Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MMZONE_H
3#define _LINUX_MMZONE_H
4
1da177e4 5#ifndef __ASSEMBLY__
97965478 6#ifndef __GENERATING_BOUNDS_H
1da177e4 7
1da177e4
LT
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
e815af95 11#include <linux/bitops.h>
1da177e4
LT
12#include <linux/cache.h>
13#include <linux/threads.h>
14#include <linux/numa.h>
15#include <linux/init.h>
bdc8cb98 16#include <linux/seqlock.h>
8357f869 17#include <linux/nodemask.h>
835c134e 18#include <linux/pageblock-flags.h>
bbeae5b0 19#include <linux/page-flags-layout.h>
60063497 20#include <linux/atomic.h>
b03641af
DW
21#include <linux/mm_types.h>
22#include <linux/page-flags.h>
93ff66bf 23#include <asm/page.h>
1da177e4
LT
24
25/* Free memory management - zoned buddy allocator. */
26#ifndef CONFIG_FORCE_MAX_ZONEORDER
27#define MAX_ORDER 11
28#else
29#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
30#endif
e984bb43 31#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 32
5ad333eb
AW
33/*
34 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
35 * costly to service. That is between allocation orders which should
35fca53e 36 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
37 * will not.
38 */
39#define PAGE_ALLOC_COSTLY_ORDER 3
40
a6ffdc07 41enum migratetype {
47118af0 42 MIGRATE_UNMOVABLE,
47118af0 43 MIGRATE_MOVABLE,
016c13da 44 MIGRATE_RECLAIMABLE,
0aaa29a5
MG
45 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
46 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
47118af0
MN
47#ifdef CONFIG_CMA
48 /*
49 * MIGRATE_CMA migration type is designed to mimic the way
50 * ZONE_MOVABLE works. Only movable pages can be allocated
51 * from MIGRATE_CMA pageblocks and page allocator never
52 * implicitly change migration type of MIGRATE_CMA pageblock.
53 *
54 * The way to use it is to change migratetype of a range of
55 * pageblocks to MIGRATE_CMA which can be done by
56 * __free_pageblock_cma() function. What is important though
57 * is that a range of pageblocks must be aligned to
58 * MAX_ORDER_NR_PAGES should biggest page be bigger then
59 * a single pageblock.
60 */
61 MIGRATE_CMA,
62#endif
194159fb 63#ifdef CONFIG_MEMORY_ISOLATION
47118af0 64 MIGRATE_ISOLATE, /* can't allocate from here */
194159fb 65#endif
47118af0
MN
66 MIGRATE_TYPES
67};
68
60f30350 69/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
c999fbd3 70extern const char * const migratetype_names[MIGRATE_TYPES];
60f30350 71
47118af0
MN
72#ifdef CONFIG_CMA
73# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
7c15d9bb 74# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
47118af0
MN
75#else
76# define is_migrate_cma(migratetype) false
7c15d9bb 77# define is_migrate_cma_page(_page) false
47118af0 78#endif
b2a0ac88 79
b682debd
VB
80static inline bool is_migrate_movable(int mt)
81{
82 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
83}
84
b2a0ac88
MG
85#define for_each_migratetype_order(order, type) \
86 for (order = 0; order < MAX_ORDER; order++) \
87 for (type = 0; type < MIGRATE_TYPES; type++)
88
467c996c
MG
89extern int page_group_by_mobility_disabled;
90
e58469ba
MG
91#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
92#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
93
dc4b0caf
MG
94#define get_pageblock_migratetype(page) \
95 get_pfnblock_flags_mask(page, page_to_pfn(page), \
96 PB_migrate_end, MIGRATETYPE_MASK)
97
1da177e4 98struct free_area {
b2a0ac88 99 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
100 unsigned long nr_free;
101};
102
b03641af
DW
103/* Used for pages not on another list */
104static inline void add_to_free_area(struct page *page, struct free_area *area,
105 int migratetype)
106{
107 list_add(&page->lru, &area->free_list[migratetype]);
108 area->nr_free++;
109}
110
111/* Used for pages not on another list */
112static inline void add_to_free_area_tail(struct page *page, struct free_area *area,
113 int migratetype)
114{
115 list_add_tail(&page->lru, &area->free_list[migratetype]);
116 area->nr_free++;
117}
118
97500a4a
DW
119#ifdef CONFIG_SHUFFLE_PAGE_ALLOCATOR
120/* Used to preserve page allocation order entropy */
121void add_to_free_area_random(struct page *page, struct free_area *area,
122 int migratetype);
123#else
124static inline void add_to_free_area_random(struct page *page,
125 struct free_area *area, int migratetype)
126{
127 add_to_free_area(page, area, migratetype);
128}
129#endif
130
b03641af
DW
131/* Used for pages which are on another list */
132static inline void move_to_free_area(struct page *page, struct free_area *area,
133 int migratetype)
134{
135 list_move(&page->lru, &area->free_list[migratetype]);
136}
137
138static inline struct page *get_page_from_free_area(struct free_area *area,
139 int migratetype)
140{
141 return list_first_entry_or_null(&area->free_list[migratetype],
142 struct page, lru);
143}
144
145static inline void del_page_from_free_area(struct page *page,
146 struct free_area *area)
147{
148 list_del(&page->lru);
149 __ClearPageBuddy(page);
150 set_page_private(page, 0);
151 area->nr_free--;
152}
153
154static inline bool free_area_empty(struct free_area *area, int migratetype)
155{
156 return list_empty(&area->free_list[migratetype]);
157}
158
1da177e4
LT
159struct pglist_data;
160
161/*
a52633d8 162 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
1da177e4
LT
163 * So add a wild amount of padding here to ensure that they fall into separate
164 * cachelines. There are very few zone structures in the machine, so space
165 * consumption is not a concern here.
166 */
167#if defined(CONFIG_SMP)
168struct zone_padding {
169 char x[0];
22fc6ecc 170} ____cacheline_internodealigned_in_smp;
1da177e4
LT
171#define ZONE_PADDING(name) struct zone_padding name;
172#else
173#define ZONE_PADDING(name)
174#endif
175
3a321d2a
KW
176#ifdef CONFIG_NUMA
177enum numa_stat_item {
178 NUMA_HIT, /* allocated in intended node */
179 NUMA_MISS, /* allocated in non intended node */
180 NUMA_FOREIGN, /* was intended here, hit elsewhere */
181 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
182 NUMA_LOCAL, /* allocation from local node */
183 NUMA_OTHER, /* allocation from other node */
184 NR_VM_NUMA_STAT_ITEMS
185};
186#else
187#define NR_VM_NUMA_STAT_ITEMS 0
188#endif
189
2244b95a 190enum zone_stat_item {
51ed4491 191 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 192 NR_FREE_PAGES,
71c799f4
MK
193 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
194 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
195 NR_ZONE_ACTIVE_ANON,
196 NR_ZONE_INACTIVE_FILE,
197 NR_ZONE_ACTIVE_FILE,
198 NR_ZONE_UNEVICTABLE,
5a1c84b4 199 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */
5344b7e6 200 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
51ed4491 201 NR_PAGETABLE, /* used for pagetables */
d30dd8be 202 NR_KERNEL_STACK_KB, /* measured in KiB */
c6a7f572 203 /* Second 128 byte cacheline */
d2c5e30c 204 NR_BOUNCE,
91537fee
MK
205#if IS_ENABLED(CONFIG_ZSMALLOC)
206 NR_ZSPAGES, /* allocated in zsmalloc */
ca889e6c 207#endif
d1ce749a 208 NR_FREE_CMA_PAGES,
2244b95a
CL
209 NR_VM_ZONE_STAT_ITEMS };
210
75ef7184 211enum node_stat_item {
599d0c95
MG
212 NR_LRU_BASE,
213 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
214 NR_ACTIVE_ANON, /* " " " " " */
215 NR_INACTIVE_FILE, /* " " " " " */
216 NR_ACTIVE_FILE, /* " " " " " */
217 NR_UNEVICTABLE, /* " " " " " */
bee07b33
RG
218 NR_SLAB_RECLAIMABLE, /* Please do not reorder this item */
219 NR_SLAB_UNRECLAIMABLE, /* and this one without looking at
220 * memcg_flush_percpu_vmstats() first. */
599d0c95
MG
221 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
222 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
68d48e6a 223 WORKINGSET_NODES,
1e6b1085
MG
224 WORKINGSET_REFAULT,
225 WORKINGSET_ACTIVATE,
1899ad18 226 WORKINGSET_RESTORE,
1e6b1085 227 WORKINGSET_NODERECLAIM,
4b9d0fab 228 NR_ANON_MAPPED, /* Mapped anonymous pages */
50658e2e
MG
229 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
230 only modified from process context */
11fb9989
MG
231 NR_FILE_PAGES,
232 NR_FILE_DIRTY,
233 NR_WRITEBACK,
234 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
235 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
236 NR_SHMEM_THPS,
237 NR_SHMEM_PMDMAPPED,
60fbf0ab
SL
238 NR_FILE_THPS,
239 NR_FILE_PMDMAPPED,
11fb9989
MG
240 NR_ANON_THPS,
241 NR_UNSTABLE_NFS, /* NFS unstable pages */
c4a25635
MG
242 NR_VMSCAN_WRITE,
243 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
244 NR_DIRTIED, /* page dirtyings since bootup */
245 NR_WRITTEN, /* page writings since bootup */
b29940c1 246 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
75ef7184
MG
247 NR_VM_NODE_STAT_ITEMS
248};
249
4f98a2fe
RR
250/*
251 * We do arithmetic on the LRU lists in various places in the code,
252 * so it is important to keep the active lists LRU_ACTIVE higher in
253 * the array than the corresponding inactive lists, and to keep
254 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
255 *
256 * This has to be kept in sync with the statistics in zone_stat_item
257 * above and the descriptions in vmstat_text in mm/vmstat.c
258 */
259#define LRU_BASE 0
260#define LRU_ACTIVE 1
261#define LRU_FILE 2
262
b69408e8 263enum lru_list {
4f98a2fe
RR
264 LRU_INACTIVE_ANON = LRU_BASE,
265 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
266 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
267 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 268 LRU_UNEVICTABLE,
894bc310
LS
269 NR_LRU_LISTS
270};
b69408e8 271
4111304d 272#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 273
4111304d 274#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 275
4111304d 276static inline int is_file_lru(enum lru_list lru)
4f98a2fe 277{
4111304d 278 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
279}
280
4111304d 281static inline int is_active_lru(enum lru_list lru)
b69408e8 282{
4111304d 283 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
284}
285
89abfab1
HD
286struct zone_reclaim_stat {
287 /*
288 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 289 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
290 * The higher the rotated/scanned ratio, the more valuable
291 * that cache is.
292 *
293 * The anon LRU stats live in [0], file LRU stats in [1]
294 */
295 unsigned long recent_rotated[2];
296 unsigned long recent_scanned[2];
297};
298
6290df54 299struct lruvec {
23047a96
JW
300 struct list_head lists[NR_LRU_LISTS];
301 struct zone_reclaim_stat reclaim_stat;
302 /* Evictions & activations on the inactive file list */
303 atomic_long_t inactive_age;
2a2e4885
JW
304 /* Refaults at the time of last reclaim cycle */
305 unsigned long refaults;
c255a458 306#ifdef CONFIG_MEMCG
599d0c95 307 struct pglist_data *pgdat;
7f5e86c2 308#endif
6290df54
JW
309};
310
f80c0673 311/* Isolate unmapped file */
f3fd4a61 312#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 313/* Isolate for asynchronous migration */
f3fd4a61 314#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
315/* Isolate unevictable pages */
316#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
317
318/* LRU Isolation modes. */
9efeccac 319typedef unsigned __bitwise isolate_mode_t;
4356f21d 320
41858966
MG
321enum zone_watermarks {
322 WMARK_MIN,
323 WMARK_LOW,
324 WMARK_HIGH,
325 NR_WMARK
326};
327
1c30844d
MG
328#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
329#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
330#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
331#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
41858966 332
1da177e4
LT
333struct per_cpu_pages {
334 int count; /* number of pages in the list */
1da177e4
LT
335 int high; /* high watermark, emptying needed */
336 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
337
338 /* Lists of pages, one per migrate type stored on the pcp-lists */
339 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
340};
341
342struct per_cpu_pageset {
3dfa5721 343 struct per_cpu_pages pcp;
4037d452
CL
344#ifdef CONFIG_NUMA
345 s8 expire;
1d90ca89 346 u16 vm_numa_stat_diff[NR_VM_NUMA_STAT_ITEMS];
4037d452 347#endif
2244b95a 348#ifdef CONFIG_SMP
df9ecaba 349 s8 stat_threshold;
2244b95a
CL
350 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
351#endif
99dcc3e5 352};
e7c8d5c9 353
75ef7184
MG
354struct per_cpu_nodestat {
355 s8 stat_threshold;
356 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
357};
358
97965478
CL
359#endif /* !__GENERATING_BOUNDS.H */
360
2f1b6248
CL
361enum zone_type {
362 /*
734f9246
NSJ
363 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
364 * to DMA to all of the addressable memory (ZONE_NORMAL).
365 * On architectures where this area covers the whole 32 bit address
366 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
367 * DMA addressing constraints. This distinction is important as a 32bit
368 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
369 * platforms may need both zones as they support peripherals with
370 * different DMA addressing limitations.
371 *
372 * Some examples:
373 *
374 * - i386 and x86_64 have a fixed 16M ZONE_DMA and ZONE_DMA32 for the
375 * rest of the lower 4G.
376 *
377 * - arm only uses ZONE_DMA, the size, up to 4G, may vary depending on
378 * the specific device.
379 *
380 * - arm64 has a fixed 1G ZONE_DMA and ZONE_DMA32 for the rest of the
381 * lower 4G.
2f1b6248 382 *
734f9246
NSJ
383 * - powerpc only uses ZONE_DMA, the size, up to 2G, may vary
384 * depending on the specific device.
2f1b6248 385 *
734f9246 386 * - s390 uses ZONE_DMA fixed to the lower 2G.
2f1b6248 387 *
734f9246
NSJ
388 * - ia64 and riscv only use ZONE_DMA32.
389 *
390 * - parisc uses neither.
2f1b6248 391 */
734f9246 392#ifdef CONFIG_ZONE_DMA
2f1b6248 393 ZONE_DMA,
4b51d669 394#endif
fb0e7942 395#ifdef CONFIG_ZONE_DMA32
2f1b6248 396 ZONE_DMA32,
fb0e7942 397#endif
2f1b6248
CL
398 /*
399 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
400 * performed on pages in ZONE_NORMAL if the DMA devices support
401 * transfers to all addressable memory.
402 */
403 ZONE_NORMAL,
e53ef38d 404#ifdef CONFIG_HIGHMEM
2f1b6248
CL
405 /*
406 * A memory area that is only addressable by the kernel through
407 * mapping portions into its own address space. This is for example
408 * used by i386 to allow the kernel to address the memory beyond
409 * 900MB. The kernel will set up special mappings (page
410 * table entries on i386) for each page that the kernel needs to
411 * access.
412 */
413 ZONE_HIGHMEM,
e53ef38d 414#endif
2a1e274a 415 ZONE_MOVABLE,
033fbae9
DW
416#ifdef CONFIG_ZONE_DEVICE
417 ZONE_DEVICE,
418#endif
97965478 419 __MAX_NR_ZONES
033fbae9 420
2f1b6248 421};
1da177e4 422
97965478
CL
423#ifndef __GENERATING_BOUNDS_H
424
1da177e4 425struct zone {
3484b2de 426 /* Read-mostly fields */
41858966
MG
427
428 /* zone watermarks, access with *_wmark_pages(zone) macros */
a9214443 429 unsigned long _watermark[NR_WMARK];
1c30844d 430 unsigned long watermark_boost;
41858966 431
0aaa29a5
MG
432 unsigned long nr_reserved_highatomic;
433
1da177e4 434 /*
89903327
AM
435 * We don't know if the memory that we're going to allocate will be
436 * freeable or/and it will be released eventually, so to avoid totally
437 * wasting several GB of ram we must reserve some of the lower zone
438 * memory (otherwise we risk to run OOM on the lower zones despite
439 * there being tons of freeable ram on the higher zones). This array is
440 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
441 * changes.
1da177e4 442 */
3484b2de 443 long lowmem_reserve[MAX_NR_ZONES];
ab8fabd4 444
e7c8d5c9 445#ifdef CONFIG_NUMA
d5f541ed 446 int node;
3484b2de 447#endif
3484b2de 448 struct pglist_data *zone_pgdat;
43cf38eb 449 struct per_cpu_pageset __percpu *pageset;
3484b2de 450
835c134e
MG
451#ifndef CONFIG_SPARSEMEM
452 /*
d9c23400 453 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
454 * In SPARSEMEM, this map is stored in struct mem_section
455 */
456 unsigned long *pageblock_flags;
457#endif /* CONFIG_SPARSEMEM */
458
1da177e4
LT
459 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
460 unsigned long zone_start_pfn;
461
bdc8cb98 462 /*
9feedc9d
JL
463 * spanned_pages is the total pages spanned by the zone, including
464 * holes, which is calculated as:
465 * spanned_pages = zone_end_pfn - zone_start_pfn;
bdc8cb98 466 *
9feedc9d
JL
467 * present_pages is physical pages existing within the zone, which
468 * is calculated as:
8761e31c 469 * present_pages = spanned_pages - absent_pages(pages in holes);
9feedc9d
JL
470 *
471 * managed_pages is present pages managed by the buddy system, which
472 * is calculated as (reserved_pages includes pages allocated by the
473 * bootmem allocator):
474 * managed_pages = present_pages - reserved_pages;
475 *
476 * So present_pages may be used by memory hotplug or memory power
477 * management logic to figure out unmanaged pages by checking
478 * (present_pages - managed_pages). And managed_pages should be used
479 * by page allocator and vm scanner to calculate all kinds of watermarks
480 * and thresholds.
481 *
482 * Locking rules:
483 *
484 * zone_start_pfn and spanned_pages are protected by span_seqlock.
485 * It is a seqlock because it has to be read outside of zone->lock,
486 * and it is done in the main allocator path. But, it is written
487 * quite infrequently.
488 *
489 * The span_seq lock is declared along with zone->lock because it is
bdc8cb98
DH
490 * frequently read in proximity to zone->lock. It's good to
491 * give them a chance of being in the same cacheline.
9feedc9d 492 *
c3d5f5f0 493 * Write access to present_pages at runtime should be protected by
bfc8c901
VD
494 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
495 * present_pages should get_online_mems() to get a stable value.
bdc8cb98 496 */
9705bea5 497 atomic_long_t managed_pages;
9feedc9d
JL
498 unsigned long spanned_pages;
499 unsigned long present_pages;
3484b2de
MG
500
501 const char *name;
1da177e4 502
ad53f92e
JK
503#ifdef CONFIG_MEMORY_ISOLATION
504 /*
505 * Number of isolated pageblock. It is used to solve incorrect
506 * freepage counting problem due to racy retrieving migratetype
507 * of pageblock. Protected by zone->lock.
508 */
509 unsigned long nr_isolate_pageblock;
510#endif
511
3484b2de
MG
512#ifdef CONFIG_MEMORY_HOTPLUG
513 /* see spanned/present_pages for more description */
514 seqlock_t span_seqlock;
515#endif
516
9dcb8b68 517 int initialized;
3484b2de 518
0f661148 519 /* Write-intensive fields used from the page allocator */
3484b2de 520 ZONE_PADDING(_pad1_)
0f661148 521
3484b2de
MG
522 /* free areas of different sizes */
523 struct free_area free_area[MAX_ORDER];
524
525 /* zone flags, see below */
526 unsigned long flags;
527
0f661148 528 /* Primarily protects free_area */
a368ab67
MG
529 spinlock_t lock;
530
0f661148 531 /* Write-intensive fields used by compaction and vmstats. */
3484b2de
MG
532 ZONE_PADDING(_pad2_)
533
3484b2de
MG
534 /*
535 * When free pages are below this point, additional steps are taken
536 * when reading the number of free pages to avoid per-cpu counter
537 * drift allowing watermarks to be breached
538 */
539 unsigned long percpu_drift_mark;
540
541#if defined CONFIG_COMPACTION || defined CONFIG_CMA
542 /* pfn where compaction free scanner should start */
543 unsigned long compact_cached_free_pfn;
544 /* pfn where async and sync compaction migration scanner should start */
545 unsigned long compact_cached_migrate_pfn[2];
e332f741
MG
546 unsigned long compact_init_migrate_pfn;
547 unsigned long compact_init_free_pfn;
3484b2de
MG
548#endif
549
550#ifdef CONFIG_COMPACTION
551 /*
552 * On compaction failure, 1<<compact_defer_shift compactions
553 * are skipped before trying again. The number attempted since
554 * last failure is tracked with compact_considered.
555 */
556 unsigned int compact_considered;
557 unsigned int compact_defer_shift;
558 int compact_order_failed;
559#endif
560
561#if defined CONFIG_COMPACTION || defined CONFIG_CMA
562 /* Set to true when the PG_migrate_skip bits should be cleared */
563 bool compact_blockskip_flush;
564#endif
565
7cf91a98
JK
566 bool contiguous;
567
3484b2de
MG
568 ZONE_PADDING(_pad3_)
569 /* Zone statistics */
570 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
3a321d2a 571 atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS];
22fc6ecc 572} ____cacheline_internodealigned_in_smp;
1da177e4 573
599d0c95
MG
574enum pgdat_flags {
575 PGDAT_CONGESTED, /* pgdat has many dirty pages backed by
0e093d99
MG
576 * a congested BDI
577 */
599d0c95 578 PGDAT_DIRTY, /* reclaim scanning has recently found
d43006d5
MG
579 * many dirty file pages at the tail
580 * of the LRU.
581 */
599d0c95 582 PGDAT_WRITEBACK, /* reclaim scanning has recently found
283aba9f
MG
583 * many pages under writeback
584 */
a5f5f91d 585 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */
57054651 586};
e815af95 587
73444bc4
MG
588enum zone_flags {
589 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks.
590 * Cleared when kswapd is woken.
591 */
592};
593
9705bea5
AK
594static inline unsigned long zone_managed_pages(struct zone *zone)
595{
596 return (unsigned long)atomic_long_read(&zone->managed_pages);
597}
598
f9228b20 599static inline unsigned long zone_end_pfn(const struct zone *zone)
108bcc96
CS
600{
601 return zone->zone_start_pfn + zone->spanned_pages;
602}
603
604static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
605{
606 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
607}
608
2a6e3ebe
CS
609static inline bool zone_is_initialized(struct zone *zone)
610{
9dcb8b68 611 return zone->initialized;
2a6e3ebe
CS
612}
613
614static inline bool zone_is_empty(struct zone *zone)
615{
616 return zone->spanned_pages == 0;
617}
618
f1dd2cd1
MH
619/*
620 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
621 * intersection with the given zone
622 */
623static inline bool zone_intersects(struct zone *zone,
624 unsigned long start_pfn, unsigned long nr_pages)
625{
626 if (zone_is_empty(zone))
627 return false;
628 if (start_pfn >= zone_end_pfn(zone) ||
629 start_pfn + nr_pages <= zone->zone_start_pfn)
630 return false;
631
632 return true;
633}
634
1da177e4
LT
635/*
636 * The "priority" of VM scanning is how much of the queues we will scan in one
637 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
638 * queues ("queue_length >> 12") during an aging round.
639 */
640#define DEF_PRIORITY 12
641
9276b1bc
PJ
642/* Maximum number of zones on a zonelist */
643#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
644
c00eb15a
YB
645enum {
646 ZONELIST_FALLBACK, /* zonelist with fallback */
9276b1bc 647#ifdef CONFIG_NUMA
c00eb15a
YB
648 /*
649 * The NUMA zonelists are doubled because we need zonelists that
650 * restrict the allocations to a single node for __GFP_THISNODE.
651 */
652 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */
9276b1bc 653#endif
c00eb15a
YB
654 MAX_ZONELISTS
655};
9276b1bc 656
dd1a239f
MG
657/*
658 * This struct contains information about a zone in a zonelist. It is stored
659 * here to avoid dereferences into large structures and lookups of tables
660 */
661struct zoneref {
662 struct zone *zone; /* Pointer to actual zone */
663 int zone_idx; /* zone_idx(zoneref->zone) */
664};
665
1da177e4
LT
666/*
667 * One allocation request operates on a zonelist. A zonelist
668 * is a list of zones, the first one is the 'goal' of the
669 * allocation, the other zones are fallback zones, in decreasing
670 * priority.
671 *
dd1a239f
MG
672 * To speed the reading of the zonelist, the zonerefs contain the zone index
673 * of the entry being read. Helper functions to access information given
674 * a struct zoneref are
675 *
676 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
677 * zonelist_zone_idx() - Return the index of the zone for an entry
678 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
679 */
680struct zonelist {
dd1a239f 681 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1da177e4
LT
682};
683
5b99cd0e
HC
684#ifndef CONFIG_DISCONTIGMEM
685/* The array of struct pages - for discontigmem use pgdat->lmem_map */
686extern struct page *mem_map;
687#endif
688
364c1eeb
YS
689#ifdef CONFIG_TRANSPARENT_HUGEPAGE
690struct deferred_split {
691 spinlock_t split_queue_lock;
692 struct list_head split_queue;
693 unsigned long split_queue_len;
694};
695#endif
696
1da177e4 697/*
1da177e4 698 * On NUMA machines, each NUMA node would have a pg_data_t to describe
618b8c20
NB
699 * it's memory layout. On UMA machines there is a single pglist_data which
700 * describes the whole memory.
1da177e4
LT
701 *
702 * Memory statistics and page replacement data structures are maintained on a
703 * per-zone basis.
704 */
705struct bootmem_data;
706typedef struct pglist_data {
707 struct zone node_zones[MAX_NR_ZONES];
523b9458 708 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 709 int nr_zones;
52d4b9ac 710#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 711 struct page *node_mem_map;
eefa864b
JK
712#ifdef CONFIG_PAGE_EXTENSION
713 struct page_ext *node_page_ext;
714#endif
d41dee36 715#endif
3a2d7fa8 716#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
208d54e5 717 /*
fa004ab7
WY
718 * Must be held any time you expect node_start_pfn,
719 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
208d54e5 720 *
114d4b79 721 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
3a2d7fa8
PT
722 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
723 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
114d4b79 724 *
72c3b51b 725 * Nests above zone->lock and zone->span_seqlock
208d54e5
DH
726 */
727 spinlock_t node_size_lock;
728#endif
1da177e4
LT
729 unsigned long node_start_pfn;
730 unsigned long node_present_pages; /* total number of physical pages */
731 unsigned long node_spanned_pages; /* total size of physical page
732 range, including holes */
733 int node_id;
1da177e4 734 wait_queue_head_t kswapd_wait;
5515061d 735 wait_queue_head_t pfmemalloc_wait;
bfc8c901
VD
736 struct task_struct *kswapd; /* Protected by
737 mem_hotplug_begin/end() */
38087d9b
MG
738 int kswapd_order;
739 enum zone_type kswapd_classzone_idx;
740
c73322d0
JW
741 int kswapd_failures; /* Number of 'reclaimed == 0' runs */
742
698b1b30
VB
743#ifdef CONFIG_COMPACTION
744 int kcompactd_max_order;
745 enum zone_type kcompactd_classzone_idx;
746 wait_queue_head_t kcompactd_wait;
747 struct task_struct *kcompactd;
8177a420 748#endif
281e3726
MG
749 /*
750 * This is a per-node reserve of pages that are not available
751 * to userspace allocations.
752 */
753 unsigned long totalreserve_pages;
754
a5f5f91d
MG
755#ifdef CONFIG_NUMA
756 /*
757 * zone reclaim becomes active if more unmapped pages exist.
758 */
759 unsigned long min_unmapped_pages;
760 unsigned long min_slab_pages;
761#endif /* CONFIG_NUMA */
762
a52633d8
MG
763 /* Write-intensive fields used by page reclaim */
764 ZONE_PADDING(_pad1_)
765 spinlock_t lru_lock;
3a80a7fa
MG
766
767#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
768 /*
769 * If memory initialisation on large machines is deferred then this
770 * is the first PFN that needs to be initialised.
771 */
772 unsigned long first_deferred_pfn;
773#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
a3d0a918
KS
774
775#ifdef CONFIG_TRANSPARENT_HUGEPAGE
364c1eeb 776 struct deferred_split deferred_split_queue;
a3d0a918 777#endif
75ef7184 778
599d0c95
MG
779 /* Fields commonly accessed by the page reclaim scanner */
780 struct lruvec lruvec;
781
599d0c95
MG
782 unsigned long flags;
783
784 ZONE_PADDING(_pad2_)
785
75ef7184
MG
786 /* Per-node vmstats */
787 struct per_cpu_nodestat __percpu *per_cpu_nodestats;
788 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS];
1da177e4
LT
789} pg_data_t;
790
791#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
792#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 793#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 794#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
795#else
796#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
797#endif
408fde81 798#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 799
c6830c22 800#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
da3649e1 801#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
c6830c22 802
a9dd0a83 803static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
599d0c95 804{
a9dd0a83 805 return &pgdat->lruvec;
599d0c95
MG
806}
807
da3649e1
CS
808static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
809{
810 return pgdat->node_start_pfn + pgdat->node_spanned_pages;
811}
812
813static inline bool pgdat_is_empty(pg_data_t *pgdat)
814{
815 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
816}
c6830c22 817
208d54e5
DH
818#include <linux/memory_hotplug.h>
819
72675e13 820void build_all_zonelists(pg_data_t *pgdat);
5ecd9d40
DR
821void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
822 enum zone_type classzone_idx);
86a294a8
MH
823bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
824 int classzone_idx, unsigned int alloc_flags,
825 long free_pages);
7aeb09f9 826bool zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
827 unsigned long mark, int classzone_idx,
828 unsigned int alloc_flags);
7aeb09f9 829bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 830 unsigned long mark, int classzone_idx);
a2f3aa02
DH
831enum memmap_context {
832 MEMMAP_EARLY,
833 MEMMAP_HOTPLUG,
834};
dc0bbf3b 835extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
b171e409 836 unsigned long size);
718127cc 837
bea8c150 838extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2 839
599d0c95 840static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
7f5e86c2 841{
c255a458 842#ifdef CONFIG_MEMCG
599d0c95 843 return lruvec->pgdat;
7f5e86c2 844#else
599d0c95 845 return container_of(lruvec, struct pglist_data, lruvec);
7f5e86c2
KK
846#endif
847}
848
fd538803 849extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx);
23047a96 850
1da177e4
LT
851#ifdef CONFIG_HAVE_MEMORY_PRESENT
852void memory_present(int nid, unsigned long start, unsigned long end);
853#else
854static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
855#endif
856
9def36e0
LG
857#if defined(CONFIG_SPARSEMEM)
858void memblocks_present(void);
859#else
860static inline void memblocks_present(void) {}
861#endif
862
7aac7898
LS
863#ifdef CONFIG_HAVE_MEMORYLESS_NODES
864int local_memory_node(int node_id);
865#else
866static inline int local_memory_node(int node_id) { return node_id; };
867#endif
868
1da177e4
LT
869/*
870 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
871 */
872#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
873
6aa303de
MG
874/*
875 * Returns true if a zone has pages managed by the buddy allocator.
876 * All the reclaim decisions have to use this function rather than
877 * populated_zone(). If the whole zone is reserved then we can easily
878 * end up with populated_zone() && !managed_zone().
879 */
880static inline bool managed_zone(struct zone *zone)
881{
9705bea5 882 return zone_managed_pages(zone);
6aa303de
MG
883}
884
885/* Returns true if a zone has memory */
886static inline bool populated_zone(struct zone *zone)
f3fe6512 887{
6aa303de 888 return zone->present_pages;
f3fe6512
CK
889}
890
c1093b74
PT
891#ifdef CONFIG_NUMA
892static inline int zone_to_nid(struct zone *zone)
893{
894 return zone->node;
895}
896
897static inline void zone_set_nid(struct zone *zone, int nid)
898{
899 zone->node = nid;
900}
901#else
902static inline int zone_to_nid(struct zone *zone)
903{
904 return 0;
905}
906
907static inline void zone_set_nid(struct zone *zone, int nid) {}
908#endif
909
2a1e274a
MG
910extern int movable_zone;
911
d7e4a2ea 912#ifdef CONFIG_HIGHMEM
2a1e274a
MG
913static inline int zone_movable_is_highmem(void)
914{
d7e4a2ea 915#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2a1e274a
MG
916 return movable_zone == ZONE_HIGHMEM;
917#else
d7e4a2ea 918 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
2a1e274a
MG
919#endif
920}
d7e4a2ea 921#endif
2a1e274a 922
2f1b6248 923static inline int is_highmem_idx(enum zone_type idx)
1da177e4 924{
e53ef38d 925#ifdef CONFIG_HIGHMEM
2a1e274a
MG
926 return (idx == ZONE_HIGHMEM ||
927 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
928#else
929 return 0;
930#endif
1da177e4
LT
931}
932
1da177e4 933/**
b4a991ec 934 * is_highmem - helper function to quickly check if a struct zone is a
1da177e4
LT
935 * highmem zone or not. This is an attempt to keep references
936 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
937 * @zone - pointer to struct zone variable
938 */
939static inline int is_highmem(struct zone *zone)
940{
e53ef38d 941#ifdef CONFIG_HIGHMEM
29f9cb53 942 return is_highmem_idx(zone_idx(zone));
e53ef38d
CL
943#else
944 return 0;
945#endif
1da177e4
LT
946}
947
1da177e4
LT
948/* These two functions are used to setup the per zone pages min values */
949struct ctl_table;
8d65af78 950int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4 951 void __user *, size_t *, loff_t *);
1c30844d
MG
952int watermark_boost_factor_sysctl_handler(struct ctl_table *, int,
953 void __user *, size_t *, loff_t *);
795ae7a0
JW
954int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
955 void __user *, size_t *, loff_t *);
d3cda233 956extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
8d65af78 957int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 958 void __user *, size_t *, loff_t *);
8d65af78 959int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 960 void __user *, size_t *, loff_t *);
9614634f 961int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 962 void __user *, size_t *, loff_t *);
0ff38490 963int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 964 void __user *, size_t *, loff_t *);
1da177e4 965
f0c0b2b8 966extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 967 void __user *, size_t *, loff_t *);
f0c0b2b8 968extern char numa_zonelist_order[];
c9bff3ee 969#define NUMA_ZONELIST_ORDER_LEN 16
f0c0b2b8 970
93b7504e 971#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
972
973extern struct pglist_data contig_page_data;
974#define NODE_DATA(nid) (&contig_page_data)
975#define NODE_MEM_MAP(nid) mem_map
1da177e4 976
93b7504e 977#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
978
979#include <asm/mmzone.h>
980
93b7504e 981#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 982
95144c78
KH
983extern struct pglist_data *first_online_pgdat(void);
984extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
985extern struct zone *next_zone(struct zone *zone);
8357f869
KH
986
987/**
12d15f0d 988 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
989 * @pgdat - pointer to a pg_data_t variable
990 */
991#define for_each_online_pgdat(pgdat) \
992 for (pgdat = first_online_pgdat(); \
993 pgdat; \
994 pgdat = next_online_pgdat(pgdat))
8357f869
KH
995/**
996 * for_each_zone - helper macro to iterate over all memory zones
997 * @zone - pointer to struct zone variable
998 *
999 * The user only needs to declare the zone variable, for_each_zone
1000 * fills it in.
1001 */
1002#define for_each_zone(zone) \
1003 for (zone = (first_online_pgdat())->node_zones; \
1004 zone; \
1005 zone = next_zone(zone))
1006
ee99c71c
KM
1007#define for_each_populated_zone(zone) \
1008 for (zone = (first_online_pgdat())->node_zones; \
1009 zone; \
1010 zone = next_zone(zone)) \
1011 if (!populated_zone(zone)) \
1012 ; /* do nothing */ \
1013 else
1014
dd1a239f
MG
1015static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1016{
1017 return zoneref->zone;
1018}
1019
1020static inline int zonelist_zone_idx(struct zoneref *zoneref)
1021{
1022 return zoneref->zone_idx;
1023}
1024
1025static inline int zonelist_node_idx(struct zoneref *zoneref)
1026{
c1093b74 1027 return zone_to_nid(zoneref->zone);
dd1a239f
MG
1028}
1029
682a3385
MG
1030struct zoneref *__next_zones_zonelist(struct zoneref *z,
1031 enum zone_type highest_zoneidx,
1032 nodemask_t *nodes);
1033
19770b32
MG
1034/**
1035 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1036 * @z - The cursor used as a starting point for the search
1037 * @highest_zoneidx - The zone index of the highest zone to return
1038 * @nodes - An optional nodemask to filter the zonelist with
19770b32
MG
1039 *
1040 * This function returns the next zone at or below a given zone index that is
1041 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
1042 * search. The zoneref returned is a cursor that represents the current zone
1043 * being examined. It should be advanced by one before calling
1044 * next_zones_zonelist again.
19770b32 1045 */
682a3385 1046static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
19770b32 1047 enum zone_type highest_zoneidx,
682a3385
MG
1048 nodemask_t *nodes)
1049{
1050 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1051 return z;
1052 return __next_zones_zonelist(z, highest_zoneidx, nodes);
1053}
dd1a239f 1054
19770b32
MG
1055/**
1056 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1057 * @zonelist - The zonelist to search for a suitable zone
1058 * @highest_zoneidx - The zone index of the highest zone to return
1059 * @nodes - An optional nodemask to filter the zonelist with
ea57485a 1060 * @return - Zoneref pointer for the first suitable zone found (see below)
19770b32
MG
1061 *
1062 * This function returns the first zone at or below a given zone index that is
1063 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
1064 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1065 * one before calling.
ea57485a
VB
1066 *
1067 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1068 * never NULL). This may happen either genuinely, or due to concurrent nodemask
1069 * update due to cpuset modification.
19770b32 1070 */
dd1a239f 1071static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32 1072 enum zone_type highest_zoneidx,
c33d6c06 1073 nodemask_t *nodes)
54a6eb5c 1074{
c33d6c06 1075 return next_zones_zonelist(zonelist->_zonerefs,
05891fb0 1076 highest_zoneidx, nodes);
54a6eb5c
MG
1077}
1078
19770b32
MG
1079/**
1080 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1081 * @zone - The current zone in the iterator
1082 * @z - The current pointer within zonelist->zones being iterated
1083 * @zlist - The zonelist being iterated
1084 * @highidx - The zone index of the highest zone to return
1085 * @nodemask - Nodemask allowed by the allocator
1086 *
1087 * This iterator iterates though all zones at or below a given zone index and
1088 * within a given nodemask
1089 */
1090#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
c33d6c06 1091 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \
19770b32 1092 zone; \
05891fb0 1093 z = next_zones_zonelist(++z, highidx, nodemask), \
c33d6c06
MG
1094 zone = zonelist_zone(z))
1095
1096#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1097 for (zone = z->zone; \
1098 zone; \
1099 z = next_zones_zonelist(++z, highidx, nodemask), \
1100 zone = zonelist_zone(z))
1101
54a6eb5c
MG
1102
1103/**
1104 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1105 * @zone - The current zone in the iterator
1106 * @z - The current pointer within zonelist->zones being iterated
1107 * @zlist - The zonelist being iterated
1108 * @highidx - The zone index of the highest zone to return
1109 *
1110 * This iterator iterates though all zones at or below a given zone index.
1111 */
1112#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1113 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1114
d41dee36
AW
1115#ifdef CONFIG_SPARSEMEM
1116#include <asm/sparsemem.h>
1117#endif
1118
c713216d 1119#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1120 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1121static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1122{
9d1f4b3f 1123 BUILD_BUG_ON(IS_ENABLED(CONFIG_NUMA));
b4544568
AM
1124 return 0;
1125}
b159d43f
AW
1126#endif
1127
2bdaf115
AW
1128#ifdef CONFIG_FLATMEM
1129#define pfn_to_nid(pfn) (0)
1130#endif
1131
d41dee36
AW
1132#ifdef CONFIG_SPARSEMEM
1133
1134/*
1135 * SECTION_SHIFT #bits space required to store a section #
1136 *
1137 * PA_SECTION_SHIFT physical address to/from section number
1138 * PFN_SECTION_SHIFT pfn to/from section number
1139 */
d41dee36
AW
1140#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1141#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1142
1143#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1144
1145#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1146#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1147
835c134e 1148#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1149 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1150
d41dee36
AW
1151#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1152#error Allocator MAX_ORDER exceeds SECTION_SIZE
1153#endif
1154
1dd2bfc8
YI
1155static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1156{
1157 return pfn >> PFN_SECTION_SHIFT;
1158}
1159static inline unsigned long section_nr_to_pfn(unsigned long sec)
1160{
1161 return sec << PFN_SECTION_SHIFT;
1162}
e3c40f37 1163
a539f353
DK
1164#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1165#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1166
f1eca35a
DW
1167#define SUBSECTION_SHIFT 21
1168
1169#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1170#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1171#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1172
1173#if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1174#error Subsection size exceeds section size
1175#else
1176#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1177#endif
1178
a3619190
DW
1179#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1180#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1181
f1eca35a
DW
1182struct mem_section_usage {
1183 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1184 /* See declaration of similar field in struct zone */
1185 unsigned long pageblock_flags[0];
1186};
1187
f46edbd1
DW
1188void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1189
d41dee36 1190struct page;
eefa864b 1191struct page_ext;
d41dee36 1192struct mem_section {
29751f69
AW
1193 /*
1194 * This is, logically, a pointer to an array of struct
1195 * pages. However, it is stored with some other magic.
1196 * (see sparse.c::sparse_init_one_section())
1197 *
30c253e6
AW
1198 * Additionally during early boot we encode node id of
1199 * the location of the section here to guide allocation.
1200 * (see sparse.c::memory_present())
1201 *
29751f69
AW
1202 * Making it a UL at least makes someone do a cast
1203 * before using it wrong.
1204 */
1205 unsigned long section_mem_map;
5c0e3066 1206
f1eca35a 1207 struct mem_section_usage *usage;
eefa864b
JK
1208#ifdef CONFIG_PAGE_EXTENSION
1209 /*
0c9ad804 1210 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
eefa864b
JK
1211 * section. (see page_ext.h about this.)
1212 */
1213 struct page_ext *page_ext;
1214 unsigned long pad;
1215#endif
55878e88
CS
1216 /*
1217 * WARNING: mem_section must be a power-of-2 in size for the
1218 * calculation and use of SECTION_ROOT_MASK to make sense.
1219 */
d41dee36
AW
1220};
1221
3e347261
BP
1222#ifdef CONFIG_SPARSEMEM_EXTREME
1223#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1224#else
1225#define SECTIONS_PER_ROOT 1
1226#endif
802f192e 1227
3e347261 1228#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1229#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1230#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1231
3e347261 1232#ifdef CONFIG_SPARSEMEM_EXTREME
83e3c487 1233extern struct mem_section **mem_section;
802f192e 1234#else
3e347261
BP
1235extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1236#endif
d41dee36 1237
f1eca35a
DW
1238static inline unsigned long *section_to_usemap(struct mem_section *ms)
1239{
1240 return ms->usage->pageblock_flags;
1241}
1242
29751f69
AW
1243static inline struct mem_section *__nr_to_section(unsigned long nr)
1244{
83e3c487
KS
1245#ifdef CONFIG_SPARSEMEM_EXTREME
1246 if (!mem_section)
1247 return NULL;
1248#endif
3e347261
BP
1249 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1250 return NULL;
1251 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1252}
2491f0a2 1253extern unsigned long __section_nr(struct mem_section *ms);
f1eca35a 1254extern size_t mem_section_usage_size(void);
29751f69
AW
1255
1256/*
1257 * We use the lower bits of the mem_map pointer to store
def9b71e
PT
1258 * a little bit of information. The pointer is calculated
1259 * as mem_map - section_nr_to_pfn(pnum). The result is
1260 * aligned to the minimum alignment of the two values:
1261 * 1. All mem_map arrays are page-aligned.
1262 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1263 * lowest bits. PFN_SECTION_SHIFT is arch-specific
1264 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1265 * worst combination is powerpc with 256k pages,
1266 * which results in PFN_SECTION_SHIFT equal 6.
1267 * To sum it up, at least 6 bits are available.
29751f69
AW
1268 */
1269#define SECTION_MARKED_PRESENT (1UL<<0)
1270#define SECTION_HAS_MEM_MAP (1UL<<1)
2d070eab 1271#define SECTION_IS_ONLINE (1UL<<2)
326e1b8f
DW
1272#define SECTION_IS_EARLY (1UL<<3)
1273#define SECTION_MAP_LAST_BIT (1UL<<4)
29751f69 1274#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
2d070eab 1275#define SECTION_NID_SHIFT 3
29751f69
AW
1276
1277static inline struct page *__section_mem_map_addr(struct mem_section *section)
1278{
1279 unsigned long map = section->section_mem_map;
1280 map &= SECTION_MAP_MASK;
1281 return (struct page *)map;
1282}
1283
540557b9 1284static inline int present_section(struct mem_section *section)
29751f69 1285{
802f192e 1286 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1287}
1288
540557b9
AW
1289static inline int present_section_nr(unsigned long nr)
1290{
1291 return present_section(__nr_to_section(nr));
1292}
1293
1294static inline int valid_section(struct mem_section *section)
29751f69 1295{
802f192e 1296 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1297}
1298
326e1b8f
DW
1299static inline int early_section(struct mem_section *section)
1300{
1301 return (section && (section->section_mem_map & SECTION_IS_EARLY));
1302}
1303
29751f69
AW
1304static inline int valid_section_nr(unsigned long nr)
1305{
1306 return valid_section(__nr_to_section(nr));
1307}
1308
2d070eab
MH
1309static inline int online_section(struct mem_section *section)
1310{
1311 return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1312}
1313
1314static inline int online_section_nr(unsigned long nr)
1315{
1316 return online_section(__nr_to_section(nr));
1317}
1318
1319#ifdef CONFIG_MEMORY_HOTPLUG
1320void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1321#ifdef CONFIG_MEMORY_HOTREMOVE
1322void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1323#endif
1324#endif
1325
d41dee36
AW
1326static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1327{
29751f69 1328 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1329}
1330
2491f0a2 1331extern unsigned long __highest_present_section_nr;
c4e1be9e 1332
f46edbd1
DW
1333static inline int subsection_map_index(unsigned long pfn)
1334{
1335 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1336}
1337
1338#ifdef CONFIG_SPARSEMEM_VMEMMAP
1339static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1340{
1341 int idx = subsection_map_index(pfn);
1342
1343 return test_bit(idx, ms->usage->subsection_map);
1344}
1345#else
1346static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1347{
1348 return 1;
1349}
1350#endif
1351
7b7bf499 1352#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1353static inline int pfn_valid(unsigned long pfn)
1354{
f46edbd1
DW
1355 struct mem_section *ms;
1356
d41dee36
AW
1357 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1358 return 0;
f46edbd1
DW
1359 ms = __nr_to_section(pfn_to_section_nr(pfn));
1360 if (!valid_section(ms))
1361 return 0;
1362 /*
1363 * Traditionally early sections always returned pfn_valid() for
1364 * the entire section-sized span.
1365 */
1366 return early_section(ms) || pfn_section_valid(ms, pfn);
d41dee36 1367}
7b7bf499 1368#endif
d41dee36 1369
540557b9
AW
1370static inline int pfn_present(unsigned long pfn)
1371{
1372 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1373 return 0;
1374 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1375}
1376
d41dee36
AW
1377/*
1378 * These are _only_ used during initialisation, therefore they
1379 * can use __initdata ... They could have names to indicate
1380 * this restriction.
1381 */
1382#ifdef CONFIG_NUMA
161599ff
AW
1383#define pfn_to_nid(pfn) \
1384({ \
1385 unsigned long __pfn_to_nid_pfn = (pfn); \
1386 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1387})
2bdaf115
AW
1388#else
1389#define pfn_to_nid(pfn) (0)
d41dee36
AW
1390#endif
1391
d41dee36
AW
1392#define early_pfn_valid(pfn) pfn_valid(pfn)
1393void sparse_init(void);
1394#else
1395#define sparse_init() do {} while (0)
28ae55c9 1396#define sparse_index_init(_sec, _nid) do {} while (0)
e900a918 1397#define pfn_present pfn_valid
f46edbd1 1398#define subsection_map_init(_pfn, _nr_pages) do {} while (0)
d41dee36
AW
1399#endif /* CONFIG_SPARSEMEM */
1400
8a942fde
MG
1401/*
1402 * During memory init memblocks map pfns to nids. The search is expensive and
1403 * this caches recent lookups. The implementation of __early_pfn_to_nid
1404 * may treat start/end as pfns or sections.
1405 */
1406struct mminit_pfnnid_cache {
1407 unsigned long last_start;
1408 unsigned long last_end;
1409 int last_nid;
1410};
1411
d41dee36
AW
1412#ifndef early_pfn_valid
1413#define early_pfn_valid(pfn) (1)
1414#endif
1415
1416void memory_present(int nid, unsigned long start, unsigned long end);
d41dee36 1417
14e07298
AW
1418/*
1419 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
8bb4e7a2 1420 * need to check pfn validity within that MAX_ORDER_NR_PAGES block.
14e07298
AW
1421 * pfn_valid_within() should be used in this case; we optimise this away
1422 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1423 */
1424#ifdef CONFIG_HOLES_IN_ZONE
1425#define pfn_valid_within(pfn) pfn_valid(pfn)
1426#else
1427#define pfn_valid_within(pfn) (1)
1428#endif
1429
eb33575c
MG
1430#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1431/*
1432 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
2d070eab
MH
1433 * associated with it or not. This means that a struct page exists for this
1434 * pfn. The caller cannot assume the page is fully initialized in general.
1435 * Hotplugable pages might not have been onlined yet. pfn_to_online_page()
1436 * will ensure the struct page is fully online and initialized. Special pages
1437 * (e.g. ZONE_DEVICE) are never onlined and should be treated accordingly.
1438 *
1439 * In FLATMEM, it is expected that holes always have valid memmap as long as
1440 * there is valid PFNs either side of the hole. In SPARSEMEM, it is assumed
1441 * that a valid section has a memmap for the entire section.
eb33575c
MG
1442 *
1443 * However, an ARM, and maybe other embedded architectures in the future
1444 * free memmap backing holes to save memory on the assumption the memmap is
1445 * never used. The page_zone linkages are then broken even though pfn_valid()
1446 * returns true. A walker of the full memmap must then do this additional
1447 * check to ensure the memmap they are looking at is sane by making sure
1448 * the zone and PFN linkages are still valid. This is expensive, but walkers
1449 * of the full memmap are extremely rare.
1450 */
5b80287a 1451bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1452 struct page *page, struct zone *zone);
1453#else
5b80287a 1454static inline bool memmap_valid_within(unsigned long pfn,
eb33575c
MG
1455 struct page *page, struct zone *zone)
1456{
5b80287a 1457 return true;
eb33575c
MG
1458}
1459#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1460
97965478 1461#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1462#endif /* !__ASSEMBLY__ */
1da177e4 1463#endif /* _LINUX_MMZONE_H */