NVMe: Only release requested regions
[linux-2.6-block.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
c13c8260
CL
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
d2ebfb33
RKAL
17#ifndef LINUX_DMAENGINE_H
18#define LINUX_DMAENGINE_H
1c0f16e5 19
c13c8260 20#include <linux/device.h>
0ad7c000 21#include <linux/err.h>
c13c8260 22#include <linux/uio.h>
187f1882 23#include <linux/bug.h>
90b44f8f 24#include <linux/scatterlist.h>
a8efa9d6 25#include <linux/bitmap.h>
dcc043dc 26#include <linux/types.h>
a8efa9d6 27#include <asm/page.h>
b7f080cf 28
c13c8260 29/**
fe4ada2d 30 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34typedef s32 dma_cookie_t;
76bd061f 35#define DMA_MIN_COOKIE 1
c13c8260 36
71ea1483
DC
37static inline int dma_submit_error(dma_cookie_t cookie)
38{
39 return cookie < 0 ? cookie : 0;
40}
c13c8260
CL
41
42/**
43 * enum dma_status - DMA transaction status
adfedd9a 44 * @DMA_COMPLETE: transaction completed
c13c8260 45 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 46 * @DMA_PAUSED: transaction is paused
c13c8260
CL
47 * @DMA_ERROR: transaction failed
48 */
49enum dma_status {
7db5f727 50 DMA_COMPLETE,
c13c8260 51 DMA_IN_PROGRESS,
07934481 52 DMA_PAUSED,
c13c8260
CL
53 DMA_ERROR,
54};
55
7405f74b
DW
56/**
57 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
7405f74b
DW
61 */
62enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
b2f46fd8 65 DMA_PQ,
099f53cb
DW
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
4983a501 68 DMA_MEMSET,
50c7cd2b 69 DMA_MEMSET_SG,
7405f74b 70 DMA_INTERRUPT,
a86ee03c 71 DMA_SG,
59b5ec21 72 DMA_PRIVATE,
138f4c35 73 DMA_ASYNC_TX,
dc0ee643 74 DMA_SLAVE,
782bc950 75 DMA_CYCLIC,
b14dab79 76 DMA_INTERLEAVE,
7405f74b 77/* last transaction type for creation of the capabilities mask */
b14dab79
JB
78 DMA_TX_TYPE_END,
79};
dc0ee643 80
49920bc6
VK
81/**
82 * enum dma_transfer_direction - dma transfer mode and direction indicator
83 * @DMA_MEM_TO_MEM: Async/Memcpy mode
84 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
85 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
86 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
87 */
88enum dma_transfer_direction {
89 DMA_MEM_TO_MEM,
90 DMA_MEM_TO_DEV,
91 DMA_DEV_TO_MEM,
92 DMA_DEV_TO_DEV,
62268ce9 93 DMA_TRANS_NONE,
49920bc6 94};
7405f74b 95
b14dab79
JB
96/**
97 * Interleaved Transfer Request
98 * ----------------------------
99 * A chunk is collection of contiguous bytes to be transfered.
100 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
101 * ICGs may or maynot change between chunks.
102 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
103 * that when repeated an integral number of times, specifies the transfer.
104 * A transfer template is specification of a Frame, the number of times
105 * it is to be repeated and other per-transfer attributes.
106 *
107 * Practically, a client driver would have ready a template for each
108 * type of transfer it is going to need during its lifetime and
109 * set only 'src_start' and 'dst_start' before submitting the requests.
110 *
111 *
112 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
113 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
114 *
115 * == Chunk size
116 * ... ICG
117 */
118
119/**
120 * struct data_chunk - Element of scatter-gather list that makes a frame.
121 * @size: Number of bytes to read from source.
122 * size_dst := fn(op, size_src), so doesn't mean much for destination.
123 * @icg: Number of bytes to jump after last src/dst address of this
124 * chunk and before first src/dst address for next chunk.
125 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
126 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
e1031dc1
MR
127 * @dst_icg: Number of bytes to jump after last dst address of this
128 * chunk and before the first dst address for next chunk.
129 * Ignored if dst_inc is true and dst_sgl is false.
130 * @src_icg: Number of bytes to jump after last src address of this
131 * chunk and before the first src address for next chunk.
132 * Ignored if src_inc is true and src_sgl is false.
b14dab79
JB
133 */
134struct data_chunk {
135 size_t size;
136 size_t icg;
e1031dc1
MR
137 size_t dst_icg;
138 size_t src_icg;
b14dab79
JB
139};
140
141/**
142 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
143 * and attributes.
144 * @src_start: Bus address of source for the first chunk.
145 * @dst_start: Bus address of destination for the first chunk.
146 * @dir: Specifies the type of Source and Destination.
147 * @src_inc: If the source address increments after reading from it.
148 * @dst_inc: If the destination address increments after writing to it.
149 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
150 * Otherwise, source is read contiguously (icg ignored).
151 * Ignored if src_inc is false.
152 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
153 * Otherwise, destination is filled contiguously (icg ignored).
154 * Ignored if dst_inc is false.
155 * @numf: Number of frames in this template.
156 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
157 * @sgl: Array of {chunk,icg} pairs that make up a frame.
158 */
159struct dma_interleaved_template {
160 dma_addr_t src_start;
161 dma_addr_t dst_start;
162 enum dma_transfer_direction dir;
163 bool src_inc;
164 bool dst_inc;
165 bool src_sgl;
166 bool dst_sgl;
167 size_t numf;
168 size_t frame_size;
169 struct data_chunk sgl[0];
170};
171
d4c56f97 172/**
636bdeaa 173 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 174 * control completion, and communicate status.
d4c56f97 175 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 176 * this transaction
a88f6667 177 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
178 * acknowledges receipt, i.e. has has a chance to establish any dependency
179 * chains
b2f46fd8
DW
180 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
181 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
182 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
183 * sources that were the result of a previous operation, in the case of a PQ
184 * operation it continues the calculation with new sources
0403e382
DW
185 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
186 * on the result of this operation
27242021
VK
187 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
188 * cleared or freed
d4c56f97 189 */
636bdeaa 190enum dma_ctrl_flags {
d4c56f97 191 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 192 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
193 DMA_PREP_PQ_DISABLE_P = (1 << 2),
194 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
195 DMA_PREP_CONTINUE = (1 << 4),
196 DMA_PREP_FENCE = (1 << 5),
27242021 197 DMA_CTRL_REUSE = (1 << 6),
d4c56f97
DW
198};
199
ad283ea4
DW
200/**
201 * enum sum_check_bits - bit position of pq_check_flags
202 */
203enum sum_check_bits {
204 SUM_CHECK_P = 0,
205 SUM_CHECK_Q = 1,
206};
207
208/**
209 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
210 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
211 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
212 */
213enum sum_check_flags {
214 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
215 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
216};
217
218
7405f74b
DW
219/**
220 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
221 * See linux/cpumask.h
222 */
223typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
224
c13c8260
CL
225/**
226 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
227 * @memcpy_count: transaction counter
228 * @bytes_transferred: byte counter
229 */
230
231struct dma_chan_percpu {
c13c8260
CL
232 /* stats */
233 unsigned long memcpy_count;
234 unsigned long bytes_transferred;
235};
236
56f13c0d
PU
237/**
238 * struct dma_router - DMA router structure
239 * @dev: pointer to the DMA router device
240 * @route_free: function to be called when the route can be disconnected
241 */
242struct dma_router {
243 struct device *dev;
244 void (*route_free)(struct device *dev, void *route_data);
245};
246
c13c8260
CL
247/**
248 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 249 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 250 * @cookie: last cookie value returned to client
4d4e58de 251 * @completed_cookie: last completed cookie for this channel
fe4ada2d 252 * @chan_id: channel ID for sysfs
41d5e59c 253 * @dev: class device for sysfs
c13c8260
CL
254 * @device_node: used to add this to the device chan list
255 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 256 * @client_count: how many clients are using this channel
bec08513 257 * @table_count: number of appearances in the mem-to-mem allocation table
56f13c0d
PU
258 * @router: pointer to the DMA router structure
259 * @route_data: channel specific data for the router
287d8592 260 * @private: private data for certain client-channel associations
c13c8260
CL
261 */
262struct dma_chan {
c13c8260
CL
263 struct dma_device *device;
264 dma_cookie_t cookie;
4d4e58de 265 dma_cookie_t completed_cookie;
c13c8260
CL
266
267 /* sysfs */
268 int chan_id;
41d5e59c 269 struct dma_chan_dev *dev;
c13c8260 270
c13c8260 271 struct list_head device_node;
a29d8b8e 272 struct dma_chan_percpu __percpu *local;
7cc5bf9a 273 int client_count;
bec08513 274 int table_count;
56f13c0d
PU
275
276 /* DMA router */
277 struct dma_router *router;
278 void *route_data;
279
287d8592 280 void *private;
c13c8260
CL
281};
282
41d5e59c
DW
283/**
284 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
285 * @chan: driver channel device
286 * @device: sysfs device
287 * @dev_id: parent dma_device dev_id
288 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
289 */
290struct dma_chan_dev {
291 struct dma_chan *chan;
292 struct device device;
864498aa
DW
293 int dev_id;
294 atomic_t *idr_ref;
41d5e59c
DW
295};
296
c156d0a5 297/**
ba730340 298 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
299 * device, source or target buses
300 */
301enum dma_slave_buswidth {
302 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
303 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
304 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 305 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
306 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
307 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
534a7298
LP
308 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
309 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
310 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
c156d0a5
LW
311};
312
313/**
314 * struct dma_slave_config - dma slave channel runtime config
315 * @direction: whether the data shall go in or out on this slave
397321f4 316 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
317 * legal values. DEPRECATED, drivers should use the direction argument
318 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
319 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
320 * @src_addr: this is the physical address where DMA slave data
321 * should be read (RX), if the source is memory this argument is
322 * ignored.
323 * @dst_addr: this is the physical address where DMA slave data
324 * should be written (TX), if the source is memory this argument
325 * is ignored.
326 * @src_addr_width: this is the width in bytes of the source (RX)
327 * register where DMA data shall be read. If the source
328 * is memory this may be ignored depending on architecture.
329 * Legal values: 1, 2, 4, 8.
330 * @dst_addr_width: same as src_addr_width but for destination
331 * target (TX) mutatis mutandis.
332 * @src_maxburst: the maximum number of words (note: words, as in
333 * units of the src_addr_width member, not bytes) that can be sent
334 * in one burst to the device. Typically something like half the
335 * FIFO depth on I/O peripherals so you don't overflow it. This
336 * may or may not be applicable on memory sources.
337 * @dst_maxburst: same as src_maxburst but for destination target
338 * mutatis mutandis.
dcc043dc
VK
339 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
340 * with 'true' if peripheral should be flow controller. Direction will be
341 * selected at Runtime.
4fd1e324
LD
342 * @slave_id: Slave requester id. Only valid for slave channels. The dma
343 * slave peripheral will have unique id as dma requester which need to be
344 * pass as slave config.
c156d0a5
LW
345 *
346 * This struct is passed in as configuration data to a DMA engine
347 * in order to set up a certain channel for DMA transport at runtime.
348 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
349 * callback in the dma_device structure, device_config and this struct
350 * will then be passed in as an argument to the function.
c156d0a5 351 *
7cbccb55
LPC
352 * The rationale for adding configuration information to this struct is as
353 * follows: if it is likely that more than one DMA slave controllers in
354 * the world will support the configuration option, then make it generic.
355 * If not: if it is fixed so that it be sent in static from the platform
356 * data, then prefer to do that.
c156d0a5
LW
357 */
358struct dma_slave_config {
49920bc6 359 enum dma_transfer_direction direction;
95756320
VK
360 phys_addr_t src_addr;
361 phys_addr_t dst_addr;
c156d0a5
LW
362 enum dma_slave_buswidth src_addr_width;
363 enum dma_slave_buswidth dst_addr_width;
364 u32 src_maxburst;
365 u32 dst_maxburst;
dcc043dc 366 bool device_fc;
4fd1e324 367 unsigned int slave_id;
c156d0a5
LW
368};
369
50720563
LPC
370/**
371 * enum dma_residue_granularity - Granularity of the reported transfer residue
372 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
373 * DMA channel is only able to tell whether a descriptor has been completed or
374 * not, which means residue reporting is not supported by this channel. The
375 * residue field of the dma_tx_state field will always be 0.
376 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
377 * completed segment of the transfer (For cyclic transfers this is after each
378 * period). This is typically implemented by having the hardware generate an
379 * interrupt after each transferred segment and then the drivers updates the
380 * outstanding residue by the size of the segment. Another possibility is if
381 * the hardware supports scatter-gather and the segment descriptor has a field
382 * which gets set after the segment has been completed. The driver then counts
383 * the number of segments without the flag set to compute the residue.
384 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
385 * burst. This is typically only supported if the hardware has a progress
386 * register of some sort (E.g. a register with the current read/write address
387 * or a register with the amount of bursts/beats/bytes that have been
388 * transferred or still need to be transferred).
389 */
390enum dma_residue_granularity {
391 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
392 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
393 DMA_RESIDUE_GRANULARITY_BURST = 2,
394};
395
221a27c7
VK
396/* struct dma_slave_caps - expose capabilities of a slave channel only
397 *
398 * @src_addr_widths: bit mask of src addr widths the channel supports
ceacbdbf 399 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
221a27c7
VK
400 * @directions: bit mask of slave direction the channel supported
401 * since the enum dma_transfer_direction is not defined as bits for each
402 * type of direction, the dma controller should fill (1 << <TYPE>) and same
403 * should be checked by controller as well
6d5bbed3 404 * @max_burst: max burst capability per-transfer
221a27c7
VK
405 * @cmd_pause: true, if pause and thereby resume is supported
406 * @cmd_terminate: true, if terminate cmd is supported
50720563 407 * @residue_granularity: granularity of the reported transfer residue
27242021
VK
408 * @descriptor_reuse: if a descriptor can be reused by client and
409 * resubmitted multiple times
221a27c7
VK
410 */
411struct dma_slave_caps {
412 u32 src_addr_widths;
ceacbdbf 413 u32 dst_addr_widths;
221a27c7 414 u32 directions;
6d5bbed3 415 u32 max_burst;
221a27c7
VK
416 bool cmd_pause;
417 bool cmd_terminate;
50720563 418 enum dma_residue_granularity residue_granularity;
27242021 419 bool descriptor_reuse;
221a27c7
VK
420};
421
41d5e59c
DW
422static inline const char *dma_chan_name(struct dma_chan *chan)
423{
424 return dev_name(&chan->dev->device);
425}
d379b01e 426
c13c8260
CL
427void dma_chan_cleanup(struct kref *kref);
428
59b5ec21
DW
429/**
430 * typedef dma_filter_fn - callback filter for dma_request_channel
431 * @chan: channel to be reviewed
432 * @filter_param: opaque parameter passed through dma_request_channel
433 *
434 * When this optional parameter is specified in a call to dma_request_channel a
435 * suitable channel is passed to this routine for further dispositioning before
436 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
437 * satisfies the given capability mask. It returns 'true' to indicate that the
438 * channel is suitable.
59b5ec21 439 */
7dd60251 440typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 441
7405f74b 442typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62
DW
443
444struct dmaengine_unmap_data {
c1f43dd9 445 u8 map_cnt;
d38a8c62
DW
446 u8 to_cnt;
447 u8 from_cnt;
448 u8 bidi_cnt;
449 struct device *dev;
450 struct kref kref;
451 size_t len;
452 dma_addr_t addr[0];
453};
454
7405f74b
DW
455/**
456 * struct dma_async_tx_descriptor - async transaction descriptor
457 * ---dma generic offload fields---
458 * @cookie: tracking cookie for this transaction, set to -EBUSY if
459 * this tx is sitting on a dependency list
636bdeaa
DW
460 * @flags: flags to augment operation preparation, control completion, and
461 * communicate status
7405f74b 462 * @phys: physical address of the descriptor
7405f74b 463 * @chan: target channel for this operation
aba96bad
VK
464 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
465 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
466 * @callback: routine to call after this operation is complete
467 * @callback_param: general parameter to pass to the callback routine
468 * ---async_tx api specific fields---
19242d72 469 * @next: at completion submit this descriptor
7405f74b 470 * @parent: pointer to the next level up in the dependency chain
19242d72 471 * @lock: protect the parent and next pointers
7405f74b
DW
472 */
473struct dma_async_tx_descriptor {
474 dma_cookie_t cookie;
636bdeaa 475 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 476 dma_addr_t phys;
7405f74b
DW
477 struct dma_chan *chan;
478 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
27242021 479 int (*desc_free)(struct dma_async_tx_descriptor *tx);
7405f74b
DW
480 dma_async_tx_callback callback;
481 void *callback_param;
d38a8c62 482 struct dmaengine_unmap_data *unmap;
5fc6d897 483#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 484 struct dma_async_tx_descriptor *next;
7405f74b
DW
485 struct dma_async_tx_descriptor *parent;
486 spinlock_t lock;
caa20d97 487#endif
7405f74b
DW
488};
489
89716462 490#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
491static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
492 struct dmaengine_unmap_data *unmap)
493{
494 kref_get(&unmap->kref);
495 tx->unmap = unmap;
496}
497
89716462
DW
498struct dmaengine_unmap_data *
499dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 500void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
501#else
502static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
503 struct dmaengine_unmap_data *unmap)
504{
505}
506static inline struct dmaengine_unmap_data *
507dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
508{
509 return NULL;
510}
511static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
512{
513}
514#endif
45c463ae 515
d38a8c62
DW
516static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
517{
518 if (tx->unmap) {
45c463ae 519 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
520 tx->unmap = NULL;
521 }
522}
523
5fc6d897 524#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
525static inline void txd_lock(struct dma_async_tx_descriptor *txd)
526{
527}
528static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
529{
530}
531static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
532{
533 BUG();
534}
535static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
536{
537}
538static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
539{
540}
541static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
542{
543 return NULL;
544}
545static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
546{
547 return NULL;
548}
549
550#else
551static inline void txd_lock(struct dma_async_tx_descriptor *txd)
552{
553 spin_lock_bh(&txd->lock);
554}
555static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
556{
557 spin_unlock_bh(&txd->lock);
558}
559static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
560{
561 txd->next = next;
562 next->parent = txd;
563}
564static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
565{
566 txd->parent = NULL;
567}
568static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
569{
570 txd->next = NULL;
571}
572static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
573{
574 return txd->parent;
575}
576static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
577{
578 return txd->next;
579}
580#endif
581
07934481
LW
582/**
583 * struct dma_tx_state - filled in to report the status of
584 * a transfer.
585 * @last: last completed DMA cookie
586 * @used: last issued DMA cookie (i.e. the one in progress)
587 * @residue: the remaining number of bytes left to transmit
588 * on the selected transfer for states DMA_IN_PROGRESS and
589 * DMA_PAUSED if this is implemented in the driver, else 0
590 */
591struct dma_tx_state {
592 dma_cookie_t last;
593 dma_cookie_t used;
594 u32 residue;
595};
596
77a68e56
MR
597/**
598 * enum dmaengine_alignment - defines alignment of the DMA async tx
599 * buffers
600 */
601enum dmaengine_alignment {
602 DMAENGINE_ALIGN_1_BYTE = 0,
603 DMAENGINE_ALIGN_2_BYTES = 1,
604 DMAENGINE_ALIGN_4_BYTES = 2,
605 DMAENGINE_ALIGN_8_BYTES = 3,
606 DMAENGINE_ALIGN_16_BYTES = 4,
607 DMAENGINE_ALIGN_32_BYTES = 5,
608 DMAENGINE_ALIGN_64_BYTES = 6,
609};
610
a8135d0d
PU
611/**
612 * struct dma_slave_map - associates slave device and it's slave channel with
613 * parameter to be used by a filter function
614 * @devname: name of the device
615 * @slave: slave channel name
616 * @param: opaque parameter to pass to struct dma_filter.fn
617 */
618struct dma_slave_map {
619 const char *devname;
620 const char *slave;
621 void *param;
622};
623
624/**
625 * struct dma_filter - information for slave device/channel to filter_fn/param
626 * mapping
627 * @fn: filter function callback
628 * @mapcnt: number of slave device/channel in the map
629 * @map: array of channel to filter mapping data
630 */
631struct dma_filter {
632 dma_filter_fn fn;
633 int mapcnt;
634 const struct dma_slave_map *map;
635};
636
c13c8260
CL
637/**
638 * struct dma_device - info on the entity supplying DMA services
639 * @chancnt: how many DMA channels are supported
0f571515 640 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
641 * @channels: the list of struct dma_chan
642 * @global_node: list_head for global dma_device_list
a8135d0d 643 * @filter: information for device/slave to filter function/param mapping
7405f74b
DW
644 * @cap_mask: one or more dma_capability flags
645 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 646 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
647 * @copy_align: alignment shift for memcpy operations
648 * @xor_align: alignment shift for xor operations
649 * @pq_align: alignment shift for pq operations
4983a501 650 * @fill_align: alignment shift for memset operations
fe4ada2d 651 * @dev_id: unique device ID
7405f74b 652 * @dev: struct device reference for dma mapping api
cb8cea51
MR
653 * @src_addr_widths: bit mask of src addr widths the device supports
654 * @dst_addr_widths: bit mask of dst addr widths the device supports
655 * @directions: bit mask of slave direction the device supports since
656 * the enum dma_transfer_direction is not defined as bits for
657 * each type of direction, the dma controller should fill (1 <<
658 * <TYPE>) and same should be checked by controller as well
6d5bbed3 659 * @max_burst: max burst capability per-transfer
cb8cea51
MR
660 * @residue_granularity: granularity of the transfer residue reported
661 * by tx_status
fe4ada2d
RD
662 * @device_alloc_chan_resources: allocate resources and return the
663 * number of allocated descriptors
664 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
665 * @device_prep_dma_memcpy: prepares a memcpy operation
666 * @device_prep_dma_xor: prepares a xor operation
099f53cb 667 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
668 * @device_prep_dma_pq: prepares a pq operation
669 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
4983a501 670 * @device_prep_dma_memset: prepares a memset operation
50c7cd2b 671 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
7405f74b 672 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 673 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
674 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
675 * The function takes a buffer of size buf_len. The callback function will
676 * be called after period_len bytes have been transferred.
b14dab79 677 * @device_prep_interleaved_dma: Transfer expression in a generic way.
ff39988a 678 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
94a73e30
MR
679 * @device_config: Pushes a new configuration to a channel, return 0 or an error
680 * code
23a3ea2f
MR
681 * @device_pause: Pauses any transfer happening on a channel. Returns
682 * 0 or an error code
683 * @device_resume: Resumes any transfer on a channel previously
684 * paused. Returns 0 or an error code
7fa0cf46
MR
685 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
686 * or an error code
b36f09c3
LPC
687 * @device_synchronize: Synchronizes the termination of a transfers to the
688 * current context.
07934481
LW
689 * @device_tx_status: poll for transaction completion, the optional
690 * txstate parameter can be supplied with a pointer to get a
25985edc 691 * struct with auxiliary transfer status information, otherwise the call
07934481 692 * will just return a simple status code
7405f74b 693 * @device_issue_pending: push pending transactions to hardware
9eeacd3a 694 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
c13c8260
CL
695 */
696struct dma_device {
697
698 unsigned int chancnt;
0f571515 699 unsigned int privatecnt;
c13c8260
CL
700 struct list_head channels;
701 struct list_head global_node;
a8135d0d 702 struct dma_filter filter;
7405f74b 703 dma_cap_mask_t cap_mask;
b2f46fd8
DW
704 unsigned short max_xor;
705 unsigned short max_pq;
77a68e56
MR
706 enum dmaengine_alignment copy_align;
707 enum dmaengine_alignment xor_align;
708 enum dmaengine_alignment pq_align;
709 enum dmaengine_alignment fill_align;
b2f46fd8 710 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 711
c13c8260 712 int dev_id;
7405f74b 713 struct device *dev;
c13c8260 714
cb8cea51
MR
715 u32 src_addr_widths;
716 u32 dst_addr_widths;
717 u32 directions;
6d5bbed3 718 u32 max_burst;
9eeacd3a 719 bool descriptor_reuse;
cb8cea51
MR
720 enum dma_residue_granularity residue_granularity;
721
aa1e6f1a 722 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 723 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
724
725 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 726 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 727 size_t len, unsigned long flags);
7405f74b 728 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 729 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 730 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 731 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 732 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 733 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
734 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
735 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
736 unsigned int src_cnt, const unsigned char *scf,
737 size_t len, unsigned long flags);
738 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
739 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
740 unsigned int src_cnt, const unsigned char *scf, size_t len,
741 enum sum_check_flags *pqres, unsigned long flags);
4983a501
MR
742 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
743 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
744 unsigned long flags);
50c7cd2b
MR
745 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
746 struct dma_chan *chan, struct scatterlist *sg,
747 unsigned int nents, int value, unsigned long flags);
7405f74b 748 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 749 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
750 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
751 struct dma_chan *chan,
752 struct scatterlist *dst_sg, unsigned int dst_nents,
753 struct scatterlist *src_sg, unsigned int src_nents,
754 unsigned long flags);
7405f74b 755
dc0ee643
HS
756 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
757 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 758 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 759 unsigned long flags, void *context);
782bc950
SH
760 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
761 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 762 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 763 unsigned long flags);
b14dab79
JB
764 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
765 struct dma_chan *chan, struct dma_interleaved_template *xt,
766 unsigned long flags);
ff39988a
SY
767 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
768 struct dma_chan *chan, dma_addr_t dst, u64 data,
769 unsigned long flags);
94a73e30
MR
770
771 int (*device_config)(struct dma_chan *chan,
772 struct dma_slave_config *config);
23a3ea2f
MR
773 int (*device_pause)(struct dma_chan *chan);
774 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 775 int (*device_terminate_all)(struct dma_chan *chan);
b36f09c3 776 void (*device_synchronize)(struct dma_chan *chan);
dc0ee643 777
07934481
LW
778 enum dma_status (*device_tx_status)(struct dma_chan *chan,
779 dma_cookie_t cookie,
780 struct dma_tx_state *txstate);
7405f74b 781 void (*device_issue_pending)(struct dma_chan *chan);
c13c8260
CL
782};
783
6e3ecaf0
SH
784static inline int dmaengine_slave_config(struct dma_chan *chan,
785 struct dma_slave_config *config)
786{
94a73e30
MR
787 if (chan->device->device_config)
788 return chan->device->device_config(chan, config);
789
2c44ad91 790 return -ENOSYS;
6e3ecaf0
SH
791}
792
61cc13a5
AS
793static inline bool is_slave_direction(enum dma_transfer_direction direction)
794{
795 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
796}
797
90b44f8f 798static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 799 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 800 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
801{
802 struct scatterlist sg;
922ee08b
KM
803 sg_init_table(&sg, 1);
804 sg_dma_address(&sg) = buf;
805 sg_dma_len(&sg) = len;
90b44f8f 806
757d12e5
VK
807 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
808 return NULL;
809
185ecb5f
AB
810 return chan->device->device_prep_slave_sg(chan, &sg, 1,
811 dir, flags, NULL);
90b44f8f
VK
812}
813
16052827
AB
814static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
815 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
816 enum dma_transfer_direction dir, unsigned long flags)
817{
757d12e5
VK
818 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
819 return NULL;
820
16052827 821 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 822 dir, flags, NULL);
16052827
AB
823}
824
e42d98eb
AB
825#ifdef CONFIG_RAPIDIO_DMA_ENGINE
826struct rio_dma_ext;
827static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
828 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
829 enum dma_transfer_direction dir, unsigned long flags,
830 struct rio_dma_ext *rio_ext)
831{
757d12e5
VK
832 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
833 return NULL;
834
e42d98eb
AB
835 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
836 dir, flags, rio_ext);
837}
838#endif
839
16052827
AB
840static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
841 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
842 size_t period_len, enum dma_transfer_direction dir,
843 unsigned long flags)
16052827 844{
757d12e5
VK
845 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
846 return NULL;
847
16052827 848 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 849 period_len, dir, flags);
a14acb4a
BS
850}
851
852static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
853 struct dma_chan *chan, struct dma_interleaved_template *xt,
854 unsigned long flags)
855{
757d12e5
VK
856 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
857 return NULL;
858
a14acb4a 859 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
860}
861
4983a501
MR
862static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
863 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
864 unsigned long flags)
865{
757d12e5 866 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
4983a501
MR
867 return NULL;
868
869 return chan->device->device_prep_dma_memset(chan, dest, value,
870 len, flags);
871}
872
b65612a8
VK
873static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
874 struct dma_chan *chan,
875 struct scatterlist *dst_sg, unsigned int dst_nents,
876 struct scatterlist *src_sg, unsigned int src_nents,
877 unsigned long flags)
878{
757d12e5
VK
879 if (!chan || !chan->device || !chan->device->device_prep_dma_sg)
880 return NULL;
881
b65612a8
VK
882 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
883 src_sg, src_nents, flags);
884}
885
b36f09c3
LPC
886/**
887 * dmaengine_terminate_all() - Terminate all active DMA transfers
888 * @chan: The channel for which to terminate the transfers
889 *
890 * This function is DEPRECATED use either dmaengine_terminate_sync() or
891 * dmaengine_terminate_async() instead.
892 */
6e3ecaf0
SH
893static inline int dmaengine_terminate_all(struct dma_chan *chan)
894{
7fa0cf46
MR
895 if (chan->device->device_terminate_all)
896 return chan->device->device_terminate_all(chan);
897
2c44ad91 898 return -ENOSYS;
6e3ecaf0
SH
899}
900
b36f09c3
LPC
901/**
902 * dmaengine_terminate_async() - Terminate all active DMA transfers
903 * @chan: The channel for which to terminate the transfers
904 *
905 * Calling this function will terminate all active and pending descriptors
906 * that have previously been submitted to the channel. It is not guaranteed
907 * though that the transfer for the active descriptor has stopped when the
908 * function returns. Furthermore it is possible the complete callback of a
909 * submitted transfer is still running when this function returns.
910 *
911 * dmaengine_synchronize() needs to be called before it is safe to free
912 * any memory that is accessed by previously submitted descriptors or before
913 * freeing any resources accessed from within the completion callback of any
914 * perviously submitted descriptors.
915 *
916 * This function can be called from atomic context as well as from within a
917 * complete callback of a descriptor submitted on the same channel.
918 *
919 * If none of the two conditions above apply consider using
920 * dmaengine_terminate_sync() instead.
921 */
922static inline int dmaengine_terminate_async(struct dma_chan *chan)
923{
924 if (chan->device->device_terminate_all)
925 return chan->device->device_terminate_all(chan);
926
927 return -EINVAL;
928}
929
930/**
931 * dmaengine_synchronize() - Synchronize DMA channel termination
932 * @chan: The channel to synchronize
933 *
934 * Synchronizes to the DMA channel termination to the current context. When this
935 * function returns it is guaranteed that all transfers for previously issued
936 * descriptors have stopped and and it is safe to free the memory assoicated
937 * with them. Furthermore it is guaranteed that all complete callback functions
938 * for a previously submitted descriptor have finished running and it is safe to
939 * free resources accessed from within the complete callbacks.
940 *
941 * The behavior of this function is undefined if dma_async_issue_pending() has
942 * been called between dmaengine_terminate_async() and this function.
943 *
944 * This function must only be called from non-atomic context and must not be
945 * called from within a complete callback of a descriptor submitted on the same
946 * channel.
947 */
948static inline void dmaengine_synchronize(struct dma_chan *chan)
949{
b1d6ab1a
LPC
950 might_sleep();
951
b36f09c3
LPC
952 if (chan->device->device_synchronize)
953 chan->device->device_synchronize(chan);
954}
955
956/**
957 * dmaengine_terminate_sync() - Terminate all active DMA transfers
958 * @chan: The channel for which to terminate the transfers
959 *
960 * Calling this function will terminate all active and pending transfers
961 * that have previously been submitted to the channel. It is similar to
962 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
963 * stopped and that all complete callbacks have finished running when the
964 * function returns.
965 *
966 * This function must only be called from non-atomic context and must not be
967 * called from within a complete callback of a descriptor submitted on the same
968 * channel.
969 */
970static inline int dmaengine_terminate_sync(struct dma_chan *chan)
971{
972 int ret;
973
974 ret = dmaengine_terminate_async(chan);
975 if (ret)
976 return ret;
977
978 dmaengine_synchronize(chan);
979
980 return 0;
981}
982
6e3ecaf0
SH
983static inline int dmaengine_pause(struct dma_chan *chan)
984{
23a3ea2f
MR
985 if (chan->device->device_pause)
986 return chan->device->device_pause(chan);
987
2c44ad91 988 return -ENOSYS;
6e3ecaf0
SH
989}
990
991static inline int dmaengine_resume(struct dma_chan *chan)
992{
23a3ea2f
MR
993 if (chan->device->device_resume)
994 return chan->device->device_resume(chan);
995
2c44ad91 996 return -ENOSYS;
6e3ecaf0
SH
997}
998
3052cc2c
LPC
999static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1000 dma_cookie_t cookie, struct dma_tx_state *state)
1001{
1002 return chan->device->device_tx_status(chan, cookie, state);
1003}
1004
98d530fe 1005static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
1006{
1007 return desc->tx_submit(desc);
1008}
1009
77a68e56
MR
1010static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1011 size_t off1, size_t off2, size_t len)
83544ae9
DW
1012{
1013 size_t mask;
1014
1015 if (!align)
1016 return true;
1017 mask = (1 << align) - 1;
1018 if (mask & (off1 | off2 | len))
1019 return false;
1020 return true;
1021}
1022
1023static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1024 size_t off2, size_t len)
1025{
1026 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1027}
1028
1029static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1030 size_t off2, size_t len)
1031{
1032 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1033}
1034
1035static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1036 size_t off2, size_t len)
1037{
1038 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1039}
1040
4983a501
MR
1041static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1042 size_t off2, size_t len)
1043{
1044 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1045}
1046
b2f46fd8
DW
1047static inline void
1048dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1049{
1050 dma->max_pq = maxpq;
1051 if (has_pq_continue)
1052 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1053}
1054
1055static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1056{
1057 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1058}
1059
1060static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1061{
1062 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1063
1064 return (flags & mask) == mask;
1065}
1066
1067static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1068{
1069 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1070}
1071
d3f3cf85 1072static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
1073{
1074 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1075}
1076
1077/* dma_maxpq - reduce maxpq in the face of continued operations
1078 * @dma - dma device with PQ capability
1079 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1080 *
1081 * When an engine does not support native continuation we need 3 extra
1082 * source slots to reuse P and Q with the following coefficients:
1083 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1084 * 2/ {01} * Q : use Q to continue Q' calculation
1085 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1086 *
1087 * In the case where P is disabled we only need 1 extra source:
1088 * 1/ {01} * Q : use Q to continue Q' calculation
1089 */
1090static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1091{
1092 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1093 return dma_dev_to_maxpq(dma);
1094 else if (dmaf_p_disabled_continue(flags))
1095 return dma_dev_to_maxpq(dma) - 1;
1096 else if (dmaf_continue(flags))
1097 return dma_dev_to_maxpq(dma) - 3;
1098 BUG();
1099}
1100
87d001ef
MR
1101static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1102 size_t dir_icg)
1103{
1104 if (inc) {
1105 if (dir_icg)
1106 return dir_icg;
1107 else if (sgl)
1108 return icg;
1109 }
1110
1111 return 0;
1112}
1113
1114static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1115 struct data_chunk *chunk)
1116{
1117 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1118 chunk->icg, chunk->dst_icg);
1119}
1120
1121static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1122 struct data_chunk *chunk)
1123{
1124 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1125 chunk->icg, chunk->src_icg);
1126}
1127
c13c8260
CL
1128/* --- public DMA engine API --- */
1129
649274d9 1130#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
1131void dmaengine_get(void);
1132void dmaengine_put(void);
649274d9
DW
1133#else
1134static inline void dmaengine_get(void)
1135{
1136}
1137static inline void dmaengine_put(void)
1138{
1139}
1140#endif
1141
729b5d1b
DW
1142#ifdef CONFIG_ASYNC_TX_DMA
1143#define async_dmaengine_get() dmaengine_get()
1144#define async_dmaengine_put() dmaengine_put()
5fc6d897 1145#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
1146#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1147#else
729b5d1b 1148#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 1149#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
1150#else
1151static inline void async_dmaengine_get(void)
1152{
1153}
1154static inline void async_dmaengine_put(void)
1155{
1156}
1157static inline struct dma_chan *
1158async_dma_find_channel(enum dma_transaction_type type)
1159{
1160 return NULL;
1161}
138f4c35 1162#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 1163void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 1164 struct dma_chan *chan);
c13c8260 1165
0839875e 1166static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 1167{
636bdeaa
DW
1168 tx->flags |= DMA_CTRL_ACK;
1169}
1170
ef560682
GL
1171static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1172{
1173 tx->flags &= ~DMA_CTRL_ACK;
1174}
1175
0839875e 1176static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 1177{
0839875e 1178 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
1179}
1180
7405f74b
DW
1181#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1182static inline void
1183__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 1184{
7405f74b
DW
1185 set_bit(tx_type, dstp->bits);
1186}
c13c8260 1187
0f571515
AN
1188#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1189static inline void
1190__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1191{
1192 clear_bit(tx_type, dstp->bits);
1193}
1194
33df8ca0
DW
1195#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1196static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1197{
1198 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1199}
1200
7405f74b
DW
1201#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1202static inline int
1203__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1204{
1205 return test_bit(tx_type, srcp->bits);
c13c8260
CL
1206}
1207
7405f74b 1208#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 1209 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1210
c13c8260 1211/**
7405f74b 1212 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1213 * @chan: target DMA channel
c13c8260
CL
1214 *
1215 * This allows drivers to push copies to HW in batches,
1216 * reducing MMIO writes where possible.
1217 */
7405f74b 1218static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1219{
ec8670f1 1220 chan->device->device_issue_pending(chan);
c13c8260
CL
1221}
1222
1223/**
7405f74b 1224 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1225 * @chan: DMA channel
1226 * @cookie: transaction identifier to check status of
1227 * @last: returns last completed cookie, can be NULL
1228 * @used: returns last issued cookie, can be NULL
1229 *
1230 * If @last and @used are passed in, upon return they reflect the driver
1231 * internal state and can be used with dma_async_is_complete() to check
1232 * the status of multiple cookies without re-checking hardware state.
1233 */
7405f74b 1234static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1235 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1236{
07934481
LW
1237 struct dma_tx_state state;
1238 enum dma_status status;
1239
1240 status = chan->device->device_tx_status(chan, cookie, &state);
1241 if (last)
1242 *last = state.last;
1243 if (used)
1244 *used = state.used;
1245 return status;
c13c8260
CL
1246}
1247
1248/**
1249 * dma_async_is_complete - test a cookie against chan state
1250 * @cookie: transaction identifier to test status of
1251 * @last_complete: last know completed transaction
1252 * @last_used: last cookie value handed out
1253 *
e239345f 1254 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1255 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1256 */
1257static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1258 dma_cookie_t last_complete, dma_cookie_t last_used)
1259{
1260 if (last_complete <= last_used) {
1261 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1262 return DMA_COMPLETE;
c13c8260
CL
1263 } else {
1264 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1265 return DMA_COMPLETE;
c13c8260
CL
1266 }
1267 return DMA_IN_PROGRESS;
1268}
1269
bca34692
DW
1270static inline void
1271dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1272{
1273 if (st) {
1274 st->last = last;
1275 st->used = used;
1276 st->residue = residue;
1277 }
1278}
1279
07f2211e 1280#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1281struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1282enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1283enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1284void dma_issue_pending_all(void);
a53e28da
LPC
1285struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1286 dma_filter_fn fn, void *fn_param);
bef29ec5 1287struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
a8135d0d
PU
1288
1289struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1290struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1291
8f33d527 1292void dma_release_channel(struct dma_chan *chan);
fdb8df99 1293int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
07f2211e 1294#else
4a43f394
JM
1295static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1296{
1297 return NULL;
1298}
1299static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1300{
adfedd9a 1301 return DMA_COMPLETE;
4a43f394 1302}
07f2211e
DW
1303static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1304{
adfedd9a 1305 return DMA_COMPLETE;
07f2211e 1306}
c50331e8
DW
1307static inline void dma_issue_pending_all(void)
1308{
8f33d527 1309}
a53e28da 1310static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1311 dma_filter_fn fn, void *fn_param)
1312{
1313 return NULL;
1314}
9a6cecc8 1315static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1316 const char *name)
9a6cecc8 1317{
d18d5f59 1318 return NULL;
9a6cecc8 1319}
a8135d0d
PU
1320static inline struct dma_chan *dma_request_chan(struct device *dev,
1321 const char *name)
1322{
1323 return ERR_PTR(-ENODEV);
1324}
1325static inline struct dma_chan *dma_request_chan_by_mask(
1326 const dma_cap_mask_t *mask)
1327{
1328 return ERR_PTR(-ENODEV);
1329}
8f33d527
GL
1330static inline void dma_release_channel(struct dma_chan *chan)
1331{
c50331e8 1332}
fdb8df99
LP
1333static inline int dma_get_slave_caps(struct dma_chan *chan,
1334 struct dma_slave_caps *caps)
1335{
1336 return -ENXIO;
1337}
07f2211e 1338#endif
c13c8260 1339
a8135d0d
PU
1340#define dma_request_slave_channel_reason(dev, name) dma_request_chan(dev, name)
1341
27242021
VK
1342static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1343{
1344 struct dma_slave_caps caps;
1345
1346 dma_get_slave_caps(tx->chan, &caps);
1347
1348 if (caps.descriptor_reuse) {
1349 tx->flags |= DMA_CTRL_REUSE;
1350 return 0;
1351 } else {
1352 return -EPERM;
1353 }
1354}
1355
1356static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1357{
1358 tx->flags &= ~DMA_CTRL_REUSE;
1359}
1360
1361static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1362{
1363 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1364}
1365
1366static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1367{
1368 /* this is supported for reusable desc, so check that */
1369 if (dmaengine_desc_test_reuse(desc))
1370 return desc->desc_free(desc);
1371 else
1372 return -EPERM;
1373}
1374
c13c8260
CL
1375/* --- DMA device --- */
1376
1377int dma_async_device_register(struct dma_device *device);
1378void dma_async_device_unregister(struct dma_device *device);
07f2211e 1379void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1380struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1381struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
59b5ec21 1382#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1383#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1384 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1385
1386static inline struct dma_chan
a53e28da
LPC
1387*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1388 dma_filter_fn fn, void *fn_param,
1dc04288 1389 struct device *dev, const char *name)
864ef69b
MP
1390{
1391 struct dma_chan *chan;
1392
1393 chan = dma_request_slave_channel(dev, name);
1394 if (chan)
1395 return chan;
1396
7dfffb95
GU
1397 if (!fn || !fn_param)
1398 return NULL;
1399
864ef69b
MP
1400 return __dma_request_channel(mask, fn, fn_param);
1401}
c13c8260 1402#endif /* DMAENGINE_H */