Linux 6.17-rc6
[linux-2.6-block.git] / include / linux / hugetlb.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_HUGETLB_H
3#define _LINUX_HUGETLB_H
4
9c67a207 5#include <linux/mm.h>
be93d8cf 6#include <linux/mm_types.h>
309381fe 7#include <linux/mmdebug.h>
4e950f6f 8#include <linux/fs.h>
8edf344c 9#include <linux/hugetlb_inline.h>
abb8206c 10#include <linux/cgroup.h>
3489dbb6 11#include <linux/page_ref.h>
9119a41e
JK
12#include <linux/list.h>
13#include <linux/kref.h>
ca5999fd 14#include <linux/pgtable.h>
d92bbc27 15#include <linux/gfp.h>
f6191471 16#include <linux/userfaultfd_k.h>
8d88b076 17#include <linux/nodemask.h>
4e950f6f 18
e9ea0e2d
AM
19struct ctl_table;
20struct user_struct;
24669e58 21struct mmu_gather;
a4a00b45 22struct node;
e9ea0e2d 23
454a00c4 24void free_huge_folio(struct folio *folio);
dd6fa0b6 25
1da177e4
LT
26#ifdef CONFIG_HUGETLB_PAGE
27
10969b55 28#include <linux/pagemap.h>
516dffdc 29#include <linux/shm.h>
63551ae0 30#include <asm/tlbflush.h>
1da177e4 31
cd39d4e9
MS
32/*
33 * For HugeTLB page, there are more metadata to save in the struct page. But
34 * the head struct page cannot meet our needs, so we have to abuse other tail
dad6a5eb 35 * struct page to store the metadata.
cd39d4e9 36 */
dad6a5eb 37#define __NR_USED_SUBPAGE 3
cd39d4e9 38
90481622
DG
39struct hugepage_subpool {
40 spinlock_t lock;
41 long count;
c6a91820
MK
42 long max_hpages; /* Maximum huge pages or -1 if no maximum. */
43 long used_hpages; /* Used count against maximum, includes */
06c88398 44 /* both allocated and reserved pages. */
c6a91820
MK
45 struct hstate *hstate;
46 long min_hpages; /* Minimum huge pages or -1 if no minimum. */
47 long rsv_hpages; /* Pages reserved against global pool to */
6c26d310 48 /* satisfy minimum size. */
90481622
DG
49};
50
9119a41e
JK
51struct resv_map {
52 struct kref refs;
7b24d861 53 spinlock_t lock;
9119a41e 54 struct list_head regions;
5e911373
MK
55 long adds_in_progress;
56 struct list_head region_cache;
57 long region_cache_count;
bf491692 58 struct rw_semaphore rw_sema;
e9fe92ae
MA
59#ifdef CONFIG_CGROUP_HUGETLB
60 /*
61 * On private mappings, the counter to uncharge reservations is stored
62 * here. If these fields are 0, then either the mapping is shared, or
63 * cgroup accounting is disabled for this resv_map.
64 */
65 struct page_counter *reservation_counter;
66 unsigned long pages_per_hpage;
67 struct cgroup_subsys_state *css;
68#endif
9119a41e 69};
075a61d0
MA
70
71/*
72 * Region tracking -- allows tracking of reservations and instantiated pages
73 * across the pages in a mapping.
74 *
75 * The region data structures are embedded into a resv_map and protected
76 * by a resv_map's lock. The set of regions within the resv_map represent
77 * reservations for huge pages, or huge pages that have already been
78 * instantiated within the map. The from and to elements are huge page
06c88398 79 * indices into the associated mapping. from indicates the starting index
075a61d0
MA
80 * of the region. to represents the first index past the end of the region.
81 *
82 * For example, a file region structure with from == 0 and to == 4 represents
83 * four huge pages in a mapping. It is important to note that the to element
84 * represents the first element past the end of the region. This is used in
85 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
86 *
87 * Interval notation of the form [from, to) will be used to indicate that
88 * the endpoint from is inclusive and to is exclusive.
89 */
90struct file_region {
91 struct list_head link;
92 long from;
93 long to;
94#ifdef CONFIG_CGROUP_HUGETLB
95 /*
96 * On shared mappings, each reserved region appears as a struct
97 * file_region in resv_map. These fields hold the info needed to
98 * uncharge each reservation.
99 */
100 struct page_counter *reservation_counter;
101 struct cgroup_subsys_state *css;
102#endif
103};
104
8d9bfb26
MK
105struct hugetlb_vma_lock {
106 struct kref refs;
107 struct rw_semaphore rw_sema;
108 struct vm_area_struct *vma;
109};
110
9119a41e
JK
111extern struct resv_map *resv_map_alloc(void);
112void resv_map_release(struct kref *ref);
113
c3f38a38
AK
114extern spinlock_t hugetlb_lock;
115extern int hugetlb_max_hstate __read_mostly;
116#define for_each_hstate(h) \
117 for ((h) = hstates; (h) < &hstates[hugetlb_max_hstate]; (h)++)
118
7ca02d0a
MK
119struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
120 long min_hpages);
90481622
DG
121void hugepage_put_subpool(struct hugepage_subpool *spool);
122
8d9bfb26 123void hugetlb_dup_vma_private(struct vm_area_struct *vma);
550a7d60 124void clear_vma_resv_huge_pages(struct vm_area_struct *vma);
550a7d60
MA
125int move_hugetlb_page_tables(struct vm_area_struct *vma,
126 struct vm_area_struct *new_vma,
127 unsigned long old_addr, unsigned long new_addr,
128 unsigned long len);
bc70fbf2
PX
129int copy_hugetlb_page_range(struct mm_struct *, struct mm_struct *,
130 struct vm_area_struct *, struct vm_area_struct *);
04f2cbe3 131void unmap_hugepage_range(struct vm_area_struct *,
81edb1ba
FN
132 unsigned long start, unsigned long end,
133 struct folio *, zap_flags_t);
2820b0f0 134void __unmap_hugepage_range(struct mmu_gather *tlb,
d833352a
MG
135 struct vm_area_struct *vma,
136 unsigned long start, unsigned long end,
7f4b6065 137 struct folio *, zap_flags_t zap_flags);
e1759c21 138void hugetlb_report_meminfo(struct seq_file *);
7981593b 139int hugetlb_report_node_meminfo(char *buf, int len, int nid);
dcadcf1c 140void hugetlb_show_meminfo_node(int nid);
1da177e4 141unsigned long hugetlb_total_pages(void);
2b740303 142vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 143 unsigned long address, unsigned int flags);
714c1891 144#ifdef CONFIG_USERFAULTFD
61c50040 145int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
a734991c
AR
146 struct vm_area_struct *dst_vma,
147 unsigned long dst_addr,
148 unsigned long src_addr,
d9712937 149 uffd_flags_t flags,
0169fd51 150 struct folio **foliop);
714c1891 151#endif /* CONFIG_USERFAULTFD */
986f5f2b 152long hugetlb_reserve_pages(struct inode *inode, long from, long to,
5a6fe125 153 struct vm_area_struct *vma,
ca16d140 154 vm_flags_t vm_flags);
b5cec28d
MK
155long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
156 long freed);
4c640f12 157bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list);
04bac040 158int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison);
e591ef7d
NH
159int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
160 bool *migratable_cleared);
b235448e 161void folio_putback_hugetlb(struct folio *folio);
345c62d1 162void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason);
72e2936c 163void hugetlb_fix_reserve_counts(struct inode *inode);
c672c7f2 164extern struct mutex *hugetlb_fault_mutex_table;
188b04a7 165u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx);
1da177e4 166
aec44e0f
PX
167pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
168 unsigned long addr, pud_t *pud);
24334e78
PX
169bool hugetlbfs_pagecache_present(struct hstate *h,
170 struct vm_area_struct *vma,
171 unsigned long address);
3212b535 172
6e8cda4c 173struct address_space *hugetlb_folio_mapping_lock_write(struct folio *folio);
c0d0381a 174
1da177e4 175extern int sysctl_hugetlb_shm_group;
b78b27d0 176extern struct list_head huge_boot_pages[MAX_NUMNODES];
1da177e4 177
5b47c029 178void hugetlb_bootmem_alloc(void);
d58b2498 179bool hugetlb_bootmem_allocated(void);
8d88b076
FL
180extern nodemask_t hugetlb_bootmem_nodes;
181void hugetlb_bootmem_set_nodes(void);
5b47c029 182
63551ae0
DG
183/* arch callbacks */
184
f7243924
HD
185#ifndef CONFIG_HIGHPTE
186/*
187 * pte_offset_huge() and pte_alloc_huge() are helpers for those architectures
188 * which may go down to the lowest PTE level in their huge_pte_offset() and
189 * huge_pte_alloc(): to avoid reliance on pte_offset_map() without pte_unmap().
190 */
191static inline pte_t *pte_offset_huge(pmd_t *pmd, unsigned long address)
192{
193 return pte_offset_kernel(pmd, address);
194}
195static inline pte_t *pte_alloc_huge(struct mm_struct *mm, pmd_t *pmd,
196 unsigned long address)
197{
198 return pte_alloc(mm, pmd) ? NULL : pte_offset_huge(pmd, address);
199}
200#endif
201
aec44e0f 202pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
a5516438 203 unsigned long addr, unsigned long sz);
fe7d4c6d
PX
204/*
205 * huge_pte_offset(): Walk the hugetlb pgtable until the last level PTE.
206 * Returns the pte_t* if found, or NULL if the address is not mapped.
207 *
9c67a207
PX
208 * IMPORTANT: we should normally not directly call this function, instead
209 * this is only a common interface to implement arch-specific
210 * walker. Please use hugetlb_walk() instead, because that will attempt to
211 * verify the locking for you.
212 *
fe7d4c6d
PX
213 * Since this function will walk all the pgtable pages (including not only
214 * high-level pgtable page, but also PUD entry that can be unshared
215 * concurrently for VM_SHARED), the caller of this function should be
216 * responsible of its thread safety. One can follow this rule:
217 *
218 * (1) For private mappings: pmd unsharing is not possible, so holding the
219 * mmap_lock for either read or write is sufficient. Most callers
220 * already hold the mmap_lock, so normally, no special action is
221 * required.
222 *
223 * (2) For shared mappings: pmd unsharing is possible (so the PUD-ranged
224 * pgtable page can go away from under us! It can be done by a pmd
225 * unshare with a follow up munmap() on the other process), then we
226 * need either:
227 *
228 * (2.1) hugetlb vma lock read or write held, to make sure pmd unshare
229 * won't happen upon the range (it also makes sure the pte_t we
230 * read is the right and stable one), or,
231 *
232 * (2.2) hugetlb mapping i_mmap_rwsem lock held read or write, to make
233 * sure even if unshare happened the racy unmap() will wait until
234 * i_mmap_rwsem is released.
235 *
236 * Option (2.1) is the safest, which guarantees pte stability from pmd
237 * sharing pov, until the vma lock released. Option (2.2) doesn't protect
238 * a concurrent pmd unshare, but it makes sure the pgtable page is safe to
239 * access.
240 */
7868a208
PA
241pte_t *huge_pte_offset(struct mm_struct *mm,
242 unsigned long addr, unsigned long sz);
e95a9851 243unsigned long hugetlb_mask_last_page(struct hstate *h);
34ae204f 244int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
4ddb4d91 245 unsigned long addr, pte_t *ptep);
017b1660
MK
246void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
247 unsigned long *start, unsigned long *end);
faaa5b62 248
2820b0f0
RR
249extern void __hugetlb_zap_begin(struct vm_area_struct *vma,
250 unsigned long *begin, unsigned long *end);
251extern void __hugetlb_zap_end(struct vm_area_struct *vma,
252 struct zap_details *details);
253
254static inline void hugetlb_zap_begin(struct vm_area_struct *vma,
255 unsigned long *start, unsigned long *end)
256{
257 if (is_vm_hugetlb_page(vma))
258 __hugetlb_zap_begin(vma, start, end);
259}
260
261static inline void hugetlb_zap_end(struct vm_area_struct *vma,
262 struct zap_details *details)
263{
264 if (is_vm_hugetlb_page(vma))
265 __hugetlb_zap_end(vma, details);
266}
267
8d9bfb26
MK
268void hugetlb_vma_lock_read(struct vm_area_struct *vma);
269void hugetlb_vma_unlock_read(struct vm_area_struct *vma);
270void hugetlb_vma_lock_write(struct vm_area_struct *vma);
271void hugetlb_vma_unlock_write(struct vm_area_struct *vma);
272int hugetlb_vma_trylock_write(struct vm_area_struct *vma);
273void hugetlb_vma_assert_locked(struct vm_area_struct *vma);
274void hugetlb_vma_lock_release(struct kref *kref);
a79390f5 275long hugetlb_change_protection(struct vm_area_struct *vma,
5a90d5a1
PX
276 unsigned long address, unsigned long end, pgprot_t newprot,
277 unsigned long cp_flags);
d5ed7444 278bool is_hugetlb_entry_migration(pte_t pte);
52526ca7 279bool is_hugetlb_entry_hwpoisoned(pte_t pte);
6dfeaff9 280void hugetlb_unshare_all_pmds(struct vm_area_struct *vma);
ee40c992 281void fixup_hugetlb_reservations(struct vm_area_struct *vma);
081056dc 282void hugetlb_split(struct vm_area_struct *vma, unsigned long addr);
ab5ac90a 283
1da177e4
LT
284#else /* !CONFIG_HUGETLB_PAGE */
285
8d9bfb26 286static inline void hugetlb_dup_vma_private(struct vm_area_struct *vma)
a1e78772
MG
287{
288}
289
550a7d60
MA
290static inline void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
291{
292}
293
1da177e4
LT
294static inline unsigned long hugetlb_total_pages(void)
295{
296 return 0;
297}
298
6e8cda4c
MWO
299static inline struct address_space *hugetlb_folio_mapping_lock_write(
300 struct folio *folio)
c0d0381a
MK
301{
302 return NULL;
303}
304
34ae204f
MK
305static inline int huge_pmd_unshare(struct mm_struct *mm,
306 struct vm_area_struct *vma,
4ddb4d91 307 unsigned long addr, pte_t *ptep)
017b1660
MK
308{
309 return 0;
310}
311
312static inline void adjust_range_if_pmd_sharing_possible(
313 struct vm_area_struct *vma,
314 unsigned long *start, unsigned long *end)
315{
316}
317
2820b0f0
RR
318static inline void hugetlb_zap_begin(
319 struct vm_area_struct *vma,
320 unsigned long *start, unsigned long *end)
321{
322}
323
324static inline void hugetlb_zap_end(
325 struct vm_area_struct *vma,
326 struct zap_details *details)
327{
328}
329
1f9dccb2 330static inline int copy_hugetlb_page_range(struct mm_struct *dst,
bc70fbf2
PX
331 struct mm_struct *src,
332 struct vm_area_struct *dst_vma,
333 struct vm_area_struct *src_vma)
1f9dccb2
MK
334{
335 BUG();
336 return 0;
337}
338
550a7d60
MA
339static inline int move_hugetlb_page_tables(struct vm_area_struct *vma,
340 struct vm_area_struct *new_vma,
341 unsigned long old_addr,
342 unsigned long new_addr,
343 unsigned long len)
344{
345 BUG();
346 return 0;
347}
348
e1759c21
AD
349static inline void hugetlb_report_meminfo(struct seq_file *m)
350{
351}
1f9dccb2 352
7981593b 353static inline int hugetlb_report_node_meminfo(char *buf, int len, int nid)
1f9dccb2
MK
354{
355 return 0;
356}
357
dcadcf1c 358static inline void hugetlb_show_meminfo_node(int nid)
949f7ec5
DR
359{
360}
1f9dccb2 361
8d9bfb26
MK
362static inline void hugetlb_vma_lock_read(struct vm_area_struct *vma)
363{
364}
365
366static inline void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
367{
368}
369
370static inline void hugetlb_vma_lock_write(struct vm_area_struct *vma)
371{
372}
373
374static inline void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
375{
376}
377
378static inline int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
379{
380 return 1;
381}
382
383static inline void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
384{
385}
386
1f9dccb2
MK
387static inline int is_hugepage_only_range(struct mm_struct *mm,
388 unsigned long addr, unsigned long len)
389{
390 return 0;
391}
392
714c1891 393#ifdef CONFIG_USERFAULTFD
61c50040 394static inline int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
a734991c
AR
395 struct vm_area_struct *dst_vma,
396 unsigned long dst_addr,
397 unsigned long src_addr,
d9712937 398 uffd_flags_t flags,
0169fd51 399 struct folio **foliop)
1f9dccb2
MK
400{
401 BUG();
402 return 0;
403}
714c1891 404#endif /* CONFIG_USERFAULTFD */
1f9dccb2
MK
405
406static inline pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr,
407 unsigned long sz)
408{
409 return NULL;
410}
24669e58 411
4c640f12 412static inline bool folio_isolate_hugetlb(struct folio *folio, struct list_head *list)
f40386a4 413{
9747b9e9 414 return false;
f40386a4 415}
1da177e4 416
04bac040 417static inline int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
25182f05
NH
418{
419 return 0;
420}
421
e591ef7d
NH
422static inline int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
423 bool *migratable_cleared)
405ce051
NH
424{
425 return 0;
426}
427
b235448e 428static inline void folio_putback_hugetlb(struct folio *folio)
1f9dccb2
MK
429{
430}
431
345c62d1
SK
432static inline void move_hugetlb_state(struct folio *old_folio,
433 struct folio *new_folio, int reason)
1f9dccb2
MK
434{
435}
436
a79390f5 437static inline long hugetlb_change_protection(
1f9dccb2 438 struct vm_area_struct *vma, unsigned long address,
5a90d5a1
PX
439 unsigned long end, pgprot_t newprot,
440 unsigned long cp_flags)
7da4d641
PZ
441{
442 return 0;
443}
8f860591 444
2820b0f0 445static inline void __unmap_hugepage_range(struct mmu_gather *tlb,
d833352a 446 struct vm_area_struct *vma, unsigned long start,
7f4b6065 447 unsigned long end, struct folio *folio,
05e90bd0 448 zap_flags_t zap_flags)
d833352a
MG
449{
450 BUG();
451}
452
a953e772 453static inline vm_fault_t hugetlb_fault(struct mm_struct *mm,
1f9dccb2
MK
454 struct vm_area_struct *vma, unsigned long address,
455 unsigned int flags)
a953e772
SJ
456{
457 BUG();
458 return 0;
459}
24669e58 460
6dfeaff9
PX
461static inline void hugetlb_unshare_all_pmds(struct vm_area_struct *vma) { }
462
ee40c992
RCN
463static inline void fixup_hugetlb_reservations(struct vm_area_struct *vma)
464{
465}
466
081056dc
JH
467static inline void hugetlb_split(struct vm_area_struct *vma, unsigned long addr) {}
468
1da177e4 469#endif /* !CONFIG_HUGETLB_PAGE */
f30c59e9
AK
470
471#ifndef pgd_write
472static inline int pgd_write(pgd_t pgd)
473{
474 BUG();
475 return 0;
476}
477#endif
478
4e52780d
EM
479#define HUGETLB_ANON_FILE "anon_hugepage"
480
6bfde05b
EM
481enum {
482 /*
483 * The file will be used as an shm file so shmfs accounting rules
484 * apply
485 */
486 HUGETLB_SHMFS_INODE = 1,
4e52780d
EM
487 /*
488 * The file is being created on the internal vfs mount and shmfs
489 * accounting rules do not apply
490 */
491 HUGETLB_ANONHUGE_INODE = 2,
6bfde05b
EM
492};
493
1da177e4 494#ifdef CONFIG_HUGETLBFS
1da177e4 495struct hugetlbfs_sb_info {
1da177e4
LT
496 long max_inodes; /* inodes allowed */
497 long free_inodes; /* inodes free */
498 spinlock_t stat_lock;
a137e1cc 499 struct hstate *hstate;
90481622 500 struct hugepage_subpool *spool;
4a25220d
DH
501 kuid_t uid;
502 kgid_t gid;
503 umode_t mode;
1da177e4
LT
504};
505
1da177e4
LT
506static inline struct hugetlbfs_sb_info *HUGETLBFS_SB(struct super_block *sb)
507{
508 return sb->s_fs_info;
509}
510
da14c1e5 511struct hugetlbfs_inode_info {
da14c1e5 512 struct inode vfs_inode;
ff62a342 513 unsigned int seals;
da14c1e5
MAL
514};
515
516static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
517{
518 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
519}
520
f0f37e2f 521extern const struct vm_operations_struct hugetlb_vm_ops;
af73e4d9 522struct file *hugetlb_file_setup(const char *name, size_t size, vm_flags_t acct,
83c1fd76 523 int creat_flags, int page_size_log);
1da177e4 524
886b94d2 525static inline bool is_file_hugepages(const struct file *file)
1da177e4 526{
886b94d2 527 return file->f_op->fop_flags & FOP_HUGE_PAGES;
1da177e4
LT
528}
529
bb297bb2
CL
530static inline struct hstate *hstate_inode(struct inode *i)
531{
532 return HUGETLBFS_SB(i->i_sb)->hstate;
533}
1da177e4
LT
534#else /* !CONFIG_HUGETLBFS */
535
719ff321 536#define is_file_hugepages(file) false
40716e29 537static inline struct file *
af73e4d9 538hugetlb_file_setup(const char *name, size_t size, vm_flags_t acctflag,
83c1fd76 539 int creat_flags, int page_size_log)
e9ea0e2d
AM
540{
541 return ERR_PTR(-ENOSYS);
542}
1da177e4 543
bb297bb2
CL
544static inline struct hstate *hstate_inode(struct inode *i)
545{
546 return NULL;
547}
1da177e4
LT
548#endif /* !CONFIG_HUGETLBFS */
549
7bd3f1e1 550unsigned long
cc92882e 551hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
7bd3f1e1
OS
552 unsigned long len, unsigned long pgoff,
553 unsigned long flags);
d2ba27e8 554
d6995da3
MK
555/*
556 * huegtlb page specific state flags. These flags are located in page.private
557 * of the hugetlb head page. Functions created via the below macros should be
558 * used to manipulate these flags.
559 *
560 * HPG_restore_reserve - Set when a hugetlb page consumes a reservation at
561 * allocation time. Cleared when page is fully instantiated. Free
562 * routine checks flag to restore a reservation on error paths.
d95c0337
MK
563 * Synchronization: Examined or modified by code that knows it has
564 * the only reference to page. i.e. After allocation but before use
565 * or when the page is being freed.
8f251a3d
MK
566 * HPG_migratable - Set after a newly allocated page is added to the page
567 * cache and/or page tables. Indicates the page is a candidate for
568 * migration.
d95c0337
MK
569 * Synchronization: Initially set after new page allocation with no
570 * locking. When examined and modified during migration processing
571 * (isolate, migrate, putback) the hugetlb_lock is held.
161df60e 572 * HPG_temporary - Set on a page that is temporarily allocated from the buddy
9157c311
MK
573 * allocator. Typically used for migration target pages when no pages
574 * are available in the pool. The hugetlb free page path will
575 * immediately free pages with this flag set to the buddy allocator.
d95c0337
MK
576 * Synchronization: Can be set after huge page allocation from buddy when
577 * code knows it has only reference. All other examinations and
578 * modifications require hugetlb_lock.
6c037149 579 * HPG_freed - Set when page is on the free lists.
d95c0337 580 * Synchronization: hugetlb_lock held for examination and modification.
ad2fa371 581 * HPG_vmemmap_optimized - Set when the vmemmap pages of the page are freed.
161df60e
NH
582 * HPG_raw_hwp_unreliable - Set when the hugetlb page has a hwpoison sub-page
583 * that is not tracked by raw_hwp_page list.
d6995da3
MK
584 */
585enum hugetlb_page_flags {
586 HPG_restore_reserve = 0,
8f251a3d 587 HPG_migratable,
9157c311 588 HPG_temporary,
6c037149 589 HPG_freed,
ad2fa371 590 HPG_vmemmap_optimized,
161df60e 591 HPG_raw_hwp_unreliable,
d2d78671 592 HPG_cma,
d6995da3
MK
593 __NR_HPAGEFLAGS,
594};
595
596/*
597 * Macros to create test, set and clear function definitions for
598 * hugetlb specific page flags.
599 */
600#ifdef CONFIG_HUGETLB_PAGE
601#define TESTHPAGEFLAG(uname, flname) \
d03c376d
SK
602static __always_inline \
603bool folio_test_hugetlb_##flname(struct folio *folio) \
604 { void *private = &folio->private; \
605 return test_bit(HPG_##flname, private); \
16540dae 606 }
d6995da3
MK
607
608#define SETHPAGEFLAG(uname, flname) \
d03c376d
SK
609static __always_inline \
610void folio_set_hugetlb_##flname(struct folio *folio) \
611 { void *private = &folio->private; \
612 set_bit(HPG_##flname, private); \
63818aaf 613 }
d6995da3
MK
614
615#define CLEARHPAGEFLAG(uname, flname) \
d03c376d
SK
616static __always_inline \
617void folio_clear_hugetlb_##flname(struct folio *folio) \
618 { void *private = &folio->private; \
619 clear_bit(HPG_##flname, private); \
63818aaf 620 }
d6995da3
MK
621#else
622#define TESTHPAGEFLAG(uname, flname) \
d03c376d
SK
623static inline bool \
624folio_test_hugetlb_##flname(struct folio *folio) \
d6995da3
MK
625 { return 0; }
626
627#define SETHPAGEFLAG(uname, flname) \
d03c376d
SK
628static inline void \
629folio_set_hugetlb_##flname(struct folio *folio) \
d6995da3
MK
630 { }
631
632#define CLEARHPAGEFLAG(uname, flname) \
d03c376d
SK
633static inline void \
634folio_clear_hugetlb_##flname(struct folio *folio) \
d6995da3
MK
635 { }
636#endif
637
638#define HPAGEFLAG(uname, flname) \
639 TESTHPAGEFLAG(uname, flname) \
640 SETHPAGEFLAG(uname, flname) \
641 CLEARHPAGEFLAG(uname, flname) \
642
643/*
644 * Create functions associated with hugetlb page flags
645 */
646HPAGEFLAG(RestoreReserve, restore_reserve)
8f251a3d 647HPAGEFLAG(Migratable, migratable)
9157c311 648HPAGEFLAG(Temporary, temporary)
6c037149 649HPAGEFLAG(Freed, freed)
ad2fa371 650HPAGEFLAG(VmemmapOptimized, vmemmap_optimized)
161df60e 651HPAGEFLAG(RawHwpUnreliable, raw_hwp_unreliable)
d2d78671 652HPAGEFLAG(Cma, cma)
d6995da3 653
a5516438
AK
654#ifdef CONFIG_HUGETLB_PAGE
655
a3437870 656#define HSTATE_NAME_LEN 32
a5516438
AK
657/* Defines one hugetlb page size */
658struct hstate {
29383967 659 struct mutex resize_lock;
667574e8 660 struct lock_class_key resize_key;
e8c5c824
LS
661 int next_nid_to_alloc;
662 int next_nid_to_free;
a5516438 663 unsigned int order;
79dfc695 664 unsigned int demote_order;
a5516438
AK
665 unsigned long mask;
666 unsigned long max_huge_pages;
667 unsigned long nr_huge_pages;
668 unsigned long free_huge_pages;
669 unsigned long resv_huge_pages;
670 unsigned long surplus_huge_pages;
671 unsigned long nr_overcommit_huge_pages;
0edaecfa 672 struct list_head hugepage_activelist;
a5516438 673 struct list_head hugepage_freelists[MAX_NUMNODES];
b5389086 674 unsigned int max_huge_pages_node[MAX_NUMNODES];
a5516438
AK
675 unsigned int nr_huge_pages_node[MAX_NUMNODES];
676 unsigned int free_huge_pages_node[MAX_NUMNODES];
677 unsigned int surplus_huge_pages_node[MAX_NUMNODES];
a3437870 678 char name[HSTATE_NAME_LEN];
a5516438
AK
679};
680
d2d78671
FL
681struct cma;
682
53ba51d2
JT
683struct huge_bootmem_page {
684 struct list_head list;
685 struct hstate *hstate;
752fe17a 686 unsigned long flags;
d2d78671 687 struct cma *cma;
53ba51d2
JT
688};
689
752fe17a
FL
690#define HUGE_BOOTMEM_HVO 0x0001
691#define HUGE_BOOTMEM_ZONES_VALID 0x0002
d2d78671 692#define HUGE_BOOTMEM_CMA 0x0004
752fe17a 693
b1222550
FL
694bool hugetlb_bootmem_page_zones_valid(int nid, struct huge_bootmem_page *m);
695
b4c829fa 696int isolate_or_dissolve_huge_folio(struct folio *folio, struct list_head *list);
04f13d24 697int replace_free_hugepage_folios(unsigned long start_pfn, unsigned long end_pfn);
67bab133 698void wait_for_freed_hugetlb_folios(void);
d0ce0e47 699struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
30cef82b 700 unsigned long addr, bool cow_from_owner);
e37d3e83 701struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
42d0c3fb
BW
702 nodemask_t *nmask, gfp_t gfp_mask,
703 bool allow_alloc_fallback);
26a8ea80
SS
704struct folio *alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
705 nodemask_t *nmask, gfp_t gfp_mask);
706
9b91c0e2 707int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
ab76ad54 708 pgoff_t idx);
846be085 709void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
d2d7bb44 710 unsigned long address, struct folio *folio);
bf50bab2 711
53ba51d2 712/* arch callback */
b5389086
ZY
713int __init __alloc_bootmem_huge_page(struct hstate *h, int nid);
714int __init alloc_bootmem_huge_page(struct hstate *h, int nid);
715bool __init hugetlb_node_alloc_supported(void);
53ba51d2 716
e5ff2159 717void __init hugetlb_add_hstate(unsigned order);
ae94da89 718bool __init arch_hugetlb_valid_size(unsigned long size);
e5ff2159
AK
719struct hstate *size_to_hstate(unsigned long size);
720
721#ifndef HUGE_MAX_HSTATE
722#define HUGE_MAX_HSTATE 1
723#endif
724
725extern struct hstate hstates[HUGE_MAX_HSTATE];
726extern unsigned int default_hstate_idx;
727
728#define default_hstate (hstates[default_hstate_idx])
a5516438 729
717cf935
VK
730static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
731{
732 return HUGETLBFS_SB(inode->i_sb)->spool;
733}
734
149562f7
SK
735static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
736{
dad6a5eb 737 return folio->_hugetlb_subpool;
149562f7
SK
738}
739
149562f7
SK
740static inline void hugetlb_set_folio_subpool(struct folio *folio,
741 struct hugepage_subpool *subpool)
742{
dad6a5eb 743 folio->_hugetlb_subpool = subpool;
d6995da3
MK
744}
745
a5516438
AK
746static inline struct hstate *hstate_file(struct file *f)
747{
496ad9aa 748 return hstate_inode(file_inode(f));
a5516438
AK
749}
750
af73e4d9
NH
751static inline struct hstate *hstate_sizelog(int page_size_log)
752{
753 if (!page_size_log)
754 return &default_hstate;
97ad2be1 755
ec4288fe
MK
756 if (page_size_log < BITS_PER_LONG)
757 return size_to_hstate(1UL << page_size_log);
758
759 return NULL;
af73e4d9
NH
760}
761
a137e1cc 762static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
a5516438 763{
a137e1cc 764 return hstate_file(vma->vm_file);
a5516438
AK
765}
766
6213834c 767static inline unsigned long huge_page_size(const struct hstate *h)
a5516438
AK
768{
769 return (unsigned long)PAGE_SIZE << h->order;
770}
771
08fba699
MG
772extern unsigned long vma_kernel_pagesize(struct vm_area_struct *vma);
773
3340289d
MG
774extern unsigned long vma_mmu_pagesize(struct vm_area_struct *vma);
775
a5516438
AK
776static inline unsigned long huge_page_mask(struct hstate *h)
777{
778 return h->mask;
779}
780
781static inline unsigned int huge_page_order(struct hstate *h)
782{
783 return h->order;
784}
785
786static inline unsigned huge_page_shift(struct hstate *h)
787{
788 return h->order + PAGE_SHIFT;
789}
790
bae7f4ae
LC
791static inline bool hstate_is_gigantic(struct hstate *h)
792{
5e0a760b 793 return huge_page_order(h) > MAX_PAGE_ORDER;
bae7f4ae
LC
794}
795
6213834c 796static inline unsigned int pages_per_huge_page(const struct hstate *h)
a5516438
AK
797{
798 return 1 << h->order;
799}
800
801static inline unsigned int blocks_per_huge_page(struct hstate *h)
802{
803 return huge_page_size(h) / 512;
804}
805
a08c7193
SK
806static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
807 struct address_space *mapping, pgoff_t idx)
808{
809 return filemap_lock_folio(mapping, idx << huge_page_order(h));
810}
811
a5516438
AK
812#include <asm/hugetlb.h>
813
b0eae98c
AK
814#ifndef is_hugepage_only_range
815static inline int is_hugepage_only_range(struct mm_struct *mm,
816 unsigned long addr, unsigned long len)
817{
818 return 0;
819}
820#define is_hugepage_only_range is_hugepage_only_range
821#endif
822
51718e25
MWO
823#ifndef arch_clear_hugetlb_flags
824static inline void arch_clear_hugetlb_flags(struct folio *folio) { }
825#define arch_clear_hugetlb_flags arch_clear_hugetlb_flags
5be99343
AK
826#endif
827
d9ed9faa 828#ifndef arch_make_huge_pte
79c1c594
CL
829static inline pte_t arch_make_huge_pte(pte_t entry, unsigned int shift,
830 vm_flags_t flags)
d9ed9faa 831{
16785bd7 832 return pte_mkhuge(entry);
d9ed9faa
CM
833}
834#endif
835
d2d78671
FL
836#ifndef arch_has_huge_bootmem_alloc
837/*
838 * Some architectures do their own bootmem allocation, so they can't use
839 * early CMA allocation.
840 */
841static inline bool arch_has_huge_bootmem_alloc(void)
842{
843 return false;
844}
845#endif
846
e51da3a9
SK
847static inline struct hstate *folio_hstate(struct folio *folio)
848{
849 VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio);
850 return size_to_hstate(folio_size(folio));
851}
852
aa50d3a7
AK
853static inline unsigned hstate_index_to_shift(unsigned index)
854{
855 return hstates[index].order + PAGE_SHIFT;
856}
857
972dc4de
AK
858static inline int hstate_index(struct hstate *h)
859{
860 return h - hstates;
861}
862
54fa49b2 863int dissolve_free_hugetlb_folio(struct folio *folio);
d199483c 864int dissolve_free_hugetlb_folios(unsigned long start_pfn,
082d5b6b 865 unsigned long end_pfn);
e693de18 866
161df60e 867#ifdef CONFIG_MEMORY_FAILURE
2ff6cece 868extern void folio_clear_hugetlb_hwpoison(struct folio *folio);
161df60e 869#else
2ff6cece 870static inline void folio_clear_hugetlb_hwpoison(struct folio *folio)
161df60e
NH
871{
872}
873#endif
874
c177c81e 875#ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
e693de18
AK
876#ifndef arch_hugetlb_migration_supported
877static inline bool arch_hugetlb_migration_supported(struct hstate *h)
878{
94310cbc 879 if ((huge_page_shift(h) == PMD_SHIFT) ||
9b553bf5
AK
880 (huge_page_shift(h) == PUD_SHIFT) ||
881 (huge_page_shift(h) == PGDIR_SHIFT))
94310cbc
AK
882 return true;
883 else
884 return false;
e693de18
AK
885}
886#endif
c177c81e 887#else
e693de18
AK
888static inline bool arch_hugetlb_migration_supported(struct hstate *h)
889{
d70c17d4 890 return false;
e693de18 891}
c177c81e 892#endif
e693de18
AK
893
894static inline bool hugepage_migration_supported(struct hstate *h)
895{
896 return arch_hugetlb_migration_supported(h);
83467efb 897}
c8721bbb 898
7ed2c31d
AK
899/*
900 * Movability check is different as compared to migration check.
901 * It determines whether or not a huge page should be placed on
902 * movable zone or not. Movability of any huge page should be
903 * required only if huge page size is supported for migration.
06c88398 904 * There won't be any reason for the huge page to be movable if
7ed2c31d
AK
905 * it is not migratable to start with. Also the size of the huge
906 * page should be large enough to be placed under a movable zone
907 * and still feasible enough to be migratable. Just the presence
908 * in movable zone does not make the migration feasible.
909 *
910 * So even though large huge page sizes like the gigantic ones
911 * are migratable they should not be movable because its not
912 * feasible to migrate them from movable zone.
913 */
914static inline bool hugepage_movable_supported(struct hstate *h)
915{
916 if (!hugepage_migration_supported(h))
917 return false;
918
919 if (hstate_is_gigantic(h))
920 return false;
921 return true;
922}
923
d92bbc27
JK
924/* Movability of hugepages depends on migration support. */
925static inline gfp_t htlb_alloc_mask(struct hstate *h)
926{
cf54f310
YZ
927 gfp_t gfp = __GFP_COMP | __GFP_NOWARN;
928
929 gfp |= hugepage_movable_supported(h) ? GFP_HIGHUSER_MOVABLE : GFP_HIGHUSER;
930
931 return gfp;
d92bbc27
JK
932}
933
19fc7bed
JK
934static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
935{
936 gfp_t modified_mask = htlb_alloc_mask(h);
937
938 /* Some callers might want to enforce node */
939 modified_mask |= (gfp_mask & __GFP_THISNODE);
940
41b4dc14
JK
941 modified_mask |= (gfp_mask & __GFP_NOWARN);
942
19fc7bed
JK
943 return modified_mask;
944}
945
42d0c3fb
BW
946static inline bool htlb_allow_alloc_fallback(int reason)
947{
948 bool allowed_fallback = false;
949
950 /*
951 * Note: the memory offline, memory failure and migration syscalls will
952 * be allowed to fallback to other nodes due to lack of a better chioce,
953 * that might break the per-node hugetlb pool. While other cases will
954 * set the __GFP_THISNODE to avoid breaking the per-node hugetlb pool.
955 */
956 switch (reason) {
957 case MR_MEMORY_HOTPLUG:
958 case MR_MEMORY_FAILURE:
959 case MR_SYSCALL:
960 case MR_MEMPOLICY_MBIND:
961 allowed_fallback = true;
962 break;
963 default:
964 break;
965 }
966
967 return allowed_fallback;
968}
969
cb900f41
KS
970static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
971 struct mm_struct *mm, pte_t *pte)
972{
5f75cfbd
DH
973 const unsigned long size = huge_page_size(h);
974
975 VM_WARN_ON(size == PAGE_SIZE);
976
977 /*
978 * hugetlb must use the exact same PT locks as core-mm page table
979 * walkers would. When modifying a PTE table, hugetlb must take the
980 * PTE PT lock, when modifying a PMD table, hugetlb must take the PMD
981 * PT lock etc.
982 *
983 * The expectation is that any hugetlb folio smaller than a PMD is
984 * always mapped into a single PTE table and that any hugetlb folio
985 * smaller than a PUD (but at least as big as a PMD) is always mapped
986 * into a single PMD table.
987 *
988 * If that does not hold for an architecture, then that architecture
989 * must disable split PT locks such that all *_lockptr() functions
990 * will give us the same result: the per-MM PT lock.
991 *
992 * Note that with e.g., CONFIG_PGTABLE_LEVELS=2 where
993 * PGDIR_SIZE==P4D_SIZE==PUD_SIZE==PMD_SIZE, we'd use pud_lockptr()
994 * and core-mm would use pmd_lockptr(). However, in such configurations
995 * split PMD locks are disabled -- they don't make sense on a single
996 * PGDIR page table -- and the end result is the same.
997 */
998 if (size >= PUD_SIZE)
999 return pud_lockptr(mm, (pud_t *) pte);
1000 else if (size >= PMD_SIZE || IS_ENABLED(CONFIG_HIGHPTE))
cb900f41 1001 return pmd_lockptr(mm, (pmd_t *) pte);
5f75cfbd
DH
1002 /* pte_alloc_huge() only applies with !CONFIG_HIGHPTE */
1003 return ptep_lockptr(mm, pte);
cb900f41
KS
1004}
1005
2531c8cf
DD
1006#ifndef hugepages_supported
1007/*
1008 * Some platform decide whether they support huge pages at boot
1009 * time. Some of them, such as powerpc, set HPAGE_SHIFT to 0
1010 * when there is no such support
1011 */
1012#define hugepages_supported() (HPAGE_SHIFT != 0)
1013#endif
457c1b27 1014
5d317b2b
NH
1015void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm);
1016
13db8c50
LZ
1017static inline void hugetlb_count_init(struct mm_struct *mm)
1018{
1019 atomic_long_set(&mm->hugetlb_usage, 0);
1020}
1021
5d317b2b
NH
1022static inline void hugetlb_count_add(long l, struct mm_struct *mm)
1023{
1024 atomic_long_add(l, &mm->hugetlb_usage);
1025}
1026
1027static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1028{
1029 atomic_long_sub(l, &mm->hugetlb_usage);
1030}
e5251fd4 1031
023bdd00
AK
1032#ifndef huge_ptep_modify_prot_start
1033#define huge_ptep_modify_prot_start huge_ptep_modify_prot_start
1034static inline pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma,
1035 unsigned long addr, pte_t *ptep)
1036{
02410ac7
RR
1037 unsigned long psize = huge_page_size(hstate_vma(vma));
1038
1039 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep, psize);
023bdd00
AK
1040}
1041#endif
1042
1043#ifndef huge_ptep_modify_prot_commit
1044#define huge_ptep_modify_prot_commit huge_ptep_modify_prot_commit
1045static inline void huge_ptep_modify_prot_commit(struct vm_area_struct *vma,
1046 unsigned long addr, pte_t *ptep,
1047 pte_t old_pte, pte_t pte)
1048{
935d4f0c
RR
1049 unsigned long psize = huge_page_size(hstate_vma(vma));
1050
1051 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize);
023bdd00
AK
1052}
1053#endif
1054
a4a00b45
MS
1055#ifdef CONFIG_NUMA
1056void hugetlb_register_node(struct node *node);
1057void hugetlb_unregister_node(struct node *node);
1058#endif
1059
b79f8eb4
JY
1060/*
1061 * Check if a given raw @page in a hugepage is HWPOISON.
1062 */
1063bool is_raw_hwpoison_page_in_hugepage(struct page *page);
1064
7f24cbc9
OS
1065static inline unsigned long huge_page_mask_align(struct file *file)
1066{
1067 return PAGE_MASK & ~huge_page_mask(hstate_file(file));
1068}
1069
af73e4d9 1070#else /* CONFIG_HUGETLB_PAGE */
a5516438 1071struct hstate {};
442a5a9a 1072
7f24cbc9
OS
1073static inline unsigned long huge_page_mask_align(struct file *file)
1074{
1075 return 0;
1076}
1077
345c62d1
SK
1078static inline struct hugepage_subpool *hugetlb_folio_subpool(struct folio *folio)
1079{
1080 return NULL;
1081}
1082
a08c7193
SK
1083static inline struct folio *filemap_lock_hugetlb_folio(struct hstate *h,
1084 struct address_space *mapping, pgoff_t idx)
1085{
1086 return NULL;
1087}
1088
b4c829fa 1089static inline int isolate_or_dissolve_huge_folio(struct folio *folio,
ae37c7ff 1090 struct list_head *list)
369fa227
OS
1091{
1092 return -ENOMEM;
1093}
1094
04f13d24 1095static inline int replace_free_hugepage_folios(unsigned long start_pfn,
1096 unsigned long end_pfn)
1097{
1098 return 0;
1099}
1100
67bab133
GY
1101static inline void wait_for_freed_hugetlb_folios(void)
1102{
1103}
1104
d0ce0e47 1105static inline struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
442a5a9a 1106 unsigned long addr,
30cef82b 1107 bool cow_from_owner)
442a5a9a
JG
1108{
1109 return NULL;
1110}
1111
26a8ea80
SS
1112static inline struct folio *
1113alloc_hugetlb_folio_reserve(struct hstate *h, int preferred_nid,
1114 nodemask_t *nmask, gfp_t gfp_mask)
1115{
1116 return NULL;
1117}
1118
e37d3e83
SK
1119static inline struct folio *
1120alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
42d0c3fb
BW
1121 nodemask_t *nmask, gfp_t gfp_mask,
1122 bool allow_alloc_fallback)
442a5a9a
JG
1123{
1124 return NULL;
1125}
1126
442a5a9a
JG
1127static inline int __alloc_bootmem_huge_page(struct hstate *h)
1128{
1129 return 0;
1130}
1131
1132static inline struct hstate *hstate_file(struct file *f)
1133{
1134 return NULL;
1135}
1136
1137static inline struct hstate *hstate_sizelog(int page_size_log)
1138{
1139 return NULL;
1140}
1141
1142static inline struct hstate *hstate_vma(struct vm_area_struct *vma)
1143{
1144 return NULL;
442a5a9a
JG
1145}
1146
e51da3a9
SK
1147static inline struct hstate *folio_hstate(struct folio *folio)
1148{
1149 return NULL;
1150}
1151
2aff7a47
MWO
1152static inline struct hstate *size_to_hstate(unsigned long size)
1153{
1154 return NULL;
1155}
1156
442a5a9a
JG
1157static inline unsigned long huge_page_size(struct hstate *h)
1158{
1159 return PAGE_SIZE;
1160}
1161
1162static inline unsigned long huge_page_mask(struct hstate *h)
1163{
1164 return PAGE_MASK;
1165}
1166
1167static inline unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1168{
1169 return PAGE_SIZE;
1170}
1171
1172static inline unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1173{
1174 return PAGE_SIZE;
1175}
1176
1177static inline unsigned int huge_page_order(struct hstate *h)
1178{
1179 return 0;
1180}
1181
1182static inline unsigned int huge_page_shift(struct hstate *h)
1183{
1184 return PAGE_SHIFT;
1185}
1186
94310cbc
AK
1187static inline bool hstate_is_gigantic(struct hstate *h)
1188{
1189 return false;
1190}
1191
510a35d4
AR
1192static inline unsigned int pages_per_huge_page(struct hstate *h)
1193{
1194 return 1;
1195}
c3114a84
AK
1196
1197static inline unsigned hstate_index_to_shift(unsigned index)
1198{
1199 return 0;
1200}
1201
1202static inline int hstate_index(struct hstate *h)
1203{
1204 return 0;
1205}
13d60f4b 1206
54fa49b2 1207static inline int dissolve_free_hugetlb_folio(struct folio *folio)
c3114a84
AK
1208{
1209 return 0;
1210}
1211
d199483c 1212static inline int dissolve_free_hugetlb_folios(unsigned long start_pfn,
c3114a84
AK
1213 unsigned long end_pfn)
1214{
1215 return 0;
1216}
1217
1218static inline bool hugepage_migration_supported(struct hstate *h)
1219{
1220 return false;
1221}
cb900f41 1222
7ed2c31d
AK
1223static inline bool hugepage_movable_supported(struct hstate *h)
1224{
1225 return false;
1226}
1227
d92bbc27
JK
1228static inline gfp_t htlb_alloc_mask(struct hstate *h)
1229{
1230 return 0;
1231}
1232
19fc7bed
JK
1233static inline gfp_t htlb_modify_alloc_mask(struct hstate *h, gfp_t gfp_mask)
1234{
1235 return 0;
1236}
1237
42d0c3fb
BW
1238static inline bool htlb_allow_alloc_fallback(int reason)
1239{
1240 return false;
1241}
1242
cb900f41
KS
1243static inline spinlock_t *huge_pte_lockptr(struct hstate *h,
1244 struct mm_struct *mm, pte_t *pte)
1245{
1246 return &mm->page_table_lock;
1247}
5d317b2b 1248
13db8c50
LZ
1249static inline void hugetlb_count_init(struct mm_struct *mm)
1250{
1251}
1252
5d317b2b
NH
1253static inline void hugetlb_report_usage(struct seq_file *f, struct mm_struct *m)
1254{
1255}
1256
1257static inline void hugetlb_count_sub(long l, struct mm_struct *mm)
1258{
1259}
e5251fd4 1260
5d4af619
BW
1261static inline pte_t huge_ptep_clear_flush(struct vm_area_struct *vma,
1262 unsigned long addr, pte_t *ptep)
1263{
c33c7948
RR
1264#ifdef CONFIG_MMU
1265 return ptep_get(ptep);
1266#else
5d4af619 1267 return *ptep;
c33c7948 1268#endif
5d4af619
BW
1269}
1270
1271static inline void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
935d4f0c 1272 pte_t *ptep, pte_t pte, unsigned long sz)
5d4af619
BW
1273{
1274}
a4a00b45
MS
1275
1276static inline void hugetlb_register_node(struct node *node)
1277{
1278}
1279
1280static inline void hugetlb_unregister_node(struct node *node)
1281{
1282}
24334e78
PX
1283
1284static inline bool hugetlbfs_pagecache_present(
1285 struct hstate *h, struct vm_area_struct *vma, unsigned long address)
1286{
1287 return false;
1288}
5b47c029
FL
1289
1290static inline void hugetlb_bootmem_alloc(void)
1291{
1292}
d58b2498
FL
1293
1294static inline bool hugetlb_bootmem_allocated(void)
1295{
1296 return false;
1297}
af73e4d9 1298#endif /* CONFIG_HUGETLB_PAGE */
a5516438 1299
cb900f41
KS
1300static inline spinlock_t *huge_pte_lock(struct hstate *h,
1301 struct mm_struct *mm, pte_t *pte)
1302{
1303 spinlock_t *ptl;
1304
1305 ptl = huge_pte_lockptr(h, mm, pte);
1306 spin_lock(ptl);
1307 return ptl;
1308}
1309
cf11e85f
RG
1310#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
1311extern void __init hugetlb_cma_reserve(int order);
cf11e85f
RG
1312#else
1313static inline __init void hugetlb_cma_reserve(int order)
1314{
1315}
cf11e85f
RG
1316#endif
1317
188cac58 1318#ifdef CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING
3489dbb6
MK
1319static inline bool hugetlb_pmd_shared(pte_t *pte)
1320{
1321 return page_count(virt_to_page(pte)) > 1;
1322}
1323#else
1324static inline bool hugetlb_pmd_shared(pte_t *pte)
1325{
1326 return false;
1327}
1328#endif
1329
c1991e07
PX
1330bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr);
1331
537cf30b
PX
1332#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
1333/*
1334 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
1335 * implement this.
1336 */
1337#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1338#endif
1339
9c67a207
PX
1340static inline bool __vma_shareable_lock(struct vm_area_struct *vma)
1341{
1342 return (vma->vm_flags & VM_MAYSHARE) && vma->vm_private_data;
1343}
1344
187da0f8 1345bool __vma_private_lock(struct vm_area_struct *vma);
bf491692 1346
9c67a207
PX
1347/*
1348 * Safe version of huge_pte_offset() to check the locks. See comments
1349 * above huge_pte_offset().
1350 */
1351static inline pte_t *
1352hugetlb_walk(struct vm_area_struct *vma, unsigned long addr, unsigned long sz)
1353{
188cac58 1354#if defined(CONFIG_HUGETLB_PMD_PAGE_TABLE_SHARING) && defined(CONFIG_LOCKDEP)
9c67a207
PX
1355 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1356
1357 /*
1358 * If pmd sharing possible, locking needed to safely walk the
1359 * hugetlb pgtables. More information can be found at the comment
1360 * above huge_pte_offset() in the same file.
1361 *
1362 * NOTE: lockdep_is_held() is only defined with CONFIG_LOCKDEP.
1363 */
1364 if (__vma_shareable_lock(vma))
1365 WARN_ON_ONCE(!lockdep_is_held(&vma_lock->rw_sema) &&
1366 !lockdep_is_held(
1367 &vma->vm_file->f_mapping->i_mmap_rwsem));
1368#endif
1369 return huge_pte_offset(vma->vm_mm, addr, sz);
1370}
1371
1da177e4 1372#endif /* _LINUX_HUGETLB_H */