ethernet: amd: au1000: Remove pointless warning
[linux-2.6-block.git] / include / linux / netdevice.h
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
113aa838 14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
1da177e4
LT
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25#ifndef _LINUX_NETDEVICE_H
26#define _LINUX_NETDEVICE_H
27
d7fe0f24 28#include <linux/timer.h>
187f1882 29#include <linux/bug.h>
bea3348e 30#include <linux/delay.h>
60063497 31#include <linux/atomic.h>
53511453 32#include <linux/prefetch.h>
1da177e4
LT
33#include <asm/cache.h>
34#include <asm/byteorder.h>
35
1da177e4 36#include <linux/percpu.h>
4d5b78c0 37#include <linux/rculist.h>
db217334 38#include <linux/dmaengine.h>
bea3348e 39#include <linux/workqueue.h>
114cf580 40#include <linux/dynamic_queue_limits.h>
1da177e4 41
b1b67dd4 42#include <linux/ethtool.h>
a050c33f 43#include <net/net_namespace.h>
cf85d08f 44#include <net/dsa.h>
7a6b6f51 45#ifdef CONFIG_DCB
2f90b865
AD
46#include <net/dcbnl.h>
47#endif
5bc1421e 48#include <net/netprio_cgroup.h>
a050c33f 49
a59e2ecb 50#include <linux/netdev_features.h>
77162022 51#include <linux/neighbour.h>
607ca46e 52#include <uapi/linux/netdevice.h>
61bd3857 53#include <uapi/linux/if_bonding.h>
a59e2ecb 54
115c1d6e 55struct netpoll_info;
313162d0 56struct device;
c1f19b51 57struct phy_device;
704232c2
JB
58/* 802.11 specific */
59struct wireless_dev;
98a18b6f
AA
60/* 802.15.4 specific */
61struct wpan_dev;
03c57747 62struct mpls_dev;
1da177e4 63
f629d208
JP
64void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
d07d7507 66
9a1654ba
JP
67/* Backlog congestion levels */
68#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69#define NET_RX_DROP 1 /* packet dropped */
70
572a9d7b
PM
71/*
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
74 *
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
78 *
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
86 */
87
88/* qdisc ->enqueue() return codes. */
89#define NET_XMIT_SUCCESS 0x00
9a1654ba
JP
90#define NET_XMIT_DROP 0x01 /* skb dropped */
91#define NET_XMIT_CN 0x02 /* congestion notification */
92#define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
1da177e4 94
b9df3cb8
GR
95/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
572a9d7b 98#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
1da177e4
LT
99#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
100
dc1f8bf6 101/* Driver transmit return codes */
9a1654ba 102#define NETDEV_TX_MASK 0xf0
572a9d7b 103
dc1f8bf6 104enum netdev_tx {
572a9d7b 105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
9a1654ba
JP
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
dc1f8bf6
SH
109};
110typedef enum netdev_tx netdev_tx_t;
111
9a1654ba
JP
112/*
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
115 */
116static inline bool dev_xmit_complete(int rc)
117{
118 /*
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
123 */
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
126
127 return false;
128}
129
1da177e4
LT
130/*
131 * Compute the worst case header length according to the protocols
132 * used.
133 */
fe2918b0 134
c0eb4540
KS
135#if defined(CONFIG_HYPERV_NET)
136# define LL_MAX_HEADER 128
137#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
8388e3da
DM
138# if defined(CONFIG_MAC80211_MESH)
139# define LL_MAX_HEADER 128
140# else
141# define LL_MAX_HEADER 96
142# endif
1da177e4 143#else
8388e3da 144# define LL_MAX_HEADER 32
1da177e4
LT
145#endif
146
d11ead75
BH
147#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
148 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
1da177e4
LT
149#define MAX_HEADER LL_MAX_HEADER
150#else
151#define MAX_HEADER (LL_MAX_HEADER + 48)
152#endif
153
154/*
be1f3c2c
BH
155 * Old network device statistics. Fields are native words
156 * (unsigned long) so they can be read and written atomically.
1da177e4 157 */
fe2918b0 158
d94d9fee 159struct net_device_stats {
3cfde79c
BH
160 unsigned long rx_packets;
161 unsigned long tx_packets;
162 unsigned long rx_bytes;
163 unsigned long tx_bytes;
164 unsigned long rx_errors;
165 unsigned long tx_errors;
166 unsigned long rx_dropped;
167 unsigned long tx_dropped;
168 unsigned long multicast;
1da177e4 169 unsigned long collisions;
1da177e4 170 unsigned long rx_length_errors;
3cfde79c
BH
171 unsigned long rx_over_errors;
172 unsigned long rx_crc_errors;
173 unsigned long rx_frame_errors;
174 unsigned long rx_fifo_errors;
175 unsigned long rx_missed_errors;
1da177e4
LT
176 unsigned long tx_aborted_errors;
177 unsigned long tx_carrier_errors;
178 unsigned long tx_fifo_errors;
179 unsigned long tx_heartbeat_errors;
180 unsigned long tx_window_errors;
1da177e4
LT
181 unsigned long rx_compressed;
182 unsigned long tx_compressed;
183};
184
1da177e4
LT
185
186#include <linux/cache.h>
187#include <linux/skbuff.h>
188
adc9300e 189#ifdef CONFIG_RPS
c5905afb
IM
190#include <linux/static_key.h>
191extern struct static_key rps_needed;
adc9300e
ED
192#endif
193
1da177e4
LT
194struct neighbour;
195struct neigh_parms;
196struct sk_buff;
197
f001fde5
JP
198struct netdev_hw_addr {
199 struct list_head list;
200 unsigned char addr[MAX_ADDR_LEN];
201 unsigned char type;
ccffad25
JP
202#define NETDEV_HW_ADDR_T_LAN 1
203#define NETDEV_HW_ADDR_T_SAN 2
204#define NETDEV_HW_ADDR_T_SLAVE 3
205#define NETDEV_HW_ADDR_T_UNICAST 4
22bedad3 206#define NETDEV_HW_ADDR_T_MULTICAST 5
22bedad3 207 bool global_use;
4cd729b0 208 int sync_cnt;
8f8f103d 209 int refcount;
4543fbef 210 int synced;
f001fde5
JP
211 struct rcu_head rcu_head;
212};
213
31278e71
JP
214struct netdev_hw_addr_list {
215 struct list_head list;
216 int count;
217};
218
22bedad3
JP
219#define netdev_hw_addr_list_count(l) ((l)->count)
220#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221#define netdev_hw_addr_list_for_each(ha, l) \
222 list_for_each_entry(ha, &(l)->list, list)
32e7bfc4 223
22bedad3
JP
224#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226#define netdev_for_each_uc_addr(ha, dev) \
227 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
6683ece3 228
22bedad3
JP
229#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
18e225f2 231#define netdev_for_each_mc_addr(ha, dev) \
22bedad3 232 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
6683ece3 233
d94d9fee 234struct hh_cache {
f6b72b62 235 u16 hh_len;
5c25f686 236 u16 __pad;
3644f0ce 237 seqlock_t hh_lock;
1da177e4
LT
238
239 /* cached hardware header; allow for machine alignment needs. */
240#define HH_DATA_MOD 16
241#define HH_DATA_OFF(__len) \
5ba0eac6 242 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
1da177e4
LT
243#define HH_DATA_ALIGN(__len) \
244 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246};
247
248/* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249 * Alternative is:
250 * dev->hard_header_len ? (dev->hard_header_len +
251 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252 *
253 * We could use other alignment values, but we must maintain the
254 * relationship HH alignment <= LL alignment.
255 */
256#define LL_RESERVED_SPACE(dev) \
f5184d26 257 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
1da177e4 258#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
f5184d26 259 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
1da177e4 260
3b04ddde
SH
261struct header_ops {
262 int (*create) (struct sk_buff *skb, struct net_device *dev,
263 unsigned short type, const void *daddr,
95c96174 264 const void *saddr, unsigned int len);
3b04ddde 265 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
e69dd336 266 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
3b04ddde
SH
267 void (*cache_update)(struct hh_cache *hh,
268 const struct net_device *dev,
269 const unsigned char *haddr);
270};
271
1da177e4
LT
272/* These flag bits are private to the generic network queueing
273 * layer, they may not be explicitly referenced by any other
274 * code.
275 */
276
d94d9fee 277enum netdev_state_t {
1da177e4
LT
278 __LINK_STATE_START,
279 __LINK_STATE_PRESENT,
1da177e4 280 __LINK_STATE_NOCARRIER,
b00055aa
SR
281 __LINK_STATE_LINKWATCH_PENDING,
282 __LINK_STATE_DORMANT,
1da177e4
LT
283};
284
285
286/*
287 * This structure holds at boot time configured netdevice settings. They
fe2918b0 288 * are then used in the device probing.
1da177e4
LT
289 */
290struct netdev_boot_setup {
291 char name[IFNAMSIZ];
292 struct ifmap map;
293};
294#define NETDEV_BOOT_SETUP_MAX 8
295
f629d208 296int __init netdev_boot_setup(char *str);
1da177e4 297
bea3348e
SH
298/*
299 * Structure for NAPI scheduling similar to tasklet but with weighting
300 */
301struct napi_struct {
302 /* The poll_list must only be managed by the entity which
303 * changes the state of the NAPI_STATE_SCHED bit. This means
304 * whoever atomically sets that bit can add this napi_struct
305 * to the per-cpu poll_list, and whoever clears that bit
306 * can remove from the list right before clearing the bit.
307 */
308 struct list_head poll_list;
309
310 unsigned long state;
311 int weight;
404f7c9e 312 unsigned int gro_count;
bea3348e
SH
313 int (*poll)(struct napi_struct *, int);
314#ifdef CONFIG_NETPOLL
315 spinlock_t poll_lock;
316 int poll_owner;
bea3348e 317#endif
5d38a079 318 struct net_device *dev;
d565b0a1 319 struct sk_buff *gro_list;
5d38a079 320 struct sk_buff *skb;
3b47d303 321 struct hrtimer timer;
404f7c9e 322 struct list_head dev_list;
af12fa6e
ET
323 struct hlist_node napi_hash_node;
324 unsigned int napi_id;
bea3348e
SH
325};
326
d94d9fee 327enum {
bea3348e 328 NAPI_STATE_SCHED, /* Poll is scheduled */
a0a46196 329 NAPI_STATE_DISABLE, /* Disable pending */
7b363e44 330 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
d64b5e85
ED
331 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
332 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
bea3348e
SH
333};
334
5b252f0c 335enum gro_result {
d1c76af9
HX
336 GRO_MERGED,
337 GRO_MERGED_FREE,
338 GRO_HELD,
339 GRO_NORMAL,
340 GRO_DROP,
341};
5b252f0c 342typedef enum gro_result gro_result_t;
d1c76af9 343
8a4eb573
JP
344/*
345 * enum rx_handler_result - Possible return values for rx_handlers.
346 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
347 * further.
348 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
349 * case skb->dev was changed by rx_handler.
350 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
351 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
352 *
353 * rx_handlers are functions called from inside __netif_receive_skb(), to do
354 * special processing of the skb, prior to delivery to protocol handlers.
355 *
356 * Currently, a net_device can only have a single rx_handler registered. Trying
357 * to register a second rx_handler will return -EBUSY.
358 *
359 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
360 * To unregister a rx_handler on a net_device, use
361 * netdev_rx_handler_unregister().
362 *
363 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
364 * do with the skb.
365 *
366 * If the rx_handler consumed to skb in some way, it should return
367 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
368 * the skb to be delivered in some other ways.
369 *
370 * If the rx_handler changed skb->dev, to divert the skb to another
371 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
372 * new device will be called if it exists.
373 *
374 * If the rx_handler consider the skb should be ignored, it should return
375 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
d93cf068 376 * are registered on exact device (ptype->dev == skb->dev).
8a4eb573
JP
377 *
378 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
379 * delivered, it should return RX_HANDLER_PASS.
380 *
381 * A device without a registered rx_handler will behave as if rx_handler
382 * returned RX_HANDLER_PASS.
383 */
384
385enum rx_handler_result {
386 RX_HANDLER_CONSUMED,
387 RX_HANDLER_ANOTHER,
388 RX_HANDLER_EXACT,
389 RX_HANDLER_PASS,
390};
391typedef enum rx_handler_result rx_handler_result_t;
392typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
ab95bfe0 393
f629d208 394void __napi_schedule(struct napi_struct *n);
bc9ad166 395void __napi_schedule_irqoff(struct napi_struct *n);
bea3348e 396
4d29515f 397static inline bool napi_disable_pending(struct napi_struct *n)
a0a46196
DM
398{
399 return test_bit(NAPI_STATE_DISABLE, &n->state);
400}
401
bea3348e
SH
402/**
403 * napi_schedule_prep - check if napi can be scheduled
404 * @n: napi context
405 *
406 * Test if NAPI routine is already running, and if not mark
407 * it as running. This is used as a condition variable
a0a46196
DM
408 * insure only one NAPI poll instance runs. We also make
409 * sure there is no pending NAPI disable.
bea3348e 410 */
4d29515f 411static inline bool napi_schedule_prep(struct napi_struct *n)
bea3348e 412{
a0a46196
DM
413 return !napi_disable_pending(n) &&
414 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
bea3348e
SH
415}
416
417/**
418 * napi_schedule - schedule NAPI poll
419 * @n: napi context
420 *
421 * Schedule NAPI poll routine to be called if it is not already
422 * running.
423 */
424static inline void napi_schedule(struct napi_struct *n)
425{
426 if (napi_schedule_prep(n))
427 __napi_schedule(n);
428}
429
bc9ad166
ED
430/**
431 * napi_schedule_irqoff - schedule NAPI poll
432 * @n: napi context
433 *
434 * Variant of napi_schedule(), assuming hard irqs are masked.
435 */
436static inline void napi_schedule_irqoff(struct napi_struct *n)
437{
438 if (napi_schedule_prep(n))
439 __napi_schedule_irqoff(n);
440}
441
bfe13f54 442/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
4d29515f 443static inline bool napi_reschedule(struct napi_struct *napi)
bfe13f54
RD
444{
445 if (napi_schedule_prep(napi)) {
446 __napi_schedule(napi);
4d29515f 447 return true;
bfe13f54 448 }
4d29515f 449 return false;
bfe13f54
RD
450}
451
3b47d303
ED
452void __napi_complete(struct napi_struct *n);
453void napi_complete_done(struct napi_struct *n, int work_done);
bea3348e
SH
454/**
455 * napi_complete - NAPI processing complete
456 * @n: napi context
457 *
458 * Mark NAPI processing as complete.
3b47d303 459 * Consider using napi_complete_done() instead.
bea3348e 460 */
3b47d303
ED
461static inline void napi_complete(struct napi_struct *n)
462{
463 return napi_complete_done(n, 0);
464}
bea3348e 465
af12fa6e
ET
466/**
467 * napi_hash_add - add a NAPI to global hashtable
468 * @napi: napi context
469 *
470 * generate a new napi_id and store a @napi under it in napi_hash
93d05d4a
ED
471 * Used for busy polling (CONFIG_NET_RX_BUSY_POLL)
472 * Note: This is normally automatically done from netif_napi_add(),
473 * so might disappear in a future linux version.
af12fa6e 474 */
f629d208 475void napi_hash_add(struct napi_struct *napi);
af12fa6e
ET
476
477/**
478 * napi_hash_del - remove a NAPI from global table
479 * @napi: napi context
480 *
481 * Warning: caller must observe rcu grace period
34cbe27e
ED
482 * before freeing memory containing @napi, if
483 * this function returns true.
93d05d4a
ED
484 * Note: core networking stack automatically calls it
485 * from netif_napi_del()
486 * Drivers might want to call this helper to combine all
487 * the needed rcu grace periods into a single one.
af12fa6e 488 */
34cbe27e 489bool napi_hash_del(struct napi_struct *napi);
af12fa6e 490
bea3348e
SH
491/**
492 * napi_disable - prevent NAPI from scheduling
493 * @n: napi context
494 *
495 * Stop NAPI from being scheduled on this context.
496 * Waits till any outstanding processing completes.
497 */
3b47d303 498void napi_disable(struct napi_struct *n);
bea3348e
SH
499
500/**
501 * napi_enable - enable NAPI scheduling
502 * @n: napi context
503 *
504 * Resume NAPI from being scheduled on this context.
505 * Must be paired with napi_disable.
506 */
507static inline void napi_enable(struct napi_struct *n)
508{
509 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4e857c58 510 smp_mb__before_atomic();
bea3348e 511 clear_bit(NAPI_STATE_SCHED, &n->state);
2d8bff12 512 clear_bit(NAPI_STATE_NPSVC, &n->state);
bea3348e
SH
513}
514
c264c3de
SH
515#ifdef CONFIG_SMP
516/**
517 * napi_synchronize - wait until NAPI is not running
518 * @n: napi context
519 *
520 * Wait until NAPI is done being scheduled on this context.
521 * Waits till any outstanding processing completes but
522 * does not disable future activations.
523 */
524static inline void napi_synchronize(const struct napi_struct *n)
525{
526 while (test_bit(NAPI_STATE_SCHED, &n->state))
527 msleep(1);
528}
529#else
530# define napi_synchronize(n) barrier()
531#endif
532
d94d9fee 533enum netdev_queue_state_t {
73466498
TH
534 __QUEUE_STATE_DRV_XOFF,
535 __QUEUE_STATE_STACK_XOFF,
c3f26a26 536 __QUEUE_STATE_FROZEN,
79d16385 537};
8e2f1a63
DB
538
539#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
540#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
541#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
542
543#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
544#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
545 QUEUE_STATE_FROZEN)
546#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
547 QUEUE_STATE_FROZEN)
548
73466498
TH
549/*
550 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
551 * netif_tx_* functions below are used to manipulate this flag. The
552 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
553 * queue independently. The netif_xmit_*stopped functions below are called
554 * to check if the queue has been stopped by the driver or stack (either
555 * of the XOFF bits are set in the state). Drivers should not need to call
556 * netif_xmit*stopped functions, they should only be using netif_tx_*.
557 */
79d16385 558
bb949fbd 559struct netdev_queue {
6a321cb3
ED
560/*
561 * read mostly part
562 */
bb949fbd 563 struct net_device *dev;
46e5da40 564 struct Qdisc __rcu *qdisc;
b0e1e646 565 struct Qdisc *qdisc_sleeping;
ccf5ff69 566#ifdef CONFIG_SYSFS
1d24eb48
TH
567 struct kobject kobj;
568#endif
f2cd2d3e
ED
569#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
570 int numa_node;
571#endif
6a321cb3
ED
572/*
573 * write mostly part
574 */
575 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
576 int xmit_lock_owner;
9d21493b
ED
577 /*
578 * please use this field instead of dev->trans_start
579 */
580 unsigned long trans_start;
ccf5ff69 581
582 /*
583 * Number of TX timeouts for this queue
584 * (/sys/class/net/DEV/Q/trans_timeout)
585 */
586 unsigned long trans_timeout;
114cf580
TH
587
588 unsigned long state;
589
590#ifdef CONFIG_BQL
591 struct dql dql;
592#endif
822b3b2e 593 unsigned long tx_maxrate;
e8a0464c 594} ____cacheline_aligned_in_smp;
bb949fbd 595
f2cd2d3e
ED
596static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
597{
598#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
599 return q->numa_node;
600#else
b236da69 601 return NUMA_NO_NODE;
f2cd2d3e
ED
602#endif
603}
604
605static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
606{
607#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
608 q->numa_node = node;
609#endif
610}
611
df334545 612#ifdef CONFIG_RPS
0a9627f2
TH
613/*
614 * This structure holds an RPS map which can be of variable length. The
615 * map is an array of CPUs.
616 */
617struct rps_map {
618 unsigned int len;
619 struct rcu_head rcu;
620 u16 cpus[0];
621};
60b778ce 622#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
0a9627f2 623
fec5e652 624/*
c445477d
BH
625 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
626 * tail pointer for that CPU's input queue at the time of last enqueue, and
627 * a hardware filter index.
fec5e652
TH
628 */
629struct rps_dev_flow {
630 u16 cpu;
c445477d 631 u16 filter;
fec5e652
TH
632 unsigned int last_qtail;
633};
c445477d 634#define RPS_NO_FILTER 0xffff
fec5e652
TH
635
636/*
637 * The rps_dev_flow_table structure contains a table of flow mappings.
638 */
639struct rps_dev_flow_table {
640 unsigned int mask;
641 struct rcu_head rcu;
fec5e652
TH
642 struct rps_dev_flow flows[0];
643};
644#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
60b778ce 645 ((_num) * sizeof(struct rps_dev_flow)))
fec5e652
TH
646
647/*
648 * The rps_sock_flow_table contains mappings of flows to the last CPU
649 * on which they were processed by the application (set in recvmsg).
567e4b79
ED
650 * Each entry is a 32bit value. Upper part is the high order bits
651 * of flow hash, lower part is cpu number.
652 * rps_cpu_mask is used to partition the space, depending on number of
653 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
654 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
655 * meaning we use 32-6=26 bits for the hash.
fec5e652
TH
656 */
657struct rps_sock_flow_table {
567e4b79 658 u32 mask;
93c1af6c
ED
659
660 u32 ents[0] ____cacheline_aligned_in_smp;
fec5e652 661};
567e4b79 662#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
fec5e652
TH
663
664#define RPS_NO_CPU 0xffff
665
567e4b79
ED
666extern u32 rps_cpu_mask;
667extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
668
fec5e652
TH
669static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
670 u32 hash)
671{
672 if (table && hash) {
567e4b79
ED
673 unsigned int index = hash & table->mask;
674 u32 val = hash & ~rps_cpu_mask;
fec5e652
TH
675
676 /* We only give a hint, preemption can change cpu under us */
567e4b79 677 val |= raw_smp_processor_id();
fec5e652 678
567e4b79
ED
679 if (table->ents[index] != val)
680 table->ents[index] = val;
fec5e652
TH
681 }
682}
683
c445477d 684#ifdef CONFIG_RFS_ACCEL
f629d208
JP
685bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
686 u16 filter_id);
c445477d 687#endif
a953be53 688#endif /* CONFIG_RPS */
c445477d 689
0a9627f2
TH
690/* This structure contains an instance of an RX queue. */
691struct netdev_rx_queue {
a953be53 692#ifdef CONFIG_RPS
6e3f7faf
ED
693 struct rps_map __rcu *rps_map;
694 struct rps_dev_flow_table __rcu *rps_flow_table;
a953be53 695#endif
6e3f7faf 696 struct kobject kobj;
fe822240 697 struct net_device *dev;
0a9627f2 698} ____cacheline_aligned_in_smp;
a953be53
MD
699
700/*
701 * RX queue sysfs structures and functions.
702 */
703struct rx_queue_attribute {
704 struct attribute attr;
705 ssize_t (*show)(struct netdev_rx_queue *queue,
706 struct rx_queue_attribute *attr, char *buf);
707 ssize_t (*store)(struct netdev_rx_queue *queue,
708 struct rx_queue_attribute *attr, const char *buf, size_t len);
709};
d314774c 710
bf264145
TH
711#ifdef CONFIG_XPS
712/*
713 * This structure holds an XPS map which can be of variable length. The
714 * map is an array of queues.
715 */
716struct xps_map {
717 unsigned int len;
718 unsigned int alloc_len;
719 struct rcu_head rcu;
720 u16 queues[0];
721};
60b778ce 722#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
c59f419b
HD
723#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
724 - sizeof(struct xps_map)) / sizeof(u16))
bf264145
TH
725
726/*
727 * This structure holds all XPS maps for device. Maps are indexed by CPU.
728 */
729struct xps_dev_maps {
730 struct rcu_head rcu;
a4177869 731 struct xps_map __rcu *cpu_map[0];
bf264145
TH
732};
733#define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
734 (nr_cpu_ids * sizeof(struct xps_map *)))
735#endif /* CONFIG_XPS */
736
4f57c087
JF
737#define TC_MAX_QUEUE 16
738#define TC_BITMASK 15
739/* HW offloaded queuing disciplines txq count and offset maps */
740struct netdev_tc_txq {
741 u16 count;
742 u16 offset;
743};
744
68bad94e
NP
745#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
746/*
747 * This structure is to hold information about the device
748 * configured to run FCoE protocol stack.
749 */
750struct netdev_fcoe_hbainfo {
751 char manufacturer[64];
752 char serial_number[64];
753 char hardware_version[64];
754 char driver_version[64];
755 char optionrom_version[64];
756 char firmware_version[64];
757 char model[256];
758 char model_description[256];
759};
760#endif
761
02637fce 762#define MAX_PHYS_ITEM_ID_LEN 32
66b52b0d 763
02637fce
JP
764/* This structure holds a unique identifier to identify some
765 * physical item (port for example) used by a netdevice.
66b52b0d 766 */
02637fce
JP
767struct netdev_phys_item_id {
768 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
66b52b0d
JP
769 unsigned char id_len;
770};
771
d754f98b
SF
772static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
773 struct netdev_phys_item_id *b)
774{
775 return a->id_len == b->id_len &&
776 memcmp(a->id, b->id, a->id_len) == 0;
777}
778
99932d4f
DB
779typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
780 struct sk_buff *skb);
781
d314774c
SH
782/*
783 * This structure defines the management hooks for network devices.
00829823
SH
784 * The following hooks can be defined; unless noted otherwise, they are
785 * optional and can be filled with a null pointer.
d314774c
SH
786 *
787 * int (*ndo_init)(struct net_device *dev);
788 * This function is called once when network device is registered.
789 * The network device can use this to any late stage initializaton
790 * or semantic validattion. It can fail with an error code which will
791 * be propogated back to register_netdev
792 *
793 * void (*ndo_uninit)(struct net_device *dev);
794 * This function is called when device is unregistered or when registration
795 * fails. It is not called if init fails.
796 *
797 * int (*ndo_open)(struct net_device *dev);
798 * This function is called when network device transistions to the up
799 * state.
800 *
801 * int (*ndo_stop)(struct net_device *dev);
802 * This function is called when network device transistions to the down
803 * state.
804 *
dc1f8bf6
SH
805 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
806 * struct net_device *dev);
00829823 807 * Called when a packet needs to be transmitted.
e79d8429
RR
808 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
809 * the queue before that can happen; it's for obsolete devices and weird
810 * corner cases, but the stack really does a non-trivial amount
811 * of useless work if you return NETDEV_TX_BUSY.
dc1f8bf6 812 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
00829823
SH
813 * Required can not be NULL.
814 *
cdba756f
ED
815 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
816 * netdev_features_t features);
817 * Adjusts the requested feature flags according to device-specific
818 * constraints, and returns the resulting flags. Must not modify
819 * the device state.
820 *
f663dd9a 821 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
99932d4f 822 * void *accel_priv, select_queue_fallback_t fallback);
00829823
SH
823 * Called to decide which queue to when device supports multiple
824 * transmit queues.
825 *
d314774c
SH
826 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
827 * This function is called to allow device receiver to make
828 * changes to configuration when multicast or promiscious is enabled.
829 *
830 * void (*ndo_set_rx_mode)(struct net_device *dev);
831 * This function is called device changes address list filtering.
01789349
JP
832 * If driver handles unicast address filtering, it should set
833 * IFF_UNICAST_FLT to its priv_flags.
d314774c
SH
834 *
835 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
836 * This function is called when the Media Access Control address
37b607c5 837 * needs to be changed. If this interface is not defined, the
d314774c
SH
838 * mac address can not be changed.
839 *
840 * int (*ndo_validate_addr)(struct net_device *dev);
841 * Test if Media Access Control address is valid for the device.
842 *
843 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
844 * Called when a user request an ioctl which can't be handled by
845 * the generic interface code. If not defined ioctl's return
846 * not supported error code.
847 *
848 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
849 * Used to set network devices bus interface parameters. This interface
850 * is retained for legacy reason, new devices should use the bus
851 * interface (PCI) for low level management.
852 *
853 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
854 * Called when a user wants to change the Maximum Transfer Unit
855 * of a device. If not defined, any request to change MTU will
856 * will return an error.
857 *
00829823 858 * void (*ndo_tx_timeout)(struct net_device *dev);
d314774c
SH
859 * Callback uses when the transmitter has not made any progress
860 * for dev->watchdog ticks.
861 *
3cfde79c 862 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
28172739 863 * struct rtnl_link_stats64 *storage);
d308e38f 864 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
d314774c 865 * Called when a user wants to get the network device usage
be1f3c2c 866 * statistics. Drivers must do one of the following:
3cfde79c
BH
867 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
868 * rtnl_link_stats64 structure passed by the caller.
82695d9b 869 * 2. Define @ndo_get_stats to update a net_device_stats structure
be1f3c2c
BH
870 * (which should normally be dev->stats) and return a pointer to
871 * it. The structure may be changed asynchronously only if each
872 * field is written atomically.
873 * 3. Update dev->stats asynchronously and atomically, and define
874 * neither operation.
d314774c 875 *
5d632cb7 876 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
80d5c368
PM
877 * If device support VLAN filtering this function is called when a
878 * VLAN id is registered.
d314774c 879 *
5d632cb7 880 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
80d5c368
PM
881 * If device support VLAN filtering this function is called when a
882 * VLAN id is unregistered.
d314774c
SH
883 *
884 * void (*ndo_poll_controller)(struct net_device *dev);
95c26df8
WM
885 *
886 * SR-IOV management functions.
887 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
888 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
ed616689
SC
889 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
890 * int max_tx_rate);
5f8444a3 891 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
dd461d6a 892 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
95c26df8
WM
893 * int (*ndo_get_vf_config)(struct net_device *dev,
894 * int vf, struct ifla_vf_info *ivf);
1d8faf48 895 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
57b61080
SF
896 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
897 * struct nlattr *port[]);
01a3d796
VZ
898 *
899 * Enable or disable the VF ability to query its RSS Redirection Table and
900 * Hash Key. This is needed since on some devices VF share this information
901 * with PF and querying it may adduce a theoretical security risk.
902 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
57b61080 903 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
4f57c087
JF
904 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
905 * Called to setup 'tc' number of traffic classes in the net device. This
906 * is always called from the stack with the rtnl lock held and netif tx
907 * queues stopped. This allows the netdevice to perform queue management
908 * safely.
c445477d 909 *
e9bce845
YZ
910 * Fiber Channel over Ethernet (FCoE) offload functions.
911 * int (*ndo_fcoe_enable)(struct net_device *dev);
912 * Called when the FCoE protocol stack wants to start using LLD for FCoE
913 * so the underlying device can perform whatever needed configuration or
914 * initialization to support acceleration of FCoE traffic.
915 *
916 * int (*ndo_fcoe_disable)(struct net_device *dev);
917 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
918 * so the underlying device can perform whatever needed clean-ups to
919 * stop supporting acceleration of FCoE traffic.
920 *
921 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
922 * struct scatterlist *sgl, unsigned int sgc);
923 * Called when the FCoE Initiator wants to initialize an I/O that
924 * is a possible candidate for Direct Data Placement (DDP). The LLD can
925 * perform necessary setup and returns 1 to indicate the device is set up
926 * successfully to perform DDP on this I/O, otherwise this returns 0.
927 *
928 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
929 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
930 * indicated by the FC exchange id 'xid', so the underlying device can
931 * clean up and reuse resources for later DDP requests.
932 *
933 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
934 * struct scatterlist *sgl, unsigned int sgc);
935 * Called when the FCoE Target wants to initialize an I/O that
936 * is a possible candidate for Direct Data Placement (DDP). The LLD can
937 * perform necessary setup and returns 1 to indicate the device is set up
938 * successfully to perform DDP on this I/O, otherwise this returns 0.
939 *
68bad94e
NP
940 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
941 * struct netdev_fcoe_hbainfo *hbainfo);
942 * Called when the FCoE Protocol stack wants information on the underlying
943 * device. This information is utilized by the FCoE protocol stack to
944 * register attributes with Fiber Channel management service as per the
945 * FC-GS Fabric Device Management Information(FDMI) specification.
946 *
e9bce845
YZ
947 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
948 * Called when the underlying device wants to override default World Wide
949 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
950 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
951 * protocol stack to use.
952 *
c445477d
BH
953 * RFS acceleration.
954 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
955 * u16 rxq_index, u32 flow_id);
956 * Set hardware filter for RFS. rxq_index is the target queue index;
957 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
958 * Return the filter ID on success, or a negative error code.
fbaec0ea 959 *
8b98a70c 960 * Slave management functions (for bridge, bonding, etc).
fbaec0ea
JP
961 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
962 * Called to make another netdev an underling.
963 *
964 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
965 * Called to release previously enslaved netdev.
5455c699
MM
966 *
967 * Feature/offload setting functions.
c8f44aff 968 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
5455c699
MM
969 * Called to update device configuration to new features. Passed
970 * feature set might be less than what was returned by ndo_fix_features()).
971 * Must return >0 or -errno if it changed dev->features itself.
972 *
edc7d573 973 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
974 * struct net_device *dev,
f6f6424b 975 * const unsigned char *addr, u16 vid, u16 flags)
77162022 976 * Adds an FDB entry to dev for addr.
1690be63
VY
977 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
978 * struct net_device *dev,
f6f6424b 979 * const unsigned char *addr, u16 vid)
77162022
JF
980 * Deletes the FDB entry from dev coresponding to addr.
981 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
5d5eacb3
JHS
982 * struct net_device *dev, struct net_device *filter_dev,
983 * int idx)
77162022
JF
984 * Used to add FDB entries to dump requests. Implementers should add
985 * entries to skb and update idx with the number of entries.
e5a55a89 986 *
ad41faa8
ND
987 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
988 * u16 flags)
e5a55a89 989 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
46c264da
ND
990 * struct net_device *dev, u32 filter_mask,
991 * int nlflags)
ad41faa8
ND
992 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
993 * u16 flags);
4bf84c35
JP
994 *
995 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
996 * Called to change device carrier. Soft-devices (like dummy, team, etc)
997 * which do not represent real hardware may define this to allow their
998 * userspace components to manage their virtual carrier state. Devices
999 * that determine carrier state from physical hardware properties (eg
1000 * network cables) or protocol-dependent mechanisms (eg
1001 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
66b52b0d
JP
1002 *
1003 * int (*ndo_get_phys_port_id)(struct net_device *dev,
02637fce 1004 * struct netdev_phys_item_id *ppid);
66b52b0d
JP
1005 * Called to get ID of physical port of this device. If driver does
1006 * not implement this, it is assumed that the hw is not able to have
1007 * multiple net devices on single physical port.
53cf5275
JG
1008 *
1009 * void (*ndo_add_vxlan_port)(struct net_device *dev,
35e42379 1010 * sa_family_t sa_family, __be16 port);
53cf5275
JG
1011 * Called by vxlan to notiy a driver about the UDP port and socket
1012 * address family that vxlan is listnening to. It is called only when
1013 * a new port starts listening. The operation is protected by the
1014 * vxlan_net->sock_lock.
1015 *
a8170d2b
SA
1016 * void (*ndo_add_geneve_port)(struct net_device *dev,
1017 * sa_family_t sa_family, __be16 port);
1018 * Called by geneve to notify a driver about the UDP port and socket
1019 * address family that geneve is listnening to. It is called only when
1020 * a new port starts listening. The operation is protected by the
1021 * geneve_net->sock_lock.
1022 *
1023 * void (*ndo_del_geneve_port)(struct net_device *dev,
1024 * sa_family_t sa_family, __be16 port);
1025 * Called by geneve to notify the driver about a UDP port and socket
1026 * address family that geneve is not listening to anymore. The operation
1027 * is protected by the geneve_net->sock_lock.
1028 *
53cf5275 1029 * void (*ndo_del_vxlan_port)(struct net_device *dev,
35e42379 1030 * sa_family_t sa_family, __be16 port);
53cf5275
JG
1031 * Called by vxlan to notify the driver about a UDP port and socket
1032 * address family that vxlan is not listening to anymore. The operation
1033 * is protected by the vxlan_net->sock_lock.
a6cc0cfa
JF
1034 *
1035 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1036 * struct net_device *dev)
1037 * Called by upper layer devices to accelerate switching or other
1038 * station functionality into hardware. 'pdev is the lowerdev
1039 * to use for the offload and 'dev' is the net device that will
1040 * back the offload. Returns a pointer to the private structure
1041 * the upper layer will maintain.
1042 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1043 * Called by upper layer device to delete the station created
1044 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1045 * the station and priv is the structure returned by the add
1046 * operation.
1047 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1048 * struct net_device *dev,
1049 * void *priv);
1050 * Callback to use for xmit over the accelerated station. This
1051 * is used in place of ndo_start_xmit on accelerated net
1052 * devices.
5f35227e
JG
1053 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1054 * struct net_device *dev
1055 * netdev_features_t features);
04ffcb25 1056 * Called by core transmit path to determine if device is capable of
5f35227e
JG
1057 * performing offload operations on a given packet. This is to give
1058 * the device an opportunity to implement any restrictions that cannot
1059 * be otherwise expressed by feature flags. The check is called with
1060 * the set of features that the stack has calculated and it returns
1061 * those the driver believes to be appropriate.
822b3b2e
JF
1062 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1063 * int queue_index, u32 maxrate);
1064 * Called when a user wants to set a max-rate limitation of specific
1065 * TX queue.
a54acb3a
ND
1066 * int (*ndo_get_iflink)(const struct net_device *dev);
1067 * Called to get the iflink value of this device.
d746d707
AK
1068 * void (*ndo_change_proto_down)(struct net_device *dev,
1069 * bool proto_down);
1070 * This function is used to pass protocol port error state information
1071 * to the switch driver. The switch driver can react to the proto_down
1072 * by doing a phys down on the associated switch port.
fc4099f1
PS
1073 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1074 * This function is used to get egress tunnel information for given skb.
1075 * This is useful for retrieving outer tunnel header parameters while
1076 * sampling packet.
d746d707 1077 *
d314774c
SH
1078 */
1079struct net_device_ops {
1080 int (*ndo_init)(struct net_device *dev);
1081 void (*ndo_uninit)(struct net_device *dev);
1082 int (*ndo_open)(struct net_device *dev);
1083 int (*ndo_stop)(struct net_device *dev);
cdba756f
ED
1084 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1085 struct net_device *dev);
1086 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1087 struct net_device *dev,
1088 netdev_features_t features);
00829823 1089 u16 (*ndo_select_queue)(struct net_device *dev,
f663dd9a 1090 struct sk_buff *skb,
99932d4f
DB
1091 void *accel_priv,
1092 select_queue_fallback_t fallback);
d314774c
SH
1093 void (*ndo_change_rx_flags)(struct net_device *dev,
1094 int flags);
d314774c 1095 void (*ndo_set_rx_mode)(struct net_device *dev);
d314774c
SH
1096 int (*ndo_set_mac_address)(struct net_device *dev,
1097 void *addr);
d314774c 1098 int (*ndo_validate_addr)(struct net_device *dev);
d314774c
SH
1099 int (*ndo_do_ioctl)(struct net_device *dev,
1100 struct ifreq *ifr, int cmd);
d314774c
SH
1101 int (*ndo_set_config)(struct net_device *dev,
1102 struct ifmap *map);
00829823
SH
1103 int (*ndo_change_mtu)(struct net_device *dev,
1104 int new_mtu);
1105 int (*ndo_neigh_setup)(struct net_device *dev,
1106 struct neigh_parms *);
d314774c
SH
1107 void (*ndo_tx_timeout) (struct net_device *dev);
1108
28172739
ED
1109 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1110 struct rtnl_link_stats64 *storage);
d314774c
SH
1111 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1112
8e586137 1113 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
80d5c368 1114 __be16 proto, u16 vid);
8e586137 1115 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
80d5c368 1116 __be16 proto, u16 vid);
d314774c 1117#ifdef CONFIG_NET_POLL_CONTROLLER
d314774c 1118 void (*ndo_poll_controller)(struct net_device *dev);
4247e161 1119 int (*ndo_netpoll_setup)(struct net_device *dev,
a8779ec1 1120 struct netpoll_info *info);
0e34e931 1121 void (*ndo_netpoll_cleanup)(struct net_device *dev);
06021292 1122#endif
e0d1095a 1123#ifdef CONFIG_NET_RX_BUSY_POLL
8b80cda5 1124 int (*ndo_busy_poll)(struct napi_struct *dev);
d314774c 1125#endif
95c26df8
WM
1126 int (*ndo_set_vf_mac)(struct net_device *dev,
1127 int queue, u8 *mac);
1128 int (*ndo_set_vf_vlan)(struct net_device *dev,
1129 int queue, u16 vlan, u8 qos);
ed616689
SC
1130 int (*ndo_set_vf_rate)(struct net_device *dev,
1131 int vf, int min_tx_rate,
1132 int max_tx_rate);
5f8444a3
GR
1133 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1134 int vf, bool setting);
dd461d6a
HS
1135 int (*ndo_set_vf_trust)(struct net_device *dev,
1136 int vf, bool setting);
95c26df8
WM
1137 int (*ndo_get_vf_config)(struct net_device *dev,
1138 int vf,
1139 struct ifla_vf_info *ivf);
1d8faf48
RE
1140 int (*ndo_set_vf_link_state)(struct net_device *dev,
1141 int vf, int link_state);
3b766cd8
EBE
1142 int (*ndo_get_vf_stats)(struct net_device *dev,
1143 int vf,
1144 struct ifla_vf_stats
1145 *vf_stats);
57b61080
SF
1146 int (*ndo_set_vf_port)(struct net_device *dev,
1147 int vf,
1148 struct nlattr *port[]);
1149 int (*ndo_get_vf_port)(struct net_device *dev,
1150 int vf, struct sk_buff *skb);
01a3d796
VZ
1151 int (*ndo_set_vf_rss_query_en)(
1152 struct net_device *dev,
1153 int vf, bool setting);
4f57c087 1154 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
d11ead75 1155#if IS_ENABLED(CONFIG_FCOE)
cb454399
YZ
1156 int (*ndo_fcoe_enable)(struct net_device *dev);
1157 int (*ndo_fcoe_disable)(struct net_device *dev);
4d288d57
YZ
1158 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1159 u16 xid,
1160 struct scatterlist *sgl,
1161 unsigned int sgc);
1162 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1163 u16 xid);
6247e086
YZ
1164 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1165 u16 xid,
1166 struct scatterlist *sgl,
1167 unsigned int sgc);
68bad94e
NP
1168 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1169 struct netdev_fcoe_hbainfo *hbainfo);
3c9c36bc
BPG
1170#endif
1171
d11ead75 1172#if IS_ENABLED(CONFIG_LIBFCOE)
df5c7945
YZ
1173#define NETDEV_FCOE_WWNN 0
1174#define NETDEV_FCOE_WWPN 1
1175 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1176 u64 *wwn, int type);
4d288d57 1177#endif
3c9c36bc 1178
c445477d
BH
1179#ifdef CONFIG_RFS_ACCEL
1180 int (*ndo_rx_flow_steer)(struct net_device *dev,
1181 const struct sk_buff *skb,
1182 u16 rxq_index,
1183 u32 flow_id);
1184#endif
fbaec0ea
JP
1185 int (*ndo_add_slave)(struct net_device *dev,
1186 struct net_device *slave_dev);
1187 int (*ndo_del_slave)(struct net_device *dev,
1188 struct net_device *slave_dev);
c8f44aff
MM
1189 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1190 netdev_features_t features);
5455c699 1191 int (*ndo_set_features)(struct net_device *dev,
c8f44aff 1192 netdev_features_t features);
da6a8fa0 1193 int (*ndo_neigh_construct)(struct neighbour *n);
447f2191 1194 void (*ndo_neigh_destroy)(struct neighbour *n);
77162022
JF
1195
1196 int (*ndo_fdb_add)(struct ndmsg *ndm,
edc7d573 1197 struct nlattr *tb[],
77162022 1198 struct net_device *dev,
6b6e2725 1199 const unsigned char *addr,
f6f6424b 1200 u16 vid,
77162022
JF
1201 u16 flags);
1202 int (*ndo_fdb_del)(struct ndmsg *ndm,
1690be63 1203 struct nlattr *tb[],
77162022 1204 struct net_device *dev,
f6f6424b
JP
1205 const unsigned char *addr,
1206 u16 vid);
77162022
JF
1207 int (*ndo_fdb_dump)(struct sk_buff *skb,
1208 struct netlink_callback *cb,
1209 struct net_device *dev,
5d5eacb3 1210 struct net_device *filter_dev,
77162022 1211 int idx);
e5a55a89
JF
1212
1213 int (*ndo_bridge_setlink)(struct net_device *dev,
add511b3
RP
1214 struct nlmsghdr *nlh,
1215 u16 flags);
e5a55a89
JF
1216 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1217 u32 pid, u32 seq,
6cbdceeb 1218 struct net_device *dev,
46c264da
ND
1219 u32 filter_mask,
1220 int nlflags);
407af329 1221 int (*ndo_bridge_dellink)(struct net_device *dev,
add511b3
RP
1222 struct nlmsghdr *nlh,
1223 u16 flags);
4bf84c35
JP
1224 int (*ndo_change_carrier)(struct net_device *dev,
1225 bool new_carrier);
66b52b0d 1226 int (*ndo_get_phys_port_id)(struct net_device *dev,
02637fce 1227 struct netdev_phys_item_id *ppid);
db24a904
DA
1228 int (*ndo_get_phys_port_name)(struct net_device *dev,
1229 char *name, size_t len);
53cf5275
JG
1230 void (*ndo_add_vxlan_port)(struct net_device *dev,
1231 sa_family_t sa_family,
35e42379 1232 __be16 port);
53cf5275
JG
1233 void (*ndo_del_vxlan_port)(struct net_device *dev,
1234 sa_family_t sa_family,
35e42379 1235 __be16 port);
a8170d2b
SA
1236 void (*ndo_add_geneve_port)(struct net_device *dev,
1237 sa_family_t sa_family,
1238 __be16 port);
1239 void (*ndo_del_geneve_port)(struct net_device *dev,
1240 sa_family_t sa_family,
1241 __be16 port);
a6cc0cfa
JF
1242 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1243 struct net_device *dev);
1244 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1245 void *priv);
1246
1247 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1248 struct net_device *dev,
1249 void *priv);
25175ba5 1250 int (*ndo_get_lock_subclass)(struct net_device *dev);
822b3b2e
JF
1251 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1252 int queue_index,
1253 u32 maxrate);
a54acb3a 1254 int (*ndo_get_iflink)(const struct net_device *dev);
d746d707
AK
1255 int (*ndo_change_proto_down)(struct net_device *dev,
1256 bool proto_down);
fc4099f1
PS
1257 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1258 struct sk_buff *skb);
d314774c
SH
1259};
1260
7aa98047
LR
1261/**
1262 * enum net_device_priv_flags - &struct net_device priv_flags
1263 *
1264 * These are the &struct net_device, they are only set internally
1265 * by drivers and used in the kernel. These flags are invisible to
1266 * userspace, this means that the order of these flags can change
1267 * during any kernel release.
1268 *
1269 * You should have a pretty good reason to be extending these flags.
1270 *
1271 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1272 * @IFF_EBRIDGE: Ethernet bridging device
7aa98047 1273 * @IFF_BONDING: bonding master or slave
7aa98047 1274 * @IFF_ISATAP: ISATAP interface (RFC4214)
7aa98047
LR
1275 * @IFF_WAN_HDLC: WAN HDLC device
1276 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1277 * release skb->dst
1278 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1279 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1280 * @IFF_MACVLAN_PORT: device used as macvlan port
1281 * @IFF_BRIDGE_PORT: device used as bridge port
1282 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1283 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1284 * @IFF_UNICAST_FLT: Supports unicast filtering
1285 * @IFF_TEAM_PORT: device used as team port
1286 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1287 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1288 * change when it's running
1289 * @IFF_MACVLAN: Macvlan device
007979ea 1290 * @IFF_L3MDEV_MASTER: device is an L3 master device
fa8187c9 1291 * @IFF_NO_QUEUE: device can run without qdisc attached
35d4e172 1292 * @IFF_OPENVSWITCH: device is a Open vSwitch master
fee6d4c7 1293 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
c981e421 1294 * @IFF_TEAM: device is a team device
7aa98047
LR
1295 */
1296enum netdev_priv_flags {
1297 IFF_802_1Q_VLAN = 1<<0,
1298 IFF_EBRIDGE = 1<<1,
0dc1549b
JP
1299 IFF_BONDING = 1<<2,
1300 IFF_ISATAP = 1<<3,
1301 IFF_WAN_HDLC = 1<<4,
1302 IFF_XMIT_DST_RELEASE = 1<<5,
1303 IFF_DONT_BRIDGE = 1<<6,
1304 IFF_DISABLE_NETPOLL = 1<<7,
1305 IFF_MACVLAN_PORT = 1<<8,
1306 IFF_BRIDGE_PORT = 1<<9,
1307 IFF_OVS_DATAPATH = 1<<10,
1308 IFF_TX_SKB_SHARING = 1<<11,
1309 IFF_UNICAST_FLT = 1<<12,
1310 IFF_TEAM_PORT = 1<<13,
1311 IFF_SUPP_NOFCS = 1<<14,
1312 IFF_LIVE_ADDR_CHANGE = 1<<15,
1313 IFF_MACVLAN = 1<<16,
1314 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1315 IFF_IPVLAN_MASTER = 1<<18,
1316 IFF_IPVLAN_SLAVE = 1<<19,
007979ea 1317 IFF_L3MDEV_MASTER = 1<<20,
0dc1549b
JP
1318 IFF_NO_QUEUE = 1<<21,
1319 IFF_OPENVSWITCH = 1<<22,
fee6d4c7 1320 IFF_L3MDEV_SLAVE = 1<<23,
c981e421 1321 IFF_TEAM = 1<<24,
7aa98047
LR
1322};
1323
1324#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1325#define IFF_EBRIDGE IFF_EBRIDGE
7aa98047 1326#define IFF_BONDING IFF_BONDING
7aa98047 1327#define IFF_ISATAP IFF_ISATAP
7aa98047
LR
1328#define IFF_WAN_HDLC IFF_WAN_HDLC
1329#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1330#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1331#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1332#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1333#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1334#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1335#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1336#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1337#define IFF_TEAM_PORT IFF_TEAM_PORT
1338#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1339#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1340#define IFF_MACVLAN IFF_MACVLAN
02875878 1341#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
2ad7bf36
MB
1342#define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1343#define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
007979ea 1344#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
fa8187c9 1345#define IFF_NO_QUEUE IFF_NO_QUEUE
35d4e172 1346#define IFF_OPENVSWITCH IFF_OPENVSWITCH
8f25348b 1347#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
c981e421 1348#define IFF_TEAM IFF_TEAM
7aa98047 1349
536721b1
KK
1350/**
1351 * struct net_device - The DEVICE structure.
1352 * Actually, this whole structure is a big mistake. It mixes I/O
1353 * data with strictly "high-level" data, and it has to know about
1354 * almost every data structure used in the INET module.
1355 *
1356 * @name: This is the first field of the "visible" part of this structure
1357 * (i.e. as seen by users in the "Space.c" file). It is the name
1358 * of the interface.
1359 *
1360 * @name_hlist: Device name hash chain, please keep it close to name[]
1361 * @ifalias: SNMP alias
1362 * @mem_end: Shared memory end
1363 * @mem_start: Shared memory start
1364 * @base_addr: Device I/O address
1365 * @irq: Device IRQ number
1366 *
14ffbbb8
TG
1367 * @carrier_changes: Stats to monitor carrier on<->off transitions
1368 *
536721b1
KK
1369 * @state: Generic network queuing layer state, see netdev_state_t
1370 * @dev_list: The global list of network devices
1371 * @napi_list: List entry, that is used for polling napi devices
1372 * @unreg_list: List entry, that is used, when we are unregistering the
1373 * device, see the function unregister_netdev
1374 * @close_list: List entry, that is used, when we are closing the device
1375 *
1376 * @adj_list: Directly linked devices, like slaves for bonding
1377 * @all_adj_list: All linked devices, *including* neighbours
1378 * @features: Currently active device features
1379 * @hw_features: User-changeable features
1380 *
1381 * @wanted_features: User-requested features
1382 * @vlan_features: Mask of features inheritable by VLAN devices
1383 *
1384 * @hw_enc_features: Mask of features inherited by encapsulating devices
1385 * This field indicates what encapsulation
1386 * offloads the hardware is capable of doing,
1387 * and drivers will need to set them appropriately.
1388 *
1389 * @mpls_features: Mask of features inheritable by MPLS
1390 *
1391 * @ifindex: interface index
388069d3 1392 * @group: The group, that the device belongs to
536721b1
KK
1393 *
1394 * @stats: Statistics struct, which was left as a legacy, use
1395 * rtnl_link_stats64 instead
1396 *
1397 * @rx_dropped: Dropped packets by core network,
1398 * do not use this in drivers
1399 * @tx_dropped: Dropped packets by core network,
1400 * do not use this in drivers
1401 *
536721b1
KK
1402 * @wireless_handlers: List of functions to handle Wireless Extensions,
1403 * instead of ioctl,
1404 * see <net/iw_handler.h> for details.
1405 * @wireless_data: Instance data managed by the core of wireless extensions
1406 *
1407 * @netdev_ops: Includes several pointers to callbacks,
1408 * if one wants to override the ndo_*() functions
1409 * @ethtool_ops: Management operations
d476059e 1410 * @header_ops: Includes callbacks for creating,parsing,caching,etc
536721b1
KK
1411 * of Layer 2 headers.
1412 *
1413 * @flags: Interface flags (a la BSD)
1414 * @priv_flags: Like 'flags' but invisible to userspace,
1415 * see if.h for the definitions
1416 * @gflags: Global flags ( kept as legacy )
1417 * @padded: How much padding added by alloc_netdev()
1418 * @operstate: RFC2863 operstate
1419 * @link_mode: Mapping policy to operstate
1420 * @if_port: Selectable AUI, TP, ...
1421 * @dma: DMA channel
1422 * @mtu: Interface MTU value
1423 * @type: Interface hardware type
880621c2
MB
1424 * @hard_header_len: Hardware header length, which means that this is the
1425 * minimum size of a packet.
536721b1
KK
1426 *
1427 * @needed_headroom: Extra headroom the hardware may need, but not in all
1428 * cases can this be guaranteed
1429 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1430 * cases can this be guaranteed. Some cases also use
1431 * LL_MAX_HEADER instead to allocate the skb
1432 *
1433 * interface address info:
1434 *
1435 * @perm_addr: Permanent hw address
1436 * @addr_assign_type: Hw address assignment type
1437 * @addr_len: Hardware address length
1438 * @neigh_priv_len; Used in neigh_alloc(),
1439 * initialized only in atm/clip.c
1440 * @dev_id: Used to differentiate devices that share
1441 * the same link layer address
1442 * @dev_port: Used to differentiate devices that share
1443 * the same function
1444 * @addr_list_lock: XXX: need comments on this one
536721b1
KK
1445 * @uc_promisc: Counter, that indicates, that promiscuous mode
1446 * has been enabled due to the need to listen to
1447 * additional unicast addresses in a device that
1448 * does not implement ndo_set_rx_mode()
14ffbbb8
TG
1449 * @uc: unicast mac addresses
1450 * @mc: multicast mac addresses
1451 * @dev_addrs: list of device hw addresses
1452 * @queues_kset: Group of all Kobjects in the Tx and RX queues
536721b1
KK
1453 * @promiscuity: Number of times, the NIC is told to work in
1454 * Promiscuous mode, if it becomes 0 the NIC will
1455 * exit from working in Promiscuous mode
1456 * @allmulti: Counter, enables or disables allmulticast mode
1457 *
1458 * @vlan_info: VLAN info
1459 * @dsa_ptr: dsa specific data
1460 * @tipc_ptr: TIPC specific data
1461 * @atalk_ptr: AppleTalk link
1462 * @ip_ptr: IPv4 specific data
1463 * @dn_ptr: DECnet specific data
1464 * @ip6_ptr: IPv6 specific data
1465 * @ax25_ptr: AX.25 specific data
1466 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1467 *
1468 * @last_rx: Time of last Rx
1469 * @dev_addr: Hw address (before bcast,
1470 * because most packets are unicast)
1471 *
1472 * @_rx: Array of RX queues
1473 * @num_rx_queues: Number of RX queues
1474 * allocated at register_netdev() time
1475 * @real_num_rx_queues: Number of RX queues currently active in device
1476 *
1477 * @rx_handler: handler for received packets
1478 * @rx_handler_data: XXX: need comments on this one
1479 * @ingress_queue: XXX: need comments on this one
1480 * @broadcast: hw bcast address
1481 *
14ffbbb8
TG
1482 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1483 * indexed by RX queue number. Assigned by driver.
1484 * This must only be set if the ndo_rx_flow_steer
1485 * operation is defined
1486 * @index_hlist: Device index hash chain
1487 *
536721b1
KK
1488 * @_tx: Array of TX queues
1489 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1490 * @real_num_tx_queues: Number of TX queues currently active in device
1491 * @qdisc: Root qdisc from userspace point of view
1492 * @tx_queue_len: Max frames per queue allowed
1493 * @tx_global_lock: XXX: need comments on this one
1494 *
1495 * @xps_maps: XXX: need comments on this one
1496 *
0c4f691f
SF
1497 * @offload_fwd_mark: Offload device fwding mark
1498 *
536721b1
KK
1499 * @trans_start: Time (in jiffies) of last Tx
1500 * @watchdog_timeo: Represents the timeout that is used by
1501 * the watchdog ( see dev_watchdog() )
1502 * @watchdog_timer: List of timers
1503 *
1504 * @pcpu_refcnt: Number of references to this device
1505 * @todo_list: Delayed register/unregister
536721b1
KK
1506 * @link_watch_list: XXX: need comments on this one
1507 *
1508 * @reg_state: Register/unregister state machine
1509 * @dismantle: Device is going to be freed
1510 * @rtnl_link_state: This enum represents the phases of creating
1511 * a new link
1512 *
1513 * @destructor: Called from unregister,
1514 * can be used to call free_netdev
1515 * @npinfo: XXX: need comments on this one
1516 * @nd_net: Network namespace this network device is inside
1517 *
1518 * @ml_priv: Mid-layer private
1519 * @lstats: Loopback statistics
1520 * @tstats: Tunnel statistics
1521 * @dstats: Dummy statistics
1522 * @vstats: Virtual ethernet statistics
1523 *
1524 * @garp_port: GARP
1525 * @mrp_port: MRP
1526 *
1527 * @dev: Class/net/name entry
1528 * @sysfs_groups: Space for optional device, statistics and wireless
1529 * sysfs groups
1530 *
1531 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1532 * @rtnl_link_ops: Rtnl_link_ops
1533 *
1534 * @gso_max_size: Maximum size of generic segmentation offload
1535 * @gso_max_segs: Maximum number of segments that can be passed to the
1536 * NIC for GSO
fcbeb976
ED
1537 * @gso_min_segs: Minimum number of segments that can be passed to the
1538 * NIC for GSO
536721b1
KK
1539 *
1540 * @dcbnl_ops: Data Center Bridging netlink ops
1541 * @num_tc: Number of traffic classes in the net device
1542 * @tc_to_txq: XXX: need comments on this one
1543 * @prio_tc_map XXX: need comments on this one
1544 *
1545 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1546 *
1547 * @priomap: XXX: need comments on this one
1548 * @phydev: Physical device may attach itself
1549 * for hardware timestamping
1550 *
1551 * @qdisc_tx_busylock: XXX: need comments on this one
1552 *
d746d707
AK
1553 * @proto_down: protocol port state information can be sent to the
1554 * switch driver and used to set the phys state of the
1555 * switch port.
1556 *
1da177e4
LT
1557 * FIXME: cleanup struct net_device such that network protocol info
1558 * moves out.
1559 */
1560
d94d9fee 1561struct net_device {
1da177e4 1562 char name[IFNAMSIZ];
9356b8fc 1563 struct hlist_node name_hlist;
0b815a1a 1564 char *ifalias;
1da177e4
LT
1565 /*
1566 * I/O specific fields
1567 * FIXME: Merge these and struct ifmap into one
1568 */
536721b1
KK
1569 unsigned long mem_end;
1570 unsigned long mem_start;
1571 unsigned long base_addr;
1572 int irq;
1da177e4 1573
14ffbbb8
TG
1574 atomic_t carrier_changes;
1575
1da177e4 1576 /*
536721b1
KK
1577 * Some hardware also needs these fields (state,dev_list,
1578 * napi_list,unreg_list,close_list) but they are not
1da177e4
LT
1579 * part of the usual set specified in Space.c.
1580 */
1581
1da177e4
LT
1582 unsigned long state;
1583
7562f876 1584 struct list_head dev_list;
bea3348e 1585 struct list_head napi_list;
44a0873d 1586 struct list_head unreg_list;
5cde2829 1587 struct list_head close_list;
7866a621
SN
1588 struct list_head ptype_all;
1589 struct list_head ptype_specific;
2f268f12 1590
2f268f12
VF
1591 struct {
1592 struct list_head upper;
1593 struct list_head lower;
1594 } adj_list;
1595
2f268f12
VF
1596 struct {
1597 struct list_head upper;
1598 struct list_head lower;
1599 } all_adj_list;
4c3d5e7b 1600
c8f44aff 1601 netdev_features_t features;
c8f44aff 1602 netdev_features_t hw_features;
c8f44aff 1603 netdev_features_t wanted_features;
c8f44aff 1604 netdev_features_t vlan_features;
6a674e9c 1605 netdev_features_t hw_enc_features;
0d89d203 1606 netdev_features_t mpls_features;
04ed3e74 1607
1da177e4 1608 int ifindex;
7a66bbc9 1609 int group;
1da177e4 1610
c45d286e 1611 struct net_device_stats stats;
015f0688 1612
015f0688
ED
1613 atomic_long_t rx_dropped;
1614 atomic_long_t tx_dropped;
1da177e4 1615
b86e0280 1616#ifdef CONFIG_WIRELESS_EXT
1da177e4 1617 const struct iw_handler_def * wireless_handlers;
1da177e4 1618 struct iw_public_data * wireless_data;
b86e0280 1619#endif
d314774c 1620 const struct net_device_ops *netdev_ops;
76fd8593 1621 const struct ethtool_ops *ethtool_ops;
4170604f 1622#ifdef CONFIG_NET_SWITCHDEV
9d47c0a2 1623 const struct switchdev_ops *switchdev_ops;
4170604f 1624#endif
1b69c6d0
DA
1625#ifdef CONFIG_NET_L3_MASTER_DEV
1626 const struct l3mdev_ops *l3mdev_ops;
1627#endif
1da177e4 1628
3b04ddde
SH
1629 const struct header_ops *header_ops;
1630
536721b1
KK
1631 unsigned int flags;
1632 unsigned int priv_flags;
1633
1da177e4 1634 unsigned short gflags;
536721b1 1635 unsigned short padded;
1da177e4 1636
536721b1
KK
1637 unsigned char operstate;
1638 unsigned char link_mode;
b00055aa 1639
536721b1
KK
1640 unsigned char if_port;
1641 unsigned char dma;
bdc220da 1642
536721b1
KK
1643 unsigned int mtu;
1644 unsigned short type;
1645 unsigned short hard_header_len;
1da177e4 1646
f5184d26
JB
1647 unsigned short needed_headroom;
1648 unsigned short needed_tailroom;
1649
1da177e4 1650 /* Interface address info. */
536721b1
KK
1651 unsigned char perm_addr[MAX_ADDR_LEN];
1652 unsigned char addr_assign_type;
1653 unsigned char addr_len;
a0a9663d 1654 unsigned short neigh_priv_len;
536721b1
KK
1655 unsigned short dev_id;
1656 unsigned short dev_port;
ccffad25 1657 spinlock_t addr_list_lock;
14ffbbb8
TG
1658 unsigned char name_assign_type;
1659 bool uc_promisc;
536721b1
KK
1660 struct netdev_hw_addr_list uc;
1661 struct netdev_hw_addr_list mc;
1662 struct netdev_hw_addr_list dev_addrs;
1663
4c3d5e7b
ED
1664#ifdef CONFIG_SYSFS
1665 struct kset *queues_kset;
1666#endif
9d45abe1
WC
1667 unsigned int promiscuity;
1668 unsigned int allmulti;
1da177e4 1669
1da177e4
LT
1670
1671 /* Protocol specific pointers */
65ac6a5f 1672
d11ead75 1673#if IS_ENABLED(CONFIG_VLAN_8021Q)
536721b1 1674 struct vlan_info __rcu *vlan_info;
65ac6a5f 1675#endif
34a430d7 1676#if IS_ENABLED(CONFIG_NET_DSA)
536721b1 1677 struct dsa_switch_tree *dsa_ptr;
37cb0620
YX
1678#endif
1679#if IS_ENABLED(CONFIG_TIPC)
536721b1 1680 struct tipc_bearer __rcu *tipc_ptr;
91da11f8 1681#endif
536721b1
KK
1682 void *atalk_ptr;
1683 struct in_device __rcu *ip_ptr;
1684 struct dn_dev __rcu *dn_ptr;
1685 struct inet6_dev __rcu *ip6_ptr;
1686 void *ax25_ptr;
1687 struct wireless_dev *ieee80211_ptr;
98a18b6f 1688 struct wpan_dev *ieee802154_ptr;
03c57747
RS
1689#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1690 struct mpls_dev __rcu *mpls_ptr;
1691#endif
1da177e4 1692
9356b8fc 1693/*
cd13539b 1694 * Cache lines mostly used on receive path (including eth_type_trans())
9356b8fc 1695 */
536721b1 1696 unsigned long last_rx;
4dc89133 1697
9356b8fc 1698 /* Interface address info used in eth_type_trans() */
536721b1 1699 unsigned char *dev_addr;
f001fde5 1700
0a9627f2 1701
a953be53 1702#ifdef CONFIG_SYSFS
0a9627f2
TH
1703 struct netdev_rx_queue *_rx;
1704
0a9627f2 1705 unsigned int num_rx_queues;
62fe0b40 1706 unsigned int real_num_rx_queues;
c445477d 1707
df334545 1708#endif
0a9627f2 1709
3b47d303 1710 unsigned long gro_flush_timeout;
61391cde 1711 rx_handler_func_t __rcu *rx_handler;
1712 void __rcu *rx_handler_data;
e8a0464c 1713
4cda01e8 1714#ifdef CONFIG_NET_CLS_ACT
d2788d34
DB
1715 struct tcf_proto __rcu *ingress_cl_list;
1716#endif
24824a09 1717 struct netdev_queue __rcu *ingress_queue;
e687ad60
PN
1718#ifdef CONFIG_NETFILTER_INGRESS
1719 struct list_head nf_hooks_ingress;
1720#endif
d2788d34 1721
536721b1 1722 unsigned char broadcast[MAX_ADDR_LEN];
14ffbbb8
TG
1723#ifdef CONFIG_RFS_ACCEL
1724 struct cpu_rmap *rx_cpu_rmap;
1725#endif
1726 struct hlist_node index_hlist;
cd13539b
ED
1727
1728/*
1729 * Cache lines mostly used on transmit path
1730 */
e8a0464c
DM
1731 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1732 unsigned int num_tx_queues;
fd2ea0a7 1733 unsigned int real_num_tx_queues;
af356afa 1734 struct Qdisc *qdisc;
536721b1 1735 unsigned long tx_queue_len;
c3f26a26 1736 spinlock_t tx_global_lock;
14ffbbb8 1737 int watchdog_timeo;
cd13539b 1738
bf264145 1739#ifdef CONFIG_XPS
a4177869 1740 struct xps_dev_maps __rcu *xps_maps;
bf264145 1741#endif
1d24eb48 1742
0c4f691f
SF
1743#ifdef CONFIG_NET_SWITCHDEV
1744 u32 offload_fwd_mark;
1745#endif
1746
9356b8fc 1747 /* These may be needed for future network-power-down code. */
9d21493b
ED
1748
1749 /*
1750 * trans_start here is expensive for high speed devices on SMP,
1751 * please use netdev_queue->trans_start instead.
1752 */
536721b1 1753 unsigned long trans_start;
9356b8fc 1754
9356b8fc
ED
1755 struct timer_list watchdog_timer;
1756
29b4433d 1757 int __percpu *pcpu_refcnt;
1da177e4 1758 struct list_head todo_list;
1da177e4 1759
e014debe 1760 struct list_head link_watch_list;
572a103d 1761
1da177e4 1762 enum { NETREG_UNINITIALIZED=0,
b17a7c17 1763 NETREG_REGISTERED, /* completed register_netdevice */
1da177e4
LT
1764 NETREG_UNREGISTERING, /* called unregister_netdevice */
1765 NETREG_UNREGISTERED, /* completed unregister todo */
1766 NETREG_RELEASED, /* called free_netdev */
937f1ba5 1767 NETREG_DUMMY, /* dummy device for NAPI poll */
449f4544
ED
1768 } reg_state:8;
1769
536721b1 1770 bool dismantle;
a2835763
PM
1771
1772 enum {
1773 RTNL_LINK_INITIALIZED,
1774 RTNL_LINK_INITIALIZING,
1775 } rtnl_link_state:16;
1da177e4 1776
d314774c 1777 void (*destructor)(struct net_device *dev);
1da177e4 1778
1da177e4 1779#ifdef CONFIG_NETPOLL
5fbee843 1780 struct netpoll_info __rcu *npinfo;
1da177e4 1781#endif
eae792b7 1782
0c5c9fb5 1783 possible_net_t nd_net;
4a1c5371 1784
4951704b 1785 /* mid-layer private */
a7855c78 1786 union {
536721b1
KK
1787 void *ml_priv;
1788 struct pcpu_lstats __percpu *lstats;
8f84985f 1789 struct pcpu_sw_netstats __percpu *tstats;
536721b1
KK
1790 struct pcpu_dstats __percpu *dstats;
1791 struct pcpu_vstats __percpu *vstats;
a7855c78 1792 };
536721b1 1793
3cc77ec7 1794 struct garp_port __rcu *garp_port;
febf018d 1795 struct mrp_port __rcu *mrp_port;
1da177e4 1796
536721b1 1797 struct device dev;
0c509a6c 1798 const struct attribute_group *sysfs_groups[4];
a953be53 1799 const struct attribute_group *sysfs_rx_queue_group;
38f7b870 1800
38f7b870 1801 const struct rtnl_link_ops *rtnl_link_ops;
f25f4e44 1802
82cc1a7a
PWJ
1803 /* for setting kernel sock attribute on TCP connection setup */
1804#define GSO_MAX_SIZE 65536
1805 unsigned int gso_max_size;
30b678d8
BH
1806#define GSO_MAX_SEGS 65535
1807 u16 gso_max_segs;
fcbeb976 1808 u16 gso_min_segs;
7a6b6f51 1809#ifdef CONFIG_DCB
32953543 1810 const struct dcbnl_rtnl_ops *dcbnl_ops;
2f90b865 1811#endif
4f57c087
JF
1812 u8 num_tc;
1813 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1814 u8 prio_tc_map[TC_BITMASK + 1];
2f90b865 1815
d11ead75 1816#if IS_ENABLED(CONFIG_FCOE)
4d288d57 1817 unsigned int fcoe_ddp_xid;
5bc1421e 1818#endif
86f8515f 1819#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
5bc1421e 1820 struct netprio_map __rcu *priomap;
4d288d57 1821#endif
c1f19b51 1822 struct phy_device *phydev;
23d3b8bf 1823 struct lock_class_key *qdisc_tx_busylock;
d746d707 1824 bool proto_down;
1da177e4 1825};
43cb76d9 1826#define to_net_dev(d) container_of(d, struct net_device, dev)
1da177e4
LT
1827
1828#define NETDEV_ALIGN 32
1da177e4 1829
4f57c087
JF
1830static inline
1831int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1832{
1833 return dev->prio_tc_map[prio & TC_BITMASK];
1834}
1835
1836static inline
1837int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1838{
1839 if (tc >= dev->num_tc)
1840 return -EINVAL;
1841
1842 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1843 return 0;
1844}
1845
1846static inline
1847void netdev_reset_tc(struct net_device *dev)
1848{
1849 dev->num_tc = 0;
1850 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1851 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1852}
1853
1854static inline
1855int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1856{
1857 if (tc >= dev->num_tc)
1858 return -EINVAL;
1859
1860 dev->tc_to_txq[tc].count = count;
1861 dev->tc_to_txq[tc].offset = offset;
1862 return 0;
1863}
1864
1865static inline
1866int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1867{
1868 if (num_tc > TC_MAX_QUEUE)
1869 return -EINVAL;
1870
1871 dev->num_tc = num_tc;
1872 return 0;
1873}
1874
1875static inline
1876int netdev_get_num_tc(struct net_device *dev)
1877{
1878 return dev->num_tc;
1879}
1880
e8a0464c
DM
1881static inline
1882struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1883 unsigned int index)
1884{
1885 return &dev->_tx[index];
1886}
1887
10c51b56
DB
1888static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1889 const struct sk_buff *skb)
1890{
1891 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1892}
1893
e8a0464c
DM
1894static inline void netdev_for_each_tx_queue(struct net_device *dev,
1895 void (*f)(struct net_device *,
1896 struct netdev_queue *,
1897 void *),
1898 void *arg)
1899{
1900 unsigned int i;
1901
1902 for (i = 0; i < dev->num_tx_queues; i++)
1903 f(dev, &dev->_tx[i], arg);
1904}
1905
f629d208 1906struct netdev_queue *netdev_pick_tx(struct net_device *dev,
f663dd9a
JW
1907 struct sk_buff *skb,
1908 void *accel_priv);
8c4c49df 1909
c346dca1
YH
1910/*
1911 * Net namespace inlines
1912 */
1913static inline
1914struct net *dev_net(const struct net_device *dev)
1915{
c2d9ba9b 1916 return read_pnet(&dev->nd_net);
c346dca1
YH
1917}
1918
1919static inline
f5aa23fd 1920void dev_net_set(struct net_device *dev, struct net *net)
c346dca1 1921{
0c5c9fb5 1922 write_pnet(&dev->nd_net, net);
c346dca1
YH
1923}
1924
3e8a72d1 1925static inline bool netdev_uses_dsa(struct net_device *dev)
cf85d08f 1926{
3fc88677 1927#if IS_ENABLED(CONFIG_NET_DSA)
5aed85ce
FF
1928 if (dev->dsa_ptr != NULL)
1929 return dsa_uses_tagged_protocol(dev->dsa_ptr);
396138f0 1930#endif
5aed85ce 1931 return false;
396138f0
LB
1932}
1933
bea3348e
SH
1934/**
1935 * netdev_priv - access network device private data
1936 * @dev: network device
1937 *
1938 * Get network device private data
1939 */
6472ce60 1940static inline void *netdev_priv(const struct net_device *dev)
1da177e4 1941{
1ce8e7b5 1942 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1da177e4
LT
1943}
1944
1da177e4
LT
1945/* Set the sysfs physical device reference for the network logical device
1946 * if set prior to registration will cause a symlink during initialization.
1947 */
43cb76d9 1948#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1da177e4 1949
384912ed 1950/* Set the sysfs device type for the network logical device to allow
3f79410c 1951 * fine-grained identification of different network device types. For
384912ed
MH
1952 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1953 */
1954#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1955
82dc3c63
ED
1956/* Default NAPI poll() weight
1957 * Device drivers are strongly advised to not use bigger value
1958 */
1959#define NAPI_POLL_WEIGHT 64
1960
3b582cc1
SH
1961/**
1962 * netif_napi_add - initialize a napi context
1963 * @dev: network device
1964 * @napi: napi context
1965 * @poll: polling function
1966 * @weight: default weight
1967 *
1968 * netif_napi_add() must be used to initialize a napi context prior to calling
1969 * *any* of the other napi related functions.
1970 */
d565b0a1
HX
1971void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1972 int (*poll)(struct napi_struct *, int), int weight);
bea3348e 1973
d64b5e85
ED
1974/**
1975 * netif_tx_napi_add - initialize a napi context
1976 * @dev: network device
1977 * @napi: napi context
1978 * @poll: polling function
1979 * @weight: default weight
1980 *
1981 * This variant of netif_napi_add() should be used from drivers using NAPI
1982 * to exclusively poll a TX queue.
1983 * This will avoid we add it into napi_hash[], thus polluting this hash table.
1984 */
1985static inline void netif_tx_napi_add(struct net_device *dev,
1986 struct napi_struct *napi,
1987 int (*poll)(struct napi_struct *, int),
1988 int weight)
1989{
1990 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
1991 netif_napi_add(dev, napi, poll, weight);
1992}
1993
d8156534
AD
1994/**
1995 * netif_napi_del - remove a napi context
1996 * @napi: napi context
1997 *
1998 * netif_napi_del() removes a napi context from the network device napi list
1999 */
d565b0a1
HX
2000void netif_napi_del(struct napi_struct *napi);
2001
2002struct napi_gro_cb {
78a478d0
HX
2003 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2004 void *frag0;
2005
7489594c
HX
2006 /* Length of frag0. */
2007 unsigned int frag0_len;
2008
86911732
HX
2009 /* This indicates where we are processing relative to skb->data. */
2010 int data_offset;
2011
d565b0a1 2012 /* This is non-zero if the packet cannot be merged with the new skb. */
bf5a755f
JC
2013 u16 flush;
2014
2015 /* Save the IP ID here and check when we get to the transport layer */
2016 u16 flush_id;
d565b0a1
HX
2017
2018 /* Number of segments aggregated. */
2e71a6f8
ED
2019 u16 count;
2020
15e2396d
TH
2021 /* Start offset for remote checksum offload */
2022 u16 gro_remcsum_start;
2023
2e71a6f8
ED
2024 /* jiffies when first packet was created/queued */
2025 unsigned long age;
86347245 2026
afe93325 2027 /* Used in ipv6_gro_receive() and foo-over-udp */
b582ef09
OG
2028 u16 proto;
2029
baa32ff4
TH
2030 /* This is non-zero if the packet may be of the same flow. */
2031 u8 same_flow:1;
2032
b582ef09 2033 /* Used in udp_gro_receive */
573e8fca
TH
2034 u8 udp_mark:1;
2035
2036 /* GRO checksum is valid */
2037 u8 csum_valid:1;
2038
662880f4
TH
2039 /* Number of checksums via CHECKSUM_UNNECESSARY */
2040 u8 csum_cnt:3;
c3c7c254 2041
baa32ff4
TH
2042 /* Free the skb? */
2043 u8 free:2;
2044#define NAPI_GRO_FREE 1
2045#define NAPI_GRO_FREE_STOLEN_HEAD 2
2046
efc98d08
TH
2047 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2048 u8 is_ipv6:1;
2049
baa32ff4
TH
2050 /* 7 bit hole */
2051
bf5a755f
JC
2052 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2053 __wsum csum;
2054
c3c7c254
ED
2055 /* used in skb_gro_receive() slow path */
2056 struct sk_buff *last;
d565b0a1
HX
2057};
2058
2059#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
d8156534 2060
1da177e4 2061struct packet_type {
f2ccd8fa
DM
2062 __be16 type; /* This is really htons(ether_type). */
2063 struct net_device *dev; /* NULL is wildcarded here */
2064 int (*func) (struct sk_buff *,
2065 struct net_device *,
2066 struct packet_type *,
2067 struct net_device *);
c0de08d0
EL
2068 bool (*id_match)(struct packet_type *ptype,
2069 struct sock *sk);
1da177e4
LT
2070 void *af_packet_priv;
2071 struct list_head list;
2072};
2073
f191a1d1 2074struct offload_callbacks {
576a30eb 2075 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
c8f44aff 2076 netdev_features_t features);
d565b0a1 2077 struct sk_buff **(*gro_receive)(struct sk_buff **head,
a2b12f3c 2078 struct sk_buff *skb);
299603e8 2079 int (*gro_complete)(struct sk_buff *skb, int nhoff);
f191a1d1
VY
2080};
2081
2082struct packet_offload {
2083 __be16 type; /* This is really htons(ether_type). */
bdef7de4 2084 u16 priority;
f191a1d1
VY
2085 struct offload_callbacks callbacks;
2086 struct list_head list;
1da177e4
LT
2087};
2088
a2b12f3c
TH
2089struct udp_offload;
2090
2091struct udp_offload_callbacks {
2092 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2093 struct sk_buff *skb,
2094 struct udp_offload *uoff);
2095 int (*gro_complete)(struct sk_buff *skb,
2096 int nhoff,
2097 struct udp_offload *uoff);
2098};
2099
b582ef09
OG
2100struct udp_offload {
2101 __be16 port;
afe93325 2102 u8 ipproto;
a2b12f3c 2103 struct udp_offload_callbacks callbacks;
b582ef09
OG
2104};
2105
8f84985f
LR
2106/* often modified stats are per cpu, other are shared (netdev->stats) */
2107struct pcpu_sw_netstats {
2108 u64 rx_packets;
2109 u64 rx_bytes;
2110 u64 tx_packets;
2111 u64 tx_bytes;
2112 struct u64_stats_sync syncp;
2113};
2114
aabc92bb
PNA
2115#define __netdev_alloc_pcpu_stats(type, gfp) \
2116({ \
2117 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2118 if (pcpu_stats) { \
2119 int __cpu; \
2120 for_each_possible_cpu(__cpu) { \
2121 typeof(type) *stat; \
2122 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2123 u64_stats_init(&stat->syncp); \
2124 } \
2125 } \
2126 pcpu_stats; \
1c213bd2
WC
2127})
2128
aabc92bb 2129#define netdev_alloc_pcpu_stats(type) \
326fcfa5 2130 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
aabc92bb 2131
764f5e54
JP
2132enum netdev_lag_tx_type {
2133 NETDEV_LAG_TX_TYPE_UNKNOWN,
2134 NETDEV_LAG_TX_TYPE_RANDOM,
2135 NETDEV_LAG_TX_TYPE_BROADCAST,
2136 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2137 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2138 NETDEV_LAG_TX_TYPE_HASH,
2139};
2140
2141struct netdev_lag_upper_info {
2142 enum netdev_lag_tx_type tx_type;
2143};
2144
fb1b2e3c
JP
2145struct netdev_lag_lower_state_info {
2146 u8 link_up : 1,
2147 tx_enabled : 1;
2148};
2149
1da177e4
LT
2150#include <linux/notifier.h>
2151
dcfe1421
AW
2152/* netdevice notifier chain. Please remember to update the rtnetlink
2153 * notification exclusion list in rtnetlink_event() when adding new
2154 * types.
2155 */
2156#define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2157#define NETDEV_DOWN 0x0002
2158#define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2159 detected a hardware crash and restarted
2160 - we can use this eg to kick tcp sessions
2161 once done */
2162#define NETDEV_CHANGE 0x0004 /* Notify device state change */
2163#define NETDEV_REGISTER 0x0005
2164#define NETDEV_UNREGISTER 0x0006
1d486bfb 2165#define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
dcfe1421
AW
2166#define NETDEV_CHANGEADDR 0x0008
2167#define NETDEV_GOING_DOWN 0x0009
2168#define NETDEV_CHANGENAME 0x000A
2169#define NETDEV_FEAT_CHANGE 0x000B
2170#define NETDEV_BONDING_FAILOVER 0x000C
2171#define NETDEV_PRE_UP 0x000D
2172#define NETDEV_PRE_TYPE_CHANGE 0x000E
2173#define NETDEV_POST_TYPE_CHANGE 0x000F
2174#define NETDEV_POST_INIT 0x0010
0115e8e3 2175#define NETDEV_UNREGISTER_FINAL 0x0011
dcfe1421
AW
2176#define NETDEV_RELEASE 0x0012
2177#define NETDEV_NOTIFY_PEERS 0x0013
2178#define NETDEV_JOIN 0x0014
42e52bf9 2179#define NETDEV_CHANGEUPPER 0x0015
4aa5dee4 2180#define NETDEV_RESEND_IGMP 0x0016
1d486bfb 2181#define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
d4261e56 2182#define NETDEV_CHANGEINFODATA 0x0018
61bd3857 2183#define NETDEV_BONDING_INFO 0x0019
573c7ba0 2184#define NETDEV_PRECHANGEUPPER 0x001A
04d48266 2185#define NETDEV_CHANGELOWERSTATE 0x001B
dcfe1421 2186
f629d208
JP
2187int register_netdevice_notifier(struct notifier_block *nb);
2188int unregister_netdevice_notifier(struct notifier_block *nb);
351638e7
JP
2189
2190struct netdev_notifier_info {
2191 struct net_device *dev;
2192};
2193
be9efd36
JP
2194struct netdev_notifier_change_info {
2195 struct netdev_notifier_info info; /* must be first */
2196 unsigned int flags_changed;
2197};
2198
0e4ead9d
JP
2199struct netdev_notifier_changeupper_info {
2200 struct netdev_notifier_info info; /* must be first */
2201 struct net_device *upper_dev; /* new upper dev */
2202 bool master; /* is upper dev master */
2203 bool linking; /* is the nofication for link or unlink */
29bf24af 2204 void *upper_info; /* upper dev info */
0e4ead9d
JP
2205};
2206
04d48266
JP
2207struct netdev_notifier_changelowerstate_info {
2208 struct netdev_notifier_info info; /* must be first */
2209 void *lower_state_info; /* is lower dev state */
2210};
2211
75538c2b
CW
2212static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2213 struct net_device *dev)
2214{
2215 info->dev = dev;
2216}
2217
351638e7
JP
2218static inline struct net_device *
2219netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2220{
2221 return info->dev;
2222}
2223
f629d208 2224int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
dcfe1421
AW
2225
2226
1da177e4
LT
2227extern rwlock_t dev_base_lock; /* Device list lock */
2228
881d966b
EB
2229#define for_each_netdev(net, d) \
2230 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
dcbccbd4
EB
2231#define for_each_netdev_reverse(net, d) \
2232 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
c6d14c84
ED
2233#define for_each_netdev_rcu(net, d) \
2234 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
881d966b
EB
2235#define for_each_netdev_safe(net, d, n) \
2236 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2237#define for_each_netdev_continue(net, d) \
2238 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
254245d2 2239#define for_each_netdev_continue_rcu(net, d) \
2240 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
8a7fbfab 2241#define for_each_netdev_in_bond_rcu(bond, slave) \
2242 for_each_netdev_rcu(&init_net, slave) \
4ccce02e 2243 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
881d966b 2244#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
7562f876 2245
a050c33f
DL
2246static inline struct net_device *next_net_device(struct net_device *dev)
2247{
2248 struct list_head *lh;
2249 struct net *net;
2250
c346dca1 2251 net = dev_net(dev);
a050c33f
DL
2252 lh = dev->dev_list.next;
2253 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2254}
2255
ce81b76a
ED
2256static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2257{
2258 struct list_head *lh;
2259 struct net *net;
2260
2261 net = dev_net(dev);
ccf43438 2262 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
ce81b76a
ED
2263 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2264}
2265
a050c33f
DL
2266static inline struct net_device *first_net_device(struct net *net)
2267{
2268 return list_empty(&net->dev_base_head) ? NULL :
2269 net_device_entry(net->dev_base_head.next);
2270}
7562f876 2271
ccf43438
ED
2272static inline struct net_device *first_net_device_rcu(struct net *net)
2273{
2274 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2275
2276 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2277}
2278
f629d208
JP
2279int netdev_boot_setup_check(struct net_device *dev);
2280unsigned long netdev_boot_base(const char *prefix, int unit);
2281struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2282 const char *hwaddr);
2283struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2284struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2285void dev_add_pack(struct packet_type *pt);
2286void dev_remove_pack(struct packet_type *pt);
2287void __dev_remove_pack(struct packet_type *pt);
2288void dev_add_offload(struct packet_offload *po);
2289void dev_remove_offload(struct packet_offload *po);
f629d208 2290
a54acb3a 2291int dev_get_iflink(const struct net_device *dev);
fc4099f1 2292int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
6c555490
WC
2293struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2294 unsigned short mask);
f629d208
JP
2295struct net_device *dev_get_by_name(struct net *net, const char *name);
2296struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2297struct net_device *__dev_get_by_name(struct net *net, const char *name);
2298int dev_alloc_name(struct net_device *dev, const char *name);
2299int dev_open(struct net_device *dev);
2300int dev_close(struct net_device *dev);
99c4a26a 2301int dev_close_many(struct list_head *head, bool unlink);
f629d208 2302void dev_disable_lro(struct net_device *dev);
0c4b51f0 2303int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2b4aa3ce 2304int dev_queue_xmit(struct sk_buff *skb);
f663dd9a 2305int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
f629d208
JP
2306int register_netdevice(struct net_device *dev);
2307void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2308void unregister_netdevice_many(struct list_head *head);
44a0873d
ED
2309static inline void unregister_netdevice(struct net_device *dev)
2310{
2311 unregister_netdevice_queue(dev, NULL);
2312}
2313
f629d208
JP
2314int netdev_refcnt_read(const struct net_device *dev);
2315void free_netdev(struct net_device *dev);
74d332c1 2316void netdev_freemem(struct net_device *dev);
f629d208
JP
2317void synchronize_net(void);
2318int init_dummy_netdev(struct net_device *dev);
937f1ba5 2319
f60e5990 2320DECLARE_PER_CPU(int, xmit_recursion);
2321static inline int dev_recursion_level(void)
2322{
2323 return this_cpu_read(xmit_recursion);
2324}
2325
f629d208
JP
2326struct net_device *dev_get_by_index(struct net *net, int ifindex);
2327struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2328struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2329int netdev_get_name(struct net *net, char *name, int ifindex);
2330int dev_restart(struct net_device *dev);
f629d208 2331int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
86911732
HX
2332
2333static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2334{
2335 return NAPI_GRO_CB(skb)->data_offset;
2336}
2337
2338static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2339{
2340 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2341}
2342
2343static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2344{
2345 NAPI_GRO_CB(skb)->data_offset += len;
2346}
2347
a5b1cf28
HX
2348static inline void *skb_gro_header_fast(struct sk_buff *skb,
2349 unsigned int offset)
86911732 2350{
a5b1cf28
HX
2351 return NAPI_GRO_CB(skb)->frag0 + offset;
2352}
78a478d0 2353
a5b1cf28
HX
2354static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2355{
2356 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2357}
78a478d0 2358
a5b1cf28
HX
2359static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2360 unsigned int offset)
2361{
17dd759c
HX
2362 if (!pskb_may_pull(skb, hlen))
2363 return NULL;
2364
a5b1cf28
HX
2365 NAPI_GRO_CB(skb)->frag0 = NULL;
2366 NAPI_GRO_CB(skb)->frag0_len = 0;
17dd759c 2367 return skb->data + offset;
86911732 2368}
1da177e4 2369
36e7b1b8
HX
2370static inline void *skb_gro_network_header(struct sk_buff *skb)
2371{
78d3fd0b
HX
2372 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2373 skb_network_offset(skb);
36e7b1b8
HX
2374}
2375
bf5a755f
JC
2376static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2377 const void *start, unsigned int len)
2378{
573e8fca 2379 if (NAPI_GRO_CB(skb)->csum_valid)
bf5a755f
JC
2380 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2381 csum_partial(start, len, 0));
2382}
2383
573e8fca
TH
2384/* GRO checksum functions. These are logical equivalents of the normal
2385 * checksum functions (in skbuff.h) except that they operate on the GRO
2386 * offsets and fields in sk_buff.
2387 */
2388
2389__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2390
15e2396d
TH
2391static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2392{
b7fe10e5 2393 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
15e2396d
TH
2394}
2395
573e8fca
TH
2396static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2397 bool zero_okay,
2398 __sum16 check)
2399{
6edec0e6
TH
2400 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2401 skb_checksum_start_offset(skb) <
2402 skb_gro_offset(skb)) &&
15e2396d 2403 !skb_at_gro_remcsum_start(skb) &&
662880f4 2404 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
573e8fca
TH
2405 (!zero_okay || check));
2406}
2407
2408static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2409 __wsum psum)
2410{
2411 if (NAPI_GRO_CB(skb)->csum_valid &&
2412 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2413 return 0;
2414
2415 NAPI_GRO_CB(skb)->csum = psum;
2416
2417 return __skb_gro_checksum_complete(skb);
2418}
2419
573e8fca
TH
2420static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2421{
662880f4
TH
2422 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2423 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2424 NAPI_GRO_CB(skb)->csum_cnt--;
2425 } else {
2426 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2427 * verified a new top level checksum or an encapsulated one
2428 * during GRO. This saves work if we fallback to normal path.
2429 */
2430 __skb_incr_checksum_unnecessary(skb);
573e8fca
TH
2431 }
2432}
2433
2434#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2435 compute_pseudo) \
2436({ \
2437 __sum16 __ret = 0; \
2438 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2439 __ret = __skb_gro_checksum_validate_complete(skb, \
2440 compute_pseudo(skb, proto)); \
5a212329
TH
2441 if (__ret) \
2442 __skb_mark_checksum_bad(skb); \
2443 else \
573e8fca
TH
2444 skb_gro_incr_csum_unnecessary(skb); \
2445 __ret; \
2446})
2447
2448#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2449 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2450
2451#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2452 compute_pseudo) \
2453 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2454
2455#define skb_gro_checksum_simple_validate(skb) \
2456 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2457
d96535a1
TH
2458static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2459{
2460 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2461 !NAPI_GRO_CB(skb)->csum_valid);
2462}
2463
2464static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2465 __sum16 check, __wsum pseudo)
2466{
2467 NAPI_GRO_CB(skb)->csum = ~pseudo;
2468 NAPI_GRO_CB(skb)->csum_valid = 1;
2469}
2470
2471#define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2472do { \
2473 if (__skb_gro_checksum_convert_check(skb)) \
2474 __skb_gro_checksum_convert(skb, check, \
2475 compute_pseudo(skb, proto)); \
2476} while (0)
2477
26c4f7da
TH
2478struct gro_remcsum {
2479 int offset;
2480 __wsum delta;
2481};
2482
2483static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2484{
846cd667 2485 grc->offset = 0;
26c4f7da
TH
2486 grc->delta = 0;
2487}
2488
b7fe10e5
TH
2489static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2490 unsigned int off, size_t hdrlen,
2491 int start, int offset,
2492 struct gro_remcsum *grc,
2493 bool nopartial)
dcdc8994
TH
2494{
2495 __wsum delta;
b7fe10e5 2496 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
dcdc8994
TH
2497
2498 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2499
15e2396d 2500 if (!nopartial) {
b7fe10e5
TH
2501 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2502 return ptr;
2503 }
2504
2505 ptr = skb_gro_header_fast(skb, off);
2506 if (skb_gro_header_hard(skb, off + plen)) {
2507 ptr = skb_gro_header_slow(skb, off + plen, off);
2508 if (!ptr)
2509 return NULL;
15e2396d
TH
2510 }
2511
b7fe10e5
TH
2512 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2513 start, offset);
dcdc8994
TH
2514
2515 /* Adjust skb->csum since we changed the packet */
dcdc8994 2516 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
26c4f7da 2517
b7fe10e5 2518 grc->offset = off + hdrlen + offset;
26c4f7da 2519 grc->delta = delta;
b7fe10e5
TH
2520
2521 return ptr;
dcdc8994
TH
2522}
2523
26c4f7da
TH
2524static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2525 struct gro_remcsum *grc)
2526{
b7fe10e5
TH
2527 void *ptr;
2528 size_t plen = grc->offset + sizeof(u16);
2529
26c4f7da
TH
2530 if (!grc->delta)
2531 return;
2532
b7fe10e5
TH
2533 ptr = skb_gro_header_fast(skb, grc->offset);
2534 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2535 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2536 if (!ptr)
2537 return;
2538 }
2539
2540 remcsum_unadjust((__sum16 *)ptr, grc->delta);
26c4f7da 2541}
dcdc8994 2542
6ae23ad3
TH
2543struct skb_csum_offl_spec {
2544 __u16 ipv4_okay:1,
2545 ipv6_okay:1,
2546 encap_okay:1,
2547 ip_options_okay:1,
2548 ext_hdrs_okay:1,
2549 tcp_okay:1,
2550 udp_okay:1,
2551 sctp_okay:1,
2552 vlan_okay:1,
2553 no_encapped_ipv6:1,
2554 no_not_encapped:1;
2555};
2556
2557bool __skb_csum_offload_chk(struct sk_buff *skb,
2558 const struct skb_csum_offl_spec *spec,
2559 bool *csum_encapped,
2560 bool csum_help);
2561
2562static inline bool skb_csum_offload_chk(struct sk_buff *skb,
2563 const struct skb_csum_offl_spec *spec,
2564 bool *csum_encapped,
2565 bool csum_help)
2566{
2567 if (skb->ip_summed != CHECKSUM_PARTIAL)
2568 return false;
2569
2570 return __skb_csum_offload_chk(skb, spec, csum_encapped, csum_help);
2571}
2572
2573static inline bool skb_csum_offload_chk_help(struct sk_buff *skb,
2574 const struct skb_csum_offl_spec *spec)
2575{
2576 bool csum_encapped;
2577
2578 return skb_csum_offload_chk(skb, spec, &csum_encapped, true);
2579}
2580
2581static inline bool skb_csum_off_chk_help_cmn(struct sk_buff *skb)
2582{
2583 static const struct skb_csum_offl_spec csum_offl_spec = {
2584 .ipv4_okay = 1,
2585 .ip_options_okay = 1,
2586 .ipv6_okay = 1,
2587 .vlan_okay = 1,
2588 .tcp_okay = 1,
2589 .udp_okay = 1,
2590 };
2591
2592 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2593}
2594
2595static inline bool skb_csum_off_chk_help_cmn_v4_only(struct sk_buff *skb)
2596{
2597 static const struct skb_csum_offl_spec csum_offl_spec = {
2598 .ipv4_okay = 1,
2599 .ip_options_okay = 1,
2600 .tcp_okay = 1,
2601 .udp_okay = 1,
2602 .vlan_okay = 1,
2603 };
2604
2605 return skb_csum_offload_chk_help(skb, &csum_offl_spec);
2606}
2607
0c4e8581
SH
2608static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2609 unsigned short type,
3b04ddde 2610 const void *daddr, const void *saddr,
95c96174 2611 unsigned int len)
0c4e8581 2612{
f1ecfd5d 2613 if (!dev->header_ops || !dev->header_ops->create)
0c4e8581 2614 return 0;
3b04ddde
SH
2615
2616 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
0c4e8581
SH
2617}
2618
b95cce35
SH
2619static inline int dev_parse_header(const struct sk_buff *skb,
2620 unsigned char *haddr)
2621{
2622 const struct net_device *dev = skb->dev;
2623
1b83336b 2624 if (!dev->header_ops || !dev->header_ops->parse)
b95cce35 2625 return 0;
3b04ddde 2626 return dev->header_ops->parse(skb, haddr);
b95cce35
SH
2627}
2628
1da177e4 2629typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
f629d208 2630int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
1da177e4
LT
2631static inline int unregister_gifconf(unsigned int family)
2632{
2633 return register_gifconf(family, NULL);
2634}
2635
99bbc707 2636#ifdef CONFIG_NET_FLOW_LIMIT
5f121b9a 2637#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
99bbc707
WB
2638struct sd_flow_limit {
2639 u64 count;
2640 unsigned int num_buckets;
2641 unsigned int history_head;
2642 u16 history[FLOW_LIMIT_HISTORY];
2643 u8 buckets[];
2644};
2645
2646extern int netdev_flow_limit_table_len;
2647#endif /* CONFIG_NET_FLOW_LIMIT */
2648
1da177e4 2649/*
88751275 2650 * Incoming packets are placed on per-cpu queues
1da177e4 2651 */
d94d9fee 2652struct softnet_data {
1da177e4 2653 struct list_head poll_list;
6e7676c1 2654 struct sk_buff_head process_queue;
1da177e4 2655
dee42870 2656 /* stats */
cd7b5396
DM
2657 unsigned int processed;
2658 unsigned int time_squeeze;
2659 unsigned int cpu_collision;
2660 unsigned int received_rps;
fd793d89 2661#ifdef CONFIG_RPS
88751275 2662 struct softnet_data *rps_ipi_list;
4cdb1e2e
ED
2663#endif
2664#ifdef CONFIG_NET_FLOW_LIMIT
2665 struct sd_flow_limit __rcu *flow_limit;
2666#endif
2667 struct Qdisc *output_queue;
2668 struct Qdisc **output_queue_tailp;
2669 struct sk_buff *completion_queue;
88751275 2670
4cdb1e2e 2671#ifdef CONFIG_RPS
88751275 2672 /* Elements below can be accessed between CPUs for RPS */
0a9627f2 2673 struct call_single_data csd ____cacheline_aligned_in_smp;
88751275
ED
2674 struct softnet_data *rps_ipi_next;
2675 unsigned int cpu;
fec5e652 2676 unsigned int input_queue_head;
76cc8b13 2677 unsigned int input_queue_tail;
1e94d72f 2678#endif
95c96174 2679 unsigned int dropped;
0a9627f2 2680 struct sk_buff_head input_pkt_queue;
bea3348e 2681 struct napi_struct backlog;
99bbc707 2682
1da177e4
LT
2683};
2684
76cc8b13 2685static inline void input_queue_head_incr(struct softnet_data *sd)
fec5e652
TH
2686{
2687#ifdef CONFIG_RPS
76cc8b13
TH
2688 sd->input_queue_head++;
2689#endif
2690}
2691
2692static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2693 unsigned int *qtail)
2694{
2695#ifdef CONFIG_RPS
2696 *qtail = ++sd->input_queue_tail;
fec5e652
TH
2697#endif
2698}
2699
0a9627f2 2700DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1da177e4 2701
f629d208 2702void __netif_schedule(struct Qdisc *q);
46e5da40 2703void netif_schedule_queue(struct netdev_queue *txq);
86d804e1 2704
fd2ea0a7
DM
2705static inline void netif_tx_schedule_all(struct net_device *dev)
2706{
2707 unsigned int i;
2708
2709 for (i = 0; i < dev->num_tx_queues; i++)
2710 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2711}
2712
d29f749e
DJ
2713static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2714{
73466498 2715 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
d29f749e
DJ
2716}
2717
bea3348e
SH
2718/**
2719 * netif_start_queue - allow transmit
2720 * @dev: network device
2721 *
2722 * Allow upper layers to call the device hard_start_xmit routine.
2723 */
1da177e4
LT
2724static inline void netif_start_queue(struct net_device *dev)
2725{
e8a0464c 2726 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1da177e4
LT
2727}
2728
fd2ea0a7
DM
2729static inline void netif_tx_start_all_queues(struct net_device *dev)
2730{
2731 unsigned int i;
2732
2733 for (i = 0; i < dev->num_tx_queues; i++) {
2734 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2735 netif_tx_start_queue(txq);
2736 }
2737}
2738
46e5da40 2739void netif_tx_wake_queue(struct netdev_queue *dev_queue);
79d16385 2740
d29f749e
DJ
2741/**
2742 * netif_wake_queue - restart transmit
2743 * @dev: network device
2744 *
2745 * Allow upper layers to call the device hard_start_xmit routine.
2746 * Used for flow control when transmit resources are available.
2747 */
79d16385
DM
2748static inline void netif_wake_queue(struct net_device *dev)
2749{
e8a0464c 2750 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1da177e4
LT
2751}
2752
fd2ea0a7
DM
2753static inline void netif_tx_wake_all_queues(struct net_device *dev)
2754{
2755 unsigned int i;
2756
2757 for (i = 0; i < dev->num_tx_queues; i++) {
2758 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2759 netif_tx_wake_queue(txq);
2760 }
2761}
2762
d29f749e
DJ
2763static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2764{
73466498 2765 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
d29f749e
DJ
2766}
2767
bea3348e
SH
2768/**
2769 * netif_stop_queue - stop transmitted packets
2770 * @dev: network device
2771 *
2772 * Stop upper layers calling the device hard_start_xmit routine.
2773 * Used for flow control when transmit resources are unavailable.
2774 */
1da177e4
LT
2775static inline void netif_stop_queue(struct net_device *dev)
2776{
e8a0464c 2777 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1da177e4
LT
2778}
2779
a2029240 2780void netif_tx_stop_all_queues(struct net_device *dev);
fd2ea0a7 2781
4d29515f 2782static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
d29f749e 2783{
73466498 2784 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
d29f749e
DJ
2785}
2786
bea3348e
SH
2787/**
2788 * netif_queue_stopped - test if transmit queue is flowblocked
2789 * @dev: network device
2790 *
2791 * Test if transmit queue on device is currently unable to send.
2792 */
4d29515f 2793static inline bool netif_queue_stopped(const struct net_device *dev)
1da177e4 2794{
e8a0464c 2795 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1da177e4
LT
2796}
2797
4d29515f 2798static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
c3f26a26 2799{
73466498
TH
2800 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2801}
2802
8e2f1a63
DB
2803static inline bool
2804netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
73466498
TH
2805{
2806 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2807}
2808
8e2f1a63
DB
2809static inline bool
2810netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2811{
2812 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2813}
2814
53511453
ED
2815/**
2816 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2817 * @dev_queue: pointer to transmit queue
2818 *
2819 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2820 * to give appropriate hint to the cpu.
2821 */
2822static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2823{
2824#ifdef CONFIG_BQL
2825 prefetchw(&dev_queue->dql.num_queued);
2826#endif
2827}
2828
2829/**
2830 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2831 * @dev_queue: pointer to transmit queue
2832 *
2833 * BQL enabled drivers might use this helper in their TX completion path,
2834 * to give appropriate hint to the cpu.
2835 */
2836static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2837{
2838#ifdef CONFIG_BQL
2839 prefetchw(&dev_queue->dql.limit);
2840#endif
2841}
2842
c5d67bd7
TH
2843static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2844 unsigned int bytes)
2845{
114cf580
TH
2846#ifdef CONFIG_BQL
2847 dql_queued(&dev_queue->dql, bytes);
b37c0fbe
AD
2848
2849 if (likely(dql_avail(&dev_queue->dql) >= 0))
2850 return;
2851
2852 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2853
2854 /*
2855 * The XOFF flag must be set before checking the dql_avail below,
2856 * because in netdev_tx_completed_queue we update the dql_completed
2857 * before checking the XOFF flag.
2858 */
2859 smp_mb();
2860
2861 /* check again in case another CPU has just made room avail */
2862 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2863 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
114cf580 2864#endif
c5d67bd7
TH
2865}
2866
0042d0c8
FF
2867/**
2868 * netdev_sent_queue - report the number of bytes queued to hardware
2869 * @dev: network device
2870 * @bytes: number of bytes queued to the hardware device queue
2871 *
2872 * Report the number of bytes queued for sending/completion to the network
2873 * device hardware queue. @bytes should be a good approximation and should
2874 * exactly match netdev_completed_queue() @bytes
2875 */
c5d67bd7
TH
2876static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2877{
2878 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2879}
2880
2881static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
95c96174 2882 unsigned int pkts, unsigned int bytes)
c5d67bd7 2883{
114cf580 2884#ifdef CONFIG_BQL
b37c0fbe
AD
2885 if (unlikely(!bytes))
2886 return;
2887
2888 dql_completed(&dev_queue->dql, bytes);
2889
2890 /*
2891 * Without the memory barrier there is a small possiblity that
2892 * netdev_tx_sent_queue will miss the update and cause the queue to
2893 * be stopped forever
2894 */
2895 smp_mb();
2896
2897 if (dql_avail(&dev_queue->dql) < 0)
2898 return;
2899
2900 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2901 netif_schedule_queue(dev_queue);
114cf580 2902#endif
c5d67bd7
TH
2903}
2904
0042d0c8
FF
2905/**
2906 * netdev_completed_queue - report bytes and packets completed by device
2907 * @dev: network device
2908 * @pkts: actual number of packets sent over the medium
2909 * @bytes: actual number of bytes sent over the medium
2910 *
2911 * Report the number of bytes and packets transmitted by the network device
2912 * hardware queue over the physical medium, @bytes must exactly match the
2913 * @bytes amount passed to netdev_sent_queue()
2914 */
c5d67bd7 2915static inline void netdev_completed_queue(struct net_device *dev,
95c96174 2916 unsigned int pkts, unsigned int bytes)
c5d67bd7
TH
2917{
2918 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2919}
2920
2921static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2922{
114cf580 2923#ifdef CONFIG_BQL
5c490354 2924 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
114cf580
TH
2925 dql_reset(&q->dql);
2926#endif
c5d67bd7
TH
2927}
2928
0042d0c8
FF
2929/**
2930 * netdev_reset_queue - reset the packets and bytes count of a network device
2931 * @dev_queue: network device
2932 *
2933 * Reset the bytes and packet count of a network device and clear the
2934 * software flow control OFF bit for this network device
2935 */
c5d67bd7
TH
2936static inline void netdev_reset_queue(struct net_device *dev_queue)
2937{
2938 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
c3f26a26
DM
2939}
2940
b9507bda
DB
2941/**
2942 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2943 * @dev: network device
2944 * @queue_index: given tx queue index
2945 *
2946 * Returns 0 if given tx queue index >= number of device tx queues,
2947 * otherwise returns the originally passed tx queue index.
2948 */
2949static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2950{
2951 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2952 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2953 dev->name, queue_index,
2954 dev->real_num_tx_queues);
2955 return 0;
2956 }
2957
2958 return queue_index;
2959}
2960
bea3348e
SH
2961/**
2962 * netif_running - test if up
2963 * @dev: network device
2964 *
2965 * Test if the device has been brought up.
2966 */
4d29515f 2967static inline bool netif_running(const struct net_device *dev)
1da177e4
LT
2968{
2969 return test_bit(__LINK_STATE_START, &dev->state);
2970}
2971
f25f4e44
PWJ
2972/*
2973 * Routines to manage the subqueues on a device. We only need start
2974 * stop, and a check if it's stopped. All other device management is
2975 * done at the overall netdevice level.
2976 * Also test the device if we're multiqueue.
2977 */
bea3348e
SH
2978
2979/**
2980 * netif_start_subqueue - allow sending packets on subqueue
2981 * @dev: network device
2982 * @queue_index: sub queue index
2983 *
2984 * Start individual transmit queue of a device with multiple transmit queues.
2985 */
f25f4e44
PWJ
2986static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2987{
fd2ea0a7 2988 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
7b3d3e4f
KK
2989
2990 netif_tx_start_queue(txq);
f25f4e44
PWJ
2991}
2992
bea3348e
SH
2993/**
2994 * netif_stop_subqueue - stop sending packets on subqueue
2995 * @dev: network device
2996 * @queue_index: sub queue index
2997 *
2998 * Stop individual transmit queue of a device with multiple transmit queues.
2999 */
f25f4e44
PWJ
3000static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3001{
fd2ea0a7 3002 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
7b3d3e4f 3003 netif_tx_stop_queue(txq);
f25f4e44
PWJ
3004}
3005
bea3348e
SH
3006/**
3007 * netif_subqueue_stopped - test status of subqueue
3008 * @dev: network device
3009 * @queue_index: sub queue index
3010 *
3011 * Check individual transmit queue of a device with multiple transmit queues.
3012 */
4d29515f
DM
3013static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3014 u16 queue_index)
f25f4e44 3015{
fd2ea0a7 3016 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
7b3d3e4f
KK
3017
3018 return netif_tx_queue_stopped(txq);
f25f4e44
PWJ
3019}
3020
4d29515f
DM
3021static inline bool netif_subqueue_stopped(const struct net_device *dev,
3022 struct sk_buff *skb)
668f895a
PE
3023{
3024 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3025}
bea3348e 3026
46e5da40 3027void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
f25f4e44 3028
537c00de 3029#ifdef CONFIG_XPS
53af53ae 3030int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
f629d208 3031 u16 index);
537c00de
AD
3032#else
3033static inline int netif_set_xps_queue(struct net_device *dev,
3573540c 3034 const struct cpumask *mask,
537c00de
AD
3035 u16 index)
3036{
3037 return 0;
3038}
3039#endif
3040
5605c762
JP
3041u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
3042 unsigned int num_tx_queues);
3043
a3d22a68
VZ
3044/*
3045 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
3046 * as a distribution range limit for the returned value.
3047 */
3048static inline u16 skb_tx_hash(const struct net_device *dev,
0e001614 3049 struct sk_buff *skb)
a3d22a68
VZ
3050{
3051 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
3052}
3053
bea3348e
SH
3054/**
3055 * netif_is_multiqueue - test if device has multiple transmit queues
3056 * @dev: network device
3057 *
3058 * Check if device has multiple transmit queues
bea3348e 3059 */
4d29515f 3060static inline bool netif_is_multiqueue(const struct net_device *dev)
f25f4e44 3061{
a02cec21 3062 return dev->num_tx_queues > 1;
f25f4e44 3063}
1da177e4 3064
f629d208 3065int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
f0796d5c 3066
a953be53 3067#ifdef CONFIG_SYSFS
f629d208 3068int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
62fe0b40
BH
3069#else
3070static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3071 unsigned int rxq)
3072{
3073 return 0;
3074}
3075#endif
3076
a953be53
MD
3077#ifdef CONFIG_SYSFS
3078static inline unsigned int get_netdev_rx_queue_index(
3079 struct netdev_rx_queue *queue)
3080{
3081 struct net_device *dev = queue->dev;
3082 int index = queue - dev->_rx;
3083
3084 BUG_ON(index >= dev->num_rx_queues);
3085 return index;
3086}
3087#endif
3088
16917b87 3089#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
f629d208 3090int netif_get_num_default_rss_queues(void);
16917b87 3091
e6247027
ED
3092enum skb_free_reason {
3093 SKB_REASON_CONSUMED,
3094 SKB_REASON_DROPPED,
3095};
3096
3097void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3098void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
1da177e4 3099
e6247027
ED
3100/*
3101 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3102 * interrupt context or with hardware interrupts being disabled.
3103 * (in_irq() || irqs_disabled())
3104 *
3105 * We provide four helpers that can be used in following contexts :
3106 *
3107 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3108 * replacing kfree_skb(skb)
3109 *
3110 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3111 * Typically used in place of consume_skb(skb) in TX completion path
3112 *
3113 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3114 * replacing kfree_skb(skb)
3115 *
3116 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3117 * and consumed a packet. Used in place of consume_skb(skb)
1da177e4 3118 */
e6247027
ED
3119static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3120{
3121 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3122}
3123
3124static inline void dev_consume_skb_irq(struct sk_buff *skb)
3125{
3126 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3127}
3128
3129static inline void dev_kfree_skb_any(struct sk_buff *skb)
3130{
3131 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3132}
3133
3134static inline void dev_consume_skb_any(struct sk_buff *skb)
3135{
3136 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3137}
1da177e4 3138
f629d208
JP
3139int netif_rx(struct sk_buff *skb);
3140int netif_rx_ni(struct sk_buff *skb);
04eb4489 3141int netif_receive_skb(struct sk_buff *skb);
f629d208
JP
3142gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3143void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3144struct sk_buff *napi_get_frags(struct napi_struct *napi);
3145gro_result_t napi_gro_frags(struct napi_struct *napi);
bf5a755f
JC
3146struct packet_offload *gro_find_receive_by_type(__be16 type);
3147struct packet_offload *gro_find_complete_by_type(__be16 type);
76620aaf
HX
3148
3149static inline void napi_free_frags(struct napi_struct *napi)
3150{
3151 kfree_skb(napi->skb);
3152 napi->skb = NULL;
3153}
3154
f629d208
JP
3155int netdev_rx_handler_register(struct net_device *dev,
3156 rx_handler_func_t *rx_handler,
3157 void *rx_handler_data);
3158void netdev_rx_handler_unregister(struct net_device *dev);
3159
3160bool dev_valid_name(const char *name);
3161int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
3162int dev_ethtool(struct net *net, struct ifreq *);
3163unsigned int dev_get_flags(const struct net_device *);
3164int __dev_change_flags(struct net_device *, unsigned int flags);
3165int dev_change_flags(struct net_device *, unsigned int);
cb178190
DM
3166void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3167 unsigned int gchanges);
f629d208
JP
3168int dev_change_name(struct net_device *, const char *);
3169int dev_set_alias(struct net_device *, const char *, size_t);
3170int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3171int dev_set_mtu(struct net_device *, int);
3172void dev_set_group(struct net_device *, int);
3173int dev_set_mac_address(struct net_device *, struct sockaddr *);
3174int dev_change_carrier(struct net_device *, bool new_carrier);
3175int dev_get_phys_port_id(struct net_device *dev,
02637fce 3176 struct netdev_phys_item_id *ppid);
db24a904
DA
3177int dev_get_phys_port_name(struct net_device *dev,
3178 char *name, size_t len);
d746d707 3179int dev_change_proto_down(struct net_device *dev, bool proto_down);
55a93b3e 3180struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
ce93718f
DM
3181struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3182 struct netdev_queue *txq, int *ret);
a0265d28 3183int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
f629d208 3184int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
1ee481fb 3185bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
1da177e4 3186
20380731 3187extern int netdev_budget;
1da177e4
LT
3188
3189/* Called by rtnetlink.c:rtnl_unlock() */
f629d208 3190void netdev_run_todo(void);
1da177e4 3191
bea3348e
SH
3192/**
3193 * dev_put - release reference to device
3194 * @dev: network device
3195 *
9ef4429b 3196 * Release reference to device to allow it to be freed.
bea3348e 3197 */
1da177e4
LT
3198static inline void dev_put(struct net_device *dev)
3199{
933393f5 3200 this_cpu_dec(*dev->pcpu_refcnt);
1da177e4
LT
3201}
3202
bea3348e
SH
3203/**
3204 * dev_hold - get reference to device
3205 * @dev: network device
3206 *
9ef4429b 3207 * Hold reference to device to keep it from being freed.
bea3348e 3208 */
15333061
SH
3209static inline void dev_hold(struct net_device *dev)
3210{
933393f5 3211 this_cpu_inc(*dev->pcpu_refcnt);
15333061 3212}
1da177e4
LT
3213
3214/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3215 * and _off may be called from IRQ context, but it is caller
3216 * who is responsible for serialization of these calls.
b00055aa
SR
3217 *
3218 * The name carrier is inappropriate, these functions should really be
3219 * called netif_lowerlayer_*() because they represent the state of any
3220 * kind of lower layer not just hardware media.
1da177e4
LT
3221 */
3222
f629d208
JP
3223void linkwatch_init_dev(struct net_device *dev);
3224void linkwatch_fire_event(struct net_device *dev);
3225void linkwatch_forget_dev(struct net_device *dev);
1da177e4 3226
bea3348e
SH
3227/**
3228 * netif_carrier_ok - test if carrier present
3229 * @dev: network device
3230 *
3231 * Check if carrier is present on device
3232 */
4d29515f 3233static inline bool netif_carrier_ok(const struct net_device *dev)
1da177e4
LT
3234{
3235 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3236}
3237
f629d208 3238unsigned long dev_trans_start(struct net_device *dev);
9d21493b 3239
f629d208 3240void __netdev_watchdog_up(struct net_device *dev);
1da177e4 3241
f629d208 3242void netif_carrier_on(struct net_device *dev);
1da177e4 3243
f629d208 3244void netif_carrier_off(struct net_device *dev);
1da177e4 3245
bea3348e
SH
3246/**
3247 * netif_dormant_on - mark device as dormant.
3248 * @dev: network device
3249 *
3250 * Mark device as dormant (as per RFC2863).
3251 *
3252 * The dormant state indicates that the relevant interface is not
3253 * actually in a condition to pass packets (i.e., it is not 'up') but is
3254 * in a "pending" state, waiting for some external event. For "on-
3255 * demand" interfaces, this new state identifies the situation where the
3256 * interface is waiting for events to place it in the up state.
3257 *
3258 */
b00055aa
SR
3259static inline void netif_dormant_on(struct net_device *dev)
3260{
3261 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3262 linkwatch_fire_event(dev);
3263}
3264
bea3348e
SH
3265/**
3266 * netif_dormant_off - set device as not dormant.
3267 * @dev: network device
3268 *
3269 * Device is not in dormant state.
3270 */
b00055aa
SR
3271static inline void netif_dormant_off(struct net_device *dev)
3272{
3273 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3274 linkwatch_fire_event(dev);
3275}
3276
bea3348e
SH
3277/**
3278 * netif_dormant - test if carrier present
3279 * @dev: network device
3280 *
3281 * Check if carrier is present on device
3282 */
4d29515f 3283static inline bool netif_dormant(const struct net_device *dev)
b00055aa
SR
3284{
3285 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3286}
3287
3288
bea3348e
SH
3289/**
3290 * netif_oper_up - test if device is operational
3291 * @dev: network device
3292 *
3293 * Check if carrier is operational
3294 */
4d29515f 3295static inline bool netif_oper_up(const struct net_device *dev)
d94d9fee 3296{
b00055aa
SR
3297 return (dev->operstate == IF_OPER_UP ||
3298 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3299}
3300
bea3348e
SH
3301/**
3302 * netif_device_present - is device available or removed
3303 * @dev: network device
3304 *
3305 * Check if device has not been removed from system.
3306 */
4d29515f 3307static inline bool netif_device_present(struct net_device *dev)
1da177e4
LT
3308{
3309 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3310}
3311
f629d208 3312void netif_device_detach(struct net_device *dev);
1da177e4 3313
f629d208 3314void netif_device_attach(struct net_device *dev);
1da177e4
LT
3315
3316/*
3317 * Network interface message level settings
3318 */
1da177e4
LT
3319
3320enum {
3321 NETIF_MSG_DRV = 0x0001,
3322 NETIF_MSG_PROBE = 0x0002,
3323 NETIF_MSG_LINK = 0x0004,
3324 NETIF_MSG_TIMER = 0x0008,
3325 NETIF_MSG_IFDOWN = 0x0010,
3326 NETIF_MSG_IFUP = 0x0020,
3327 NETIF_MSG_RX_ERR = 0x0040,
3328 NETIF_MSG_TX_ERR = 0x0080,
3329 NETIF_MSG_TX_QUEUED = 0x0100,
3330 NETIF_MSG_INTR = 0x0200,
3331 NETIF_MSG_TX_DONE = 0x0400,
3332 NETIF_MSG_RX_STATUS = 0x0800,
3333 NETIF_MSG_PKTDATA = 0x1000,
3334 NETIF_MSG_HW = 0x2000,
3335 NETIF_MSG_WOL = 0x4000,
3336};
3337
3338#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3339#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3340#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3341#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3342#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3343#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3344#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3345#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3346#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3347#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3348#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3349#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3350#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3351#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3352#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3353
3354static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3355{
3356 /* use default */
3357 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3358 return default_msg_enable_bits;
3359 if (debug_value == 0) /* no output */
3360 return 0;
3361 /* set low N bits */
3362 return (1 << debug_value) - 1;
3363}
3364
c773e847 3365static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
932ff279 3366{
c773e847
DM
3367 spin_lock(&txq->_xmit_lock);
3368 txq->xmit_lock_owner = cpu;
22dd7495
JHS
3369}
3370
fd2ea0a7
DM
3371static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3372{
3373 spin_lock_bh(&txq->_xmit_lock);
3374 txq->xmit_lock_owner = smp_processor_id();
3375}
3376
4d29515f 3377static inline bool __netif_tx_trylock(struct netdev_queue *txq)
c3f26a26 3378{
4d29515f 3379 bool ok = spin_trylock(&txq->_xmit_lock);
c3f26a26
DM
3380 if (likely(ok))
3381 txq->xmit_lock_owner = smp_processor_id();
3382 return ok;
3383}
3384
3385static inline void __netif_tx_unlock(struct netdev_queue *txq)
3386{
3387 txq->xmit_lock_owner = -1;
3388 spin_unlock(&txq->_xmit_lock);
3389}
3390
3391static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3392{
3393 txq->xmit_lock_owner = -1;
3394 spin_unlock_bh(&txq->_xmit_lock);
3395}
3396
08baf561
ED
3397static inline void txq_trans_update(struct netdev_queue *txq)
3398{
3399 if (txq->xmit_lock_owner != -1)
3400 txq->trans_start = jiffies;
3401}
3402
d29f749e
DJ
3403/**
3404 * netif_tx_lock - grab network device transmit lock
3405 * @dev: network device
d29f749e
DJ
3406 *
3407 * Get network device transmit lock
3408 */
22dd7495
JHS
3409static inline void netif_tx_lock(struct net_device *dev)
3410{
e8a0464c 3411 unsigned int i;
c3f26a26 3412 int cpu;
c773e847 3413
c3f26a26
DM
3414 spin_lock(&dev->tx_global_lock);
3415 cpu = smp_processor_id();
e8a0464c
DM
3416 for (i = 0; i < dev->num_tx_queues; i++) {
3417 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
c3f26a26
DM
3418
3419 /* We are the only thread of execution doing a
3420 * freeze, but we have to grab the _xmit_lock in
3421 * order to synchronize with threads which are in
3422 * the ->hard_start_xmit() handler and already
3423 * checked the frozen bit.
3424 */
e8a0464c 3425 __netif_tx_lock(txq, cpu);
c3f26a26
DM
3426 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3427 __netif_tx_unlock(txq);
e8a0464c 3428 }
932ff279
HX
3429}
3430
3431static inline void netif_tx_lock_bh(struct net_device *dev)
3432{
e8a0464c
DM
3433 local_bh_disable();
3434 netif_tx_lock(dev);
932ff279
HX
3435}
3436
932ff279
HX
3437static inline void netif_tx_unlock(struct net_device *dev)
3438{
e8a0464c
DM
3439 unsigned int i;
3440
3441 for (i = 0; i < dev->num_tx_queues; i++) {
3442 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
c773e847 3443
c3f26a26
DM
3444 /* No need to grab the _xmit_lock here. If the
3445 * queue is not stopped for another reason, we
3446 * force a schedule.
3447 */
3448 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
7b3d3e4f 3449 netif_schedule_queue(txq);
c3f26a26
DM
3450 }
3451 spin_unlock(&dev->tx_global_lock);
932ff279
HX
3452}
3453
3454static inline void netif_tx_unlock_bh(struct net_device *dev)
3455{
e8a0464c
DM
3456 netif_tx_unlock(dev);
3457 local_bh_enable();
932ff279
HX
3458}
3459
c773e847 3460#define HARD_TX_LOCK(dev, txq, cpu) { \
22dd7495 3461 if ((dev->features & NETIF_F_LLTX) == 0) { \
c773e847 3462 __netif_tx_lock(txq, cpu); \
22dd7495
JHS
3463 } \
3464}
3465
5efeac44
EB
3466#define HARD_TX_TRYLOCK(dev, txq) \
3467 (((dev->features & NETIF_F_LLTX) == 0) ? \
3468 __netif_tx_trylock(txq) : \
3469 true )
3470
c773e847 3471#define HARD_TX_UNLOCK(dev, txq) { \
22dd7495 3472 if ((dev->features & NETIF_F_LLTX) == 0) { \
c773e847 3473 __netif_tx_unlock(txq); \
22dd7495
JHS
3474 } \
3475}
3476
1da177e4
LT
3477static inline void netif_tx_disable(struct net_device *dev)
3478{
fd2ea0a7 3479 unsigned int i;
c3f26a26 3480 int cpu;
fd2ea0a7 3481
c3f26a26
DM
3482 local_bh_disable();
3483 cpu = smp_processor_id();
fd2ea0a7
DM
3484 for (i = 0; i < dev->num_tx_queues; i++) {
3485 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
c3f26a26
DM
3486
3487 __netif_tx_lock(txq, cpu);
fd2ea0a7 3488 netif_tx_stop_queue(txq);
c3f26a26 3489 __netif_tx_unlock(txq);
fd2ea0a7 3490 }
c3f26a26 3491 local_bh_enable();
1da177e4
LT
3492}
3493
e308a5d8
DM
3494static inline void netif_addr_lock(struct net_device *dev)
3495{
3496 spin_lock(&dev->addr_list_lock);
3497}
3498
2429f7ac
JP
3499static inline void netif_addr_lock_nested(struct net_device *dev)
3500{
25175ba5
VY
3501 int subclass = SINGLE_DEPTH_NESTING;
3502
3503 if (dev->netdev_ops->ndo_get_lock_subclass)
3504 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3505
3506 spin_lock_nested(&dev->addr_list_lock, subclass);
2429f7ac
JP
3507}
3508
e308a5d8
DM
3509static inline void netif_addr_lock_bh(struct net_device *dev)
3510{
3511 spin_lock_bh(&dev->addr_list_lock);
3512}
3513
3514static inline void netif_addr_unlock(struct net_device *dev)
3515{
3516 spin_unlock(&dev->addr_list_lock);
3517}
3518
3519static inline void netif_addr_unlock_bh(struct net_device *dev)
3520{
3521 spin_unlock_bh(&dev->addr_list_lock);
3522}
3523
f001fde5 3524/*
31278e71 3525 * dev_addrs walker. Should be used only for read access. Call with
f001fde5
JP
3526 * rcu_read_lock held.
3527 */
3528#define for_each_dev_addr(dev, ha) \
31278e71 3529 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
f001fde5 3530
1da177e4
LT
3531/* These functions live elsewhere (drivers/net/net_init.c, but related) */
3532
f629d208 3533void ether_setup(struct net_device *dev);
1da177e4
LT
3534
3535/* Support for loadable net-drivers */
f629d208 3536struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
c835a677 3537 unsigned char name_assign_type,
f629d208
JP
3538 void (*setup)(struct net_device *),
3539 unsigned int txqs, unsigned int rxqs);
c835a677
TG
3540#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3541 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
36909ea4 3542
c835a677
TG
3543#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3544 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3545 count)
36909ea4 3546
f629d208
JP
3547int register_netdev(struct net_device *dev);
3548void unregister_netdev(struct net_device *dev);
f001fde5 3549
22bedad3 3550/* General hardware address lists handling functions */
f629d208
JP
3551int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3552 struct netdev_hw_addr_list *from_list, int addr_len);
3553void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3554 struct netdev_hw_addr_list *from_list, int addr_len);
670e5b8e
AD
3555int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3556 struct net_device *dev,
3557 int (*sync)(struct net_device *, const unsigned char *),
3558 int (*unsync)(struct net_device *,
3559 const unsigned char *));
3560void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3561 struct net_device *dev,
3562 int (*unsync)(struct net_device *,
3563 const unsigned char *));
f629d208 3564void __hw_addr_init(struct netdev_hw_addr_list *list);
22bedad3 3565
f001fde5 3566/* Functions used for device addresses handling */
f629d208
JP
3567int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3568 unsigned char addr_type);
3569int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3570 unsigned char addr_type);
f629d208
JP
3571void dev_addr_flush(struct net_device *dev);
3572int dev_addr_init(struct net_device *dev);
a748ee24
JP
3573
3574/* Functions used for unicast addresses handling */
f629d208
JP
3575int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3576int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3577int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3578int dev_uc_sync(struct net_device *to, struct net_device *from);
3579int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3580void dev_uc_unsync(struct net_device *to, struct net_device *from);
3581void dev_uc_flush(struct net_device *dev);
3582void dev_uc_init(struct net_device *dev);
f001fde5 3583
670e5b8e
AD
3584/**
3585 * __dev_uc_sync - Synchonize device's unicast list
3586 * @dev: device to sync
3587 * @sync: function to call if address should be added
3588 * @unsync: function to call if address should be removed
3589 *
3590 * Add newly added addresses to the interface, and release
3591 * addresses that have been deleted.
3592 **/
3593static inline int __dev_uc_sync(struct net_device *dev,
3594 int (*sync)(struct net_device *,
3595 const unsigned char *),
3596 int (*unsync)(struct net_device *,
3597 const unsigned char *))
3598{
3599 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3600}
3601
3602/**
e793c0f7 3603 * __dev_uc_unsync - Remove synchronized addresses from device
670e5b8e
AD
3604 * @dev: device to sync
3605 * @unsync: function to call if address should be removed
3606 *
3607 * Remove all addresses that were added to the device by dev_uc_sync().
3608 **/
3609static inline void __dev_uc_unsync(struct net_device *dev,
3610 int (*unsync)(struct net_device *,
3611 const unsigned char *))
3612{
3613 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3614}
3615
22bedad3 3616/* Functions used for multicast addresses handling */
f629d208
JP
3617int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3618int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3619int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3620int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3621int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3622int dev_mc_sync(struct net_device *to, struct net_device *from);
3623int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3624void dev_mc_unsync(struct net_device *to, struct net_device *from);
3625void dev_mc_flush(struct net_device *dev);
3626void dev_mc_init(struct net_device *dev);
f001fde5 3627
670e5b8e
AD
3628/**
3629 * __dev_mc_sync - Synchonize device's multicast list
3630 * @dev: device to sync
3631 * @sync: function to call if address should be added
3632 * @unsync: function to call if address should be removed
3633 *
3634 * Add newly added addresses to the interface, and release
3635 * addresses that have been deleted.
3636 **/
3637static inline int __dev_mc_sync(struct net_device *dev,
3638 int (*sync)(struct net_device *,
3639 const unsigned char *),
3640 int (*unsync)(struct net_device *,
3641 const unsigned char *))
3642{
3643 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3644}
3645
3646/**
e793c0f7 3647 * __dev_mc_unsync - Remove synchronized addresses from device
670e5b8e
AD
3648 * @dev: device to sync
3649 * @unsync: function to call if address should be removed
3650 *
3651 * Remove all addresses that were added to the device by dev_mc_sync().
3652 **/
3653static inline void __dev_mc_unsync(struct net_device *dev,
3654 int (*unsync)(struct net_device *,
3655 const unsigned char *))
3656{
3657 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3658}
3659
4417da66 3660/* Functions used for secondary unicast and multicast support */
f629d208
JP
3661void dev_set_rx_mode(struct net_device *dev);
3662void __dev_set_rx_mode(struct net_device *dev);
3663int dev_set_promiscuity(struct net_device *dev, int inc);
3664int dev_set_allmulti(struct net_device *dev, int inc);
3665void netdev_state_change(struct net_device *dev);
3666void netdev_notify_peers(struct net_device *dev);
3667void netdev_features_change(struct net_device *dev);
1da177e4 3668/* Load a device via the kmod */
f629d208
JP
3669void dev_load(struct net *net, const char *name);
3670struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3671 struct rtnl_link_stats64 *storage);
3672void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3673 const struct net_device_stats *netdev_stats);
eeda3fd6 3674
1da177e4 3675extern int netdev_max_backlog;
3b098e2d 3676extern int netdev_tstamp_prequeue;
1da177e4 3677extern int weight_p;
0a14842f 3678extern int bpf_jit_enable;
9ff162a8 3679
f629d208 3680bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
44a40855
VY
3681struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3682 struct list_head **iter);
f629d208
JP
3683struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3684 struct list_head **iter);
8b5be856 3685
44a40855
VY
3686/* iterate through upper list, must be called under RCU read lock */
3687#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3688 for (iter = &(dev)->adj_list.upper, \
3689 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3690 updev; \
3691 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3692
8b5be856 3693/* iterate through upper list, must be called under RCU read lock */
2f268f12
VF
3694#define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3695 for (iter = &(dev)->all_adj_list.upper, \
3696 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3697 updev; \
3698 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
8b5be856 3699
f629d208
JP
3700void *netdev_lower_get_next_private(struct net_device *dev,
3701 struct list_head **iter);
3702void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3703 struct list_head **iter);
31088a11
VF
3704
3705#define netdev_for_each_lower_private(dev, priv, iter) \
3706 for (iter = (dev)->adj_list.lower.next, \
3707 priv = netdev_lower_get_next_private(dev, &(iter)); \
3708 priv; \
3709 priv = netdev_lower_get_next_private(dev, &(iter)))
3710
3711#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3712 for (iter = &(dev)->adj_list.lower, \
3713 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3714 priv; \
3715 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3716
4085ebe8
VY
3717void *netdev_lower_get_next(struct net_device *dev,
3718 struct list_head **iter);
3719#define netdev_for_each_lower_dev(dev, ldev, iter) \
3720 for (iter = &(dev)->adj_list.lower, \
3721 ldev = netdev_lower_get_next(dev, &(iter)); \
3722 ldev; \
3723 ldev = netdev_lower_get_next(dev, &(iter)))
3724
f629d208 3725void *netdev_adjacent_get_private(struct list_head *adj_list);
e001bfad 3726void *netdev_lower_get_first_private_rcu(struct net_device *dev);
f629d208
JP
3727struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3728struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3729int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3730int netdev_master_upper_dev_link(struct net_device *dev,
6dffb044 3731 struct net_device *upper_dev,
29bf24af 3732 void *upper_priv, void *upper_info);
f629d208
JP
3733void netdev_upper_dev_unlink(struct net_device *dev,
3734 struct net_device *upper_dev);
5bb025fa 3735void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
f629d208
JP
3736void *netdev_lower_dev_get_private(struct net_device *dev,
3737 struct net_device *lower_dev);
04d48266
JP
3738void netdev_lower_state_changed(struct net_device *lower_dev,
3739 void *lower_state_info);
960fb622
ED
3740
3741/* RSS keys are 40 or 52 bytes long */
3742#define NETDEV_RSS_KEY_LEN 52
3743extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3744void netdev_rss_key_fill(void *buffer, size_t len);
3745
4085ebe8 3746int dev_get_nest_level(struct net_device *dev,
b618aaa9 3747 bool (*type_check)(const struct net_device *dev));
f629d208
JP
3748int skb_checksum_help(struct sk_buff *skb);
3749struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3750 netdev_features_t features, bool tx_path);
3751struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3752 netdev_features_t features);
12b0004d 3753
61bd3857
MS
3754struct netdev_bonding_info {
3755 ifslave slave;
3756 ifbond master;
3757};
3758
3759struct netdev_notifier_bonding_info {
3760 struct netdev_notifier_info info; /* must be first */
3761 struct netdev_bonding_info bonding_info;
3762};
3763
3764void netdev_bonding_info_change(struct net_device *dev,
3765 struct netdev_bonding_info *bonding_info);
3766
12b0004d
CW
3767static inline
3768struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3769{
3770 return __skb_gso_segment(skb, features, true);
3771}
53d6471c 3772__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
ec5f0615
PS
3773
3774static inline bool can_checksum_protocol(netdev_features_t features,
3775 __be16 protocol)
3776{
c8cd0989
TH
3777 if (protocol == htons(ETH_P_FCOE))
3778 return !!(features & NETIF_F_FCOE_CRC);
3779
3780 /* Assume this is an IP checksum (not SCTP CRC) */
3781
3782 if (features & NETIF_F_HW_CSUM) {
3783 /* Can checksum everything */
3784 return true;
3785 }
3786
3787 switch (protocol) {
3788 case htons(ETH_P_IP):
3789 return !!(features & NETIF_F_IP_CSUM);
3790 case htons(ETH_P_IPV6):
3791 return !!(features & NETIF_F_IPV6_CSUM);
3792 default:
3793 return false;
3794 }
ec5f0615 3795}
12b0004d 3796
6ae23ad3
TH
3797/* Map an ethertype into IP protocol if possible */
3798static inline int eproto_to_ipproto(int eproto)
3799{
3800 switch (eproto) {
3801 case htons(ETH_P_IP):
3802 return IPPROTO_IP;
3803 case htons(ETH_P_IPV6):
3804 return IPPROTO_IPV6;
3805 default:
3806 return -1;
3807 }
3808}
3809
fb286bb2 3810#ifdef CONFIG_BUG
f629d208 3811void netdev_rx_csum_fault(struct net_device *dev);
fb286bb2
HX
3812#else
3813static inline void netdev_rx_csum_fault(struct net_device *dev)
3814{
3815}
3816#endif
1da177e4 3817/* rx skb timestamps */
f629d208
JP
3818void net_enable_timestamp(void);
3819void net_disable_timestamp(void);
1da177e4 3820
20380731 3821#ifdef CONFIG_PROC_FS
f629d208 3822int __init dev_proc_init(void);
900ff8c6
CW
3823#else
3824#define dev_proc_init() 0
20380731
ACM
3825#endif
3826
4798248e 3827static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
fa2dbdc2
DM
3828 struct sk_buff *skb, struct net_device *dev,
3829 bool more)
4798248e 3830{
fa2dbdc2 3831 skb->xmit_more = more ? 1 : 0;
0b725a2c 3832 return ops->ndo_start_xmit(skb, dev);
4798248e
DM
3833}
3834
10b3ad8c 3835static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
fa2dbdc2 3836 struct netdev_queue *txq, bool more)
4798248e
DM
3837{
3838 const struct net_device_ops *ops = dev->netdev_ops;
10b3ad8c 3839 int rc;
4798248e 3840
fa2dbdc2 3841 rc = __netdev_start_xmit(ops, skb, dev, more);
10b3ad8c
DM
3842 if (rc == NETDEV_TX_OK)
3843 txq_trans_update(txq);
3844
3845 return rc;
4798248e
DM
3846}
3847
42a2d923
LT
3848int netdev_class_create_file_ns(struct class_attribute *class_attr,
3849 const void *ns);
3850void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3851 const void *ns);
58292cbe
TH
3852
3853static inline int netdev_class_create_file(struct class_attribute *class_attr)
3854{
3855 return netdev_class_create_file_ns(class_attr, NULL);
3856}
3857
3858static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3859{
3860 netdev_class_remove_file_ns(class_attr, NULL);
3861}
b8a9787e 3862
04600794
JB
3863extern struct kobj_ns_type_operations net_ns_type_operations;
3864
f629d208 3865const char *netdev_drivername(const struct net_device *dev);
6579e57b 3866
f629d208 3867void linkwatch_run_queue(void);
20380731 3868
da08143b
MK
3869static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3870 netdev_features_t f2)
3871{
c8cd0989
TH
3872 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
3873 if (f1 & NETIF_F_HW_CSUM)
3874 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IP_CSUM);
3875 else
3876 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IP_CSUM);
3877 }
da08143b 3878
c8cd0989 3879 return f1 & f2;
da08143b
MK
3880}
3881
c8f44aff
MM
3882static inline netdev_features_t netdev_get_wanted_features(
3883 struct net_device *dev)
5455c699
MM
3884{
3885 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3886}
c8f44aff
MM
3887netdev_features_t netdev_increment_features(netdev_features_t all,
3888 netdev_features_t one, netdev_features_t mask);
b0ce3508
ED
3889
3890/* Allow TSO being used on stacked device :
3891 * Performing the GSO segmentation before last device
3892 * is a performance improvement.
3893 */
3894static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3895 netdev_features_t mask)
3896{
3897 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3898}
3899
6cb6a27c 3900int __netdev_update_features(struct net_device *dev);
5455c699 3901void netdev_update_features(struct net_device *dev);
afe12cc8 3902void netdev_change_features(struct net_device *dev);
7f353bf2 3903
fc4a7489
PM
3904void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3905 struct net_device *dev);
3906
e38f3025
TM
3907netdev_features_t passthru_features_check(struct sk_buff *skb,
3908 struct net_device *dev,
3909 netdev_features_t features);
c1e756bf 3910netdev_features_t netif_skb_features(struct sk_buff *skb);
58e998c6 3911
4d29515f 3912static inline bool net_gso_ok(netdev_features_t features, int gso_type)
576a30eb 3913{
c8f44aff 3914 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
0345e186
MM
3915
3916 /* check flags correspondence */
3917 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3918 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3919 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3920 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3921 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3922 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4b28252c
TH
3923 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3924 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3925 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3926 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3927 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3928 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
e585f236 3929 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
0345e186 3930
d6b4991a 3931 return (features & feature) == feature;
576a30eb
HX
3932}
3933
4d29515f 3934static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
bcd76111 3935{
278b2513 3936 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
21dc3301 3937 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
bcd76111
HX
3938}
3939
8b86a61d 3940static inline bool netif_needs_gso(struct sk_buff *skb,
4d29515f 3941 netdev_features_t features)
7967168c 3942{
fc741216 3943 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
cdbee74c
YZ
3944 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3945 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
7967168c
HX
3946}
3947
82cc1a7a
PWJ
3948static inline void netif_set_gso_max_size(struct net_device *dev,
3949 unsigned int size)
3950{
3951 dev->gso_max_size = size;
3952}
3953
7a7ffbab
WCC
3954static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3955 int pulled_hlen, u16 mac_offset,
3956 int mac_len)
3957{
3958 skb->protocol = protocol;
3959 skb->encapsulation = 1;
3960 skb_push(skb, pulled_hlen);
3961 skb_reset_transport_header(skb);
3962 skb->mac_header = mac_offset;
3963 skb->network_header = skb->mac_header + mac_len;
3964 skb->mac_len = mac_len;
3965}
3966
b618aaa9 3967static inline bool netif_is_macvlan(const struct net_device *dev)
a6cc0cfa
JF
3968{
3969 return dev->priv_flags & IFF_MACVLAN;
3970}
3971
b618aaa9 3972static inline bool netif_is_macvlan_port(const struct net_device *dev)
2f33e7d5
MB
3973{
3974 return dev->priv_flags & IFF_MACVLAN_PORT;
3975}
3976
b618aaa9 3977static inline bool netif_is_ipvlan(const struct net_device *dev)
5933fea7
MB
3978{
3979 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3980}
3981
b618aaa9 3982static inline bool netif_is_ipvlan_port(const struct net_device *dev)
5933fea7
MB
3983{
3984 return dev->priv_flags & IFF_IPVLAN_MASTER;
3985}
3986
b618aaa9 3987static inline bool netif_is_bond_master(const struct net_device *dev)
8a7fbfab 3988{
3989 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3990}
3991
b618aaa9 3992static inline bool netif_is_bond_slave(const struct net_device *dev)
1765a575
JP
3993{
3994 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3995}
3996
3bdc0eba
BG
3997static inline bool netif_supports_nofcs(struct net_device *dev)
3998{
3999 return dev->priv_flags & IFF_SUPP_NOFCS;
4000}
4001
007979ea 4002static inline bool netif_is_l3_master(const struct net_device *dev)
4e3c8992 4003{
007979ea 4004 return dev->priv_flags & IFF_L3MDEV_MASTER;
4e3c8992
DA
4005}
4006
fee6d4c7
DA
4007static inline bool netif_is_l3_slave(const struct net_device *dev)
4008{
4009 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4010}
4011
0894ae3f
JP
4012static inline bool netif_is_bridge_master(const struct net_device *dev)
4013{
4014 return dev->priv_flags & IFF_EBRIDGE;
4015}
4016
28f9ee22
VY
4017static inline bool netif_is_bridge_port(const struct net_device *dev)
4018{
4019 return dev->priv_flags & IFF_BRIDGE_PORT;
4020}
4021
35d4e172
JP
4022static inline bool netif_is_ovs_master(const struct net_device *dev)
4023{
4024 return dev->priv_flags & IFF_OPENVSWITCH;
4025}
4026
b618aaa9 4027static inline bool netif_is_team_master(const struct net_device *dev)
c981e421
JP
4028{
4029 return dev->priv_flags & IFF_TEAM;
4030}
4031
b618aaa9 4032static inline bool netif_is_team_port(const struct net_device *dev)
f7f019ee
JP
4033{
4034 return dev->priv_flags & IFF_TEAM_PORT;
4035}
4036
b618aaa9 4037static inline bool netif_is_lag_master(const struct net_device *dev)
7be61833
JP
4038{
4039 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4040}
4041
b618aaa9 4042static inline bool netif_is_lag_port(const struct net_device *dev)
e0ba1414
JP
4043{
4044 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4045}
4046
02875878
ED
4047/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4048static inline void netif_keep_dst(struct net_device *dev)
4049{
4050 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4051}
4052
505d4f73 4053extern struct pernet_operations __net_initdata loopback_net_ops;
b1b67dd4 4054
571ba423
JP
4055/* Logging, debugging and troubleshooting/diagnostic helpers. */
4056
4057/* netdev_printk helpers, similar to dev_printk */
4058
4059static inline const char *netdev_name(const struct net_device *dev)
4060{
c6f854d5
VF
4061 if (!dev->name[0] || strchr(dev->name, '%'))
4062 return "(unnamed net_device)";
571ba423
JP
4063 return dev->name;
4064}
4065
ccc7f496
VF
4066static inline const char *netdev_reg_state(const struct net_device *dev)
4067{
4068 switch (dev->reg_state) {
4069 case NETREG_UNINITIALIZED: return " (uninitialized)";
4070 case NETREG_REGISTERED: return "";
4071 case NETREG_UNREGISTERING: return " (unregistering)";
4072 case NETREG_UNREGISTERED: return " (unregistered)";
4073 case NETREG_RELEASED: return " (released)";
4074 case NETREG_DUMMY: return " (dummy)";
4075 }
4076
4077 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4078 return " (unknown)";
4079}
4080
f629d208 4081__printf(3, 4)
6ea754eb
JP
4082void netdev_printk(const char *level, const struct net_device *dev,
4083 const char *format, ...);
f629d208 4084__printf(2, 3)
6ea754eb 4085void netdev_emerg(const struct net_device *dev, const char *format, ...);
f629d208 4086__printf(2, 3)
6ea754eb 4087void netdev_alert(const struct net_device *dev, const char *format, ...);
f629d208 4088__printf(2, 3)
6ea754eb 4089void netdev_crit(const struct net_device *dev, const char *format, ...);
f629d208 4090__printf(2, 3)
6ea754eb 4091void netdev_err(const struct net_device *dev, const char *format, ...);
f629d208 4092__printf(2, 3)
6ea754eb 4093void netdev_warn(const struct net_device *dev, const char *format, ...);
f629d208 4094__printf(2, 3)
6ea754eb 4095void netdev_notice(const struct net_device *dev, const char *format, ...);
f629d208 4096__printf(2, 3)
6ea754eb 4097void netdev_info(const struct net_device *dev, const char *format, ...);
571ba423 4098
8909c9ad
VK
4099#define MODULE_ALIAS_NETDEV(device) \
4100 MODULE_ALIAS("netdev-" device)
4101
b558c96f 4102#if defined(CONFIG_DYNAMIC_DEBUG)
571ba423
JP
4103#define netdev_dbg(__dev, format, args...) \
4104do { \
ffa10cb4 4105 dynamic_netdev_dbg(__dev, format, ##args); \
571ba423 4106} while (0)
b558c96f
JC
4107#elif defined(DEBUG)
4108#define netdev_dbg(__dev, format, args...) \
4109 netdev_printk(KERN_DEBUG, __dev, format, ##args)
571ba423
JP
4110#else
4111#define netdev_dbg(__dev, format, args...) \
4112({ \
4113 if (0) \
4114 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
571ba423
JP
4115})
4116#endif
4117
4118#if defined(VERBOSE_DEBUG)
4119#define netdev_vdbg netdev_dbg
4120#else
4121
4122#define netdev_vdbg(dev, format, args...) \
4123({ \
4124 if (0) \
4125 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4126 0; \
4127})
4128#endif
4129
4130/*
4131 * netdev_WARN() acts like dev_printk(), but with the key difference
4132 * of using a WARN/WARN_ON to get the message out, including the
4133 * file/line information and a backtrace.
4134 */
4135#define netdev_WARN(dev, format, args...) \
ccc7f496
VF
4136 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
4137 netdev_reg_state(dev), ##args)
571ba423 4138
b3d95c5c
JP
4139/* netif printk helpers, similar to netdev_printk */
4140
4141#define netif_printk(priv, type, level, dev, fmt, args...) \
4142do { \
4143 if (netif_msg_##type(priv)) \
4144 netdev_printk(level, (dev), fmt, ##args); \
4145} while (0)
4146
f45f4321
JP
4147#define netif_level(level, priv, type, dev, fmt, args...) \
4148do { \
4149 if (netif_msg_##type(priv)) \
4150 netdev_##level(dev, fmt, ##args); \
4151} while (0)
4152
b3d95c5c 4153#define netif_emerg(priv, type, dev, fmt, args...) \
f45f4321 4154 netif_level(emerg, priv, type, dev, fmt, ##args)
b3d95c5c 4155#define netif_alert(priv, type, dev, fmt, args...) \
f45f4321 4156 netif_level(alert, priv, type, dev, fmt, ##args)
b3d95c5c 4157#define netif_crit(priv, type, dev, fmt, args...) \
f45f4321 4158 netif_level(crit, priv, type, dev, fmt, ##args)
b3d95c5c 4159#define netif_err(priv, type, dev, fmt, args...) \
f45f4321 4160 netif_level(err, priv, type, dev, fmt, ##args)
b3d95c5c 4161#define netif_warn(priv, type, dev, fmt, args...) \
f45f4321 4162 netif_level(warn, priv, type, dev, fmt, ##args)
b3d95c5c 4163#define netif_notice(priv, type, dev, fmt, args...) \
f45f4321 4164 netif_level(notice, priv, type, dev, fmt, ##args)
b3d95c5c 4165#define netif_info(priv, type, dev, fmt, args...) \
f45f4321 4166 netif_level(info, priv, type, dev, fmt, ##args)
b3d95c5c 4167
0053ea9c 4168#if defined(CONFIG_DYNAMIC_DEBUG)
b3d95c5c
JP
4169#define netif_dbg(priv, type, netdev, format, args...) \
4170do { \
4171 if (netif_msg_##type(priv)) \
b5fb0a03 4172 dynamic_netdev_dbg(netdev, format, ##args); \
b3d95c5c 4173} while (0)
0053ea9c
JP
4174#elif defined(DEBUG)
4175#define netif_dbg(priv, type, dev, format, args...) \
4176 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
b3d95c5c
JP
4177#else
4178#define netif_dbg(priv, type, dev, format, args...) \
4179({ \
4180 if (0) \
4181 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4182 0; \
4183})
4184#endif
4185
4186#if defined(VERBOSE_DEBUG)
bcfcc450 4187#define netif_vdbg netif_dbg
b3d95c5c
JP
4188#else
4189#define netif_vdbg(priv, type, dev, format, args...) \
4190({ \
4191 if (0) \
a4ed89cb 4192 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
b3d95c5c
JP
4193 0; \
4194})
4195#endif
571ba423 4196
900ff8c6
CW
4197/*
4198 * The list of packet types we will receive (as opposed to discard)
4199 * and the routines to invoke.
4200 *
4201 * Why 16. Because with 16 the only overlap we get on a hash of the
4202 * low nibble of the protocol value is RARP/SNAP/X.25.
4203 *
4204 * NOTE: That is no longer true with the addition of VLAN tags. Not
4205 * sure which should go first, but I bet it won't make much
4206 * difference if we are running VLANs. The good news is that
4207 * this protocol won't be in the list unless compiled in, so
4208 * the average user (w/out VLANs) will not be adversely affected.
4209 * --BLG
4210 *
4211 * 0800 IP
4212 * 8100 802.1Q VLAN
4213 * 0001 802.3
4214 * 0002 AX.25
4215 * 0004 802.2
4216 * 8035 RARP
4217 * 0005 SNAP
4218 * 0805 X.25
4219 * 0806 ARP
4220 * 8137 IPX
4221 * 0009 Localtalk
4222 * 86DD IPv6
4223 */
4224#define PTYPE_HASH_SIZE (16)
4225#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4226
385a154c 4227#endif /* _LINUX_NETDEVICE_H */