_state()
306 */
8eb23b9f 307#define __set_current_state(state_value) \
1da177e4 308 do { current->state = (state_value); } while (0)
8eb23b9f 309#define set_current_state(state_value) \
b92b8b35 310 smp_store_mb(current->state, (state_value))
1da177e4 311
8eb23b9f
PZ
312#endif
313
1da177e4
LT
314/* Task command name length */
315#define TASK_COMM_LEN 16
316
1da177e4
LT
317#include <linux/spinlock.h>
318
319/*
320 * This serializes "schedule()" and also protects
321 * the run-queue from deletions/modifications (but
322 * _adding_ to the beginning of the run-queue has
323 * a separate lock).
324 */
325extern rwlock_t tasklist_lock;
326extern spinlock_t mmlist_lock;
327
36c8b586 328struct task_struct;
1da177e4 329
db1466b3
PM
330#ifdef CONFIG_PROVE_RCU
331extern int lockdep_tasklist_lock_is_held(void);
332#endif /* #ifdef CONFIG_PROVE_RCU */
333
1da177e4
LT
334extern void sched_init(void);
335extern void sched_init_smp(void);
2d07b255 336extern asmlinkage void schedule_tail(struct task_struct *prev);
36c8b586 337extern void init_idle(struct task_struct *idle, int cpu);
1df21055 338extern void init_idle_bootup_task(struct task_struct *idle);
1da177e4 339
3fa0818b
RR
340extern cpumask_var_t cpu_isolated_map;
341
89f19f04 342extern int runqueue_is_locked(int cpu);
017730c1 343
3451d024 344#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
c1cc017c 345extern void nohz_balance_enter_idle(int cpu);
69e1e811 346extern void set_cpu_sd_state_idle(void);
bc7a34b8 347extern int get_nohz_timer_target(void);
46cb4b7c 348#else
c1cc017c 349static inline void nohz_balance_enter_idle(int cpu) { }
fdaabd80 350static inline void set_cpu_sd_state_idle(void) { }
46cb4b7c 351#endif
1da177e4 352
e59e2ae2 353/*
39bc89fd 354 * Only dump TASK_* tasks. (0 for all tasks)
e59e2ae2
IM
355 */
356extern void show_state_filter(unsigned long state_filter);
357
358static inline void show_state(void)
359{
39bc89fd 360 show_state_filter(0);
e59e2ae2
IM
361}
362
1da177e4
LT
363extern void show_regs(struct pt_regs *);
364
365/*
366 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
367 * task), SP is the stack pointer of the first frame that should be shown in the back
368 * trace (or NULL if the entire call-chain of the task should be shown).
369 */
370extern void show_stack(struct task_struct *task, unsigned long *sp);
371
1da177e4
LT
372extern void cpu_init (void);
373extern void trap_init(void);
374extern void update_process_times(int user);
375extern void scheduler_tick(void);
376
82a1fcb9
IM
377extern void sched_show_task(struct task_struct *p);
378
19cc36c0 379#ifdef CONFIG_LOCKUP_DETECTOR
03e0d461 380extern void touch_softlockup_watchdog_sched(void);
8446f1d3 381extern void touch_softlockup_watchdog(void);
d6ad3e28 382extern void touch_softlockup_watchdog_sync(void);
04c9167f 383extern void touch_all_softlockup_watchdogs(void);
332fbdbc
DZ
384extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
385 void __user *buffer,
386 size_t *lenp, loff_t *ppos);
9c44bc03 387extern unsigned int softlockup_panic;
ac1f5912 388extern unsigned int hardlockup_panic;
004417a6 389void lockup_detector_init(void);
8446f1d3 390#else
03e0d461
TH
391static inline void touch_softlockup_watchdog_sched(void)
392{
393}
8446f1d3
IM
394static inline void touch_softlockup_watchdog(void)
395{
396}
d6ad3e28
JW
397static inline void touch_softlockup_watchdog_sync(void)
398{
399}
04c9167f
JF
400static inline void touch_all_softlockup_watchdogs(void)
401{
402}
004417a6
PZ
403static inline void lockup_detector_init(void)
404{
405}
8446f1d3
IM
406#endif
407
8b414521
MT
408#ifdef CONFIG_DETECT_HUNG_TASK
409void reset_hung_task_detector(void);
410#else
411static inline void reset_hung_task_detector(void)
412{
413}
414#endif
415
1da177e4
LT
416/* Attach to any functions which should be ignored in wchan output. */
417#define __sched __attribute__((__section__(".sched.text")))
deaf2227
IM
418
419/* Linker adds these: start and end of __sched functions */
420extern char __sched_text_start[], __sched_text_end[];
421
1da177e4
LT
422/* Is this address in the __sched functions? */
423extern int in_sched_functions(unsigned long addr);
424
425#define MAX_SCHEDULE_TIMEOUT LONG_MAX
b3c97528 426extern signed long schedule_timeout(signed long timeout);
64ed93a2 427extern signed long schedule_timeout_interruptible(signed long timeout);
294d5cc2 428extern signed long schedule_timeout_killable(signed long timeout);
64ed93a2 429extern signed long schedule_timeout_uninterruptible(signed long timeout);
1da177e4 430asmlinkage void schedule(void);
c5491ea7 431extern void schedule_preempt_disabled(void);
1da177e4 432
9cff8ade
N
433extern long io_schedule_timeout(long timeout);
434
435static inline void io_schedule(void)
436{
437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
438}
439
ab516013 440struct nsproxy;
acce292c 441struct user_namespace;
1da177e4 442
efc1a3b1
DH
443#ifdef CONFIG_MMU
444extern void arch_pick_mmap_layout(struct mm_struct *mm);
1da177e4
LT
445extern unsigned long
446arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447 unsigned long, unsigned long);
448extern unsigned long
449arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450 unsigned long len, unsigned long pgoff,
451 unsigned long flags);
efc1a3b1
DH
452#else
453static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454#endif
1da177e4 455
d049f74f
KC
456#define SUID_DUMP_DISABLE 0 /* No setuid dumping */
457#define SUID_DUMP_USER 1 /* Dump as user of process */
458#define SUID_DUMP_ROOT 2 /* Dump as root */
459
6c5d5238 460/* mm flags */
f8af4da3 461
7288e118 462/* for SUID_DUMP_* above */
3cb4a0bb 463#define MMF_DUMPABLE_BITS 2
f8af4da3 464#define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
3cb4a0bb 465
942be387
ON
466extern void set_dumpable(struct mm_struct *mm, int value);
467/*
468 * This returns the actual value of the suid_dumpable flag. For things
469 * that are using this for checking for privilege transitions, it must
470 * test against SUID_DUMP_USER rather than treating it as a boolean
471 * value.
472 */
473static inline int __get_dumpable(unsigned long mm_flags)
474{
475 return mm_flags & MMF_DUMPABLE_MASK;
476}
477
478static inline int get_dumpable(struct mm_struct *mm)
479{
480 return __get_dumpable(mm->flags);
481}
482
3cb4a0bb
KH
483/* coredump filter bits */
484#define MMF_DUMP_ANON_PRIVATE 2
485#define MMF_DUMP_ANON_SHARED 3
486#define MMF_DUMP_MAPPED_PRIVATE 4
487#define MMF_DUMP_MAPPED_SHARED 5
82df3973 488#define MMF_DUMP_ELF_HEADERS 6
e575f111
KM
489#define MMF_DUMP_HUGETLB_PRIVATE 7
490#define MMF_DUMP_HUGETLB_SHARED 8
5037835c
RZ
491#define MMF_DUMP_DAX_PRIVATE 9
492#define MMF_DUMP_DAX_SHARED 10
f8af4da3 493
3cb4a0bb 494#define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
5037835c 495#define MMF_DUMP_FILTER_BITS 9
3cb4a0bb
KH
496#define MMF_DUMP_FILTER_MASK \
497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498#define MMF_DUMP_FILTER_DEFAULT \
e575f111 499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
656eb2cd
RM
500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502#ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503# define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
504#else
505# define MMF_DUMP_MASK_DEFAULT_ELF 0
506#endif
f8af4da3
HD
507 /* leave room for more dump flags */
508#define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
ba76149f 509#define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
bafb282d 510#define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
f8af4da3 511
9f68f672
ON
512#define MMF_HAS_UPROBES 19 /* has uprobes */
513#define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
f8ac4ec9 514
f8af4da3 515#define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
6c5d5238 516
1da177e4
LT
517struct sighand_struct {
518 atomic_t count;
519 struct k_sigaction action[_NSIG];
520 spinlock_t siglock;
b8fceee1 521 wait_queue_head_t signalfd_wqh;
1da177e4
LT
522};
523
0e464814 524struct pacct_struct {
f6ec29a4
KK
525 int ac_flag;
526 long ac_exitcode;
0e464814 527 unsigned long ac_mem;
77787bfb
KK
528 cputime_t ac_utime, ac_stime;
529 unsigned long ac_minflt, ac_majflt;
0e464814
KK
530};
531
42c4ab41
SG
532struct cpu_itimer {
533 cputime_t expires;
534 cputime_t incr;
8356b5f9
SG
535 u32 error;
536 u32 incr_error;
42c4ab41
SG
537};
538
d37f761d 539/**
9d7fb042 540 * struct prev_cputime - snaphsot of system and user cputime
d37f761d
FW
541 * @utime: time spent in user mode
542 * @stime: time spent in system mode
9d7fb042 543 * @lock: protects the above two fields
d37f761d 544 *
9d7fb042
PZ
545 * Stores previous user/system time values such that we can guarantee
546 * monotonicity.
d37f761d 547 */
9d7fb042
PZ
548struct prev_cputime {
549#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
d37f761d
FW
550 cputime_t utime;
551 cputime_t stime;
9d7fb042
PZ
552 raw_spinlock_t lock;
553#endif
d37f761d
FW
554};
555
9d7fb042
PZ
556static inline void prev_cputime_init(struct prev_cputime *prev)
557{
558#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 prev->utime = prev->stime = 0;
560 raw_spin_lock_init(&prev->lock);
561#endif
562}
563
f06febc9
FM
564/**
565 * struct task_cputime - collected CPU time counts
566 * @utime: time spent in user mode, in &cputime_t units
567 * @stime: time spent in kernel mode, in &cputime_t units
568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
5ce73a4a 569 *
9d7fb042
PZ
570 * This structure groups together three kinds of CPU time that are tracked for
571 * threads and thread groups. Most things considering CPU time want to group
572 * these counts together and treat all three of them in parallel.
f06febc9
FM
573 */
574struct task_cputime {
575 cputime_t utime;
576 cputime_t stime;
577 unsigned long long sum_exec_runtime;
578};
9d7fb042 579
f06febc9 580/* Alternate field names when used to cache expirations. */
f06febc9 581#define virt_exp utime
9d7fb042 582#define prof_exp stime
f06febc9
FM
583#define sched_exp sum_exec_runtime
584
4cd4c1b4
PZ
585#define INIT_CPUTIME \
586 (struct task_cputime) { \
64861634
MS
587 .utime = 0, \
588 .stime = 0, \
4cd4c1b4
PZ
589 .sum_exec_runtime = 0, \
590 }
591
971e8a98
JL
592/*
593 * This is the atomic variant of task_cputime, which can be used for
594 * storing and updating task_cputime statistics without locking.
595 */
596struct task_cputime_atomic {
597 atomic64_t utime;
598 atomic64_t stime;
599 atomic64_t sum_exec_runtime;
600};
601
602#define INIT_CPUTIME_ATOMIC \
603 (struct task_cputime_atomic) { \
604 .utime = ATOMIC64_INIT(0), \
605 .stime = ATOMIC64_INIT(0), \
606 .sum_exec_runtime = ATOMIC64_INIT(0), \
607 }
608
609ca066 609#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
a233f112 610
c99e6efe 611/*
87dcbc06
PZ
612 * Disable preemption until the scheduler is running -- use an unconditional
613 * value so that it also works on !PREEMPT_COUNT kernels.
d86ee480 614 *
87dcbc06 615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
c99e6efe 616 */
87dcbc06 617#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
a233f112 618
c99e6efe 619/*
609ca066
PZ
620 * Initial preempt_count value; reflects the preempt_count schedule invariant
621 * which states that during context switches:
d86ee480 622 *
609ca066
PZ
623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
624 *
625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
626 * Note: See finish_task_switch().
c99e6efe 627 */
609ca066 628#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
c99e6efe 629
f06febc9 630/**
4cd4c1b4 631 * struct thread_group_cputimer - thread group interval timer counts
920ce39f 632 * @cputime_atomic: atomic thread group interval timers.
d5c373eb
JL
633 * @running: true when there are timers running and
634 * @cputime_atomic receives updates.
c8d75aa4
JL
635 * @checking_timer: true when a thread in the group is in the
636 * process of checking for thread group timers.
f06febc9
FM
637 *
638 * This structure contains the version of task_cputime, above, that is
4cd4c1b4 639 * used for thread group CPU timer calculations.
f06febc9 640 */
4cd4c1b4 641struct thread_group_cputimer {
71107445 642 struct task_cputime_atomic cputime_atomic;
d5c373eb 643 bool running;
c8d75aa4 644 bool checking_timer;
f06febc9 645};
f06febc9 646
4714d1d3 647#include <linux/rwsem.h>
5091faa4
MG
648struct autogroup;
649
1da177e4 650/*
e815f0a8 651 * NOTE! "signal_struct" does not have its own
1da177e4
LT
652 * locking, because a shared signal_struct always
653 * implies a shared sighand_struct, so locking
654 * sighand_struct is always a proper superset of
655 * the locking of signal_struct.
656 */
657struct signal_struct {
ea6d290c 658 atomic_t sigcnt;
1da177e4 659 atomic_t live;
b3ac022c 660 int nr_threads;
0c740d0a 661 struct list_head thread_head;
1da177e4
LT
662
663 wait_queue_head_t wait_chldexit; /* for wait4() */
664
665 /* current thread group signal load-balancing target: */
36c8b586 666 struct task_struct *curr_target;
1da177e4
LT
667
668 /* shared signal handling: */
669 struct sigpending shared_pending;
670
671 /* thread group exit support */
672 int group_exit_code;
673 /* overloaded:
674 * - notify group_exit_task when ->count is equal to notify_count
675 * - everyone except group_exit_task is stopped during signal delivery
676 * of fatal signals, group_exit_task processes the signal.
677 */
1da177e4 678 int notify_count;
07dd20e0 679 struct task_struct *group_exit_task;
1da177e4
LT
680
681 /* thread group stop support, overloads group_exit_code too */
682 int group_stop_count;
683 unsigned int flags; /* see SIGNAL_* flags below */
684
ebec18a6
LP
685 /*
686 * PR_SET_CHILD_SUBREAPER marks a process, like a service
687 * manager, to re-parent orphan (double-forking) child processes
688 * to this process instead of 'init'. The service manager is
689 * able to receive SIGCHLD signals and is able to investigate
690 * the process until it calls wait(). All children of this
691 * process will inherit a flag if they should look for a
692 * child_subreaper process at exit.
693 */
694 unsigned int is_child_subreaper:1;
695 unsigned int has_child_subreaper:1;
696
1da177e4 697 /* POSIX.1b Interval Timers */
5ed67f05
PE
698 int posix_timer_id;
699 struct list_head posix_timers;
1da177e4
LT
700
701 /* ITIMER_REAL timer for the process */
2ff678b8 702 struct hrtimer real_timer;
fea9d175 703 struct pid *leader_pid;
2ff678b8 704 ktime_t it_real_incr;
1da177e4 705
42c4ab41
SG
706 /*
707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
709 * values are defined to 0 and 1 respectively
710 */
711 struct cpu_itimer it[2];
1da177e4 712
f06febc9 713 /*
4cd4c1b4
PZ
714 * Thread group totals for process CPU timers.
715 * See thread_group_cputimer(), et al, for details.
f06febc9 716 */
4cd4c1b4 717 struct thread_group_cputimer cputimer;
f06febc9
FM
718
719 /* Earliest-expiration cache. */
720 struct task_cputime cputime_expires;
721
722 struct list_head cpu_timers[3];
723
ab521dc0 724 struct pid *tty_old_pgrp;
1ec320af 725
1da177e4
LT
726 /* boolean value for session group leader */
727 int leader;
728
729 struct tty_struct *tty; /* NULL if no tty */
730
5091faa4
MG
731#ifdef CONFIG_SCHED_AUTOGROUP
732 struct autogroup *autogroup;
733#endif
1da177e4
LT
734 /*
735 * Cumulative resource counters for dead threads in the group,
736 * and for reaped dead child processes forked by this group.
737 * Live threads maintain their own counters and add to these
738 * in __exit_signal, except for the group leader.
739 */
e78c3496 740 seqlock_t stats_lock;
32bd671d 741 cputime_t utime, stime, cutime, cstime;
9ac52315
LV
742 cputime_t gtime;
743 cputime_t cgtime;
9d7fb042 744 struct prev_cputime prev_cputime;
1da177e4
LT
745 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
746 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
6eaeeaba 747 unsigned long inblock, oublock, cinblock, coublock;
1f10206c 748 unsigned long maxrss, cmaxrss;
940389b8 749 struct task_io_accounting ioac;
1da177e4 750
32bd671d
PZ
751 /*
752 * Cumulative ns of schedule CPU time fo dead threads in the
753 * group, not including a zombie group leader, (This only differs
754 * from jiffies_to_ns(utime + stime) if sched_clock uses something
755 * other than jiffies.)
756 */
757 unsigned long long sum_sched_runtime;
758
1da177e4
LT
759 /*
760 * We don't bother to synchronize most readers of this at all,
761 * because there is no reader checking a limit that actually needs
762 * to get both rlim_cur and rlim_max atomically, and either one
763 * alone is a single word that can safely be read normally.
764 * getrlimit/setrlimit use task_lock(current->group_leader) to
765 * protect this instead of the siglock, because they really
766 * have no need to disable irqs.
767 */
768 struct rlimit rlim[RLIM_NLIMITS];
769
0e464814
KK
770#ifdef CONFIG_BSD_PROCESS_ACCT
771 struct pacct_struct pacct; /* per-process accounting information */
772#endif
ad4ecbcb 773#ifdef CONFIG_TASKSTATS
ad4ecbcb
SN
774 struct taskstats *stats;
775#endif
522ed776
MT
776#ifdef CONFIG_AUDIT
777 unsigned audit_tty;
46e959ea 778 unsigned audit_tty_log_passwd;
522ed776
MT
779 struct tty_audit_buf *tty_audit_buf;
780#endif
28b83c51 781
e1e12d2f 782 oom_flags_t oom_flags;
a9c58b90
DR
783 short oom_score_adj; /* OOM kill score adjustment */
784 short oom_score_adj_min; /* OOM kill score adjustment min value.
785 * Only settable by CAP_SYS_RESOURCE. */
9b1bf12d
KM
786
787 struct mutex cred_guard_mutex; /* guard against foreign influences on
788 * credential calculations
789 * (notably. ptrace) */
1da177e4
LT
790};
791
792/*
793 * Bits in flags field of signal_struct.
794 */
795#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
ee77f075
ON
796#define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
797#define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
403bad72 798#define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
e4420551
ON
799/*
800 * Pending notifications to parent.
801 */
802#define SIGNAL_CLD_STOPPED 0x00000010
803#define SIGNAL_CLD_CONTINUED 0x00000020
804#define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
1da177e4 805
fae5fa44
ON
806#define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
807
ed5d2cac
ON
808/* If true, all threads except ->group_exit_task have pending SIGKILL */
809static inline int signal_group_exit(const struct signal_struct *sig)
810{
811 return (sig->flags & SIGNAL_GROUP_EXIT) ||
812 (sig->group_exit_task != NULL);
813}
814
1da177e4
LT
815/*
816 * Some day this will be a full-fledged user tracking system..
817 */
818struct user_struct {
819 atomic_t __count; /* reference count */
820 atomic_t processes; /* How many processes does this user have? */
1da177e4 821 atomic_t sigpending; /* How many pending signals does this user have? */
2d9048e2 822#ifdef CONFIG_INOTIFY_USER
0eeca283
RL
823 atomic_t inotify_watches; /* How many inotify watches does this user have? */
824 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
825#endif
4afeff85
EP
826#ifdef CONFIG_FANOTIFY
827 atomic_t fanotify_listeners;
828#endif
7ef9964e 829#ifdef CONFIG_EPOLL
52bd19f7 830 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
7ef9964e 831#endif
970a8645 832#ifdef CONFIG_POSIX_MQUEUE
1da177e4
LT
833 /* protected by mq_lock */
834 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
970a8645 835#endif
1da177e4 836 unsigned long locked_shm; /* How many pages of mlocked shm ? */
712f4aad 837 unsigned long unix_inflight; /* How many files in flight in unix sockets */
759c0114 838 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
1da177e4
LT
839
840#ifdef CONFIG_KEYS
841 struct key *uid_keyring; /* UID specific keyring */
842 struct key *session_keyring; /* UID's default session keyring */
843#endif
844
845 /* Hash table maintenance information */
735de223 846 struct hlist_node uidhash_node;
7b44ab97 847 kuid_t uid;
24e377a8 848
aaac3ba9 849#if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
789f90fc
PZ
850 atomic_long_t locked_vm;
851#endif
1da177e4
LT
852};
853
eb41d946 854extern int uids_sysfs_init(void);
5cb350ba 855
7b44ab97 856extern struct user_struct *find_user(kuid_t);
1da177e4
LT
857
858extern struct user_struct root_user;
859#define INIT_USER (&root_user)
860
b6dff3ec 861
1da177e4
LT
862struct backing_dev_info;
863struct reclaim_state;
864
f6db8347 865#ifdef CONFIG_SCHED_INFO
1da177e4
LT
866struct sched_info {
867 /* cumulative counters */
2d72376b 868 unsigned long pcount; /* # of times run on this cpu */
9c2c4802 869 unsigned long long run_delay; /* time spent waiting on a runqueue */
1da177e4
LT
870
871 /* timestamps */
172ba844
BS
872 unsigned long long last_arrival,/* when we last ran on a cpu */
873 last_queued; /* when we were last queued to run */
1da177e4 874};
f6db8347 875#endif /* CONFIG_SCHED_INFO */
1da177e4 876
ca74e92b
SN
877#ifdef CONFIG_TASK_DELAY_ACCT
878struct task_delay_info {
879 spinlock_t lock;
880 unsigned int flags; /* Private per-task flags */
881
882 /* For each stat XXX, add following, aligned appropriately
883 *
884 * struct timespec XXX_start, XXX_end;
885 * u64 XXX_delay;
886 * u32 XXX_count;
887 *
888 * Atomicity of updates to XXX_delay, XXX_count protected by
889 * single lock above (split into XXX_lock if contention is an issue).
890 */
0ff92245
SN
891
892 /*
893 * XXX_count is incremented on every XXX operation, the delay
894 * associated with the operation is added to XXX_delay.
895 * XXX_delay contains the accumulated delay time in nanoseconds.
896 */
9667a23d 897 u64 blkio_start; /* Shared by blkio, swapin */
0ff92245
SN
898 u64 blkio_delay; /* wait for sync block io completion */
899 u64 swapin_delay; /* wait for swapin block io completion */
900 u32 blkio_count; /* total count of the number of sync block */
901 /* io operations performed */
902 u32 swapin_count; /* total count of the number of swapin block */
903 /* io operations performed */
873b4771 904
9667a23d 905 u64 freepages_start;
873b4771
KK
906 u64 freepages_delay; /* wait for memory reclaim */
907 u32 freepages_count; /* total count of memory reclaim */
ca74e92b 908};
52f17b6c
CS
909#endif /* CONFIG_TASK_DELAY_ACCT */
910
911static inline int sched_info_on(void)
912{
913#ifdef CONFIG_SCHEDSTATS
914 return 1;
915#elif defined(CONFIG_TASK_DELAY_ACCT)
916 extern int delayacct_on;
917 return delayacct_on;
918#else
919 return 0;
ca74e92b 920#endif
52f17b6c 921}
ca74e92b 922
cb251765
MG
923#ifdef CONFIG_SCHEDSTATS
924void force_schedstat_enabled(void);
925#endif
926
d15bcfdb
IM
927enum cpu_idle_type {
928 CPU_IDLE,
929 CPU_NOT_IDLE,
930 CPU_NEWLY_IDLE,
931 CPU_MAX_IDLE_TYPES
1da177e4
LT
932};
933
1399fa78 934/*
ca8ce3d0 935 * Increase resolution of cpu_capacity calculations
1399fa78 936 */
ca8ce3d0
NP
937#define SCHED_CAPACITY_SHIFT 10
938#define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
1da177e4 939
76751049
PZ
940/*
941 * Wake-queues are lists of tasks with a pending wakeup, whose
942 * callers have already marked the task as woken internally,
943 * and can thus carry on. A common use case is being able to
944 * do the wakeups once the corresponding user lock as been
945 * released.
946 *
947 * We hold reference to each task in the list across the wakeup,
948 * thus guaranteeing that the memory is still valid by the time
949 * the actual wakeups are performed in wake_up_q().
950 *
951 * One per task suffices, because there's never a need for a task to be
952 * in two wake queues simultaneously; it is forbidden to abandon a task
953 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
954 * already in a wake queue, the wakeup will happen soon and the second
955 * waker can just skip it.
956 *
957 * The WAKE_Q macro declares and initializes the list head.
958 * wake_up_q() does NOT reinitialize the list; it's expected to be
959 * called near the end of a function, where the fact that the queue is
960 * not used again will be easy to see by inspection.
961 *
962 * Note that this can cause spurious wakeups. schedule() callers
963 * must ensure the call is done inside a loop, confirming that the
964 * wakeup condition has in fact occurred.
965 */
966struct wake_q_node {
967 struct wake_q_node *next;
968};
969
970struct wake_q_head {
971 struct wake_q_node *first;
972 struct wake_q_node **lastp;
973};
974
975#define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
976
977#define WAKE_Q(name) \
978 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
979
980extern void wake_q_add(struct wake_q_head *head,
981 struct task_struct *task);
982extern void wake_up_q(struct wake_q_head *head);
983
1399fa78
NR
984/*
985 * sched-domains (multiprocessor balancing) declarations:
986 */
2dd73a4f 987#ifdef CONFIG_SMP
b5d978e0
PZ
988#define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
989#define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
990#define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
991#define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
c88d5910 992#define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
b5d978e0 993#define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
5d4dfddd 994#define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
d77b3ed5 995#define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
b5d978e0
PZ
996#define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
997#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
532cb4c4 998#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
b5d978e0 999#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
e3589f6c 1000#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
3a7053b3 1001#define SD_NUMA 0x4000 /* cross-node balancing */
5c45bf27 1002
143e1e28 1003#ifdef CONFIG_SCHED_SMT
b6220ad6 1004static inline int cpu_smt_flags(void)
143e1e28 1005{
5d4dfddd 1006 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
143e1e28
VG
1007}
1008#endif
1009
1010#ifdef CONFIG_SCHED_MC
b6220ad6 1011static inline int cpu_core_flags(void)
143e1e28
VG
1012{
1013 return SD_SHARE_PKG_RESOURCES;
1014}
1015#endif
1016
1017#ifdef CONFIG_NUMA
b6220ad6 1018static inline int cpu_numa_flags(void)
143e1e28
VG
1019{
1020 return SD_NUMA;
1021}
1022#endif
532cb4c4 1023
1d3504fc
HS
1024struct sched_domain_attr {
1025 int relax_domain_level;
1026};
1027
1028#define SD_ATTR_INIT (struct sched_domain_attr) { \
1029 .relax_domain_level = -1, \
1030}
1031
60495e77
PZ
1032extern int sched_domain_level_max;
1033
5e6521ea
LZ
1034struct sched_group;
1035
1da177e4
LT
1036struct sched_domain {
1037 /* These fields must be setup */
1038 struct sched_domain *parent; /* top domain must be null terminated */
1a848870 1039 struct sched_domain *child; /* bottom domain must be null terminated */
1da177e4 1040 struct sched_group *groups; /* the balancing groups of the domain */
1da177e4
LT
1041 unsigned long min_interval; /* Minimum balance interval ms */
1042 unsigned long max_interval; /* Maximum balance interval ms */
1043 unsigned int busy_factor; /* less balancing by factor if busy */
1044 unsigned int imbalance_pct; /* No balance until over watermark */
1da177e4 1045 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
7897986b
NP
1046 unsigned int busy_idx;
1047 unsigned int idle_idx;
1048 unsigned int newidle_idx;
1049 unsigned int wake_idx;
147cbb4b 1050 unsigned int forkexec_idx;
a52bfd73 1051 unsigned int smt_gain;
25f55d9d
VG
1052
1053 int nohz_idle; /* NOHZ IDLE status */
1da177e4 1054 int flags; /* See SD_* */
60495e77 1055 int level;
1da177e4
LT
1056
1057 /* Runtime fields. */
1058 unsigned long last_balance; /* init to jiffies. units in jiffies */
1059 unsigned int balance_interval; /* initialise to 1. units in ms. */
1060 unsigned int nr_balance_failed; /* initialise to 0 */
1061
f48627e6 1062 /* idle_balance() stats */
9bd721c5 1063 u64 max_newidle_lb_cost;
f48627e6 1064 unsigned long next_decay_max_lb_cost;
2398f2c6 1065
1da177e4
LT
1066#ifdef CONFIG_SCHEDSTATS
1067 /* load_balance() stats */
480b9434
KC
1068 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1069 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1070 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1071 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1da177e4
LT
1076
1077 /* Active load balancing */
480b9434
KC
1078 unsigned int alb_count;
1079 unsigned int alb_failed;
1080 unsigned int alb_pushed;
1da177e4 1081
68767a0a 1082 /* SD_BALANCE_EXEC stats */
480b9434
KC
1083 unsigned int sbe_count;
1084 unsigned int sbe_balanced;
1085 unsigned int sbe_pushed;
1da177e4 1086
68767a0a 1087 /* SD_BALANCE_FORK stats */
480b9434
KC
1088 unsigned int sbf_count;
1089 unsigned int sbf_balanced;
1090 unsigned int sbf_pushed;
68767a0a 1091
1da177e4 1092 /* try_to_wake_up() stats */
480b9434
KC
1093 unsigned int ttwu_wake_remote;
1094 unsigned int ttwu_move_affine;
1095 unsigned int ttwu_move_balance;
1da177e4 1096#endif
a5d8c348
IM
1097#ifdef CONFIG_SCHED_DEBUG
1098 char *name;
1099#endif
dce840a0
PZ
1100 union {
1101 void *private; /* used during construction */
1102 struct rcu_head rcu; /* used during destruction */
1103 };
6c99e9ad 1104
669c55e9 1105 unsigned int span_weight;
4200efd9
IM
1106 /*
1107 * Span of all CPUs in this domain.
1108 *
1109 * NOTE: this field is variable length. (Allocated dynamically
1110 * by attaching extra space to the end of the structure,
1111 * depending on how many CPUs the kernel has booted up with)
4200efd9
IM
1112 */
1113 unsigned long span[0];
1da177e4
LT
1114};
1115
758b2cdc
RR
1116static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1117{
6c99e9ad 1118 return to_cpumask(sd->span);
758b2cdc
RR
1119}
1120
acc3f5d7 1121extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 1122 struct sched_domain_attr *dattr_new);
029190c5 1123
acc3f5d7
RR
1124/* Allocate an array of sched domains, for partition_sched_domains(). */
1125cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1126void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1127
39be3501
PZ
1128bool cpus_share_cache(int this_cpu, int that_cpu);
1129
143e1e28 1130typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
b6220ad6 1131typedef int (*sched_domain_flags_f)(void);
143e1e28
VG
1132
1133#define SDTL_OVERLAP 0x01
1134
1135struct sd_data {
1136 struct sched_domain **__percpu sd;
1137 struct sched_group **__percpu sg;
63b2ca30 1138 struct sched_group_capacity **__percpu sgc;
143e1e28
VG
1139};
1140
1141struct sched_domain_topology_level {
1142 sched_domain_mask_f mask;
1143 sched_domain_flags_f sd_flags;
1144 int flags;
1145 int numa_level;
1146 struct sd_data data;
1147#ifdef CONFIG_SCHED_DEBUG
1148 char *name;
1149#endif
1150};
1151
143e1e28 1152extern void set_sched_topology(struct sched_domain_topology_level *tl);
f6be8af1 1153extern void wake_up_if_idle(int cpu);
143e1e28
VG
1154
1155#ifdef CONFIG_SCHED_DEBUG
1156# define SD_INIT_NAME(type) .name = #type
1157#else
1158# define SD_INIT_NAME(type)
1159#endif
1160
1b427c15 1161#else /* CONFIG_SMP */
1da177e4 1162
1b427c15 1163struct sched_domain_attr;
d02c7a8c 1164
1b427c15 1165static inline void
acc3f5d7 1166partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1b427c15
IM
1167 struct sched_domain_attr *dattr_new)
1168{
d02c7a8c 1169}
39be3501
PZ
1170
1171static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1172{
1173 return true;
1174}
1175
1b427c15 1176#endif /* !CONFIG_SMP */
1da177e4 1177
47fe38fc 1178
1da177e4 1179struct io_context; /* See blkdev.h */
1da177e4 1180
1da177e4 1181
383f2835 1182#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
36c8b586 1183extern void prefetch_stack(struct task_struct *t);
383f2835
CK
1184#else
1185static inline void prefetch_stack(struct task_struct *t) { }
1186#endif
1da177e4
LT
1187
1188struct audit_context; /* See audit.c */
1189struct mempolicy;
b92ce558 1190struct pipe_inode_info;
4865ecf1 1191struct uts_namespace;
1da177e4 1192
20b8a59f 1193struct load_weight {
9dbdb155
PZ
1194 unsigned long weight;
1195 u32 inv_weight;
20b8a59f
IM
1196};
1197
9d89c257
YD
1198/*
1199 * The load_avg/util_avg accumulates an infinite geometric series.
e0f5f3af
DE
1200 * 1) load_avg factors frequency scaling into the amount of time that a
1201 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1202 * aggregated such weights of all runnable and blocked sched_entities.
e3279a2e 1203 * 2) util_avg factors frequency and cpu scaling into the amount of time
9d89c257
YD
1204 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1205 * For cfs_rq, it is the aggregated such times of all runnable and
1206 * blocked sched_entities.
1207 * The 64 bit load_sum can:
1208 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1209 * the highest weight (=88761) always runnable, we should not overflow
1210 * 2) for entity, support any load.weight always runnable
1211 */
9d85f21c 1212struct sched_avg {
9d89c257
YD
1213 u64 last_update_time, load_sum;
1214 u32 util_sum, period_contrib;
1215 unsigned long load_avg, util_avg;
9d85f21c
PT
1216};
1217
94c18227 1218#ifdef CONFIG_SCHEDSTATS
41acab88 1219struct sched_statistics {
20b8a59f 1220 u64 wait_start;
94c18227 1221 u64 wait_max;
6d082592
AV
1222 u64 wait_count;
1223 u64 wait_sum;
8f0dfc34
AV
1224 u64 iowait_count;
1225 u64 iowait_sum;
94c18227 1226
20b8a59f 1227 u64 sleep_start;
20b8a59f 1228 u64 sleep_max;
94c18227
IM
1229 s64 sum_sleep_runtime;
1230
1231 u64 block_start;
20b8a59f
IM
1232 u64 block_max;
1233 u64 exec_max;
eba1ed4b 1234 u64 slice_max;
cc367732 1235
cc367732
IM
1236 u64 nr_migrations_cold;
1237 u64 nr_failed_migrations_affine;
1238 u64 nr_failed_migrations_running;
1239 u64 nr_failed_migrations_hot;
1240 u64 nr_forced_migrations;
cc367732
IM
1241
1242 u64 nr_wakeups;
1243 u64 nr_wakeups_sync;
1244 u64 nr_wakeups_migrate;
1245 u64 nr_wakeups_local;
1246 u64 nr_wakeups_remote;
1247 u64 nr_wakeups_affine;
1248 u64 nr_wakeups_affine_attempts;
1249 u64 nr_wakeups_passive;
1250 u64 nr_wakeups_idle;
41acab88
LDM
1251};
1252#endif
1253
1254struct sched_entity {
1255 struct load_weight load; /* for load-balancing */
1256 struct rb_node run_node;
1257 struct list_head group_node;
1258 unsigned int on_rq;
1259
1260 u64 exec_start;
1261 u64 sum_exec_runtime;
1262 u64 vruntime;
1263 u64 prev_sum_exec_runtime;
1264
41acab88
LDM
1265 u64 nr_migrations;
1266
41acab88
LDM
1267#ifdef CONFIG_SCHEDSTATS
1268 struct sched_statistics statistics;
94c18227
IM
1269#endif
1270
20b8a59f 1271#ifdef CONFIG_FAIR_GROUP_SCHED
fed14d45 1272 int depth;
20b8a59f
IM
1273 struct sched_entity *parent;
1274 /* rq on which this entity is (to be) queued: */
1275 struct cfs_rq *cfs_rq;
1276 /* rq "owned" by this entity/group: */
1277 struct cfs_rq *my_q;
1278#endif
8bd75c77 1279
141965c7 1280#ifdef CONFIG_SMP
5a107804
JO
1281 /*
1282 * Per entity load average tracking.
1283 *
1284 * Put into separate cache line so it does not
1285 * collide with read-mostly values above.
1286 */
1287 struct sched_avg avg ____cacheline_aligned_in_smp;
9d85f21c 1288#endif
20b8a59f 1289};
70b97a7f 1290
fa717060
PZ
1291struct sched_rt_entity {
1292 struct list_head run_list;
78f2c7db 1293 unsigned long timeout;
57d2aa00 1294 unsigned long watchdog_stamp;
bee367ed 1295 unsigned int time_slice;
6f505b16 1296
58d6c2d7 1297 struct sched_rt_entity *back;
052f1dc7 1298#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
1299 struct sched_rt_entity *parent;
1300 /* rq on which this entity is (to be) queued: */
1301 struct rt_rq *rt_rq;
1302 /* rq "owned" by this entity/group: */
1303 struct rt_rq *my_q;
1304#endif
fa717060
PZ
1305};
1306
aab03e05
DF
1307struct sched_dl_entity {
1308 struct rb_node rb_node;
1309
1310 /*
1311 * Original scheduling parameters. Copied here from sched_attr
4027d080 1312 * during sched_setattr(), they will remain the same until
1313 * the next sched_setattr().
aab03e05
DF
1314 */
1315 u64 dl_runtime; /* maximum runtime for each instance */
1316 u64 dl_deadline; /* relative deadline of each instance */
755378a4 1317 u64 dl_period; /* separation of two instances (period) */
332ac17e 1318 u64 dl_bw; /* dl_runtime / dl_deadline */
aab03e05
DF
1319
1320 /*
1321 * Actual scheduling parameters. Initialized with the values above,
1322 * they are continously updated during task execution. Note that
1323 * the remaining runtime could be < 0 in case we are in overrun.
1324 */
1325 s64 runtime; /* remaining runtime for this instance */
1326 u64 deadline; /* absolute deadline for this instance */
1327 unsigned int flags; /* specifying the scheduler behaviour */
1328
1329 /*
1330 * Some bool flags:
1331 *
1332 * @dl_throttled tells if we exhausted the runtime. If so, the
1333 * task has to wait for a replenishment to be performed at the
1334 * next firing of dl_timer.
1335 *
1336 * @dl_new tells if a new instance arrived. If so we must
1337 * start executing it with full runtime and reset its absolute
1338 * deadline;
2d3d891d
DF
1339 *
1340 * @dl_boosted tells if we are boosted due to DI. If so we are
1341 * outside bandwidth enforcement mechanism (but only until we
5bfd126e
JL
1342 * exit the critical section);
1343 *
1344 * @dl_yielded tells if task gave up the cpu before consuming
1345 * all its available runtime during the last job.
aab03e05 1346 */
5bfd126e 1347 int dl_throttled, dl_new, dl_boosted, dl_yielded;
aab03e05
DF
1348
1349 /*
1350 * Bandwidth enforcement timer. Each -deadline task has its
1351 * own bandwidth to be enforced, thus we need one timer per task.
1352 */
1353 struct hrtimer dl_timer;
1354};
8bd75c77 1355
1d082fd0
PM
1356union rcu_special {
1357 struct {
8203d6d0
PM
1358 u8 blocked;
1359 u8 need_qs;
1360 u8 exp_need_qs;
1361 u8 pad; /* Otherwise the compiler can store garbage here. */
1362 } b; /* Bits. */
1363 u32 s; /* Set of bits. */
1d082fd0 1364};
86848966
PM
1365struct rcu_node;
1366
8dc85d54
PZ
1367enum perf_event_task_context {
1368 perf_invalid_context = -1,
1369 perf_hw_context = 0,
89a1e187 1370 perf_sw_context,
8dc85d54
PZ
1371 perf_nr_task_contexts,
1372};
1373
72b252ae
MG
1374/* Track pages that require TLB flushes */
1375struct tlbflush_unmap_batch {
1376 /*
1377 * Each bit set is a CPU that potentially has a TLB entry for one of
1378 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1379 */
1380 struct cpumask cpumask;
1381
1382 /* True if any bit in cpumask is set */
1383 bool flush_required;
d950c947
MG
1384
1385 /*
1386 * If true then the PTE was dirty when unmapped. The entry must be
1387 * flushed before IO is initiated or a stale TLB entry potentially
1388 * allows an update without redirtying the page.
1389 */
1390 bool writable;
72b252ae
MG
1391};
1392
1da177e4
LT
1393struct task_struct {
1394 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
f7e4217b 1395 void *stack;
1da177e4 1396 atomic_t usage;
97dc32cd
WC
1397 unsigned int flags; /* per process flags, defined below */
1398 unsigned int ptrace;
1da177e4 1399
2dd73a4f 1400#ifdef CONFIG_SMP
fa14ff4a 1401 struct llist_node wake_entry;
3ca7a440 1402 int on_cpu;
63b0e9ed 1403 unsigned int wakee_flips;
62470419 1404 unsigned long wakee_flip_decay_ts;
63b0e9ed 1405 struct task_struct *last_wakee;
ac66f547
PZ
1406
1407 int wake_cpu;
2dd73a4f 1408#endif
fd2f4419 1409 int on_rq;
50e645a8 1410
b29739f9 1411 int prio, static_prio, normal_prio;
c7aceaba 1412 unsigned int rt_priority;
5522d5d5 1413 const struct sched_class *sched_class;
20b8a59f 1414 struct sched_entity se;
fa717060 1415 struct sched_rt_entity rt;
8323f26c
PZ
1416#ifdef CONFIG_CGROUP_SCHED
1417 struct task_group *sched_task_group;
1418#endif
aab03e05 1419 struct sched_dl_entity dl;
1da177e4 1420
e107be36
AK
1421#ifdef CONFIG_PREEMPT_NOTIFIERS
1422 /* list of struct preempt_notifier: */
1423 struct hlist_head preempt_notifiers;
1424#endif
1425
6c5c9341 1426#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1427 unsigned int btrace_seq;
6c5c9341 1428#endif
1da177e4 1429
97dc32cd 1430 unsigned int policy;
29baa747 1431 int nr_cpus_allowed;
1da177e4 1432 cpumask_t cpus_allowed;
1da177e4 1433
a57eb940 1434#ifdef CONFIG_PREEMPT_RCU
e260be67 1435 int rcu_read_lock_nesting;
1d082fd0 1436 union rcu_special rcu_read_unlock_special;
f41d911f 1437 struct list_head rcu_node_entry;
a57eb940 1438 struct rcu_node *rcu_blocked_node;
28f6569a 1439#endif /* #ifdef CONFIG_PREEMPT_RCU */
8315f422
PM
1440#ifdef CONFIG_TASKS_RCU
1441 unsigned long rcu_tasks_nvcsw;
1442 bool rcu_tasks_holdout;
1443 struct list_head rcu_tasks_holdout_list;
176f8f7a 1444 int rcu_tasks_idle_cpu;
8315f422 1445#endif /* #ifdef CONFIG_TASKS_RCU */
e260be67 1446
f6db8347 1447#ifdef CONFIG_SCHED_INFO
1da177e4
LT
1448 struct sched_info sched_info;
1449#endif
1450
1451 struct list_head tasks;
806c09a7 1452#ifdef CONFIG_SMP
917b627d 1453 struct plist_node pushable_tasks;
1baca4ce 1454 struct rb_node pushable_dl_tasks;
806c09a7 1455#endif
1da177e4
LT
1456
1457 struct mm_struct *mm, *active_mm;
615d6e87
DB
1458 /* per-thread vma caching */
1459 u32 vmacache_seqnum;
1460 struct vm_area_struct *vmacache[VMACACHE_SIZE];
34e55232
KH
1461#if defined(SPLIT_RSS_COUNTING)
1462 struct task_rss_stat rss_stat;
1463#endif
1da177e4 1464/* task state */
97dc32cd 1465 int exit_state;
1da177e4
LT
1466 int exit_code, exit_signal;
1467 int pdeath_signal; /* The signal sent when the parent dies */
e7cc4173 1468 unsigned long jobctl; /* JOBCTL_*, siglock protected */
9b89f6ba
AE
1469
1470 /* Used for emulating ABI behavior of previous Linux versions */
97dc32cd 1471 unsigned int personality;
9b89f6ba 1472
be958bdc 1473 /* scheduler bits, serialized by scheduler locks */
ca94c442 1474 unsigned sched_reset_on_fork:1;
a8e4f2ea 1475 unsigned sched_contributes_to_load:1;
ff303e66 1476 unsigned sched_migrated:1;
be958bdc
PZ
1477 unsigned :0; /* force alignment to the next boundary */
1478
1479 /* unserialized, strictly 'current' */
1480 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1481 unsigned in_iowait:1;
626ebc41
TH
1482#ifdef CONFIG_MEMCG
1483 unsigned memcg_may_oom:1;
127424c8 1484#ifndef CONFIG_SLOB
6f185c29
VD
1485 unsigned memcg_kmem_skip_account:1;
1486#endif
127424c8 1487#endif
ff303e66
PZ
1488#ifdef CONFIG_COMPAT_BRK
1489 unsigned brk_randomized:1;
1490#endif
6f185c29 1491
1d4457f9
KC
1492 unsigned long atomic_flags; /* Flags needing atomic access. */
1493
f56141e3
AL
1494 struct restart_block restart_block;
1495
1da177e4
LT
1496 pid_t pid;
1497 pid_t tgid;
0a425405 1498
1314562a 1499#ifdef CONFIG_CC_STACKPROTECTOR
0a425405
AV
1500 /* Canary value for the -fstack-protector gcc feature */
1501 unsigned long stack_canary;
1314562a 1502#endif
4d1d61a6 1503 /*
1da177e4 1504 * pointers to (original) parent process, youngest child, younger sibling,
4d1d61a6 1505 * older sibling, respectively. (p->father can be replaced with
f470021a 1506 * p->real_parent->pid)
1da177e4 1507 */
abd63bc3
KC
1508 struct task_struct __rcu *real_parent; /* real parent process */
1509 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1da177e4 1510 /*
f470021a 1511 * children/sibling forms the list of my natural children
1da177e4
LT
1512 */
1513 struct list_head children; /* list of my children */
1514 struct list_head sibling; /* linkage in my parent's children list */
1515 struct task_struct *group_leader; /* threadgroup leader */
1516
f470021a
RM
1517 /*
1518 * ptraced is the list of tasks this task is using ptrace on.
1519 * This includes both natural children and PTRACE_ATTACH targets.
1520 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1521 */
1522 struct list_head ptraced;
1523 struct list_head ptrace_entry;
1524
1da177e4 1525 /* PID/PID hash table linkage. */
92476d7f 1526 struct pid_link pids[PIDTYPE_MAX];
47e65328 1527 struct list_head thread_group;
0c740d0a 1528 struct list_head thread_node;
1da177e4
LT
1529
1530 struct completion *vfork_done; /* for vfork() */
1531 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1532 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1533
c66f08be 1534 cputime_t utime, stime, utimescaled, stimescaled;
9ac52315 1535 cputime_t gtime;
9d7fb042 1536 struct prev_cputime prev_cputime;
6a61671b 1537#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
b7ce2277 1538 seqcount_t vtime_seqcount;
6a61671b
FW
1539 unsigned long long vtime_snap;
1540 enum {
7098c1ea
FW
1541 /* Task is sleeping or running in a CPU with VTIME inactive */
1542 VTIME_INACTIVE = 0,
1543 /* Task runs in userspace in a CPU with VTIME active */
6a61671b 1544 VTIME_USER,
7098c1ea 1545 /* Task runs in kernelspace in a CPU with VTIME active */
6a61671b
FW
1546 VTIME_SYS,
1547 } vtime_snap_whence;
d99ca3b9 1548#endif
1da177e4 1549 unsigned long nvcsw, nivcsw; /* context switch counts */
ccbf62d8 1550 u64 start_time; /* monotonic time in nsec */
57e0be04 1551 u64 real_start_time; /* boot based time in nsec */
1da177e4
LT
1552/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1553 unsigned long min_flt, maj_flt;
1554
f06febc9 1555 struct task_cputime cputime_expires;
1da177e4
LT
1556 struct list_head cpu_timers[3];
1557
1558/* process credentials */
1b0ba1c9 1559 const struct cred __rcu *real_cred; /* objective and real subjective task
3b11a1de 1560 * credentials (COW) */
1b0ba1c9 1561 const struct cred __rcu *cred; /* effective (overridable) subjective task
3b11a1de 1562 * credentials (COW) */
36772092
PBG
1563 char comm[TASK_COMM_LEN]; /* executable name excluding path
1564 - access with [gs]et_task_comm (which lock
1565 it with task_lock())
221af7f8 1566 - initialized normally by setup_new_exec */
1da177e4 1567/* file system info */
756daf26 1568 struct nameidata *nameidata;
3d5b6fcc 1569#ifdef CONFIG_SYSVIPC
1da177e4
LT
1570/* ipc stuff */
1571 struct sysv_sem sysvsem;
ab602f79 1572 struct sysv_shm sysvshm;
3d5b6fcc 1573#endif
e162b39a 1574#ifdef CONFIG_DETECT_HUNG_TASK
82a1fcb9 1575/* hung task detection */
82a1fcb9
IM
1576 unsigned long last_switch_count;
1577#endif
1da177e4
LT
1578/* filesystem information */
1579 struct fs_struct *fs;
1580/* open file information */
1581 struct files_struct *files;
1651e14e 1582/* namespaces */
ab516013 1583 struct nsproxy *nsproxy;
1da177e4
LT
1584/* signal handlers */
1585 struct signal_struct *signal;
1586 struct sighand_struct *sighand;
1587
1588 sigset_t blocked, real_blocked;
f3de272b 1589 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1da177e4
LT
1590 struct sigpending pending;
1591
1592 unsigned long sas_ss_sp;
1593 size_t sas_ss_size;
2e01fabe 1594
67d12145 1595 struct callback_head *task_works;
e73f8959 1596
1da177e4 1597 struct audit_context *audit_context;
bfef93a5 1598#ifdef CONFIG_AUDITSYSCALL
e1760bd5 1599 kuid_t loginuid;
4746ec5b 1600 unsigned int sessionid;
bfef93a5 1601#endif
932ecebb 1602 struct seccomp seccomp;
1da177e4
LT
1603
1604/* Thread group tracking */
1605 u32 parent_exec_id;
1606 u32 self_exec_id;
58568d2a
MX
1607/* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1608 * mempolicy */
1da177e4 1609 spinlock_t alloc_lock;
1da177e4 1610
b29739f9 1611 /* Protection of the PI data structures: */
1d615482 1612 raw_spinlock_t pi_lock;
b29739f9 1613
76751049
PZ
1614 struct wake_q_node wake_q;
1615
23f78d4a
IM
1616#ifdef CONFIG_RT_MUTEXES
1617 /* PI waiters blocked on a rt_mutex held by this task */
fb00aca4
PZ
1618 struct rb_root pi_waiters;
1619 struct rb_node *pi_waiters_leftmost;
23f78d4a
IM
1620 /* Deadlock detection and priority inheritance handling */
1621 struct rt_mutex_waiter *pi_blocked_on;
23f78d4a
IM
1622#endif
1623
408894ee
IM
1624#ifdef CONFIG_DEBUG_MUTEXES
1625 /* mutex deadlock detection */
1626 struct mutex_waiter *blocked_on;
1627#endif
de30a2b3
IM
1628#ifdef CONFIG_TRACE_IRQFLAGS
1629 unsigned int irq_events;
de30a2b3 1630 unsigned long hardirq_enable_ip;
de30a2b3 1631 unsigned long hardirq_disable_ip;
fa1452e8 1632 unsigned int hardirq_enable_event;
de30a2b3 1633 unsigned int hardirq_disable_event;
fa1452e8
HS
1634 int hardirqs_enabled;
1635 int hardirq_context;
de30a2b3 1636 unsigned long softirq_disable_ip;
de30a2b3 1637 unsigned long softirq_enable_ip;
fa1452e8 1638 unsigned int softirq_disable_event;
de30a2b3 1639 unsigned int softirq_enable_event;
fa1452e8 1640 int softirqs_enabled;
de30a2b3
IM
1641 int softirq_context;
1642#endif
fbb9ce95 1643#ifdef CONFIG_LOCKDEP
bdb9441e 1644# define MAX_LOCK_DEPTH 48UL
fbb9ce95
IM
1645 u64 curr_chain_key;
1646 int lockdep_depth;
fbb9ce95 1647 unsigned int lockdep_recursion;
c7aceaba 1648 struct held_lock held_locks[MAX_LOCK_DEPTH];
cf40bd16 1649 gfp_t lockdep_reclaim_gfp;
fbb9ce95 1650#endif
c6d30853
AR
1651#ifdef CONFIG_UBSAN
1652 unsigned int in_ubsan;
1653#endif
408894ee 1654
1da177e4
LT
1655/* journalling filesystem info */
1656 void *journal_info;
1657
d89d8796 1658/* stacked block device info */
bddd87c7 1659 struct bio_list *bio_list;
d89d8796 1660
73c10101
JA
1661#ifdef CONFIG_BLOCK
1662/* stack plugging */
1663 struct blk_plug *plug;
1664#endif
1665
1da177e4
LT
1666/* VM state */
1667 struct reclaim_state *reclaim_state;
1668
1da177e4
LT
1669 struct backing_dev_info *backing_dev_info;
1670
1671 struct io_context *io_context;
1672
1673 unsigned long ptrace_message;
1674 siginfo_t *last_siginfo; /* For ptrace use. */
7c3ab738 1675 struct task_io_accounting ioac;
8f0ab514 1676#if defined(CONFIG_TASK_XACCT)
1da177e4
LT
1677 u64 acct_rss_mem1; /* accumulated rss usage */
1678 u64 acct_vm_mem1; /* accumulated virtual memory usage */
49b5cf34 1679 cputime_t acct_timexpd; /* stime + utime since last update */
1da177e4
LT
1680#endif
1681#ifdef CONFIG_CPUSETS
58568d2a 1682 nodemask_t mems_allowed; /* Protected by alloc_lock */
cc9a6c87 1683 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
825a46af 1684 int cpuset_mem_spread_rotor;
6adef3eb 1685 int cpuset_slab_spread_rotor;
1da177e4 1686#endif
ddbcc7e8 1687#ifdef CONFIG_CGROUPS
817929ec 1688 /* Control Group info protected by css_set_lock */
2c392b8c 1689 struct css_set __rcu *cgroups;
817929ec
PM
1690 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1691 struct list_head cg_list;
ddbcc7e8 1692#endif
42b2dd0a 1693#ifdef CONFIG_FUTEX
0771dfef 1694 struct robust_list_head __user *robust_list;
34f192c6
IM
1695#ifdef CONFIG_COMPAT
1696 struct compat_robust_list_head __user *compat_robust_list;
1697#endif
c87e2837
IM
1698 struct list_head pi_state_list;
1699 struct futex_pi_state *pi_state_cache;
c7aceaba 1700#endif
cdd6c482 1701#ifdef CONFIG_PERF_EVENTS
8dc85d54 1702 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
cdd6c482
IM
1703 struct mutex perf_event_mutex;
1704 struct list_head perf_event_list;
a63eaf34 1705#endif
8f47b187
TG
1706#ifdef CONFIG_DEBUG_PREEMPT
1707 unsigned long preempt_disable_ip;
1708#endif
c7aceaba 1709#ifdef CONFIG_NUMA
58568d2a 1710 struct mempolicy *mempolicy; /* Protected by alloc_lock */
c7aceaba 1711 short il_next;
207205a2 1712 short pref_node_fork;
42b2dd0a 1713#endif
cbee9f88
PZ
1714#ifdef CONFIG_NUMA_BALANCING
1715 int numa_scan_seq;
cbee9f88 1716 unsigned int numa_scan_period;
598f0ec0 1717 unsigned int numa_scan_period_max;
de1c9ce6 1718 int numa_preferred_nid;
6b9a7460 1719 unsigned long numa_migrate_retry;
cbee9f88 1720 u64 node_stamp; /* migration stamp */
7e2703e6
RR
1721 u64 last_task_numa_placement;
1722 u64 last_sum_exec_runtime;
cbee9f88 1723 struct callback_head numa_work;
f809ca9a 1724
8c8a743c
PZ
1725 struct list_head numa_entry;
1726 struct numa_group *numa_group;
1727
745d6147 1728 /*
44dba3d5
IM
1729 * numa_faults is an array split into four regions:
1730 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1731 * in this precise order.
1732 *
1733 * faults_memory: Exponential decaying average of faults on a per-node
1734 * basis. Scheduling placement decisions are made based on these
1735 * counts. The values remain static for the duration of a PTE scan.
1736 * faults_cpu: Track the nodes the process was running on when a NUMA
1737 * hinting fault was incurred.
1738 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1739 * during the current scan window. When the scan completes, the counts
1740 * in faults_memory and faults_cpu decay and these values are copied.
745d6147 1741 */
44dba3d5 1742 unsigned long *numa_faults;
83e1d2cd 1743 unsigned long total_numa_faults;
745d6147 1744
04bb2f94
RR
1745 /*
1746 * numa_faults_locality tracks if faults recorded during the last
074c2381
MG
1747 * scan window were remote/local or failed to migrate. The task scan
1748 * period is adapted based on the locality of the faults with different
1749 * weights depending on whether they were shared or private faults
04bb2f94 1750 */
074c2381 1751 unsigned long numa_faults_locality[3];
04bb2f94 1752
b32e86b4 1753 unsigned long numa_pages_migrated;
cbee9f88
PZ
1754#endif /* CONFIG_NUMA_BALANCING */
1755
72b252ae
MG
1756#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1757 struct tlbflush_unmap_batch tlb_ubc;
1758#endif
1759
e56d0903 1760 struct rcu_head rcu;
b92ce558
JA
1761
1762 /*
1763 * cache last used pipe for splice
1764 */
1765 struct pipe_inode_info *splice_pipe;
5640f768
ED
1766
1767 struct page_frag task_frag;
1768
ca74e92b
SN
1769#ifdef CONFIG_TASK_DELAY_ACCT
1770 struct task_delay_info *delays;
f4f154fd
AM
1771#endif
1772#ifdef CONFIG_FAULT_INJECTION
1773 int make_it_fail;
ca74e92b 1774#endif
9d823e8f
WF
1775 /*
1776 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1777 * balance_dirty_pages() for some dirty throttling pause
1778 */
1779 int nr_dirtied;
1780 int nr_dirtied_pause;
83712358 1781 unsigned long dirty_paused_when; /* start of a write-and-pause period */
9d823e8f 1782
9745512c
AV
1783#ifdef CONFIG_LATENCYTOP
1784 int latency_record_count;
1785 struct latency_record latency_record[LT_SAVECOUNT];
1786#endif
6976675d
AV
1787 /*
1788 * time slack values; these are used to round up poll() and
1789 * select() etc timeout values. These are in nanoseconds.
1790 */
1791 unsigned long timer_slack_ns;
1792 unsigned long default_timer_slack_ns;
f8d570a4 1793
0b24becc
AR
1794#ifdef CONFIG_KASAN
1795 unsigned int kasan_depth;
1796#endif
fb52607a 1797#ifdef CONFIG_FUNCTION_GRAPH_TRACER
3ad2f3fb 1798 /* Index of current stored address in ret_stack */
f201ae23
FW
1799 int curr_ret_stack;
1800 /* Stack of return addresses for return function tracing */
1801 struct ftrace_ret_stack *ret_stack;
8aef2d28
SR
1802 /* time stamp for last schedule */
1803 unsigned long long ftrace_timestamp;
f201ae23
FW
1804 /*
1805 * Number of functions that haven't been traced
1806 * because of depth overrun.
1807 */
1808 atomic_t trace_overrun;
380c4b14
FW
1809 /* Pause for the tracing */
1810 atomic_t tracing_graph_pause;
f201ae23 1811#endif
ea4e2bc4
SR
1812#ifdef CONFIG_TRACING
1813 /* state flags for use by tracers */
1814 unsigned long trace;
b1cff0ad 1815 /* bitmask and counter of trace recursion */
261842b7
SR
1816 unsigned long trace_recursion;
1817#endif /* CONFIG_TRACING */
6f185c29 1818#ifdef CONFIG_MEMCG
626ebc41
TH
1819 struct mem_cgroup *memcg_in_oom;
1820 gfp_t memcg_oom_gfp_mask;
1821 int memcg_oom_order;
b23afb93
TH
1822
1823 /* number of pages to reclaim on returning to userland */
1824 unsigned int memcg_nr_pages_over_high;
569b846d 1825#endif
0326f5a9
SD
1826#ifdef CONFIG_UPROBES
1827 struct uprobe_task *utask;
0326f5a9 1828#endif
cafe5635
KO
1829#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1830 unsigned int sequential_io;
1831 unsigned int sequential_io_avg;
1832#endif
8eb23b9f
PZ
1833#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1834 unsigned long task_state_change;
1835#endif
8bcbde54 1836 int pagefault_disabled;
0c8c0f03
DH
1837/* CPU-specific state of this task */
1838 struct thread_struct thread;
1839/*
1840 * WARNING: on x86, 'thread_struct' contains a variable-sized
1841 * structure. It *MUST* be at the end of 'task_struct'.
1842 *
1843 * Do not put anything below here!
1844 */
1da177e4
LT
1845};
1846
5aaeb5c0
IM
1847#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1848extern int arch_task_struct_size __read_mostly;
1849#else
1850# define arch_task_struct_size (sizeof(struct task_struct))
1851#endif
0c8c0f03 1852
76e6eee0 1853/* Future-safe accessor for struct task_struct's cpus_allowed. */
a4636818 1854#define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
76e6eee0 1855
6688cc05
PZ
1856#define TNF_MIGRATED 0x01
1857#define TNF_NO_GROUP 0x02
dabe1d99 1858#define TNF_SHARED 0x04
04bb2f94 1859#define TNF_FAULT_LOCAL 0x08
074c2381 1860#define TNF_MIGRATE_FAIL 0x10
6688cc05 1861
cbee9f88 1862#ifdef CONFIG_NUMA_BALANCING
6688cc05 1863extern void task_numa_fault(int last_node, int node, int pages, int flags);
e29cf08b 1864extern pid_t task_numa_group_id(struct task_struct *p);
1a687c2e 1865extern void set_numabalancing_state(bool enabled);
82727018 1866extern void task_numa_free(struct task_struct *p);
10f39042
RR
1867extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1868 int src_nid, int dst_cpu);
cbee9f88 1869#else
ac8e895b 1870static inline void task_numa_fault(int last_node, int node, int pages,
6688cc05 1871 int flags)
cbee9f88
PZ
1872{
1873}
e29cf08b
MG
1874static inline pid_t task_numa_group_id(struct task_struct *p)
1875{
1876 return 0;
1877}
1a687c2e
MG
1878static inline void set_numabalancing_state(bool enabled)
1879{
1880}
82727018
RR
1881static inline void task_numa_free(struct task_struct *p)
1882{
1883}
10f39042
RR
1884static inline bool should_numa_migrate_memory(struct task_struct *p,
1885 struct page *page, int src_nid, int dst_cpu)
1886{
1887 return true;
1888}
cbee9f88
PZ
1889#endif
1890
e868171a 1891static inline struct pid *task_pid(struct task_struct *task)
22c935f4
EB
1892{
1893 return task->pids[PIDTYPE_PID].pid;
1894}
1895
e868171a 1896static inline struct pid *task_tgid(struct task_struct *task)
22c935f4
EB
1897{
1898 return task->group_leader->pids[PIDTYPE_PID].pid;
1899}
1900
6dda81f4
ON
1901/*
1902 * Without tasklist or rcu lock it is not safe to dereference
1903 * the result of task_pgrp/task_session even if task == current,
1904 * we can race with another thread doing sys_setsid/sys_setpgid.
1905 */
e868171a 1906static inline struct pid *task_pgrp(struct task_struct *task)
22c935f4
EB
1907{
1908 return task->group_leader->pids[PIDTYPE_PGID].pid;
1909}
1910
e868171a 1911static inline struct pid *task_session(struct task_struct *task)
22c935f4
EB
1912{
1913 return task->group_leader->pids[PIDTYPE_SID].pid;
1914}
1915
7af57294
PE
1916struct pid_namespace;
1917
1918/*
1919 * the helpers to get the task's different pids as they are seen
1920 * from various namespaces
1921 *
1922 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
44c4e1b2
EB
1923 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1924 * current.
7af57294
PE
1925 * task_xid_nr_ns() : id seen from the ns specified;
1926 *
1927 * set_task_vxid() : assigns a virtual id to a task;
1928 *
7af57294
PE
1929 * see also pid_nr() etc in include/linux/pid.h
1930 */
52ee2dfd
ON
1931pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1932 struct pid_namespace *ns);
7af57294 1933
e868171a 1934static inline pid_t task_pid_nr(struct task_struct *tsk)
7af57294
PE
1935{
1936 return tsk->pid;
1937}
1938
52ee2dfd
ON
1939static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1940 struct pid_namespace *ns)
1941{
1942 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1943}
7af57294
PE
1944
1945static inline pid_t task_pid_vnr(struct task_struct *tsk)
1946{
52ee2dfd 1947 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
7af57294
PE
1948}
1949
1950
e868171a 1951static inline pid_t task_tgid_nr(struct task_struct *tsk)
7af57294
PE
1952{
1953 return tsk->tgid;
1954}
1955
2f2a3a46 1956pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
7af57294
PE
1957
1958static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1959{
1960 return pid_vnr(task_tgid(tsk));
1961}
1962
1963
80e0b6e8 1964static inline int pid_alive(const struct task_struct *p);
ad36d282
RGB
1965static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1966{
1967 pid_t pid = 0;
1968
1969 rcu_read_lock();
1970 if (pid_alive(tsk))
1971 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1972 rcu_read_unlock();
1973
1974 return pid;
1975}
1976
1977static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1978{
1979 return task_ppid_nr_ns(tsk, &init_pid_ns);
1980}
1981
52ee2dfd
ON
1982static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
1983 struct pid_namespace *ns)
7af57294 1984{
52ee2dfd 1985 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
7af57294
PE
1986}
1987
7af57294
PE
1988static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1989{
52ee2dfd 1990 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
7af57294
PE
1991}
1992
1993
52ee2dfd
ON
1994static inline pid_t task_session_nr_ns(struct task_struct *tsk,
1995 struct pid_namespace *ns)
7af57294 1996{
52ee2dfd 1997 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
7af57294
PE
1998}
1999
7af57294
PE
2000static inline pid_t task_session_vnr(struct task_struct *tsk)
2001{
52ee2dfd 2002 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
7af57294
PE
2003}
2004
1b0f7ffd
ON
2005/* obsolete, do not use */
2006static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2007{
2008 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2009}
7af57294 2010
1da177e4
LT
2011/**
2012 * pid_alive - check that a task structure is not stale
2013 * @p: Task structure to be checked.
2014 *
2015 * Test if a process is not yet dead (at most zombie state)
2016 * If pid_alive fails, then pointers within the task structure
2017 * can be stale and must not be dereferenced.
e69f6186
YB
2018 *
2019 * Return: 1 if the process is alive. 0 otherwise.
1da177e4 2020 */
ad36d282 2021static inline int pid_alive(const struct task_struct *p)
1da177e4 2022{
92476d7f 2023 return p->pids[PIDTYPE_PID].pid != NULL;
1da177e4
LT
2024}
2025
f400e198 2026/**
570f5241
SS
2027 * is_global_init - check if a task structure is init. Since init
2028 * is free to have sub-threads we need to check tgid.
3260259f
H
2029 * @tsk: Task structure to be checked.
2030 *
2031 * Check if a task structure is the first user space task the kernel created.
e69f6186
YB
2032 *
2033 * Return: 1 if the task structure is init. 0 otherwise.
b460cbc5 2034 */
e868171a 2035static inline int is_global_init(struct task_struct *tsk)
b461cc03 2036{
570f5241 2037 return task_tgid_nr(tsk) == 1;
b461cc03 2038}
b460cbc5 2039
9ec52099
CLG
2040extern struct pid *cad_pid;
2041
1da177e4 2042extern void free_task(struct task_struct *tsk);
1da177e4 2043#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
e56d0903 2044
158d9ebd 2045extern void __put_task_struct(struct task_struct *t);
e56d0903
IM
2046
2047static inline void put_task_struct(struct task_struct *t)
2048{
2049 if (atomic_dec_and_test(&t->usage))
8c7904a0 2050 __put_task_struct(t);
e56d0903 2051}
1da177e4 2052
6a61671b
FW
2053#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2054extern void task_cputime(struct task_struct *t,
2055 cputime_t *utime, cputime_t *stime);
2056extern void task_cputime_scaled(struct task_struct *t,
2057 cputime_t *utimescaled, cputime_t *stimescaled);
2058extern cputime_t task_gtime(struct task_struct *t);
2059#else
6fac4829
FW
2060static inline void task_cputime(struct task_struct *t,
2061 cputime_t *utime, cputime_t *stime)
2062{
2063 if (utime)
2064 *utime = t->utime;
2065 if (stime)
2066 *stime = t->stime;
2067}
2068
2069static inline void task_cputime_scaled(struct task_struct *t,
2070 cputime_t *utimescaled,
2071 cputime_t *stimescaled)
2072{
2073 if (utimescaled)
2074 *utimescaled = t->utimescaled;
2075 if (stimescaled)
2076 *stimescaled = t->stimescaled;
2077}
6a61671b
FW
2078
2079static inline cputime_t task_gtime(struct task_struct *t)
2080{
2081 return t->gtime;
2082}
2083#endif
e80d0a1a
FW
2084extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2085extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
49048622 2086
1da177e4
LT
2087/*
2088 * Per process flags
2089 */
1da177e4 2090#define PF_EXITING 0x00000004 /* getting shut down */
778e9a9c 2091#define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
94886b84 2092#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
21aa9af0 2093#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1da177e4 2094#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
4db96cf0 2095#define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
1da177e4
LT
2096#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2097#define PF_DUMPCORE 0x00000200 /* dumped core */
2098#define PF_SIGNALED 0x00000400 /* killed by a signal */
2099#define PF_MEMALLOC 0x00000800 /* Allocating memory */
72fa5997 2100#define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
1da177e4 2101#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
774a1221 2102#define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
1da177e4
LT
2103#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2104#define PF_FROZEN 0x00010000 /* frozen for system suspend */
2105#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2106#define PF_KSWAPD 0x00040000 /* I am kswapd */
21caf2fc 2107#define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
1da177e4 2108#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
246bb0b1 2109#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
b31dc66a
JA
2110#define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2111#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
14a40ffc 2112#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
4db96cf0 2113#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
61a87122 2114#define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
58a69cb4 2115#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2b44c4db 2116#define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
1da177e4
LT
2117
2118/*
2119 * Only the _current_ task can read/write to tsk->flags, but other
2120 * tasks can access tsk->flags in readonly mode for example
2121 * with tsk_used_math (like during threaded core dumping).
2122 * There is however an exception to this rule during ptrace
2123 * or during fork: the ptracer task is allowed to write to the
2124 * child->flags of its traced child (same goes for fork, the parent
2125 * can write to the child->flags), because we're guaranteed the
2126 * child is not running and in turn not changing child->flags
2127 * at the same time the parent does it.
2128 */
2129#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2130#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2131#define clear_used_math() clear_stopped_child_used_math(current)
2132#define set_used_math() set_stopped_child_used_math(current)
2133#define conditional_stopped_child_used_math(condition, child) \
2134 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2135#define conditional_used_math(condition) \
2136 conditional_stopped_child_used_math(condition, current)
2137#define copy_to_stopped_child_used_math(child) \
2138 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2139/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2140#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2141#define used_math() tsk_used_math(current)
2142
934f3072
JB
2143/* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2144 * __GFP_FS is also cleared as it implies __GFP_IO.
2145 */
21caf2fc
ML
2146static inline gfp_t memalloc_noio_flags(gfp_t flags)
2147{
2148 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
934f3072 2149 flags &= ~(__GFP_IO | __GFP_FS);
21caf2fc
ML
2150 return flags;
2151}
2152
2153static inline unsigned int memalloc_noio_save(void)
2154{
2155 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2156 current->flags |= PF_MEMALLOC_NOIO;
2157 return flags;
2158}
2159
2160static inline void memalloc_noio_restore(unsigned int flags)
2161{
2162 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2163}
2164
1d4457f9 2165/* Per-process atomic flags. */
a2b86f77 2166#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2ad654bc
ZL
2167#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2168#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2169
1d4457f9 2170
e0e5070b
ZL
2171#define TASK_PFA_TEST(name, func) \
2172 static inline bool task_##func(struct task_struct *p) \
2173 { return test_bit(PFA_##name, &p->atomic_flags); }
2174#define TASK_PFA_SET(name, func) \
2175 static inline void task_set_##func(struct task_struct *p) \
2176 { set_bit(PFA_##name, &p->atomic_flags); }
2177#define TASK_PFA_CLEAR(name, func) \
2178 static inline void task_clear_##func(struct task_struct *p) \
2179 { clear_bit(PFA_##name, &p->atomic_flags); }
2180
2181TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2182TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1d4457f9 2183
2ad654bc
ZL
2184TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2185TASK_PFA_SET(SPREAD_PAGE, spread_page)
2186TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2187
2188TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2189TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2190TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1d4457f9 2191
e5c1902e 2192/*
a8f072c1 2193 * task->jobctl flags
e5c1902e 2194 */
a8f072c1 2195#define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
e5c1902e 2196
a8f072c1
TH
2197#define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2198#define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2199#define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
73ddff2b 2200#define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
fb1d910c 2201#define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
a8f072c1 2202#define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
544b2c91 2203#define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
a8f072c1 2204
b76808e6
PD
2205#define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2206#define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2207#define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2208#define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2209#define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2210#define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2211#define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
a8f072c1 2212
fb1d910c 2213#define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
73ddff2b 2214#define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
3759a0d9 2215
7dd3db54 2216extern bool task_set_jobctl_pending(struct task_struct *task,
b76808e6 2217 unsigned long mask);
73ddff2b 2218extern void task_clear_jobctl_trapping(struct task_struct *task);
3759a0d9 2219extern void task_clear_jobctl_pending(struct task_struct *task,
b76808e6 2220 unsigned long mask);
39efa3ef 2221
f41d911f
PM
2222static inline void rcu_copy_process(struct task_struct *p)
2223{
8315f422 2224#ifdef CONFIG_PREEMPT_RCU
f41d911f 2225 p->rcu_read_lock_nesting = 0;
1d082fd0 2226 p->rcu_read_unlock_special.s = 0;
dd5d19ba 2227 p->rcu_blocked_node = NULL;
f41d911f 2228 INIT_LIST_HEAD(&p->rcu_node_entry);
8315f422
PM
2229#endif /* #ifdef CONFIG_PREEMPT_RCU */
2230#ifdef CONFIG_TASKS_RCU
2231 p->rcu_tasks_holdout = false;
2232 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
176f8f7a 2233 p->rcu_tasks_idle_cpu = -1;
8315f422 2234#endif /* #ifdef CONFIG_TASKS_RCU */
f41d911f
PM
2235}
2236
907aed48
MG
2237static inline void tsk_restore_flags(struct task_struct *task,
2238 unsigned long orig_flags, unsigned long flags)
2239{
2240 task->flags &= ~flags;
2241 task->flags |= orig_flags & flags;
2242}
2243
f82f8042
JL
2244extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2245 const struct cpumask *trial);
7f51412a
JL
2246extern int task_can_attach(struct task_struct *p,
2247 const struct cpumask *cs_cpus_allowed);
1da177e4 2248#ifdef CONFIG_SMP
1e1b6c51
KM
2249extern void do_set_cpus_allowed(struct task_struct *p,
2250 const struct cpumask *new_mask);
2251
cd8ba7cd 2252extern int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2253 const struct cpumask *new_mask);
1da177e4 2254#else
1e1b6c51
KM
2255static inline void do_set_cpus_allowed(struct task_struct *p,
2256 const struct cpumask *new_mask)
2257{
2258}
cd8ba7cd 2259static inline int set_cpus_allowed_ptr(struct task_struct *p,
96f874e2 2260 const struct cpumask *new_mask)
1da177e4 2261{
96f874e2 2262 if (!cpumask_test_cpu(0, new_mask))
1da177e4
LT
2263 return -EINVAL;
2264 return 0;
2265}
2266#endif
e0ad9556 2267
3451d024 2268#ifdef CONFIG_NO_HZ_COMMON
5167e8d5
PZ
2269void calc_load_enter_idle(void);
2270void calc_load_exit_idle(void);
2271#else
2272static inline void calc_load_enter_idle(void) { }
2273static inline void calc_load_exit_idle(void) { }
3451d024 2274#endif /* CONFIG_NO_HZ_COMMON */
5167e8d5 2275
b342501c 2276/*
c676329a
PZ
2277 * Do not use outside of architecture code which knows its limitations.
2278 *
2279 * sched_clock() has no promise of monotonicity or bounded drift between
2280 * CPUs, use (which you should not) requires disabling IRQs.
2281 *
2282 * Please use one of the three interfaces below.
b342501c 2283 */
1bbfa6f2 2284extern unsigned long long notrace sched_clock(void);
c676329a 2285/*
489a71b0 2286 * See the comment in kernel/sched/clock.c
c676329a
PZ
2287 */
2288extern u64 cpu_clock(int cpu);
2289extern u64 local_clock(void);
545a2bf7 2290extern u64 running_clock(void);
c676329a
PZ
2291extern u64 sched_clock_cpu(int cpu);
2292
e436d800 2293
c1955a3d 2294extern void sched_clock_init(void);
3e51f33f 2295
c1955a3d 2296#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3e51f33f
PZ
2297static inline void sched_clock_tick(void)
2298{
2299}
2300
2301static inline void sched_clock_idle_sleep_event(void)
2302{
2303}
2304
2305static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2306{
2307}
2308#else
c676329a
PZ
2309/*
2310 * Architectures can set this to 1 if they have specified
2311 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2312 * but then during bootup it turns out that sched_clock()
2313 * is reliable after all:
2314 */
35af99e6
PZ
2315extern int sched_clock_stable(void);
2316extern void set_sched_clock_stable(void);
2317extern void clear_sched_clock_stable(void);
c676329a 2318
3e51f33f
PZ
2319extern void sched_clock_tick(void);
2320extern void sched_clock_idle_sleep_event(void);
2321extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2322#endif
2323
b52bfee4
VP
2324#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2325/*
2326 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2327 * The reason for this explicit opt-in is not to have perf penalty with
2328 * slow sched_clocks.
2329 */
2330extern void enable_sched_clock_irqtime(void);
2331extern void disable_sched_clock_irqtime(void);
2332#else
2333static inline void enable_sched_clock_irqtime(void) {}
2334static inline void disable_sched_clock_irqtime(void) {}
2335#endif
2336
36c8b586 2337extern unsigned long long
41b86e9c 2338task_sched_runtime(struct task_struct *task);
1da177e4
LT
2339
2340/* sched_exec is called by processes performing an exec */
2341#ifdef CONFIG_SMP
2342extern void sched_exec(void);
2343#else
2344#define sched_exec() {}
2345#endif
2346
2aa44d05
IM
2347extern void sched_clock_idle_sleep_event(void);
2348extern void sched_clock_idle_wakeup_event(u64 delta_ns);
bb29ab26 2349
1da177e4
LT
2350#ifdef CONFIG_HOTPLUG_CPU
2351extern void idle_task_exit(void);
2352#else
2353static inline void idle_task_exit(void) {}
2354#endif
2355
3451d024 2356#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
1c20091e 2357extern void wake_up_nohz_cpu(int cpu);
06d8308c 2358#else
1c20091e 2359static inline void wake_up_nohz_cpu(int cpu) { }
06d8308c
TG
2360#endif
2361
ce831b38
FW
2362#ifdef CONFIG_NO_HZ_FULL
2363extern bool sched_can_stop_tick(void);
265f22a9 2364extern u64 scheduler_tick_max_deferment(void);
ce831b38
FW
2365#else
2366static inline bool sched_can_stop_tick(void) { return false; }
06d8308c
TG
2367#endif
2368
5091faa4 2369#ifdef CONFIG_SCHED_AUTOGROUP
5091faa4
MG
2370extern void sched_autogroup_create_attach(struct task_struct *p);
2371extern void sched_autogroup_detach(struct task_struct *p);
2372extern void sched_autogroup_fork(struct signal_struct *sig);
2373extern void sched_autogroup_exit(struct signal_struct *sig);
2374#ifdef CONFIG_PROC_FS
2375extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2e5b5b3a 2376extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
5091faa4
MG
2377#endif
2378#else
2379static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2380static inline void sched_autogroup_detach(struct task_struct *p) { }
2381static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2382static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2383#endif
2384
fa93384f 2385extern int yield_to(struct task_struct *p, bool preempt);
36c8b586
IM
2386extern void set_user_nice(struct task_struct *p, long nice);
2387extern int task_prio(const struct task_struct *p);
d0ea0268
DY
2388/**
2389 * task_nice - return the nice value of a given task.
2390 * @p: the task in question.
2391 *
2392 * Return: The nice value [ -20 ... 0 ... 19 ].
2393 */
2394static inline int task_nice(const struct task_struct *p)
2395{
2396 return PRIO_TO_NICE((p)->static_prio);
2397}
36c8b586
IM
2398extern int can_nice(const struct task_struct *p, const int nice);
2399extern int task_curr(const struct task_struct *p);
1da177e4 2400extern int idle_cpu(int cpu);
fe7de49f
KM
2401extern int sched_setscheduler(struct task_struct *, int,
2402 const struct sched_param *);
961ccddd 2403extern int sched_setscheduler_nocheck(struct task_struct *, int,
fe7de49f 2404 const struct sched_param *);
d50dde5a
DF
2405extern int sched_setattr(struct task_struct *,
2406 const struct sched_attr *);
36c8b586 2407extern struct task_struct *idle_task(int cpu);
c4f30608
PM
2408/**
2409 * is_idle_task - is the specified task an idle task?
fa757281 2410 * @p: the task in question.
e69f6186
YB
2411 *
2412 * Return: 1 if @p is an idle task. 0 otherwise.
c4f30608 2413 */
7061ca3b 2414static inline bool is_idle_task(const struct task_struct *p)
c4f30608
PM
2415{
2416 return p->pid == 0;
2417}
36c8b586
IM
2418extern struct task_struct *curr_task(int cpu);
2419extern void set_curr_task(int cpu, struct task_struct *p);
1da177e4
LT
2420
2421void yield(void);
2422
1da177e4
LT
2423union thread_union {
2424 struct thread_info thread_info;
2425 unsigned long stack[THREAD_SIZE/sizeof(long)];
2426};
2427
2428#ifndef __HAVE_ARCH_KSTACK_END
2429static inline int kstack_end(void *addr)
2430{
2431 /* Reliable end of stack detection:
2432 * Some APM bios versions misalign the stack
2433 */
2434 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2435}
2436#endif
2437
2438extern union thread_union init_thread_union;
2439extern struct task_struct init_task;
2440
2441extern struct mm_struct init_mm;
2442
198fe21b
PE
2443extern struct pid_namespace init_pid_ns;
2444
2445/*
2446 * find a task by one of its numerical ids
2447 *
198fe21b
PE
2448 * find_task_by_pid_ns():
2449 * finds a task by its pid in the specified namespace
228ebcbe
PE
2450 * find_task_by_vpid():
2451 * finds a task by its virtual pid
198fe21b 2452 *
e49859e7 2453 * see also find_vpid() etc in include/linux/pid.h
198fe21b
PE
2454 */
2455
228ebcbe
PE
2456extern struct task_struct *find_task_by_vpid(pid_t nr);
2457extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2458 struct pid_namespace *ns);
198fe21b 2459
1da177e4 2460/* per-UID process charging. */
7b44ab97 2461extern struct user_struct * alloc_uid(kuid_t);
1da177e4
LT
2462static inline struct user_struct *get_uid(struct user_struct *u)
2463{
2464 atomic_inc(&u->__count);
2465 return u;
2466}
2467extern void free_uid(struct user_struct *);
1da177e4
LT
2468
2469#include <asm/current.h>
2470
f0af911a 2471extern void xtime_update(unsigned long ticks);
1da177e4 2472
b3c97528
HH
2473extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2474extern int wake_up_process(struct task_struct *tsk);
3e51e3ed 2475extern void wake_up_new_task(struct task_struct *tsk);
1da177e4
LT
2476#ifdef CONFIG_SMP
2477 extern void kick_process(struct task_struct *tsk);
2478#else
2479 static inline void kick_process(struct task_struct *tsk) { }
2480#endif
aab03e05 2481extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
ad46c2c4 2482extern void sched_dead(struct task_struct *p);
1da177e4 2483
1da177e4
LT
2484extern void proc_caches_init(void);
2485extern void flush_signals(struct task_struct *);
10ab825b 2486extern void ignore_signals(struct task_struct *);
1da177e4
LT
2487extern void flush_signal_handlers(struct task_struct *, int force_default);
2488extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2489
be0e6f29 2490static inline int kernel_dequeue_signal(siginfo_t *info)
1da177e4 2491{
be0e6f29
ON
2492 struct task_struct *tsk = current;
2493 siginfo_t __info;
1da177e4
LT
2494 int ret;
2495
be0e6f29
ON
2496 spin_lock_irq(&tsk->sighand->siglock);
2497 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2498 spin_unlock_irq(&tsk->sighand->siglock);
1da177e4
LT
2499
2500 return ret;
53c8f9f1 2501}
1da177e4 2502
9a13049e
ON
2503static inline void kernel_signal_stop(void)
2504{
2505 spin_lock_irq(&current->sighand->siglock);
2506 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2507 __set_current_state(TASK_STOPPED);
2508 spin_unlock_irq(&current->sighand->siglock);
2509
2510 schedule();
2511}
2512
1da177e4
LT
2513extern void release_task(struct task_struct * p);
2514extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1da177e4
LT
2515extern int force_sigsegv(int, struct task_struct *);
2516extern int force_sig_info(int, struct siginfo *, struct task_struct *);
c4b92fc1 2517extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
c4b92fc1 2518extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
d178bc3a
SH
2519extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2520 const struct cred *, u32);
c4b92fc1
EB
2521extern int kill_pgrp(struct pid *pid, int sig, int priv);
2522extern int kill_pid(struct pid *pid, int sig, int priv);
c3de4b38 2523extern int kill_proc_info(int, struct siginfo *, pid_t);
86773473 2524extern __must_check bool do_notify_parent(struct task_struct *, int);
a7f0765e 2525extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
1da177e4 2526extern void force_sig(int, struct task_struct *);
1da177e4 2527extern int send_sig(int, struct task_struct *, int);
09faef11 2528extern int zap_other_threads(struct task_struct *p);
1da177e4
LT
2529extern struct sigqueue *sigqueue_alloc(void);
2530extern void sigqueue_free(struct sigqueue *);
ac5c2153 2531extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
9ac95f2f 2532extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1da177e4 2533
51a7b448
AV
2534static inline void restore_saved_sigmask(void)
2535{
2536 if (test_and_clear_restore_sigmask())
77097ae5 2537 __set_current_blocked(&current->saved_sigmask);
51a7b448
AV
2538}
2539
b7f9a11a
AV
2540static inline sigset_t *sigmask_to_save(void)
2541{
2542 sigset_t *res = &current->blocked;
2543 if (unlikely(test_restore_sigmask()))
2544 res = &current->saved_sigmask;
2545 return res;
2546}
2547
9ec52099
CLG
2548static inline int kill_cad_pid(int sig, int priv)
2549{
2550 return kill_pid(cad_pid, sig, priv);
2551}
2552
1da177e4
LT
2553/* These can be the second arg to send_sig_info/send_group_sig_info. */
2554#define SEND_SIG_NOINFO ((struct siginfo *) 0)
2555#define SEND_SIG_PRIV ((struct siginfo *) 1)
2556#define SEND_SIG_FORCED ((struct siginfo *) 2)
2557
2a855dd0
SAS
2558/*
2559 * True if we are on the alternate signal stack.
2560 */
1da177e4
LT
2561static inline int on_sig_stack(unsigned long sp)
2562{
2a855dd0
SAS
2563#ifdef CONFIG_STACK_GROWSUP
2564 return sp >= current->sas_ss_sp &&
2565 sp - current->sas_ss_sp < current->sas_ss_size;
2566#else
2567 return sp > current->sas_ss_sp &&
2568 sp - current->sas_ss_sp <= current->sas_ss_size;
2569#endif
1da177e4
LT
2570}
2571
2572static inline int sas_ss_flags(unsigned long sp)
2573{
72f15c03
RW
2574 if (!current->sas_ss_size)
2575 return SS_DISABLE;
2576
2577 return on_sig_stack(sp) ? SS_ONSTACK : 0;
1da177e4
LT
2578}
2579
5a1b98d3
AV
2580static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2581{
2582 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2583#ifdef CONFIG_STACK_GROWSUP
2584 return current->sas_ss_sp;
2585#else
2586 return current->sas_ss_sp + current->sas_ss_size;
2587#endif
2588 return sp;
2589}
2590
1da177e4
LT
2591/*
2592 * Routines for handling mm_structs
2593 */
2594extern struct mm_struct * mm_alloc(void);
2595
2596/* mmdrop drops the mm and the page tables */
b3c97528 2597extern void __mmdrop(struct mm_struct *);
1da177e4
LT
2598static inline void mmdrop(struct mm_struct * mm)
2599{
6fb43d7b 2600 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1da177e4
LT
2601 __mmdrop(mm);
2602}
2603
2604/* mmput gets rid of the mappings and all user-space */
2605extern void mmput(struct mm_struct *);
2606/* Grab a reference to a task's mm, if it is not already going away */
2607extern struct mm_struct *get_task_mm(struct task_struct *task);
8cdb878d
CY
2608/*
2609 * Grab a reference to a task's mm, if it is not already going away
2610 * and ptrace_may_access with the mode parameter passed to it
2611 * succeeds.
2612 */
2613extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
1da177e4
LT
2614/* Remove the current tasks stale references to the old mm_struct */
2615extern void mm_release(struct task_struct *, struct mm_struct *);
2616
3033f14a
JT
2617#ifdef CONFIG_HAVE_COPY_THREAD_TLS
2618extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2619 struct task_struct *, unsigned long);
2620#else
6f2c55b8 2621extern int copy_thread(unsigned long, unsigned long, unsigned long,
afa86fc4 2622 struct task_struct *);
3033f14a
JT
2623
2624/* Architectures that haven't opted into copy_thread_tls get the tls argument
2625 * via pt_regs, so ignore the tls argument passed via C. */
2626static inline int copy_thread_tls(
2627 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2628 struct task_struct *p, unsigned long tls)
2629{
2630 return copy_thread(clone_flags, sp, arg, p);
2631}
2632#endif
1da177e4
LT
2633extern void flush_thread(void);
2634extern void exit_thread(void);
2635
1da177e4 2636extern void exit_files(struct task_struct *);
a7e5328a 2637extern void __cleanup_sighand(struct sighand_struct *);
cbaffba1 2638
1da177e4 2639extern void exit_itimers(struct signal_struct *);
cbaffba1 2640extern void flush_itimer_signals(void);
1da177e4 2641
9402c95f 2642extern void do_group_exit(int);
1da177e4 2643
c4ad8f98 2644extern int do_execve(struct filename *,
d7627467 2645 const char __user * const __user *,
da3d4c5f 2646 const char __user * const __user *);
51f39a1f
DD
2647extern int do_execveat(int, struct filename *,
2648 const char __user * const __user *,
2649 const char __user * const __user *,
2650 int);
3033f14a 2651extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
e80d6661 2652extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
36c8b586 2653struct task_struct *fork_idle(int);
2aa3a7f8 2654extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
1da177e4 2655
82b89778
AH
2656extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2657static inline void set_task_comm(struct task_struct *tsk, const char *from)
2658{
2659 __set_task_comm(tsk, from, false);
2660}
59714d65 2661extern char *get_task_comm(char *to, struct task_struct *tsk);
1da177e4
LT
2662
2663#ifdef CONFIG_SMP
317f3941 2664void scheduler_ipi(void);
85ba2d86 2665extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1da177e4 2666#else
184748cc 2667static inline void scheduler_ipi(void) { }
85ba2d86
RM
2668static inline unsigned long wait_task_inactive(struct task_struct *p,
2669 long match_state)
2670{
2671 return 1;
2672}
1da177e4
LT
2673#endif
2674
fafe870f
FW
2675#define tasklist_empty() \
2676 list_empty(&init_task.tasks)
2677
05725f7e
JP
2678#define next_task(p) \
2679 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
1da177e4
LT
2680
2681#define for_each_process(p) \
2682 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2683
5bb459bb 2684extern bool current_is_single_threaded(void);
d84f4f99 2685
1da177e4
LT
2686/*
2687 * Careful: do_each_thread/while_each_thread is a double loop so
2688 * 'break' will not work as expected - use goto instead.
2689 */
2690#define do_each_thread(g, t) \
2691 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2692
2693#define while_each_thread(g, t) \
2694 while ((t = next_thread(t)) != g)
2695
0c740d0a
ON
2696#define __for_each_thread(signal, t) \
2697 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2698
2699#define for_each_thread(p, t) \
2700 __for_each_thread((p)->signal, t)
2701
2702/* Careful: this is a double loop, 'break' won't work as expected. */
2703#define for_each_process_thread(p, t) \
2704 for_each_process(p) for_each_thread(p, t)
2705
7e49827c
ON
2706static inline int get_nr_threads(struct task_struct *tsk)
2707{
b3ac022c 2708 return tsk->signal->nr_threads;
7e49827c
ON
2709}
2710
087806b1
ON
2711static inline bool thread_group_leader(struct task_struct *p)
2712{
2713 return p->exit_signal >= 0;
2714}
1da177e4 2715
0804ef4b
EB
2716/* Do to the insanities of de_thread it is possible for a process
2717 * to have the pid of the thread group leader without actually being
2718 * the thread group leader. For iteration through the pids in proc
2719 * all we care about is that we have a task with the appropriate
2720 * pid, we don't actually care if we have the right task.
2721 */
e1403b8e 2722static inline bool has_group_leader_pid(struct task_struct *p)
0804ef4b 2723{
e1403b8e 2724 return task_pid(p) == p->signal->leader_pid;
0804ef4b
EB
2725}
2726
bac0abd6 2727static inline
e1403b8e 2728bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
bac0abd6 2729{
e1403b8e 2730 return p1->signal == p2->signal;
bac0abd6
PE
2731}
2732
36c8b586 2733static inline struct task_struct *next_thread(const struct task_struct *p)
47e65328 2734{
05725f7e
JP
2735 return list_entry_rcu(p->thread_group.next,
2736 struct task_struct, thread_group);
47e65328
ON
2737}
2738
e868171a 2739static inline int thread_group_empty(struct task_struct *p)
1da177e4 2740{
47e65328 2741 return list_empty(&p->thread_group);
1da177e4
LT
2742}
2743
2744#define delay_group_leader(p) \
2745 (thread_group_leader(p) && !thread_group_empty(p))
2746
1da177e4 2747/*
260ea101 2748 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
22e2c507 2749 * subscriptions and synchronises with wait4(). Also used in procfs. Also
ddbcc7e8 2750 * pins the final release of task.io_context. Also protects ->cpuset and
d68b46fe 2751 * ->cgroup.subsys[]. And ->vfork_done.
1da177e4
LT
2752 *
2753 * Nests both inside and outside of read_lock(&tasklist_lock).
2754 * It must not be nested with write_lock_irq(&tasklist_lock),
2755 * neither inside nor outside.
2756 */
2757static inline void task_lock(struct task_struct *p)
2758{
2759 spin_lock(&p->alloc_lock);
2760}
2761
2762static inline void task_unlock(struct task_struct *p)
2763{
2764 spin_unlock(&p->alloc_lock);
2765}
2766
b8ed374e 2767extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
f63ee72e
ON
2768 unsigned long *flags);
2769
9388dc30
AV
2770static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2771 unsigned long *flags)
2772{
2773 struct sighand_struct *ret;
2774
2775 ret = __lock_task_sighand(tsk, flags);
2776 (void)__cond_lock(&tsk->sighand->siglock, ret);
2777 return ret;
2778}
b8ed374e 2779
f63ee72e
ON
2780static inline void unlock_task_sighand(struct task_struct *tsk,
2781 unsigned long *flags)
2782{
2783 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2784}
2785
77e4ef99 2786/**
7d7efec3
TH
2787 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2788 * @tsk: task causing the changes
77e4ef99 2789 *
7d7efec3
TH
2790 * All operations which modify a threadgroup - a new thread joining the
2791 * group, death of a member thread (the assertion of PF_EXITING) and
2792 * exec(2) dethreading the process and replacing the leader - are wrapped
2793 * by threadgroup_change_{begin|end}(). This is to provide a place which
2794 * subsystems needing threadgroup stability can hook into for
2795 * synchronization.
77e4ef99 2796 */
7d7efec3 2797static inline void threadgroup_change_begin(struct task_struct *tsk)
4714d1d3 2798{
7d7efec3
TH
2799 might_sleep();
2800 cgroup_threadgroup_change_begin(tsk);
4714d1d3 2801}
77e4ef99
TH
2802
2803/**
7d7efec3
TH
2804 * threadgroup_change_end - mark the end of changes to a threadgroup
2805 * @tsk: task causing the changes
77e4ef99 2806 *
7d7efec3 2807 * See threadgroup_change_begin().
77e4ef99 2808 */
7d7efec3 2809static inline void threadgroup_change_end(struct task_struct *tsk)
4714d1d3 2810{
7d7efec3 2811 cgroup_threadgroup_change_end(tsk);
4714d1d3 2812}
4714d1d3 2813
f037360f
AV
2814#ifndef __HAVE_THREAD_FUNCTIONS
2815
f7e4217b
RZ
2816#define task_thread_info(task) ((struct thread_info *)(task)->stack)
2817#define task_stack_page(task) ((task)->stack)
a1261f54 2818
10ebffde
AV
2819static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2820{
2821 *task_thread_info(p) = *task_thread_info(org);
2822 task_thread_info(p)->task = p;
2823}
2824
6a40281a
CE
2825/*
2826 * Return the address of the last usable long on the stack.
2827 *
2828 * When the stack grows down, this is just above the thread
2829 * info struct. Going any lower will corrupt the threadinfo.
2830 *
2831 * When the stack grows up, this is the highest address.
2832 * Beyond that position, we corrupt data on the next page.
2833 */
10ebffde
AV
2834static inline unsigned long *end_of_stack(struct task_struct *p)
2835{
6a40281a
CE
2836#ifdef CONFIG_STACK_GROWSUP
2837 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2838#else
f7e4217b 2839 return (unsigned long *)(task_thread_info(p) + 1);
6a40281a 2840#endif
10ebffde
AV
2841}
2842
f037360f 2843#endif
a70857e4
AT
2844#define task_stack_end_corrupted(task) \
2845 (*(end_of_stack(task)) != STACK_END_MAGIC)
f037360f 2846
8b05c7e6
FT
2847static inline int object_is_on_stack(void *obj)
2848{
2849 void *stack = task_stack_page(current);
2850
2851 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2852}
2853
8c9843e5
BH
2854extern void thread_info_cache_init(void);
2855
7c9f8861
ES
2856#ifdef CONFIG_DEBUG_STACK_USAGE
2857static inline unsigned long stack_not_used(struct task_struct *p)
2858{
2859 unsigned long *n = end_of_stack(p);
2860
2861 do { /* Skip over canary */
2862 n++;
2863 } while (!*n);
2864
2865 return (unsigned long)n - (unsigned long)end_of_stack(p);
2866}
2867#endif
d4311ff1 2868extern void set_task_stack_end_magic(struct task_struct *tsk);
7c9f8861 2869
1da177e4
LT
2870/* set thread flags in other task's structures
2871 * - see asm/thread_info.h for TIF_xxxx flags available
2872 */
2873static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2874{
a1261f54 2875 set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2876}
2877
2878static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2879{
a1261f54 2880 clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2881}
2882
2883static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2884{
a1261f54 2885 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2886}
2887
2888static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2889{
a1261f54 2890 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2891}
2892
2893static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2894{
a1261f54 2895 return test_ti_thread_flag(task_thread_info(tsk), flag);
1da177e4
LT
2896}
2897
2898static inline void set_tsk_need_resched(struct task_struct *tsk)
2899{
2900 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2901}
2902
2903static inline void clear_tsk_need_resched(struct task_struct *tsk)
2904{
2905 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2906}
2907
8ae121ac
GH
2908static inline int test_tsk_need_resched(struct task_struct *tsk)
2909{
2910 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2911}
2912
690cc3ff
EB
2913static inline int restart_syscall(void)
2914{
2915 set_tsk_thread_flag(current, TIF_SIGPENDING);
2916 return -ERESTARTNOINTR;
2917}
2918
1da177e4
LT
2919static inline int signal_pending(struct task_struct *p)
2920{
2921 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2922}
f776d12d 2923
d9588725
RM
2924static inline int __fatal_signal_pending(struct task_struct *p)
2925{
2926 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2927}
f776d12d
MW
2928
2929static inline int fatal_signal_pending(struct task_struct *p)
2930{
2931 return signal_pending(p) && __fatal_signal_pending(p);
2932}
2933
16882c1e
ON
2934static inline int signal_pending_state(long state, struct task_struct *p)
2935{
2936 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2937 return 0;
2938 if (!signal_pending(p))
2939 return 0;
2940
16882c1e
ON
2941 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2942}
2943
1da177e4
LT
2944/*
2945 * cond_resched() and cond_resched_lock(): latency reduction via
2946 * explicit rescheduling in places that are safe. The return
2947 * value indicates whether a reschedule was done in fact.
2948 * cond_resched_lock() will drop the spinlock before scheduling,
2949 * cond_resched_softirq() will enable bhs before scheduling.
2950 */
c3921ab7 2951extern int _cond_resched(void);
6f80bd98 2952
613afbf8 2953#define cond_resched() ({ \
3427445a 2954 ___might_sleep(__FILE__, __LINE__, 0); \
613afbf8
FW
2955 _cond_resched(); \
2956})
6f80bd98 2957
613afbf8
FW
2958extern int __cond_resched_lock(spinlock_t *lock);
2959
2960#define cond_resched_lock(lock) ({ \
3427445a 2961 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
613afbf8
FW
2962 __cond_resched_lock(lock); \
2963})
2964
2965extern int __cond_resched_softirq(void);
2966
75e1056f 2967#define cond_resched_softirq() ({ \
3427445a 2968 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
75e1056f 2969 __cond_resched_softirq(); \
613afbf8 2970})
1da177e4 2971
f6f3c437
SH
2972static inline void cond_resched_rcu(void)
2973{
2974#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2975 rcu_read_unlock();
2976 cond_resched();
2977 rcu_read_lock();
2978#endif
2979}
2980
1da177e4
LT
2981/*
2982 * Does a critical section need to be broken due to another
95c354fe
NP
2983 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2984 * but a general need for low latency)
1da177e4 2985 */
95c354fe 2986static inline int spin_needbreak(spinlock_t *lock)
1da177e4 2987{
95c354fe
NP
2988#ifdef CONFIG_PREEMPT
2989 return spin_is_contended(lock);
2990#else
1da177e4 2991 return 0;
95c354fe 2992#endif
1da177e4
LT
2993}
2994
ee761f62
TG
2995/*
2996 * Idle thread specific functions to determine the need_resched
69dd0f84 2997 * polling state.
ee761f62 2998 */
69dd0f84 2999#ifdef TIF_POLLING_NRFLAG
ee761f62
TG
3000static inline int tsk_is_polling(struct task_struct *p)
3001{
3002 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3003}
ea811747
PZ
3004
3005static inline void __current_set_polling(void)
3a98f871
TG
3006{
3007 set_thread_flag(TIF_POLLING_NRFLAG);
3008}
3009
ea811747
PZ
3010static inline bool __must_check current_set_polling_and_test(void)
3011{
3012 __current_set_polling();
3013
3014 /*
3015 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3016 * paired by resched_curr()
ea811747 3017 */
4e857c58 3018 smp_mb__after_atomic();
ea811747
PZ
3019
3020 return unlikely(tif_need_resched());
3021}
3022
3023static inline void __current_clr_polling(void)
3a98f871
TG
3024{
3025 clear_thread_flag(TIF_POLLING_NRFLAG);
3026}
ea811747
PZ
3027
3028static inline bool __must_check current_clr_polling_and_test(void)
3029{
3030 __current_clr_polling();
3031
3032 /*
3033 * Polling state must be visible before we test NEED_RESCHED,
8875125e 3034 * paired by resched_curr()
ea811747 3035 */
4e857c58 3036 smp_mb__after_atomic();
ea811747
PZ
3037
3038 return unlikely(tif_need_resched());
3039}
3040
ee761f62
TG
3041#else
3042static inline int tsk_is_polling(struct task_struct *p) { return 0; }
ea811747
PZ
3043static inline void __current_set_polling(void) { }
3044static inline void __current_clr_polling(void) { }
3045
3046static inline bool __must_check current_set_polling_and_test(void)
3047{
3048 return unlikely(tif_need_resched());
3049}
3050static inline bool __must_check current_clr_polling_and_test(void)
3051{
3052 return unlikely(tif_need_resched());
3053}
ee761f62
TG
3054#endif
3055
8cb75e0c
PZ
3056static inline void current_clr_polling(void)
3057{
3058 __current_clr_polling();
3059
3060 /*
3061 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3062 * Once the bit is cleared, we'll get IPIs with every new
3063 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3064 * fold.
3065 */
8875125e 3066 smp_mb(); /* paired with resched_curr() */
8cb75e0c
PZ
3067
3068 preempt_fold_need_resched();
3069}
3070
75f93fed
PZ
3071static __always_inline bool need_resched(void)
3072{
3073 return unlikely(tif_need_resched());
3074}
3075
f06febc9
FM
3076/*
3077 * Thread group CPU time accounting.
3078 */
4cd4c1b4 3079void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
4da94d49 3080void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
f06febc9 3081
7bb44ade
RM
3082/*
3083 * Reevaluate whether the task has signals pending delivery.
3084 * Wake the task if so.
3085 * This is required every time the blocked sigset_t changes.
3086 * callers must hold sighand->siglock.
3087 */
3088extern void recalc_sigpending_and_wake(struct task_struct *t);
1da177e4
LT
3089extern void recalc_sigpending(void);
3090
910ffdb1
ON
3091extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3092
3093static inline void signal_wake_up(struct task_struct *t, bool resume)
3094{
3095 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3096}
3097static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3098{
3099 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3100}
1da177e4
LT
3101
3102/*
3103 * Wrappers for p->thread_info->cpu access. No-op on UP.
3104 */
3105#ifdef CONFIG_SMP
3106
3107static inline unsigned int task_cpu(const struct task_struct *p)
3108{
a1261f54 3109 return task_thread_info(p)->cpu;
1da177e4
LT
3110}
3111
b32e86b4
IM
3112static inline int task_node(const struct task_struct *p)
3113{
3114 return cpu_to_node(task_cpu(p));
3115}
3116
c65cc870 3117extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1da177e4
LT
3118
3119#else
3120
3121static inline unsigned int task_cpu(const struct task_struct *p)
3122{
3123 return 0;
3124}
3125
3126static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3127{
3128}
3129
3130#endif /* CONFIG_SMP */
3131
96f874e2
RR
3132extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3133extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
5c45bf27 3134
7c941438 3135#ifdef CONFIG_CGROUP_SCHED
07e06b01 3136extern struct task_group root_task_group;
8323f26c 3137#endif /* CONFIG_CGROUP_SCHED */
9b5b7751 3138
54e99124
DG
3139extern int task_can_switch_user(struct user_struct *up,
3140 struct task_struct *tsk);
3141
4b98d11b
AD
3142#ifdef CONFIG_TASK_XACCT
3143static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3144{
940389b8 3145 tsk->ioac.rchar += amt;
4b98d11b
AD
3146}
3147
3148static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3149{
940389b8 3150 tsk->ioac.wchar += amt;
4b98d11b
AD
3151}
3152
3153static inline void inc_syscr(struct task_struct *tsk)
3154{
940389b8 3155 tsk->ioac.syscr++;
4b98d11b
AD
3156}
3157
3158static inline void inc_syscw(struct task_struct *tsk)
3159{
940389b8 3160 tsk->ioac.syscw++;
4b98d11b
AD
3161}
3162#else
3163static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3164{
3165}
3166
3167static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3168{
3169}
3170
3171static inline void inc_syscr(struct task_struct *tsk)
3172{
3173}
3174
3175static inline void inc_syscw(struct task_struct *tsk)
3176{
3177}
3178#endif
3179
82455257
DH
3180#ifndef TASK_SIZE_OF
3181#define TASK_SIZE_OF(tsk) TASK_SIZE
3182#endif
3183
f98bafa0 3184#ifdef CONFIG_MEMCG
cf475ad2 3185extern void mm_update_next_owner(struct mm_struct *mm);
cf475ad2
BS
3186#else
3187static inline void mm_update_next_owner(struct mm_struct *mm)
3188{
3189}
f98bafa0 3190#endif /* CONFIG_MEMCG */
cf475ad2 3191
3e10e716
JS
3192static inline unsigned long task_rlimit(const struct task_struct *tsk,
3193 unsigned int limit)
3194{
316c1608 3195 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3e10e716
JS
3196}
3197
3198static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3199 unsigned int limit)
3200{
316c1608 3201 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3e10e716
JS
3202}
3203
3204static inline unsigned long rlimit(unsigned int limit)
3205{
3206 return task_rlimit(current, limit);
3207}
3208
3209static inline unsigned long rlimit_max(unsigned int limit)
3210{
3211 return task_rlimit_max(current, limit);
3212}
3213
1da177e4 3214#endif