Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6
[linux-2.6-block.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
5f8dcc21 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
64c5e135 42#define MIGRATE_RESERVE 3
a5d76b54
KH
43#define MIGRATE_ISOLATE 4 /* can't allocate from here */
44#define MIGRATE_TYPES 5
b2a0ac88
MG
45
46#define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
467c996c
MG
50extern int page_group_by_mobility_disabled;
51
52static inline int get_pageblock_migratetype(struct page *page)
53{
467c996c
MG
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55}
56
1da177e4 57struct free_area {
b2a0ac88 58 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
59 unsigned long nr_free;
60};
61
62struct pglist_data;
63
64/*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70#if defined(CONFIG_SMP)
71struct zone_padding {
72 char x[0];
22fc6ecc 73} ____cacheline_internodealigned_in_smp;
1da177e4
LT
74#define ZONE_PADDING(name) struct zone_padding name;
75#else
76#define ZONE_PADDING(name)
77#endif
78
2244b95a 79enum zone_stat_item {
51ed4491 80 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 81 NR_FREE_PAGES,
b69408e8 82 NR_LRU_BASE,
4f98a2fe
RR
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
894bc310 87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 91 only modified from process context */
347ce434 92 NR_FILE_PAGES,
b1e7a8fd 93 NR_FILE_DIRTY,
ce866b34 94 NR_WRITEBACK,
51ed4491
CL
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
fd39fc85 100 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 101 NR_BOUNCE,
e129b5c2 102 NR_VMSCAN_WRITE,
fc3ba692 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ca889e6c
CL
107#ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114#endif
2244b95a
CL
115 NR_VM_ZONE_STAT_ITEMS };
116
4f98a2fe
RR
117/*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126#define LRU_BASE 0
127#define LRU_ACTIVE 1
128#define LRU_FILE 2
129
b69408e8 130enum lru_list {
4f98a2fe
RR
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 135 LRU_UNEVICTABLE,
894bc310
LS
136 NR_LRU_LISTS
137};
b69408e8
CL
138
139#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140
894bc310
LS
141#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142
4f98a2fe
RR
143static inline int is_file_lru(enum lru_list l)
144{
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146}
147
b69408e8
CL
148static inline int is_active_lru(enum lru_list l)
149{
4f98a2fe 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
151}
152
894bc310
LS
153static inline int is_unevictable_lru(enum lru_list l)
154{
894bc310 155 return (l == LRU_UNEVICTABLE);
894bc310
LS
156}
157
41858966
MG
158enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
163};
164
165#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168
1da177e4
LT
169struct per_cpu_pages {
170 int count; /* number of pages in the list */
1da177e4
LT
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
173
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
176};
177
178struct per_cpu_pageset {
3dfa5721 179 struct per_cpu_pages pcp;
4037d452
CL
180#ifdef CONFIG_NUMA
181 s8 expire;
182#endif
2244b95a 183#ifdef CONFIG_SMP
df9ecaba 184 s8 stat_threshold;
2244b95a
CL
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186#endif
99dcc3e5 187};
e7c8d5c9 188
97965478
CL
189#endif /* !__GENERATING_BOUNDS.H */
190
2f1b6248 191enum zone_type {
4b51d669 192#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
2f1b6248
CL
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
fb0e7942 220#endif
2f1b6248
CL
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
e53ef38d 227#ifdef CONFIG_HIGHMEM
2f1b6248
CL
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
e53ef38d 237#endif
2a1e274a 238 ZONE_MOVABLE,
97965478 239 __MAX_NR_ZONES
2f1b6248 240};
1da177e4 241
97965478
CL
242#ifndef __GENERATING_BOUNDS_H
243
1da177e4
LT
244/*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
19655d34 249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 250 */
fb0e7942 251
97965478 252#if MAX_NR_ZONES < 2
4b51d669 253#define ZONES_SHIFT 0
97965478 254#elif MAX_NR_ZONES <= 2
19655d34 255#define ZONES_SHIFT 1
97965478 256#elif MAX_NR_ZONES <= 4
19655d34 257#define ZONES_SHIFT 2
4b51d669
CL
258#else
259#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 260#endif
1da177e4 261
6e901571
KM
262struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
f8629631
WF
273
274 /*
275 * accumulated for batching
276 */
277 unsigned long nr_saved_scan[NR_LRU_LISTS];
6e901571
KM
278};
279
1da177e4
LT
280struct zone {
281 /* Fields commonly accessed by the page allocator */
41858966
MG
282
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark[NR_WMARK];
285
1da177e4
LT
286 /*
287 * We don't know if the memory that we're going to allocate will be freeable
288 * or/and it will be released eventually, so to avoid totally wasting several
289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
290 * to run OOM on the lower zones despite there's tons of freeable ram
291 * on the higher zones). This array is recalculated at runtime if the
292 * sysctl_lowmem_reserve_ratio sysctl changes.
293 */
294 unsigned long lowmem_reserve[MAX_NR_ZONES];
295
e7c8d5c9 296#ifdef CONFIG_NUMA
d5f541ed 297 int node;
9614634f
CL
298 /*
299 * zone reclaim becomes active if more unmapped pages exist.
300 */
8417bba4 301 unsigned long min_unmapped_pages;
0ff38490 302 unsigned long min_slab_pages;
e7c8d5c9 303#endif
43cf38eb 304 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
305 /*
306 * free areas of different sizes
307 */
308 spinlock_t lock;
93e4a89a 309 int all_unreclaimable; /* All pages pinned */
bdc8cb98
DH
310#ifdef CONFIG_MEMORY_HOTPLUG
311 /* see spanned/present_pages for more description */
312 seqlock_t span_seqlock;
313#endif
1da177e4
LT
314 struct free_area free_area[MAX_ORDER];
315
835c134e
MG
316#ifndef CONFIG_SPARSEMEM
317 /*
d9c23400 318 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
319 * In SPARSEMEM, this map is stored in struct mem_section
320 */
321 unsigned long *pageblock_flags;
322#endif /* CONFIG_SPARSEMEM */
323
1da177e4
LT
324
325 ZONE_PADDING(_pad1_)
326
327 /* Fields commonly accessed by the page reclaim scanner */
328 spinlock_t lru_lock;
6e08a369 329 struct zone_lru {
b69408e8 330 struct list_head list;
b69408e8 331 } lru[NR_LRU_LISTS];
4f98a2fe 332
6e901571 333 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 334
1da177e4 335 unsigned long pages_scanned; /* since last reclaim */
e815af95 336 unsigned long flags; /* zone flags, see below */
753ee728 337
2244b95a
CL
338 /* Zone statistics */
339 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 340
1da177e4
LT
341 /*
342 * prev_priority holds the scanning priority for this zone. It is
343 * defined as the scanning priority at which we achieved our reclaim
344 * target at the previous try_to_free_pages() or balance_pgdat()
2a61aa40 345 * invocation.
1da177e4
LT
346 *
347 * We use prev_priority as a measure of how much stress page reclaim is
348 * under - it drives the swappiness decision: whether to unmap mapped
349 * pages.
350 *
3bb1a852 351 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
352 * it is expected to average out OK.
353 */
1da177e4
LT
354 int prev_priority;
355
556adecb
RR
356 /*
357 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
358 * this zone's LRU. Maintained by the pageout code.
359 */
360 unsigned int inactive_ratio;
361
1da177e4
LT
362
363 ZONE_PADDING(_pad2_)
364 /* Rarely used or read-mostly fields */
365
366 /*
367 * wait_table -- the array holding the hash table
02b694de 368 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
369 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
370 *
371 * The purpose of all these is to keep track of the people
372 * waiting for a page to become available and make them
373 * runnable again when possible. The trouble is that this
374 * consumes a lot of space, especially when so few things
375 * wait on pages at a given time. So instead of using
376 * per-page waitqueues, we use a waitqueue hash table.
377 *
378 * The bucket discipline is to sleep on the same queue when
379 * colliding and wake all in that wait queue when removing.
380 * When something wakes, it must check to be sure its page is
381 * truly available, a la thundering herd. The cost of a
382 * collision is great, but given the expected load of the
383 * table, they should be so rare as to be outweighed by the
384 * benefits from the saved space.
385 *
386 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
387 * primary users of these fields, and in mm/page_alloc.c
388 * free_area_init_core() performs the initialization of them.
389 */
390 wait_queue_head_t * wait_table;
02b694de 391 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
392 unsigned long wait_table_bits;
393
394 /*
395 * Discontig memory support fields.
396 */
397 struct pglist_data *zone_pgdat;
1da177e4
LT
398 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
399 unsigned long zone_start_pfn;
400
bdc8cb98
DH
401 /*
402 * zone_start_pfn, spanned_pages and present_pages are all
403 * protected by span_seqlock. It is a seqlock because it has
404 * to be read outside of zone->lock, and it is done in the main
405 * allocator path. But, it is written quite infrequently.
406 *
407 * The lock is declared along with zone->lock because it is
408 * frequently read in proximity to zone->lock. It's good to
409 * give them a chance of being in the same cacheline.
410 */
1da177e4
LT
411 unsigned long spanned_pages; /* total size, including holes */
412 unsigned long present_pages; /* amount of memory (excluding holes) */
413
414 /*
415 * rarely used fields:
416 */
15ad7cdc 417 const char *name;
22fc6ecc 418} ____cacheline_internodealigned_in_smp;
1da177e4 419
e815af95 420typedef enum {
e815af95 421 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 422 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
423} zone_flags_t;
424
425static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
426{
427 set_bit(flag, &zone->flags);
428}
d773ed6b
DR
429
430static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
431{
432 return test_and_set_bit(flag, &zone->flags);
433}
434
e815af95
DR
435static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
436{
437 clear_bit(flag, &zone->flags);
438}
439
e815af95
DR
440static inline int zone_is_reclaim_locked(const struct zone *zone)
441{
442 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
443}
d773ed6b 444
098d7f12
DR
445static inline int zone_is_oom_locked(const struct zone *zone)
446{
447 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
448}
e815af95 449
1da177e4
LT
450/*
451 * The "priority" of VM scanning is how much of the queues we will scan in one
452 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
453 * queues ("queue_length >> 12") during an aging round.
454 */
455#define DEF_PRIORITY 12
456
9276b1bc
PJ
457/* Maximum number of zones on a zonelist */
458#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
459
460#ifdef CONFIG_NUMA
523b9458
CL
461
462/*
463 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
464 * allocations to a single node for GFP_THISNODE.
465 *
54a6eb5c
MG
466 * [0] : Zonelist with fallback
467 * [1] : No fallback (GFP_THISNODE)
523b9458 468 */
54a6eb5c 469#define MAX_ZONELISTS 2
523b9458
CL
470
471
9276b1bc
PJ
472/*
473 * We cache key information from each zonelist for smaller cache
474 * footprint when scanning for free pages in get_page_from_freelist().
475 *
476 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
477 * up short of free memory since the last time (last_fullzone_zap)
478 * we zero'd fullzones.
479 * 2) The array z_to_n[] maps each zone in the zonelist to its node
480 * id, so that we can efficiently evaluate whether that node is
481 * set in the current tasks mems_allowed.
482 *
483 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
484 * indexed by a zones offset in the zonelist zones[] array.
485 *
486 * The get_page_from_freelist() routine does two scans. During the
487 * first scan, we skip zones whose corresponding bit in 'fullzones'
488 * is set or whose corresponding node in current->mems_allowed (which
489 * comes from cpusets) is not set. During the second scan, we bypass
490 * this zonelist_cache, to ensure we look methodically at each zone.
491 *
492 * Once per second, we zero out (zap) fullzones, forcing us to
493 * reconsider nodes that might have regained more free memory.
494 * The field last_full_zap is the time we last zapped fullzones.
495 *
496 * This mechanism reduces the amount of time we waste repeatedly
497 * reexaming zones for free memory when they just came up low on
498 * memory momentarilly ago.
499 *
500 * The zonelist_cache struct members logically belong in struct
501 * zonelist. However, the mempolicy zonelists constructed for
502 * MPOL_BIND are intentionally variable length (and usually much
503 * shorter). A general purpose mechanism for handling structs with
504 * multiple variable length members is more mechanism than we want
505 * here. We resort to some special case hackery instead.
506 *
507 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
508 * part because they are shorter), so we put the fixed length stuff
509 * at the front of the zonelist struct, ending in a variable length
510 * zones[], as is needed by MPOL_BIND.
511 *
512 * Then we put the optional zonelist cache on the end of the zonelist
513 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
514 * the fixed length portion at the front of the struct. This pointer
515 * both enables us to find the zonelist cache, and in the case of
516 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
517 * to know that the zonelist cache is not there.
518 *
519 * The end result is that struct zonelists come in two flavors:
520 * 1) The full, fixed length version, shown below, and
521 * 2) The custom zonelists for MPOL_BIND.
522 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
523 *
524 * Even though there may be multiple CPU cores on a node modifying
525 * fullzones or last_full_zap in the same zonelist_cache at the same
526 * time, we don't lock it. This is just hint data - if it is wrong now
527 * and then, the allocator will still function, perhaps a bit slower.
528 */
529
530
531struct zonelist_cache {
9276b1bc 532 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 533 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
534 unsigned long last_full_zap; /* when last zap'd (jiffies) */
535};
536#else
54a6eb5c 537#define MAX_ZONELISTS 1
9276b1bc
PJ
538struct zonelist_cache;
539#endif
540
dd1a239f
MG
541/*
542 * This struct contains information about a zone in a zonelist. It is stored
543 * here to avoid dereferences into large structures and lookups of tables
544 */
545struct zoneref {
546 struct zone *zone; /* Pointer to actual zone */
547 int zone_idx; /* zone_idx(zoneref->zone) */
548};
549
1da177e4
LT
550/*
551 * One allocation request operates on a zonelist. A zonelist
552 * is a list of zones, the first one is the 'goal' of the
553 * allocation, the other zones are fallback zones, in decreasing
554 * priority.
555 *
9276b1bc
PJ
556 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
557 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
558 * *
559 * To speed the reading of the zonelist, the zonerefs contain the zone index
560 * of the entry being read. Helper functions to access information given
561 * a struct zoneref are
562 *
563 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
564 * zonelist_zone_idx() - Return the index of the zone for an entry
565 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
566 */
567struct zonelist {
9276b1bc 568 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 569 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
570#ifdef CONFIG_NUMA
571 struct zonelist_cache zlcache; // optional ...
572#endif
1da177e4
LT
573};
574
c713216d
MG
575#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
576struct node_active_region {
577 unsigned long start_pfn;
578 unsigned long end_pfn;
579 int nid;
580};
581#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 582
5b99cd0e
HC
583#ifndef CONFIG_DISCONTIGMEM
584/* The array of struct pages - for discontigmem use pgdat->lmem_map */
585extern struct page *mem_map;
586#endif
587
1da177e4
LT
588/*
589 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
590 * (mostly NUMA machines?) to denote a higher-level memory zone than the
591 * zone denotes.
592 *
593 * On NUMA machines, each NUMA node would have a pg_data_t to describe
594 * it's memory layout.
595 *
596 * Memory statistics and page replacement data structures are maintained on a
597 * per-zone basis.
598 */
599struct bootmem_data;
600typedef struct pglist_data {
601 struct zone node_zones[MAX_NR_ZONES];
523b9458 602 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 603 int nr_zones;
52d4b9ac 604#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 605 struct page *node_mem_map;
52d4b9ac
KH
606#ifdef CONFIG_CGROUP_MEM_RES_CTLR
607 struct page_cgroup *node_page_cgroup;
608#endif
d41dee36 609#endif
08677214 610#ifndef CONFIG_NO_BOOTMEM
1da177e4 611 struct bootmem_data *bdata;
08677214 612#endif
208d54e5
DH
613#ifdef CONFIG_MEMORY_HOTPLUG
614 /*
615 * Must be held any time you expect node_start_pfn, node_present_pages
616 * or node_spanned_pages stay constant. Holding this will also
617 * guarantee that any pfn_valid() stays that way.
618 *
619 * Nests above zone->lock and zone->size_seqlock.
620 */
621 spinlock_t node_size_lock;
622#endif
1da177e4
LT
623 unsigned long node_start_pfn;
624 unsigned long node_present_pages; /* total number of physical pages */
625 unsigned long node_spanned_pages; /* total size of physical page
626 range, including holes */
627 int node_id;
1da177e4
LT
628 wait_queue_head_t kswapd_wait;
629 struct task_struct *kswapd;
630 int kswapd_max_order;
631} pg_data_t;
632
633#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
634#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 635#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 636#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
637#else
638#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
639#endif
408fde81 640#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 641
208d54e5
DH
642#include <linux/memory_hotplug.h>
643
1da177e4
LT
644void get_zone_counts(unsigned long *active, unsigned long *inactive,
645 unsigned long *free);
646void build_all_zonelists(void);
647void wakeup_kswapd(struct zone *zone, int order);
648int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 649 int classzone_idx, int alloc_flags);
a2f3aa02
DH
650enum memmap_context {
651 MEMMAP_EARLY,
652 MEMMAP_HOTPLUG,
653};
718127cc 654extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
655 unsigned long size,
656 enum memmap_context context);
718127cc 657
1da177e4
LT
658#ifdef CONFIG_HAVE_MEMORY_PRESENT
659void memory_present(int nid, unsigned long start, unsigned long end);
660#else
661static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
662#endif
663
664#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
665unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
666#endif
667
668/*
669 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
670 */
671#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
672
f3fe6512
CK
673static inline int populated_zone(struct zone *zone)
674{
675 return (!!zone->present_pages);
676}
677
2a1e274a
MG
678extern int movable_zone;
679
680static inline int zone_movable_is_highmem(void)
681{
682#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
683 return movable_zone == ZONE_HIGHMEM;
684#else
685 return 0;
686#endif
687}
688
2f1b6248 689static inline int is_highmem_idx(enum zone_type idx)
1da177e4 690{
e53ef38d 691#ifdef CONFIG_HIGHMEM
2a1e274a
MG
692 return (idx == ZONE_HIGHMEM ||
693 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
694#else
695 return 0;
696#endif
1da177e4
LT
697}
698
2f1b6248 699static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
700{
701 return (idx == ZONE_NORMAL);
702}
9328b8fa 703
1da177e4
LT
704/**
705 * is_highmem - helper function to quickly check if a struct zone is a
706 * highmem zone or not. This is an attempt to keep references
707 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
708 * @zone - pointer to struct zone variable
709 */
710static inline int is_highmem(struct zone *zone)
711{
e53ef38d 712#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
713 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
714 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
715 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
716 zone_movable_is_highmem());
e53ef38d
CL
717#else
718 return 0;
719#endif
1da177e4
LT
720}
721
722static inline int is_normal(struct zone *zone)
723{
724 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
725}
726
9328b8fa
NP
727static inline int is_dma32(struct zone *zone)
728{
fb0e7942 729#ifdef CONFIG_ZONE_DMA32
9328b8fa 730 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
731#else
732 return 0;
733#endif
9328b8fa
NP
734}
735
736static inline int is_dma(struct zone *zone)
737{
4b51d669 738#ifdef CONFIG_ZONE_DMA
9328b8fa 739 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
740#else
741 return 0;
742#endif
9328b8fa
NP
743}
744
1da177e4
LT
745/* These two functions are used to setup the per zone pages min values */
746struct ctl_table;
8d65af78 747int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
748 void __user *, size_t *, loff_t *);
749extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 750int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 751 void __user *, size_t *, loff_t *);
8d65af78 752int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 753 void __user *, size_t *, loff_t *);
9614634f 754int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 755 void __user *, size_t *, loff_t *);
0ff38490 756int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 757 void __user *, size_t *, loff_t *);
1da177e4 758
f0c0b2b8 759extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 760 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
761extern char numa_zonelist_order[];
762#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
763
93b7504e 764#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
765
766extern struct pglist_data contig_page_data;
767#define NODE_DATA(nid) (&contig_page_data)
768#define NODE_MEM_MAP(nid) mem_map
1da177e4 769
93b7504e 770#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
771
772#include <asm/mmzone.h>
773
93b7504e 774#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 775
95144c78
KH
776extern struct pglist_data *first_online_pgdat(void);
777extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
778extern struct zone *next_zone(struct zone *zone);
8357f869
KH
779
780/**
12d15f0d 781 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
782 * @pgdat - pointer to a pg_data_t variable
783 */
784#define for_each_online_pgdat(pgdat) \
785 for (pgdat = first_online_pgdat(); \
786 pgdat; \
787 pgdat = next_online_pgdat(pgdat))
8357f869
KH
788/**
789 * for_each_zone - helper macro to iterate over all memory zones
790 * @zone - pointer to struct zone variable
791 *
792 * The user only needs to declare the zone variable, for_each_zone
793 * fills it in.
794 */
795#define for_each_zone(zone) \
796 for (zone = (first_online_pgdat())->node_zones; \
797 zone; \
798 zone = next_zone(zone))
799
ee99c71c
KM
800#define for_each_populated_zone(zone) \
801 for (zone = (first_online_pgdat())->node_zones; \
802 zone; \
803 zone = next_zone(zone)) \
804 if (!populated_zone(zone)) \
805 ; /* do nothing */ \
806 else
807
dd1a239f
MG
808static inline struct zone *zonelist_zone(struct zoneref *zoneref)
809{
810 return zoneref->zone;
811}
812
813static inline int zonelist_zone_idx(struct zoneref *zoneref)
814{
815 return zoneref->zone_idx;
816}
817
818static inline int zonelist_node_idx(struct zoneref *zoneref)
819{
820#ifdef CONFIG_NUMA
821 /* zone_to_nid not available in this context */
822 return zoneref->zone->node;
823#else
824 return 0;
825#endif /* CONFIG_NUMA */
826}
827
19770b32
MG
828/**
829 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
830 * @z - The cursor used as a starting point for the search
831 * @highest_zoneidx - The zone index of the highest zone to return
832 * @nodes - An optional nodemask to filter the zonelist with
833 * @zone - The first suitable zone found is returned via this parameter
834 *
835 * This function returns the next zone at or below a given zone index that is
836 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
837 * search. The zoneref returned is a cursor that represents the current zone
838 * being examined. It should be advanced by one before calling
839 * next_zones_zonelist again.
19770b32
MG
840 */
841struct zoneref *next_zones_zonelist(struct zoneref *z,
842 enum zone_type highest_zoneidx,
843 nodemask_t *nodes,
844 struct zone **zone);
dd1a239f 845
19770b32
MG
846/**
847 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
848 * @zonelist - The zonelist to search for a suitable zone
849 * @highest_zoneidx - The zone index of the highest zone to return
850 * @nodes - An optional nodemask to filter the zonelist with
851 * @zone - The first suitable zone found is returned via this parameter
852 *
853 * This function returns the first zone at or below a given zone index that is
854 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
855 * used to iterate the zonelist with next_zones_zonelist by advancing it by
856 * one before calling.
19770b32 857 */
dd1a239f 858static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
859 enum zone_type highest_zoneidx,
860 nodemask_t *nodes,
861 struct zone **zone)
54a6eb5c 862{
19770b32
MG
863 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
864 zone);
54a6eb5c
MG
865}
866
19770b32
MG
867/**
868 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
869 * @zone - The current zone in the iterator
870 * @z - The current pointer within zonelist->zones being iterated
871 * @zlist - The zonelist being iterated
872 * @highidx - The zone index of the highest zone to return
873 * @nodemask - Nodemask allowed by the allocator
874 *
875 * This iterator iterates though all zones at or below a given zone index and
876 * within a given nodemask
877 */
878#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
879 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
880 zone; \
5bead2a0 881 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
882
883/**
884 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
885 * @zone - The current zone in the iterator
886 * @z - The current pointer within zonelist->zones being iterated
887 * @zlist - The zonelist being iterated
888 * @highidx - The zone index of the highest zone to return
889 *
890 * This iterator iterates though all zones at or below a given zone index.
891 */
892#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 893 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 894
d41dee36
AW
895#ifdef CONFIG_SPARSEMEM
896#include <asm/sparsemem.h>
897#endif
898
c713216d
MG
899#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
900 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
901static inline unsigned long early_pfn_to_nid(unsigned long pfn)
902{
903 return 0;
904}
b159d43f
AW
905#endif
906
2bdaf115
AW
907#ifdef CONFIG_FLATMEM
908#define pfn_to_nid(pfn) (0)
909#endif
910
d41dee36
AW
911#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
912#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
913
914#ifdef CONFIG_SPARSEMEM
915
916/*
917 * SECTION_SHIFT #bits space required to store a section #
918 *
919 * PA_SECTION_SHIFT physical address to/from section number
920 * PFN_SECTION_SHIFT pfn to/from section number
921 */
922#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
923
924#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
925#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
926
927#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
928
929#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
930#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
931
835c134e 932#define SECTION_BLOCKFLAGS_BITS \
d9c23400 933 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 934
d41dee36
AW
935#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
936#error Allocator MAX_ORDER exceeds SECTION_SIZE
937#endif
938
939struct page;
52d4b9ac 940struct page_cgroup;
d41dee36 941struct mem_section {
29751f69
AW
942 /*
943 * This is, logically, a pointer to an array of struct
944 * pages. However, it is stored with some other magic.
945 * (see sparse.c::sparse_init_one_section())
946 *
30c253e6
AW
947 * Additionally during early boot we encode node id of
948 * the location of the section here to guide allocation.
949 * (see sparse.c::memory_present())
950 *
29751f69
AW
951 * Making it a UL at least makes someone do a cast
952 * before using it wrong.
953 */
954 unsigned long section_mem_map;
5c0e3066
MG
955
956 /* See declaration of similar field in struct zone */
957 unsigned long *pageblock_flags;
52d4b9ac
KH
958#ifdef CONFIG_CGROUP_MEM_RES_CTLR
959 /*
960 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
961 * section. (see memcontrol.h/page_cgroup.h about this.)
962 */
963 struct page_cgroup *page_cgroup;
964 unsigned long pad;
965#endif
d41dee36
AW
966};
967
3e347261
BP
968#ifdef CONFIG_SPARSEMEM_EXTREME
969#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
970#else
971#define SECTIONS_PER_ROOT 1
972#endif
802f192e 973
3e347261
BP
974#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
975#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
976#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 977
3e347261
BP
978#ifdef CONFIG_SPARSEMEM_EXTREME
979extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 980#else
3e347261
BP
981extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
982#endif
d41dee36 983
29751f69
AW
984static inline struct mem_section *__nr_to_section(unsigned long nr)
985{
3e347261
BP
986 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
987 return NULL;
988 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 989}
4ca644d9 990extern int __section_nr(struct mem_section* ms);
04753278 991extern unsigned long usemap_size(void);
29751f69
AW
992
993/*
994 * We use the lower bits of the mem_map pointer to store
995 * a little bit of information. There should be at least
996 * 3 bits here due to 32-bit alignment.
997 */
998#define SECTION_MARKED_PRESENT (1UL<<0)
999#define SECTION_HAS_MEM_MAP (1UL<<1)
1000#define SECTION_MAP_LAST_BIT (1UL<<2)
1001#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1002#define SECTION_NID_SHIFT 2
29751f69
AW
1003
1004static inline struct page *__section_mem_map_addr(struct mem_section *section)
1005{
1006 unsigned long map = section->section_mem_map;
1007 map &= SECTION_MAP_MASK;
1008 return (struct page *)map;
1009}
1010
540557b9 1011static inline int present_section(struct mem_section *section)
29751f69 1012{
802f192e 1013 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1014}
1015
540557b9
AW
1016static inline int present_section_nr(unsigned long nr)
1017{
1018 return present_section(__nr_to_section(nr));
1019}
1020
1021static inline int valid_section(struct mem_section *section)
29751f69 1022{
802f192e 1023 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1024}
1025
1026static inline int valid_section_nr(unsigned long nr)
1027{
1028 return valid_section(__nr_to_section(nr));
1029}
1030
d41dee36
AW
1031static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1032{
29751f69 1033 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1034}
1035
d41dee36
AW
1036static inline int pfn_valid(unsigned long pfn)
1037{
1038 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1039 return 0;
29751f69 1040 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1041}
1042
540557b9
AW
1043static inline int pfn_present(unsigned long pfn)
1044{
1045 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1046 return 0;
1047 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1048}
1049
d41dee36
AW
1050/*
1051 * These are _only_ used during initialisation, therefore they
1052 * can use __initdata ... They could have names to indicate
1053 * this restriction.
1054 */
1055#ifdef CONFIG_NUMA
161599ff
AW
1056#define pfn_to_nid(pfn) \
1057({ \
1058 unsigned long __pfn_to_nid_pfn = (pfn); \
1059 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1060})
2bdaf115
AW
1061#else
1062#define pfn_to_nid(pfn) (0)
d41dee36
AW
1063#endif
1064
d41dee36
AW
1065#define early_pfn_valid(pfn) pfn_valid(pfn)
1066void sparse_init(void);
1067#else
1068#define sparse_init() do {} while (0)
28ae55c9 1069#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1070#endif /* CONFIG_SPARSEMEM */
1071
75167957 1072#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1073bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1074#else
1075#define early_pfn_in_nid(pfn, nid) (1)
1076#endif
1077
d41dee36
AW
1078#ifndef early_pfn_valid
1079#define early_pfn_valid(pfn) (1)
1080#endif
1081
1082void memory_present(int nid, unsigned long start, unsigned long end);
1083unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1084
14e07298
AW
1085/*
1086 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1087 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1088 * pfn_valid_within() should be used in this case; we optimise this away
1089 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1090 */
1091#ifdef CONFIG_HOLES_IN_ZONE
1092#define pfn_valid_within(pfn) pfn_valid(pfn)
1093#else
1094#define pfn_valid_within(pfn) (1)
1095#endif
1096
eb33575c
MG
1097#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1098/*
1099 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1100 * associated with it or not. In FLATMEM, it is expected that holes always
1101 * have valid memmap as long as there is valid PFNs either side of the hole.
1102 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1103 * entire section.
1104 *
1105 * However, an ARM, and maybe other embedded architectures in the future
1106 * free memmap backing holes to save memory on the assumption the memmap is
1107 * never used. The page_zone linkages are then broken even though pfn_valid()
1108 * returns true. A walker of the full memmap must then do this additional
1109 * check to ensure the memmap they are looking at is sane by making sure
1110 * the zone and PFN linkages are still valid. This is expensive, but walkers
1111 * of the full memmap are extremely rare.
1112 */
1113int memmap_valid_within(unsigned long pfn,
1114 struct page *page, struct zone *zone);
1115#else
1116static inline int memmap_valid_within(unsigned long pfn,
1117 struct page *page, struct zone *zone)
1118{
1119 return 1;
1120}
1121#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1122
97965478 1123#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1124#endif /* !__ASSEMBLY__ */
1da177e4 1125#endif /* _LINUX_MMZONE_H */