leds: gpio: Support the "panic-indicator" firmware property
[linux-2.6-block.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
8edf344c 16#include <linux/hugetlb_inline.h>
1da177e4
LT
17
18/*
19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
20 * allocation mode flags.
21 */
9a896c9a
LS
22enum mapping_flags {
23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */
24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */
25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */
9a896c9a 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */
9d1ba805 27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */
9a896c9a 28};
1da177e4 29
3e9f45bd
GC
30static inline void mapping_set_error(struct address_space *mapping, int error)
31{
2185e69f 32 if (unlikely(error)) {
3e9f45bd
GC
33 if (error == -ENOSPC)
34 set_bit(AS_ENOSPC, &mapping->flags);
35 else
36 set_bit(AS_EIO, &mapping->flags);
37 }
38}
39
ba9ddf49
LS
40static inline void mapping_set_unevictable(struct address_space *mapping)
41{
42 set_bit(AS_UNEVICTABLE, &mapping->flags);
43}
44
89e004ea
LS
45static inline void mapping_clear_unevictable(struct address_space *mapping)
46{
47 clear_bit(AS_UNEVICTABLE, &mapping->flags);
48}
49
ba9ddf49
LS
50static inline int mapping_unevictable(struct address_space *mapping)
51{
088e5465 52 if (mapping)
89e004ea
LS
53 return test_bit(AS_UNEVICTABLE, &mapping->flags);
54 return !!mapping;
ba9ddf49 55}
ba9ddf49 56
91b0abe3
JW
57static inline void mapping_set_exiting(struct address_space *mapping)
58{
59 set_bit(AS_EXITING, &mapping->flags);
60}
61
62static inline int mapping_exiting(struct address_space *mapping)
63{
64 return test_bit(AS_EXITING, &mapping->flags);
65}
66
dd0fc66f 67static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 68{
260b2367 69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
70}
71
c62d2555
MH
72/* Restricts the given gfp_mask to what the mapping allows. */
73static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
74 gfp_t gfp_mask)
75{
76 return mapping_gfp_mask(mapping) & gfp_mask;
77}
78
1da177e4
LT
79/*
80 * This is non-atomic. Only to be used before the mapping is activated.
81 * Probably needs a barrier...
82 */
260b2367 83static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 84{
260b2367
AV
85 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
86 (__force unsigned long)mask;
1da177e4
LT
87}
88
89/*
50d8a189 90 * The page cache can be done in larger chunks than
1da177e4
LT
91 * one page, because it allows for more efficient
92 * throughput (it can then be mapped into user
93 * space in smaller chunks for same flexibility).
94 *
95 * Or rather, it _will_ be done in larger chunks.
96 */
97#define PAGE_CACHE_SHIFT PAGE_SHIFT
98#define PAGE_CACHE_SIZE PAGE_SIZE
99#define PAGE_CACHE_MASK PAGE_MASK
100#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
101
102#define page_cache_get(page) get_page(page)
103#define page_cache_release(page) put_page(page)
b745bc85 104void release_pages(struct page **pages, int nr, bool cold);
1da177e4 105
e286781d
NP
106/*
107 * speculatively take a reference to a page.
108 * If the page is free (_count == 0), then _count is untouched, and 0
109 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
110 *
111 * This function must be called inside the same rcu_read_lock() section as has
112 * been used to lookup the page in the pagecache radix-tree (or page table):
113 * this allows allocators to use a synchronize_rcu() to stabilize _count.
114 *
115 * Unless an RCU grace period has passed, the count of all pages coming out
116 * of the allocator must be considered unstable. page_count may return higher
117 * than expected, and put_page must be able to do the right thing when the
118 * page has been finished with, no matter what it is subsequently allocated
119 * for (because put_page is what is used here to drop an invalid speculative
120 * reference).
121 *
122 * This is the interesting part of the lockless pagecache (and lockless
123 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
124 * has the following pattern:
125 * 1. find page in radix tree
126 * 2. conditionally increment refcount
127 * 3. check the page is still in pagecache (if no, goto 1)
128 *
129 * Remove-side that cares about stability of _count (eg. reclaim) has the
130 * following (with tree_lock held for write):
131 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
132 * B. remove page from pagecache
133 * C. free the page
134 *
135 * There are 2 critical interleavings that matter:
136 * - 2 runs before A: in this case, A sees elevated refcount and bails out
137 * - A runs before 2: in this case, 2 sees zero refcount and retries;
138 * subsequently, B will complete and 1 will find no page, causing the
139 * lookup to return NULL.
140 *
141 * It is possible that between 1 and 2, the page is removed then the exact same
142 * page is inserted into the same position in pagecache. That's OK: the
143 * old find_get_page using tree_lock could equally have run before or after
144 * such a re-insertion, depending on order that locks are granted.
145 *
146 * Lookups racing against pagecache insertion isn't a big problem: either 1
147 * will find the page or it will not. Likewise, the old find_get_page could run
148 * either before the insertion or afterwards, depending on timing.
149 */
150static inline int page_cache_get_speculative(struct page *page)
151{
152 VM_BUG_ON(in_interrupt());
153
8375ad98 154#ifdef CONFIG_TINY_RCU
bdd4e85d 155# ifdef CONFIG_PREEMPT_COUNT
e286781d
NP
156 VM_BUG_ON(!in_atomic());
157# endif
158 /*
159 * Preempt must be disabled here - we rely on rcu_read_lock doing
160 * this for us.
161 *
162 * Pagecache won't be truncated from interrupt context, so if we have
163 * found a page in the radix tree here, we have pinned its refcount by
164 * disabling preempt, and hence no need for the "speculative get" that
165 * SMP requires.
166 */
309381fe 167 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 168 page_ref_inc(page);
e286781d
NP
169
170#else
171 if (unlikely(!get_page_unless_zero(page))) {
172 /*
173 * Either the page has been freed, or will be freed.
174 * In either case, retry here and the caller should
175 * do the right thing (see comments above).
176 */
177 return 0;
178 }
179#endif
309381fe 180 VM_BUG_ON_PAGE(PageTail(page), page);
e286781d
NP
181
182 return 1;
183}
184
ce0ad7f0
NP
185/*
186 * Same as above, but add instead of inc (could just be merged)
187 */
188static inline int page_cache_add_speculative(struct page *page, int count)
189{
190 VM_BUG_ON(in_interrupt());
191
b560d8ad 192#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU)
bdd4e85d 193# ifdef CONFIG_PREEMPT_COUNT
ce0ad7f0
NP
194 VM_BUG_ON(!in_atomic());
195# endif
309381fe 196 VM_BUG_ON_PAGE(page_count(page) == 0, page);
fe896d18 197 page_ref_add(page, count);
ce0ad7f0
NP
198
199#else
fe896d18 200 if (unlikely(!page_ref_add_unless(page, count, 0)))
ce0ad7f0
NP
201 return 0;
202#endif
309381fe 203 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page);
ce0ad7f0
NP
204
205 return 1;
206}
207
44110fe3 208#ifdef CONFIG_NUMA
2ae88149 209extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 210#else
2ae88149
NP
211static inline struct page *__page_cache_alloc(gfp_t gfp)
212{
213 return alloc_pages(gfp, 0);
214}
215#endif
216
1da177e4
LT
217static inline struct page *page_cache_alloc(struct address_space *x)
218{
2ae88149 219 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
220}
221
222static inline struct page *page_cache_alloc_cold(struct address_space *x)
223{
2ae88149 224 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
225}
226
7b1de586
WF
227static inline struct page *page_cache_alloc_readahead(struct address_space *x)
228{
229 return __page_cache_alloc(mapping_gfp_mask(x) |
230 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN);
231}
232
1da177e4
LT
233typedef int filler_t(void *, struct page *);
234
e7b563bb
JW
235pgoff_t page_cache_next_hole(struct address_space *mapping,
236 pgoff_t index, unsigned long max_scan);
237pgoff_t page_cache_prev_hole(struct address_space *mapping,
238 pgoff_t index, unsigned long max_scan);
239
2457aec6
MG
240#define FGP_ACCESSED 0x00000001
241#define FGP_LOCK 0x00000002
242#define FGP_CREAT 0x00000004
243#define FGP_WRITE 0x00000008
244#define FGP_NOFS 0x00000010
245#define FGP_NOWAIT 0x00000020
246
247struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 248 int fgp_flags, gfp_t cache_gfp_mask);
2457aec6
MG
249
250/**
251 * find_get_page - find and get a page reference
252 * @mapping: the address_space to search
253 * @offset: the page index
254 *
255 * Looks up the page cache slot at @mapping & @offset. If there is a
256 * page cache page, it is returned with an increased refcount.
257 *
258 * Otherwise, %NULL is returned.
259 */
260static inline struct page *find_get_page(struct address_space *mapping,
261 pgoff_t offset)
262{
45f87de5 263 return pagecache_get_page(mapping, offset, 0, 0);
2457aec6
MG
264}
265
266static inline struct page *find_get_page_flags(struct address_space *mapping,
267 pgoff_t offset, int fgp_flags)
268{
45f87de5 269 return pagecache_get_page(mapping, offset, fgp_flags, 0);
2457aec6
MG
270}
271
272/**
273 * find_lock_page - locate, pin and lock a pagecache page
274 * pagecache_get_page - find and get a page reference
275 * @mapping: the address_space to search
276 * @offset: the page index
277 *
278 * Looks up the page cache slot at @mapping & @offset. If there is a
279 * page cache page, it is returned locked and with an increased
280 * refcount.
281 *
282 * Otherwise, %NULL is returned.
283 *
284 * find_lock_page() may sleep.
285 */
286static inline struct page *find_lock_page(struct address_space *mapping,
287 pgoff_t offset)
288{
45f87de5 289 return pagecache_get_page(mapping, offset, FGP_LOCK, 0);
2457aec6
MG
290}
291
292/**
293 * find_or_create_page - locate or add a pagecache page
294 * @mapping: the page's address_space
295 * @index: the page's index into the mapping
296 * @gfp_mask: page allocation mode
297 *
298 * Looks up the page cache slot at @mapping & @offset. If there is a
299 * page cache page, it is returned locked and with an increased
300 * refcount.
301 *
302 * If the page is not present, a new page is allocated using @gfp_mask
303 * and added to the page cache and the VM's LRU list. The page is
304 * returned locked and with an increased refcount.
305 *
306 * On memory exhaustion, %NULL is returned.
307 *
308 * find_or_create_page() may sleep, even if @gfp_flags specifies an
309 * atomic allocation!
310 */
311static inline struct page *find_or_create_page(struct address_space *mapping,
312 pgoff_t offset, gfp_t gfp_mask)
313{
314 return pagecache_get_page(mapping, offset,
315 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
45f87de5 316 gfp_mask);
2457aec6
MG
317}
318
319/**
320 * grab_cache_page_nowait - returns locked page at given index in given cache
321 * @mapping: target address_space
322 * @index: the page index
323 *
324 * Same as grab_cache_page(), but do not wait if the page is unavailable.
325 * This is intended for speculative data generators, where the data can
326 * be regenerated if the page couldn't be grabbed. This routine should
327 * be safe to call while holding the lock for another page.
328 *
329 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
330 * and deadlock against the caller's locked page.
331 */
332static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
333 pgoff_t index)
334{
335 return pagecache_get_page(mapping, index,
336 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
45f87de5 337 mapping_gfp_mask(mapping));
2457aec6
MG
338}
339
0cd6144a 340struct page *find_get_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a 341struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset);
0cd6144a
JW
342unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
343 unsigned int nr_entries, struct page **entries,
344 pgoff_t *indices);
1da177e4
LT
345unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
346 unsigned int nr_pages, struct page **pages);
ebf43500
JA
347unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
348 unsigned int nr_pages, struct page **pages);
1da177e4
LT
349unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
350 int tag, unsigned int nr_pages, struct page **pages);
7e7f7749
RZ
351unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
352 int tag, unsigned int nr_entries,
353 struct page **entries, pgoff_t *indices);
1da177e4 354
54566b2c
NP
355struct page *grab_cache_page_write_begin(struct address_space *mapping,
356 pgoff_t index, unsigned flags);
afddba49 357
1da177e4
LT
358/*
359 * Returns locked page at given index in given cache, creating it if needed.
360 */
57f6b96c
FW
361static inline struct page *grab_cache_page(struct address_space *mapping,
362 pgoff_t index)
1da177e4
LT
363{
364 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
365}
366
1da177e4 367extern struct page * read_cache_page(struct address_space *mapping,
5e5358e7 368 pgoff_t index, filler_t *filler, void *data);
0531b2aa
LT
369extern struct page * read_cache_page_gfp(struct address_space *mapping,
370 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
371extern int read_cache_pages(struct address_space *mapping,
372 struct list_head *pages, filler_t *filler, void *data);
373
090d2b18 374static inline struct page *read_mapping_page(struct address_space *mapping,
5e5358e7 375 pgoff_t index, void *data)
090d2b18
PE
376{
377 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
378 return read_cache_page(mapping, index, filler, data);
379}
380
a0f7a756
NH
381/*
382 * Get the offset in PAGE_SIZE.
383 * (TODO: hugepage should have ->index in PAGE_SIZE)
384 */
385static inline pgoff_t page_to_pgoff(struct page *page)
386{
e9b61f19
KS
387 pgoff_t pgoff;
388
a0f7a756
NH
389 if (unlikely(PageHeadHuge(page)))
390 return page->index << compound_order(page);
e9b61f19
KS
391
392 if (likely(!PageTransTail(page)))
a0f7a756 393 return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
e9b61f19
KS
394
395 /*
396 * We don't initialize ->index for tail pages: calculate based on
397 * head page
398 */
399 pgoff = compound_head(page)->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
400 pgoff += page - compound_head(page);
401 return pgoff;
a0f7a756
NH
402}
403
1da177e4
LT
404/*
405 * Return byte-offset into filesystem object for page.
406 */
407static inline loff_t page_offset(struct page *page)
408{
409 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
410}
411
f981c595
MG
412static inline loff_t page_file_offset(struct page *page)
413{
414 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT;
415}
416
0fe6e20b
NH
417extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
418 unsigned long address);
419
1da177e4
LT
420static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
421 unsigned long address)
422{
0fe6e20b
NH
423 pgoff_t pgoff;
424 if (unlikely(is_vm_hugetlb_page(vma)))
425 return linear_hugepage_index(vma, address);
426 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1da177e4
LT
427 pgoff += vma->vm_pgoff;
428 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
429}
430
b3c97528
HH
431extern void __lock_page(struct page *page);
432extern int __lock_page_killable(struct page *page);
d065bd81
ML
433extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
434 unsigned int flags);
b3c97528 435extern void unlock_page(struct page *page);
1da177e4 436
529ae9aa
NP
437static inline int trylock_page(struct page *page)
438{
48c935ad 439 page = compound_head(page);
8413ac9d 440 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
529ae9aa
NP
441}
442
db37648c
NP
443/*
444 * lock_page may only be called if we have the page's inode pinned.
445 */
1da177e4
LT
446static inline void lock_page(struct page *page)
447{
448 might_sleep();
529ae9aa 449 if (!trylock_page(page))
1da177e4
LT
450 __lock_page(page);
451}
db37648c 452
2687a356
MW
453/*
454 * lock_page_killable is like lock_page but can be interrupted by fatal
455 * signals. It returns 0 if it locked the page and -EINTR if it was
456 * killed while waiting.
457 */
458static inline int lock_page_killable(struct page *page)
459{
460 might_sleep();
529ae9aa 461 if (!trylock_page(page))
2687a356
MW
462 return __lock_page_killable(page);
463 return 0;
464}
465
d065bd81
ML
466/*
467 * lock_page_or_retry - Lock the page, unless this would block and the
468 * caller indicated that it can handle a retry.
9a95f3cf
PC
469 *
470 * Return value and mmap_sem implications depend on flags; see
471 * __lock_page_or_retry().
d065bd81
ML
472 */
473static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
474 unsigned int flags)
475{
476 might_sleep();
477 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
478}
479
1da177e4 480/*
a4796e37
N
481 * This is exported only for wait_on_page_locked/wait_on_page_writeback,
482 * and for filesystems which need to wait on PG_private.
1da177e4 483 */
b3c97528 484extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4 485
f62e00cc 486extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
cbbce822
N
487extern int wait_on_page_bit_killable_timeout(struct page *page,
488 int bit_nr, unsigned long timeout);
f62e00cc
KM
489
490static inline int wait_on_page_locked_killable(struct page *page)
491{
48c935ad
KS
492 if (!PageLocked(page))
493 return 0;
494 return wait_on_page_bit_killable(compound_head(page), PG_locked);
f62e00cc
KM
495}
496
a4796e37
N
497extern wait_queue_head_t *page_waitqueue(struct page *page);
498static inline void wake_up_page(struct page *page, int bit)
499{
500 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
501}
502
1da177e4
LT
503/*
504 * Wait for a page to be unlocked.
505 *
506 * This must be called with the caller "holding" the page,
507 * ie with increased "page->count" so that the page won't
508 * go away during the wait..
509 */
510static inline void wait_on_page_locked(struct page *page)
511{
512 if (PageLocked(page))
48c935ad 513 wait_on_page_bit(compound_head(page), PG_locked);
1da177e4
LT
514}
515
516/*
517 * Wait for a page to complete writeback
518 */
519static inline void wait_on_page_writeback(struct page *page)
520{
521 if (PageWriteback(page))
522 wait_on_page_bit(page, PG_writeback);
523}
524
525extern void end_page_writeback(struct page *page);
1d1d1a76 526void wait_for_stable_page(struct page *page);
1da177e4 527
57d99845
MW
528void page_endio(struct page *page, int rw, int err);
529
385e1ca5
DH
530/*
531 * Add an arbitrary waiter to a page's wait queue
532 */
533extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter);
534
1da177e4
LT
535/*
536 * Fault a userspace page into pagetables. Return non-zero on a fault.
537 *
538 * This assumes that two userspace pages are always sufficient. That's
539 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
540 */
541static inline int fault_in_pages_writeable(char __user *uaddr, int size)
542{
543 int ret;
544
08291429
NP
545 if (unlikely(size == 0))
546 return 0;
547
1da177e4
LT
548 /*
549 * Writing zeroes into userspace here is OK, because we know that if
550 * the zero gets there, we'll be overwriting it.
551 */
552 ret = __put_user(0, uaddr);
553 if (ret == 0) {
554 char __user *end = uaddr + size - 1;
555
556 /*
557 * If the page was already mapped, this will get a cache miss
558 * for sure, so try to avoid doing it.
559 */
560 if (((unsigned long)uaddr & PAGE_MASK) !=
561 ((unsigned long)end & PAGE_MASK))
f56f821f 562 ret = __put_user(0, end);
1da177e4
LT
563 }
564 return ret;
565}
566
08291429 567static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
568{
569 volatile char c;
570 int ret;
571
08291429
NP
572 if (unlikely(size == 0))
573 return 0;
574
1da177e4
LT
575 ret = __get_user(c, uaddr);
576 if (ret == 0) {
577 const char __user *end = uaddr + size - 1;
578
579 if (((unsigned long)uaddr & PAGE_MASK) !=
627295e4 580 ((unsigned long)end & PAGE_MASK)) {
f56f821f 581 ret = __get_user(c, end);
627295e4
AK
582 (void)c;
583 }
1da177e4 584 }
08291429 585 return ret;
1da177e4
LT
586}
587
f56f821f
DV
588/*
589 * Multipage variants of the above prefault helpers, useful if more than
590 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above
591 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the
592 * filemap.c hotpaths.
593 */
594static inline int fault_in_multipages_writeable(char __user *uaddr, int size)
595{
af2e8409 596 int ret = 0;
9923777d 597 char __user *end = uaddr + size - 1;
f56f821f
DV
598
599 if (unlikely(size == 0))
af2e8409 600 return ret;
f56f821f
DV
601
602 /*
603 * Writing zeroes into userspace here is OK, because we know that if
604 * the zero gets there, we'll be overwriting it.
605 */
606 while (uaddr <= end) {
607 ret = __put_user(0, uaddr);
608 if (ret != 0)
609 return ret;
610 uaddr += PAGE_SIZE;
611 }
612
613 /* Check whether the range spilled into the next page. */
614 if (((unsigned long)uaddr & PAGE_MASK) ==
615 ((unsigned long)end & PAGE_MASK))
616 ret = __put_user(0, end);
617
618 return ret;
619}
620
621static inline int fault_in_multipages_readable(const char __user *uaddr,
622 int size)
623{
624 volatile char c;
af2e8409 625 int ret = 0;
f56f821f
DV
626 const char __user *end = uaddr + size - 1;
627
628 if (unlikely(size == 0))
af2e8409 629 return ret;
f56f821f
DV
630
631 while (uaddr <= end) {
632 ret = __get_user(c, uaddr);
633 if (ret != 0)
634 return ret;
635 uaddr += PAGE_SIZE;
636 }
637
638 /* Check whether the range spilled into the next page. */
639 if (((unsigned long)uaddr & PAGE_MASK) ==
640 ((unsigned long)end & PAGE_MASK)) {
641 ret = __get_user(c, end);
642 (void)c;
643 }
644
645 return ret;
646}
647
529ae9aa
NP
648int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
649 pgoff_t index, gfp_t gfp_mask);
650int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
651 pgoff_t index, gfp_t gfp_mask);
97cecb5a 652extern void delete_from_page_cache(struct page *page);
62cccb8c 653extern void __delete_from_page_cache(struct page *page, void *shadow);
ef6a3c63 654int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
529ae9aa
NP
655
656/*
657 * Like add_to_page_cache_locked, but used to add newly allocated pages:
48c935ad 658 * the page is new, so we can just run __SetPageLocked() against it.
529ae9aa
NP
659 */
660static inline int add_to_page_cache(struct page *page,
661 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
662{
663 int error;
664
48c935ad 665 __SetPageLocked(page);
529ae9aa
NP
666 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
667 if (unlikely(error))
48c935ad 668 __ClearPageLocked(page);
529ae9aa
NP
669 return error;
670}
671
b57c2cb9
FF
672static inline unsigned long dir_pages(struct inode *inode)
673{
674 return (unsigned long)(inode->i_size + PAGE_CACHE_SIZE - 1) >>
675 PAGE_CACHE_SHIFT;
676}
677
1da177e4 678#endif /* _LINUX_PAGEMAP_H */