Merge tag 'io_uring-6.16-20250630' of git://git.kernel.dk/linux
[linux-2.6-block.git] / include / linux / hugetlb.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_HUGETLB_H
3#define _LINUX_HUGETLB_H
4
9c67a207 5#include <linux/mm.h>
be93d8cf 6#include <linux/mm_types.h>
309381fe 7#include <linux/mmdebug.h>
4e950f6f 8#include <linux/fs.h>
8edf344c 9#include <linux/hugetlb_inline.h>
abb8206c 10#include <linux/cgroup.h>
3489dbb6 11#include <linux/page_ref.h>
9119a41e
JK
12#include <linux/list.h>
13#include <linux/kref.h>
ca5999fd 14#include <linux/pgtable.h>
d92bbc27 15#include <linux/gfp.h>
f6191471 16#include <linux/userfaultfd_k.h>
8d88b076 17#include <linux/nodemask.h>
4e950f6f 18
e9ea0e2d
AM
19struct ctl_table;
20struct user_struct;
24669e58 21struct mmu_gather;
a4a00b45 22struct node;
e9ea0e2d 23
454a00c4 24void free_huge_folio(struct folio *folio);
dd6fa0b6 25
1da177e4
LT
26#ifdef CONFIG_HUGETLB_PAGE
27
10969b55 28#include <linux/pagemap.h>
516dffdc 29#include <linux/shm.h>
63551ae0 30#include <asm/tlbflush.h>
1da177e4 31
cd39d4e9
MS
32/*
33 * For HugeTLB page, there are more metadata to save in the struct page. But
34 * the head struct page cannot meet our needs, so we have to abuse other tail
dad6a5eb 35 * struct page to store the metadata.
cd39d4e9 36 */
dad6a5eb 37#define __NR_USED_SUBPAGE 3
cd39d4e9 38
90481622
DG
39struct hugepage_subpool {
40 spinlock_t lock;
41 long count;
c6a91820
MK
42 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
43 long used_hpages; /* Used count against maximum, includes */
06c88398 44 /* both allocated and reserved pages. */
c6a91820
MK
45 struct hstate *hstate;
46 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
47 long rsv_hpages; /* Pages reserved against global pool to */
6c26d310 48 /* satisfy minimum size. */
90481622
DG
49};
50
9119a41e
JK
51struct resv_map {
52 struct kref refs;
7b24d861 53 spinlock_t lock;
9119a41e 54 struct list_head regions;
5e911373
MK
55 long adds_in_progress;
56 struct list_head region_cache;
57 long region_cache_count;
bf491692 58 struct rw_semaphore rw_sema;
e9fe92ae
MA
59#ifdef CONFIG_CGROUP_HUGETLB
60 /*
61 * On private mappings, the counter to uncharge reservations is stored
62 * here. If these fields are 0, then either the mapping is shared, or
63 * cgroup accounting is disabled for this resv_map.
64 */
65 struct page_counter *reservation_counter;
66 unsigned long pages_per_hpage;
67 struct cgroup_subsys_state *css;
68#endif
9119a41e 69};
075a61d0
MA
70
71/*
72 * Region tracking -- allows tracking of reservations and instantiated pages
73 * across the pages in a mapping.
74 *
75 * The region data structures are embedded into a resv_map and protected
76 * by a resv_map's lock. The set of regions within the resv_map represent
77 * reservations for huge pages, or huge pages that have already been
78 * instantiated within the map. The from and to elements are huge page
06c88398 79 * indices into the associated mapping. from indicates the starting index
075a61d0
MA
80 * of the region. to represents the first index past the end of the region.
81 *
82 * For example, a file region structure with from == 0 and to == 4 represents
83 * four huge pages in a mapping. It is important to note that the to element
84 * represents the first element past the end of the region. This is used in
85 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86 *
87 * Interval notation of the form [from, to) will be used to indicate that
88 * the endpoint from is inclusive and to is exclusive.
89 */
90struct file_region {
91 struct list_head link;
92 long from;
93 long to;
94#ifdef CONFIG_CGROUP_HUGETLB
95 /*
96 * On shared mappings, each reserved region appears as a struct
97 * file_region in resv_map. These fields hold the info needed to
98 * uncharge each reservation.
99 */
100 struct page_counter *reservation_counter;
101 struct cgroup_subsys_state *css;
102#endif
103};
104
8d9bfb26
MK
105struct hugetlb_vma_lock {
106 struct kref refs;
107 struct rw_semaphore rw_sema;
108 struct vm_area_struct *vma;
109};
110
9119a41e
JK
111extern struct resv_map *resv_map_alloc(void);
112void resv_map_release(struct kref *ref);
113
c3f38a38
AK
114extern spinlock_t hugetlb_lock;
115extern int hugetlb_max_hstate __read_mostly;
116#define for_each_hstate(h) \
117 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118
7ca02d0a
MK
119struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 long min_hpages);
90481622
DG
121void hugepage_put_subpool(struct hugepage_subpool *spool);
122
8d9bfb26 123void hugetlb_dup_vma_private(struct vm_area_struct *vma);
550a7d60 124void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
550a7d60
MA
125int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 struct vm_area_struct *new_vma,
127 unsigned long old_addr, unsigned long new_addr,
128 unsigned long len);
bc70fbf2
PX
129int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 struct vm_area_struct *, struct vm_area_struct *);
04f2cbe3 131void unmap_hugepage_range(struct vm_area_struct *,
81edb1ba
FN
132 unsigned long start, unsigned long end,
133 struct folio *, zap_flags_t);
2820b0f0 134void __unmap_hugepage_range(struct mmu_gather *tlb,
d833352a
MG
135 struct vm_area_struct *vma,
136 unsigned long start, unsigned long end,
7f4b6065 137 struct folio *, zap_flags_t zap_flags);
e1759c21 138void hugetlb_report_meminfo(struct seq_file *);
7981593b 139int hugetlb_report_node_meminfo(char *buf, int len, int nid);
dcadcf1c 140void hugetlb_show_meminfo_node(int nid);
1da177e4 141unsigned long hugetlb_total_pages(void);
2b740303 142vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 143 unsigned long address, unsigned int flags);
714c1891 144#ifdef CONFIG_USERFAULTFD
61c50040 145int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
a734991c
AR
146 struct vm_area_struct *dst_vma,
147 unsigned long dst_addr,
148 unsigned long src_addr,
d9712937 149 uffd_flags_t flags,
0169fd51 150 struct folio **foliop);
714c1891 151#endif /* CONFIG_USERFAULTFD */
33b8f84a 152bool hugetlb_reserve_pages(struct inode *inode, long from, long to,
5a6fe125 153 struct vm_area_struct *vma,
ca16d140 154 vm_flags_t vm_flags);
b5cec28d
MK
155long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
156 long freed);
4c640f12 157bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
04bac040 158int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
e591ef7d
NH
159int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
160 bool *migratable_cleared);
b235448e 161void folio_putback_hugetlb(struct folio *folio);
345c62d1 162void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
72e2936c 163void hugetlb_fix_reserve_counts(struct inode *inode);
c672c7f2 164extern struct mutex *hugetlb_fault_mutex_table;
188b04a7 165u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
1da177e4 166
aec44e0f
PX
167pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
168 unsigned long addr, pud_t *pud);
24334e78
PX
169bool hugetlbfs_pagecache_present(struct hstate *h,
170 struct vm_area_struct *vma,
171 unsigned long address);
3212b535 172
6e8cda4c 173struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
c0d0381a 174
1da177e4 175extern int sysctl_hugetlb_shm_group;
b78b27d0 176extern struct list_head huge_boot_pages[MAX_NUMNODES];
1da177e4 177
5b47c029 178void hugetlb_bootmem_alloc(void);
d58b2498 179bool hugetlb_bootmem_allocated(void);
8d88b076
FL
180extern nodemask_t hugetlb_bootmem_nodes;
181void hugetlb_bootmem_set_nodes(void);
5b47c029 182
63551ae0
DG
183/* arch callbacks */
184
f7243924
HD
185#ifndef CONFIG_HIGHPTE
186/*
187 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188 * which may go down to the lowest PTE level in their huge_pte_offset() and
189 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190 */
191static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192{
193 return pte_offset_kernel(pmd, address);
194}
195static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 unsigned long address)
197{
198 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199}
200#endif
201
aec44e0f 202pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
a5516438 203 unsigned long addr, unsigned long sz);
fe7d4c6d
PX
204/*
205 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206 * Returns the pte_t* if found, or NULL if the address is not mapped.
207 *
9c67a207
PX
208 * IMPORTANT: we should normally not directly call this function, instead
209 * this is only a common interface to implement arch-specific
210 * walker. Please use hugetlb_walk() instead, because that will attempt to
211 * verify the locking for you.
212 *
fe7d4c6d
PX
213 * Since this function will walk all the pgtable pages (including not only
214 * high-level pgtable page, but also PUD entry that can be unshared
215 * concurrently for VM_SHARED), the caller of this function should be
216 * responsible of its thread safety. One can follow this rule:
217 *
218 * (1) For private mappings: pmd unsharing is not possible, so holding the
219 * mmap_lock for either read or write is sufficient. Most callers
220 * already hold the mmap_lock, so normally, no special action is
221 * required.
222 *
223 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224 * pgtable page can go away from under us! It can be done by a pmd
225 * unshare with a follow up munmap() on the other process), then we
226 * need either:
227 *
228 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229 * won't happen upon the range (it also makes sure the pte_t we
230 * read is the right and stable one), or,
231 *
232 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233 * sure even if unshare happened the racy unmap() will wait until
234 * i_mmap_rwsem is released.
235 *
236 * Option (2.1) is the safest, which guarantees pte stability from pmd
237 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
238 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239 * access.
240 */
7868a208
PA
241pte_t *huge_pte_offset(struct mm_struct *mm,
242 unsigned long addr, unsigned long sz);
e95a9851 243unsigned long hugetlb_mask_last_page(struct hstate *h);
34ae204f 244int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 245 unsigned long addr, pte_t *ptep);
017b1660
MK
246void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 unsigned long *start, unsigned long *end);
faaa5b62 248
2820b0f0
RR
249extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 unsigned long *begin, unsigned long *end);
251extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 struct zap_details *details);
253
254static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 unsigned long *start, unsigned long *end)
256{
257 if (is_vm_hugetlb_page(vma))
258 __hugetlb_zap_begin(vma, start, end);
259}
260
261static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 struct zap_details *details)
263{
264 if (is_vm_hugetlb_page(vma))
265 __hugetlb_zap_end(vma, details);
266}
267
8d9bfb26
MK
268void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274void hugetlb_vma_lock_release(struct kref *kref);
a79390f5 275long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
276 unsigned long address, unsigned long end, pgprot_t newprot,
277 unsigned long cp_flags);
d5ed7444 278bool is_hugetlb_entry_migration(pte_t pte);
52526ca7 279bool is_hugetlb_entry_hwpoisoned(pte_t pte);
6dfeaff9 280void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
ee40c992 281void fixup_hugetlb_reservations(struct vm_area_struct *vma);
081056dc 282void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
ab5ac90a 283
1da177e4
LT
284#else /* !CONFIG_HUGETLB_PAGE */
285
8d9bfb26 286static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772
MG
287{
288}
289
550a7d60
MA
290static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
291{
292}
293
1da177e4
LT
294static inline unsigned long hugetlb_total_pages(void)
295{
296 return 0;
297}
298
6e8cda4c
MWO
299static inline struct address_space *hugetlb_folio_mapping_lock_write(
300 struct folio *folio)
c0d0381a
MK
301{
302 return NULL;
303}
304
34ae204f
MK
305static inline int huge_pmd_unshare(struct mm_struct *mm,
306 struct vm_area_struct *vma,
4ddb4d91 307 unsigned long addr, pte_t *ptep)
017b1660
MK
308{
309 return 0;
310}
311
312static inline void adjust_range_if_pmd_sharing_possible(
313 struct vm_area_struct *vma,
314 unsigned long *start, unsigned long *end)
315{
316}
317
2820b0f0
RR
318static inline void hugetlb_zap_begin(
319 struct vm_area_struct *vma,
320 unsigned long *start, unsigned long *end)
321{
322}
323
324static inline void hugetlb_zap_end(
325 struct vm_area_struct *vma,
326 struct zap_details *details)
327{
328}
329
1f9dccb2 330static inline int copy_hugetlb_page_range(struct mm_struct *dst,
bc70fbf2
PX
331 struct mm_struct *src,
332 struct vm_area_struct *dst_vma,
333 struct vm_area_struct *src_vma)
1f9dccb2
MK
334{
335 BUG();
336 return 0;
337}
338
550a7d60
MA
339static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
340 struct vm_area_struct *new_vma,
341 unsigned long old_addr,
342 unsigned long new_addr,
343 unsigned long len)
344{
345 BUG();
346 return 0;
347}
348
e1759c21
AD
349static inline void hugetlb_report_meminfo(struct seq_file *m)
350{
351}
1f9dccb2 352
7981593b 353static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1f9dccb2
MK
354{
355 return 0;
356}
357
dcadcf1c 358static inline void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
359{
360}
1f9dccb2 361
1f9dccb2
MK
362static inline int prepare_hugepage_range(struct file *file,
363 unsigned long addr, unsigned long len)
364{
365 return -EINVAL;
366}
367
8d9bfb26
MK
368static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
369{
370}
371
372static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
373{
374}
375
376static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
377{
378}
379
380static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
381{
382}
383
384static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
385{
386 return 1;
387}
388
389static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
390{
391}
392
1f9dccb2
MK
393static inline int is_hugepage_only_range(struct mm_struct *mm,
394 unsigned long addr, unsigned long len)
395{
396 return 0;
397}
398
399static inline void hugetlb_free_pgd_range(struct mmu_gather *tlb,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
402{
403 BUG();
404}
405
714c1891 406#ifdef CONFIG_USERFAULTFD
61c50040 407static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
a734991c
AR
408 struct vm_area_struct *dst_vma,
409 unsigned long dst_addr,
410 unsigned long src_addr,
d9712937 411 uffd_flags_t flags,
0169fd51 412 struct folio **foliop)
1f9dccb2
MK
413{
414 BUG();
415 return 0;
416}
714c1891 417#endif /* CONFIG_USERFAULTFD */
1f9dccb2
MK
418
419static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
420 unsigned long sz)
421{
422 return NULL;
423}
24669e58 424
4c640f12 425static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
f40386a4 426{
9747b9e9 427 return false;
f40386a4 428}
1da177e4 429
04bac040 430static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
25182f05
NH
431{
432 return 0;
433}
434
e591ef7d
NH
435static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
436 bool *migratable_cleared)
405ce051
NH
437{
438 return 0;
439}
440
b235448e 441static inline void folio_putback_hugetlb(struct folio *folio)
1f9dccb2
MK
442{
443}
444
345c62d1
SK
445static inline void move_hugetlb_state(struct folio *old_folio,
446 struct folio *new_folio, int reason)
1f9dccb2
MK
447{
448}
449
a79390f5 450static inline long hugetlb_change_protection(
1f9dccb2 451 struct vm_area_struct *vma, unsigned long address,
5a90d5a1
PX
452 unsigned long end, pgprot_t newprot,
453 unsigned long cp_flags)
7da4d641
PZ
454{
455 return 0;
456}
8f860591 457
2820b0f0 458static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
d833352a 459 struct vm_area_struct *vma, unsigned long start,
7f4b6065 460 unsigned long end, struct folio *folio,
05e90bd0 461 zap_flags_t zap_flags)
d833352a
MG
462{
463 BUG();
464}
465
a953e772 466static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
1f9dccb2
MK
467 struct vm_area_struct *vma, unsigned long address,
468 unsigned int flags)
a953e772
SJ
469{
470 BUG();
471 return 0;
472}
24669e58 473
6dfeaff9
PX
474static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
475
ee40c992
RCN
476static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
477{
478}
479
081056dc
JH
480static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
481
1da177e4 482#endif /* !CONFIG_HUGETLB_PAGE */
f30c59e9
AK
483
484#ifndef pgd_write
485static inline int pgd_write(pgd_t pgd)
486{
487 BUG();
488 return 0;
489}
490#endif
491
4e52780d
EM
492#define HUGETLB_ANON_FILE "anon_hugepage"
493
6bfde05b
EM
494enum {
495 /*
496 * The file will be used as an shm file so shmfs accounting rules
497 * apply
498 */
499 HUGETLB_SHMFS_INODE = 1,
4e52780d
EM
500 /*
501 * The file is being created on the internal vfs mount and shmfs
502 * accounting rules do not apply
503 */
504 HUGETLB_ANONHUGE_INODE = 2,
6bfde05b
EM
505};
506
1da177e4 507#ifdef CONFIG_HUGETLBFS
1da177e4 508struct hugetlbfs_sb_info {
1da177e4
LT
509 long max_inodes; /* inodes allowed */
510 long free_inodes; /* inodes free */
511 spinlock_t stat_lock;
a137e1cc 512 struct hstate *hstate;
90481622 513 struct hugepage_subpool *spool;
4a25220d
DH
514 kuid_t uid;
515 kgid_t gid;
516 umode_t mode;
1da177e4
LT
517};
518
1da177e4
LT
519static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
520{
521 return sb->s_fs_info;
522}
523
da14c1e5 524struct hugetlbfs_inode_info {
da14c1e5 525 struct inode vfs_inode;
ff62a342 526 unsigned int seals;
da14c1e5
MAL
527};
528
529static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
530{
531 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
532}
533
f0f37e2f 534extern const struct vm_operations_struct hugetlb_vm_ops;
af73e4d9 535struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
83c1fd76 536 int creat_flags, int page_size_log);
1da177e4 537
886b94d2 538static inline bool is_file_hugepages(const struct file *file)
1da177e4 539{
886b94d2 540 return file->f_op->fop_flags & FOP_HUGE_PAGES;
1da177e4
LT
541}
542
bb297bb2
CL
543static inline struct hstate *hstate_inode(struct inode *i)
544{
545 return HUGETLBFS_SB(i->i_sb)->hstate;
546}
1da177e4
LT
547#else /* !CONFIG_HUGETLBFS */
548
719ff321 549#define is_file_hugepages(file) false
40716e29 550static inline struct file *
af73e4d9 551hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
83c1fd76 552 int creat_flags, int page_size_log)
e9ea0e2d
AM
553{
554 return ERR_PTR(-ENOSYS);
555}
1da177e4 556
bb297bb2
CL
557static inline struct hstate *hstate_inode(struct inode *i)
558{
559 return NULL;
560}
1da177e4
LT
561#endif /* !CONFIG_HUGETLBFS */
562
7bd3f1e1 563unsigned long
cc92882e 564hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
7bd3f1e1
OS
565 unsigned long len, unsigned long pgoff,
566 unsigned long flags);
d2ba27e8 567
d6995da3
MK
568/*
569 * huegtlb page specific state flags. These flags are located in page.private
570 * of the hugetlb head page. Functions created via the below macros should be
571 * used to manipulate these flags.
572 *
573 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
574 * allocation time. Cleared when page is fully instantiated. Free
575 * routine checks flag to restore a reservation on error paths.
d95c0337
MK
576 * Synchronization: Examined or modified by code that knows it has
577 * the only reference to page. i.e. After allocation but before use
578 * or when the page is being freed.
8f251a3d
MK
579 * HPG_migratable - Set after a newly allocated page is added to the page
580 * cache and/or page tables. Indicates the page is a candidate for
581 * migration.
d95c0337
MK
582 * Synchronization: Initially set after new page allocation with no
583 * locking. When examined and modified during migration processing
584 * (isolate, migrate, putback) the hugetlb_lock is held.
161df60e 585 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
9157c311
MK
586 * allocator. Typically used for migration target pages when no pages
587 * are available in the pool. The hugetlb free page path will
588 * immediately free pages with this flag set to the buddy allocator.
d95c0337
MK
589 * Synchronization: Can be set after huge page allocation from buddy when
590 * code knows it has only reference. All other examinations and
591 * modifications require hugetlb_lock.
6c037149 592 * HPG_freed - Set when page is on the free lists.
d95c0337 593 * Synchronization: hugetlb_lock held for examination and modification.
ad2fa371 594 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
161df60e
NH
595 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
596 * that is not tracked by raw_hwp_page list.
d6995da3
MK
597 */
598enum hugetlb_page_flags {
599 HPG_restore_reserve = 0,
8f251a3d 600 HPG_migratable,
9157c311 601 HPG_temporary,
6c037149 602 HPG_freed,
ad2fa371 603 HPG_vmemmap_optimized,
161df60e 604 HPG_raw_hwp_unreliable,
d2d78671 605 HPG_cma,
d6995da3
MK
606 __NR_HPAGEFLAGS,
607};
608
609/*
610 * Macros to create test, set and clear function definitions for
611 * hugetlb specific page flags.
612 */
613#ifdef CONFIG_HUGETLB_PAGE
614#define TESTHPAGEFLAG(uname, flname) \
d03c376d
SK
615static __always_inline \
616bool folio_test_hugetlb_##flname(struct folio *folio) \
617 { void *private = &folio->private; \
618 return test_bit(HPG_##flname, private); \
16540dae 619 }
d6995da3
MK
620
621#define SETHPAGEFLAG(uname, flname) \
d03c376d
SK
622static __always_inline \
623void folio_set_hugetlb_##flname(struct folio *folio) \
624 { void *private = &folio->private; \
625 set_bit(HPG_##flname, private); \
63818aaf 626 }
d6995da3
MK
627
628#define CLEARHPAGEFLAG(uname, flname) \
d03c376d
SK
629static __always_inline \
630void folio_clear_hugetlb_##flname(struct folio *folio) \
631 { void *private = &folio->private; \
632 clear_bit(HPG_##flname, private); \
63818aaf 633 }
d6995da3
MK
634#else
635#define TESTHPAGEFLAG(uname, flname) \
d03c376d
SK
636static inline bool \
637folio_test_hugetlb_##flname(struct folio *folio) \
d6995da3
MK
638 { return 0; }
639
640#define SETHPAGEFLAG(uname, flname) \
d03c376d
SK
641static inline void \
642folio_set_hugetlb_##flname(struct folio *folio) \
d6995da3
MK
643 { }
644
645#define CLEARHPAGEFLAG(uname, flname) \
d03c376d
SK
646static inline void \
647folio_clear_hugetlb_##flname(struct folio *folio) \
d6995da3
MK
648 { }
649#endif
650
651#define HPAGEFLAG(uname, flname) \
652 TESTHPAGEFLAG(uname, flname) \
653 SETHPAGEFLAG(uname, flname) \
654 CLEARHPAGEFLAG(uname, flname) \
655
656/*
657 * Create functions associated with hugetlb page flags
658 */
659HPAGEFLAG(RestoreReserve, restore_reserve)
8f251a3d 660HPAGEFLAG(Migratable, migratable)
9157c311 661HPAGEFLAG(Temporary, temporary)
6c037149 662HPAGEFLAG(Freed, freed)
ad2fa371 663HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
161df60e 664HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
d2d78671 665HPAGEFLAG(Cma, cma)
d6995da3 666
a5516438
AK
667#ifdef CONFIG_HUGETLB_PAGE
668
a3437870 669#define HSTATE_NAME_LEN 32
a5516438
AK
670/* Defines one hugetlb page size */
671struct hstate {
29383967 672 struct mutex resize_lock;
667574e8 673 struct lock_class_key resize_key;
e8c5c824
LS
674 int next_nid_to_alloc;
675 int next_nid_to_free;
a5516438 676 unsigned int order;
79dfc695 677 unsigned int demote_order;
a5516438
AK
678 unsigned long mask;
679 unsigned long max_huge_pages;
680 unsigned long nr_huge_pages;
681 unsigned long free_huge_pages;
682 unsigned long resv_huge_pages;
683 unsigned long surplus_huge_pages;
684 unsigned long nr_overcommit_huge_pages;
0edaecfa 685 struct list_head hugepage_activelist;
a5516438 686 struct list_head hugepage_freelists[MAX_NUMNODES];
b5389086 687 unsigned int max_huge_pages_node[MAX_NUMNODES];
a5516438
AK
688 unsigned int nr_huge_pages_node[MAX_NUMNODES];
689 unsigned int free_huge_pages_node[MAX_NUMNODES];
690 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
a3437870 691 char name[HSTATE_NAME_LEN];
a5516438
AK
692};
693
d2d78671
FL
694struct cma;
695
53ba51d2
JT
696struct huge_bootmem_page {
697 struct list_head list;
698 struct hstate *hstate;
752fe17a 699 unsigned long flags;
d2d78671 700 struct cma *cma;
53ba51d2
JT
701};
702
752fe17a
FL
703#define HUGE_BOOTMEM_HVO 0x0001
704#define HUGE_BOOTMEM_ZONES_VALID 0x0002
d2d78671 705#define HUGE_BOOTMEM_CMA 0x0004
752fe17a 706
b1222550
FL
707bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
708
b4c829fa 709int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
04f13d24 710int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
67bab133 711void wait_for_freed_hugetlb_folios(void);
d0ce0e47 712struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
30cef82b 713 unsigned long addr, bool cow_from_owner);
e37d3e83 714struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
42d0c3fb
BW
715 nodemask_t *nmask, gfp_t gfp_mask,
716 bool allow_alloc_fallback);
26a8ea80
SS
717struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
718 nodemask_t *nmask, gfp_t gfp_mask);
719
9b91c0e2 720int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
ab76ad54 721 pgoff_t idx);
846be085 722void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
d2d7bb44 723 unsigned long address, struct folio *folio);
bf50bab2 724
53ba51d2 725/* arch callback */
b5389086
ZY
726int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
727int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
728bool __init hugetlb_node_alloc_supported(void);
53ba51d2 729
e5ff2159 730void __init hugetlb_add_hstate(unsigned order);
ae94da89 731bool __init arch_hugetlb_valid_size(unsigned long size);
e5ff2159
AK
732struct hstate *size_to_hstate(unsigned long size);
733
734#ifndef HUGE_MAX_HSTATE
735#define HUGE_MAX_HSTATE 1
736#endif
737
738extern struct hstate hstates[HUGE_MAX_HSTATE];
739extern unsigned int default_hstate_idx;
740
741#define default_hstate (hstates[default_hstate_idx])
a5516438 742
149562f7
SK
743static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
744{
dad6a5eb 745 return folio->_hugetlb_subpool;
149562f7
SK
746}
747
149562f7
SK
748static inline void hugetlb_set_folio_subpool(struct folio *folio,
749 struct hugepage_subpool *subpool)
750{
dad6a5eb 751 folio->_hugetlb_subpool = subpool;
d6995da3
MK
752}
753
a5516438
AK
754static inline struct hstate *hstate_file(struct file *f)
755{
496ad9aa 756 return hstate_inode(file_inode(f));
a5516438
AK
757}
758
af73e4d9
NH
759static inline struct hstate *hstate_sizelog(int page_size_log)
760{
761 if (!page_size_log)
762 return &default_hstate;
97ad2be1 763
ec4288fe
MK
764 if (page_size_log < BITS_PER_LONG)
765 return size_to_hstate(1UL << page_size_log);
766
767 return NULL;
af73e4d9
NH
768}
769
a137e1cc 770static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
a5516438 771{
a137e1cc 772 return hstate_file(vma->vm_file);
a5516438
AK
773}
774
6213834c 775static inline unsigned long huge_page_size(const struct hstate *h)
a5516438
AK
776{
777 return (unsigned long)PAGE_SIZE << h->order;
778}
779
08fba699
MG
780extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
781
3340289d
MG
782extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
783
a5516438
AK
784static inline unsigned long huge_page_mask(struct hstate *h)
785{
786 return h->mask;
787}
788
789static inline unsigned int huge_page_order(struct hstate *h)
790{
791 return h->order;
792}
793
794static inline unsigned huge_page_shift(struct hstate *h)
795{
796 return h->order + PAGE_SHIFT;
797}
798
bae7f4ae
LC
799static inline bool hstate_is_gigantic(struct hstate *h)
800{
5e0a760b 801 return huge_page_order(h) > MAX_PAGE_ORDER;
bae7f4ae
LC
802}
803
6213834c 804static inline unsigned int pages_per_huge_page(const struct hstate *h)
a5516438
AK
805{
806 return 1 << h->order;
807}
808
809static inline unsigned int blocks_per_huge_page(struct hstate *h)
810{
811 return huge_page_size(h) / 512;
812}
813
a08c7193
SK
814static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
815 struct address_space *mapping, pgoff_t idx)
816{
817 return filemap_lock_folio(mapping, idx << huge_page_order(h));
818}
819
a5516438
AK
820#include <asm/hugetlb.h>
821
b0eae98c
AK
822#ifndef is_hugepage_only_range
823static inline int is_hugepage_only_range(struct mm_struct *mm,
824 unsigned long addr, unsigned long len)
825{
826 return 0;
827}
828#define is_hugepage_only_range is_hugepage_only_range
829#endif
830
51718e25
MWO
831#ifndef arch_clear_hugetlb_flags
832static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
833#define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
5be99343
AK
834#endif
835
d9ed9faa 836#ifndef arch_make_huge_pte
79c1c594
CL
837static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
838 vm_flags_t flags)
d9ed9faa 839{
16785bd7 840 return pte_mkhuge(entry);
d9ed9faa
CM
841}
842#endif
843
d2d78671
FL
844#ifndef arch_has_huge_bootmem_alloc
845/*
846 * Some architectures do their own bootmem allocation, so they can't use
847 * early CMA allocation.
848 */
849static inline bool arch_has_huge_bootmem_alloc(void)
850{
851 return false;
852}
853#endif
854
e51da3a9
SK
855static inline struct hstate *folio_hstate(struct folio *folio)
856{
857 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
858 return size_to_hstate(folio_size(folio));
859}
860
aa50d3a7
AK
861static inline unsigned hstate_index_to_shift(unsigned index)
862{
863 return hstates[index].order + PAGE_SHIFT;
864}
865
972dc4de
AK
866static inline int hstate_index(struct hstate *h)
867{
868 return h - hstates;
869}
870
54fa49b2 871int dissolve_free_hugetlb_folio(struct folio *folio);
d199483c 872int dissolve_free_hugetlb_folios(unsigned long start_pfn,
082d5b6b 873 unsigned long end_pfn);
e693de18 874
161df60e 875#ifdef CONFIG_MEMORY_FAILURE
2ff6cece 876extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
161df60e 877#else
2ff6cece 878static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e
NH
879{
880}
881#endif
882
c177c81e 883#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
e693de18
AK
884#ifndef arch_hugetlb_migration_supported
885static inline bool arch_hugetlb_migration_supported(struct hstate *h)
886{
94310cbc 887 if ((huge_page_shift(h) == PMD_SHIFT) ||
9b553bf5
AK
888 (huge_page_shift(h) == PUD_SHIFT) ||
889 (huge_page_shift(h) == PGDIR_SHIFT))
94310cbc
AK
890 return true;
891 else
892 return false;
e693de18
AK
893}
894#endif
c177c81e 895#else
e693de18
AK
896static inline bool arch_hugetlb_migration_supported(struct hstate *h)
897{
d70c17d4 898 return false;
e693de18 899}
c177c81e 900#endif
e693de18
AK
901
902static inline bool hugepage_migration_supported(struct hstate *h)
903{
904 return arch_hugetlb_migration_supported(h);
83467efb 905}
c8721bbb 906
7ed2c31d
AK
907/*
908 * Movability check is different as compared to migration check.
909 * It determines whether or not a huge page should be placed on
910 * movable zone or not. Movability of any huge page should be
911 * required only if huge page size is supported for migration.
06c88398 912 * There won't be any reason for the huge page to be movable if
7ed2c31d
AK
913 * it is not migratable to start with. Also the size of the huge
914 * page should be large enough to be placed under a movable zone
915 * and still feasible enough to be migratable. Just the presence
916 * in movable zone does not make the migration feasible.
917 *
918 * So even though large huge page sizes like the gigantic ones
919 * are migratable they should not be movable because its not
920 * feasible to migrate them from movable zone.
921 */
922static inline bool hugepage_movable_supported(struct hstate *h)
923{
924 if (!hugepage_migration_supported(h))
925 return false;
926
927 if (hstate_is_gigantic(h))
928 return false;
929 return true;
930}
931
d92bbc27
JK
932/* Movability of hugepages depends on migration support. */
933static inline gfp_t htlb_alloc_mask(struct hstate *h)
934{
cf54f310
YZ
935 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
936
937 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
938
939 return gfp;
d92bbc27
JK
940}
941
19fc7bed
JK
942static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
943{
944 gfp_t modified_mask = htlb_alloc_mask(h);
945
946 /* Some callers might want to enforce node */
947 modified_mask |= (gfp_mask & __GFP_THISNODE);
948
41b4dc14
JK
949 modified_mask |= (gfp_mask & __GFP_NOWARN);
950
19fc7bed
JK
951 return modified_mask;
952}
953
42d0c3fb
BW
954static inline bool htlb_allow_alloc_fallback(int reason)
955{
956 bool allowed_fallback = false;
957
958 /*
959 * Note: the memory offline, memory failure and migration syscalls will
960 * be allowed to fallback to other nodes due to lack of a better chioce,
961 * that might break the per-node hugetlb pool. While other cases will
962 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
963 */
964 switch (reason) {
965 case MR_MEMORY_HOTPLUG:
966 case MR_MEMORY_FAILURE:
967 case MR_SYSCALL:
968 case MR_MEMPOLICY_MBIND:
969 allowed_fallback = true;
970 break;
971 default:
972 break;
973 }
974
975 return allowed_fallback;
976}
977
cb900f41
KS
978static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
979 struct mm_struct *mm, pte_t *pte)
980{
5f75cfbd
DH
981 const unsigned long size = huge_page_size(h);
982
983 VM_WARN_ON(size == PAGE_SIZE);
984
985 /*
986 * hugetlb must use the exact same PT locks as core-mm page table
987 * walkers would. When modifying a PTE table, hugetlb must take the
988 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
989 * PT lock etc.
990 *
991 * The expectation is that any hugetlb folio smaller than a PMD is
992 * always mapped into a single PTE table and that any hugetlb folio
993 * smaller than a PUD (but at least as big as a PMD) is always mapped
994 * into a single PMD table.
995 *
996 * If that does not hold for an architecture, then that architecture
997 * must disable split PT locks such that all *_lockptr() functions
998 * will give us the same result: the per-MM PT lock.
999 *
1000 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
1001 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
1002 * and core-mm would use pmd_lockptr(). However, in such configurations
1003 * split PMD locks are disabled -- they don't make sense on a single
1004 * PGDIR page table -- and the end result is the same.
1005 */
1006 if (size >= PUD_SIZE)
1007 return pud_lockptr(mm, (pud_t *) pte);
1008 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
cb900f41 1009 return pmd_lockptr(mm, (pmd_t *) pte);
5f75cfbd
DH
1010 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1011 return ptep_lockptr(mm, pte);
cb900f41
KS
1012}
1013
2531c8cf
DD
1014#ifndef hugepages_supported
1015/*
1016 * Some platform decide whether they support huge pages at boot
1017 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1018 * when there is no such support
1019 */
1020#define hugepages_supported() (HPAGE_SHIFT != 0)
1021#endif
457c1b27 1022
5d317b2b
NH
1023void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1024
13db8c50
LZ
1025static inline void hugetlb_count_init(struct mm_struct *mm)
1026{
1027 atomic_long_set(&mm->hugetlb_usage, 0);
1028}
1029
5d317b2b
NH
1030static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1031{
1032 atomic_long_add(l, &mm->hugetlb_usage);
1033}
1034
1035static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1036{
1037 atomic_long_sub(l, &mm->hugetlb_usage);
1038}
e5251fd4 1039
023bdd00
AK
1040#ifndef huge_ptep_modify_prot_start
1041#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1042static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1043 unsigned long addr, pte_t *ptep)
1044{
02410ac7
RR
1045 unsigned long psize = huge_page_size(hstate_vma(vma));
1046
1047 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
023bdd00
AK
1048}
1049#endif
1050
1051#ifndef huge_ptep_modify_prot_commit
1052#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1053static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1054 unsigned long addr, pte_t *ptep,
1055 pte_t old_pte, pte_t pte)
1056{
935d4f0c
RR
1057 unsigned long psize = huge_page_size(hstate_vma(vma));
1058
1059 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
023bdd00
AK
1060}
1061#endif
1062
a4a00b45
MS
1063#ifdef CONFIG_NUMA
1064void hugetlb_register_node(struct node *node);
1065void hugetlb_unregister_node(struct node *node);
1066#endif
1067
b79f8eb4
JY
1068/*
1069 * Check if a given raw @page in a hugepage is HWPOISON.
1070 */
1071bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1072
7f24cbc9
OS
1073static inline unsigned long huge_page_mask_align(struct file *file)
1074{
1075 return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1076}
1077
af73e4d9 1078#else /* CONFIG_HUGETLB_PAGE */
a5516438 1079struct hstate {};
442a5a9a 1080
7f24cbc9
OS
1081static inline unsigned long huge_page_mask_align(struct file *file)
1082{
1083 return 0;
1084}
1085
345c62d1
SK
1086static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1087{
1088 return NULL;
1089}
1090
a08c7193
SK
1091static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1092 struct address_space *mapping, pgoff_t idx)
1093{
1094 return NULL;
1095}
1096
b4c829fa 1097static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
ae37c7ff 1098 struct list_head *list)
369fa227
OS
1099{
1100 return -ENOMEM;
1101}
1102
04f13d24 1103static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1104 unsigned long end_pfn)
1105{
1106 return 0;
1107}
1108
67bab133
GY
1109static inline void wait_for_freed_hugetlb_folios(void)
1110{
1111}
1112
d0ce0e47 1113static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
442a5a9a 1114 unsigned long addr,
30cef82b 1115 bool cow_from_owner)
442a5a9a
JG
1116{
1117 return NULL;
1118}
1119
26a8ea80
SS
1120static inline struct folio *
1121alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1122 nodemask_t *nmask, gfp_t gfp_mask)
1123{
1124 return NULL;
1125}
1126
e37d3e83
SK
1127static inline struct folio *
1128alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
42d0c3fb
BW
1129 nodemask_t *nmask, gfp_t gfp_mask,
1130 bool allow_alloc_fallback)
442a5a9a
JG
1131{
1132 return NULL;
1133}
1134
442a5a9a
JG
1135static inline int __alloc_bootmem_huge_page(struct hstate *h)
1136{
1137 return 0;
1138}
1139
1140static inline struct hstate *hstate_file(struct file *f)
1141{
1142 return NULL;
1143}
1144
1145static inline struct hstate *hstate_sizelog(int page_size_log)
1146{
1147 return NULL;
1148}
1149
1150static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1151{
1152 return NULL;
442a5a9a
JG
1153}
1154
e51da3a9
SK
1155static inline struct hstate *folio_hstate(struct folio *folio)
1156{
1157 return NULL;
1158}
1159
2aff7a47
MWO
1160static inline struct hstate *size_to_hstate(unsigned long size)
1161{
1162 return NULL;
1163}
1164
442a5a9a
JG
1165static inline unsigned long huge_page_size(struct hstate *h)
1166{
1167 return PAGE_SIZE;
1168}
1169
1170static inline unsigned long huge_page_mask(struct hstate *h)
1171{
1172 return PAGE_MASK;
1173}
1174
1175static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1176{
1177 return PAGE_SIZE;
1178}
1179
1180static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1181{
1182 return PAGE_SIZE;
1183}
1184
1185static inline unsigned int huge_page_order(struct hstate *h)
1186{
1187 return 0;
1188}
1189
1190static inline unsigned int huge_page_shift(struct hstate *h)
1191{
1192 return PAGE_SHIFT;
1193}
1194
94310cbc
AK
1195static inline bool hstate_is_gigantic(struct hstate *h)
1196{
1197 return false;
1198}
1199
510a35d4
AR
1200static inline unsigned int pages_per_huge_page(struct hstate *h)
1201{
1202 return 1;
1203}
c3114a84
AK
1204
1205static inline unsigned hstate_index_to_shift(unsigned index)
1206{
1207 return 0;
1208}
1209
1210static inline int hstate_index(struct hstate *h)
1211{
1212 return 0;
1213}
13d60f4b 1214
54fa49b2 1215static inline int dissolve_free_hugetlb_folio(struct folio *folio)
c3114a84
AK
1216{
1217 return 0;
1218}
1219
d199483c 1220static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
c3114a84
AK
1221 unsigned long end_pfn)
1222{
1223 return 0;
1224}
1225
1226static inline bool hugepage_migration_supported(struct hstate *h)
1227{
1228 return false;
1229}
cb900f41 1230
7ed2c31d
AK
1231static inline bool hugepage_movable_supported(struct hstate *h)
1232{
1233 return false;
1234}
1235
d92bbc27
JK
1236static inline gfp_t htlb_alloc_mask(struct hstate *h)
1237{
1238 return 0;
1239}
1240
19fc7bed
JK
1241static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1242{
1243 return 0;
1244}
1245
42d0c3fb
BW
1246static inline bool htlb_allow_alloc_fallback(int reason)
1247{
1248 return false;
1249}
1250
cb900f41
KS
1251static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1252 struct mm_struct *mm, pte_t *pte)
1253{
1254 return &mm->page_table_lock;
1255}
5d317b2b 1256
13db8c50
LZ
1257static inline void hugetlb_count_init(struct mm_struct *mm)
1258{
1259}
1260
5d317b2b
NH
1261static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1262{
1263}
1264
1265static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1266{
1267}
e5251fd4 1268
5d4af619
BW
1269static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1270 unsigned long addr, pte_t *ptep)
1271{
c33c7948
RR
1272#ifdef CONFIG_MMU
1273 return ptep_get(ptep);
1274#else
5d4af619 1275 return *ptep;
c33c7948 1276#endif
5d4af619
BW
1277}
1278
1279static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
935d4f0c 1280 pte_t *ptep, pte_t pte, unsigned long sz)
5d4af619
BW
1281{
1282}
a4a00b45
MS
1283
1284static inline void hugetlb_register_node(struct node *node)
1285{
1286}
1287
1288static inline void hugetlb_unregister_node(struct node *node)
1289{
1290}
24334e78
PX
1291
1292static inline bool hugetlbfs_pagecache_present(
1293 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1294{
1295 return false;
1296}
5b47c029
FL
1297
1298static inline void hugetlb_bootmem_alloc(void)
1299{
1300}
d58b2498
FL
1301
1302static inline bool hugetlb_bootmem_allocated(void)
1303{
1304 return false;
1305}
af73e4d9 1306#endif /* CONFIG_HUGETLB_PAGE */
a5516438 1307
cb900f41
KS
1308static inline spinlock_t *huge_pte_lock(struct hstate *h,
1309 struct mm_struct *mm, pte_t *pte)
1310{
1311 spinlock_t *ptl;
1312
1313 ptl = huge_pte_lockptr(h, mm, pte);
1314 spin_lock(ptl);
1315 return ptl;
1316}
1317
cf11e85f
RG
1318#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1319extern void __init hugetlb_cma_reserve(int order);
cf11e85f
RG
1320#else
1321static inline __init void hugetlb_cma_reserve(int order)
1322{
1323}
cf11e85f
RG
1324#endif
1325
188cac58 1326#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
3489dbb6
MK
1327static inline bool hugetlb_pmd_shared(pte_t *pte)
1328{
1329 return page_count(virt_to_page(pte)) > 1;
1330}
1331#else
1332static inline bool hugetlb_pmd_shared(pte_t *pte)
1333{
1334 return false;
1335}
1336#endif
1337
c1991e07
PX
1338bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1339
537cf30b
PX
1340#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1341/*
1342 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1343 * implement this.
1344 */
1345#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1346#endif
1347
9c67a207
PX
1348static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1349{
1350 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1351}
1352
187da0f8 1353bool __vma_private_lock(struct vm_area_struct *vma);
bf491692 1354
9c67a207
PX
1355/*
1356 * Safe version of huge_pte_offset() to check the locks. See comments
1357 * above huge_pte_offset().
1358 */
1359static inline pte_t *
1360hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1361{
188cac58 1362#if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
9c67a207
PX
1363 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1364
1365 /*
1366 * If pmd sharing possible, locking needed to safely walk the
1367 * hugetlb pgtables. More information can be found at the comment
1368 * above huge_pte_offset() in the same file.
1369 *
1370 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1371 */
1372 if (__vma_shareable_lock(vma))
1373 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1374 !lockdep_is_held(
1375 &vma->vm_file->f_mapping->i_mmap_rwsem));
1376#endif
1377 return huge_pte_offset(vma->vm_mm, addr, sz);
1378}
1379
1da177e4 1380#endif /* _LINUX_HUGETLB_H */