[S390] Add four level page tables for CONFIG_64BIT=y.
[linux-2.6-block.git] / include / asm-s390 / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
1da177e4
LT
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
2dcea57a 32#include <linux/mm_types.h>
1da177e4
LT
33#include <asm/bug.h>
34#include <asm/processor.h>
1da177e4 35
1da177e4
LT
36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37extern void paging_init(void);
2b67fc46 38extern void vmem_map_init(void);
1da177e4
LT
39
40/*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44#define update_mmu_cache(vma, address, pte) do { } while (0)
45
46/*
47 * ZERO_PAGE is a global shared page that is always zero: used
48 * for zero-mapped memory areas etc..
49 */
50extern char empty_zero_page[PAGE_SIZE];
51#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
52#endif /* !__ASSEMBLY__ */
53
54/*
55 * PMD_SHIFT determines the size of the area a second-level page
56 * table can map
57 * PGDIR_SHIFT determines what a third-level page table entry can map
58 */
59#ifndef __s390x__
146e4b3c
MS
60# define PMD_SHIFT 20
61# define PUD_SHIFT 20
62# define PGDIR_SHIFT 20
1da177e4 63#else /* __s390x__ */
146e4b3c 64# define PMD_SHIFT 20
190a1d72 65# define PUD_SHIFT 31
5a216a20 66# define PGDIR_SHIFT 42
1da177e4
LT
67#endif /* __s390x__ */
68
69#define PMD_SIZE (1UL << PMD_SHIFT)
70#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
71#define PUD_SIZE (1UL << PUD_SHIFT)
72#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
73#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
75
76/*
77 * entries per page directory level: the S390 is two-level, so
78 * we don't really have any PMD directory physically.
79 * for S390 segment-table entries are combined to one PGD
80 * that leads to 1024 pte per pgd
81 */
146e4b3c 82#define PTRS_PER_PTE 256
1da177e4 83#ifndef __s390x__
146e4b3c 84#define PTRS_PER_PMD 1
5a216a20 85#define PTRS_PER_PUD 1
1da177e4 86#else /* __s390x__ */
146e4b3c 87#define PTRS_PER_PMD 2048
5a216a20 88#define PTRS_PER_PUD 2048
1da177e4 89#endif /* __s390x__ */
146e4b3c 90#define PTRS_PER_PGD 2048
1da177e4 91
d455a369
HD
92#define FIRST_USER_ADDRESS 0
93
1da177e4
LT
94#define pte_ERROR(e) \
95 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
96#define pmd_ERROR(e) \
97 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
98#define pud_ERROR(e) \
99 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
100#define pgd_ERROR(e) \
101 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
102
103#ifndef __ASSEMBLY__
104/*
5fd9c6e2
CB
105 * The vmalloc area will always be on the topmost area of the kernel
106 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
107 * which should be enough for any sane case.
108 * By putting vmalloc at the top, we maximise the gap between physical
109 * memory and vmalloc to catch misplaced memory accesses. As a side
110 * effect, this also makes sure that 64 bit module code cannot be used
111 * as system call address.
8b62bc96 112 */
1da177e4 113#ifndef __s390x__
5fd9c6e2
CB
114#define VMALLOC_START 0x78000000UL
115#define VMALLOC_END 0x7e000000UL
0189103c 116#define VMEM_MAP_END 0x80000000UL
1da177e4 117#else /* __s390x__ */
5fd9c6e2
CB
118#define VMALLOC_START 0x3e000000000UL
119#define VMALLOC_END 0x3e040000000UL
0189103c 120#define VMEM_MAP_END 0x40000000000UL
1da177e4
LT
121#endif /* __s390x__ */
122
0189103c
HC
123/*
124 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
125 * mapping. This needs to be calculated at compile time since the size of the
126 * VMEM_MAP is static but the size of struct page can change.
127 */
522d8dc0
MS
128#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
129#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
130#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
5fd9c6e2 131#define VMEM_MAP ((struct page *) VMALLOC_END)
5fd9c6e2 132
1da177e4
LT
133/*
134 * A 31 bit pagetable entry of S390 has following format:
135 * | PFRA | | OS |
136 * 0 0IP0
137 * 00000000001111111111222222222233
138 * 01234567890123456789012345678901
139 *
140 * I Page-Invalid Bit: Page is not available for address-translation
141 * P Page-Protection Bit: Store access not possible for page
142 *
143 * A 31 bit segmenttable entry of S390 has following format:
144 * | P-table origin | |PTL
145 * 0 IC
146 * 00000000001111111111222222222233
147 * 01234567890123456789012345678901
148 *
149 * I Segment-Invalid Bit: Segment is not available for address-translation
150 * C Common-Segment Bit: Segment is not private (PoP 3-30)
151 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
152 *
153 * The 31 bit segmenttable origin of S390 has following format:
154 *
155 * |S-table origin | | STL |
156 * X **GPS
157 * 00000000001111111111222222222233
158 * 01234567890123456789012345678901
159 *
160 * X Space-Switch event:
161 * G Segment-Invalid Bit: *
162 * P Private-Space Bit: Segment is not private (PoP 3-30)
163 * S Storage-Alteration:
164 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
165 *
166 * A 64 bit pagetable entry of S390 has following format:
167 * | PFRA |0IP0| OS |
168 * 0000000000111111111122222222223333333333444444444455555555556666
169 * 0123456789012345678901234567890123456789012345678901234567890123
170 *
171 * I Page-Invalid Bit: Page is not available for address-translation
172 * P Page-Protection Bit: Store access not possible for page
173 *
174 * A 64 bit segmenttable entry of S390 has following format:
175 * | P-table origin | TT
176 * 0000000000111111111122222222223333333333444444444455555555556666
177 * 0123456789012345678901234567890123456789012345678901234567890123
178 *
179 * I Segment-Invalid Bit: Segment is not available for address-translation
180 * C Common-Segment Bit: Segment is not private (PoP 3-30)
181 * P Page-Protection Bit: Store access not possible for page
182 * TT Type 00
183 *
184 * A 64 bit region table entry of S390 has following format:
185 * | S-table origin | TF TTTL
186 * 0000000000111111111122222222223333333333444444444455555555556666
187 * 0123456789012345678901234567890123456789012345678901234567890123
188 *
189 * I Segment-Invalid Bit: Segment is not available for address-translation
190 * TT Type 01
191 * TF
190a1d72 192 * TL Table length
1da177e4
LT
193 *
194 * The 64 bit regiontable origin of S390 has following format:
195 * | region table origon | DTTL
196 * 0000000000111111111122222222223333333333444444444455555555556666
197 * 0123456789012345678901234567890123456789012345678901234567890123
198 *
199 * X Space-Switch event:
200 * G Segment-Invalid Bit:
201 * P Private-Space Bit:
202 * S Storage-Alteration:
203 * R Real space
204 * TL Table-Length:
205 *
206 * A storage key has the following format:
207 * | ACC |F|R|C|0|
208 * 0 3 4 5 6 7
209 * ACC: access key
210 * F : fetch protection bit
211 * R : referenced bit
212 * C : changed bit
213 */
214
215/* Hardware bits in the page table entry */
83377484
MS
216#define _PAGE_RO 0x200 /* HW read-only bit */
217#define _PAGE_INVALID 0x400 /* HW invalid bit */
3610cce8
MS
218
219/* Software bits in the page table entry */
83377484
MS
220#define _PAGE_SWT 0x001 /* SW pte type bit t */
221#define _PAGE_SWX 0x002 /* SW pte type bit x */
1da177e4 222
83377484 223/* Six different types of pages. */
9282ed92
GS
224#define _PAGE_TYPE_EMPTY 0x400
225#define _PAGE_TYPE_NONE 0x401
83377484
MS
226#define _PAGE_TYPE_SWAP 0x403
227#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
9282ed92
GS
228#define _PAGE_TYPE_RO 0x200
229#define _PAGE_TYPE_RW 0x000
c1821c2e
GS
230#define _PAGE_TYPE_EX_RO 0x202
231#define _PAGE_TYPE_EX_RW 0x002
1da177e4 232
83377484
MS
233/*
234 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
235 * pte_none and pte_file to find out the pte type WITHOUT holding the page
236 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
237 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
238 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
239 * This change is done while holding the lock, but the intermediate step
240 * of a previously valid pte with the hw invalid bit set can be observed by
241 * handle_pte_fault. That makes it necessary that all valid pte types with
242 * the hw invalid bit set must be distinguishable from the four pte types
243 * empty, none, swap and file.
244 *
245 * irxt ipte irxt
246 * _PAGE_TYPE_EMPTY 1000 -> 1000
247 * _PAGE_TYPE_NONE 1001 -> 1001
248 * _PAGE_TYPE_SWAP 1011 -> 1011
249 * _PAGE_TYPE_FILE 11?1 -> 11?1
250 * _PAGE_TYPE_RO 0100 -> 1100
251 * _PAGE_TYPE_RW 0000 -> 1000
c1821c2e
GS
252 * _PAGE_TYPE_EX_RO 0110 -> 1110
253 * _PAGE_TYPE_EX_RW 0010 -> 1010
83377484 254 *
c1821c2e 255 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
83377484
MS
256 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
257 * pte_file is true for bits combinations 1101, 1111
c1821c2e 258 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
83377484
MS
259 */
260
1da177e4
LT
261#ifndef __s390x__
262
3610cce8
MS
263/* Bits in the segment table address-space-control-element */
264#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
265#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
266#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
267#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
268#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
1da177e4 269
3610cce8
MS
270/* Bits in the segment table entry */
271#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
272#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
273#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
274#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
1da177e4 275
3610cce8
MS
276#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
277#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
1da177e4
LT
278
279#else /* __s390x__ */
280
3610cce8
MS
281/* Bits in the segment/region table address-space-control-element */
282#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
283#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
284#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
285#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
286#define _ASCE_REAL_SPACE 0x20 /* real space control */
287#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
288#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
289#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
290#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
291#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
292#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
293
294/* Bits in the region table entry */
295#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
296#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
297#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
298#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
299#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
300#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
301#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
302
303#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
304#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
305#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
306#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
307#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
308#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
309
1da177e4 310/* Bits in the segment table entry */
3610cce8
MS
311#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
312#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
313#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
1da177e4 314
3610cce8
MS
315#define _SEGMENT_ENTRY (0)
316#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
317
318#endif /* __s390x__ */
1da177e4
LT
319
320/*
3610cce8
MS
321 * A user page table pointer has the space-switch-event bit, the
322 * private-space-control bit and the storage-alteration-event-control
323 * bit set. A kernel page table pointer doesn't need them.
1da177e4 324 */
3610cce8
MS
325#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
326 _ASCE_ALT_EVENT)
1da177e4 327
3610cce8 328/* Bits int the storage key */
1da177e4
LT
329#define _PAGE_CHANGED 0x02 /* HW changed bit */
330#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
331
1da177e4 332/*
9282ed92 333 * Page protection definitions.
1da177e4 334 */
9282ed92
GS
335#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
336#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
337#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
c1821c2e
GS
338#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
339#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
9282ed92
GS
340
341#define PAGE_KERNEL PAGE_RW
342#define PAGE_COPY PAGE_RO
1da177e4
LT
343
344/*
c1821c2e
GS
345 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
346 * Write permission always implies read permission. In theory with a
347 * primary/secondary page table execute only can be implemented but
348 * it would cost an additional bit in the pte to distinguish all the
349 * different pte types. To avoid that execute permission currently
350 * implies read permission as well.
1da177e4
LT
351 */
352 /*xwr*/
9282ed92
GS
353#define __P000 PAGE_NONE
354#define __P001 PAGE_RO
355#define __P010 PAGE_RO
356#define __P011 PAGE_RO
c1821c2e
GS
357#define __P100 PAGE_EX_RO
358#define __P101 PAGE_EX_RO
359#define __P110 PAGE_EX_RO
360#define __P111 PAGE_EX_RO
9282ed92
GS
361
362#define __S000 PAGE_NONE
363#define __S001 PAGE_RO
364#define __S010 PAGE_RW
365#define __S011 PAGE_RW
c1821c2e
GS
366#define __S100 PAGE_EX_RO
367#define __S101 PAGE_EX_RO
368#define __S110 PAGE_EX_RW
369#define __S111 PAGE_EX_RW
370
371#ifndef __s390x__
3610cce8 372# define PxD_SHADOW_SHIFT 1
c1821c2e 373#else /* __s390x__ */
3610cce8 374# define PxD_SHADOW_SHIFT 2
c1821c2e
GS
375#endif /* __s390x__ */
376
3610cce8 377static inline void *get_shadow_table(void *table)
c1821c2e 378{
3610cce8
MS
379 unsigned long addr, offset;
380 struct page *page;
381
382 addr = (unsigned long) table;
383 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
384 page = virt_to_page((void *)(addr ^ offset));
385 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
c1821c2e 386}
1da177e4
LT
387
388/*
389 * Certain architectures need to do special things when PTEs
390 * within a page table are directly modified. Thus, the following
391 * hook is made available.
392 */
ba8a9229 393static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
146e4b3c 394 pte_t *ptep, pte_t entry)
1da177e4 395{
146e4b3c
MS
396 *ptep = entry;
397 if (mm->context.noexec) {
398 if (!(pte_val(entry) & _PAGE_INVALID) &&
399 (pte_val(entry) & _PAGE_SWX))
400 pte_val(entry) |= _PAGE_RO;
c1821c2e 401 else
146e4b3c
MS
402 pte_val(entry) = _PAGE_TYPE_EMPTY;
403 ptep[PTRS_PER_PTE] = entry;
c1821c2e 404 }
1da177e4 405}
1da177e4
LT
406
407/*
408 * pgd/pmd/pte query functions
409 */
410#ifndef __s390x__
411
4448aaf0
AB
412static inline int pgd_present(pgd_t pgd) { return 1; }
413static inline int pgd_none(pgd_t pgd) { return 0; }
414static inline int pgd_bad(pgd_t pgd) { return 0; }
1da177e4 415
190a1d72
MS
416static inline int pud_present(pud_t pud) { return 1; }
417static inline int pud_none(pud_t pud) { return 0; }
418static inline int pud_bad(pud_t pud) { return 0; }
419
1da177e4
LT
420#else /* __s390x__ */
421
5a216a20
MS
422static inline int pgd_present(pgd_t pgd)
423{
424 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
425}
426
427static inline int pgd_none(pgd_t pgd)
428{
429 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
430}
431
432static inline int pgd_bad(pgd_t pgd)
433{
434 unsigned long mask =
435 ~_REGION_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
436 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
437 return (pgd_val(pgd) & mask) != 0;
438}
190a1d72
MS
439
440static inline int pud_present(pud_t pud)
1da177e4 441{
0d017923 442 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
443}
444
190a1d72 445static inline int pud_none(pud_t pud)
1da177e4 446{
0d017923 447 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
1da177e4
LT
448}
449
190a1d72 450static inline int pud_bad(pud_t pud)
1da177e4 451{
5a216a20
MS
452 unsigned long mask =
453 ~_REGION_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
454 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
455 return (pud_val(pud) & mask) != 0;
1da177e4
LT
456}
457
3610cce8
MS
458#endif /* __s390x__ */
459
4448aaf0 460static inline int pmd_present(pmd_t pmd)
1da177e4 461{
0d017923 462 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
463}
464
4448aaf0 465static inline int pmd_none(pmd_t pmd)
1da177e4 466{
0d017923 467 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
1da177e4
LT
468}
469
4448aaf0 470static inline int pmd_bad(pmd_t pmd)
1da177e4 471{
3610cce8
MS
472 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
473 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
1da177e4
LT
474}
475
4448aaf0 476static inline int pte_none(pte_t pte)
1da177e4 477{
83377484 478 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
1da177e4
LT
479}
480
4448aaf0 481static inline int pte_present(pte_t pte)
1da177e4 482{
83377484
MS
483 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
484 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
485 (!(pte_val(pte) & _PAGE_INVALID) &&
486 !(pte_val(pte) & _PAGE_SWT));
1da177e4
LT
487}
488
4448aaf0 489static inline int pte_file(pte_t pte)
1da177e4 490{
83377484
MS
491 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
492 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
1da177e4
LT
493}
494
ba8a9229
MS
495#define __HAVE_ARCH_PTE_SAME
496#define pte_same(a,b) (pte_val(a) == pte_val(b))
1da177e4
LT
497
498/*
499 * query functions pte_write/pte_dirty/pte_young only work if
500 * pte_present() is true. Undefined behaviour if not..
501 */
4448aaf0 502static inline int pte_write(pte_t pte)
1da177e4
LT
503{
504 return (pte_val(pte) & _PAGE_RO) == 0;
505}
506
4448aaf0 507static inline int pte_dirty(pte_t pte)
1da177e4
LT
508{
509 /* A pte is neither clean nor dirty on s/390. The dirty bit
510 * is in the storage key. See page_test_and_clear_dirty for
511 * details.
512 */
513 return 0;
514}
515
4448aaf0 516static inline int pte_young(pte_t pte)
1da177e4
LT
517{
518 /* A pte is neither young nor old on s/390. The young bit
519 * is in the storage key. See page_test_and_clear_young for
520 * details.
521 */
522 return 0;
523}
524
1da177e4
LT
525/*
526 * pgd/pmd/pte modification functions
527 */
528
529#ifndef __s390x__
530
190a1d72
MS
531#define pgd_clear(pgd) do { } while (0)
532#define pud_clear(pud) do { } while (0)
1da177e4 533
1da177e4
LT
534#else /* __s390x__ */
535
5a216a20
MS
536static inline void pgd_clear_kernel(pgd_t * pgd)
537{
538 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
539}
540
541static inline void pgd_clear(pgd_t * pgd)
542{
543 pgd_t *shadow = get_shadow_table(pgd);
544
545 pgd_clear_kernel(pgd);
546 if (shadow)
547 pgd_clear_kernel(shadow);
548}
190a1d72
MS
549
550static inline void pud_clear_kernel(pud_t *pud)
1da177e4 551{
190a1d72 552 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
553}
554
190a1d72 555static inline void pud_clear(pud_t * pud)
c1821c2e 556{
190a1d72 557 pud_t *shadow = get_shadow_table(pud);
c1821c2e 558
190a1d72
MS
559 pud_clear_kernel(pud);
560 if (shadow)
561 pud_clear_kernel(shadow);
c1821c2e
GS
562}
563
146e4b3c
MS
564#endif /* __s390x__ */
565
c1821c2e 566static inline void pmd_clear_kernel(pmd_t * pmdp)
1da177e4 567{
3610cce8 568 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
569}
570
146e4b3c 571static inline void pmd_clear(pmd_t *pmd)
c1821c2e 572{
146e4b3c 573 pmd_t *shadow = get_shadow_table(pmd);
c1821c2e 574
146e4b3c
MS
575 pmd_clear_kernel(pmd);
576 if (shadow)
577 pmd_clear_kernel(shadow);
c1821c2e
GS
578}
579
4448aaf0 580static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 581{
9282ed92 582 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
146e4b3c
MS
583 if (mm->context.noexec)
584 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
1da177e4
LT
585}
586
587/*
588 * The following pte modification functions only work if
589 * pte_present() is true. Undefined behaviour if not..
590 */
4448aaf0 591static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4
LT
592{
593 pte_val(pte) &= PAGE_MASK;
594 pte_val(pte) |= pgprot_val(newprot);
595 return pte;
596}
597
4448aaf0 598static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 599{
9282ed92 600 /* Do not clobber _PAGE_TYPE_NONE pages! */
1da177e4
LT
601 if (!(pte_val(pte) & _PAGE_INVALID))
602 pte_val(pte) |= _PAGE_RO;
603 return pte;
604}
605
4448aaf0 606static inline pte_t pte_mkwrite(pte_t pte)
1da177e4
LT
607{
608 pte_val(pte) &= ~_PAGE_RO;
609 return pte;
610}
611
4448aaf0 612static inline pte_t pte_mkclean(pte_t pte)
1da177e4
LT
613{
614 /* The only user of pte_mkclean is the fork() code.
615 We must *not* clear the *physical* page dirty bit
616 just because fork() wants to clear the dirty bit in
617 *one* of the page's mappings. So we just do nothing. */
618 return pte;
619}
620
4448aaf0 621static inline pte_t pte_mkdirty(pte_t pte)
1da177e4
LT
622{
623 /* We do not explicitly set the dirty bit because the
624 * sske instruction is slow. It is faster to let the
625 * next instruction set the dirty bit.
626 */
627 return pte;
628}
629
4448aaf0 630static inline pte_t pte_mkold(pte_t pte)
1da177e4
LT
631{
632 /* S/390 doesn't keep its dirty/referenced bit in the pte.
633 * There is no point in clearing the real referenced bit.
634 */
635 return pte;
636}
637
4448aaf0 638static inline pte_t pte_mkyoung(pte_t pte)
1da177e4
LT
639{
640 /* S/390 doesn't keep its dirty/referenced bit in the pte.
641 * There is no point in setting the real referenced bit.
642 */
643 return pte;
644}
645
ba8a9229
MS
646#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
647static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
648 unsigned long addr, pte_t *ptep)
1da177e4
LT
649{
650 return 0;
651}
652
ba8a9229
MS
653#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
654static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
655 unsigned long address, pte_t *ptep)
1da177e4
LT
656{
657 /* No need to flush TLB; bits are in storage key */
ba8a9229 658 return 0;
1da177e4
LT
659}
660
9282ed92 661static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 662{
9282ed92 663 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1da177e4 664#ifndef __s390x__
146e4b3c 665 /* pto must point to the start of the segment table */
1da177e4 666 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
9282ed92
GS
667#else
668 /* ipte in zarch mode can do the math */
669 pte_t *pto = ptep;
670#endif
94c12cc7
MS
671 asm volatile(
672 " ipte %2,%3"
673 : "=m" (*ptep) : "m" (*ptep),
674 "a" (pto), "a" (address));
1da177e4 675 }
9282ed92
GS
676 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
677}
678
146e4b3c
MS
679static inline void ptep_invalidate(struct mm_struct *mm,
680 unsigned long address, pte_t *ptep)
9282ed92 681{
9282ed92 682 __ptep_ipte(address, ptep);
146e4b3c
MS
683 if (mm->context.noexec)
684 __ptep_ipte(address, ptep + PTRS_PER_PTE);
f0e47c22
MS
685}
686
ba8a9229
MS
687/*
688 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
689 * both clear the TLB for the unmapped pte. The reason is that
690 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
691 * to modify an active pte. The sequence is
692 * 1) ptep_get_and_clear
693 * 2) set_pte_at
694 * 3) flush_tlb_range
695 * On s390 the tlb needs to get flushed with the modification of the pte
696 * if the pte is active. The only way how this can be implemented is to
697 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
698 * is a nop.
699 */
700#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
701#define ptep_get_and_clear(__mm, __address, __ptep) \
702({ \
703 pte_t __pte = *(__ptep); \
704 if (atomic_read(&(__mm)->mm_users) > 1 || \
705 (__mm) != current->active_mm) \
146e4b3c 706 ptep_invalidate(__mm, __address, __ptep); \
ba8a9229
MS
707 else \
708 pte_clear((__mm), (__address), (__ptep)); \
709 __pte; \
710})
711
712#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
713static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
714 unsigned long address, pte_t *ptep)
715{
716 pte_t pte = *ptep;
146e4b3c 717 ptep_invalidate(vma->vm_mm, address, ptep);
1da177e4
LT
718 return pte;
719}
720
ba8a9229
MS
721/*
722 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
723 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
724 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
725 * cannot be accessed while the batched unmap is running. In this case
726 * full==1 and a simple pte_clear is enough. See tlb.h.
727 */
728#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
729static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
730 unsigned long addr,
731 pte_t *ptep, int full)
1da177e4 732{
ba8a9229
MS
733 pte_t pte = *ptep;
734
735 if (full)
736 pte_clear(mm, addr, ptep);
737 else
146e4b3c 738 ptep_invalidate(mm, addr, ptep);
ba8a9229 739 return pte;
1da177e4
LT
740}
741
ba8a9229
MS
742#define __HAVE_ARCH_PTEP_SET_WRPROTECT
743#define ptep_set_wrprotect(__mm, __addr, __ptep) \
744({ \
745 pte_t __pte = *(__ptep); \
746 if (pte_write(__pte)) { \
747 if (atomic_read(&(__mm)->mm_users) > 1 || \
748 (__mm) != current->active_mm) \
146e4b3c 749 ptep_invalidate(__mm, __addr, __ptep); \
ba8a9229
MS
750 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
751 } \
752})
753
754#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
f0e47c22
MS
755#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
756({ \
757 int __changed = !pte_same(*(__ptep), __entry); \
758 if (__changed) { \
146e4b3c 759 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
f0e47c22
MS
760 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
761 } \
762 __changed; \
8dab5241 763})
1da177e4
LT
764
765/*
766 * Test and clear dirty bit in storage key.
767 * We can't clear the changed bit atomically. This is a potential
768 * race against modification of the referenced bit. This function
769 * should therefore only be called if it is not mapped in any
770 * address space.
771 */
ba8a9229 772#define __HAVE_ARCH_PAGE_TEST_DIRTY
6c210482 773static inline int page_test_dirty(struct page *page)
2dcea57a 774{
6c210482
MS
775 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
776}
2dcea57a 777
ba8a9229 778#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
6c210482
MS
779static inline void page_clear_dirty(struct page *page)
780{
781 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
2dcea57a 782}
1da177e4
LT
783
784/*
785 * Test and clear referenced bit in storage key.
786 */
ba8a9229 787#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2dcea57a
HC
788static inline int page_test_and_clear_young(struct page *page)
789{
0b2b6e1d 790 unsigned long physpage = page_to_phys(page);
2dcea57a
HC
791 int ccode;
792
0b2b6e1d
HC
793 asm volatile(
794 " rrbe 0,%1\n"
795 " ipm %0\n"
796 " srl %0,28\n"
2dcea57a
HC
797 : "=d" (ccode) : "a" (physpage) : "cc" );
798 return ccode & 2;
799}
1da177e4
LT
800
801/*
802 * Conversion functions: convert a page and protection to a page entry,
803 * and a page entry and page directory to the page they refer to.
804 */
805static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
806{
807 pte_t __pte;
808 pte_val(__pte) = physpage + pgprot_val(pgprot);
809 return __pte;
810}
811
2dcea57a
HC
812static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
813{
0b2b6e1d 814 unsigned long physpage = page_to_phys(page);
1da177e4 815
2dcea57a
HC
816 return mk_pte_phys(physpage, pgprot);
817}
818
190a1d72
MS
819#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
820#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
821#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
822#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 823
190a1d72
MS
824#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
825#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 826
190a1d72 827#ifndef __s390x__
1da177e4 828
190a1d72
MS
829#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
830#define pud_deref(pmd) ({ BUG(); 0UL; })
831#define pgd_deref(pmd) ({ BUG(); 0UL; })
46a82b2d 832
190a1d72
MS
833#define pud_offset(pgd, address) ((pud_t *) pgd)
834#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1da177e4 835
190a1d72 836#else /* __s390x__ */
1da177e4 837
190a1d72
MS
838#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
839#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 840#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 841
5a216a20
MS
842static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
843{
844 pud_t *pud = (pud_t *) pgd_deref(*pgd);
845 return pud + pud_index(address);
846}
1da177e4 847
190a1d72 848static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 849{
190a1d72
MS
850 pmd_t *pmd = (pmd_t *) pud_deref(*pud);
851 return pmd + pmd_index(address);
1da177e4
LT
852}
853
190a1d72 854#endif /* __s390x__ */
1da177e4 855
190a1d72
MS
856#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
857#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
858#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 859
190a1d72 860#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1da177e4 861
190a1d72
MS
862/* Find an entry in the lowest level page table.. */
863#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
864#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4
LT
865#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
866#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
867#define pte_unmap(pte) do { } while (0)
868#define pte_unmap_nested(pte) do { } while (0)
869
870/*
871 * 31 bit swap entry format:
872 * A page-table entry has some bits we have to treat in a special way.
873 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
874 * exception will occur instead of a page translation exception. The
875 * specifiation exception has the bad habit not to store necessary
876 * information in the lowcore.
877 * Bit 21 and bit 22 are the page invalid bit and the page protection
878 * bit. We set both to indicate a swapped page.
879 * Bit 30 and 31 are used to distinguish the different page types. For
880 * a swapped page these bits need to be zero.
881 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
882 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
883 * plus 24 for the offset.
884 * 0| offset |0110|o|type |00|
885 * 0 0000000001111111111 2222 2 22222 33
886 * 0 1234567890123456789 0123 4 56789 01
887 *
888 * 64 bit swap entry format:
889 * A page-table entry has some bits we have to treat in a special way.
890 * Bits 52 and bit 55 have to be zero, otherwise an specification
891 * exception will occur instead of a page translation exception. The
892 * specifiation exception has the bad habit not to store necessary
893 * information in the lowcore.
894 * Bit 53 and bit 54 are the page invalid bit and the page protection
895 * bit. We set both to indicate a swapped page.
896 * Bit 62 and 63 are used to distinguish the different page types. For
897 * a swapped page these bits need to be zero.
898 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
899 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
900 * plus 56 for the offset.
901 * | offset |0110|o|type |00|
902 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
903 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
904 */
905#ifndef __s390x__
906#define __SWP_OFFSET_MASK (~0UL >> 12)
907#else
908#define __SWP_OFFSET_MASK (~0UL >> 11)
909#endif
4448aaf0 910static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
911{
912 pte_t pte;
913 offset &= __SWP_OFFSET_MASK;
9282ed92 914 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1da177e4
LT
915 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
916 return pte;
917}
918
919#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
920#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
921#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
922
923#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
924#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
925
926#ifndef __s390x__
927# define PTE_FILE_MAX_BITS 26
928#else /* __s390x__ */
929# define PTE_FILE_MAX_BITS 59
930#endif /* __s390x__ */
931
932#define pte_to_pgoff(__pte) \
933 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
934
935#define pgoff_to_pte(__off) \
936 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
9282ed92 937 | _PAGE_TYPE_FILE })
1da177e4
LT
938
939#endif /* !__ASSEMBLY__ */
940
941#define kern_addr_valid(addr) (1)
942
f4eb07c1
HC
943extern int add_shared_memory(unsigned long start, unsigned long size);
944extern int remove_shared_memory(unsigned long start, unsigned long size);
945
1da177e4
LT
946/*
947 * No page table caches to initialise
948 */
949#define pgtable_cache_init() do { } while (0)
950
f4eb07c1
HC
951#define __HAVE_ARCH_MEMMAP_INIT
952extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
953
1da177e4
LT
954#include <asm-generic/pgtable.h>
955
956#endif /* _S390_PAGE_H */